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Abstract. We study subcoalgebras of path coalgebras that are spanned by paths (called path
subcoalgebras) and subcoalgebras of incidence coalgebras, and propose a unifying approach
for these classes. We discuss the left quasi-co-Frobenius and the left co-Frobenius properties
for these coalgebras. We classify the left co-Frobenius path subcoalgebras, showing that they
are direct sums of certain path subcoalgebras arising from the infinite line quiver or from cyclic
quivers. We investigate which of the co-Frobenius path subcoalgebras can be endowed with
Hopf algebra structures, in order to produce some quantum groups with non-zero integrals,
and we classify all these structures over a field with primitive roots of unity of any order. These
turn out to be liftings of quantum lines over certain not necessarily abelian groups.
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1. Introduction and Preliminaries

LetK be an arbitrary field. A quadratic algebra is a quotient of a free noncommutative
algebraKhx1; : : : ; xni in n variables by an ideal I generated by elements of degree 2.
The usual commutative polynomial ring is such an example, with I generated by
xixj � xjxi . Quadratic algebras are important in many places in mathematics, and
one relevant class of such objects consists of Koszul algebras and Koszul duals of
quadratic algebras. More generally, one can consider quotientsKhx1; : : : ; xni=I for
ideals I generated by homogeneous elements. Several algebras occur in this way
in topology, noncommutative geometry, representation theory, or theoretical physics
(see the examples and references in [7]). Such are the cubic Artin–Schreier regular
algebras Chx; yi=.ay2x C byxy C axy2 C cx3; ax2y C bxyx C ayx2 C xy3/

in noncommutative projective algebraic geometry (see [3]), the skew-symmetrizer
killing algebras Chx1; : : : ; xni=.P�2†p

sgn.�/xi�.1/
: : : xi�.p/

/ (the ideal we factor

out has
�

n
p

�
generators, each one corresponding to some fixed 1 � i1 < � � � < ip �

n) for a fixed 2 � p � n, in representation theory (see [6]), or the Yang–Mills
algebras Chr0; : : : ;rni=.P�;� g

.�;�/Œr�Œr�;r� ��/ (with .g.�;�//�;� an invertible
symmetric real matrix, and the ideal we factor out has nC1 generators, as 0 � � � n)
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in theoretical physics (see [14]), to name a few. More generally, one could start with
a quiver � , and define path algebras with relations by taking quotients of the path
algebra KŒ�� by an ideal (usually) generated by homogeneous elements, which are
obtained as linear combinations of paths of the same length. Note that the examples
above are of this type: the free algebra with n elements can be thought as the path
algebra of the quiver � with one vertex 1 (which becomes the unit in the algebra) and
n arrows x1; : : : ; xn starting and ending at 1; the relations are then given by linear
combinations of paths of the same length. This approach, for example, allows the
generalization of N -Koszulity to quiver algebras with relations, see [17].

We aim to study a general situation which is dual to the ones above, but is also
directly connected to it. If� is a quiver, the path algebraKŒ�� of� plays an important
role in the representation theory of� . The underlying vector space of the path algebra
also has a coalgebra structure, which we denote by K� and call the path coalgebra
of � . One motivation for replacing path algebras by path coalgebras is the following:
given an algebra A, and its category of finite dimensional representations, one is
often led to considering the category Ind.A/ generated by all these finite dimensional
representations (direct limits of finite dimensional representations). Ind.A/ is well
understood as the category of comodules over the finite dual coalgebra A0 of A (also
called the algebra of representative functions onA), and it cannot be regarded as a full
category of modules over a ring unlessA is finite dimensional. Such situations extend
beyond the realm of pure algebra, encompassing representations of compact groups,
affine algebraic groups or group schemes, differential affine groups, Lie algebras and
Lie groups, infinite tensor categories, etc.

Another reason why the study of path coalgebras is interesting is that any pointed
coalgebra embeds into the path coalgebra of the associated Gabriel quiver, see [24],
[12]. On the other hand, if X is a locally finite partially ordered set, the incidence
coalgebra KX provides a good framework for interpreting several combinatorial
problems in terms of coalgebras, as explained by Joni and Rota in [22]. There are
several features common to path coalgebras and incidence coalgebras. They are
both pointed, the group-like elements recover the vertices of the quiver, respectively
the points of the ordered set, the injective envelopes of the simple comodules have
similar descriptions, etc. Moreover, as we show later in Section 5, Proposition 5.1,
any incidence coalgebra embeds in a path coalgebra, and in many situations it has a
basis where each element is a sum of paths of the same length. We note that this is
precisely the dual situation to that considered above: for algebras one considers a path
algebra with homogeneous relations, that is,KŒ�� factored out by an ideal generated
by homogeneous elements, i.e., sums of paths of the same length with coefficients.
For a coalgebra one considers subcoalgebras of the path coalgebra of � such that the
coalgebra has a basis consisting of linear combinations of paths of the same length
(“homogeneous” elements; more generally, a coalgebra generated by such elements).

In this paper we study Frobenius type properties for path coalgebras, incidence
coalgebras and certain subcoalgebras of them. Recall that a coalgebra C is called
left co-Frobenius if C embeds in C � as a left C �-module. Also, C is called left
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quasi-co-Frobenius if C embeds in a free module as a left C �-module. The (quasi)-
co-Frobenius properties are interesting for at least three reasons. Firstly, coalgebras
with such properties have rich representation theories. Secondly, for a Hopf algebra
H , it is true thatH is left quasi-co-Frobenius if and only ifH is left co-Frobenius, and
this is also equivalent to H having non-zero left (or right) integrals. Co-Frobenius
Hopf algebras are important since they generalize the algebra of representative func-
tions R.G/ on a compact group G, which is a Hopf algebra whose integral is the left
Haar integral of G. Moreover, more recent generalizations of these have been made
to compact and locally compact quantum groups (whose representation categories
are not necessarily semisimple). Thus co-Frobenius coalgebras may be the underly-
ing coalgebras for interesting quantum groups with non-zero integrals. Thirdly, by
keeping in mind the duality with Frobenius algebras in the finite dimensional case,
co-Frobenius coalgebras have connections to topological quantum field theory.

We propose an approach leading to similar results for path coalgebras and inci-
dence coalgebras, and which also points out the similarities between these as men-
tioned above. It will follow from our results that a path coalgebra (or an incidence
coalgebra) is left (quasi)-co-Frobenius if and only if the quiver consists only of iso-
lated points, i.e., the quiver does not have arrows (respectively the order relation is
the equality). Thus the left co-Frobenius coalgebras arising from path coalgebras or
incidence coalgebras are just group-like coalgebras. In order to discover more inter-
esting left co-Frobenius coalgebras, we focus our attention to classes of coalgebras
larger than just path coalgebras and incidence coalgebras. On one hand we consider
subcoalgebras of path coalgebras which have a linear basis consisting of paths. We
call these path subcoalgebras. On the other hand, we look at subcoalgebras of inci-
dence coalgebras; any such coalgebra has a basis consisting of segments. In Section 2
we apply a classical approach to the (quasi)-co-Frobenius property. It is known that
a coalgebra C is left co-Frobenius if and only if there exists a left non-degenerate
C �-balanced bilinear form on C . Also, C is left quasi-co-Frobenius if and only if
there exists a family .ˇi /i2I of C �-balanced bilinear forms on C such that for any
non-zero x 2 C there is i 2 I with ˇi .x; C / ¤ 0. We describe the balanced bilin-
ear forms on path subcoalgebras and subcoalgebras of incidence coalgebras. Such a
description was given in [16] for the full incidence coalgebra, and in [5] for certain
matrix-like coalgebras. In Section 3 we use this description and an approach using
the injective envelopes of the simple comodules to show that a coalgebra lying in one
of the two classes is left quasi-co-Frobenius if and only if it is left co-Frobenius, and
to give several equivalent conditions including combinatorial ones (just in terms of
paths of the quiver, or segments of the ordered set).

In Section 4 we classify all possible left co-Frobenius path subcoalgebras. We
construct some classes of left co-Frobenius coalgebras KŒA1; r� and KŒA0;1; r�
starting from the infinite line quiver A1, and a class of left co-Frobenius coalgebras
KŒCn; s� starting from cyclic quiver Cn. Our result says that any left co-Frobenius
path subcoalgebra is isomorphic to a direct sum of coalgebras of types KŒA1; r�,
KŒA0;1; r�,KŒCn; s� orK, with special quivers A1;A0;1;Cn and r , s being certain
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general types of functions on these quivers. For subcoalgebras of incidence coalgebras
we do not have a complete classification in the left co-Frobenius case. We show in
Section 5 that more complicated examples than the ones in the path subcoalgebra
case can occur for subcoalgebras of incidence coalgebras, and a much larger class of
such coalgebras is to be expected. Also, we give several examples of co-Frobenius
subcoalgebras of path coalgebras, which are not path subcoalgebras, and moreover,
examples of pointed co-Frobenius coalgebras which are not isomorphic to any one of
the above mentioned classes. In Section 6 we discuss the possibility of defining Hopf
algebra structures on the path subcoalgebras that are left and right co-Frobenius,
classified in Section 4. The main reason for asking this question is the interest in
constructing quantum groups with non-zero integrals, whose underlying coalgebras
are path subcoalgebras. We answer completely this question in the case where K
contains primitive roots of unity of any positive order. Thus we determine all possible
co-Frobenius path subcoalgebras admitting a Hopf algebra structure. Moreover, we
describe up to an isomorphism all such Hopf algebra structures. It turns out that
they are liftings of quantum lines over certain not necessarily abelian groups. In
particular, this also answers the question of finding the Hopf algebra structures on
finite dimensional path subcoalgebras and on quotients of finite dimensional path
algebras by ideals spanned by paths. Our results contain, as particular cases, some
results of [10], where finite quivers � and finite dimensional path subcoalgebras C
of K� are considered, such that C contains all vertices and arrows of � . The co-
Frobenius coalgebras of this type are determined, and all Hopf algebra structures on
them are described in [10]. These results follow from our more general Theorem 4.6
and Theorem 6.4. We note that Hopf algebra structures on incidence coalgebras have
been of great interest for combinatorics, see for example [25], [1]. We also note that
the classification of path coalgebras that admit a graded Hopf algebra structure was
done in [13], see also [18] for a different point of view on Hopf algebra structures
on path algebras. In particular, some of the examples in the classification have deep
connections with homological algebra: the monoidal category of chain s-complexes
of vector spaces over K is monoidal equivalent to the category of comodules of
KŒA1js�, a subclass of the Hopf algebras classified here ([21], [8]).

We also note that the unifying approach we propose here seems to suggest that
in general for pointed coalgebras interesting methods and results could be obtained
provided one can find some suitable bases with properties resembling those of paths
in quiver algebras or segments in incidence coalgebras.

Throughout the paper � D .�0; �1/ will be a quiver. �0 is the set of vertices,
and �1 is the set of arrows of � . If a is an arrow from the vertex u to the vertex
v, we denote s.a/ D u and t .a/ D v. A path in � is a finite sequence of arrows
p D a1a2 : : : an, where n � 1, such that t .ai / D s.aiC1/ for any 1 � i � n � 1.
We will write s.p/ D s.a1/ and t .p/ D t .an/. Also the length of such a p is
length.p/ D n. Vertices v in �0 are also considered as paths of length zero, and
we write s.v/ D t .v/ D v. If q and p are two paths such that t .q/ D s.p/, we
consider the path qp by taking the arrows of q followed by the arrows of p. We
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denote by K� the path coalgebra, which is the vector space with a basis consisting
of all paths in � , and comultiplication � defined by �.p/ D P

qrDp q ˝ r for any
path p, and counit � defined by �.v/ D 1 for any vertex v, and �.p/ D 0 for any
path of positive length. In particular, the arrows x between two vertices v and w,
i.e., s.x/ D v, t .x/ D w, are the nontrivial elements of Pw;v , the space of .w; v/-
skew-primitive elements: �.x/ D v ˝ x C x ˝ w. When we use Sweedler’s sigma
notation�.p/ D P

p1 ˝p2 for a path p, we always take representations of the sum
such that all p1’s and p2’s are paths.

We also consider partially ordered sets .X;�/ which are locally finite, i.e., the
interval Œx; y� D fz j x � z � yg is finite for any x � y. The incidenceK-coalgebra
of X , denoted by KX , is the K-vector space with basis fex;y j x; y 2 X; x � yg,
and comultiplication � and counit � defined by

�.ex;y/ D P
x�z�y

ex;z ˝ ez;y ; �.ex;y/ D ıx;y ;

for any x; y 2 X with x � y, where by ıx;y we denote Kronecker’s delta. The
elements ex;y are called segments. Again, when we use Sweedler’s sigma notation
�.p/ D P

p1 ˝p2 for a segment p, we always take representations of the sum such
that all p1’s and p2’s are segments. Recall that the length of a segment ex;y is the
maximum length n of a chain x D z0 < z1 < � � � < zn D y.

For basic terminology and notation about coalgebras and Hopf algebras we refer
to [15] and [23].

2. Balanced bilinear forms for path subcoalgebras and for subcoalgebras of
incidence coalgebras

In the rest of the paper we will be interested in two classes of coalgebras more general
than path coalgebras and incidence coalgebras. Thus we will study:

� Subcoalgebras of the path coalgebra K� having a basis B consisting of paths
in � . Such a coalgebra will be called a path subcoalgebra. Note that if p 2 B,
then any subpath of p, in particular any vertex involved in p, lies in B.

� Subcoalgebras of the incidence coalgebra KX . By [16], Proposition 1.1, any
such subcoalgebra has a basis B consisting of segments ex;y , and moreover, if
ex;y 2 B and x � a � b � y, then ea;b 2 B.

It is clear that for a coalgebra C of one of these two types, the distinguished basis
B consists of all paths (or segments) which are elements of C . Let C be a coalgebra
of one of these two types, with basis B as above. When we use Sweedler’s sigma
notation �.p/ D P

p1 ˝ p2 for p 2 B, we always consider representations of the
sum such that all p1’s and p2’s are in B.

A bilinear form ˇ W C � C ! K is C �-balanced ifP
ˇ.p2; q/p1 D P

ˇ.p; q1/q2 for any p; q 2 B: (1)
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It is clear that (1) is equivalent to the fact that for any p; q 2 B, the following three
conditions hold:

ˇ.p2; q/ D ˇ.p; q1/ for those of the p2’s and the q1’s such that p1 D q2; (2)

ˇ.p2; q/ D 0 for those p2’s for which p1 is not equal to any q2; (3)

ˇ.p; q1/ D 0 for those q1’s for which q2 is not equal to any p1: (4)

In the following two sections we discuss separately path subcoalgebras and sub-
coalgebras of incidence coalgebras.

2.1. Path subcoalgebras. In this section we consider the case where C is a path
subcoalgebra. We note that if � is acyclic, then for any paths p and q there is at most
a pair .p1; q2/ (in (1)) such that p1 D q2.

Denote by F the set of all paths d satisfying the following three properties:

� d D qp for some q; p 2 B.

� For any representation d D qp with q; p 2 B, and any arrow a 2 �1, if ap 2 B

then q must end with a.

� For any representation d D qp with q; p 2 B, and any arrow b 2 �1, if qb 2 B

then p starts with b.

Now we are able to describe all balanced bilinear forms on C .

Theorem 2.1. A bilinear form ˇ W C � C ! K is C �-balanced if and only if there
is a family of scalars .˛d /d2F such that, for any p; q 2 B,

ˇ.p; q/ D
´
˛d if s.p/ D t .q/ and qp D d 2 F ;

0 otherwise:

In particular the set of all C �-balanced bilinear forms on C is in bijective corre-
spondence to KF .

Proof. Assume thatˇ isC �-balanced. Ifp; q 2 B and t .q/ ¤ s.p/, thenˇ.p; q/s.p/
appears in the left-hand side of (1), but s.p/ does not show up in the right-hand side,
so ˇ.p; q/ D 0. Let P be the set of all paths in � for which there are p; q 2 B such
that d D qp. Let d 2 P and let d D qp D q0p0, p; q; p0; q0 2 B be two different
decompositions of d , and say that, for example, length.p0/ < length.p/. Then there
is a path r such that p D rp0 and q0 D qr , and clearly r 2 B since it is a subpath of
q0 2 B . Use (2) for p and q0, for which there is an equality p1 D q0

2 D r (and the
corresponding p2 D p0 and q0

1 D q), and find that ˇ.p0; q0/ D ˇ.p; q/. Therefore,
for any d 2 P (not necessarily in B) and any p; q 2 B such that d D qp, the scalar
ˇ.p; q/ depends only on d . This shows that there is a family of scalars .˛d /d2P such
that ˇ.p; q/ D ˛d for any p; q 2 B with qp D d .
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Let d 2 P such that d D qp for some p; q 2 B, and there is an arrow a 2 �1

with ap 2 B, but q does not end with a. That is, q is not of the form q D ra for
some path r 2 B. We use (3) for the paths ap 2 B and q 2 B, more precisely, for
the term .ap/1 D a, which cannot be equal to any of the q2’s (otherwise q would end
with a), and we see that ˇ.p; q/ D 0, i.e., ˛d D 0.

Similarly, if d 2 P , d D qp with p; q 2 B and there is b 2 �1 with qb 2 B and
p not of the form br for some path r (i.e., p does not start with b), then we use (4) for
p and qb, and .qb/2 D b, and we find that ˇ.p; q/ D 0, i.e., ˛d D 0. In conclusion,
˛d may be non-zero only for d 2 F .

Conversely, assume that ˇ is of the form indicated in the statement. We show
that (2), (3) and (4) are satisfied. Let p; q 2 B be such that p1 D q2 D r for
some p1 and q2 (from the comultiplication

P
p1 ˝ p2 of p and, respectively, the

comultiplication
P
q1 ˝ q2 of q). Then p D rp0 and q D q0r for some p0; q0 2 B.

Let d D q0rp0. If d 2 F , then ˇ.p0; q/ D ˇ.p; q0/ D ˛d , while if d … F we have
ˇ.p0; q/ D ˇ.p; q0/ D 0 by definition. Thus (2) holds. Now let p; q 2 B and fix
some p2 (from the comultiplication

P
p1 ˝p2 of p) such that the corresponding p1

is not equal to any q2. If s.p2/ ¤ t .q/, then clearly ˇ.p2; q1/ D 0 by the definition
of ˇ. If s.p2/ D t .q/, then d D qp2 … F . Indeed, let r be a maximal path such that
p1 D er for some path e and q ends with r , say q D q0r . Note that e has length at
least 1, since p1 is not equal to any of the q2’s. Then the terminal arrow of e cannot
be the terminal arrow of q0, and this shows that d D p2q D .p2r/q

0 … F . Then
ˇ.p2; q/ D 0 and (3) is satisfied. Similarly, (4) is satisfied.

2.2. Subcoalgebras of incidence coalgebras. In this section we assume that C
is a subcoalgebra of the incidence coalgebra KX . Let D be the set of all pairs
.x; y/ of elements in X such that x � y and there exists x0 with x � x0 � y and
ex;x0 ; ex0;y 2 B. Fix .x; y/ 2 D . Let

Ux;y D fu j x � u � y and ex;u; eu;y 2 Bg

and define the relation � on Ux;y by u � v if and only if there exist a positive integer
n, and u0 D u; u1; : : : ; un D v and z1; : : : ; zn in Ux;y , such that zi � ui�1 and
zi � ui for any 1 � i � n. It is easy to see that � is an equivalence relation on Ux;y .
Let Ux;y=� be the associated set of equivalence classes, and denote by .Ux;y=�/0
the set of all equivalence classes C satisfying the following two conditions:

� If u 2 C , v 2 X satisfies v � u and ev;y 2 B, then x � v.

� If u 2 C , v 2 X satisfies u � v and ex;v 2 B, then v � y.

Now we can describe the balanced bilinear forms on C .

Theorem 2.2. A bilinear form ˇ W C � C ! K is C �-balanced if and only if there
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is a family of scalars .˛C /C2F
.x;y/2D .Ux;y=sim/0

such that, for any et;y ; ex;z 2 B,

ˇ.et;y ; ex;z/ D

8̂<̂
:
˛C if .x; y/ 2 D ; z D t 2 Ux;y and the class C

of z in Ux;y=� is in .Ux;y=�/0;
0 otherwise:

In particular the set of all C �-balanced bilinear forms on C is in bijective corre-
spondence to K

F
.x;y/2D .Ux;y=�/0 .

Proof. Assume that ˇ is C �-balanced. Fix some x � y such that Ux;y ¤ ;. We
first note that if x � z � t � y and z; t 2 Ux;y , then by applying (2) for p D ez;y ,
q D ex;t and p1 D q2 D ez;t , we find that ˇ.et;y ; ex;t / D ˇ.ez;y ; ex;z/. Now
let u; v 2 Ux;y such that u � v. Let u0 D u; u1; : : : ; un D v and z1; : : : ; zn

in Ux;y such that zi � ui�1 and zi � ui for any 1 � i � n. By the above
ˇ.eui�1;y ; ex;ui�1

/ D ˇ.eui ;y ; ex;ui
/ D ˇ.ezi ;y ; ex;zi

/ for any i , and this implies
that ˇ.eu;y ; ex;u/ D ˇ.ev;y ; ex;v/. This shows that ˇ.eu;y ; ex;u/ takes the same
value for any u in the same equivalence class in Ux;y=�.

Now assume that for some u 2 Ux;y there is v 2 X such that v � u, x Š v and
ev;y 2 B. Use (3) for p D ev;y , q D ex;u and p1 D ev;u. Note that p1 ¤ q2 for any
q2. We get ˇ.eu;y ; ex;u/ D 0.

Similarly, if u 2 Ux;y , and there is v 2 X such that u � v, v Š y and ex;v 2 B,
then using (4) for p D eu;y ; q D ex;v and q2 D eu;v , we find that ˇ.eu;y ; ex;u/ D 0.
We have thus showed that ˇ has the desired form.

Conversely, assume that ˇ has the indicated form. We show that it satisfies
(2), (3) and (4). Let p; q 2 B such that p1 D q2 for some p1 and q2. Then
p D ez;y ; q D ex;t and p1 D q2 D ez;t for some x � z � t � y. Clearly t � z,
and let C be the equivalence class of t in Ux;y=�. Then ˇ.p2; q/ D ˇ.et;y ; ex;t / and
ˇ.p; q1/ D ˇ.ez;y ; ex;z/, and they are both equal to ˛C if C 2 .Ux;y=�/0, and to 0
if C … .Ux;y=�/0. Thus (2) is satisfied.

Let now p D ez;y ; p1 D ez;t , p2 D et;y and q D ex;u such that p1 ¤ q2 for
any q2. Then ˇ.p2; q/ D ˇ.et;y ; ex;u/. If u ¤ t , this is clearly 0. Let u D t . Then
x Š z, otherwise p1 D q2 for some q2. We have t 2 Ux;y , but the equivalence class
of t in Ux;y=� is not in .Ux;y=�/0, since ez;y 2 B, z � t , but x Š z. It follows that
ˇ.p2; q/ D 0, and (3) holds. Similarly we can show that (4) holds.

3. Left quasi-co-Frobenius path subcoalgebras and subcoalgebras of incidence
coalgebras

In this section we investigate when a path subcoalgebra of a path coalgebra or a
subcoalgebra of an incidence coalgebra is left co-Frobenius. We keep the notation of
Section 2. Thus C will be either a path subcoalgebra of a path coalgebra K� , or a
subcoalgebra of an incidence coalgebraKX . The distinguished basis ofC consisting
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of paths or segments will be denoted by B. We note that in each of the two cases
B \ Cn is a basis of Cn, where C0 � C1 � � � � is the coradical filtration of C .
The injective envelopes of the simple left (right) comodules were described in [26],
Lemma 5.1, for incidence coalgebras and in [11], Corollary 6.3, for path coalgebras.
It is easy to see that these descriptions extend to the following.

Proposition 3.1. (i) If C is a path subcoalgebra, then for each vertex v of � such
that v 2 C , the injective envelope of the left (right) C -comoduleKv is (theK-span)
El.Kv/ D hp 2 B j t .p/ D vi (and Er.Kv/ D hp 2 B j s.p/ D vi respectively).

(ii) If C is a subcoalgebra of the incidence coalgebra KX , then for any a 2 X

such that ea;a 2 C the injective envelope of the left (right) C -comoduleKea;a is (the
K-span) El.Kea;a/ D hex;a j x 2 X; ex;a 2 C i (and Er.Kea;a/ D hea;x j x 2
X; ea;x 2 C i).

The following shows that we have a good left-right duality for comodules gener-
ated by elements of the basis B.

Lemma 3.2. (i) Let C be a subcoalgebra of the incidence coalgebra KX , and let
ea;b 2 C . Then .C �ea;b/

� Š ea;bC
� as right C �-modules (or left C -comodules).

(ii) Let C be a path subcoalgebra of K� , and let p be a path in C . Then
.C �p/� Š pC � as right C �-modules (or left C -comodules).

Proof. (i) Clearly the set of all segments ea;x with a � x � b is a basis of C �ea;b .
Denote by e�

a;x the corresponding elements of the dual basis of .C �ea;b/
�. Since for

c� 2 C � and a � x; y � b we have

.e�
a;xc

�/.ea;y/ D P
a�z�y

c�.ez;y/e
�
a;x.ea;z/ D

´
0 if x Š y;

c�.ex;y/ if x � y;

we get
e�

a;xc
� D P

x�y�b

c�.ex;y/e
�
a;y : (5)

On the other hand ea;bC
� has a basis consisting of all segments ex;b with a � x � b,

and
ex;bc

� D P
x�y�b

c�.ex;y/ey;b: (6)

Equations (5) and (6) show that the linear map � W .C �ea;b/
� ! ea;bC

� defined by
�.e�

a;x/ D ex;b , is an isomorphism of right C �-modules.
(ii) Let p D a1 : : : an and v D s.p/. Denote pi D a1 : : : ai for any 1 � i � n,

and p0 D v. Then fp0; p1; : : : ; png is a basis of C �p, and let .p�
i /0�i�n be the

dual basis of .C �p/�. For any 0 � t � j � n denote by pt;j the path such that
pj D ptpt;j . Then a simple computation shows that p�

i c
� D P

i�j �n c
�.pi;j /p

�
j

for any i and any c� 2 C �.
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On the other hand, fpi;n j 0 � i � ng is a basis of pC �, and it is easy to see
that pi;nc

� D P
i�r�n c

�.pi;r/pr;n for any i and any c� 2 C �. Then the linear map
� W .C �p/� ! pC � defined by �.p�

i / D pi;n for any 0 � i � n is an isomorphism
of right C �-modules.

For a path subcoalgebraC let us denote byR.C/ the set of vertices v inC such that
the set fp 2 C j p path and s.p/ D vg is finite (i.e., Er.Kv/ is finite dimensional)
and contains a unique maximal path. Note that v 2 R.C/ if and only if Er.Kv/ is
finite dimensional and local. Indeed, if Er.Kv/ is finite dimensional and contains
a unique maximal path p D a1 : : : an, then keeping the notation from the proof of
Lemma 3.2, we have that Er.Kv/ D C �p and C �pn�1 D< p0; : : : ; pn�1 > is the
unique maximalC �-submodule ofC �p. Conversely, ifEr.Kv/ is finite dimensional
and local with the unique maximal subcomodule N , then the set .B \ Er.Kv//=N

is nonempty. If p is a path which belongs to this set, Er.Kv/ D C �p. Then clearly
p is the unique maximal path in fq 2 C j q path and s.q/ D vg.

Similarly, denote by L.C/ the set of vertices v of C such that El.Kv/ is a finite
dimensional local left C -comodule. Also, for each vertex v 2 R.C/ let r.v/ denote
the endpoint of the maximal path starting at v, and for v 2 L.C/ let l.v/ be the
starting point of the maximal path ending at v.

Similarly, for a subcoalgebra C of the incidence coalgebra KX , let R.C/ be the
set of all a 2 X for which ea;a 2 C and the set fx 2 X j a � x; ea;x 2 C g
is finite and has a unique maximal element, and L.C/ be the set of all a 2 X

for which ea;a 2 C and the set fx 2 X j x � a; ex;a 2 C g is finite and has a
unique minimal element. As before, R.C/ (respectively L.C/) consists of those
a 2 X for which Er.Kea;a/ (respectively, El.Kea;a/) are local, hence generated
by a segment. Here r.a/ D r.ea;a/ for a 2 R.C/ denotes the maximum element
in the set fx j x � a; ea;x 2 C g and l.a/ for a 2 L.C/ means the minimum of
fx j x � a; ex;a 2 C g.

Proposition 3.3. (I) Let C be a path subcoalgebra of the path coalgebra K� . Then
the following are equivalent.

(a) C is left co-Frobenius.

(b) C is left quasi-co-Frobenius.

(c) R.C/ consists of all vertices belonging to C , r.R.C // � L.C/ and lr.v/ D v

for any vertex v in C .

(d) For any path q 2 B there exists a path p 2 B such that qp 2 F ( for F defined
in the previous section).

(II) Let C be a subcoalgebra of the incidence coalgebraKX . Then the following
are equivalent.

(a) C is left co-Frobenius.

(b) C is left quasi-co-Frobenius.
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(c) R.C/ consists of alla 2 X such that ea;a 2 C , r.R.C // � L.C/and lr.a/ D a

for all a 2 X with ea;a 2 C .

(d) For any segment ex;z 2 C there exists y � z such that ez;y 2 C and the class
of z in Ux;y=� lies in .Ux;y=�/0.

Proof. (I) (a) H) (b) is clear.

(b) H) (c). We apply the QcF characterization of [20] and [21]. If C is left QcF
then for any vertex v 2 C , there is a vertex u 2 C such that Er.Kv/ Š El.Ku/

�.
HenceEr.Kv/ is finite dimensional and local (by [19], Lemma 1.4), so v 2 R.C/ and
Er.Kv/ D C �p for a pathp by the discussion preceding this Proposition. Let t .p/ D
w. Then it is easy to see that the linear map � W C �p ! Kw taking p to w, and any
otherq to 0, is a surjective morphism of leftC �-modules. SinceEr.Kv/ Š El.Ku/

�,
there is a surjective morphism of left C �-modules El.Ku/

� ! Kw, inducing an
injective morphism of rightC �-modules .Kw/� ! El.Ku/. Since .Kw/� Š Kw as
rightC �-modules, and the socle of the comoduleEl.Ku/ isKu, we must havew D u,
and thus u D r.v/. By Lemma 3.2, El.Ku/ Š Er.Kv/

� D .C �p/� Š pC �, so
El.Ku/ is generated by p, and this shows that p is the unique maximal path ending
at u. Hence, u D r.v/ 2 L.X/, and l.u/ D v. Thus l.r.v// D v.

(c) H) (d). Let q 2 B, and let v D s.q/. Since v 2 R.C/, there exists a
unique maximal path d starting at v, and d D qp for some path p. We show that
d 2 F . Denote t .d/ D v0, and let d D q0p0 for some paths q0; p0 in B. Let
u D t .q0/ D s.p0/. If there is an arrow b (in �1) starting at u, such that q0b 2 B,
then q0b is a subpath of d , since d is the unique maximal path starting at v. It follows
that p0 starts with b. On the other hand, v0 D r.v/ 2 L.C/ and l.v0/ D lr.v/ D v,
so d is the unique maximal path in B ending at v0. This shows that if an arrow a (in
�1) ends at u, and ap0 2 B, then ap0 is a subpath of d , so the last arrow of q0 is a.
We conclude that d 2 F .

(d) H) (a). Choose a family .˛d /d2F of scalars, such that ˛d ¤ 0 for any
d . Associate a C �-balanced bilinear form B on C to this family of scalars as in
Theorem 2.1. Then B is right non-degenerate, so C is left co-Frobenius.

(II) (a) H) (b) is clear; (b) H) (c) is proved as the similar implication in (I), with
paths replaced by segments.

(c) H) (d). Let ex;z 2 C . If r.x/ D y, then clearly z � y and ex;y 2 B, so
Ux;y D Œx; y�. Then any two elements inUx;y are equivalent with respect to � (since
they are both � x), so there is precisely one equivalence class in Ux;y=�, the whole
of Ux;y . We show that this class lies in .Ux;y=�/0. Indeed, if u 2 Ux;y , v 2 X ,
v � u and ev;y 2 B, then v 2 fajea;y 2 Bg, and since l.y/ D l.r.x// D x, we must
have x � v. Also, if u 2 Ux;y , v 2 X , u � v and ex;v 2 B, then v 2 fajex;a 2 Bg.
Then v � y since r.x/ D y.

(d) H) (a) follows as the similar implication in .I / if we take into account
Theorem 2.2.
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As a consequence we obtain the following result, which was proved for incidence
coalgebras in [16].

Corollary 3.4. If C D K� , a path coalgebra, orC D KX , an incidence coalgebra,
the following are equivalent.

(i) C is co-semisimple (i.e., � has no arrows for C D K� , and the order relation
on X is the equality for C D KX ).

(ii) C is left QcF.

(iii) C is left co-Frobenius.

(iv) C is right QcF.

(v) C is right co-Frobenius.

As an immediate consequence we describe the situations where a finite dimen-
sional path algebra is Frobenius. We note that the path algebra of a quiver � (as well
as the path coalgebra K�) has finite dimension if and only if � has finitely many
vertices and arrows, and there are no cycles.

Corollary 3.5. A finite dimensional path algebra is Frobenius if and only if the quiver
has no arrows.

Proof. This follows from the fact that the dual of a finite dimensional path algebra is
a path coalgebra, and by Corollary 3.4.

4. Classification of left co-Frobenius path subcoalgebras

Proposition 3.3 gives information about the structure of left co-Frobenius path sub-
coalgebras. The aim of this section is to classify these coalgebras. We first use
Proposition 3.3 to give some examples of left co-Frobenius path subcoalgebras. These
examples will be the building blocks for the classification.

Example 4.1. Let � D A1 be the quiver such that �0 D Z and there is precisely
one arrow from i to i C 1 for any i 2 Z.

A1 W � � � �! ı�1 �! ı0 �! ı1 �! ı2 �! � � � :
For any k < l , let pk;l be the (unique) path from the vertex k to the vertex l . Also
denote by pk;k the vertex k. Let r W Z ! Z be a strictly increasing function such
that r.n/ > n for any n 2 Z. We consider the path subcoalgebraKŒA1; r� ofKA1
with the basis

B D S
n2Z

fp j p is a path in A1; s.p/ D n and length.p/ � r.n/ � ng
D fpk;l j k; l 2 Z and k � l � r.k/g:
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Note that KŒA1; r� is indeed a subcoalgebra since

�.pk;l/ D
lP

iDk

pk;i ˝ pi;l ; k � l:

The counit is given by
".pk;l/ D ık;l :

Note that this can also be seen as a subcoalgebra of the incidence coalgebra of .N;�/,
consisting of the segments ek;l for k � l � r.k/.

The construction immediately shows that the maximal path starting from n is
pn;r.n/. Note that for each n 2 Z, pn;r.n/ is the unique maximal path into r.n/.
If there would be another longer path pl;r.n/ into r.n/ in KŒA1; r�, then l < n.
Then, since pl;r.n/ is among the paths in KŒA1; r� which start at l we must have
that it is a subpath of pl;r.l/, and so r.l/ � r.n/. But since l < n, this contradicts
the assumption that r is strictly increasing. Therefore, we see that the conditions of
Proposition 3.3 are satisfied: pn;r.n/ is the unique maximal path in the (finite) set of
all paths starting from a vertex n, and it is simultaneously the unique maximal path in
the (finite) set of all paths ending at r.n/. Therefore if l W L.C/ D Im.r/ ! R.C/ is
the function used in Proposition 3.3 for C D KŒA1; r� satisfies l.r.n// D n. This
means that KŒA1; r� is a left co-Frobenius coalgebra.

KŒA1; r� is also right co-Frobenius if and only if there is a positive integer s such
that r.n/ D nCs for any n 2 Z. Indeed, if r is of such a form, thenKŒA1; r� is right
co-Frobenius by the right-hand version of Proposition 3.3. Conversely, assume that
KŒA1; r� is right co-Frobenius. If r would not be surjective, letm 2 Z which is not
in the image of r . Then there is n 2 Z such that r.n/ < m < r.nC1/. The maximal
path ending at m is pnC1;m. Indeed, this maximal path cannot start before n (since
then pn;r.n/ would be a subpath of pn;m different from pn;m), and pnC1;m is a path in
KŒA1; r�, as a subpath of pnC1;r.nC1/. Hence r.l.m// D r.nC 1/ ¤ m, and then
KŒA1; r� could not be right co-Frobenius by the right-hand version of Proposition
3.3, a contradiction. Thus r must be surjective, and then it must be of the form
r.n/ D n C s for any n, where s is an integer. Since n < r.n/ for any n, we must
have s > 0. For simplicity we will denote KŒA1; r� by KŒA1js� in the case where
r.n/ D nC s for any n 2 Z.

Example 4.2. Let � D A0;1 be the subquiver of A1 obtained by deleting all the
negative vertices and the arrows involving them. Thus �0 D N, the natural numbers
(including 0).

A0;1 W ı0 �! ı1 �! ı2 �! ı3 �! � � � :
We keep the same notation for pk;l for 0 � k � l . Let r W N ! N be a strictly
increasing function with r.0/ > 0 (so then r.n/ > n for any n 2 N), and define
KŒA0;1; r� to be the path subcoalgebra of KA0;1 with basis fpk;l j k; l 2 N; k �
l � r.k/g. With the same arguments as in Example 4.1 we see that KŒA0;1; r� is a
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left co-Frobenius coalgebra. We note that l.0/ D 0, and then r.l.0// D r.0/ > 0.
By a right-hand version of Proposition 3.3, this shows that KŒA0;1; r� is never right
co-Frobenius.

Example 4.3. For any n � 2 we consider the quiver Cn, whose vertices are the
elements of Zn D fN0; : : : ; n� 1g, the integers modulo n, and there is one arrow from
Ni to i C 1 for each i .

ı N1 �� ı N2 �� ı N3

���
��

��
��

�

Cn W ı N0

���������
ı

����
��

��
��

ı

����������
: : :�� ı��

We also denote by C1 the quiver with one vertex, denoted by N0, and one arrow ı ��
,

and by C0 the quiver with one vertex and no arrows.
Let n � 1 and s > 0 be integers. Let KŒCn; s� be the path subcoalgebra of the

path coalgebra KCn, spanned by all paths of length at most s. Denote by q Nkjl the

path (in Cn) of length l starting at Nk, for any Nk 2 Zn and 0 < l � s. Also denote by
q Nkj0 the vertex Nk. Since the comultiplication and counit of KCn are given by

�.q Nkjl/ D
lP

iD0

q Nkji ˝ qkCi jl�i ; ".q Nkjl/ D ı0;l ;

we see that indeed KŒCn; s� D< q Nkjl j Nk 2 Z; 0 � l � s > is a subcoalgebra

of KCn. Clearly q Nkjs is the unique maximal path in KŒCn; s� starting at Nk, so
Nk 2 R.KŒCn; s�/ and r. Nk/ D k C s. Also k C s 2 L.KŒCn; s�/ and the maximal
path ending at k C s is also q Nkjs , thus lr. Nk/ D Nk, and by Proposition 3.3 we get that
KŒCn; s� is a left co-Frobenius coalgebra. Since it has finite dimension n.s C 1/, it
is right co-Frobenius, too. This example was also considered in [10], 1.6.

For a path subcoalgebra C � K� , denote by C \� the subgraph of � consisting
of arrows and vertices of � belonging to C .

Lemma 4.4. If C � K� is a left co-Frobenius path subcoalgebra, then C \ � DF
i �i , a disjoint union of subquivers of � , where each �i is of one of types A1,

A0;1 or Cn, n � 0, and C D L
i Ci , where Ci , a path subcoalgebra of K�i , is the

subcoalgebra of C spanned by the paths of B contained in �i .

Proof. Let v be a vertex in C \ � . By Proposition 3.3 there is a unique maximal
path p 2 B starting at v, and any path in B starting at v is a subpath of p. This
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shows that at most one arrow in B starts at v (the first arrow of p, if p has length
> 0). We show that at most one arrow in B ends at v, too. Otherwise, if we assume
that two different arrows a and a0 in B end at v, let s.a/ D u and s.a0/ D u0 (clearly
u ¤ u0, since at most one arrow starts at u), and let q and q0 be the maximal paths
in B starting at u and u0, respectively. Then q D az and q0 D a0z0 for some paths z
and z0 starting at v. But then z and z0 are subpaths of p, so one of them, say z, is a
subpath of the other one. If w D t .z/, then w D r.u/, so w 2 L.C/ and any path in
B ending at w is a subpath of q D az. This provides a contradiction, since a0z is in
B (as a subpath of q0) and ends at w, but it is not a subpath of q.

We also have that if there is no arrow in B starting at a vertex v, then there is no
arrow in B ending at v either. Indeed, the maximal path in B starting at v has length
zero, so r.v/ D v, and then v 2 L.C/ and l.v/ D v, which shows that no arrow in
B ends at v.

Now taking the connected components of C \ � (regarded just as an undirected
graph), and then considering the (directed) arrows, we find that C \ � D F

i �i for
some subquivers �i which can be of the types A1, A0;1 or Cn, and this ends the
proof.

Lemma4.5. LetC � K� bea left co-Frobenius path subcoalgebra. Letu; v 2 C\�
be different vertices, and denote by pu and pv the maximal paths starting at u and
v, respectively. Then pu is not a subpath of pv .

Proof. Assume the contrary. Then pu is a subpath of pv . We know that pu and pv

end at r.u/ and r.v/, respectively. Let q be the subpath of pv which starts at v and
ends at r.u/. Since pu is a subpath of pv , then q contains pu, too. Then both q and
pu end at r.u/, and since by Proposition 3.3 pu is maximal with this property, we
get q D pu. This means that u D v (as starting points of pa and q), a contradiction.

Now we are in the position to give the classification result for left co-Frobenius
path subcoalgebras.

Theorem 4.6. Let C be a path subcoalgebra of the path coalgebra K� , and let B

be a basis of paths of C . Then C is left co-Frobenius if and only if C \ � D F
i �i ,

a disjoint union of subquivers of � of one of types A1, A0;1 or Cn, n � 0, and
the path subcoalgebra Ci of K�i spanned by the paths of B contained in �i is of
typeKŒA1; r� if �i D A1, of typeKŒA0;1; r� if �i D A0;1, of typeKŒCn; s� with
s � 1 if �i D Cn, n � 1, and of type K if �i D C0. In this case C D L

i Ci ,
in particular left co-Frobenius path subcoalgebras are direct sums of coalgebras of
types KŒA1; r�, KŒA0;1; r�, KŒCn; s� or K.

Proof. By Lemma 4.4, C \� D F
i �i , and any �i is of one of the types A1, A0;1

or Cn, n � 0. Moreover, C D L
i Ci , soC is left co-Frobenius if and only if allCi ’s

are left co-Frobenius (see for example [15], Chapter 3). If allCi ’s are of the indicated
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form, then they are left co-Frobenius by Examples 4.1, 4.2 and 4.3, and then so is
C . Assume now that C is left co-Frobenius. Then each Ci is left co-Frobenius, so
we can reduce to the case where � is one of A1, A0;1 or Cn, and C \ � D � . As
before, for each vertex v we denote by r.v/ the end-point of the unique maximal path
in C starting at v, and by pv this maximal path. Also denote by m.v/ the length of
pv .

Case I. Let � D Cn. If n D 0, then C Š K. If n D 1, then C Š KŒC1; s�,
since m.N0/ D s > 0 because �1 	 C , so there must be at least some nontrivial
path in C . If n � 2, then m. Nk/ � m.k C 1/ for any Nk 2 Zn, since otherwise pkC1

would be a subpath of p Nk , a contradiction by Lemma 4.5. Thus m.N0/ � m.N1/ �
� � � � m.n � 1/ � m.N0/, so m.N0/ D m.N1/ D � � � D m.n � 1/ D m.N0/ D s for some
s � 0. Since C \ � D � , there are non-trivial paths in C , so s > 0, and then clearly
C Š KŒCn; s�.

Case II. If � D A1 or � D A0;1, then for any n (in Z if � D A1, or in N
if � D A0;1) m.n/ � m.nC 1/ holds, otherwise pnC1 would be a subpath of pn,
again a contradiction. Now if we take r.n/ D nCm.n/ for any n, then r is a strictly
increasing function. Clearly r.n/ > n, sincem.n/ D 0would contradictC \� D � .
Now it is obvious that C Š KŒ�; r�.

Corollary 4.7. Let C � K� be a left and right co-Frobenius path subcoalgebra.
Then C is a direct sum of coalgebras of the type KŒA1js�, KŒCn; s� or K.

Proof. It follows directly from Theorem 4.6 and the discussion at the end of each
of Examples 4.1, 4.2 and 4.3, concerned to the property of being left and right co-
Frobenius.

Remark 4.8. (1) We have a uniqueness result for the representation of a left co-
Frobenius path subcoalgebras as a direct sum of coalgebras of the form KŒA1; r�,
KŒA0;1; r�, KŒCn; s� or K. To see this, an easy computation shows that the dual
algebra of a coalgebra of any of these four types does not have non-trivial central
idempotents, so it is indecomposable as an algebra. Now if .Ci /i2I and .Dj /j 2J are
two families of coalgebras with indecomposable dual algebras such that

L
i2I Ci 'L

j 2J Dj as coalgebras, then there is a bijection � W J ! I such that Dj ' C�.j /

for any j 2 J . Indeed, if f W L
i2I Ci ! L

j 2J Dj is a coalgebra isomorphism,
then the dual map f � W Q

j 2J D
�
j ! Q

i2I C
�
i is an algebra isomorphism. Since

all C �
i ’s and D�

j ’s are indecomposable, there is a bijection � W J ! I and some
algebra isomorphisms 	j W D�

j ! C �
�.j /

for any j 2 J , such that for any .d�
j /j 2J 2Q

j 2J D
�
j the map f � takes .d�

j /j 2J to the element of
Q

i2I C
�
i having 	j .d

�
j / on the

�.j /-th slot. Regarding C D .Ci /i2I as a left C �-module and D D L
j 2J Dj as a

leftD�-module in the usual way, with actions denoted by � , the relation f .f �.d�/ �
c/ D d� � f .c/ holds for any c 2 C and d� 2 D�. This shows that f induces
coalgebra isomorphisms C�.j / ' Dj for any j 2 J .
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(2) The coalgebras of types KŒA1; r�, KŒA0;1; r�, KŒCn; s� or K can be easily
classified if we take into account that the sets of group-like elements are just the ver-
tices and the non-trivial skew-primitives are scalar multiples of the arrows. There are
no isomorphic coalgebras of two different types among these four types. Moreover:

(i) KŒA1; r� ' KŒA1; r 0� if and only if there is an integer h such that r 0.n/ D
r.nC h/ for any integer n;

(ii) KŒA0;1; r� ' KŒA0;1; r 0� if and only if r D r 0;
(iii) KŒCn; s� ' KŒCm; s

0� if and only n D m and s D s0.

5. Examples

It is known (see [24], [12]) that any pointed coalgebra can be embedded in a path
coalgebra. Thus it is expected that there is a large variety of co-Frobenius subcoalge-
bras of path coalgebras if we do not restrict only to the class of path subcoalgebras.
The aim of this section is to provide several such examples. We first explain a simple
construction connecting incidence coalgebras and path coalgebras, and producing
examples as we wish.

As a pointed coalgebra, any incidence coalgebra can be embedded in a path coalge-
bra. However, there is a more simple way to define such an embedding for incidence
coalgebras than for arbitrary pointed coalgebras. Indeed, let X be a locally finite
partially ordered set. Consider the quiver � with vertices the elements of X , and
such that there is an arrow from x to y if and only if x < y and there is no element z
with x < z < y. With this notation, it is an easy computation to check the following.

Proposition 5.1. The linear map � W KX ! K� , defined by

�.ex;y/ D P
p path

s.p/Dx;t.p/Dy

p

for any x; y 2 X , x � y, is an injective coalgebra morphism.

Note that in the previous proposition �.KX/ is in general a subcoalgebra of
K� which is not a path subcoalgebra. This suggests that when we deal with left co-
Frobenius subcoalgebras of incidence coalgebras, which of course embed themselves
inK� (usually not as path subcoalgebras), structures that are more complicated than
those of left co-Frobenius path subcoalgebras can appear. Thus the classification of
left co-Frobenius subcoalgebras of incidence coalgebras is probably more difficult.
The next example is evidence in this direction.

Example 5.2. Let s � 2 and X D fan j n 2 Zg [ .
S

n2Zfbn;i j 1 � i � sg/ with
the ordering � such that an < bn;i < anC1 for any integer n and any 1 � i � s, and
bn;i and bn;j are not comparable for any n and i ¤ j .

Let C be the subcoalgebra of KX spanned by the following elements:
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� the elements ex;x , x 2 X ,

� all segments ex;y of length 1,

� the segments ean;anC1
, n 2 Z,

� the segments ebn;i ;bnC1;i
, with n 2 Z and 1 � i � s.

Then by applying Proposition 3.3, we see that C is co-Frobenius.
If we take the subcoalgebra D of C obtained by restricting to the non-negative

part of X , i.e., D is spanned by the elements ex;y in the indicated basis of C with
both x and y among fan j n � 0g [ .Sn�0fbn;i j 1 � i � sg/, we see that D is left
co-Frobenius, but not right co-Frobenius.

Now let � be the quiver associated to the ordered setX as in the discussion above.

: : : b0;1

		�
��

��
��

b1;1

		�
��

��
��

: : : bn;1

���
��

��
��

�
: : :

: : : a0



�������
��

���
��

��
��

��
��

��
b0;2

�� a1



�������
��

���
��

��
��

��
��

��
b1;2

�� a2 : : : an



							
��

���
��

��
��

��
��

��
bn;2

�� anC1 : : :

: : : : : : : : : : : :

: : : b0;s

















b1;s

















bn;s

���������������
: : :

If � W KX ! K� is the embedding described in Proposition 5.1, then �.C / is a
co-Frobenius subcoalgebra ofK� . We see that �.C / is the subspace ofK� spanned
by the vertices of � , the paths of length 1, the paths Œbn;ianC1bnC1;i �with n 2 Z and
1 � i � s, and the elements

P
1�i�sŒanbn;ianC1� with n 2 Z, thus �.C / is not a

path subcoalgebra. Here we denote by Œbn;ianC1bnC1;i � and Œanbn;ianC1� the paths
following the indicated vertices and the arrows between them. By restricting to the
non-negative part of X , a similar description can be given for �.D/, a subcoalgebra
of K� which is left co-Frobenius but not right co-Frobenius.

It is possible to embed some of the co-Frobenius path subcoalgebras in other path
coalgebras as subcoalgebras which are not path subcoalgebras.

Example 5.3. Consider the quiver A1 with vertices indexed by the integers, with
the path from i to j denoted by pi;j . Consider the path subcoalgebraD D KŒA1j2�,
with basis fpi;i ; pi;iC1; pi;iC2ji 2 Zg. We also consider the quiver �

: : : b0

		�
��

��
��

b1

		�
��

��
��

: : : bn

��












: : :

: : : a0



							
�� a1



							
�� a2 : : : an

��							
�� anC1 : : : .
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Then A1 is a subquiver of � if we identify ai with 2i and bi with 2i C 1 for
any integer i . Thus KA1 is a subcoalgebra of K� in the obvious way, and then so
is D. However, there is another way to embed D in K� . Indeed, the linear map
� W D ! K� defined by

�.p2i;2i / D ai ;

�.p2iC1;2iC1/ D bi ;

�.p2i;2iC1/ D Œaibi �;

�.p2iC1;2iC2/ D ŒbiaiC1�;

�.p2i;2iC2/ D ŒaiaiC1�C ŒaibiaiC1�;

�.p2iC1;2iC3/ D ŒbiaiC1biC1�

for any i 2 Z is an injective morphism of coalgebras. Here we denote by Œaibi �,
ŒaibiaiC1�, etc., the paths following the respective vertices and arrows. We con-
clude that the subcoalgebra C D �.D/ of K� , spanned by all vertices an; bn,
all arrows ŒananC1�; Œanbn�; ŒbnanC1� and the elements ŒanbnanC1�C ŒananC1� and
ŒbnanC1bnC1�, is co-Frobenius. Note thatD is not a path subcoalgebra ofK� . This
can be also seen as the subcoalgebra of the incidence coalgebra of Z with basis
consisting of segments of length at most 2.

Note that in the above example, we can also consider a similar situation but with
all segments en;nCi of the incidence coalgebra of Z which have length less or equal
to a certain positive integer s (i � s); the same properties as above would then hold
for this situation.

Example 5.4. We consider the same situation as above, but we restrict the quiver �
to the non-negative part:

b0

		�
��

��
��

b1

		�
��

��
��

: : : bn

���
��

��
��

: : :

a0

���������
�� a1

���������
�� a2 : : : an



�������
�� anC1 : : : .

Equivalently, we consider the subcoalgebra of the incidence coalgebra of N with
a basis of all segments of length less or equal to 2 (or � s for more generality). This
coalgebra is left co-Frobenius but not right co-Frobenius, it is a subcoalgebra of an
incidence coalgebra, and it can also be regarded as a subcoalgebra of a path coalgebra,
but without a basis of paths.

Now we prove a simple, but useful result, which shows that the category of
incidence coalgebras is closed under tensor product of coalgebras.

Proposition 5.5. LetX; Y be locally finite partially ordered sets. Consider onX�Y
the order .x; y/ � .x0; y0/ if and only if x � y and x0 � y0. Then there is an
isomorphism of coalgebras K.X � Y / Š KX ˝KY .
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Proof. It is clear that X � Y is locally finite. We show that the natural isomorphism
of vector spaces ' W K.X � Y / ! KX ˝KY , '.e.x;y/;.x0;y0// D ex;x0 ˝ ey;y0 , is a
morphism of coalgebras. This is well defined by the definition of the order relation
on X � Y . For comultiplication we haveP

'.e.x;y/;.x0;y0//1 ˝ .e.x;y/;.x0;y0//2 D P
x�a�x0

P
y�b�y0

ex;a ˝ ey;b ˝ ea;x0 ˝ ex0;b

D P
.x;y/�.a;b/

�.x0;y0/

'.e.x;y/;.a;b//˝ '.e.a;b/;.x0;y0//

D '..e.x;y/;.x0;y0//1/˝ '..e.x;y/;.x0;y0//2/;

and it is also easy to see that "KX˝KY ı ' D "K.X�Y /.

Example 5.6. Consider the ordered set .Z � Z;�/, with order given by the direct
product of the orders of .Z;�/ and .Z;�/. Thus .i; j / � .p; q/ if and only if i � p

and j � q. We know from Proposition 5.5 that  W KZ ˝ KZ ! K.Z � Z/,
 .ei;p ˝ ej;q/ D e.i;j /;.p;q/, is an isomorphism of coalgebras.

With the notation preceding Proposition 5.1, the quiver � associated to the locally
finite ordered set .Z � Z;�/ is

:::
:::

:::

: : : �� an�1;kC1 ��

��

an;kC1 ��

��

anC1;kC1 ��

��

: : :

: : : �� an�1;k ��

��

an;k ��

��

��

��

anC1;k ��

��

: : :

: : : �� an�1;k�1 ��

��

an;k�1 ��

��

anC1;k�1 ��

��

: : :

:::

��

:::

��

:::

��

where we just denoted the vertices by an;k instead of just .n; k/. Let � W K.Z �
Z/ ! K� be the embedding from Proposition 5.1. If we consider the subcoalgebra
KŒA1j1� ofKZ, thenKŒA1j1�˝KŒA1j1� is a subcoalgebra ofKZ˝KZ, so then
C D � .KŒA1j1�˝KŒA1j1�/, which is the subspace spanned by the vertices of � ,
the arrows of � , and the elements Œan;kanC1;kanC1;kC1�C Œan;kan;kC1; anC1;kC1�,
is a subcoalgebra of K� . Since KŒA1j1� is co-Frobenius, and the tensor product
of co-Frobenius coalgebras is co-Frobenius (see [21], Proposition 4.15), we obtain
that C is a co-Frobenius coalgebra. Alternatively, it can be seen that  .KŒA1j1�˝
KŒA1j1�/, which is the subspace spanned by the elements e.n;k/;.n;k/, e.n;k/;.nC1;k/,
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e.n;k/;.n;kC1/, e.n;k/;.nC1;kC1/ with arbitrary n; k 2 Z, is co-Frobenius by applying
Proposition 3.3. C can be seen as both a subcoalgebra of an incidence coalgebra
and of a path coalgebra, but not with a basis of paths. We note that C is not even
isomorphic to a path subcoalgebra. Indeed, if it were so, it should be isomorphic to
some KŒA1js�, since it is infinite dimensional and indecomposable. But in C , for
any group-like element g there are precisely two other group-like elements h with
the property that the set of non-trivial .h; g/-skew-primitive elements is nonempty,
while for any group-like element g of KŒA1js� there is only one such h.

With similar arguments, we can give a more general version of the previous
example, by considering finite tensor products of coalgebras of type KŒA1js�, as
follows.

Example 5.7. Let D D KŒA1js1�˝KŒA1js2�˝ � � � ˝KŒA1jsm�, where m � 2

and s1; : : : ; sm are positive integers. Then D is co-Frobenius as a tensor product of
co-Frobenius coalgebras, and D embeds in the m-fold tensor product KZ ˝KZ ˝
� � �˝KZ. But this last tensor product is isomorphic to the incidence coalgebra of the
ordered set Zm D Z � Z � � � � � Z, with the direct product order. The image of D
via this embedding is the subcoalgebra E of K.Z � Z � � � � � Z/ spanned by all the
segments e.n1;:::;nm/;.k1;:::;km/ with n1 � k1 � n1 C s1; : : : ; nm � km � nm C sm.

Now if we consider the quiver � associated to the ordered set Z � Z � � � � � Z
as in the beginning of this section, we have an embedding of K.Z � Z � � � � � Z/
in K� . Denote the vertices of � by an1;:::;nm

. The image of E through this em-
bedding is the subcoalgebra C of K� spanned by all the elements of the form
S.�; .n1; : : : ; nm/; .k1; : : : ; km//, with n1; : : : ; nm, k1; : : : ; km integers such that
n1 � k1 � n1 C s1; : : : ; nm � km � nm C sm, where we denote the sum of all paths
in� starting at an1;:::;nm

and ending at ak1;:::;km
byS.�; .n1; : : : ; nm/; .k1; : : : ; km//.

Thus C is a co-Frobenius subcoalgebra of K� , which is also isomorphic to a sub-
coalgebra of an incidence coalgebra. However, C is not a path subcoalgebra, and
not even isomorphic to a path subcoalgebra. Indeed, for any group-like element
g of E there are precisely m group-like elements h for which there are non-trivial
.h; g/-skew-primitive elements, while in a co-Frobenius path subcoalgebra for any
group-like element g there is at most one such h.

Remark 5.8. We note that the co-Frobenius coalgebraC constructed in Example 5.2
is not isomorphic to a coalgebra of the formKŒA1js1�˝KŒA1js2�˝� � �˝KŒA1jsm�.
Indeed, if g D bn;i there exists exactly one group-like element h of C such that there
are non-trivial .h; g/-skew-primitive elements (this is h D anC1), and if g D an there
exist s such group-like elements h (these are bn;1; : : : ; bn;s). On the other hand, in
KŒA1js1�˝KŒA1js2�˝ � � � ˝KŒA1jsm� for any group-like element g there exist
precisely m such elements h.

We end with another explicit example, which shows that there are co-Frobenius
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subcoalgebras of path coalgebras that are isomorphic neither to a path subcoalgebra
nor to a subcoalgebra of an incidence coalgebra.

Example 5.9. Let � be the graph

: : : �� a0
y0 ��

x0

��
a1

y1 ��

x1

��
a2

y2 ��

x2

��
: : : �� an

yn ��

xn

��
: : : ,

and let C be the subcoalgebra of the path coalgebra of � having a basis the elements
an; xn; yn and yn Cxnyn. This is, in fact, isomorphic toKŒC1j1�˝KŒA1j1�, so it is
co-Frobenius. By the classification theorem for co-Frobenius path subcoalgebras and
the structure of the skew-primitive elements of C , we see that C is not isomorphic to
a path subcoalgebra. We note that it is not isomorphic either to a subcoalgebra of an
incidence coalgebra because in an incidence coalgebra if g is any group-like element,
there is no .g; g/- skew-primitive element, while in C for each group-like g D an,
xn is a .g; g/-skew-primitive.

6. Hopf algebra structures on path subcoalgebras

In this section we discuss the possibility of extending the coalgebra structure of a
path subcoalgebra to a Hopf algebra structure. First of all, it is a simple application
of Proposition 3.4 to see when a finite dimensional path coalgebra has a Hopf algebra
structure.

Proposition 6.1. If the path coalgebra K� is finite dimensional, then it has a Hopf
algebra structure if and only if it is cosemisimple, i.e., � has no arrows.

Proof. If the finite dimensional K� has a Hopf algebra structure, then it has non-
zero integrals, so it is left (and right) co-Frobenius, and K� is cosemisimple by
Proposition 3.4. Conversely, if there are no arrows, then K� can be endowed with
the group Hopf algebra structure obtained if we consider a group structure on the set
of vertices.

Next, we are interested in finding examples of Hopf algebra structures that can be
defined on some path subcoalgebras. At this point we discuss only cases where the
resulting Hopf algebra has non-zero integrals, i.e., it is left (or right) co-Frobenius.
Thus the path subcoalgebras that we consider are among the ones in Corollary 4.7.
We ask the following general question.

Problem. Which of the left and right co-Frobenius path subcoalgebras (classified in
Corollary 4.7) can be endowed with a Hopf algebra structure?
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In the rest of this section we solve the problem in the case where K is a field
containing primitive roots of unity of any positive order, in particular K has charac-
teristic zero. We will make this assumption on K from this point on. We just note
that some of the constructions can be also done in positive characteristic, if we just
require that K contains certain primitive roots of unity and the characteristic of K is
large enough.

Proposition 6.2. (I) Let s > 0 be an integer. Let q be a primitive .s C 1/-th root of
unity in K. Let G be a group such that there exist an element g 2 Z.G/ of infinite
order and a character 
 2 G� such that 
.g/ D q. Also let ˛ 2 K which may be
non-zero only if
sC1 D 1. Consider the algebra generated by the elements ofG (and
preserving the group multiplication on these elements) and x subject to relations

xh D 
.h/hx for any h 2 G; xsC1 D ˛.gsC1 � 1/
(that is, the free or amalgamated product KŒx� 
 KŒG�, factored out by the above
relations). Then this algebra has a unique Hopf algebra structure such that the
elements of G are group-like elements, �.x/ D 1˝ x C x ˝ g, and ".x/ D 0. We
denote this Hopf algebra structure byH1.s; q; G; g; 
; ˛/.

(II) Let n � 2 and s > 0 be integers such that sC1 divides n. Let q be a primitive
.s C 1/-th root of unity in K. Consider a group G such that there exist an element
g 2 Z.G/ of order n and a character 
 2 G� such that 
.g/ D q. Also let ˛ 2 K
which may be non-zero only if 
sC1 D 1. Consider the algebra generated by the
elements of G (and preserving the group multiplication on these elements) and x
subject to relations

xh D 
.h/hx for any h 2 G; xsC1 D ˛.gsC1 � 1/:
Then this algebra has a unique Hopf algebra structure such that the elements of G
are group-like elements,�.x/ D 1˝ xC x˝g, and ".x/ D 0. We denote this Hopf
algebra structure byHn.s; q; G; g; 
; ˛/.

Proof. We consider an approach similar to the one in [4]. For both (I) and (II)
we consider the Hopf group algebra KG, and its Ore extension KGŒX; x
�, where
x
 is the algebra automorphism of KG such that x
.h/ D 
.h/h for any h 2 G.
Since g 2 Z.G/, this Ore extension has a unique Hopf algebra structure such that
�.X/ D 1˝XCX˝g and ".X/ D 0, by the universal property for Ore extensions
(see for example [4], Lemma 1.1). Since .1˝X/.X ˝ g/ D q.X ˝ g/.1˝X/, the
quantum binomial formula shows that�.X sC1/ D 1˝X sC1 CX sC1 ˝gsC1, so the
ideal I D .X sC1 � ˛.gsC1 � 1// is in fact a Hopf ideal of KGŒX; x
�. Then we can
consider the factor Hopf algebraKGŒX; x
�=I , and this is just the desired Hopf algebra
H1.s; q; G; g; 
; ˛/ in case (I) and Hn.s; q; G; g; 
; ˛/ in case (II). The condition
that ˛ D 0 whenever 
sC1 ¤ 1 guarantees that the map G ! KGŒX; x
�=I taking
an element h 2 G to its class modulo I is injective, thusG is the group of group-like
elements of this factor Hopf algebra.
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In the following example we give examples of co-Frobenius path subcoalgebras
that can be endowed with Hopf algebra structures. Moreover, we don’t only introduce
one such structure, but a family of Hopf algebra structures on each path subcoalgebra
considered in the example.

Example 6.3. (i) KŒA1js� can be endowed with a Hopf algebra structure for any
s � 1. Indeed, let q be a primitive .s C 1/-th root of unity in K, and let ˛ 2 K. We
define a multiplication (on basis elements, then extended linearly) on KŒA1js� by

pi;iCupj;j Cv D

8̂̂<̂
:̂
qju

�
uCv

u

�
q
piCj;iCj CuCv if uC v � s;

˛qju .uCv�s�1/qŠ

.u/qŠ.v/qŠ
.piCj CsC1;uCvCiCj � piCj;uCvCiCj �s�1/

if uC v � s C 1;

where
�

uCv
u

�
q

denotes the q-binomial coefficient. Then this multiplication makes
KŒA1js� an algebra, which together the initial coalgebra structure define a Hopf
algebra structure on KŒA1js�. Indeed, we can see this by considering the Hopf
algebraH1.s; q; C1; c; 
; ˛/, where C1 is the (multiplicative) infinite cyclic group
generated by an element c, and the character 
 is defined by 
.c/ D q. Thus
H1.s; q; C1; c; 
; ˛/ is generated as an algebra by the elements c and x, subject to
relations xc D qcx and xsC1 D ˛.csC1 � 1/, and with coalgebra structure such that
�.c/ D c ˝ c, ".c/ D 1, and �.x/ D 1 ˝ x C x ˝ c. Since .1 ˝ x/.x ˝ c/ D
q.x ˝ c/.1˝ x/, we can apply the quantum binomial formula and get

�.xu/ D
X

0�h�u

�
u

h

�
q

xu�h ˝ cu�hxh

and then

�

�
1

.u/qŠ
cixu

�
D

X
0�h�u

1

.u � h/qŠ c
ixu�h ˝ 1

.h/qŠ
ciCu�hxh

for any 0 � u � s and any integer i . Therefore if we denote 1
.u/qŠ

cixu by Pi;iCu,
this means that �.Pi;iCu/ D P

0�h�u Pi;iCh ˝ PiCh;iCu, showing that the linear
isomorphism � W KŒA1js� ! H1.s; q; C1; c; 
; ˛/ taking pi;iCu to Pi;iCu for any
0 � u � s and i 2 Z is an isomorphism of coalgebras. Now we just transfer
the algebra structure of H1.s; q; C1; c; 
; ˛/ through ��1 and get precisely the
multiplication formula given above.

(ii) Let us consider now the coalgebraC which is a direct sum of a family of copies
of (the same)KŒA1js�, indexed by a non-empty setP . ThenC can be endowed with
a Hopf algebra structure. To see this, we extend the example from (i) as follows. LetG
be a group such that there exist an element g 2 Z.G/ of infinite order and a character

 2 G� for which q D 
.g/ is a primitive .s C 1/-th root of unity, and moreover
the factor groupG=hgi is in bijection with the set P (note that such a triple .G; g; 
/
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always exists; we can take for instance a group structure on the set P ,G D C1 �P ,
g a generator ofC1, and
 defined such that
.g/ D q and
.p/ D 1 for anyp 2 P ).
For simplicity of the notation, we can assume that P is a set of representatives for
the hgi-cosets of G. Consider the Hopf algebra A D H1.s; q; G; g; 
; ˛/, where ˛
is a scalar which may be non-zero only if 
sC1 D 1. Then the subalgebra B of A
generated by g and x is a Hopf subalgebra isomorphic toKŒA1js� as a coalgebra, and
A D L

p2P pB is a direct sum of subcoalgebras, all isomorphic to KŒA1js�. Thus
A is isomorphic as a coalgebra to C , and we can transfer the Hopf algebra structure
of A to C .

(iii) Assume that n � 2 and sC 1 divides n. ThenKŒCn; s� can be endowed with
a Hopf algebra structure. Indeed, we proceed as forKŒA1js�, but replacing the Hopf
algebraH1.s; q; C1; c; 
; ˛/ byHn.s; q; Cn; c; 
; ˛/, where Cn is a cyclic group of
order n with a generator c (we have the same relations for c and x as in (i), to which
we add cn D 1). Thus the multiplication of KŒA1js� is given by

qNi juq Nj jv D

8̂̂<̂
:̂
qju

�
uCv

u

�
q
qiCj juCv if uC v � s;

˛qju .uCv�s�1/qŠ

.u/qŠ.v/qŠ
.qiCj CsC1juCv�s�1 � qiCj juCv�s�1/

if uC v � s C 1:

Also, as in (ii), a direct sum of copies of the same KŒCn; s�, indexed by an arbitrary
non-empty set P , can be endowed with a Hopf algebra structure isomorphic to some
Hn.s; q; G; g; 
; ˛/ for some q, G, g, 
, ˛, where q is a primitive .s C 1/-th root of
unity, G is a group, g 2 Z.G/ is an element of order n, G=hgi is in bijection with
P , 
 2 G� is a character such that 
.g/ D q, and ˛ 2 K is a scalar which may be
non-zero only if 
sC1 D 1.

The examples given in (iii) appear (for finite sets P ) in [10].

Now we can prove the main result of this section.

Theorem 6.4. Assume that K is a field containing primitive roots of unity of any
positive order (in particular, K has characteristic 0). Then a co-Frobenius path
subcoalgebra C ¤ 0 can be endowed with a Hopf algebra structure if and only if it
is of one of the following three types:

(I) A direct sum of copies (indexed by a set P ) of the same KŒA1js� for some
s � 1. In this case, any Hopf algebra structure on C is isomorphic to a Hopf algebra
of the formH1.s; q; G; g; 
; ˛/ for some q,G, g, 
, ˛, where q is a primitive .sC1/-
th root of unity, G is a group, g 2 Z.G/ is an element of infinite order, G=hgi is in
bijection with P , 
 2 G� is a character such that 
.g/ D q, and ˛ 2 K is a scalar
which may be non-zero only if 
sC1 D 1.

(II) A direct sum of copies (indexed by a set P ) of the same KŒCn; s� for some
n � 2 and s � 1 such that s C 1 divides n. In this case, any Hopf algebra structure
on C is isomorphic to a Hopf algebra of the formHn.s; q; G; g; 
; ˛/ for some q, G,
g, 
, ˛, where q is a primitive .s C 1/-th root of unity, G is a group, g 2 Z.G/ is
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an element of order n, G=hgi is in bijection with P , 
 2 G� is a character such that

.g/ D q, and ˛ 2 K is a scalar which may be non-zero only if 
sC1 D 1.

(III) A direct sum of copies of K. In this case, any Hopf algebra structure on C
is isomorphic to a group Hopf algebra KG for some group G.

Proof. By Example 6.3 we see that a coalgebra of type (I) or (II) has a Hopf algebra
structure. Obviously, a coalgebra of type (III) is a group-like coalgebraKX for some
set X , so then it has a Hopf algebra structure, obtained if we endow X with a group
structure.

Conversely, let C be a co-Frobenius path subcoalgebra which can be endowed
with a Hopf algebra structure. By Corollary 4.7, C is isomorphic to a direct sum of
coalgebras of types KŒA1js�, KŒCn; s� or K. We have that G D G.C/, the set of
all vertices of C , is a group with the induced multiplication. We look at the identity
element 1 of this group and distinguish three cases.

Case 1. If 1 is a vertex in a connected component of type KŒA1js�, denote the
vertices of this connected component by .vn/n2Z such that v0 D 1. Also denote by an

the arrow from vn to vnC1 for anyn 2 Z. Ifg D v1, then�.a1/ D 1˝a1Ca1˝g and
a1 … C0. Then�.ga1/ D g˝ ga1 C ga1 ˝ g2, and ga1 … C0, so Pg2;g.C / ª C0.
Since the onlyh 2 G such thatPh;g.C / is not trivial (i.e., ¤ K.h�g/, or equivalently,
not contained in C0) is h D v2, we obtain v2 D g2. Recurrently we see that vn D gn

for any positive integer n, and also for any negative integer n.
Let us take some h 2 G. Then �.ha1/ D h˝ ha1 C ha1 ˝ hg and ha1 … C0,

so Phg;h.C / ¤ K.hg� h/. Hence there is an arrow starting at h and ending at hg in
C ; as before, inductively we get that there are in C arrows

� � � �! ı
hg�1

�! ı
h

�! ı
hg

�! ı
hg2

�! � � � ;

which shows that the vertex h belongs to a connected componentD of typeKŒA1js0�
for some s0 � 1. Moreover,�.a1h/ D h˝a1hCa1h˝gh, we also havePgh;h.C / ¤
K.gh � h/, so there is an arrow from h to gh in C . This shows that hg D gh, so
then g must lie in Z.G/.

If we denote by ph;gi h the unique path from h to gih, for any h 2 G and i � 0,
then

�.p1;gs / � 1˝ p1;gs � p1;gs ˝ gs 2 Cs�1 ˝ Cs�1

and p1;gs … Cs�1. Then

�.hp1;gs / � h˝ hp1;gs � hp1;gs ˝ hgs 2 Cs�1 ˝ Cs�1

and hp1;gs … Cs�1. But it is easy to check that in the path coalgebra K� (whose
subcoalgebra is C ) the relation �.c/ � h ˝ c � c ˝ hgs 2 .K�/s�1 ˝ .K�/s�1

holds if and only if c 2 .K�/s�1 CKph;hgs . Applying this for c D hp1;gs … Cs�1,
we obtain hp1;gs D c0 C 	ph;hgs for some c0 2 .K�/s�1 and 	 2 K�. This shows
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that ph;hgs must be in C , so it also lies inD, which implies that s0 � s (otherwiseD
cannot have paths of length s).

Similarly, since

�.h�1ph;hgs0 / � 1˝ h�1ph;hgs0 � h�1ph;hgs0 ˝ gs0 2 Cs0�1 ˝ Cs0�1

and h�1ph;hgs0 … Cs0�1, we obtain s � s0. In conclusion s0 D s, and C is a direct
sum of coalgebras isomorphic to KŒA1js�. Moreover, this direct sum is indexed by
a set in bijection with G=hgi.

In order to uncover the Hopf algebra structures on C , we use the lifting method
proposed in [2]. Since C0 D K� is a Hopf subalgebra of C , the coradical filtration
C0 � C1 � � � � of C is a Hopf algebra filtration, and we can consider the associated
graded space grC D C0 ˚ C1

C0
˚ : : : , which has a graded Hopf algebra structure.

Denote H D K� , the degree 0 component of grC , and by 	 W H ! grC the inclu-
sion morphism. The natural projection � W grC ! H is a Hopf algebra morphism.
Then the coinvariants R D .grC/co H with respect to the right H -coaction induced
via � , i.e.,

R D fz 2 grC j .I ˝ �/�.z/ D z ˝ 1g
is a left Yetter–Drinfeld module over H , with left H -action defined by h � r DP
	.h1/rS.	.h2// for any h 2 H , r 2 R, and left H -coaction ı.r/ D P

r.�1/ ˝
r.0/ D .� ˝ I /�.r/. Moreover, R is a graded subalgebra of grC , with grading
denoted by R D L

n�0R.n/, and it also has a coalgebra structure with comultipli-
cation�R.r/ D P

r .1/ ˝ r .2/ D P
r1	�.S.r2//˝ r3, and these make R a braided

Hopf algebra in the category H
H YD of Yetter–Drinfeld modules over H . The Hopf

algebra grC can be reconstructed from R by bosonization, i.e., grC ' R # H , the
biproduct of R and H . The multiplication of this biproduct is the smash product
given by .r # h/.p # v/ D P

r.h1 �p/ # h2v, while the comultiplication is the smash
coproduct �.r # h/ D P

.r .1/ # .r .2//.�1/h1/˝ .r .2//.0/ # h2.
Since in our case Ci is the span of all paths of length at most i in C , if z D

Oc 2 R.n/, then c D P
i ˛ipi , a linear combination of paths pi of length i , andP

i ˛i �pi ˝ t .pi / D P
i ˛i �pi ˝ 1. Then ˛i D 0 for any i such that t .pi / ¤ 1,

showing that R.i/ is spanned by the classes of the paths of length i which end at 1.
We conclude that R.i/ has dimension 1 for any 0 � i � s, and dim.R/ D s C 1.
By [2], Theorem 3.2 (see also [9], Proposition 3.4) R is isomorphic to a quantum
line, i.e., R ' Rq.H; v; 
/ for some primitive .s C 1/-st root of unity q, an element
v 2 G and a character 
 2 G� such that 
.v/ D q, and 
.h/hv D 
.h/vh for
any h 2 G, i.e., v 2 Z.G/ (we use the notation of [9], Section 2). As an algebra
we have Rq.H; v; 
/ D KŒy�=.ysC1/, and the coalgebra structure is such that the

elements d0 D 1, d1 D y, d2 D y2

.2/qŠ
, …, ys

.s/qŠ
form a divided power sequence, i.e.,

�.di / D P
0�j �i dj ˝ di�j for any 0 � i � s. The H -action on Rq.H; v; 
/ is

such that h � y D 
.h/y for any h 2 G, and theH -coaction is such that y 7! v˝ y.
By [9], Proposition 3.1, there exists a .1; v/-skew-primitive z in C , which is not

in C0, such that vz D qzv, C is generated as an algebra by z and G, and the class
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Oz in C1

C0
corresponds to the element y # 1 in Rq.H; v; 
/ # H via the isomorphism

grC ' Rq.H; v; 
/#H . It follows that vmust be g�1. Since for h 2 G both zh and
hz are .h; g�1h/-skew-primitives, we must have zh D �hzCˇ.g�1h�h/ for some
scalars � and ˇ. But zhg D .�hz C ˇ.g�1h � h//g D q�hgz C ˇ.h � hg/, and
on the other hand zgh D qgzh D q�ghz C qˇ.h � hg/, showing that ˇ D 0. Thus
zh D �hz, and passing to grC , this gives Ozh D �h Oz. But inRq.H; v; 
/#H we have
.1#h/.y#1/ D 
.h/.y#1/.1#h/, so� D 
.h/. Therefore zh D 
.h/hz. Replace the
generator z by x D gz, which is a .g; 1/-skew-primitive. By the quantum binomial
formula we see that�.xsC1/ D 1˝xsC1CxsC1˝gsC1, so thenxsC1 D ˛.gsC1�1/
for some scalar ˛. Since xsC1h D 
.h/sC1hxsC1, we see that if 
sC1 ¤ 1, then ˛
must be zero. Now it is clear that C ' H1.s; q�1; G; g; 
; ˛/.

Case 2. If 1 is a vertex in a connected component D of type KŒC1; s�, with
s � 1, then let x be the arrow from 1 to 1, which is a primitive element, i.e.,
�.x/ D x ˝ 1 C 1 ˝ x. Then gx … C0 and �.gx/ D gx ˝ g C g ˝ gx for any
g 2 G, so there is an arrow from gx to gx. This shows that C must be a direct sum
of coalgebras of type KŒC1; s

0� (for possible different values of s0). Then looking at
�.xi / � xi ˝ 1 � 1 ˝ xi , it is easy to show by induction that xi lies in D for any
i � 1. Since x is a non-zero primitive element, the set .xi /i�1 is linearly independent,
a contradiction to the finite dimensionality of D. Thus this situation cannot occur.

If 1 is a vertex in a connected component of typeKŒCn; s�, with n � 2, the proof
goes as in case 1, and leads us to the conclusion that C is a direct sum of coalgebras
isomorphic toKŒCn; s�, and thatC is isomorphic as a Hopf algebra to one of the form
Hn.s; q; G; g; 
; ˛/. The only difference is that instead of using the paths ph;gi h, we
deal with paths denoted byphjl , and meaning the path of length l starting at the vertex
h. Also, since 
.g/ D q, a .sC 1/-st root of unity, and gn D 1, sC 1must divide n.

Case 3. If 1 is a vertex in a connected component of type K, then proceeding as
in case 1, we can see that there are no arrows in C , so C is a direct sum of copies
of K. Thus C is a group-like coalgebra, and Hopf algebra structures on C are just
group Hopf algebras.

We note that the above theorem completely classifies finite dimensional Hopf
algebras whose underlying algebras are quotients of finite dimensional path algebras
by ideals generated by paths, or whose underlying coalgebras are path subcoalgebras.
These are the algebras KG, Hn.s; q; G; g; 
; ˛/ and their duals, because a finite
dimensional Hopf algebra is Frobenius as an algebra and co-Frobenius as a coalgebra.
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