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Noncommutative quadric surfaces

S. Paul Smith and M. Van den Bergh�

Abstract. The 4-dimensional Sklyanin algebra is the homogeneous coordinate ring of a non-
commutative analogue of projective 3-space. The degree-two component of the algebra con-
tains a 2-dimensional subspace of central elements. The zero loci of those central elements,
except 0, form a pencil of noncommutative quadric surfaces. We show that the behavior of
this pencil is similar to that of a generic pencil of quadrics in the commutative projective 3-
space. There are exactly four singular quadrics in the pencil. The singular and non-singular
quadrics are characterized by whether they have one or two rulings by noncommutative lines.
The Picard groups of the smooth quadrics are free abelian of rank two. The alternating sum
of dimensions of Ext allows us to define an intersection pairing on the Picard group of the
smooth ntive quadrics. A surprise is that a smooth noncommutative quadric can sometimes
contain a “curve” having self-intersection number �2. Many of the methods used in our paper
are noncommutative versions of methods developed by Buchweitz, Eisenbud and Herzog: in
particular, the correspondence between the geometry of a quadric hypersurface and maximal
Cohen–Macaulay modules over its homogeneous coordinate ring plays a key role. An im-
portant aspect of our work is to introduce definitions of noncommutative analogues of the
familiar commutative terms used in this abstract. We expect the ideas we develop here for
2-dimensional noncommutative quadric hypersurfaces will apply to higher dimensional non-
commutative quadric hypersurfaces and we develop them in sufficient generality to make such
applications possible.
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1. Introduction

1.1. Many noncommutative analogues of P3 contain noncommutative quadric hy-
persurfaces. This paper studies these noncommutative quadrics and the consequences
of their existence for the ambient noncommutative P3.

For example, we establish a simple “geometric” criterion for recognizing when
a noncommutative quadric surface is smooth: it is smooth if and only if it has two
rulings. Of course, a key point is to define the terms.

The smoothness result allows us to make further comparisons with the commuta-
tive case. For example, a generic pencil of quadrics in P3 has exactly four singular
members and we show the same is true for the pencil of noncommutative quadrics in
the Sklyanin analogue of P3.

1.2. A noncommutative quadric surfaceQ is defined implicitly by defining a Grothen-
dieck category QcohQ that plays the role of quasi-coherent sheaves on it. We say
that Q is smooth of dimension two if Ext3Q.�;�/ vanishes everywhere on QcohQ

but Ext2Q.�;�/ does not.
Deciding whether a commutative variety is smooth is a local problem: one ex-

amines the local rings at its points. One can also use the Jacobian criterion on affine
patches. Deciding whether a noncommutative variety is smooth is a different kind
of problem because the variety can have few closed points, sometimes none at all.
One cannot check smoothness by checking the homological properties of individual
points. In this sense, smoothness is not a local property and global methods must
be used. In particular, there is no analogue of the Jacobian criterion and singular
noncommutative quadrics need not have a singular point.

Theorem 5.6 shows that the smoothness of a quadric hypersurface in a noncom-
mutative P3 (where these terms have to be defined appropriately) is equivalent to the
semisimplicity of a certain finite dimensional algebra.

1.3. We will define noncommutative quadric surfaces as degree two hypersurfaces in
suitable noncommutative analogues of P3, the latter being a noncommutative space
of the form ProjS where S is a not-necessarily-commutative connected graded ring
having properties like those of the commutative polynomial ring in four variables
(see Section 2.8 for a precise definition). Thus Q D ProjA where A D S=.z/ and
z 2 S2 is a central regular element. (If z were a normal regular element we could
replace S by a suitable Zhang twist in which z becomes central, so there is no loss
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of generality in assuming z is central.) Amongst other things, S is required to be a
Koszul algebra and this implies that S=.z/ is also Koszul.

1.4. Let S denote a 4-dimensional Sklyanin algebra [14], [15], [18], [22], [23]. In
this case we write

P3Skly D ProjS:

The common zero locus of the two linearly independent degree-two central elements
inS is commutative elliptic curveE. The zero loci of linear combinations of these two
central elements form a pencil of noncommutative quadricsQ D ProjS=.z/ � P3Skly.
Exactly four of these noncommutative quadrics are singular (Theorem 10.2). The base
locus of the pencil is E. This is a direct analogue of the commutative case: the base
locus of a generic pencil of quadrics in P3 is a quartic elliptic curve, and exactly four
members of that pencil are singular.

1.5. The method we use to understand these noncommutative quadrics follows that
of Buchweitz, Eisenbud, and Herzog in their paper [5] on maximal Cohen–Macaulay
modules over quadrics, and especially the approach in the appendix of their paper.
As is well known, a quadric hypersurface is smooth if and only if the even Clifford
algebra determined by its defining equation is semisimple. The results in [5] establish
a duality between the maximal Cohen–Macaulay modules over the coordinate ring
of the quadric and the derived category of the Clifford algebra. We associate to
our noncommutative quadrics Q D ProjA finite dimensional algebras C that are
analogues of even Clifford algebras and establish the “same” duality.

1.6. Let AŠ be the quadratic dual of A. Because A is a hypersurface ring, ProjAŠ

is an affine space. The algebra C is a coordinate ring of this space in the sense that
Qcoh.ProjAŠ/ Š ModC . We show thatQ is smooth if and only ifC is semisimple if
and only if there are two distinct noncommutative “rulings” on Q. We show that the
“lines” onQ determine 2-dimensional simple C -modules; because the dimension of
C is 8, it is semisimple if it has two non-isomorphic 2-dimensional simple modules.
The method by which we associate aC -module to a line onQ uses the fact thatA is a
Koszul algebra, and that the lines onQ determine graded maximal Cohen–Macaulay
A-modules.

1.7. Although quantum P2s have been classified and are well-understood in some
regards, the same is not true for quantum P3s. The results in this paper are a step
towards gaining a similar understanding of another class of noncommutative surfaces.
In Sections 7 and 8 we obtain good information about the points and lines on such
surfaces.

Furthermore, if the noncommutative quadricQ is smooth there is an isomorphism
K0.Q/ Š K0.P1 � P1/ of Grothendieck groups that is compatible with the Euler
forms .�;�/ DP

.�1/i dim ExtiQ.�;�/. More interestingly, the effective cones for



820 S. P. Smith and M. Van den Bergh

Q and P1 � P1 need not match up under this isomorphism: sometimes Q contains,
in effect, a �2-curve.

All unexplained terminology for noncommutative spaces can be found in either
[17] or [25].

2. Preliminaries

Throughout k denotes a field andA denotes a two-sided noetherian connected graded
k-algebra.

The Hilbert series of a graded k-vector V having finite dimensional components
is the formal series

HV .t/´P
n

.dimk Vn/t
n:

2.1. Graded modules. The category of graded right A-modules with degree zero
module homomorphisms is denoted by GrA and grA is the full subcategory of GrA
consisting of noetherian modules. We write Db.grA/, or just Db.A/, for the associated
bounded derived category.

We write ExtiGrA.M;N / for the extension groups in GrA, and define

Ext�
A.M;N /´

L
i2Z

ExtiGrA.M;N.i//:

2.2. Syzygies. When M 2 grA we write �iM for the i th syzygy in grA ob-
tained from a minimal graded resolution of M . Since A is connected graded,
ExtiA.�

dM;k/ Š ExtiCdA .M; k/ for all i � 0. We often write �M for �1M .

2.3. Linear resolutions. AnM in grA has a linear resolution if for all i the i th term
in its minimal projective resolution is a direct sum of copies ofA.�i/ or, equivalently,
if ExtiA.M; k/j D 0whenever iCj ¤ 0. We write Lin.A/ for the full subcategory of
grA consisting of modules having a linear resolution; Lin.A/ is closed under direct
summands and extensions:

If M 2 Lin.A/, then .�nM/.n/ 2 Lin.A/ too.

If M 2 Lin.A/, then HExt�A.M;k/
.t/HA.�t / D HM .�t /.

2.4. Koszul duality. See [3] for basic information about Koszul algebras.
Let A be a connected Koszul algebra and AŠ its quadratic dual.
The Koszul property says that the natural homomorphism AŠ ! Ext�

A.k; k/ is an
isomorphism of graded k-algebras. If M is a graded A-module, the Yoneda product
makes Ext�

A.M; k/ a graded left AŠ-module with degree i component ExtiA.M; k/.
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A graded A-module M is stably linear if M�n.n/ has a linear resolution for
n � 0. We write Db

sl.A/ for the full subcategory of Db.A/ of complexes having
stably linear homology.

By [20] there is a duality

K W Db
sl.A/! Db

sl.A
Š/

given by

KM D T .RHomA.M; k//;

where T is the re-grading functor

.T V /ij D V iCj�j

where the upper index is the homological degree and the lower index the grading
degree. The duality K restricts to a duality

Lin.A/! Lin.AŠ/; M 7! Ext�
A.M; k/;

with degree i component ExtiA.M; k/. The Koszul duality functor K satisfies

K.MŒ1�/ Š .KM/Œ�1� and K.M.1// Š .KM/Œ�1�.1/:

Theorem 2.1 (Jørgensen [8], Thm. 3.1). LetA be a two-sided noetherian, connected,
graded k-algebra that is Koszul and has a balanced dualizing complex [24], [26].
Then every finitely generated A-module is stably linear. Thus

Db
sl.A/ D Db.A/:

2.5. Cohen–Macaulay rings and modules. Let A be a right and left noetherian,
connected, graded k-algebra having a balanced dualizing complex R� [24], [26].

We say that A is Cohen–Macaulay of depth d if there is an A-A-bimodule !A
such that R� Š !AŒd �. We call !A the dualizing module for A. By [2], Prop. 7.9, !A
is finitely generated on each side. We say A is Gorenstein if it is Cohen–Macaulay
and !A is an invertible bimodule. This is equivalent to the requirement that !A is
isomorphic to A.`/ for some ` as both a right and as a left module.

The local cohomology functors

H i
m.�/ D lim�!ExtiA.A=A�n;�/

are defined on graded right A-modules. Here m denotes the maximal ideal A�1.
We write H i

mı for the local cohomology modules for left modules. The depth of an
A-module M is the smallest integer i such that H i

m.M/ ¤ 0. A finitely generated
module M is Cohen–Macaulay if either M D 0 or only one H i

m.M/ is non-zero.
For the rest of this section we assume that A is Cohen–Macaulay of depth d in the
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sense of the previous paragraph. Then A is a Cohen–Macaulay A-module of depth
d in the sense of the present paragraph. Furthermore, there is an isomorphism

!A Š Hd
m.A/

�

of A-A-bimodules and, for every M 2 modA,

ExtiA.M;!A/ Š Hd�i
m .M/� (2.1)

as graded left A-modules [26], Thm. 4.2.

2.6. The condition �. Let A be a connected graded k-algebra.
We say A satisfies condition � if ExtiA.k;M/ is finite dimensional for all finitely

generated M and all i . By [2], Cor. 3.6, this is equivalent to H i
m.M/ being zero in

large positive degree for all i and all finitely generatedM . Hence, if A is noetherian
and Cohen–Macaulay, formula (2.1) implies that A satisfies � on both sides [26],
Thm. 4.2. The precise relationship between condition � and the Cohen–Macaulay
property is given by [24], Thm. 6.3.

A noetherian, connected, graded algebra A satisfying � has finite depth, and for
every M 2 modA of finite projective dimension,

pdimM C depthM D depthA:

As in the commutative case we call this the Auslander–Buchsbaum formula. The
noncommutative version was proved by Jørgensen [7].

2.7. Noncommutative spaces. Let A be a connected graded noetherian k-algebra.
Artin and Zhang [2] define ProjA to be the (imaginary) noncommutative scheme

defined implicitly by declaring that the category of “quasi-coherent sheaves” on it is

Qcoh.ProjA/´ QGrA´ GrA

FdimA

where FdimA is the full subcategory consisting of direct limits of finite dimensional
modules. We write � W GrA! Qcoh.ProjA/ for the quotient functor and ! for its
right adjoint. Modules in FdimA are said to be torsion.

We also define

coh.ProjA/´ qgrA´ grA

FdimA \ grA
:

It is the full subcategory of noetherian objects in Qcoh.ProjA/.
Write X D ProjA and OX D �A.
Artin and Zhang define the cohomology groups

H q.X;F /´ ExtqX .OX ;F /:
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If M is a graded A-module, there is an exact sequence

0! H 0
m.M/!M ! !�M ! H 1

m.M/! 0; (2.2)

and, if M D �M , then
H q.X;M/ Š H qC1

m .M/0 (2.3)

for q � 1 [2], Prop. 7.2.
Following [26], Defn. 2.4, we say that X is Cohen–Macaulay of dimension d if

there exists !X 2 cohX and isomorphisms

H q.X;�/! Extd�q
X .�; !X /�

on cohX for all q.
Suppose that A is noetherian and Cohen–Macaulay of depth d C 1. Since A

satisfies �, (2.3) allows us to quote [26], Thm. 2.3, which says that X D ProjA is
Cohen–Macaulay of dimension d with !X Š �.HdC1

m .A/�/.

2.8. Noncommutative analogues of Pn. The quadric surfaces of interest to us are
degree two hypersurfaces in quantum P3s.

For the purposes of this paper a quantum Pn is a noncommutative scheme ProjS
for which S is a connected graded k-algebra with the following properties:

(1) S has global homological dimension nC 1 on both sides and

Exti .k; S/ Š
´
0 if i ¤ nC 1;
k if i D nC 1;

for the right and left trivial modules k D S=S�1 (i.e., S is an Artin-Schelter
(AS) regular algebra);

(2) S is right and left noetherian;

(3) HS .t/ D .1 � t /�n�1.

J. J. Zhang showed that these conditions imply that S is a Koszul algebra and has
dualizing module !S Š A.�n � 1/ [16], Thm. 5.11. Furthermore, S satisfies � on
both sides. When nC 1 � 4, S is a domain by [1].

A result of Shelton and Vancliff [13], Lemma 1.3, shows that for quantum P3s the
hypotheses (1)-(3) are not the most efficient – one can slightly weaken them.

Write Pnnc D ProjS . The hypotheses ensure thatHnC1.Pnnc ;�/ D 0 and that the
dimensions of H q.Pnnc ;O.r// agree with those in the commutative case.

The Grothendieck group of a quantum Pn is isomorphic to ZŒt; t�1�=.1 � t /nC1
with ŒF .�1/� D ŒF �t . There is a good notion of degree for closed subspaces of
ProjS . In particular, if z 2 S is a homogeneous normal element, meaning that Sz D
zS , then ProjS=.z/ is a hypersurface of degree equal to deg z. Write A D S=.z/.
Then A is Gorenstein of depth n, and satisfies �. In particular, Hn.ProjA;�/ D 0.



824 S. P. Smith and M. Van den Bergh

Lemma 2.2. If S is a connected graded k-algebra of finite global dimension and
HS .t/ D .1 � t /�n, then the Hilbert series of every finitely generated A-module of
GK-dimension one is eventually constant.

Proof. The minimal projective resolution of a finitely generated A-module M is
finite, and all terms are direct sums of shifts of A, so the Hilbert series of the module
is of the form f .t/.1 � t /�n for some f .t/ 2 ZŒt; t�1�. The hypothesis on the GK-
dimension means that we can rewrite this as g.t/.1 � t /�1 with g.t/ 2 ZŒt; t�1�.
Hence dimMn D g.1/ for n� 0.

3. Maximal Cohen–Macaulay modules

Suppose that A is a connected, graded, noetherian, and Cohen–Macaulay of depth
d � 1.

3.1. A noetherian A-module M is maximal Cohen–Macaulay if depthM D d . We
write MCM.A/ for the full subcategory of grA consisting of the maximal Cohen–
Macaulay modules; we consider the zero module to be maximal Cohen–Macaulay,
so MCM.A/ is an additive category.

If i � d , then �iM 2 MCM.A/ for all M 2 grA. If M is in MCM.A/ so is
�M .

The stable category of maximal Cohen–Macaulay modules, denoted by MCM.A/,
has the same objects as MCM.A/ and morphisms

HomMCM.A/.M;N /´ HomGrA.M;N /

P.M;N/

where P.M;N/ consists of the degree zero A-module maps f W M ! N that factor
through a projective in GrA.

3.2. The next two results are due to Buchweitz and are stated in his appendix to the
paper [5]; see also [4].

Theorem 3.1. Suppose that A is Gorenstein. Then MCM.A/ is a triangulated cate-
gory with respect to the translation functorMŒ�1�´ �M . IfM andN are maximal
Cohen–Macaulay modules, then

HomMCM.A/.M;N Œn�/ Š ExtnGrA.M;N /

for all n � 1.
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Theorem 3.2. LetA be a Gorenstein, connected, graded, Koszul algebra over a field
k, and AŠ its quadratic dual. The Koszul duality functor K fits into a commutative
diagram

MCM.A/ ��

��

grA �� Db.A/
K �� Db.AŠ/

��
MCM.A/

B
�� Db.qgrAŠ/

(3.1)

in which the bottom arrow is a duality

MCM.A/ Š Db.qgrAŠ/; M 7! RHomA.M; k/:

The t -structure on MCM.A/ induced by the natural t -structure on Db.qgrAŠ/ is

MCM.A/�p D fM j ExtiA.M; k/j D 0 for i C j > pg;
MCM.A/�p D fM j ExtiA.M; k/j D 0 for i C j < pg:

The heart for this t -structure consists of the maximal Cohen–Macaulay modules
having a linear resolution.

We will refer to the duality

B W MCM.A/! Db.qgrAŠ/

in Theorem 3.2 as “Buchweitz’s duality”.

Lemma 3.3. Suppose that A is a connected graded, Gorenstein, Koszul algebra.
Write F for the composition

grA �! Db.A/
K��! Db.AŠ/ �! Db.qgrAŠ/:

IfM 2 grA, then F.�M/ Š .FM/Œ1� and F.�M.1// Š .FM/.1/.

Proof. There is an exact sequence 0 ! �M ! L
i2I A.i/ ! M ! 0 for some

multiset I , and hence a distinguished triangle �M ! L
i2I A.i/ ! M ! in

Db.A/. The image of K.˚A.i// in Db.qgrAŠ/ is zero, so there is an isomorphism

�KM ��!� �K..�M/Œ1�/ Š �K.�M/Œ�1�
in Db.qgrAŠ/. Hence FM Š F.�M/Œ�1�.

The other isomorphism is established in a similar way.

Lemma 3.4. Suppose that A is a connected graded, Gorenstein algebra. The iso-
morphism classes of indecomposable objects in MCM.A/ are in bijection with the
isomorphism classes of indecomposable non-projective modules in MCM.A/.
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Proof. Non-trivial direct summands of an object in an additive category correspond
to non-trivial idempotents in its endomorphism ring.

LetM be an indecomposable non-projective in MCM.A/. ThenE D EndGrAM

is a finite dimensional local ring, meaning that E= radE is a division ring. Hence
the endomorphism ring of M in MCM.A/ is also local, so M is indecomposable in
MCM.A/.

LetM 0 be another indecomposable non-projective in MCM.A/, and suppose that
f W M !M 0 andg W M 0 !M become mutually inverse isomorphisms in MCM.A/.
To show thatM is isomorphic toM 0 in MCM.A/, it suffices to show that fg and gf
are isomorphisms in MCM.A/. It therefore suffices to show that if h W M !M is an
isomorphism in MCM.A/, then it is an isomorphism in MCM.A/. But this is clear,
since the isomorphisms M ! M in either category are the endomorphisms that are
not in the radical.

We have shown that the functor MCM.A/ ! MCM.A/ gives an injective map
from the set of isomorphism classes of indecomposable non-projective Cohen–
Macaulay modules to the set of isomorphism classes of indecomposable objects in
MCM.A/. We now show this map is surjective. IfM is a maximal Cohen–Macaulay
module that becomes indecomposable as an object in MCM.A/ we may write M as
a direct sum of indecomposables in MCM.A/ and this gives a direct sum decom-
position of M in MCM.A/ each term of which is either zero or indecomposable;
hence, in MCM.A/, M is isomorphic to some M 0 where M 0 is an indecomposable
non-projective in MCM.A/.

Remark. Suppose that A is Gorenstein, and let N be a maximal Cohen–Macaulay
module having no non-zero projective direct summand. By applying HomA.�; A/ to
0! �N ! P ! N ! 0, where P ! N ! 0 is the start of a minimal projective
resolution, one sees that�N also has no non-zero projective direct summand. Hence
for all d � 0, �dN has no non-zero projective direct summands.

3.3. Simple objects and maximal Cohen–Macaulay modules.

Lemma 3.5. Let A be a connected, graded, Gorenstein, Koszul algebra and

B W MCM.A/! Db.qgrAŠ/

the equivalence in Theorem 3.2. Let S be a simple object in qgrAŠ. Then

(1) there is a unique-up-to-isomorphism indecomposableM 2 MCM.A/ such that
BM Š SŒ0�;

(2) if S Š S.d/, then �dM.d/ ŠM ;

(3) �nM.n/ has a linear resolution for all n.

Proof. The equivalence of categories and Lemma 3.4 ensure the existence and unique-
ness of M . Because SŒ0� is in the heart of Db.qgrAŠ/, M has a linear resolution.
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An induction argument using Lemma 3.3 shows that B.�dM.d// Š .BM/.d/ Š
S.d/ Š S , so M Š �dM.d/ in MCM.A/. Because M is indecomposable, it
follows that M is isomorphic to a direct summand of �dM.d/ in MCM.A/ and
the complementary summand is projective. By the previous remark, �dM has no
non-zero projective direct summand, so �dM.d/ ŠM .

Since M has a linear resolution, so does each �nM.n/.

4. Smoothness

A noncommutative spaceX is smooth of global dimension d if d is the largest integer
such that ExtdX .M;N / ¤ 0 for some X -modules M and N .

We now consider the question of what homological properties of a connected
graded k-algebra A imply that ProjA is smooth.

4.1. The following summarizes the commutative case.

Proposition 4.1. Let A be a graded quotient of a positively graded polynomial ring.
Write X D ProjA. The following are equivalent:

(1) gldimX � d ;

(2) dimk ExtiA.M;N / <1 for all i � d C 1 and allM;N 2 grA;

(3) whenever N ! E
� is a minimal injective resolution in GrA, Ei is torsion for

all i � d C 1.
Proof. (3)() (1) If 0 ! N ! E

� is a minimal injective resolution in GrA, then
0! �N ! �E

� is a minimal injective resolution in QcohX . Thus gldimX � d if
and only if �Ei D 0 for all i � d C 1. Hence the equivalence of conditions (1) and
(3)

(2) H) (1) Since A is commutative, ExtiA.M;N / is an A-module. If f is a
homogeneous element ofA lying in m, thenAŒf �1�˝A ExtiA.M;N / D 0 for i > d ,
and so Exti

AŒf �1�
� 0 for i > d . Hence ProjAŒf �1� is smooth of global dimension at

most d . SinceX is covered by open affines of the form SpecAŒf �1�0 Š ProjAŒf �1�
with f 2 m, it follows that gldimX � d .

(3) H) (2) If condition (3) holds then applying HomA.M;�/ to a minimal injec-
tive resolution of N produces a complex consisting of torsion modules after the d th

term. Hence ExtiA.M;N / is torsion for i > d . However, ifM andN are noetherian,
then ExtiA.M;N / is a noetherian A-module as one sees by applying HomA.�; N / to
a minimal projective resolution of M . Hence ExtiA.M;N / is finite dimensional for
i > d whenever M;N 2 grA.

The proof of (3)() (1) works whenA is not commutative, but the other two parts
of the proof fail because ExtiA.M;N / is not anA-module whenA is not commutative.
Nevertheless, we will show that the implication (3) H) (2) holds if A satisfies �.
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First we need the following lemma that we learned from Kontsevich.

Lemma 4.2. Let A be a noetherian connected graded k-algebra satisfying �. If
gldim

�
ProjA

� D d < 1 and M 2 grA, then there is a perfect complex P 2
Db.grA/ concentrated in homological degree Œ�d; 0� and a bounded complex N
together with a map inM�n ˚N ! P (n large) whose cone has finite dimensional
cohomology.

Proof. Take an exact sequence 0 ! Z ! Pd ! 	 	 	 ! P0 ! M ! 0 with
each Pi a finitely generated free module. Applying � to this gives an element of
ExtdC1

X .�M;�Z/ which must be zero, so the triangle �ZŒd� ! �P ! �M !
is split. Applying ! gives an isomorphism !�M ˚ !�ZŒd� ! !�P . However,
since � holds, for every finitely generated moduleN the mapN�n ! .!�N/�n has
finite dimensional cokernel (and it obviously has finite dimensional kernel). Hence,
for large n there is an isomorphism M�n ˚ ZŒd��n Š P�n, and hence a map
M�n ˚ZŒd��n ! P whose cone has finite dimensional cohomology.

Proposition 4.3. Let A be a noetherian connected graded k-algebra satisfying �.
Write X D ProjA. If gldimX D d < 1, then dimk ExtiA.M;N / < 1 for all
i � d C 1 and allM;N 2 grA.

Proof. By Lemma 4.2, there is a distinguished triangle M�n ˚ N ! P ! C !
such that

L
qH

q.C / is finite dimensional.

4.2. We call a triangulated category is semisimple if in every distinguished triangle

L
u�!M

v�! N
w�!

at least one of u, v, and w is zero. The condition that w D 0 is equivalent to the
condition that u and v induce an isomorphismM Š L˚N . It follows that if L and
M are objects in a semisimple triangulated category, then Hom.L;M/ ¤ 0 if and
only if Hom.M;L/ ¤ 0. Furthermore, the heart of every t -structure on a semisimple
triangulated category is semisimple, meaning that every short exact sequence splits.
The derived category of a semisimple abelian category is semisimple.

Notation. We write MCM�n for the full subcategory of MCM.A/ consisting of graded
Cohen–Macaulay A-modules M such that Mi D 0 for all i < n. We write MCM�n
for the essential image of MCM�n in MCM.A/.

Proposition 4.4. Let A be a connected, graded k-algebra that is Gorenstein and
satisfies �. If MCM.A/ is semisimple, then ProjA is smooth.

Proof. Suppose that A has depth d , so the d th syzygy of a finitely generated module
is maximal Cohen–Macaulay.
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FixK 2 MCM.A/. For all integers n greater than the degrees of the minimal gen-
erators of K, HomMCM.K;�/ vanishes on MCM�n. Since MCM.A/ is semisimple,
it follows that HomMCM.�; K/ also vanishes on MCM�n.

Now fix M;N 2 grA. Then

ExtdC1
ProjA.�M;�N/ Š ExtdC1

GrA .M�n; N / for n� 0

Š Ext1GrA.�
d .M�n/; N /

Š ExtdC1
GrA .�

d .M�n/;�dN/ (because A is Gorenstein)

Š HomMCM.�
d .M�n/; .�dN/Œd C 1�/:

The previous paragraph shows that this is zero for n � 0 because �d .M�n/ 2
MCM�n.

Part of the argument in Proposition 4.4 can be restated in the following way.

Proposition 4.5. Suppose that MCM.A/ is semisimple. If N 2 MCM.A/, there is
an integer n such that Ext1GrA.M;N / D 0 for allM 2 MCM�n.

Proof. Choose an integer n > fthe degrees of a minimal set of generators for N g:
Suppose that M 2 MCM�n. Then �M 2 MCM�n also. Hence HomGrA.N;�M/

is zero, and so is its quotient HomMCM.A/.N;MŒ�1�/. But MCM.A/ is semisimple,
so HomMCM.A/.MŒ�1�; N / D 0 also. Thus Ext1GrA.M;N / D 0.

Proposition 4.6. Let S be a Gorenstein k-algebra of finite global dimension and z
a central regular element of degree d . Let A D S=.z/. If M 2 MCM.A/ is not
projective, then

(1) there is a resolution 0! S s ! S s !M ! 0 of ungraded S -modules;

(2) �2M ŠM.�d/;
(3) ExtiC2A .M;N / Š ExtiA.M;N /.d/ for all A-modules N and all i � 1.

Proof. (1) We have depthS M D depthAM D depthAA D depthS A D depth S�1,
so pdimS M D 1 by the Auslander–Buchsbaum formula. Hence M has a free
resolution 0! S r ! S s !M ! 0. But r � s because S is noetherian and s � r
because S sz � S r , so s D r .

Although this is a resolution ofM in QGr S , the minimal resolution ofM in Gr S
also has this form although we may have to change s and we will need to place some
gradings on the two free modules.

(2) and (3): From the presentation of A we get TorS1 .M;A/ ŠM.�d/. Now, by
applying �˝S A to the resolution of MS , we obtain an exact sequence

0!M.�d/! As ! As !M ! 0
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in ModA. We can give the two copies of As gradings such that this becomes a
sequence of graded A-modules. Thus �2M Š M.�d/. The result now follows by
dimension-shifting.

5. Quadrics in quantum P3s

5.1. The algebra C.A/. Using the notation in part (2) of the next lemma, we define

C.A/´ AŠŒw�1�0:

We write Mod C for the category of right modules over a ring C , and mod C for
the full subcategory of finitely presented modules.

Lemma 5.1. Let S be a connected, graded, noetherian, Koszul algebra of finite
global dimension, z a central regular element of degree two, and A D S=.z/. Then

(1) A is a Koszul algebra;

(2) there is a central, regular element w 2 AŠ2 such that AŠ=.w/ D S Š;
(3) the algebra C.A/ has finite dimension equal to dimk.S

Š/.2/, the dimension of
the even degree part of S ;

(4) the categories QGrAŠ and ModC.A/ are equivalent via �N 7! NŒw�1�0,
where N 2 GrAŠ.

Proof. (1) and (2): The proof is similar to that for modding out a central regular
element of degree one [10].

(3) Because S is Koszul, the hypothesis that gldim S < 1 implies that S Š has
finite dimension. It follows that AŠmC2 D wAŠm for large m, and hence that

AŠŒw�1�0 D AŠ0 C AŠ2w�1 C 	 	 	 D AŠ2nw�n

for n � 0. In particular, dimk AŒw
�1�0 D dimk A2n for n � 0. By (1) and (2),

.1C t /HAŠ.t/ D .1 � t /�1HS Š.t/, so

dimk A
Š
2n D dimk S

Š
0 C dimk S

Š
2 C 	 	 	 ;

for n� 0, as required.
(4) A graded AŠ-module has finite dimension if and only if it is annihilated by a

power of w, so GrAŠ=FdimAŠ is equivalent to GrAŠŒw�1�. Since AŠ is generated
in degree one, AŠŒw�1� is strongly graded, and therefore GrAŠŒw�1� is equivalent to
ModAŠŒw�1�0.

The degree shift functor .1/ on GrAŠ induces auto-equivalences of QGrAŠ and
ModC.A/ that we still denote by .1/. Sincew is central and homogeneous of degree
two, on ModC.A/ we have .2/ Š idModC.A/.

Notice that AŠ is noetherian because AŠ=.w/ is.
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Proposition 5.2. Let S be a Gorenstein, connected, graded, noetherian, Koszul
algebra of finite global dimension, z a central regular element of degree two, and
A D S=.z/.
(1) There are equivalences of categories

MCM.A/ B ��

�������������� Db.qgrAŠ/

��������������

Db.modC.A//.

(2) If C.A/ is a semisimple ring, then ProjA is smooth.

Proof. The horizontal equivalence is given by Theorem 3.2, and the southwest equiv-
alence is given by Lemma 5.1. Part (2) follows from (1) and Proposition 4.4 because
the derived category of a semisimple abelian category is semsimple, hence abelian.

5.2. Notation and Hypotheses. We fix the following hypotheses and notation for
the remainder of this section: k is an algebraically closed field, S denotes a connected,
graded, noetherian, Gorenstein, Koszul algebra with Hilbert series .1 � t /�4; z is a
non-zero, homogeneous, central element of degree two such that A ´ S=.z/ is a
domain. We write Q´ ProjA.

The hypotheses imply that HS Š.t/ D .1 C t /4, so gldim S D 4. The previous
two results apply, so the finite dimensional algebra C.A/ is well-defined.

It follows from Corollary 6.7 below and [1], Thm. 3.9, that S is a domain. Thus
ProjS is a quantum P3 andQ is a quadric hypersurface in it. The assumption that A
is a domain says that Q is “reduced and irreducible”.

Proposition 5.3. Suppose that S is a connected, graded, noetherian, Gorenstein,
Koszul algebra such that HS .t/ D .1 � t /�4. Let 0 ¤ z 2 S2 be a central element
and suppose that A´ S=.z/ is a domain. Then

(1) dimk C.A/ D 8;

(2) C.A/ has no 1-dimensional modules;

(3) the following are equivalent:

(a) C.A/ is semisimple;

(b) C.A/ has two simple modules up to isomorphism;

(c) C.A/ ŠM2.k/˚M2.k/.

Proof. (1) This does not depend onA being a domain. Because z is regular,HA.t/ D
.1C t /.1 � t /�3 and HAŠ.t/ D .1 � t /�1.1C t /3. Thus dimk An D 8 for n � 0,
and dimk C.A/ D 8 by Lemma 5.1.
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(2) First we show that if V is a subspace of AŠ1 D A�
1 of codimension one, then

AŠ1V D VAŠ1 D AŠ2: To see this write V D a? where a 2 A1; becauseA is a domain,
a ˝ A1 \ R D 0, where R denotes the relations in A1 ˝ A1 defining A; hence
a? ˝ A�

1 CR? D A�
1 ˝ A�

1; thus VAŠ1 D AŠ2. Similarly, AŠ1V D AŠ2.

Claim: Let T be a connected graded algebra generated in degree one, andw 2 Td
a central regular element of degree d > 1. If T2 D T1V for every codimension one
subspace V � T1, then T Œw�1�0 does not have a 1-dimensional module.

Proof. Suppose to the contrary thatN0 is a 1-dimensionalT Œw�1�0-module. Then
N0 is the degree zero component of the T Œw�1�-moduleN ´ T Œw�1�˝T Œw�1�0

N0.
Because w is a unit, Ndi D wiN0 for all i 2 Z. In particular, dimk Ndi D 1 for all
i . Hence if m 2 Ndi�1, then Vm D 0 for some subspace V � T1 of codimension at
most one. Hence T2m D 0. It follows that

0 D T2Ndi�1 D T3Ndi�2 D 	 	 	 D TdC1Ndi�d :

In particular, TdC1N D 0, so w2N D 0, contradicting the fact that w is a unit in
T Œw�1�.

The claim applies to T D AŠ, so (2) follows.
(3) This follows from (1) and (2) because k is algebraically closed.

5.3. The set M. We define

M´ fM 2 MCM.A/ jM is indecomposable; M0 Š k2; M DM0Ag:
Because A is a noetherian domain it has a division ring of fractions, say Q, and

we may define the rank of an A-module N by dimQN ˝A Q.

Proposition 5.4. Let A and S be as in Proposition 5.3. IfM 2M, then

(1) M Š �2M.2/;
(2) its minimal resolution is 	 	 	 ! A.�2/2 ! A.�1/2 ! A2 !M ! 0;

(3) rankM D 1;

(4) HM .t/ D 2.1 � t /�3;

(5) M is 3-critical with respect to GK-dimension.

Furthermore, there is a bijection

M ! fsimple C.A/-modulesg; M  ! FM:

Proof. The hypotheses on M ensure that it is not projective.
(1) This was already established in Proposition 4.6.
(2) By (1), the minimal resolution of �2M begins A.�2/2 ! �2M ! 0.

Combining this with Proposition 4.6, we see that the minimal resolution ofM begins

	 	 	 ! A.�2/2 ! A.�i/˚ A.�j /! A2 !M ! 0
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for some i , j . However, the minimality of the resolution forces i D j D 1. Since
�2M Š M.�2/, the full minimal resolution of M can be constructed by splicing
together shifts of the exact sequence 0!M.�2/! A.�1/2 ! A2 !M ! 0.

(3) Because A is a domain, its rank is one. The result now follows from the exact
sequence 0!M.�2/! A.�1/2 ! A2 !M ! 0.

(4) This follows from (2).
(5) Because M.�1/ embeds in A2, every non-zero submodule of M has GK-

dimension three; since the rank of M is one, all its non-zero submodules have rank
one too. Hence every proper quotient of M has GK-dimension � 2.

We now establish the bijection between M and the simple C.A/-modules. Let
M 2 M. By (2), M has a linear resolution, so FM D NŒ0� for some C -module
N . But N D Ext�

A.M; k/Œw
�1�0 Š Ext2iA .M; k/ for i � 0, so dimk N D 2, and

Proposition 5.3 now implies that N is simple.
Conversely, let N be a simple C -module. By Lemma 3.5, there is a unique inde-

composable maximal Cohen–Macaulay moduleM such thatFM Š NŒ0�, andM has
a linear resolution. By Proposition 5.3, dimk N D 2. But N Š Ext�

A.M; k/Œw
�1�0,

so Ext2iA .M; k/ Š k2 for i � 0. Hence �2iM is generated by two elements for
i � 0. But �2iM Š M.�2i/ by Proposition 4.6, so M is generated by two
elements, and these are of degree zero because M has a linear resolution. Hence
M 2M.

Lemma 5.5. Let A and S be as in Proposition 5.3. IfM 2M, then

(1) �M.1/ 2M;

(2) there is an exact sequence 0!M.�1/! A2 ! �M.1/! 0;

(3) if C.A/ is not semisimple, thenM Š �M.1/;
(4) ifM 6Š �M.1/, then HomGrA.M;�M.1// D 0.

Proof. (1) By the remark after Lemma 3.4, �M.1/ is indecomposable. From the
minimal resolution for M we see that �M.1/ is generated in degree zero and that
dimk �M.1/0 D 2.

(2) This follows from the fact that �2M ŠM.�2/.
(3) If C.A/ is not semisimple it has only one simple module, so, by (1) and the

bijection in Proposition 5.4, M Š �M.1/.
(4) A non-zero degree-zero homomorphism ˛ W M ! �M.1/ would be injective

becauseM and�M.1/ are 3-critical with respect to GK-dimension, so its restriction
M0 ! .�M.1//0 would be an isomorphism, whence ˛ would be surjective. This
would contradict the hypothesis that M 6Š �M.1/.

5.4. Smoothness of Q and semisimplicity of C.A/

Theorem 5.6. The noncommutative quadric Q is smooth if and only if C.A/ is
semisimple.
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Proof. (H : This was proved in Proposition 5.2.
H) : We shall prove the contrapositive, so suppose that C.A/ is not semisimple.

Then it has only one simple module,N say. LetM.1/ 2M be such that F.M.1// Š
NŒ0�. Thus M is generated in degree one.

We write M for �M .
By Lemma 5.5, M Š �M.1/, so there is an exact sequence

0!M ! A2 !M.1/! 0:

This gives an exact sequence

0!M! O2
Q !M.1/! 0 (5.1)

in ModQ.
The result that gldimQ D1 will be established in step 3 below.

Step 1. Ext1Q.M;M/ ¤ 0:
Proof. Because M is maximal Cohen–Macaulay

Ext1GrA.M;M/ Š HomMCM.A/.M;MŒ1�/:

Applying the contravariant equivalence F this is isomorphic to

HomD.C.A//.F.MŒ1�/; FM/ Š HomD.C.A//.FM; .FM/Œ1�/:

But FM is a translate of the unique simple C -module N , so the last term is isomor-
phic to Ext1C.A/.N;N / which is non-zero because C.A/ is not semisimple. Hence

Ext1GrA.M;M/ ¤ 0.
Applying � to a non-split exact sequence

0!M ! D !M ! 0 (5.2)

in GrA gives an exact sequence

0!M! D !M! 0 (5.3)

in ModQ. Write � W MCM.A/! GrA for the inclusion functor. There is an exact
sequence of functors 0 ! H 0

m ! idGrA ! !� ! H 1
m ! 0. These two local

cohomology functors vanish on MCM.A/, so there is an isomorphism of functors
� ! !�� . Hence, if (5.3) were to split via a map g W M ! D , then !.g/ would
provide a splitting of (5.2). It follows that Ext1Q.M;M/ ¤ 0:

Step 2. Ext2Q.M.1/;M/ ¤ 0:
Proof. Applying HomQ.�;M/ to (5.1) gives an exact sequence

Ext1Q.OQ;M/2 ! Ext1Q.M;M/! Ext2Q.M.1/;M/:
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The first term is zero because depthM D 3 implies that

0 D H 2
m.M/ Š H 1.Q;M/ D Ext1Q.OQ;M/:

The second term is non-zero by step 1, so the third term is also non-zero, as required.

Step 3. ExtnQ.M.n � 1/;M/ ¤ 0 for all n � 2.
Proof. We argue by induction on n. The case n D 2 has already been established

in Step 2. Applying HomQ.M.n/;�/ to (5.1) gives an exact sequence

ExtnQ.M.n/;OQ/
2 ! ExtnQ.M.n/;M.1//! ExtnC1

Q .M.n/;M/ (5.4)

The first term is isomorphic to two copies of ExtnQ.M.n � 2/;OQ.�2// which is
isomorphic to H 2�n.Q;M.n � 2//� by Serre duality. This is zero for n � 3, and
if n D 2 it is isomorphic to HomGrA.A;M/� D M0 which is zero because M is
generated in degree one. Since the first term of (5.4) is zero for all n � 2, we see
from the other two terms that the induction argument goes through.

Corollary 5.7. C.A/ is semisimple if and only ifM 6Š �M.1/ for allM 2M.

Proof. (H : If C were not semisimple it would have a unique simple module so,
up to isomorphism, there would be only one module in M; but if M is in M so is
�M.1/, whence M Š �M.1/.
H) : If C is semisimple, then gldimQ < 1. But the proof of Theorem 5.6

showed that if there were an M in M such that M Š �M.1/, then gldimQ D 1.
Hence there can be no such M .

Corollary 5.8. IfQ is smooth, then M consists of two non-isomorphic modules, say
M D fM;M 0g, and there are exact sequences

0!M.�1/! A2 !M 0 ! 0

and

0!M 0.�1/! A2 !M ! 0:

Proof. This follows immediately from Lemma 5.5 and Corollary 5.7.

6. The Auslander property

We fix the following notation in this section: S denotes a connected, graded, Goren-
stein, Koszul algebra with Hilbert series .1 � t /�4; z is a non-zero, homogeneous,
central element of degree two and A´ S=.z/.

The main result in this section, Theorem 6.6, shows that A has the Auslander
property by which we mean that if M 2 grA and N is a graded submodule of
ExtjA.M;A/ for some j , then ExtiA.N;A/ D 0 for i < j . By [11], this will imply
that S also has the Auslander property.
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6.1. The grade of M 2 grA is j.M/´ inffj j ExtjA.M;A/ ¤ 0g. The Auslander
property is equivalent to the condition that j.N / � j for all submodules N �
ExtjA.M;A/. To prove that A has the Auslander property we first prove that

j.M/C GKdimM D 3
for all M 2 grA.

The arguments in this section are close to those in [1], Sect. 4.
The following result is standard.

Lemma 6.1. If R is a prime noetherian k-algebra of finite GK-dimension and N 2
modR, the following are equivalent:

(1) GKdimN D GKdimR;

(2) j.N / D 0;

(3) N ˝R Q ¤ 0, whereQ D FractR.

Because A is Gorenstein its dualizing module !A is invertible, hence isomorphic
to A.`/ for some integer ` as a left and as a right module. Our arguments in this
section involve an examination of the convergent spectral sequence

E
p;q
2 D ExtpA.Ext�q

A .M;!A/; !A/) HpCq.M/ D
´
M if p C q D 0,

0 if p C q ¤ 0.
(6.1)

We will often omit the subscript from E
pq
2 .

Theorem 6.2. Let A be as above and let M 2 grA. The E2-page of the spectral
sequence (6.1) looks like

E00 E10 0 0

0 E1;�1 E2;�1 E3;�1
0 0 E2;�2 E3;�2
0 0 0 E3;�3:

(6.2)

Proof. Since ExtiA.�; A/ D 0 for i > 3, the non-zero terms on the E2-page of the
double-Ext spectral sequence lie in the .4 � 4/-region depicted. Therefore the E20

and E30 terms survive to the E1-page. But any non-zero terms on the E1-page
must lie on the diagonal, so E20 D E30 D 0. Now Ext3A.M;!A/ Š H 0

m.M/� is
finite dimensional, so is Cohen–Macaulay of depth zero, whenceEp3 D 0 for p < 3.
This explains the zeroes in the top and bottom rows of (6.2).

The division ring of fractions,Q D FractA, is flat as a left and as a rightA-module
and gldimQ D 0 so, for i > 0,

0 D ExtiQ.M ˝A Q;A˝A Q/ Š Q˝A ExtiA.M;A/:
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Applying Lemma 6.1 toN D ExtiA.M;A/, we obtainE0;�1 D E0;�2 D E0;�3 D 0,
giving the zeroes in the left-most column of (6.2).

It remains to show thatE1;�2 D 0. SetL D Ext2A.M;A/; ifL D 0 there is nothing
to do, so suppose that L ¤ 0. Since ker.E1;�2 ! E3;�3/ survives to the E1-page,
it is zero. Since E3;�3 is finite dimensional so is E1;�2 D Ext1A.L;A/ < 1. If
Ext1A.L;A/ D 0 we are finished, so suppose otherwise.

Consider the E2-page of the spectral sequence for L. Since

Q˝A L Š Ext2Q.M ˝A Q;A˝A Q/ D 0;
HomA.L;A/ is zero; hence the q D 0 and q D �1 rows look like

0 0 0 0

E0;�1 E1;�1 E2;�1 E3;�1:

Since Ext1A.L;A/ is non-zero and finite dimensional, Ext3A.Ext1A.L;A/; A/ ¤ 0. But
the E3;�1 term survives to the E1-page, so must be zero. From this contradiction
we conclude that Ext1A.L;A/ D 0, as required.

Lemma 6.3. IfM 2 gr S is a Cohen–Macaulay module, then

depthM C GKdimM � 0 .mod 2/:

Proof. The lemma is true for any connected graded Gorenstein algebra S of finite
global dimension, n say, having Hilbert series of the form f .t/.1 � t /�n where
f .t/ 2 ZŒt �. The functional equation [1], (2.35), relating the Hilbert series of a
module to that of its dual becomes

HM_.t/ D .�1/dHM .t�1/
when M is a Cohen–Macaulay module of depth d and M_ D Extn�d

S .M;!S /.
If GKdimM D r , then HM .t/ D g.t/.1 � t /�r for some g.t/ 2 ZŒt; t�1�, so
HM_.t/ D .�1/dCr t rg.t�1/.1 � t /�r . However,

lim
t"1

HM .t/

is positive if M ¤ 0 and the same applies to HM_.t/, so d C r is even.

Lemma 6.4. Let A be as above and M 2 grA. Suppose that j.M/ D 1 and write
M_ ´ Ext1A.M;A/. ThenM_ is Cohen–Macaulay of depth two and GK-dimension
two.

Proof. Since j.M/ D 1, the E2-page of the spectral sequence for M looks like

0 0 0 0

0 E1;�1 E2;�1 E3;�1
0 0 E2;�2 E3;�2
0 0 0 E3;�3:

:
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Both E2;�1 and E3;�1 survive to the E1-page, so must be zero. Hence M_ is
Cohen–Macaulay of depth two and, by Lemma 6.3, GKdimM_ D 2.

Theorem 6.5. If A is as above, then

j.M/C GKdimM D 3 (6.3)

for all non-zero finitely generated graded A-modulesM .

Proof. By Lemma 6.1, (6.3) holds whenM D GKdim 3 and when j.M/ D 0. Since
finite dimensional modules are precisely the Cohen–Macaulay modules of depth zero,
(6.3) holds when GKdimM D 0 too, so it remains to prove (6.3) for modules of GK-
dimensions 1 and 2.

Suppose that GKdimM D 1. By Lemma 6.1, j.M/ � 1. As in the proof of
Lemma 6.4, the E2-page of the double-Ext spectral sequence for M looks like

0 0 0 0

0 E1;�1 0 0

0 0 E2;�2 E3;�2
0 0 0 E3;�3:

Hence the filtration induced onM by the spectral sequence looks likeM D F 0M D
F 1M 
 F 2M 
 	 	 	 , so there is a surjective map

M ! F 1M=F 2M D E1;�11 D ker.E1;�1 ! E3;�2/:

This gives an exact sequence M ! E1;�1 ! E3;�2. Since dimk.E
3;�2/ < 1,

it follows that GKdim.E1;�1/ � 1. If E1;�1 ¤ 0, then j.Ext1A.M;A// D 1 so,
by Lemma 6.4, GKdim Ext1A.M;A/

_ D 2; that is, GKdim.E1;�1/ D 2 , which
contradicts the foregoing. So we must have E1;�1 D 0. Hence E�;�1

2 D 0, so
Ext1A.M;A/ D 0 and j.M/ � 2. However, j.M/ ¤ 3 because dimkM D 1, so
j.M/ D 2.

Now suppose that GKdimM D 2. By the first paragraph of the proof j.M/

is either 1 or 2. Suppose that j.M/ D 2; we seek a contradiction. Let �M be
the sum of all finite dimensional graded submodules of M , and consider the exact
sequence 0 ! �M ! M ! xM ! 0. It follows easily (cf. [1], Prop. 2.46)
that ExtiA. xM;A/ D 0 for i ¤ 2, so xM is Cohen–Macaulay of depth one. But
GKdim xM D GKdimM D 2 which contradicts Lemma 6.3.

Theorem 6.6. The algebra A satisfies the Auslander condition: if M is a finitely
generated A-module and N an A-submodule of ExtjA.M;A/, then ExtiA.N;A/ D 0

for i < j .

Proof. Let M be a non-zero finitely generated graded A-module, and N a non-
zero graded A-submodule of ExtiA.M;A/. By Theorem 6.2, the E2-page of the



Noncommutative quadric surfaces 839

spectral sequence for M looks like (6.2), so j.ExtiA.M;A// � i . By Theorem 6.5,
GKdim.ExtiA.M;A// � 3� i , so GKdimN � 3� i ; by Theorem 6.5 applied to N ,
j.N / � i .

Corollary 6.7. The algebra S satisfies the Auslander condition.

Proof. This follows from [11], Thm. 3.6.

Because S satisfies the Auslander condition, the results in Sections 1 and 2 of [12]
apply. In [12], Sect. 1, a non-zero moduleM 2 gr S is said to be Cohen–Macaulay if
its projective dimension is the smallest i such that ExtiS .M; S/ is non-zero. Since S
is Gorenstein, M is Cohen–Macaulay in the sense of [12] if and only if it is Cohen–
Macaulay in the sense of the present paper.

7. Lines and rulings

We continue to assume that S andA are as in the notation just before Proposition 5.3.
We continue to use the notation Q´ ProjA.

7.1. Line modules and maximal Cohen–Macaulay modules. A graded line mod-
ule for A or S is a graded module L that is cyclic and has Hilbert series

HL.t/ D .1 � t /�2:
We will write OL for the image of L in either ProjA or ProjS . The class of OL in
K0.ProjS/ is .1 � t /2. By way of comparison, if 0 ¤ x 2 S1 and OH denotes the
image of S=xS in ProjS , the class of OH is 1 � t .

Lemma 7.1. LetM 2M. Then

(1) HomGrA.M.�1/; A/ Š k2;

(2) if 0 ¤ f 2 HomGrA.M.�1/; A/ then f is injective, and

(3) coker f is a line module.

Proof. (1) There is an exact sequence

0! HomA.M;A/! A2 ! HomA.�M;A/! 0

of maximal Cohen–Macaulay left modules. Now HomA.�M;A/ is indecomposable
because M is, and is obviously generated by its degree zero component which is 2-
dimensional because HomGrA.M;A/ D 0. Hence HomA.�M;A/ belongs to M0, the
corresponding set of maximal Cohen–Macaulay left A-modules. By the left module
version of Lemma 5.5, HomA.M;A/.1/ is also in M0, so HomGrA.M.�1/; A/ Š
HomA.M;A/.1/0 Š k2.
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(2) and (3): Because M is 3-critical and A is a domain, and hence 3-critical,
every non-zero map M.�1/ ! A is injective. A Hilbert series computation shows
that coker f is a line module.

Proposition 7.2. Suppose that S is a connected, graded, Gorenstein, Koszul algebra
with Hilbert series .1 � t /�4. Let z be a central regular element of degree two in S
and set A D S=.z/. Let L be a line module for A. Then

(1) L has a linear resolution as an S -module;

(2) L has a linear resolution as anA-module, namely 	 	 	 ! A.�2/2 ! A.�1/2 !
A! L! 0;

(3) L is Cohen–Macaulay of depth two and 2-critical with respect toGK-dimension;

(4) there is an exact sequence 0!M.�1/! A! L! 0 for a uniqueM 2M;

(5) ifM and L are as in part (4), then FM Š .FL/.1/.

Proof. (1) By [12], Cor. 2.9, the minimal resolution of L over S is

0! S.�2/! S.�1/2 ! S ! L! 0:

(2) If L is any A-module having a linear resolution over S , then L has a linear
resolution over A: to see this, use the fact that Ext1S .A; k/ Š k.2/ and use the long
exact sequence associated to the degenerate spectral sequence

ExtpA.L;ExtqS .A; k//) ExtpCq
S .L; k/:

This general fact for commutative rings is proved in [6].
(3) A line module is Cohen–Macaulay of depth two by [12], Prop. 2.8, and 2-

critical by [12], Cor. 1.11.
(4) If M.�1/ is the kernel of a surjective map A ! L, then it follows from the

long exact sequence for local cohomology that M.�1/ is Cohen–Macaulay of depth
three. Every submodule of A is indecomposable because A is a domain. Hence
M.�1/ is indecomposable. From the linear resolution of L, we see that M.�1/ is
generated by M.�1/1 and that dimM.�1/1 D 2, so M 2M.

The uniqueness ofM will follow from (5) because ifM 0 is another element of M
such thatM 0 Š ker.A! L/, then FM is isomorphic to FM 0 in Db.qgrAŠ/, whence
M and M 0 are isomorphic in MCM.A/. Now apply Lemma 3.4.

(5) This follows from Lemma 3.3 because M Š �L.1/.

7.2. Rulings. For each M 2M, we define the

ruling corresponding toM ´ fL� ´ coker � j � 2 P.HomGrA.M.�1/; A//g:
Then

� each ruling consists of a P1 of line modules;
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� every line module belongs to a unique ruling;

� Q has two rulings if it is smooth, and one otherwise.

The first of these facts follows from Lemma 7.1, the second from Proposition 7.2 (4),
and the third is a consequence of Theorem 5.6 and the fact that the cardinality of M
equals the number of isomorphism classes of simple C.A/-modules.

The results in the rest of this section provide further justification for using the
word ruling.

Lemma 7.3. Let L� and L .�;  2 P1) be lines in the same ruling. Then

(1) L� Š L if and only if � D  ;

(2) �L� Š �L if and only if � D  .

Proof. (1) Let L� and L be in the ruling corresponding to M 2M. Because M is
indecomposable, HomGrA.M;M/ is a local ring. It is finite dimensional and contains
no non-zero nilpotents since M is GK-homogeneous. Hence HomGrA.M;M/ Š k.
Because L� is cyclic, L� Š L if and only Im � D Im . However, the images are
the same if and only if � D  � for some � 2 HomGrA.M.�1/;M.�1//; that is, if
and only if � D  as elements of P1 D P.HomGrA.M.�1/; A/.

(2) BecauseL is Cohen–Macaulay of depth two, the exact sequence (2.2) implies
that !�L Š L . Hence

HomX .�L� ; �L / Š HomGrA.L� ; !�L / Š HomGrA.L� ; L /;

so the result follows from (1).

The argument in (2) and the observation that each line module belongs to a unique
ruling show that if L and L0 are line modules in different rulings, then �L 6Š �L0.

Proposition 7.4. Let L and L0 be line modules.
(1) If Q is smooth, then L and L0 belong to different rulings if and only if there

is an exact sequence
0! L0.�1/! A=aA! L! 0 (7.1)

for some 0 ¤ a 2 A1.
(2) IfQ is not smooth there is always an exact sequence of the form (7.1).

Proof. There are exact sequences0!M.�1/! A! L! 0 and0!M 0.�1/!
A! L0 ! 0 in which M;M 0 2M.

(1) H) : Suppose that L and L0 belong to different rulings; then M 6Š M 0, so
M 0.�1/ Š �M by Corollary 5.7. The first term in the exact sequence

HomGrA.A;L
0.�1//! HomGrA.M.�1/; L0.�1//! Ext1GrA.L;L

0.�1//! 0
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is zero, and HomGrA.M.�1/; L0.�1// is isomorphic to

Ext1GrA.M.�1/;�M.�1// Š HomMCM.M.�1/;�M.�1/Œ1�/
D HomMCM.M.�1/;M.�1//
Š k:

Hence Ext1GrA.L;L
0.�1// ¤ 0, and there is a non-split exact sequence

0! L0.�1/! V
˛�! L! 0

in GrA. Choose 0 ¤ � 2 HomGrA.A; V /. The composition ˛� W A ! L is
surjective because L is cyclic, so dimk �.A1/ � 2. If dimk �.A1/ D 2, then L Š
A=WA, where W D .ker �/1, whence the map V ! L splits, contrary to our
assumption. Thus dimk �.A1/ D 3. Hence there is some 0 ¤ a 2 A1 and a map
 W A=aA! V that is surjective in degrees zero and one. Let K D ker ˛ . There
is a commutative diagram

0

��

�� K

��

�� A=aA

 

��

�� im.˛ /

Š
��

�� 0

��
0 �� L0.�1/ �� V

˛ �� L �� 0.

Since dimk.im ˛ /1 < dimk.A=aA/1,K1 ¤ 0, and hence the mapK ! L0.�1/ is
surjective. It follows that  is surjective, and hence injective because V and A=aA
have the same Hilbert series. Hence we get a non-split exact sequence as claimed.
(H : To show that L0 is in a different ruling from L it suffices to show that

Ext1GrA.L
0;M.�1// D 0.

Apply HomGrA.�;M.�1// to the exact sequence (7.1). A computation shows
that Ext1GrA.A=aA.1/;M.�1// D 0. Since Ext2GrA.A=aA.1/;M.�1// D 0, we
have Ext1GrA.L

0;M.�1// Š Ext2GrA.L.1/;M.�1//. From the exact sequence 0 !
M ! A.1/! L.1/! 0, we see that

Ext2GrA.L.1/;M.�1// Š Ext1GrA.M;M.�1// Š HomMCM.M;M.�1/Œ1�/
and this is zero as we see by applying the functor F .

(2) The proof of the implication H) works when Q is not smooth too because
then M 0 ŠM Š �M.1/.

8. Points on quadrics

We continue to assume that S andA are as in the notation just before Proposition 5.3.
We also assume Q is smooth.
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8.1. Point modules. A graded point module for A or S is a graded module P that
is cyclic and has Hilbert series

HP .t/ D .1 � t /�1:
We will write OP for the image of P in either ProjA or ProjS . The class of OP in
K0.ProjS/ is .1 � t /3.

Lemma 8.1. Let M 2 M. If L� is in the ruling corresponding to �M.1/, there is
an exact sequence of the form

0! A!M ! L� ! 0: (8.1)

Proof. By hypothesis, there is an exact sequence

0! �M
��! A

N��! L� ! 0; (8.2)

There is also an exact sequence

0! �M
��! A2 !M ! 0:

Since M is maximal Cohen–Macaulay Ext1GrA.M;A/ D 0, so the natural map

HomGrA.A
2; A/! HomGrA.�M;A/; 	 7! 	 ı �;

is surjective and hence an isomorphism because HomGrA.M;A/ D 0. Hence� D 	�
for a unique 	 W A2 ! A.

The map N�	 in the diagram

0 �� �M
� �� A2

N��
��

�� M �� 0

L�

is surjective because N� and 	 are, and N�	� D N�� D 0, so there is a surjective map
 WM ! L� .

Now .ker /0 ¤ 0 because dimM0 > dim.L�/0, so there is a non-zero map
A ! ker . Since M is 3-critical so is ker , so the map A ! ker is injective.
But

Hker .t/ D HM .t/ �HL�
.t/ D HA.t/;

so the map A! ker must be an isomorphism.

Proposition 8.2. LetM 2M. If L� is in the ruling corresponding to�M.1/, there
is an exact sequence

0! L.�1/! L� ! P ! 0

in which P is a point module and L is a line module in the same ruling as L� .
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Proof. By hypothesis, there is an exact sequence of the form (8.2).

Claim: dim HomGrA.M.�1/; L�/ � 2.
Proof. Applying HomGrA.M.�1/;�/ to (8.2) yields an exact sequence

HomGrA.M.�1/; A/ ��! HomGrA.M.�1/; L�/ ı�! Ext1GrA.M.�1/;�M/:

IfQ is smooth, then HomGrA.M.�1/;�M/ D 0 by Corollary 5.7, so 
 is injective,
and the claim follows from Lemma 7.1.

Suppose that Q is not smooth. Then M.�1/ Š �M by Corollary 5.7; thus
HomGrA.M.�1/;�M/ Š k by the argument in the proof of Lemma 7.3, and
Ext1GrA.M.�1/;�M/ ¤ 0 by the proof of Step 1 in Theorem 5.6. However,
Ext1GrA.M.�1/; A/ D 0, so the claim holds in this case too.

The restriction of each non-zero 2 HomGrA.M.�1/; L�/ gives a non-zero map
M.�1/1 ! .L�/1 between two 2-dimensional vector spaces. Now every line in the
projective space P3 D P.Homk.k

2; k2//meets the quadric of singular maps, so there
is a non-zero  such that .ker /1 ¤ 0. There is a non-zero map A.�1/ ! ker ;
this map is injective because A.�1/ and ker are 3-critical; the cokernel of the
composition ˛ W A.�1/ ! ker ! M.�1/ is cyclic because dimM0 D 1 C
dimA.�1/1 and M is generated by M0; the Hilbert series of coker ˛ is

HM.�1/.t/ �HA.�1/.t/ D t .1 � t /�2;
so coker ˛ is a shifted line module, say L.�1/.

Because  ˛ D 0, it follows from the diagram

0 �� A.�1/ ˛ �� M.�1/
 

��

N̨ �� L.�1/ �� 0

L�

that  D ˇ N̨ for some ˇ W L.�1/ ! L� . Because L.�1/ and L� are 2-critical ˇ
is injective, and coker ˇ is cyclic with Hilbert series .1 � t /�2 � t .1 � t /�2. Hence
coker ˇ is a point module.

It remains only to show that L is in the same ruling as L� . Consider the diagram

0 �� �M.�1/ �� A.�1/2 � �� M.�1/
N̨

��

�� 0

L� .

Since L is cyclic, the restriction of N̨� to one of the copies of A.�1/ is surjective, so,
after a Hilbert series computation, we see that the kernel of N̨� must be isomorphic
to �M.�1/. From the exact sequence 0! �M.�1/! A.�1/! L.�1/! 0 we
see that L is in the same ruling as L� .
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Lemma 8.3. Given a line module L, there is an exact sequence of the form

0! L.�1/! L� ! P ! 0 (8.3)

in which P is a point module and L� is a line module in the same ruling as L.

Proof. This follows from duality and Proposition 8.2 for left modules.
Since L is Cohen–Macaulay of depth two, Ext1A.L;A/ is a left line module. By

Proposition 8.2 for left modules, there is an exact sequence

0! L0.�1/! Ext1A.L;A/! P 0 ! 0

where L0 and P 0 are a left line and point module, respectively. Since P 0 is Cohen–
Macaulay of depth one, applying HomA.�; A/ to this exact sequence gives an exact
sequence

0! Ext1A.Ext1A..L;A/; A/! Ext1A.L
0; A/.1/! Ext1A.P

0; A/! 0:

Twisting this by .�1/ gives the desired exact sequence (8.3).

9. The Grothendieck group of a smooth quadric

We continue to assume that S and A are as in the notation just before Proposition
5.3. We also assume that Q is smooth. We will write C for the algebra C.A/ that is
isomorphic to M2.k/˚M2.k/.

We write K0.A/ for the Grothendieck group of an abelian category A and define
K0.Q/ ´ K0.cohQ/. We will show that there is an isomorphism K0.Q/ Š
K0.P1 � P1/ of abelian groups that is compatible with the Euler forms. However,
the discussion after Theorem 10.2 shows that the effective cones need not coincide
under this isomorphism.

9.1. The localization sequence for K-theory gives the exact rows in the diagram

K0.fdimAŠ/
˛ �� K0.grAŠ/

� Š
��

ˇ �� K0.modC/ �� 0

K0.fdimA/ �� K0.grA/ �� K0.Q/ �� 0.

(9.1)

The isomorphism � is induced by the Koszul duality functor

K W Db.grA/! Db.grAŠ/

and the fact that K0.A/ Š K0.Db.A//. Thus �.ŒN �/ D ŒKN � is an isomorphism of
abelian groups.
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We use the degree shift functors .˙1/ on the categories fdimAŠ, grAŠ, fdimA,
grA, and modQ, to make their Grothendieck groups into ZŒt; t�1�-modules via

t 	 ŒM � D ŒM.�1/�:
Exact functors between these categories that “commute” with the shift functors induce
ZŒt; t�1�-module homomorphisms between their Grothendieck groups.

Let M and M 0 be the two indecomposable maximal Cohen–Macaulay modules
such that M D fM.1/;M 0.1/g.

We will use the notation

a D ŒA�; m D ŒM �; m0 D ŒM 0�; `´ a �m; `0 ´ a �m0

for these elements ofK0.modA/. We will use the same notation for the images of a,
m, m0, ` and `0 in K0.Q/ and will always take care to indicate which Grothendieck
group we are working in.

The line modules L and L0 in the rulings determined by M and M 0 respectively
occur in exact sequences of the form 0!M ! A! L! 0 and 0!M 0 ! A!
L0 ! 0, so all the line modules in a single ruling give the same class in K0.modA/,
namely ŒL� D ` D a �m and `0 ´ ŒL0� D a �m0, respectively.

Proposition 9.1. The Grothendieck group ofQ is free of rank 4 with basis

fa;m;m0; atg
and the action of ZŒt; t�1� on it is given by

mt D 2at �m0

m0t D 2at �m;
at2 D a.1C 4t/ � 2.mCm0/:

As an R-module,

K0.Q/ Š Ra˚R`
.`.1 � t /2; a.1 � t2/ � 2`.1 � t // :

Proof. Write R D ZŒt; t�1� and C D AŠŒw�1�0.
By Dévissage, K0.fdimAŠ/ Š K0.mod k/. Taking Hilbert series gives a map

K0.modAŠ/! ZŒŒt ��Œt�1�; since K0.mod k/ Š ZŒt; t�1� it follows that the map ˛
in (9.1) is injective. Since Q is smooth, K0.modC/ D ZŒS1�˚ZŒS2� Š Z2 where
S1 and S2 are the two simple C -modules; hence the top row of (9.1) splits, and

K0.modAŠ/ D RŒk�˚ZŒ zS1�˚ZŒ zS2�
where zS1 and zS2 are the liftings of S1 and S2 via the functor � ˝C AŠŒw�1��0.
Transferring this to A via Koszul duality, we see that

K0.modA/ D Ra˚Zm˚Zm0:
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From the exact sequences in Corollary 5.8, we obtain relations

2at D mt Cm0 D m0t Cm (9.2)

in K0.modA/. Hence there is a surjective map

Ra˚Rm
.2at �m � .2at �mt/t/ ! K0.modA/ (9.3)

of ZŒt; t�1�-modules. However, it follows from (9.2) that there is also a surjective
map

K0.modA/ D Ra˚Zm˚Zm0 ! Ra˚Rm
.2at �m � .2at �mt/t/ ;

so we conclude that (9.3) is an isomorphism.
Since ` D a �m, we also have

K0.modA/ Š Ra˚R`
.a.1 � t /2 � `.1 � t2// :

Now K0.fdimA/ Š K0.mod k/ Š ZŒt; t�1� with basis Œk�$ 1, so

K0.Q/ Š K0.modA/=.Œk�/;

where .Œk�/ denotes the ZŒt; t�1�-submodule generated by Œk�.
We now compute Œk�. From the Hilbert series for AŠ, we see that the truncated

minimal resolution of k looks like

0! N ! A.�2/7 ! A.�1/4 ! A! k ! 0:

It is clear that N is a maximal Cohen–Macaulay module and that N.3/ has a linear
resolution.

Let F W modA ! Db.qgrAŠ/ be the functor in Lemma 3.3. Since N Š �3k,
that lemma shows that

F.N.3// Š .F k/.3/ Š AŠ.3/:
The equivalence qgrAŠ ! modC sends AŠ to C . The degree twist .1/ on qgrAŠ

induces an auto-equivalence of modC , but every auto-equivalence of modC sends
CC to CC . Thus, if G is the composition

modA
F�! Db.qgrAŠ/ ��!� Db.modC/;

then
G.N.3// Š C.3/ Š C:

The functor G sends the two maximal Cohen–Macaulay modules M.1/ and M 0.1/
to the two simple left C -modules, so we see that

G.N.3// Š G.M.1/˚2 ˚M 0.1/˚2/:
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It now follows from Buchweitz’s duality (Theorem 3.2) that

N ŠM.�2/˚2 ˚M 0.�2/˚2:
The truncated resolution of k and equation (9.2) therefore give

Œk� D .1 � 4t C 7t2/a � .2mC 2m0/t2 D .1C 4t � t2/a � 2.mCm0/:
Hence, in K0.Q/, at2 D a.1C 4t/ � 2.mCm0/. It follows that K0.Q/ has basis
fa;m;m0; atg, as claimed.

By Proposition 8.2, A has some graded point modules, so we define

p´ `.1 � t / and p0 ´ `0.1 � t /
for the corresponding classes in K0.Q/. By (9.2) .m �m0/.1 � t / D 0, so

p D `.1 � t / D .a �m/.1 � t / D .a �m0/.1 � t / D `0.1 � t / D p0:

Proposition 9.2. The sets fa;m;m0; pg and fa; `; `0; pg provide Z-bases forK0.Q/.
The ZŒt; t�1�-action is given by

a.1 � t / D `C `0t D `0 C `t; `.1 � t / D `0.1 � t / D p; p.1 � t / D 0:
Proof. Recall that ` D a�m and `0 D a�m0, so fa; `; `0; atg is a basis forK0.Q/.
Furthermore,

p D `.1 � t / D .a �m/.1 � t / D a � at �mC .2at �m0/ D aC at �m �m0;
and it follows from this that the two claimed bases are indeed bases for K0.Q/. The
action of t is already implicit, if not explicit, in the calculations made in the proof of
Proposition 9.1.

The annihilator of K0.Q/ as a ZŒt; t�1�-module is .1 � t /3. The submodule of
K0.Q/ annihilated by .1 � t / is Zp ˚Z.` � `0/.

Taking Hilbert series gives a ZŒt; t�1�-module homomorphism K0.modA/ !
ZŒt; t�1; .1 � t /�1�, ŒN � 7! HN .t/. Likewise there is a homomorphism
q W K0.modA/! ZŒt; t�1� defined by

qŒN � D HN .t/.1 � t /3:
Because qŒk� D .1 � t /3, there is an induced ZŒt; t�1�-module homomorphism

Nq W K0.Q/! ZŒt; t�1�=.1 � t /3:
One has

Nq.a/ D 1C t; Nq.`/ D Nq.`0/ D 1 � t; Nq.p/ D .1 � t /2:
Suppose that N 2 modA has GK-dimension one. ThenHN .t/ D f .t/.1� t /�1

for some f .t/ 2 ZŒt; t�1�, so NqŒ�N � belongs to the ideal of ZŒt; t�1�=.1 � t /3
generated by .1 � t /2. It follows that

Œ�N � 2 Zp ˚Z.` � `0/:
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9.2. The Euler form. The Euler form onK0.Q/ is denoted by .�;�/ and is defined
by

.ŒM �; ŒN �/ D
2P
iD0
.�1/i dimk ExtiQ.M;N /:

Proposition 9.3. The Euler form on K0.Q/ is given by

.a; a/ D .a; `/ D .a; `0/ D .a; p/ D .p; a/ D 1I .`; a/ D .`0; a/ D �1
and

.`; `/ D .`0; `0/ D .`; p/ D .`0; p/ D .p; `/ D .p; `0/ D .p; p/ D 0
and

.`; `0/ D .`0; `/ D �1:
Proof. Let P be a graded point module occurring in an exact sequence of the form
0 ! L�.�1/ ! L ! P ! 0 where L and L� are line modules in the same
ruling. From the Cohen–Macaulayness of A, M , M 0, P we see that

.a; a/ D 1; .a;m/ D .a;m0/ D 0; .a; p/ D 1;
whence

.a; a/ D .a; `/ D .a; `0/ D .a; p/ D 1:
Serre duality on Q takes the form ExtiQ.F ;G / Š Ext2�i

Q .G ;F .�2//� for F ;G 2
modQ. Hence .x; y/ D .y; xt2/ for all x; y 2 K0.Q/. Also, .xt; yt/ D .x; y/.

We have .`; a/ D .a; `t2/ D .a; ` � 2p/ D �1, and similarly, .`0; a/ D �1.
Also, .p; a/ D .a; pt2/ D .a; p/ D 1. In summary,

.`; a/ D .`0; a/ D �1; .p; a/ D 1:
Now we show that .m;m/ D 1. The first step is to show that Ext1Q.M;M/ D 0.

If 0 ! M ! F ! M ! 0 is exact, then applying ! gives an exact sequence
0 ! M ! F ! M ! 0 because R1!M D H 2

m.M/ D 0 and !�M Š M .
But Ext1GrA.M;M/ Š HomMCM.M;MŒ1�/ D 0, where the last equality follows
by applying the functor F , so the sequence in GrA splits; but the original se-
quence in QcohQ is obtained by applying ! to this split sequence, so it splits
too. Hence Ext1Q.M;M/ D 0. Now, Ext2Q.M;M/ Š HomQ.M;M.�2//� Š
HomGrA.M;M.�2//� D 0 because M.�2/1 D 0. Finally, HomQ.M;M/ Š
HomGrA.M;M/ D k, so .m;m/ D 1.

Using this gives

.`; `/ D .a�m; a�m/ D .a; a�m/� .m; a/C .m;m/ D 1� .a� `; a/C 1 D 0;
and similarly, .`0; `0/ D 0. Using Serre duality, we obtain

0 D .`; `/ D .`; `t2/ D .`; ` � 2p/ D �2.`; p/;
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which gives .`; p/ D 0. Therefore

.`; `0/ D .`; `0 C ` � p/ D .`; `0 C `t/ D .`; a.1 � t // D �1 � .`; at/
and hence

.`; `0/ D �1 � .at; `t2/ D �1 � .a; `t/ D �1 � .a; ` � p/ D �1:
Similarly, .`0; `/ D �1.

Finally,

.p; p/ D .`.1 � t /; p/ D �.`t; p/ D �.`; pt�1/ D �.`; p/ D 0
and

.p; `/ D .`; pt2/ D .`; p/ D 0:
This completes the proof.

Proposition 9.3 is exactly as in the commutative case – of course, our proof applies
to that case too.

9.3. The intersection pairing on Q. Recall that ` and `0 are the classes in K0.Q/
of OL and cOL0 where L and L0 are line modules belonging to different rulings.

The interpretation of the equality .`; `0/ D �1 in Proposition 9.3 is that a line in
one ruling meets a line in the other ruling with multiplicity one. In the commutative
case this means the two lines span a hyperplane. Proposition 7.4 (1) is the appropriate
analogue of this. It is therefore sensible to introduce the notation

h´ ŒOQ� � ŒOQ.�1/� D `C `0t D `0 C `t:
We now define an intersection pairing on K0.Q/ by

b 	 c´ �.b; c/:
The next calculation shows that everything behaves as it does for points and lines

on a smooth quadric surface in P3, i.e., as for P1 � P1.

Proposition 9.4. The intersection pairing has the following properties:

` 	 ` D ` 	 p D h 	 p D p 	 h D p 	 ` D `0 	 `0 D 0I
` 	 `0 D ` 	 h D `0 	 h D h 	 `0 D h 	 ` D 1I

` 	 `0 D `0 	 ` D 1:
Proof. The calculations are as follows:

.h; `/ D .`C `0t; `/ D .`0t; `/ D .`0 � p; `/ D �1I
.h; p/ D .`C `0t; p/ D .`; p/C .`0; pt�1/ D 0I
.`; h/ D .h; `t2/ D .h; ` � 2p/ D �1I

and .p; h/ D .h; pt2/ D .h; p/ D 0.
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One other computation of interest is .m;m0/ D 0.

Proposition 9.5. Suppose that Q is smooth. Let L and L0 be non-isomorphic line
modules forA, and OL and OL0 their images in ProjQ. The following are equivalent:

(1) Ext1Q.OL;OL0/ D 0;

(2) ExtiQ.OL;OL0/ D 0 for all i ;

(3) L and L0 belong to the same ruling.

Proof. Because L0 is Cohen–Macaulay of depth 2, !�L0 Š L0. Hence

HomQ.OL;OL0/ Š HomGrA.L; !�L
0/ Š HomGrA.L;L

0/ D 0:

By Serre duality, Ext2Q.OL;OL0/ Š HomQ.OL0 ;OL.�2//; because L is Cohen–
Macaulay of depth2, this is isomorphic to HomGrA.L

0; L.�2//, which is zero because
L.�2/0 D 0. Hence (1)() (2).

By Proposition 9.3, L and L0 belong to the same ruling if and only if
.ŒOL�; ŒOL0 �/ D 0. This, together with the observations in the previous paragraph,
shows that (3) is equivalent to (1) and (2).

IfQ is not smooth, then Ext1Q.OL;OL0/ ¤ 0, and ifL 6Š L0, then Ext2Q.OL;OL0/

and HomQ.OL;OL0/ are both zero.

10. The Sklyanin quadrics

Throughout this section S denotes a 4-dimensional Sklyanin algebra and

P3Skly D ProjS:

We recall some results from [12], [15], [16], [18], [22], and [23].

10.1. The data used to define S is a triple .E;L; �/ consisting of an elliptic curve
E, a degree four line bundle L on it, a translation automorphism � of E, and S is
a quotient of the tensor algebra on H 0.E;L/ having Hilbert series .1 � t /�4. Like
the polynomial ring, S is Gorenstein, and its dualizing module is !S Š S.�4/ as a
one-sided S -module. Furthermore, S is a noetherian domain and a Koszul algebra.
Thus P3Skly is a quantum P3 in the sense of Section 2.8.

Because S1 D H 0.E;L/ we can, and will, considerE as a fixed quartic curve in
P.S�

1 /. We fix an identity element 0 for E such that four points of E are coplanar if
and only if their sum is 0. We therefore identify � with a point onE, so the translation
automorphism becomes p 7! p C � .
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10.2. Pencils of quadrics in P3 and P3
Skly. A generic pencil of quadrics in P3 has

exactly four singular members. Its base locus is a quartic elliptic curve. The smooth
quadrics have two rulings on them, and the singular ones have only one ruling. The
lines on the quadrics are the secant lines to the base locus.

The pencil of commutative quadrics in P.S�
1 / containing E may be labelled as

Yz , z 2 E=˙ Š P1, in such a way that Yz is the union of the secant lines pq such
that p C q D z. It follows that Yz D Y�z and the four singular quadrics are Y! ,
! 2 E2, the 2-torsion subgroup of E. When z … E2, the two rulings on Yz are given
by fpq j p C q D zg and fpq j p C q D �zg.

As we now explain, the Sklyanin quadrics behave in a similar way.
The center of S contains two linearly independent homogeneous elements, �1

and �2, of degree two. These give rise to a pencil of quotients A D S=.�/, � a
non-zero linear combination of �1 and �2, and hence a pencil of noncommutative
quadric hypersurfaces ProjA � P3Skly. EachA is a Gorenstein domain with dualizing
module !A Š A.�2/ as a one-sided A-module.

As S=.�1; �2/ is a twisted homogeneous coordinate ring ofE, ProjS=.�1; �2/
presentsE as a closed subspace of P3Skly. It is the base locus of the pencil of noncom-
mutative quadrics.

10.3. The following rule sets up a bijection between the line modules for S and the
secant lines to E in P.S�

1 /: if p; q 2 E, andW � S1 is the subspace of linear forms
vanishing on the pq, then S=SW is a line module that we denote by L.pq/ [12].

If z 2 E, there is a non-zero linear combination �.z/ of �1 and �2 such that

�.z/:L.pq/ D 0 () p C q D z or p C q D �z � 2�
(see [12], Sect. 6). We label the noncommutative quadrics in P3Skly by

Qz ´ ProjS=.�.z//; z 2 E:
Thus Qz D Q�z�2� .

10.4. Families of lines. If z … E2C� , we say there are two families of line modules
for A giving “lines” on Qz , namely fL.pq/ j p C q D zg and fL.pq/ j p C q D
�z � 2�g.

The degree two divisors .p/C .q/ such that p C q D z are parametrized by the
points in the fiber over z of the addition map S2E ! E. These fibers are isomorphic
to P1, which is why we say these lines form a family.

The next result shows that these “families” coincide with the “rulings” defined in
Section 7.

Proposition 10.1. Let L and L0 be line modules for A. Then L and L0 belong to the
same ruling if and only if they belong to the same family.
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Proof. Let Qz D ProjA. Suppose that L D L.pq/ and L0 D L.p0q0/, where
p C q; p0 C q0 2 fz;�z � 2�g.
(H : Suppose that p C q D p0 C q0. There are points r; s 2 E such that p, q,

r , and s span a secant plane, say that given by a D 0 for 0 ¤ a 2 A1, and p0, q0, r ,
and s also span a secant plane, say that given by b D 0 for 0 ¤ b 2 A1.

Set L00 D L.r � �; s � �/. By the argument in the proof of [19], Lemma 4.5,
there are exact sequences

0! L00.�1/! A=Aa! L! 0

and

0! L00.�1/! A=Ab ! L0 ! 0:

By Proposition 7.4, L andL00 belong to different rulings, and so doL0 andL00; hence
L and L0 belong to the same ruling.
H) : Suppose thatpCq ¤ p0Cq0. In this casepCqC.p0C�/C.q0C�/ D 0,

so p, q, p0 C � , q0 C � span a secant plane. By [19], Lemma 4.5, there is an exact
sequence of the form 0 ! L0.�1/ ! A=xA ! L ! 0, so L and L0 belong to the
same ruling by Proposition 7.4.

Theorem 10.2. The Sklyanin quadric Qz is smooth if and only if z C � … E2. The
four singular quadrics areQ!�� , ! 2 E2.

Proof. If zC � … E2, thenQz D Q�z�2� has two families of line modules, namely
L.pq/ such thatpCq D z andpCq D �z�2� , whereas if zC� 2 E2, there is only
one family of line modules for Qz , namely L.pq/ such that pC q D z D �z � 2� .
Now by Theorem 10.1, there are two rulings onQz if and only if zC � … E2, so the
result follows from Theorem 5.6.

10.5. Singular quadrics in a pencil. There is one significant way in which the
pencil of Sklyanin quadrics differs from a generic pencil of quadrics in P3.

The singular locus of a singular quadric Q belonging to a generic pencil in P3 is
a point, and that point lies on all the lines on Q. However, the results in [19] (see
also [15], Sect. 10) show there is no analogous result for the Sklyanin quadrics. For
simplicity, we will explain this only when � has infinite order.

When � has infinite order the closed points in P3Skly consist of those on E and a
discrete family that may be labelled as

fp!Ci� j ! 2 E2; i 2 Ng
in such a way that

(a) p!Ci� lies on the noncommutative secant line pq if and only if pCq D !C i� ,
and
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(b) if F!Ci� 2 QcohQ is the simple module corresponding to p!Ci� , then
dimkH

0.P3Skly;F!Ci� / D i C 1. (The letter F stands for fat point.)

Thus, all the lines in one of the two rulings on the smooth quadrics Q!Ci� D
Q!�.iC2/� , i 2 N, pass through a common point. The lines on a singular quadric
Q!�� do not pass through a common point.

Let i 2 N and ! 2 E2. By [19], Sect. 4, if p C q D ! C i� , there is an exact
sequence

0! O
p�.iC1/�;q�.iC1/� .�i/! Opq ! F!Ci� ! 0 (10.1)

of Q!Ci� -modules; because .p � .i C 1/�/ C .q � .i C 1/�/ ¤ p C q, the two
lines in (10.1) belong to different rulings; it also follows from (10.1) that the class of
F!Ci� in K0.Q!Ci� / is

ŒF!Ci� � D ` � `0t iC1 D ` � `0 C .i C 1/p:
This shows that the positive cone ofK0.Q!Ci� / is not the same as that ofK0.P1�P1/.
A computation in K0.Q!Ci� / using Proposition 9.3 gives

.F!Ci� ;F!Ci� / D 2;
so p!Ci� behaves like a curve with self-intersection �2.

10.6. Similar behavior is exhibited by the primitive quotient rings of the enveloping
algebra of sl.2;C/ (cf. [9], [21] and [23]). More precisely, the homogenized en-
veloping algebra of sl.2;C/ is the coordinate ring of a quantum P3 that contains a
pencil of noncommutative quadrics and those noncommutative quadrics behave like
the Sklyanin quadrics. In particular, the finite dimensional irreducible representations
of sl.2;C/ provide points on certain of these quadrics that also behave like�2-curves
– they have self-intersection �2.

10.7. The quadrics in a generic pencil in P3 can be viewed as the fibers of a family
X ! P1. The total spaceX � P3�P1 is smooth. It seems likely that the analogous
noncommutative 3-fold Xnc � P3Skly � P1 is also smooth, but we do not know how
to tackle this problem.

10.8. Our methods apply to the pencil of noncommutative quadrics in the noncom-
mutative P3 associated to the enveloping algebra of sl.2;C/. This pencil of noncom-
mutative quadrics is analogous to the commutative pencil of quadrics generated by a
double plane w2 D 0 and x2 C y2 C z2 D 0. The noncommutative pencil contains
a “double plane” and one more singular noncommutative quadric that corresponds
to the unique primitive quotient of U.sl.2;C// having infinite global dimension.
That particular quotient of U.sl.2;C// is a simple ring, so has no finite dimensional
simple module; this is analogous to the fact that the singular Sklyanin quadrics are
not the ones having a point that causes infinite global dimension. The homological
properties of the quotients of U.sl2/ are described in [21].
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10.9. Let Q be a smooth noncommutative quadric surface. It would be interesting
to show that there is a map Q ! P1 in the sense of [17], Defn. 2.3, to define and
study the fibers of such a map, and to show thatQ is the disjoint union of these fibers
in a suitable sense. It would also be interesting to examine quadric hypersurfaces in
noncommutative analogues of Pn for n > 3.
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