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The closed state space of affine Landau–Ginzburg B-models

Ed Segal

Abstract. We study the category of perfect cdg-modules over a curved algebra, and in particular
the category of B-branes in an affine Landau–Ginzburg model. We construct an explicit chain
map from the Hochschild complex of the category to the closed state space of the model, and
prove that this is a quasi-isomorphism from the Borel–Moore Hochschild complex. Using the
lowest-order term of our map we derive Kapustin and Li’s formula for the correlator of an
open-string state over a disc.
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1. Introduction

A Landau–Ginzburg model is a 2-dimensional supersymmetric quantum field theory
depending on a Kähler manifold X and a holomorphic function W on X , called the
superpotential. If X is Calabi–Yau then the theory admits a B-twist, which makes it
into a topological theory that depends only on the complex structure ofX and not the
metric.

In the simplest kind of 2d topological field theory the worldsheet is just a topolog-
ical 2-manifold, and since there are not very many of these a theory like this cannot
contain much information. A Landau–Ginzburg B-model is a more complicated kind
of theory where the worldsheet is a Riemann surface, but we integrate over families
of complex structures, so we pick up the topology of the moduli space of Riemann
surfaces. A theory like this is called mathematically a Cohomological Field Theory
or a Topological Conformal Field Theory.

Thus the physics predicts that given a complex manifold X and a holomorphic
function W we should be able to construct a TCFT. This problem is made easier by
the results of Costello [6] on the formal structure of TCFTs. He showed that the
open sector is specified by a choice of Calabi–Yau A1-category (or dg-category),
called the category of branes. Furthermore if we know the open sector then there is
a canonical choice of closed sector, it is the Hochschild complex of the category of
branes.
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When W D 0 it is well known that the category of B-branes is the described by
the derived category Db.X/ of coherent sheaves on X , or more accurately by a dg-
or A1- enhancement of it, such as the category Perf.X/ of perfect complexes on
X . Also, the Hochschild homology of Perf.X/ is the Dolbeault cohomology of X ,
which is the physically-predicted closed sector.

When W ¤ 0, it was suggested by Kontsevich that B-branes are ‘twisted com-
plexes’ of vector bundles, i.e., instead of carrying differentials they carry endomor-
phisms d such that d2 D W . These are related to classical objects from algebraic
singularity theory called matrix factorizations, but they were first studied mathe-
matically as B-branes by Orlov [20]. In Orlov’s work B-branes form a Z2-graded
triangulated category, we will instead be using the construction from [22] which gives
a Z-graded dg-category Br.X;W /.

When X is affine and W has isolated singularities, the physics predicts that the
closed sector of the B-model is the Jacobi ring JW . It is hence natural to conjecture
that this is the Hochschild homology of Br.X;W / in this case. This result has proved
by Dyckerhoff [7], by identifying a generating object for the category.

In this paper, we consider the case thatX is affine, butW is arbitrary. The natural
replacement for JW is the chain complex

.�
�

X ; ^ dW /
which we call the ‘off-shell closed state space’, whenW has isolated singularities this
has homology JW . When the singularities ofW are not isolated one does not expect
Br.X;W / to be Calabi–Yau, so the full TCFT structure does not exist. Nevertheless,
the Hochschild homology of Br.X;W / should still be equal to the homology of this
complex.

What we achieve in this paper is the construction of an explicit chain map (3.2)
between the Hochschild complex of Br.X;W / and this off-shell closed state space.
Unfortunately we cannot prove directly that our map is a quasi-isomorphism. How-
ever, our map is naturally defined on a completed1 version of the Hochschild complex
called the Borel–Moore Hochschild complex [3], and we show our map is a quasi-
isomorphism on this slightly larger complex. Furthermore, it should follow from the
work of Polischuk and Positselski [21] that the two kinds of Hochschild complex are
in fact quasi-isomorphic.

WhenW does have isolated singularities there is a residue map on��

X that sends
forms to their residues at the singularities. If we apply our chain map to a single mor-
phism in Br.X;W /, and then take the residue, we recover the Kapustin–Li formula
for the correlator of an open-string state over a disc [13].

It would be nice to generalize to when the space X is not affine. In that case the
Hochschild homology of Br.X;W / is presumably the homology of

.A
�;�

X ; N@C ^dW /
1More accurately ‘uncocompleted’.
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This was argued physically in [11], and a proof for the Z2-graded case is sketched in
[16]. We do not know how to write down the analogue of our map in the non-affine
case, since one must deal with the fact that vector bundles on X can have non-trivial
Chern characters.

The outline of this paper is as follows:

In Section 2.1 we discuss curved algebras, of which affine Landau–Ginzburg B-
models are a special case. We then define the category Perf.A;W / of perfect curved
dg-modules over a curved algebra, which is the more general analogue to the category
of B-branes.

In Section 2.2 we spend some time recalling the noncommutative-geometric lan-
guage of Kontsevich and Soibelman [15], and define the Hochschild and Borel–Moore
Hochschild complexes in this language.

Section 2.3 contains the key idea of this paper. We construct an isomorphism be-
tween the Borel–Moore Hochschild complexes of Perf.A;W / and of another closely
related category. This second category has the same objects and morphisms, but it
has no differential, instead it has a curvature term induced from W . This isomor-
phism is easy to see in the geometric language, as it comes from a translation of a
noncommutative vector space. We can then show that the Borel–Moore Hochschild
complex of this curved category is equal to that of the curved algebra.

In Section 3 we discuss Landau–Ginzburg models and their closed state spaces.
We apply the results of Section 2, and get some explicit formulas, in particular we
recover the Kapustin–Li formula. Finally, we show how to extend these results to
affine orbifolds.

Acknowledgements. The first version of this paper erroneously claimed that I had
calculated the Hochschild homology of the category of B-branes. I’m grateful to
Tobias Dyckerhoff for pointing out the mistake, and to Andrei Căldăraru and Junwu
Tu for working out what the correct statement was.

I’d also like to thank Nils Carqueville, Tom Coates, Kevin McGerty, Ezra Getzler,
Kevin Lin, Daniel Pomerleano, Leonid Positselski, and Richard Thomas for many
helpful discussions and ideas.

2. Curved algebras

In this section we prove that the Borel–Moore Hochschild complex of the category
of perfect dg-modules over a curved algebra is quasi-isomorphic to the Borel–Moore
Hochschild complex of the curved algebra itself.

We work over an arbitrary ground field k of characteristic zero, and category
means a k-linear category.
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2.1. Curved algebras and cdg-modules

Definition 2.1 ([9]). A curved dg-algebra is a triple .A; d;W / where A is a graded
associative algebra, d is a degree 1 derivation ofA, andW 2 A is a degree 2 element
such that dW D 0 and

d2 D ŒW;��:
A curved algebra is a curved dg-algebra where d D 0, and hence W is central. The
definitions of curved dg-category and curved category are similar.

We may choose to work with either a Z-grading or just a Z2-grading. Of course,
in the Z2-graded version ‘W is a degree 2 element’ means W is a degree 0 element.

The name comes from thinking ofW as the ‘curvature’of the ‘connection’given by
d . In this paper we will be mostly concerned with curved algebras and (non-curved)
dg-categories. We will generally drop the d , but not the W , from the notation.

Definition 2.2. A cdg-module over a curved dg-algebra .A;W / is a pair .M; dM /

where M is a graded A-module and dM is a degree 1 linear endomorphism of M
such that such that

dM .am/ D .da/mC .�1/jaja.dMm/

and

d2
M D W:

If W D 0 this is just the usual definition of a dg-module over a dga, but having a
non-zero W ‘twists’ the differentials.

Given two cdg-modules .M; dM / and .N; dN /, we have a graded vector space
HomA.M;N / with a degree 1 endomorphism

dM;N .f / ´ .dN B f / � .�1/jf j.f B dM / (2.1)

As in the caseW D 0, this is in a fact a differential, even though neither dM nor dN is.
The two copies of W that occur in the square of this expression have opposite signs
and cancel. This means that the category of cdg-modules is a dg-category, which we
denote .A;W /-mod.

Remark 2.3. When A is commutative, this definition can be seen as part of a larger
structure. Given a cdg-module M over .A;WM /, and another N over .A;WN /, we
can form their tensor productM ˝AN , which is a cdg-module over .A;WM CWN /.
This defines a monoidal product on the category of cdg-A-modules where we allow
all possible W s, and the Hom complex defined above is an internal Hom functor.
This larger category is a curved dg-category with curvature WM at each object M .
Arguably even when considering the sub-category of cdg-modules over a fixed W
one should keep this (now central) curvature term, but we shall not do so in this paper.
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In the ordinary case of a (non-curved) dg-algebra A, one often studies not the
category of dg-modules but rather the derived categoryD.A/, which is its localization
at quasi-equivalences. This is a triangulated category, and we wish to work instead
with dg-categories. Now the category of dg-modules over A is of course a dg-
category, but it is not the correct dg-category to study since its homotopy category is
not D.A/. We can correct it by taking only the subcategory of projective modules,
this is a dg-category that does have D.A/ as its homotopy category. Or we can take
some smaller dg-category such as the category of perfect dg-modules, which has a
slightly different homotopy category that may be better-behaved.

We will work with an analogue of the category of perfect complexes over a curved
algebra. The derived category of modules over a curved algebra (in fact over a curved
A1-algebra) has been constructed in [19], but by analogy with the non-curved case
one should not expect it to agree with the homotopy category of our category, unless
some kind of smoothness hypothesis is assumed.

Definition 2.4. Let .A;W / be a curved algebra (i.e., no differential). A cdg-module
.M; dM / over .A;W / is perfect if M is a finitely-generated and projective module
over the underlying algebra A.

Definition 2.5. The dg-category Perf.A;W / � .A;W /-mod is the full subcategory
with objects the perfect cdg-modules.

If W D 0 this is the usual definition of a perfect complex over A. Note that if A
had a non-zero differential then a more sophisticated definition would be needed.

2.2. Some noncommutative geometry. In this section, which is almost entirely
lifted from [15], we set up some geometric language for studying curved dg-categories.

2.2.1. Curved A1-structures and polynomial curved A1-structures. Let V be
a graded vector space. Initially we’ll assume thatV is degree-wise finite-dimensional,
this is so we can take (graded) duals without worrying. We want to consider V as a
noncommutative vector space, this means we declare the ‘ring of functions’ on V to
be the ring of noncommutative polynomials

O.V / ´ T V _ D L
k�0

.V _/˝k :

Many of the usual constructions of algebraic geometry go through unchanged. For
example, O.V / contains an ideal generated by V _, and the quotient by the kth power
of this ideal gives an algebra that corresponds to a kth-order neighbourhood of the
origin in V . If we take the limit of these algebras over k we get the completed tensor
algebra

yO.V / ´ yT V _ D Q
k�0

.V _/˝k;
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which corresponds to a formal neighbourhood of the origin.
A vector field on V is a derivation of O.V /, so a derivation of yO.V / is like the

germ of a vector field at the origin.

Definition 2.6. Let V be degree-wise finite-dimensional. A (curved) A1-structure
on V is a derivation

Q W yO.V / ! yO.V /
of degree 1 such that

ŒQ;Q� D 0:

Since Q is a derivation it is determined by its effect on linear functions, i.e., by
the map

Q W V _ ! yT V _:
The componentsQ0,Q1,Q2, … of this map are the Taylor coefficients of the vector
field. Dualizing them gives us an infinite sequence of maps

Q_
k W V ˝k ! V

all of degree 1. Now let A D V Œ�1� be the degree-shift of V . We get an induced
sequence of multilinear maps on A, which are conventionally denoted by

mk W A˝k ! A:

The map mk has degree 2� k. These maps are called the A1-products on A, and A
is called an A1-algebra.

The requirement that ŒQ;Q� D 2Q2 D 0 translates to relations on the products
mk . For example, suppose that the Taylor coefficients ofQ vanish above the quadratic
term, so Q D Q0 CQ1 CQ2. Then Q2 D 0 iff the following four equations hold:

Q0Q1 D 0;

Q2
1 C .Q0 ˝ 1 C 1 ˝Q0/Q2 D 0;

Q2Q1 C .Q1 ˝ 1 C 1 ˝Q1/Q2 D 0;

.Q2 ˝ 1 C 1 ˝Q2/Q2 D 0:

The A1-products on A consist of a degree 0 bilinear product m2, a degree 1 linear
endomorphism m1, and a degree 2 constant m0 2 A. Dualizing the above relations,
and inserting the signs required by the degree shift, gives

m1m0 D 0;

m2
1 D m2.m0 ˝ 1 � 1 ˝m0/;

m1m2 D m2.m1 ˝ 1 C 1 ˝m1/;

m2.m2 ˝ 1/ D m2.1 ˝m2/:
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These are precisely the axioms that makeA a curved dg-algebra. The curvature ism0,
so if we want an ordinary dga then we have to require Q0 D 0. In fact, in this paper
all of our curved A1-structures will just be curved dgas, i.e., their Taylor expansions
will vanish above the quadratic terms, nevertheless if we use this geometric language
then it is simpler to work in this extra generality.

A morphism between two curved A1-structures .V1;Q1/ and .V2;Q2/ is a ho-
momorphism between the completed algebras

yO.V2/ ! yO.V1/

that intertwines the two derivations Q2 and Q1. It follows that an isomorphism
between curvedA1-structures corresponds to pulling-back the germ of a vector field
via the germ of a diffeomorphism.

If we have a curvedA1-structure .V;Q/where the derivationQ has only a finite
number of terms, so there are only finitely many non-zero A1-products, then Q in
fact defines a derivation of O.V /. This is a vector field defined over all of V , not just
in a formal neighbourhood of the origin. We shall call such a structure a polynomial
curved A1-structure.

Similarly a polynomial morphism between polynomial curved A1-structures
.V1;Q1/ and .V2;Q2/ is a homomorphism

O.V2/ ! O.V1/

intertwining Q2 and Q1. Polynomial morphisms are not a subset of morphisms,
because they need not preserve the origin.

2.2.2. Differential forms. Let V be a degree-wise finite-dimensional graded vector
space. The odd tangent bundle to V is the graded vector space

V ˚ V Œ1�:

The ring of functions on this is called the space of de Rham differential forms on V ,
and denoted by

�
�

.V / D L
m�0

�m.V / D O.V ˚ V Œ1�/:

The splitting is by the number of copies of V Œ1�_ that appear, so for example

�0.V / D O.V /

and

�1.V / D O.V /˝ V Œ1�_ ˝ O.V /:

Let ıdR be the linear endomorphism of V ˚V Œ1� that maps V Œ1� isomorphically onto
V . Then ıdR has degree �1, and squares to zero. It defines a degree 1 linear vector
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field ddR on V ˚ V Œ1� which has ı_
dR

as its single non-zero Taylor coefficient. Note
that

ddR W �m.V / ! �mC1.V /

and d2
dR

D 0.
Let X be any vector field on V . We define a vector field iX on V ˚ V Œ1� by

declaring it to have Taylor coefficients

iX W V Œ1�_ ��!� V _ X�! O.V / ,! �
�

.V /:

This just contracts a differential form by the vector field X . We also define the Lie
derivative along X as

LieX D Œd; iX �:

LieX preserves each �m.V /. It is easy to check that

ŒLieX ;LieY � D LieŒX;Y � :

Now letQ be a polynomial curved A1-structure on V , soQ is degree 1 vector field
on V and ŒQ;Q� D 0. It follows that LieQ is a degree 1 vector field on V ˚ V Œ1�

such that
ŒLieQ;LieQ� D 2Lie2

Q D 0:

For any graded vector space V , the ring of noncommutative polynomials on V
carries an action of the infinite cyclic group, by cyclically permuting the factors of
each V _˝k . We call the coinvariants the cyclic functions on V , and denote them by

Ocycl.V / D .O.V //Z D O.V /=ŒO.V /;O.V /�:

Any vector field on V preserves ŒO.V /;O.V /�, and hence induces a linear map on
Ocycl.V /.

The cyclic differential forms on V are

�
�

cycl.V / ´ Ocycl.V ˚ V Œ1�/:

They carry a differential dcycl induced from the deRham vector field ddR, which maps
m-forms to .m C 1/-forms. If Q is a polynomial curved A1-structure on V then
�

�

cycl.V / carries another differential induced from LieQ, which preserves each space
of m-forms.

We also need to consider the space of germs of differential forms at the origin in
V . We define the space of germs of de Rham forms y��

.V / to be the completion of
�

�
.V / at the ideal generated by V , so for example

y�1.V / D yO.V / y̋ V Œ1�_ y̋ yO.V /:
The space of germs of cyclic forms y��

cycl.V / is just the coinvariants of y��
.V / under

the cyclic group action.
If Q is a non-polynomial A1-structure on V then it gives only the germ of a

vector field at the origin. Hence LieQ is not defined on differential forms over the
whole of V , but it is defined on germs of differential forms at the origin.
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2.2.3. The infinite-dimensional case. Now we recall how to handle the situation
when V is not degree-wise finite-dimensional. In this case we want to avoid dualizing
V , so instead of considering the free algebra O.V / we instead consider the cofree
coalgebra

C.V / ´ Q
k�0

V ˝k :

If V were degree-wise finite-dimensional, this would be the graded linear dual of
O.V /. The coproduct is the ‘shuffle’ coproduct, which takes a monomial to the sum
of all ways of splitting it in two (e.g. [14]). It takes values in the completed tensor
product

C.V / y̋ C.V /;

which means that C.V / is not actually a coalgebra in the category of vector spaces,
but rather in the monoidal category of cofiltered vector spaces.

All of the above geometric constructions go through in their dual version. For
example we have a sequence of subcoalgebras

kL
iD0

V ˝i � C.V /

corresponding to kth order neighbourhoods of the origin, and if we take the colimit
over this sequence we get the cocompleted coalgebra

yC.V / ´ L
k�0

V ˝k;

which corresponds to a formal neighbourhood of the origin.
In this setting, a vector field on V is a coderivation of C.V /, and the germ of a

vector field at the origin is a coderivation of yC.V /.

Definition 2.7. Let V be a graded vector space. A curved A1-structure on V is a
coderivation

Q W yC.V / ! yC.V /
of degree 1 such that

ŒQ;Q� D 0:

As before, Q is determined by its Taylor coefficients, which are maps

Qk W V ˝k ! V;

and we say that the structure is polynomial if only finitely many of these are non-zero.
The induced structure on the degree-shifted vector spaceA D V Œ�1� is called anA1-
algebra. If V is degree-wise finite-dimensional these definitions are equivalent to our
previous ones, just by dualizing the Taylor coefficients.
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The dual de Rham differential forms on V are given by the coalgebra

Ã�

.V / ´ C.V ˚ V Œ1�/:

It carries a coderivation d 0
dR

defined by dualizing the definition of ddR. The dual
notion to cyclic functions is given by the cyclically invariant subspace

Ccycl.V / D .C.V //Z

and hence the dual cyclic differential forms are given by the cyclically invariant dual
de Rham forms

Ã�

cycl.V / ´ Ccycl.V ˚ V Œ1�/:

This carries an induced differential d 0
cycl that maps Ãm

cycl.V / to Ãm�1
cycl .V /.

The space of germs of dual de Rham forms at the origin is given by the co-
completion of Ã�

.V / at the co-ideal generated by V , we denote it by yÃ�
.V /. Taking

cyclic invariants we get the space of germs of dual cyclic forms yÃ�

cycl.V / D .yÃ�
.V //Z.

IfQ is a polynomial A1-structure on V it induces a coderivation LieQ of Ã�
.V /

and a differential on each Ãm
cycl.V /, again just by dualizing the definitions from the

previous section. If Q is not polynomial, then LieQ is only defined on the germs of
dual differential forms at the origin.

2.2.4. The Hochschild and Borel–Moore Hochschild complexes. Let .V;Q/ be
a polynomial curved A1-structure, and A D V Œ�1� the associated A1-algebra with
products mk .

Definition 2.8 ([3]). The Borel–Moore Hochschild chain complex of A is

C…
�
.A/ ´ .Ã1

cycl.V /Œ�2�;LieQ/:

If Q is not polynomial, so A has infinitely many non-zero products, then this is
not defined. In that case we can instead take the germs of dual cyclic 1-forms at the
origin, and get the more classical (e.g. [18]) Hochschild chain complex:

Definition 2.9. The Hochschild chain complex of A is

C�.A/ ´ .yÃ1
cycl.V /Œ�2�;LieQ/:

Recall that the space of de Rham dual 1-forms is given by

Ã1.V / D Q
k�0;l�0

V ˝k ˝ V Œ1�˝ V ˝l :

It follows that the graded vector space underlying the Borel–Moore Hochschild com-
plex is

Ã1
cycl.V /Œ�2� Š V Œ�1�˝ Q

k�0

V ˝k D A˝ Q
k�0

A˝kŒk�:
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The space underlying the Hochschild complex is exactly the same, except that the
direct product becomes a direct sum. The differential is the same on both complexes,
to describe it explicitly we must unpack the definition of LieQ and insert a lot of
signs. We give the first three terms of the differential, this is sufficient to cover the
case when A is a curved dga. They are

d2.a0 ˝ � � � ˝ ak/ D
k�1P
iD0

.�1/ja0jC���Cjai jCiC1 a0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ ak

C .�1/.ja0jC���Cjak�1jCkC1/.jak jC1/ aka0 ˝ � � � ˝ ak�1;

d1.a0 ˝ � � � ˝ ak/ D
kP

iD0

.�1/ja0jC���Cjai�1jCi a0 ˝ � � � ˝ dai ˝ � � � ˝ ak;

d0.a0 ˝ � � � ˝ ak/ D
kP

iD0

.�1/ja0jC���Cjai jCiC1 a0 ˝ � � �
� � � ˝ ai ˝W ˝ aiC1 ˝ � � � ˝ ak :

(2.2)

The complicated sign for the last term of d2 arises from permuting ak through the
other elements.

2.2.5. Curved A1-categories. We can also use this geometric language to describe
curvedA1-categories. Fix a set Ob of objects, and pick a graded vector space V.a; b/

for each ordered pair of objects .a; b/. This is the same thing as a graded bimodule V

over the semi-simple algebra COb generated by the objects. It is not very misleading
to think of V as just a single vector space, so we can try and perform all the above
constructions of noncommutative geometry on it. This works fine, as long as we
remember that the ground ring is COb. For example, V ˝ V must be read as a tensor
product over COb, so V˝k is the COb-bimodule with components

V˝k.a; b/ D L
c1;:::;ck�12Ob

V.a; c1/˝ V.c1; c2/˝ � � � ˝ V.ck�1; b/:

Now we can define vector fields, differential forms, etc. as before, and declare that
a curved A1-category with objects Ob is a curved A1-structure on a COb-bimodule
V .

Note that the cyclic invariants in V˝k are not a COb-bimodule, they are the vector
space

.V˝k/Z D
� L

a2Ob
V˝k.a; a/

�Z
:

So for example if A is a curved A1-category, then its Borel–Moore Hochschild
homology is a chain-complex with underlying graded vector space

Q
k�0

L
a0;:::;ak2Ob.A/

A.a0; a1/˝ � � � ˝ A.ak; a0/Œk�:
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Also, since a point of a vector space V is the same as a linear map C ! V ,
choosing a ‘point’ of V means giving a map of COb-bimodules

COb ! V ;

which is the same thing as choosing an element of V.a; a/ for all a 2 Ob.

2.2.6. Translation maps. Let V be a graded vector space, and let x 2 V be an ele-
ment. In ordinary commutative ungraded geometry x would induce a constant vector
field on V and an affine endomorphism of ’translate by x’. In our noncommutative
context, the constant vector field is the coderivation

X W C.V / ! C.V /

with only a constant Taylor coefficient x W C ! V . Hence we define

Tx ´ exp.X/ D P
n�0

1
nŠ
Xn W C.V / ! C.V /

as the appropriate analogue of translation by x. This is a map of coalgebras, its
components are

P
s0C���Csl Dk

1˝s0 ˝ x ˝ 1˝s1 ˝ � � � ˝ x ˝ 1˝sl W V ˝k ! V ˝kCl :

More generally, if V is a COb-bimodule over a set of objects Ob, then we have a
translation map Tx on V for each element x W COb ! V .

2.3. Borel–Moore Hochschild complexes of categories of cdg-modules. We now
return to our main object of study: the category of cdg-modules over a curved dga.
We want to understand the Borel–Moore Hochschild homology of this category, and
we will approach this using the geometric language that we have been setting up in
the previous sections.

Let .A;W / be a curved dga, and let

M � .A;W /-mod

be a full sub-category of the category of .A;W /-cdg-modules, so M is a dg-category.
Let zM be the underlying graded category of M (i.e., forget the differential), so zM is
a full subcategory

zM � A-mod

of the category of graded modules over the underlying graded algebra A.
Let V be the Ob.M/-bimodule underlying MŒ1�. The dg-category structure on

M is encoded in a vector field

Q D Q2 CQ1 W C.V/ ! C.V/
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which has only quadratic and linear Taylor coefficients. If we use only the quadratic
term Q2 then we are encoding the graded category zM .

The linear term Q1 is of a particular form. Consider the following (degree zero)
element of V :

d W 1M 7! dM :

There is an associated constant vector field D on V . Then

Q1 D ŒQ2;D�:

This is just by Definition (2.1) of the differential in .A;W /-mod. We can also define
a constant vector field

Q0 ´ 1

2
ŒŒQ2 �D�;D�

which corresponds to the element

Q2.D ˝D/ W 1M 7! W 1M :

This is the curvature term from Remark 2.3. Each of these three terms Q2, Q1, Q0

are degree 1, and they commute with each other and themselves, so any combination
of them encodes a curved A1-structure. Two of these possible structures are given
by M and zM, the third one that we need to consider is the one encoded by the vector
field Q2 �Q0. This is a curved category, it is obtained from the graded category zM

by adding in a curvature term given by the central element

1M 7! �W 1M :

We shall denote this curved category by . zM;�W /.
Now consider the ‘translation by d ’ map

Td W C.V/ ! C.V/:

Since it is an isomorphism (the inverse is T�d ) we can ask what effect it has on a
vector field Y . It is elementary that

T�dY Td D Y C ŒY;D�C 1

2
ŒŒY;D�;D�C 1

6
ŒŒŒY;D�;D�;D�C � � � :

One way to view this formula is as giving the relationship between the Taylor ex-
pansions of Y at zero and at the point d 2 V . Let us apply this formula to the case
Y D Q2. Since this is a quadratic vector field, only the first three terms on the
right-hand side are non-zero, and we have

T�dQ2Td D Q2 CQ1 CQ0:

Also Q0 is a constant vector field, so T�dQ0Td D Q0, and hence

T�d .Q2 �Q0/Td D Q2 CQ1:

So the translation map Td gives us a polynomial isomorphism between M and
. zM;�W /.
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Lemma 2.10. We have an isomorphism

Td W C…
�
.M/ ��!� C…

�
. zM;�W /

between the Borel–Moore Hochschild complexes of M and . zM;�W /.

Proof. Td is an isomorphism of the noncommutative affine space V that intertwines
the two vector fields Q2 CQ1 and Q2 �Q0. Therefore it induces an isomorphism

.Ã1
cycl.V/;LieQ2CQ1

/ ��!� .Ã1
cycl.V/;LieQ2�Q0

/:

To write Td explicitly, let .M0; d0/; : : : ; .Mk; dk/ be cdg-modules in M, and let

M0

˛0�! M1

˛1�! � � � ˛k�1���! Mk

˛k�! M0

be morphisms. Then

Td W ˛0 ˝ � � � ˝˛k 7! P
s0;:::;sk�0

˛0 ˝ .d1/
˝s1 ˝˛1 ˝ .d2/

˝s2 ˝ � � � ˝˛k ˝ .d0/
˝s0 :

Note that M and . zM;�W / are not A1-quasi-isomorphic in the conventional sense,
because this map Td between them does not preserve the origin in V . Consequently
we do not get a map on the ordinary Hochschild complexes, because the ordinary
Hochschild complex is the cocompletion of the Borel–Moore Hochschild complex
at the origin. Instead, Td maps C�.M/ to a different cocompletion of C…

� . zM;�W /,
not the cocompletion at the origin, but the cocompletion at the point �d 2 V .

It follows that Borel–Moore Hochschild homology is rather weaker than ordinary
Hochschild homology (at least in this context), as it is always equal to the homology
of C…

� . zM;�W / so it does not depend on the differential in M. For example, take
A to be an ordinary algebra, and let M be the subcategory of A-mod containing the
single dg-module

A
a�! AŒ�1�

for some element a 2 A. Then the Borel–Moore Hochschild homology is inde-
pendent of a, but the Hochschild homology ranges from zero (when a is a unit) to
HH�.A/ (when a D 0).

2.3.1. The generalized trace map. LetA be a graded algebra (with no differential),
and let

zP � proj.A/

be a full subcategory of the category of finitely-generated projectiveA-modules. Our
first result in this section is that the Hochschild complexes of zP and A are quasi-
isomorphic. This is well known, and we only include it because we want to know the
quasi-isomorphism explicitly, and we could not find the formulas in the literature for
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the graded case. Our strategy is to embed zP in an (infinite-rank) matrix algebra over
A, and then use the proof from [17] with some additional signs.

We need to assume:

There is a module N 2 zP that contains A as a direct summand. (2.3)

Given such an N we have a linear embedding

� W A ,! HomA.N;N /

which induces a chain map on the Hochschild complexes

� W C�.A/ ,! C�.HomA.N;N // ,! C�. zP /:
We want to write down a homotopy inverse to �. To do this we first fix, for every
M 2 zP , an embedding

M ,!
rML
iD1

AŒ�i �

of M as a direct summand of a graded, finite-rank free A-module. This means that
any morphism

˛ 2 Hom zP .M;M
0/

is explicitly a matrix over A of size .rM � rM 0/. As usual let us write

˛ij W AŒ�i � ! AŒ�j �

for the entries of the matrix (our matrices act on the right). If ˛ is homogeneous we
have

j˛j D j˛ij j C �i � �j

for each i , j . Let us also write

˛i� W AŒ�i � ! M 0; ˛�j W M ! AŒ�j �;

for the maps given by the rows and columns of the matrix. Finally, for any M we
denote by �i the composition

�i W N ! A ! AŒ�i � ! M:

This has degree �i .

Definition 2.11. Let M0; : : : ;Mt 2 zP . We define generalized trace maps

Tr W HomA.M0;M1/˝ � � � ˝ HomA.Mt�1;Mt /˝ HomA.Mt ;M0/ ! A˝.tC1/;

Tr.˛0 ˝ � � � ˝ ˛t�1 ˝ ˛t / D P
.�1/�˛0

i0i1
˝ � � � ˝ ˛t�1

it�1it
˝ ˛t

it i0
;

where every ik ranges from 1 to rMk
. The sign is given by

� D .j˛0
i0i1

j C � � � C j˛t
it i0

j C t C 1/�i0 C �i1 C � � � C �it
:
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If A is concentrated in even degrees, we can instead write the sign as

� D �i0 C j˛1j C j˛3j C � � � C j˛sj; (2.4)

where s D t or t � 1 according to whether t is odd or even. In particular for t D 0

the map is
˛ 7! P

i

.�1/�i˛i i ;

which is the standard supertrace map.
Adding these maps together we get a linear map

Tr W C�. zP / ! C�.A/:

Lemma 2.12. The map

Tr W C�. zP / ! C�.A/

is a chain map, and is homotopy inverse to �, so it is a quasi-isomorphism.

Proof. We lift the proof from [17], Thm. 1.2.4, the only addition is the signs. Firstly,
the differentials on each side are given by the expression for d2 in the formulas (2.2),
and the map Tr commutes with every term in this expression, so it is a chain map.
The composition Tr B� is the identity on C�.A/, so to complete the proof we just need
a homotopy between � B Tr and the identity on C�. zP /.

For
˛0 ˝ � � � ˝ ˛t 2 HomA.M0;M1/˝ � � � ˝ HomA.Mt ;M0/

we define, for each s 2 Œ0; t �,
hs

t .˛
0˝� � �˝˛t / D P

.�1/� �˛0�i1
˝�.˛1

i1i2
/˝� � �˝�.˛s

is isC1
/˝�isC1

˝˛sC1˝� � �˝˛t :

This is an element of

HomA.M0; N /˝ HomA.N;N /
˝s ˝ Hom.N;MsC1/

˝ HomA.MsC1;MsC2/˝ � � � ˝ HomA.Mt ;M0/:

The sign is
� D j˛0j C � � � C j˛sj C �i1 C � � � C �isC1

:

Now let

ht D
tP

sD0

.�1/shs
t :

This is a degree zero map, so adding all the ht together gives an endomorphism of
C�. zP / of degree �1. This is the required homotopy.
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If we now pick a central degree two elementW 2 A, then the pair .A;W / forms a
curved algebra. The Hochschild complex of .A;W / is obtained from the Hochschild
complex of A by adding in a new term to the differential, the d0 term from (2.2).

We can also use W to turn zP into a curved category, as we did in the previous
section. The curvature is the central element

W W 1M 7! W 1M :

The Hochschild complex of . zP ; W / is similarly a deformation of the Hochschild
complex of zP by a d0 term. We still have a chain map

Tr W C�. zP ; W / ! C�.A;W /

because the map T r commutes with every summand of d0. This is not a quasi-
isomorphism, however we do get a quasi-isomorphism between the Borel–Moore
Hochschild complexes, under an additional assumption.

BecauseA is just a graded algebra, with no differential or curvature, the Hochschild
complex of A is actually bi-graded. The first grading is the internal grading on A,
and the second is by the number of tensor powers of A. We need to assume that
the Hochschild homology of A is bounded with respect to this second grading, i.e.,
we are assuming that the ungraded algebra underlying A has bounded Hochschild
homology.

Proposition 2.13. Assume that theHochschild homology ofA is bounded in the above
sense. Then for any degree 2 central element W 2 A, we have a quasi-isomorphism

Tr W C…
� . zP ; W / ! C…

� .A;W /:

Proof. This argument is based very closely on [3], Sect. 4.9, so we will be brief and
refer the reader to there or to [17] for a clearer explanation. Recall that the differential
on C…

� . zP ; W / is a sum of two commuting differentials d2 and d0. Also, note that
we can split C…

� . zP ; W / into a direct sum of the following two pieces:

C…
� . zP ; W /ev ´ Q

k even

zP ˝kC1Œk�; C…
� . zP ; W /od ´ Q

k odd

zP ˝kC1Œk�:

The differential exchanges these two pieces, so we can consider C…
� . zP ; W / to be

Z � Z2-graded.
Now let x and y be formal variables, and consider the bi-graded vector space

BC. zP ; W / D L
i;j 2Z

. zP ˝j �iC1Œj � i �/xiyj :

The first grading is the internal grading on each zP ˝j �iC1Œj � i �, and the second
grading comes from giving both x and y bi-degree .0; 1/. Shifting the second degree
by 2 is an isomorphism. We equip BC. zP ; W / with the differential

y�1d2 C x�1d0:
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We also consider the bi-complexes

Qp BC. zP ; W / D L
i�p

L
j 2Z

. zP ˝j �iC1Œi � j �/xiyj

with the same differential. These are quotients of BC. zP ; W / by the subcomplex
where i < p, and form a sequence

� � � ! Qp BC. zP ; W / ! QpC1 BC. zP ; W / ! � � � :

Let Q�1 BC. zP ; W / be the (inverse) limit over this sequence. To see what this is,
notice that the piece of Qp BC. zP ; W / having second degree equal to t is

Qp BC. zP ; W /�;t D L
i�p

. zP ˝t�2iC1Œt � 2i�/xiy t�i Š L
k�t�2p

k�t.mod2/

zP ˝kC1Œk�:

Taking the limit p ! �1 we get that Q�1 BC. zP ; W /�;t is either C…
� . zP ; W /ev

or C…
� . zP ; W /od depending on whether t is even or odd. If we quotient by the 2-

periodicity in t we get back C…
� . zP ; W / with its Z � Z2-grading.

We can perform exactly the same constructions with .A;W /, and we have in
particular chain maps

Tr W Qp BC. zP ; W / ! Qp BC.A;W /: (2.5)

If we draw either of these bi-complexes in the x-y plane we see that we can compute
their homology using a spectral sequence. If we take the homology of d2 first, then
on page 1 we get an infinite number of copies of the Hochschild homology of either
zP or A. By Lemma 2.12, the map Tr induces an isomorphism between page 1 on

either side. Furthermore, by our boundedness assumption all terms on page 1 are zero
if we move far enough up from the diagonal, so the spectral sequences eventually
collapse, and we deduce that (2.5) is a quasi-isomorphism.

Our boundedness assumption also implies that when the second degree t is large
enough the homology of Qp BC.A;W / is independent of p. This, together with the
surjectivity of

Qp BC.A;W / ! QpC1 BC.A;W /

is enough to guarantee that the homology of Q�1 BC.A;W / is the limit of the
homologies of the Qp BC.A;W /. The same is true for . zP ; W /, so we deduce that

Tr W Q�1 BC. zP ; W / ! Q�1 BC.A;W /

is a quasi-isomorphism. Quotienting by the 2-periodicity in t we get the statement
of the Proposition.
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Our boundedness condition on the Hochschild homology ofA is a kind of smooth-
ness condition. Let us assume it holds, and fix a curvature element W 2 A. Let

P � Perf.A;W /

be a full dg-subcategory, and let zP � proj.A/ be the underlying graded category. We
assume that zP satisfies (2.3), but this is a very weak assumption, as we can always
achieve it by adding to P the contractible cdg-module

N D A˚ AŒ�1�; dN D
�
0 W

1 0

�
:

In particular it holds when P is the whole of Perf.A;W /. Then combining Lem-
ma 2.10 and Proposition 2.13, we get:

Theorem 2.14. We have a quasi-isomorphism

Tr BTd W C…
� .P / ��!� C…

� .A;�W /:

Using different methods, [21] have independently proved that these two complexes
are quasi-isomorphic.

3. Landau–Ginzburg B-models

3.1. The closed state-space

Definition 3.1. An affine Landau–Ginzburg B-model is the following data:

� a smooth n-dimensional affine variety X over C,

� a choice of function W 2 OX (the ‘superpotential’),

� an action of C	 on X (the ‘vector R-charge’),

such that

(1) �1 2 C	 acts trivially,

(2) W has weight (‘R-charge’) equal to 2.

This means that OX is a regular commutative algebra graded by the even integers,
and W 2 OX is an element of degree 2. Thus .OX ; W / is a curved algebra (with no
odd graded part).

There is a weaker definition of vector R-charge where we keep only the trivial
action of the the subgroup Z2 � C	. This corresponds to working with Z2-graded
curved algebras.



876 E. Segal

Definition 3.2. The (off-shell) closed state space of an affine LG B-model .X;W /
is the graded vector space L

�k
X Œ�k�

of holomorphic forms on X , with differential

˛ 7! dW ^ ˛:
Note that since W has degree 2 the total degree of the differential is indeed 1.
If W has an isolated singularities then the homology of this complex is

�n
X Œ�n�=.dW /;

which is the Jacobi ring (times a volume form). It is well known in the physics
literature that this is the space of physical closed states.

Definition 3.3. The category of B-branes for an affine LG model .X;W / is the
dg-category

Br.X;W / ´ Perf.OX ; W /

of perfect cdg-modules over the curved algebra .R;W /. Of course a finitely-generated
projective OX -module is exactly a finite-rank vector bundle on X .

Since OX has no odd graded part it follows that a brane M splits as a direct sum
Mev ˚Mod whereMev (respectivelyMod) is the sum of all factors that are shifted by
an even (respectively odd) integer, and dM exchanges these two factors.

If X D Cn, and we work with a Z2-grading, then since all vector bundles are
trivial a B-brane M is described by a pair of polynomial matrices d od

M and d ev
M such

that d ev
Md

od
M D d od

M d
ev
M D W 1. This is a ‘matrix factorization’ of W .

As discussed in the introduction, Br.X;W / is supposed to be the open sector of
the B-model TCFT constructed from .X;W /. If this is true, the canonical closed
sector would be the Hochschild complex of Br.X;W /, and we expect that the closed
state space .�X ; ^ dW / is quasi-isomorphic to C�.Br.X;W //. However, all we
can prove is that it is quasi-isomorphic to the Borel–Moore Hochschild complex of
Br.X;W /, as we will now show.

In Theorem 2.14 we constructed a quasi-isomorphism between the Borel–Moore
Hochschild complexes of Br.X;W / and of the curved algebra .OX ;�W /. To get to
the closed state space, we use the map

� W O˝kC1
X ! �k

X ; f0 ˝ � � � ˝ fk 7! 1

kŠ
f0df1 ^ � � � ^ dfk; (3.1)

Using the definition (2.2) of the Hochschild differential, it is elementary to check that
� gives a chain map from the (either standard or Borel–Moore) Hochschild complex
of .OX ;�W / to the closed state space of .X;W /. WhenW D 0, the famous theorem
of Hochschild, Kostant and Rosenberg [12] says that � is a quasi-isomorphism

� W C�.OX / ��!� �X :
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When W ¤ 0, Căldăraru and Tu have shown [3], Thm. 4.2, that it instead gives a
quasi-isomorphism

� W C…
� .OX ;�W / ��!� .�X ; dW ^ /

from the Borel–Moore Hochschild complex. Note that for their theorem they assume
that W has isolated singularities, however if one wants only this statement then that
is unnecessary because the boundedness of �X alone causes the degeneration of the
relevant spectral sequence (see the proof of Proposition 2.13).

Corollary 3.4. The Borel–Moore Hochschild complex of Br.X;W / is quasi-isomor-
phic to the closed state space of .X;W /, under the map

� B Tr BTd W C…
�
.Br.X;W // ��!� �

�

X :

We can write this quasi-isomorphism explicitly by unpacking Theorem 2.14. Let
M0; : : : ;Mk be B-branes, with curved differentials D0; : : : ;Dk , and suppose we
have morphisms

M0

˛0�! M1

˛1�! � � � ˛k�1���! Mk

˛k�! M0

each of homogeneous degree. In order that the generalized trace map is defined, we
have to explicitly write each Mi as a summand of a trivialized free vector bundle, so
each Di and ˛i is a matrix of elements of OX . Then the element

˛0 ˝ � � � ˝ ˛k 2 C…
� .Br.X;W //

maps to P
s0;:::;sk�0

Tr.˛0 ˝ .D1/
˝s1 ˝ ˛1 ˝ .D2/

˝s2 ˝ � � � ˝ ˛k ˝ .D0/
˝s0/

in C…
� .OX ;�W /. Applying � to this gives us

X
s0;:::;sk�0

.�1/�
.k C s0 C � � � C sk/Š

Tr.˛0.dD1/
s1d˛1.dD2/

s2 : : : d˛k.dD0/
s0/ (3.2)

in�X . When we write dDi or d˛i here we mean the matrices of one forms obtained
by applying d to each entry in Di or ˛i , we are then multiplying these matrices
together (over the ring �X ) and taking the supertrace. To get this expression we are
using the form (2.4) of the sign in Tr, which is valid since OX is concentrated in even
degrees. The sign .�1/� is given by

� D
lk C P

si

2

m
C

kP
iD1

.s1 C � � � C si C i/.j˛i j C 1/:

The Hochschild complex is a sub-complex of the Borel–Moore Hochschild complex,
so by restriction we have a chain map

� B Tr BTd W C�.Br.X;W // ! �X : (3.3)
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It should follow from [21], Cor. B, that the inclusion of the Hochschild complex
into the Borel–Moore Hochschild complex is a quasi-isomorphism, provided that one
can verify the necessary generation condition on the category. This would imply that
(3.3) is also a quasi-isomorphism. In the Z2-graded case the generation condition
holds [16], but we must additionally require that the singular locus ofW is contained
in W �1.0/.

3.2. The Kapustin–Li formula. Suppose that W has isolated singularities. In this
case Br.X;W / should be a Calabi–Yau dg-category, and hence give the open sector
of a TCFT, as we discussed in the introduction. This is rather delicate, it means that
for all M;N 2 Br.X;W / we have a closed pairing

Hom.M;N /˝ Hom.N;M/ ! C

which is symmetric and non-degenerate on homology. It has been known for a
long time that the homotopy category of Br.X;W / admits a non-degenerate pairing
because of Auslander–Reiten duality [1], but this argument is non-constructive and
does not give a chain-level pairing.

Using path-integral methods, Kapustin and Li [13] derived a formula for a ‘trace
map’

End.M/ ! C

for any B-braneM 2 Br.X;W /. This induces a chain-level pairing, and Dyckerhoff
and Murfet have shown [8] that this is homologically non-degenerate. Unfortunately,
it is not symmetric at the chain level.

Physically, what Kapustin and Li compute is the 1-point correlator of an open
string state ˛ inserted on the boundary of a disc, as in Figure 1(a). We can factor this
into two stages: if we cut the disc into an annulus and a smaller disc as indicated,
then we can firstly propagate ˛ to a closed string state living on the inner boundary
of the annulus, and then take the correlator over the smaller disc.

The propagator over the annulus is called the boundary-bulk map. If assume
that the closed state space is the Hochschild complex of Br.X;W / then this map is
tautological, it is the inclusion of End.M/ into the Hochschild complex.

More generally, there are ‘n-point boundary-bulk maps’, which are the propaga-
tors over annuli with n open states inserted on the boundary, as in Figure 1(b). There
is a slight subtlety here: in these propagators we are varying the complex structure
on the worldsheet, but only over a cell of dimension n � 1 in the moduli space of
complex structures [6]. Again, if the closed state space is the Hochschild complex
then these maps are tautological, they map a composable set of morphisms ˛0, …,
˛n�1 to the Hochschild chain ˛0 ˝ : : : :˝ ˛n�1. To get something non-tautological,
we can apply our chain map from Corollary 3.4 to these Hochschild chains, and get
elements in �X . The second stage is take the correlator over the disc with a closed
state inserted on the boundary. Vafa [23] argued that this is given by the residue map

ResW W �X ! C
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Figure 1. Correlators over discs.

which takes a form to the sum of its residues at the singularities ofW . This vanishes
on the image of ^dW (e.g. [10], III.9), so it gives a closed element of the dual of the
closed state space.

Corollary 3.5. We have a closed element of the dual of C�.Br.X;W / (i.e., a Hoch-
schild cocycle), given by ResW B � B Tr BTd .

Applying this to a single endomorphism ˛ of a B-brane .M;D/, we get (using
(3.2))

h˛idisc D .�1/d n
2 e

nŠ
ResW .Tr.˛.dD/n//: (3.4)

Kapustin and Li work in the case X D Cn, where the residue map can be written as
a contour integral

ResW .!/ D 1

.2	i/n

I
!Q

i @iW
;

where the integral is taken over a union of Lagrangian tori enclosing the singularities
of W . In this case (3.4) becomes their formula, except that we have a correction to
the sign. This agrees with the sign-correction found in [8].

Thus we have recovered the Kapustin–Li trace map as the lowest-order term of a
Hochschild cocycle on Br.X;W /. This solves, in some sense, the issue with chain-
level symmetry, by use of the technology from [15], Sect. 10, and [5] (see also [8],
Sect. 5.2, for a discussion of this point). Any negative cyclic cocycle (and in particular,
any Hochschild cocycle) gives rise to a cyclic two-form on the noncommutative space
underlying Br.X;W /. This two-form is called ‘symplectic’ if its constant part gives
a homologically non-degenerate pairing, which is true in our case by Dyckerhoff
and Murfet’s theorem. A symplectic two-form is the homotopy-invariant notion of a
cyclic Calabi–Yau pairing, and furthermore any symplectic form can be made constant
by an appropriate A1-automorphism. We conclude that there is an alternative (but
equivalent)A1-structure on Br.X;W /with respect to which the Kapustin–Li formula
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defines a cyclic Calabi–Yau pairing. In [4] the problem of explicitly determining this
structure is addressed.

3.3. Orbifolds. We obtain more interesting and important examples of affine Landau–
Ginzburg B-models if we allow the underlying space X to be an orbifold, i.e., we
take a quotient stack

X D ŒY=G�

whereG is a finite group acting on a smooth affine variety Y , and add a superpotential
W which is a G-invariant function on Y . In this section we show how to adapt our
results to this setting.

The natural definition of the category of B-branes on .X;W / is the category of
G-equivariant B-branes on .Y;W /, but we can recast this. Recall that the twisted
group ring

A ´ OY Ì CŒG�

is the vector space OY ˝ CŒG� with multiplication

.y1 ˝ g1/ B .y2 ˝ g2/ D .y1g1.y2/˝ g1g2/:

A inherits a grading and a superpotentialW ˝1 fromR, making it a noncommutative
curved algebra (the curvature is central sinceW is invariant). It is elementary to show
that

Br.X;W / ´ Perf.A;W /:

Example 3.6. Let X D ŒC2=Z2� where Z2 acts with weight 1 on each co-ordinate.
We define a C	 R-charge action by letting C	 also act with weight 1 on each co-
ordinate. Notice that �1 2 C	 does indeed act trivially on the orbifold (although not
on C2). Let x and y be the two co-ordinates, and let W D x2 � y2.

The twisted group ring is A D CŒx; y� Ì CŒZ2�. Let � be the generator of Z2,
then we have a complete pair of orthogonal idempotents

e0 D 1

2
.1C �/; e1 D 1

2
.1 � �/; eiej D ıij :

This means we can write A as a quiver algebra (with relations) using e1, e2 as nodes.
Every equivariant vector bundle on C2 is a direct sum of the two line bundles O

and O.1/ associated to the two characters of Z2. These correspond to the projective
A-modules Ae0 and Ae1. One example of a brane is given by O ˚ O.1/ with
endomorphism �

0 x C y

x � y 0

�
:

This corresponds to the trivial A-module A with endomorphism

e0.x C y/e1 C e1.x � y/e0 D x � y�:
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Theorem 2.14 gives us a quasi-isomorphism between C…
� .Br.X;W // and

C…
� .A;�W /. As in the non-orbifold case, we can further map to a more geometric

model for this complex.
For each g 2 G, we can consider the fixed locus Y g , and the restriction Wg of

W to it.

Definition 3.7. The (off-shell) closed state space of the affine orbifold LG B-model
.ŒY=G�;W / is the chain-complex of coinvariants

� L
g2G

.�
�

Y g ; dWg ^ /
�
=G:

There is a chain map  from C…
� .A;�W / to this closed state space, defined as

follows. We first map

.y0 ˝ g0/˝ .y1 ˝ g1/˝ : : : :˝ .yk ˝ gk/ 2 A˝kC1

to

y0 ˝ g0.y1/˝ � � � ˝ g0g1 : : : gk�1.yk/ 2 O˝kC1
Y :

We map this to O˝kC1
Y g by restriction, and then to �Y g using the map � from (3.1).

We get  by taking the direct sum over g and taking coinvariants.
When W D 0, Baranovsky [2] has shown this is a quasi-isomorphism from the

Hochschild complex C�.A/, and whenW ¤ 0 Căldăraru and Tu [3] have shown that
it is a quasi-isomorphism from the Borel–Moore Hochschild complex.

Corollary 3.8. The Borel–Moore Hochschild complex of Br.ŒY=G�;W / is quasi-
isomorphic to the closed state space of .ŒY=G�;W /, under the map  B Tr BTd .

If W has isolated singularities, we can define a residue map on the closed state
space by taking the sum over g of

ResWg
W ��

Y g ! C

since this is clearly well defined on the coinvariants. Then as in the non-orbifold case
we get a Hochschild cocycle on Br.ŒY=G�;W /.
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