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Abstract. We construct a ‘non-unital spectral triple of finite volume’ out of the Moyal product
and a differential square root of the harmonic oscillator Hamiltonian. We find that the spectral
dimension of this triple is d but the KO-dimension is 2d . We add another Connes–Lott copy
and compute the spectral action of the corresponding Yang–Mills–Higgs model. As result,
the ‘covariant coordinate’ involving the gauge field combines with the Higgs field to a unified
potential, yielding a deep unification of discrete and continuous parts of the geometry.
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1. Introduction

Unlike the compact (unital) case [9] and until now, there is for complete non-compact
Riemannian spin manifolds no proper reconstruction theorem from a spectral point of
view. Thus the question of the defining ‘axioms’ for non-unital spectral triples is not
yet fully answered. However, the basic and most important ideas of modifications
for the locally compact case are clear and appeared already in Connes’ founding
paper [7]. The case of the ordinary Dirac operator of a locally compact complete
Riemannian spin manifold manifests that one cannot assume the resolvent of the
Dirac type operator underlying a locally compact (non-unital) spectral triple to be a
compact operator. The natural replacement is to ask that the ‘localized resolvent’,
i.e., the resolvent multiplied with an element of the algebra, is a compact operator.
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Another issue, explained in depth in [18], is the choice of a unitization of the algebra.
This choice is constrained by the orientability condition, which in the unital case (and
with an integral metric dimension) is the question of the existence of an Hochschild
cycle defining a volume form through the noncommutative integral given by the
Dixmier trace. Again, commutative but locally compact examples show that this has
to be a Hochschild cycle on a specific unitization of the algebra we start with, but
not on the algebra itself. With these two main modifications (compactness of the
localized resolvent and existence of a preferred unitization), most of the conditions
for a non-unital spectral triple are easy to spell out. Only the Poincaré duality remains
unclear to formulate. To help the reader with this discussion, in the appendix we have
reproduced the modified conditions for non-unital spectral triples, as in given in [18]
with the only modification that the metric and KO-dimensions do not have to coincide,
according to the recent formulation of the standard model [8] and the Podleś quantum
sphere [12]. Note that these conditions are not far away from those given in [31].
However, in [18], [31] there is an extra assumption of existence of a system of local
(or quasi-local) units, akin to the local structure of a non-compact manifold. These
locality assumptions have been fully removed in a more recent joint work of one of us
[3]. However, in that work, the focus is on the index theoretical side of the notion of
a spectral triple, not on the noncommutative generalization of a spin manifold. The
definition for a non-unital spectral triple given in [3] is the minimal one, ensuring a
well-posed Fredholm index problem with a numerical index computable by means
of a local representative of the Chern character in cyclic cohomology.

The present article is devoted to the study of a situation somehow in between
the compact (unital) and non-compact (non-unital) setting. Indeed, our Dirac-type
operator has compact resolvent alone, but it does not reflect the metric dimension. It
is only the localized resolvent which exhibits the correct metric dimension. We term
this weird situation as ‘non-unital spectral triple of finite volume’. This has, at least,
one very nice feature, namely that the spectral action can be defined and computed in
the usual way. The main motivation for this example comes from noncommutative
quantum field theory.

Because of easy computability, quantum field theory on the Moyal plane is the
most-studied toy model for noncommutative quantum field theories. The ultra-
violet/infra-red mixing problems arising in these models have been solved by one
of us in [23], [24] by the introduction of a modified propagator associated with the
harmonic oscillator Hamiltonian. See also [34], [28], [29] for different renormaliza-
tion proofs. From a physics point of view, the most fascinating property of this model
is the behavior of its ˇ-function [22], [25], [15], [14], which makes it a candidate for
non-perturbatively renormalizable quantum field theory in dimension four [30], [33],
[26]. We recommend [32] for review and introduction to the literature.

In [27], one of us has sketched a possible spectral triple for Moyal space with
harmonic oscillator potential. However, it became clear very soon that working
out the mathematical details is a non-trivial issue so that the simpler commutative
case was studied first [36]. In this paper, we achieve the construction of a spectral
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triple for a suitable algebra of functions on Rd endowed with the Moyal product,
together with a Dirac operator which is a square root of the d -dimensional harmonic
oscillator Hamiltonian. Few remarks are in order. Firstly, in the same way as to find
a differential (and not pseudo-differential) square root of the ordinary Laplacian on
Rd where one has to go 2b d

2 c � 2b d
2 c matrices, to find a differential square root of

the d -dimensional harmonic oscillator Hamiltonian one has to go 2d � 2d matrices –
this is the main observation in [27]. The second important remark has to do with the
choice of the function algebra with Moyal product. Indeed, there are many non-unital
Fréchet algebras of functions with Moyal product that one may use while respecting
most of the non-unital spectral triple conditions. But there is only one for which the
finiteness axiom is satisfied for a Dirac-type operator given by a square root of the
harmonic oscillator Hamiltonian, namely the algebra of Schwartz functions �.Rd /. A
similar phenomenon appeared in [18] where it has been shown that with the ordinary
Dirac operator of Rd , there is only one choice of algebra of functions with Moyal
product for which the finiteness axiom is satisfied, namely the L2-Sobolev space
W 2;1.Rd /. Lastly, the construction of a Hochschild cycle satisfying the orientability
axiom requires (see also [36]) two different differential square roots of the harmonic
oscillator Hamiltonian, not only one.

The paper is organized as follows. In Section 2, we introduce two spectral triples
with common algebra A? given by the set of Schwartz functions �.Rd / with Moyal
product, and two different differential square roots of the harmonic oscillator Hamil-
tonian acting densely on H ´ L2.Rd /˝C2d

. The rest of the section is then devoted
to prove that these spectral triples are regular, that the metric dimension is d , the KO-
dimension is 2d and that the dimension spectrum Sd is d � N. In Section 3, we
specialize to the case d D 4 and after having proven a heat-kernel expansion result
adapted to our particular situation, we explicitly compute the spectral action for a
Higgs model.

2. The harmonic oscillator spectral triple for Moyal space

We consider two Moyal-type deformations .A?;D�;H /, • D 1; 2, of the (commuta-
tive) d -dimensional harmonic oscillator spectral triple introduced in [36]. In order
to implement the Moyal product, the dimension d must be even.

2.1. An isospectral deformation. OnL2.Rd /, we introduce the (unbounded) boso-
nic creation and annihilation operators

a� ´ @� C z�x�; a�
� ´ �@� C z�x�; � D 1; : : : ; d;

satisfying the commutation relations Œa�; a� � D Œa�
�; a

�
� � D 0 and Œa�; a

�
� � D 2 z�ı�� .

Here, Q� > 0 is a frequency parameter. It is the same as! in [36], related to� in [24],
[27] by z� D 2�

�
for a special choice of the Moyal deformation matrix, but preferred



942 V. Gayral and R. Wulkenhaar

in the general case. On the exterior algebra
V
.Cd /, we introduce fermionic partners

b�; b
�
� which fulfill the anticommutation relations fb�; b�g D fb�

�; b
�
� g D 0 and

fb�; b
�
� g D ı�� . Then, on the Hilbert space

H ´ L2.Rd /˝V
.Cd / ' L2.Rd /˝ C2d

;

these operators give rise to two selfadjoint operators

D1 ´ Q1 C Q�
1; D2 ´ iQ2 � iQ�

2; (1)

constructed out of the nilpotent supercharges

Q1 ´ a� ˝ b��; Q�
1 ´ a�

� ˝ b�; Q2 ´ a� ˝ b�; Q�
2 ´ a�

� ˝ b��;

where Einstein’s summation convention is used. Indices are raised or lowered by the
Euclidean metric ı�� or ı�� , respectively. The (anti-)commutation relations imply
for • 2 f1; 2g

D2
�

D H ˝ 1 � .�1/� z�˝†;

H ´ 1
2
fa�; a�

�g D �@�@
� C z�2x�x

�; † ´ Œb�
�; b

��:
(2)

We identify H as the Hamiltonian of the d -dimensional harmonic oscillator with
frequency z�. Its spectrum is f�n D z�.d

2
C n/, n 2 Ng, where the eigenvalue

�n appears with multiplicity
�

nCd�1
d�1

�
. Then Tr.H�.dC"// � z��.dC"/

.d�1/Š

P1
nD0.n C

d
2
/�.1C"/ < 1, and from the boundeness of†, it follows that .jD�jC1/�z , • D 1; 2,

is trace-class for Re.z/ > 2d .

Remark 1. Our choice of D2 differs from [36]. One should take D2 from (1) also for
the commutative case to view our spectral triple as isospectral deformation. As seen
in the next, the choice (1) is required by the orientability axiom. The commutative
version is somehow degenerate and does not detect the sign of the frequency in (2).

We now wish to implement the Moyal product ? in this picture:

f ? g.x/ D
Z

Rd �Rd

dy dk

.2�/d
f .xC1

2
‚ � k/ g.xCy/ eihk;yi; (3)

parametrized by an invertible skew-symmetric matrix ‚t D �‚ 2 Md .R/. We
first need to find out which algebra A? of functions (or distributions) with Moyal
product to use. For that aim, observe that the finiteness condition alone dictates the
choice of the topological vector space underlying the algebra A?. Indeed, from (2)
we conclude for • D 1; 2 that

H1 ´ T
m�0

dom.Dn
�
/ D �.Rd /˝V

.Cd / ' �.Rd ;C2d
/;

which is required to be a finitely generated projective module over the algebra of the
spectral triple. Thus this naturally leads us to the choice A? ´ .�.Rd /; ?/, with
even d .
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Remark 2. For the ordinary Dirac operator on the trivial spin bundle of Rd , the set

of smooth spinors is isomorphic toW 2;1.Rd /˝ C2
b d

2
c

. In this case, the topological
vector space underlying the choice of the algebra is theL2-Sobolev spaceW 2;1.Rd /.
Note that the latter is stable under the Moyal product too, and that this is the choice
made in [18].

Here are the main properties of the Moyal product we will use later on (for more
information see [18]). First is strong closednessZ

f ?g.x/ dx D
Z
f .x/g.x/ dx D

Z
g?f .x/ dx for all f; g 2 L2.Rd /: (4)

Then we have the Leibniz rule

@�.f ? g/ D @�f ? g C f ? @�g (5)

and the following identities

ff; x�g? ´ x�?f Cf ?x� D 2x�f; Œx�; f �? ´ x�?f �f ?x� D i‚��@�f;

(6)
both holding for f; g 2 A?. Finally, there is the (non-unique) factorization property
[20], p. 877:

for all f 2 A? there exist g; h 2 A? such that f D g ? h: (7)

Following [18], we then specify the preferred unitization B? of A?, as the space
of smooth bounded functions on Rd with all partial derivatives bounded. The Moyal
product (3) extends to B?, and A? � B? is an essential two-sided ideal, [18],
Theorem 2.21, but is not dense. The reason why we chose this particular unitization
is that B? contains the plane waves and constant functions (but no other non-constant
polynomials) and this is crucial for the orientability condition (see Section 2.3). Note
that the C �-completion of B? is

A? ´ fT 2 � 0.Rd / j T ? f 2 L2.Rd / for all f 2 L2.Rd /g:
Indeed, according to [18], Theorem 2.21, A? coincides via the Weyl quantization
map, with the von Neumann algebra of all bounded operators onL2.R

d
2 /. Moreover,

by the Calderón–Vaillancourt Theorem [2], B? is contained (still via the Weyl map) in
A?. But the Beals–Cordes characterization [1], [11] says that B? is exactly the set of
bounded operators which are smooth for the irreducible Schrödinger representation
of the Heisenberg group. We conclude using a result of Dixmier and Maillavin
[16], which in this context says that the set of smooth operators for the Schrödinger
representation is dense in A?.

Therefore, A? acts on H by componentwise left Moyal multiplication, that we
denote by L?:

L? W A? � H ! H ; .f;  ˝m/ 7! .f ?  /˝m;
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for  2 L2.Rd / and m 2 V.Cd /. In particular, we have the bounds [18]:

kL?.f /k � C.‚/ kf k2; f 2 A?;

kL?.f /k � C 0.‚/ sup
j˛j�dC1

k@˛f k1; f 2 B?:
(8)

We also define the (anti-)action R? of A? on H by componentwise right Moyal
multiplication:

R? W A? � H ! H ; .f;  ˝m/ 7! . ? f /˝m:

Since the complex conjugation is an involution of the algebra A?, and from the
traciality of the Moyal product (4), we get L?.f /

� D L?. Nf /, R?.f /
� D R?. Nf /.

Moreover, this also shows that the two representations L? and R? have the same
norms:

kL?.f /k D kR?.f /k for all f 2 A?:

To avoid too many notations, L?, R? will also denote the left and right actions of A?

and B? on L2.Rd /.
We now check that our spectral triple .A?;H ;D�/, • D 1; 2, defines a non-unital

spectral triple with spectral dimension d and KO-dimension 2d , in the sense of
Definition 25 in the Appendix.

2.2. Boundedness andcompactness. From (6), we obtain forf 2 B? on dom.D�/:

ŒD1; L?.f /� D L?.i@�f /˝ ��;

ŒD2; L?.f /� D L?.i@�f /˝ ��Cd ;
(9)

where �� ´ .ib� � ib��/ � 1
2

z�‚��.b� C b�
� / and ��Cd ´ .b� C b��/ �

1
2

z�‚��.ib� � ib�
� /. As @�f 2 B?, the commutator ŒD�; L?.f /� extends to a

bounded operator. It is a remarkable property of the Moyal algebra that just the
d -dimensional differential of f appears, no x-multiplication.

For the compactness condition, there is not much to say as .D� C �/�1 is, for �
not in the spectrum of D�, already a compact operator on H . Indeed, .D� C �/�1

is compact if and only if .D2
�

C 1/�1 D ..D� C i/�1/�.D� C i/�1 is, and that
follows from its spectrum governed by H . Then L?.f /.D� C �/�1 is compact for
any f 2 A?, even for f 2 B?.

2.3. Orientability. Note first that the operators ��, ��Cd defined by (9) satisfy the
anticommutation relations

f��; ��g D f��Cd ; ��Cd g D 2 .g�1/�� ; f��; ��Cd g D 0;

where the symmetric matrix g 2 GL.d;R/ is defined by

g ´ .Idd � 1
4

z�2‚2
��1

(10)
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and plays the role of an effective metric. Note that ‚2 D �‚t‚ is negative definite
so that

.1C 1
4

z�2k‚k2/�1Idd � g � Idd :

We will frequently use that‚, g, g�1 commute with each other. Raising and lowering
of summation indices will always be performed with the Euclidean metric ı�� , ı�� .

Thus the f�1; : : : ; �2d g generate a Clifford algebra of double dimension 2d . The
inverse transformation of (9) reads

ib� � ib�
� D g��.�

� C 1
2

z�‚����Cd /; b� C b�
� D g��.�

�Cd C 1
2

z�‚����/:

Therefore, we can express D1 in terms of f�1; : : : ; �2d g, but not in terms of the half
set of operators f�1; : : : ; �d g produced by the commutator of D1 with B?. Similar
comments apply for D2. In conclusion, we get

D1 D i@� ˝ g��.�
� C 1

2
z�‚����Cd /C z�x� ˝ g��.�

�Cd C 1
2

z�‚����/;

D2 D i@� ˝ g��.�
�Cd C 1

2
z�‚����/C z�x� ˝ g��.�

� C 1
2

z�‚����Cd /:

(11)

General results for Clifford algebras then show that any element of the Clifford algebra
which anticommutes with every �� and ��Cd is a multiple of the anti-symmetrized
product of the generators f�1; : : : ; �2d g. Therefore, a grading operator commutating
with D1 cannot be found in the algebra generated byL?.f /,R?.f / and ŒD1; L?.f /�,
so that a (generalized) implementation of the orientability axiom requires both Dirac-
type operators D1, D2.

Let u� ´ e�ix� 2 B?. We know from [18] that the element

c ´
X

�2Sd

".�/
i

d.d�1/
2

p
det g

dŠ
..u1 ? � � � ? ud /

�1 ˝ 1/˝ u�.1/ ˝ : : : u�.d/

is a Hochschildd -cycle for the algebra B?, with values in B?˝Bo
?. (In the expression

of c, the inverse is with respect to the?-product and the scaling by
p

det g is irrelevant
for cyclicity.) For �D�

defined in the orientability definition in the Appendix, we then
obtain from (9)

�1 ´ �D1
.c/ D

p
det g

dŠ
i

d.d�1/
2

X
�2Sd

".�/˝ ��.1/ : : : ��.d/;

�2 ´ �D2
.c/ D

p
det g

dŠ
i

d.d�1/
2

X
�2Sd

".�/˝ ��.1/Cd : : : ��.d/Cd ;

and they satisfy the relations

�2
1 D 1 D �2

2 ; ��
1 D �1; ��

2 D �2; �1�2 D .�1/d �2�1:
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The Clifford algebra relations together with (9) then lead to

TrV.Cd /.��L?.f0/ŒD�; L?.f1/� : : : ŒD�; L?.fd /�/

D i� d.d�3/
2 2d

dŠ
p

det g

X
�2Sd

".�/L?.f0 ? @�.1/f1 ? � � � ? @�.d/fd /:

Together with the Dixmier trace formula derived later in Theorem 14 it follows that
c satisfies the orientability conditions. Recall that in the unital case, �D.c/ is the
grading operator which anticommutes with D . As explained above, this is not the
case in our example, neither in the commutative example studied in [36]. But we
can realize the grading operator in the algebra generated by both spectral triples
.A?;D1;H / and .A?;D2;H / by defining

� ´ .�i/d �1�2 D .�i/d�D1
.c/�D2

.c/: (12)

Since �1, �2 commute with every element of A? or B?,� does too, and the discussion
above shows that

�2 D 1; fD�; �g D 0; • D 1; 2:

Hence, � defines the grading operator for the two spectral triples .A?;H ;D�/, • D
1; 2. We stress that the necessity of the two Dirac operators D1,D2, is quite different
from conventional spectral triples [9] where a single operator is needed.

Note also that from the explicit formulae of D�, (up to a possible sign) one has the
relation � D 1˝ .�1/Nf in terms of the fermionic number operator Nf D b�

�b
�.

2.4. KO-dimension and other algebraic conditions. The real structure is an anti-
linear isometry J on H . We assume that for d even the KO-dimension k is even,
too. Then according to the sign table in the Appendix we have

JD� D D�J; • D 1; 2:

This is achieved by the following non-trivial action on the matrix part of H ,

Ja�J
�1 D a�; Ja�

�J
�1 D a�

�; J b�J
�1 D b�

�; J b�
�J

�1 D b�; (13)

where we have omitted tensor products with 1. In particular, conjugation by J
preserves the (anti-)commutation relations. We can view

V
.Cd / as generated by

repeated action of fb�
�g on the vacuum vector j0i defined by b�j0i D 0. It then

follows that, up to a prefactor of modulus 1 which cancels in every relation of the
dimension table, J is the Hodge-� operator on

V
.Cd /, i.e., is uniquely defined by

J j0i D b�
1b

�
2 : : : b

�
d j0i;

together with (13) and the anti-linearity J.z / D NzJ . In particular, J B L?.f / B
J�1 D R?.f /, which implements the opposite algebra and achieves the order-one
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condition:

ŒJL?.f1/J
�1; L?.f2/� D 0;

ŒJL?.f1/J
�1; ŒD�; L?.f2/�� D 0 for all f1; f2 2 B?:

To compute J 2 we consider, for �1 < �2 < � � � < �k ,

J.b�
�1
: : : b�

�k
j0i/ D b�1

: : : b�k
b�

1b
�
2 : : : b

�
d j0i D .�1/

Pk
j D1.�j �1/b�

1

�1:::�k

z: : : b�
d j0i:

The notation
�1:::�k

z: : : means that b�
�1
; : : : ; b�

�k
are omitted. We apply J again, to get

J 2.b�
�1
: : : b�

�k
j0i/ D .�1/

Pk
j D1.�j �1/J.b�

1

�1:::�k

z: : : b�
d j0i/

D .�1/
Pd

j D1.j �1/b�
�1
: : : b�

�k
j0i;

which means
J 2 D .�1/d.d�1/

2 :

From (9) it follows that J commutes with�� and��Cd . From (12) we then conclude
J� D .�1/d�J . Comparing these results with the dimension table in the Appendix,
we have proven:

Proposition 3. The spectral geometries .A?;H ;D�; �; J /, • D 1; 2, for the d -di-
mensional Moyal algebra A? are of KO-dimension 2d mod 8.

2.5. Metric dimension. Since D�, • D 1; 2, squares (up to matrices) to thed -dimen-
sional harmonic oscillator Hamiltonian, we already now that .1 C D2

�
/�d belongs

to the Dixmier ideal L1;1.H /. In this subsection we are going to prove that for the
localized operators, the critical dimension is reduced by a factor of 2, that is for all
f 2 A?, the operators L?.f /.1 C D2

�
/� d

2 belong to L1;1.H / and that any of its
Dixmier traces is a constant multiple of the integral of f . To obtain both Dixmier
traceability and the value of the Dixmier trace, we will use the results of [4]. In order
to do this, we need some preliminary Lemmas (which will also be needed to check the
regularity condition, to obtain the dimension spectrum and to compute the spectral
action).

Lemma 4. Introducing the operators on L2.Rd /,

r� ´ @� C 1
2
i z�2‚��x

� ; Qr� ´ 1
2
.@� � 2i.‚�1/��x

�/; � D 1; : : : ; d;

we have the following relations for f 2 B?:

ŒH;L?.f /� D �L?..g
�1/��@�@�f / � 2L?.@

�f /r�;

Œr�; L?.f /� D L?..g
�1/��@�f /; Œ Qr�; L?.f /� D L?.@�f /;

ŒH;r�� D �2i z�2‚��
Qr� ; ŒH; Qr�� D 2i.‚�1/��r� ;

Œ Qr�; Qr� � D i.‚�1/�� ; Œr�;r� � D �i z�2‚�� ; Œr�; Qr� � D i.g�1/��.‚�1/�� :
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Proof. This follows from the relations (2), (5) and (6).

Corollary 5. LetP˛.yr/be an element of order˛ of the polynomial algebra generated
by r, Qr. Then P˛.yr/.1CH/�˛=2 extends to a bounded operator.

Proof. From the operator inequalities (no summations on � but summation on 	)

j.1CH/�
1
2 @�j2 D �@�.1CH/�1@� � �@�.1 � @�@

�/�1@�;

and

j.1CH/� 1
2x�j2 D x�.1CH/�1x� � x�.1C z�2x�x

�/�1x�;

we see that yr�.1CH/� 1
2 is bounded. Then the general case follows by induction

using

yr�1
yr�2

.1CH/�1 D yr�1
.1CH/�1 yr�2

C yr�1
Œyr�2

; .1CH/�1�;

and
yr�1

Œyr�2
; .1CH/�1� D �yr�1

.1CH/�1Œyr�2
;H �.1CH/�1;

which is bounded, too, according to Lemma 4.

The following proposition will be crucial for the computation of the spectral
action, for the estimate we need to evaluate the Dixmier trace and to compute the
dimension spectrum and the residues of the associated zeta functions.

Proposition 6. For f 2 B?, define T�1:::�k
.f / ´ Tr.L?.f /r�1

: : :r�k
e�tH /.

Then one has

T�1;:::�k
.f / D

X
1�j1<j2<���<j2a�k

� z�
2� sinh.2 z�t/

�d
2
Z

Rd

dz
p

det gf .z/

� e� z� tanh. z�t/hz;gzi.Z�1

j1:::j2a

z: : : Z�k
/.N�j1

�j2
: : :N�j2a�1

�j2a
/;

where

Z� ´ � z� tanh. z�t/z� C i z�2.‚gz/�;

N�� ´ �1
2

z�.coth. z�t/C tanh. z�t//.g�1/��

� 1
2

z�3 coth. z�t/.‚g‚/�� � 1
2
i z�2‚�� ;

and
j1:::j2a

z: : : means that fZ�j1
; : : :Z�j2a

g are omitted in the product Z�1
: : :Z�k

.

(Remember that g is a constant metric so that
p

det g can also be taken in front of
the integral.)

In particular,
Tr.e�tH / D .2 sinh. z�t//�d :
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Proof. Since L?.f /r�1
: : :r�k

e�tH is trace-class (because r�1
: : :r�k

e�tH=2 is
bounded by Corollary 5 and e�tH=2 is trace-class), the trace can be evaluated as the
integral of the kernel on the diagonal. Thus, in integral kernel representation, we
have to compute

T�1;:::�k
.f / D

Z
Rd �Rd

dx dy .L?.f //.x; y/

�
@

@y�1
C i

2
z�2‚�1�1

y�1

�
: : :

: : :

�
@

@y�k
C i

2
z�2‚�k�k

y�k

�
.e�tH .y; x//:

The operator kernel of e�tH is the Mehler kernel

e�tH .x; y/ D
� z�
2� sinh.2 z�t/

�d
2

e� z�
4 coth. z�t/kx�yk2� z�

4 tanh. z�t/kxCyk2

;

while the operator kernel of L?.f / is readily identified to be

L?.f /.x; y/ D 1

�d det‚

Z
Rd

dz f .z/ eihx�y;‚�1.xCy/iC2ihz;‚�1.x�y/i; (14)

where det‚ > 0 as square of the Pfaffian of an invertible skew-symmetric matrix.
We introduce u D x � y and v D x C y and

D�.u; v/ ´
z�
2

coth. z�t/u� �
z�
2

tanh. z�t/v� C i

4
z�2‚�˛.v

˛ � u˛/;

Y�� ´ �
z�
2
.coth. z�t/C tanh. z�t//ı�� � i

2
z�2‚�� ;

to obtain

T�1;:::�k
.f / D

X
1�j1<j2<���<j2a�k

� z�
2� sinh.2 z�t/

�d
2 1

.2�/d det‚

Z
dudv dz f .z/

� D�1
.u; v/

j1:::j2a

z: : : D�k
.u; v/Y�j1

�j2
: : :Y�j2a�1

�j2a

� e� 1
2 h.u;v/;Q.u;v/i�h.u;v/;.2i‚�1z;0/i

D
X

1�j1<j2<���<j2a�k

� z�
2� sinh.2 z�t/

�d
2 1

det‚
p

detQ

Z
Rd

dz f .z/

D�1
. i@

@	
; i@

@

/

j1:::j2a

z: : : D�k
. i@

@	
; i@

@

/Y�j1

�j2
: : :Y�j2a�1

�j2a
E
ˇ̌
	D
D0

;

where E ´ e� 1
2 h.�2z‚�1C	;
/;Q�1.2‚�1zC	;
/i and Q 2 M2d .C/ is given by

Q D
 z�

2
coth. z�t/Idd �i‚�1

i‚�1 z�
2

tanh. z�t/Idd

!
:
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Recalling that g�1 D 1� z�2

4
‚2 and g‚ D ‚g, we find by writing Q as product of

triangular matrices

detQ D 1

det g.det‚/2
; Q�1 D

 
� z�

2
tanh. z�t/g‚2 �ig ‚
ig‚ � z�

2
coth. z�t/g‚2

!
;

so that

E D expf� z� tanh. z�t/hz; gzi � z� tanh. z�t/hz; g‚
i � 2ihz; g�i
C z�

4
tanh. z�t/h
;‚g‚
i C ih
;‚g�i C z�

4
coth. z�t/h�;‚g‚�ig;

D�.
i@
@	
; i@

@

/E D .i z�2.‚gz/� � z� tanh. z�t/z� C i

z�2

2
.‚g‚
/�

� z� coth. z�t/.g‚�/� C z�
2

coth. z�t/.‚�/�
� z�

2
tanh. z�t/.‚
/�/E:

Then the functions

Z� ´ E�1D�.
i@
@	
; i@

@

/E
ˇ̌
	D
D0

;

N�� ´ Y�� C D�.
i@
@	
; i@

@

/.E�1D�.

i@
@	
; i@

@

/E/;

take the form given in the proposition, and the assertion follows.

A very nice feature of the results of [4] is that both the questions of the Dixmier
traceability and of the value of the Dixmier trace of an operator of the form aGk are
reduced to the value of the Hilbert–Schmidt norm of the heat-type operator ae�tG�1

.
In our context a D L?.f /, G D .1 C D2

�
/�1, and all we need to do is to evaluate

the Hilbert–Schmidt norm of L?.f /e
�tD2

� .

Lemma 7. If f 2 A?, then we have

kL?.f /e
�tD2

� k2
2 D

z�d
2

�
d
2 tanh

d
2 .2 z�t/

Z
Rd

dz
p

det g Nf ? f .z/e� z� tanh.2 z�t/hz;gzi:

Proof. Since D2
�

D H ˝ 1 � .�1/� z�˝†, we have

0 � e�tD2
� D e�tH ˝ e.�1/

�
t z�†;

and thus
kL?.f /e

�tD2
� k2 D kL?.f /e

�tH k2 tr
�
e.�1/

�
2t z�†

� 1
2 :

For the matrix trace, we have

tr.e.�1/
�
t z�†/ D tr.e.�1/

�
t z�Pd

�D1.b�
�b��b�b�

�// D tr.
dQ

�D1

e.�1/
�
t z�.b�

�b��b�b�
�//:
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In the basis js1; : : : ; sd i ´ .b�
1 /

s1 : : : .b�
d
/sd j0; : : : ; 0i of C2d

, with si 2 f0; 1g, we
have

�.b�
�b� � b�b

�
�/js1; : : : ; sd i D .�1/s� js1; : : : ; sd i ;

and therefore, for both • D 1; 2,

tr.e.�1/
�
t z�†/ D 2d coshd . z�t/:

The other bit, kL?.f /e
�tH k2

2 D Tr.e�tHL?. Nf ?f /e�tH / D Tr.L?. Nf ?f /e�2tH /,
has been computed in Proposition 6.

Remark 8. Since for f 2 A?, Nf ?f is a priori not a positive function, in the previous
Lemma, one may wonder why

R
dz

p
det g Nf ? f .z/ expf� z� tanh.2 z�t/hz; gzig is

positive, as it should be. This follows from the following facts: For A a positive
definite matrix commuting with‚, set gA.x/ ´ e�hx;Axi. Then a computation gives

gA ? gA D .det.1C‚tA2‚//�
1
2gB with B D 2A

1C‚tA2‚
:

It follows

expf� z� tanh.2 z�t/hz; gzig D .det.1C‚tA2‚//
1
2gA ? gA

for

A D g�1 � .g�2 � z�2 tanh.2 z�t/2‚t‚/
1
2

z� tanh.2 z�t/‚t‚
:

Note that g�2 � z�2‚t‚ D .1 � z�2‚t‚=4/2 so that A exists for all t . Using the
traciality of the Moyal product (4), we then get for the matrix A given above and up
to a positive constant:Z

dz Nf ? f .z/ expf� z� tanh.2 z�t/hz; g�1zig

D C.‚; z�; t/
Z
dz Nf ? f .z/gA ? gA.z/

D C.‚; z�; t/
Z
dz Nf ? f ? gA ? gA.z/

D C.‚; z�; t/
Z
dzf ? gA ? f ? gA.z/

D C.‚; z�; t/
Z
dzf ? gA.z/f ? gA.z/

D C.‚; z�; t/kf ? gAk2 � 0:

Moreover, it explains why L?.f /e
�tD2

� is Hilbert–Schmidt also for f in B?, since
A? is an ideal of B? and A? � L2.Rd /.
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Lemma 9. For all t > 0 and • D 1; 2, we have

Tr.e�tD2
� / D cothd . z�t/:

Proof. This is a corollary of Lemma 7 and the remark which follows it, by letting f
going to the constant unit function.

Lemma 10. If f 2 A? and t > 0, then we have the bound

kL?.f /e
�tD2

� k2 � C k Nf ? f k 1
2

1 max.1; t�d=4/;

where the constant depends only on z� and ‚.

Proof. This is a direct consequence of Lemma 7.

Lemma 11. There is C 0 > 0 such that for any f1; f2 2 A? and t > 0 one has

kL?.f1/ŒL?.f2/; e
�tD2

� �k1 � C 0t
1
2

dP
�D1

kf1k2 kL?.@�f2/e
�tD2

� =4k1:

Proof. By Lemma 9, e�tD2
� is trace class for t > 0. We use the identity

ŒeA; B� D
Z 1

0

ds
d

ds
.esABe.1�s/A/ D

Z 1

0

ds esAŒA; B�e.1�s/A; (15)

to get

L?.f1/ŒL?.f2/; e
�tD2

� � D �tL?.f1/

Z 1

0

ds e�tsD2
� ŒD2

�
; L?.f2/�e

�t.1�s/D2
� :

Hence we have

kL?.f1/ŒL?.f2/; e
�tD2

� �k1

� tkL?.f1/k
Z 1

0

ds.ke�tsD2
� =2D�k ke�tsD2

� =2ŒD�; L?.f2/�e
�t.1�s/D2

� k1

C ke�tsD2
� ŒD�; L?.f2/�e

�t.1�s/D2
� =2k1kD�e

�t.1�s/D2
� =2k/:

By spectral theory, kD�e
�tD2

� k D .2et/� 1
2 . Thus, using the relation

ŒD�; L?.f2/� D
´
iL?.@�f2/˝ ��; • D 1;

iL?.@�f2/˝ ��C4; • D 2;

we get, with kL?.f1/k � Ckf1k2 and C 0 ´ C
p
2; �e� 1

2 sup2d
�D1 k��k

kL?.f1/ŒL?.f2/; e
�tD2

� �k1

� C 0

�
t

1
2 kf1k2

dX
�D1

Z 1

0

ds s� 1
2 .1 � s/� 1

2 ke�tsD2
� =2L?.@�f2/e

�t.1�s/D2
� =2k1:
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Estimating

ke�tsD2
� =2L?.@�f2/e

�t.1�s/D2
� =2k1 �

´
kL?.@�f2/e

�tD2
� =4k1 if s 2 Œ0; 1

2
�;

ke�tD2
� =4L?.@�f2/k1 if s 2 Œ1

2
; 1�;

the result follows.

Lemma 12. Let f 2 A?. Then there exists a finite constant C.f / such that

kL?.f /e
�tD2

� k1 � C.f /max.t�
d
2 ; t

d
2 /

for all t > 0

Proof. Our strategy is to iterate a combination of the factorization property (7) with
Lemma 10 and Lemma 11 far enough so that we can bound e�"tD2

� alone in trace-norm
(i.e., without element of the algebra on both sides).

According to (7), for all f 2 A? there exist f1; f2 2 A? such that f D f1 ? f2,
giving

L?.f /e
�tD2

� D L?.f1/e
�tD2

� L?.f2/C L?.f1/ŒL?.f2/; e
�tD2

� �:

From Lemma 10 and Lemma 11 we conclude

kL?.f /e
�tD2

� k1

� kL?.f1/e
�tD2

� =2k2 ke�tD2
� =2L?.f2/k2 C kL?.f1/ŒL?.f2/; e

�tD2
� �k1

� k Nf1 ? f1k 1
2

1 k Nf2 ? f2k 1
2

1 max.t�
d
2 ; 1/

C C 0t
1
2

dP
�D1

kf1k2 kL?.@�f2/e
�tD2

� =4k1:

(16)

Iterating d -times the estimate (16) with the repeated factorization

@�1
f2 D f1;� ? f2;�; : : : ; @�kC1

f2;�1:::�k
D f1;�1:::�kC1

? f2;�1:::�kC1
;

with f1;�; f2;�; : : : ; f1;�1:::�kC1
; f2;�1:::�kC1

2 A?, we get for some constants
C0.f /; : : : ; Cd .f / depending on f and on the choice of factorization at each step:

kL?.@�f /e
�tD2

� k1 �
d�1P
kD0

Ck.f /t
k=2 max.t� d

2 ; 1/

C Cd .f /t
d
2

dP
�1;:::;�d D1

kL?.f2;�1:::�d
/e�tD2

� =4d k1:

Using Lemma 9 we get

kL?.f2;�1:::;�d
/e�tD2

� =4d k1 � kL?.f2;�1:::;�d
/k ke�tD2

� =4d k1

� C 00kf2;�1;:::;�d
k2 max.t�d ; 1/;

which completes the proof.
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Corollary 13. For any f 2 A?, the operator Œ.D2
�

C1/� d
2 ; L?.f /� is of trace class.

Proof. By factorization f D f1 ? f2, f1; f2 2 A? and Leibniz rule,

Œ.D2
�

C 1/�
d
2 ; L?.f /�

D L?.f1/Œ.D
2
�

C 1/�
d
2 ; L?.f2/� � .L?. Nf2/Œ.D

2
�

C 1/�
d
2 ; L?. Nf1/�/

�;

it suffices to show that L?.f1/Œ.D
2
�

C 1/� d
2 ; L?.f2/� is of trace class for arbitrary

f1; f2 2 A?. By spectral theory,

L?.f1/Œ.D
2
�

C 1/�
d
2 ; L?.f2/� D 1

�.d
2
/

Z 1

0

dt t
d
2 �1L?.f1/Œe

�t.D2
� C1/; L?.f2/�:

Combining Lemma 11 with Lemma 12 we obtain for a finite constant depending only
on f :

kL?.f1/Œ.D
2
�

C 1/�
d
2 ; L?.f2/�k1 � C.f /

Z 1

0

dt e�t t
d
2 �1 � t 1

2 � max.t�
d
2 ; t

d
2 /:

As the integral converges, we are done.

We have arrived at the main result of this subsection, that the spectral triple
.A?;H ;D�/ has metric dimension d and not 2d (remember that d is even).

Theorem 14. For f 2 A?, • D 1; 2, the operator L?.f /.1 C D2
�
/� d

2 belongs to
L1;1.H / and for any Dixmier trace Tr! , we have

Tr!.L?.f /.1C D2
�
/�

d
2 / D 1

�
d
2 .d

2
/Š

Z
dx
p

det g f .x/:

Proof. We use the factorization property (7) to write f D f1 ?f2 with f1; f2 2 A?,
which gives

L?.f /.1C D2
�
/�

d
2

D L?.f1/.1C D2
�
/�

d
2 L?.f2/C L?.f1/ŒL?.f2/; .1C D2

�
/�

d
2 �:

First, by Corollary 13, L?.f1/ŒL?.f2/; .1 C D2
�
/� d

2 � is trace class, in particular it
belongs to L1;1.H /. Then by Lemma 7 we get that Tr.L?.f /e

�tD2
� L?.f // �

Ct� d
2 , for all f 2 A?. This implies by [4], Theorem 4.4, thatL?.f / 2 B� .jD�j� 1

2 /

(see [4], Definition 4.2 and Proposition 4.3, for the definition of B� .jD�j� 1
2 /). Then

[4], Proposition 4.8, ensures that L?.f1/.1C D2
�
/� d

2 L?.f2/ belongs to L1;1.H /.

Therefore, L?.f /.1 C D2
�
/� d

2 is Dixmier-trace-class too, and any of its Dixmier

trace coincides with those of L?.f1/.1C D2
�
/� d

2 L?.f2/.
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Using a polarization identity, it suffices to compute

Tr!.L?. Nf /.1C D2
�
/�

d
2 L?.f //;

for f 2 A?. Note that

lim
s!1C

.s � 1/Tr.L?. Nf /.1C D2
�
/�

ds
2 L?.f //

D lim
s!1C

s � 1
�.ds

2
/

Z 1

0

dt e�t t
ds

2�1 Tr.L?. Nf /e�tD2
� L?.f //

D lim
s!1C

s � 1
�.ds

2
/

Z 1

0

dt e�t t
d.s�1/

2�1
. z�t/d

2

�
d
2 tanh

d
2 . z�t/

�
Z
dz
p

det g Nf ? f .z/ e� z� tanh. z�t/hz;gzi

D 1

�
d
2

lim
s!1C

.s � 1/�.d.s�1/
2

/

�.ds
2
/

Z
dz
p

det g Nf ? f .z/:

Now [4], Proposition 5.13, which relies on Corollary 13, gives for any Dixmier trace

Tr!.L?. Nf /.1C D2
�
/�

d
2 L?.f // D 1

�
d
2 .d

2
/Š

Z
dx
p

det g Nf ? f .x/:

This is all what we needed to prove.

2.6. Regularity and dimension spectrum. Our next task is to check the regular-
ity condition. For that we relate the unbounded operator ı� defined by ı�.T / ´
ŒhD�i; T �, with hD�i ´ .D2

�
C 1/

1
2 , to the unbounded operator R� defined by

R�.T / ´ ŒD2
�
; T �hD�i�1:

From the spectral representation of a positive operator A:

A D 1

�

Z 1

0

d��� 1
2

A2

A2 C �
;

we get the identity

ı�.T / D 1

�

Z 1

0

d��
1
2

1

hD�i2 C �
ŒhD�i2; T �

1

hD�i2 C �
:

Commuting ŒhD�i2; b� with .hD�i2 C �/�1 to the left, we get after some re-arrange-
ments and using

R
d��

1
2 t .t2 C �/�2 D �=2:

ı�.T / D 1
2
R�.T / � 1

�

Z 1

0

d��
1
2

1

hD�i2 C �
R2

�
.T /

hD�i2

.hD�i2 C �/2
:
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This suggests to introduce the map T� W B.H / ! B.H / given by

T 7! T�.T / ´ 2

�

Z 1

0

d��
1
2

1

hD�i2 C �
T

hD�i2

.hD�i2 C �/2
:

Note that this operator is contractive. Indeed

kT�k � 2

�

Z 1

0

�
1
2

.1C �/2
d� D 1:

Thus 2ı� D R� � T� B R2
�

and since T� commutes with R� (because R� commutes
with the operators of left and right multiplications by functions of hD�i), we get

2nın
�

D
nX

kD0

�
n

k

�
.�1/kT k

�
BRnCk

�
: (17)

As a corollary1 we obtain
T1

nD1 dom.ın
�
/ 	 T1

nD1 dom.Rn
�
/. With these prepara-

tions we prove:

Proposition 15. For any f 2 B? and • D 1; 2, bothL?.f / and ŒD�; L?.f /� belong
to
T1

nD1 dom ın
�
, where ı�.T / ´ ŒhD�i; T � and hD�i ´ .D2

�
C 1/

1
2 .

Proof. Let T D ŒD1; L?.f /� D ��L?.i@�f /. It follows from .ad.D2
1 //

n.��/ D
.ad. z�†//n.��/ that Rn

1.�
�/ is bounded for any n, and similarly for Rn

2.�
dC�/.

Since T� is contractive, it follows from (17) that ın
1 .�

�/ and ın
2 .�

dC�/ are bounded.
Hence, it suffices to show L?.f / 2 T1

nD1 dom.Rn
�
/. Since D2

�
D H � .�1/� z�†

and because † commutes with H and with L?.f /, we get

Rn
�
.L?.f // D hD�i�n.ad.H//n.L?.f //

Now Lemma 4 shows that .ad.H//n.L?.f // can be written as a sum of terms of the
form yrkL?.fk/ with fk 2 B? and k � n, where yr is r or Qr. Then one concludes
using Corollary 5.

In the next and in analogy with the regularity condition, we will prove that one
can determine the dimension spectrum with the operator R� instead of ı�.

Proposition 16. Suppose that b belongs to the polynomial algebra generated by
ın

�
.A?/ and ın

�
.ŒD�A?�/. Let �b.z/ ´ Tr.bhD�i�z/, defined on the open half

plane Re.z/ > 2d . Then, for all M 2 R, �b is a finite sum of terms of the form
Tr.Rn1

�
.b1/ : : : R

nk
�
.bk/hD�i�z�m/, nj ; k;m 2 N, bj 2 A? [ ŒD�;A?�, plus a

function holomorphic on the half plane Re.z/ > M .

1In fact one has
T1

nD1 dom.ın
� / D T1

nD1 dom.Rn
� / D T1

nD1 dom.Ln
� / with L�.T / ´

hD�i�1ŒD2
� ; T �, see [3], eq. (2.8).
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Proof. According to (17), a typical element of the algebra generated by ın
�
.L?.f //

and ın
�
.ŒD�; L?.f /�/, is a finite sum of elements of the form

kQ
j D1

T
nj

� BRmj
� .bj /; bj 2 A? [ ŒD�;A?�; nj < mj 2 N:

For Re.z/ > 2d , hD�i�z is a trace class operator. Since the algebra generated by
ın

�
.L?.f // and ın

�
.ŒD�; L?.f /�/ consists by Proposition 15 of bounded operators,

bhD�i�z is trace class for Re.z/ > 2d and any b in this polynomial algebra. For the
same reason, the function

�R;T .b1; n1; m1I : : : I bk; nk; mkI z/ ´ Tr
�Qk

j D1 T
nj

� BRmj
� .bj /hD�i�z

�
is holomorphic on the open half plane Re.z/ > 2d . Starting from the definition, we
have

kQ
j D1

T
nj

� BRmj
� .bj /

D
Z

Œ0;1�jnj

d�jnj kQ
j D1

� njQ
rj D1

.2=
/�
1
2
rj

hD�i2C�rj

�
R

mj
� .bj /

� njQ
sj D1

hD�i2

.hD�i2C�sj
/2

�
:

The next step consists in commuting for each j the R
mj
� .bj / to the left of .hD�i2 C

�rj
/�1:

�
1

hD�i2 C �j

; Rmj
�
.bj /

	
D � 1

hD�i2 C �j

Rmj C1
�

.bj /
hD�i

hD�i2 C �j

D
NjX

pj D1

.�1/pjRmj Cpj
�

.bj /
hD�ipj

.hD�i2 C �j /
pj C1

C .�1/Nj C1

hD�i2 C �j

Rmj CNj C1
�

.bj /

� hD�i
hD�i2 C �j

�Nj C1

:

(18)

Any of the resulting �-integrals is convergent, and Rn
�
.b/ is bounded for all n 2 N.

Choosing the Nj large enough, we generate as much negative powers of hD�i as
necessary to make the product of the remainder with hD�i�z a trace-class operator
for any given z with Re.z/ > M (if M gets more and more negative we need larger
and larger Nj ). The other terms integrate to

Z
Œ0;1�

d�j

.2=�/�
1
2

j hD�ipj C2

.hD�i2 C �rj
/pj C3

D �.3
2

C pj /hD�i�1�pj

p
��.3C pj /

;
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so that, up to the remainder term, which is easily seen to be holomorphic on the open
half plane Re.z/ > M ,

Qk
j D1 T

nj
� R

mj
� .bj / is a finite linear combination of

Rm1Cq1
�

.b1/hD�i�n1�q1Rm2Cq2
�

.b2/hD�i�n2�q2 : : : RmkCqk
�

.bk/hD�i�nk�qk :

The final step consists in commuting the hD�i�nj �qj to the right. If nj C qj D 2lj
is even, we use the (�j D 0)-case of (18). If nj C qj D 2lj � 1 is odd,

ŒhD�i1�2lj ; R
m0

j C1
� .bj C1/�

D hD�i�2lj ı�.R
m0

j C1
� .bj C1//C ŒhD�i�2lj ; R

m0
j C1

� .bj C1/�hD�i:
Using ı� D 1

2
.R� � T� B R2

�
/, this case is reduced to the first one. Eventually, we

conclude that, up to a remainder term, which again is easily seen to be holomorphic on
the open half plane Re.z/ > M ,

Qk
j D1 T

nj
� BRmj

� .bj / is a finite linear combination
of

R
m0

1
� .b1/R

m0
2

� .b2/ : : : R
mk
�
.bk/hD�i�m:

This concludes the proof.

We can now state the main result of this section, namely:

Theorem 17. For • D 1; 2, the spectral triple .A?;H ;D�/ has dimension spectrum
Sd D d � N. Moreover, all poles of �b.z/ at z 2 Sd are simple with local residues,
i.e., for b D ın1

�
L?.f1/ : : : ı

nk
�
L?.fk/, any residue resz2Sd�b.z/ is a finite sum of

terms of the form Z
Rd

dx x˛0 ? .@˛1f1/ ? � � � ? .@˛kfk/;

where ˛i 2 Nd . An analogous result holds when the L?.fk/’s in b are replaced by
ŒD�; L?.fk/�’s.

Proof. According to Proposition 16, it is equivalent to consider the functions

Tr.Rm1
�
.b1/ : : : R

mk
�
.bk/hD�i�z/; bi 2 A? [ ŒD�;A?�;

instead of �b.z/. These functions are well defined for Re.z/ > 2d , because Rm
�
.b/

is bounded.
Since ŒH;†� D 0, we get from the definition

Rmj
�
.bj / D

mjX
kD0

�
mj

k

�
.ad.H//k..ad. z�†//mj �k.bj //hD�i�mj :

Since bj is eitherL?.fj / or i��L?.@�fj / for • D 1 and i��CdL?.@�fj / for • D 2,
we get

.ad. z�†//mj �k.bj / D

8̂<̂
:
ık;mj

L?.fj /;

.ad. z�†//mj �k.��/L?.i@�fj /;

.ad. z�†//mj �k.��Cd /L?.i@�fj /:
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We may therefore assume that bj D MjL?.fj / with fj 2 A and Mj 2 Mat2d .C/.
Thus, the product Rm1

�
.b1/ : : : R

mk
�
.bk/ can be expressed as a finite sum of terms of

the form�
ad.H/

�n1
�
L?.f

0
1/
�
M1hD�i�m1 : : :

�
ad.H/

�nk
�
L?.f

0
k/
�
MkhD�i�mk ; nj � mj :

Using the table given in Lemma 4 we can express Rm1
�
.b1/ : : : R

mk
�
.bk/hD�i�z as a

finite sum of terms

L?.@
˛1f1/M1P˛1

.yr/hD�i�m1 : : : L?.@
˛kfk/MkP˛k

.yr/hD�i�mk hD�i�z

D 1

�.m1

2
/ : : : �.mk�1

2
/�.mkCz

2
/

Z 1

0

dt1 : : : dtk t
m1

2 �1

1 : : : t
mkCz

2 �1

k

� L?.@
˛1f1/M1P˛1

.yr/ e�t1.D2
� C1/ : : : L?.@

˛kfk/MkP˛k
.yr/e�tk.D2

� C1/;

whereP
j̨
.yr/ is a polynomial in r; Qr of degree j j̨ j � mj (the j̨ are multi-indices).

We assume here thatmj � 1 for all j , otherwise (formj D 0) we omit the tj -integral
and .�.mj

2
//�1.

Using

Œe�tj .D2
� C1/; T � D �tj

Z 1

0

dsj e
�tj sj .D2

� C1/ŒD2
�
; T �e�tj .1�sj /.D2

� C1/;

we commute all heat operators e�tj .D2
� C1/ to the right, producing in each step a factor

of tj . The commutators ŒH; T � are expressed by Lemma 4 and produce in each step
at most one derivative r. In the terms with all heat operators already on the right
we then commute the derivatives yr to the right of all functions fj but left of all heat
operators. The result is a finite sum of terms (with redefined fj , Mj )

X D
R

Œ0;1�N
ds P.s/

�.m1

2
/ : : : �.mk�1

2
/�.mkCz

2
/Z 1

0

dt1 : : : dtkt
m1

2 Cˇ1�1

1 : : : t
mk�1

2 Cˇk�1�1

k�1
t

mkCz

2 Cˇk�1

k
e�.t1C���Ctk/

� .M1 : : :Mke
.�/

� z�.t1C���Ctk/†/L?.@
�1f1 ? � � �

� � � ? @�kfk/P�1;:::;�k
.yr/e�.t1C���Ctk/H ;

(19)

with jmC ˇj � j
 j and jˇj � K (K can be chosen as big as one wishes by pushing
the expansion far enough), plus a finite sum of remainders (with redefined fj ;Mj )

Y D 1

�.m1

2
/ : : : �.mk�1

2
/�.mkCz

2
/Z 1

0

dt1 : : : dtkt
m1

2 Cˇ 0
1

�1

1 : : : t
mk�1

2 Cˇ 0
k�1

�1

k�1
t

mkCz

2 Cˇ 0
k

�1

k

�
Z

Œ0;1�N
0
ds P 0.s/

kY
j D1

L?.@
� 0

j fj /MjP� 0
j
.yr/e��j .D2

� C1/;

(20)
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with j
 0j � jmC ˇ0j and jˇ0j > K, where �j are positive functions of fsg; t1; : : : ; tk
with

Pk
j D1 �j D t1 C � � � C tk .

In (19) we can use Lemma 4 to express P� .yr/ as a finite sum of P� 0.x/P� 00.r/.
The polynomial P 0

� .x/ can (under the trace) be moved into L?.f /. We change the

variables t1 D t
Qk

lD2.1�ul/ and tj D tuj

Qk
lDj C1.1�ul/ for j � 2with Jacobian

tk�1
Qk

lD3.1 � ul/
l�2 and obtain

Tr.X/ D
R

Œ0;1�N
ds P.s/

�. jmjCz
2

C jˇj/
� k�1Y

j D1

�.
mj

2
C ǰ /

�.
mj

2
/

�
�.mkCz

2
C ˇk/

�.mkCz
2
/Z 1

0

dt e�t t
jmjCz

2 Cjˇ j�1 tr
C2d .M1 : : :Mke

.�1/
� z�t†/

� Tr.L?.x
�0 ? @�1f1 ? � � � ? @�kfk/P�1;:::;�k

.r/e�tH /:

(21)

Note that
�.

mkCz

2 Cˇk/

�.
mkCz

2 /
is a polynomial in z of degree ˇk .

The traces Tr.L?.f /r�1
: : :r�r

e�tH / are computed in Proposition 6. Accord-
ingly, they have, up to a remainder which leads to a holomorphic function in z, an
asymptotic expansion

Tr.L?.f /r�1
: : :r�j�j

e�tH / D
N 00X
aD0

t�
d
2 �Œ j�j

2 �Ca

Z
Rd

dx f .x/P a
j� j.x/;

where P a
j� j.x/ is a ?-polynomial of degree � j
 j C 2a. Inserted into (21), the t -

integral of any such term yields (together with tr
C2d .M1 : : :Mke

.�1/
� z�t†/) a linear

combination of

�. jmjC2jˇ j�2Œj� j=2�C2aCz�d
2

/

�. jmjC2ˇCz
2

/

Z
Rd

dx f .x/P a
j� j.x/:

As a function of z 2 C, the latter is trivially holomorphic in CnZ. As jmjCjˇj � j
 j,
this function is also holomorphic for z 2 N with z > d . If z D d�N forN 2 N, then
there is a finite number of parameters ǰ ; mj ; a; 
j for which jmjC2jˇ j�2Œj� j=2�C2a�N

2

is a non-positive integer smaller than jmjC2ˇCd�N
2

. Precisely these parameters yield
simple poles at z D d �N . Each residue has the claimed structure.

We estimate the remainders (20) in trace norm by

kM1k : : : kMkk
j�.m1

2
/ : : : �.mkCz

2
/j
Z 1

0

dt1 : : : dtk t
m1

2 Cˇ 0
1

�1

1 : : : t
mk�1

2 Cˇ 0
k�1

�1

k�1
t

mkCz

2 Cˇ 0
k

�1

k

�
Z

Œ0;1�N
0
ds jP 0.s/j




 kY
j D1

L?.@
� 0

j fj /e
.�1/

�
�j

z�†P� 0
j
.r/e��j .HC1/





1
:
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By spectral theory and Corollary 5, we get for p 2 Œ1;1/:

kP� 0
j
.r/e��j .HC1/kp � C."�j /

�� 0
j

=2ke�� 0
j

.HC1/.1�"/kp:

Since the �j are linear in tj with
Pk

j D1 �j D Pk
j D1 tj , setting t D Pk

j D1 tj , the
Hölder inequality gives




 kY
j D1

L?.@
� 0

j fj /e
.�1/

�
�j

z�†P� 0
j
.r/e�� 0

j
.HC1/





1

�
kY

j D1

kL?.@
� 0

j fj /k ke.�1/
�
�j

z�†kt=�j
kP� 0

j
.r/e��j .HC1/kt=� 0

j

� Ce�t.1�"/

kY
j D1

."tj /
�� 0

j
=2kL?.@

� 0
j fj /k.2 cosh. z�t//

d�j
t .2 sinh. z�t.1 � "//�

d�j
t

D Ce�t.1�"� z�"d/

� kY
j D1

."tj /
�� 0

j
=2kL?.@

� 0
j fj /k

�� cosh. z�t/
sinh. z�t.1 � "//e z�t"

�d

;

where results of Proposition 6 and Lemma 7 have been used. Hence for "0 ´
.1 � " � z�"d/ > 0 the remainders (20) are bounded in trace norm by

C 0

j�.m1

2
/ : : : �.mkCz

2
/j

�
Z 1

0

dt1 : : : dtk t
m1

2 Cˇ 0
1

�1� �0
1

2

1 : : : t
mkCz

2 Cˇ 0
k

�1� �0
k
2

k
.t1 C � � � C tk/

�de�"0.t1C���Ctk/:

Remember that j
 0j � jˇ0j C jmj and jˇ0j > K and that K can be chosen as big
as one wishes (by pushing the expansion over and over). So given M � 2d , by
choosing K > M=2C d , we see that the remainder terms are well defined as trace-
class operators for Re.z/ > M . A similar analysis involving the z-derivative of
the remainders can be done, showing that by pushing the expansion far enough, the
remainders yield holomorphic contributions for Re.z/ > M , with M 2 R arbitrary.

3. The spectral action

3.1. Generalities. For a unital spectral triple with real structure .A;H ;D ; J /, ac-
cording to the spectral action principle [7], [5], the bosonic action should depend only
on the spectrum of the fluctuated Dirac operator

D 7! DA ´ D C AC "0JAJ�1;
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where A D P
ai ŒD ; bi �, ai ; bi 2 A (finite sum), is a self-adjoint one-form and

"0 D ˙1 depending on the KO-dimension of the triple. Ideally, such an action
functional (of D and of A) should be defined as the number of eigenvalues of D2

A

smaller than a given scale ƒ > 0:

Sƒ.DA/ D ]f�n 2 Spec.D2
A/ j �n � ƒ2g

or akin to the same and with � the characteristic function of the interval Œ0; 1�:

Sƒ.DA/ D Tr.�.D2
A=ƒ

2//: (22)

Then the diverging part of Sƒ.DA/ in the limit ƒ ! 1 should give access to
an effective action describing low energy physics. The problem is that with the
characteristic function, the expression (22) may not have a well-defined power series
expansion in the limit ƒ ! 1. To overcome this difficulty one uses, instead of the
characteristic function, a smooth one approximating it and being the inverse Laplace
transform of a Schwartz function on R�C. By Laplace transformation one then has

Sƒ.DA/ D
Z 1

0

dt Tr.e�tD2
A

=ƒ2

/ O�.t/;

where O� is the inverse Laplace transform of �. Assuming that the trace of the heat
kernel has an asymptotic expansion

Tr.e�tD2
A/ D

1P
kD�n

ak.D
2
A/ t

k; n 2 N;

we obtain

Sƒ.DA/ D
1X

kD�n

ak.D
2
A/ƒ

�2k

Z 1

0

dt tk O�.t/: (23)

One easily findsZ 1

0

dt tk O�.t/ D
´

1
�.�k/

R1
0
ds s�k�1�.s/ for k … N;

.�1/k�.k/.0/ for k 2 N:

If one only wants to keep the non-vanishing terms in the power-ƒ expansion as
ƒ ! 1, it is therefore sufficient to identify the non-vanishing terms in the power-t
expansion of Tr.e�tD2

A/ as t ! 0.
If the spectral geometry .A;H ;D ; J / is non-unital, then the expression (22)

becomes ill-defined. There are different ways to ‘regularize’ the spectral action in
this case. For instance one may consider instead

Sƒ.DA/ ´ Tr.�.D2
A=ƒ

2/ � �.D2=ƒ2//:
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But the problem is then that one loses a lot of physical information since one cannot
access in this way the Einstein–Hilbert action. Another possibility, used in [19], is to
introduce a supplementary (adynamic) scalar field � 2 A and to define

Sƒ.DA; �/ ´ Tr.��.D2
A=ƒ

2//:

The advantage of this scheme is that one keeps the physical interpretation by per-
forming on the field equations the adiabatic limit � ! 1 and that one can choose
the one-form A coming from the unitization of A and not necessarily from A it-
self. However, in the case of the Moyal spectral triple with ordinary Dirac operator,
treated in [19], the full computation with the real structure was not possible; only the
spectral action for partially fluctuated Dirac operator D 7! D C A was evaluated.
To our knowledge and up to now, there is only one situation of noncommutative
spectral triple (excluding the almost commutative spectral triples) where the spectral
action with fully perturbed Dirac operator has been computed. This is in the work of
Essouabri–Iochum–Levy–Sitarz [17] for noncommutative tori.

The last possibility spelled out in [6] is to replace the scale ƒ by a dilaton field.
That is, one performs the replacement

ƒ 7! e�� ; �� D � 2 A;

and one leaves (22) as it was:

S�.DA/ ´ Tr.�.e�D2
Ae

�//:

Although this expression is analytically well defined and conceptually perfect, the
explicit computation of such a functional seems to be fairly inaccessible, except for
the commutative (manifold) case.

In our setting of a spectral triple for Moyal plane with harmonic propagation, the
question of the definition and the computation of the spectral action is way more easy.
This is because although the spectral triple .A?;H ;D�/, • D 1; 2, is non-unital, the
heat operator e�tD2

� is trace-class for all t > 0 (see Lemma 9). This means that the
definition (22) of the spectral action for unital spectral triple is still adapted to our
situation.

In the next subsections we will perform a complete computation of the spectral
action for a U.B?/-Higgs model for d D 4. Before this, we will derive a generic
heat kernel type expansion when one tensorizes .A?;H ;D�/ with a finite spectral
triple.

3.2. Heat kernel expansion in dimension four. We derive here a short-time heat-
kernel expansion for the semi-group generated by the square of a fluctuated harmonic
Dirac operator, for the algebra of Schwartz functions with Moyal product. We start
with preliminary results on Schatten norm estimates, using the estimate of Lemma 12
together with complex interpolation methods. Here we specify to the case d D 4.
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Proposition 18. Let f 2 A?. Then for all 1 � p � 1 and t 2 .0; 1� we have

kL?.f /e
�tD2

� kp � C.‚/1�1=pkf k1�1=p
2 C.f /1=pp�2=p t�2=p;

where C.f / is the constant appearing in Lemma 12 and C.‚/ is the one appearing
in (8).

Proof. For f 2 A?, t 2 .0; 1� and 1 � p < 1, consider on the strip S ´ fz 2 C j
Re.z/ 2 Œ0; 1�g the operator-valued function

Fp W z 7! L?.f /e
�tpzD2

� :

The function Fp is continuous on S , holomorphic on its interior and by Lemma 12 it
satisfies for y 2 R:

kFp.iy/k � C.‚/kf k2; kFp.1C iy/k1 � C.f /.pt/�2:

Then by standard complex interpolation methods (see for example [35]) we have
Fp.z/ 2 L1= Re.z/.H / for all z 2 S with

kFp.z/k1= Re.z/ � kFp.0/k1�Re.z/1 kFp.1/kRe.z/
1

� C.‚/1�Re.z/kf k1�Re.z/
2 C.f /Re.z/.pt/�2 Re.z/:

Applying this for z D 1=p, we get

kL?.f /e
�tD2

� kp � C.‚/1�1=pkf k1�1=p
2 C.f /1=p p�2=p t�2=p;

as needed.

Remark 19. For f 2 A?, making a recursive choice of factorization as follows:

f D f1 ? f2;

@�1
f2 D f1;�1

? f2;�1
; : : : ; @�4

f2;�1�2�3
D f1;�1�2�3�4

? f2;�1�2�3�4
;

the constant C.f / appearing in Lemma 12 (for d D 4) and Proposition 18 is a finite
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multiple (depending only on z� and ‚) of

k Nf1 ? f1k 1
2

1 k Nf2 ? f2k 1
2

1

C kf1k2

4P
�1D1

.k Nf1;�1
? f1;�1

k 1
2

1 k Nf2;�1
? f2;�1

k 1
2

1

C kf1;�1
k2

4P
�2D1

.k Nf1;�1�2
? f1;�1�2

k 1
2

1 k Nf2;�1�2
? f2;�1�2

k 1
2

1

C kf1;�1�2
k2

4P
�3D1

.k Nf1;�1�2�3
? f1;�1�2�3

k 1
2

1 k Nf2;�1�2�3
? f2;�1�2�3

k 1
2

1

C kf1;�1�2�3
k2

4P
�4D1

.k Nf1;�1�2�3�4
? f1;�1�2�3�4

k 1
2

1

� k Nf2;�1�2�3�4
? f2;�1�2�3�4

k 1
2

1 C kf1;�1�2�3�4
k2kf2;�1�2�3�4

k2////:

Lemma 20. Let f 2 A?, 1 � p � 1, t 2 .0; 1� and k 2 N. Then there exists a
finite constant Cp;k.f / such that

kL?.f /D
k
�
e�tD2

� kp � Cp;k.f /t
�2=p�k=2:

Proof. By spectral theory, we have kDk
�
e�tD2

� k D .k=2et/k=2, so the proof is a
consequence of Proposition 18.

The next Lemma will explain why there is a major difference in the spectral action
when perturbing D by AC JAJ�1 or simply by A.

Lemma 21. For f; g 2 A?, the operator L?.f /R?.g/ is of trace class on H .

Proof. By factorization, we can find f1; f2; g1; g2 2 A? such that

f D f1 ? f2 ; g D g1 ? g2:

Hence

L?.f /R?.g/ D L?.f1 ? f2/R?.g1 ? g2/ D L?.f1/L?.f2/R?.g1/R?.g2/:

But since the left and right regular representations commute (by associativity of the
Moyal product), we get

L?.f /R?.g/ D L?.f1/R?.g1/ L?.f2/R?.g2/;

so that it suffices to show that L?.f /R?.g/ is Hilbert–Schmidt for all f; g 2 A?.
From the operator kernel formula (14) of L?.f /, and a similar one for R?.g/, one
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easily deduces the operator kernel for the productL?.f /R?.g/, and after a few lines
of computations, we get for a suitable constant depending only on det.‚/:

kL?.f /R?.g/k2
2 D

Z
dx dyjŒL?.f /R?.g/�.x; y/j2 D Ckf k2

2 kgk2
2:

This completes the proof.

Corollary 22. Let ra
�, � D 1; : : : ; 4, be the operators on L2.R4/ given by

ra
� ´ i@� C a��x

�; a 2 M4.R/:

Then for f; g 2 A?, t 2 .0; 1� and P˛.yr/ a polynomial of order ˛ in the operators
ra

�, there exists a finite constant C.f; g; ˛/ such that

kL?.f /R?.g/P˛.yr/e�tH k1 � C.f; g; ˛/ t�˛=2:

Proof. From Lemma 21, it suffices to show that kP˛.yr/e�tH k � Ct�˛=2, which
will follow by spectral theory if P˛.yr/.1CH/�˛=2 is bounded. But this is a slight
generalization of Corollary 5.

We can now deduce the germ of the asymptotic expansion formula we need.

Proposition 23. Let .Af ;Hf ;Df ; Jf/ be a finite spectral triple. Let D ´ D� ˝ 1C
� ˝ Df , • D 1; 2, be the Dirac operator of the product spectral triple
.A ˝ Af ;H ˝ Hf ;D� ˝ 1 C � ˝ Df/. Let also DA ´ D C A C JAJ �1 be
the fluctuated Dirac operator. Here J ´ J ˝ Jf and A is a self-adjoint one-form,
that is A D A� ´ P

i ai ŒD ; bi �, where the sum is finite and ai ; bi 2 A ˝ Af . In
terms of the decomposition D2

A D D2 CF0 CF1 C J .F0 CF1/J
�1 C 2AJAJ �1,

where F0 is a bounded operator and F1 is linear in the operators ra
� of Corollary 22,

the following holds:

Tr.e�tD2
A/ D Tr.f1 � 2t.F0 C F1/C t2.F 2

0 C F1F0 C F0F1 C F 2
1 /

� t3

3
.F0ŒD

2; F1� � ŒD2; F1�F0 C F1ŒD
2; F1�C F0F

2
1 C F1F0F1

C F 2
1 F0 C F 3

1 /C t4

12
.F1ŒD

2; ŒD2; F1��C 2F 2
1 ŒD

2; F1�

C F1ŒD
2; F1�F1 C F 4

1 /ge�tD2

/C O.
p
t /:

Proof. First, it is clear that e�tD2
A is of trace-class for all t > 0. Indeed, since

the eigenvalues of D� behave like n
1
2 with multiplicity which behaves like n3, its

resolvent belongs to the Schatten ideal L8C".H / for all " > 0. From the relation

1

DA C i
D 1

D� ˝ 1C i

�
1 � .AC JAJ �1 C � ˝ Df/

1

DA C i

�
;
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and the fact that AC JAJ �1 C� ˝ Df is bounded, we see that the resolvent of DA

belongs to L8C".H ˝ Hf/ for all " > 0 too. Accordingly, e�tD2
A is of trace-class for

all t > 0.
Note also that the bounds of Lemmas 10, 12, 20, Proposition 18 and Corollary 22

remain valid with D instead of D�. Indeed, since fD�; �g D 0 and �2 D 1, we get
D2 D D2

�
˝ 1C 1˝ D2

f and thus

Dke�tD2 D
kP

j D0

Ck;j�
k�j Dj

�
e�tD2

� ˝ D
k�j
f e�tD2

f :

This implies for f; g 2 B?, a; b 2 Af and 1 � p � 1,

kL?.f /˝ aJL?.g/˝ bJ �1Dke�tD2kp

�
kP

j D0

jCk;j jkL?.f /R?. Ng/Dj
�
e�tD2

� kpkaJfbJ
�1
f D

k�j
f e�tD2

f kp:

Thus, we may assume without loss of generality that there is no finite spectral triple
in the picture.

We are going to deduce the expansion from the Duhamel principle:

e�t.ACB/ D e�tA � t
Z 1

0

e�st.ACB/Be�.1�s/tA ds:

We write D2
A D D2 C zF0 C zF1, with zF0 ´ F0 C JF0J �1 C 2AJAJ and zF1 ´

F1 C JF1J �1. The operator zF0 is bounded, whereas zF1 is unbounded but relatively
D-bounded. The Duhamel expansion allows us to write (formally first)

e�tD2
A D

1P
j D0

.�t /jEj .t/; (24)

where E0.t/ ´ e�tD2
and, for j > 0,

Ej .t/ ´ P
i1;:::;ij 2f0;1g

R
4j
e�s0tD2 zFi1 e

�s1tD2
: : : zFij e

�sj tD2
d j s;

and 4j denotes the ordinary j -simplex,

4j ´ fs 2 Rj C1 j sk � 0;
Pj

kD0
sk D 1g:

We first show that the sum (24) converges in the trace norm for small values of t > 0.
We only treat the case j � 1, the case j D 0 being covered by Lemma 10. For that
we use the Hölder inequality (since

Pj

kD0
sk D 1):

kEj .t/k1 �
X

i1;:::;ij 2f0;1g

Z
4j

ke�s0tD2 zFi1e
�s1tD2k.s0Cs1/�1k zFi2e

�s2tD2ks�1
2
: : :

: : : k zFij e
�sj tD2ks�1

j
d j s:
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Then we use the estimate of Proposition 18 and Lemma 21 for k D 2; : : : ; j (see the
Remark 19 for the precise value of the constants):

k zFik e
�sk tD2ks�1

k
�
´
4k zF k2C1. zF /sk t�2sk if ik D 0;

2k zF kC2. zF /sk t�2sk .tsk/
� 1

2 if ik D 1:

For the case ik D 1, we need to use the factorization property of the algebra of
Schwartz functions with Moyal product (as in the proof of Lemma 12), to expand A
as a finite sum of products of elements in A? ˝M16.C/, and then we can proceed
as for the other factors. Taking into account that there are 2j such terms and that

Z
�j

jY
iD0

s
� 1

2

i d j s � 2j ;

we get, since
Pj

kD0
sk D 1, the rough estimate

kEj .t/k1 � 2j .4C1. zF /k zF k2 C 2C2. zF /k zF k/j t�j=2�2:

Thus the sum
P1

j D0.�t /jEj .t/ converges absolutely in the trace-norm for small
values of t . These estimates also show that

j
1P

j D5

.�t /j Tr.Ej .t//j D O.t
1
2 /; t ! 0;

and accordingly, we only need to consider the terms .�t /j Tr.Ej .t// for j D 0; 1; 2; 3

and 4.
Note first that

Tr.�tE1.t// D
Z 1

0

Tr.�te�s0tD2

. zF0 C zF1/e
�.1�s0/tD2

/ds0

D Tr.�t . zF0 C zF1/e
�tD2

/:

For j D 2; 3 and 4, we use the relation (15) to collect the heat operators as follows:

E2.t/ D
Z

42

e�s0tD2

. zF0 C zF1/e
�s1tD2

. zF0 C zF1/e
�s2tD2

ds0ds1ds2

D
Z 1

0

ds0

Z 1�s0

0

ds1e
�s0tD2

. zF0 C zF1/e
�s1tD2

. zF0 C zF1/e
�.1�s0�s1/tD2

D
Z 1

0

ds0

Z 1�s0

0

ds1e
�s0tD2

. zF0 C zF1/
2e�.1�s0/tD2 � t

Z 1

0

ds0

Z 1�s0

0

s1ds1

�
Z 1

0

dr1e
�s0tD2

. zF0 C zF1/e
�r1s1tD2

ŒD2; . zF0 C zF1/�e
�.1�s0�r1s1/tD2
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D
Z 1

0

ds0

Z 1�s0

0

ds1e
�s0tD2f. zF0 C zF1/

2 � ts1. zF0 C zF1/ŒD
2; . zF0 C zF1/�g

� e�.1�s0/tD2 C t2
Z 1

0

ds0

Z 1�s0

0

s2
1ds1

Z 1

0

r1dr1

Z 1

0

dr2e
�s0tD2

. zF0 C zF1/

� e�r1r2s1tD2

ŒD2; ŒD2; . zF0 C zF1/��e
�.1�s0�r1r2s1/tD2

D
Z 1

0

ds0

Z 1�s0

0

ds1e
�s0tD2f. zF0 C zF1/

2 � ts1. zF0 C zF1/ŒD
2; . zF0 C zF1/�

C t2

2
s2

1.
zF0 C zF1/ŒD

2; ŒD2; . zF0 C zF1/��ge�.1�s0/tD2

� t3
Z 1

0

ds0

Z 1�s0

0

s3
1ds1

Z 1

0

r2
1dr1

Z 1

0

r2dr2

Z 1

0

dr3e
�s0tD2

. zF0 C zF1/

� e�r1r2r3s1tD2

ŒD2; ŒD2; ŒD2; . zF0 C zF1/���e
�.1�s0�r1r2r3s1/tD2

:

Since the principal symbol of D2 is scalar, we see that ŒD2; ŒD2; ŒD2; zF1��� has order
4 in ra

�. Thus, Lemma 20 shows that the last integral (multiplied by its t2 global

prefactor) gives rise to a trace-class operator with trace of order t
1
2 . Taking the trace

and using that zFj is of order j in ra
�, we find up to terms that vanish when t ! 0:

Tr.t2E2.t// D Tr.f t2

2
. zF0 C zF1/

2 � t3

6
. zF0ŒD

2; zF1�C zF1ŒD
2; zF0�C zF1ŒD

2; zF1�/

C t4

24
zF1ŒD

2; ŒD2; zF1��ge�tD2

/C O.
p
t /:

It will be more convenient to write Tr.F1ŒD
2; F0�e

�tD2
/ D Tr.�ŒD2; F1�F0e

�tD2
/.

By similar arguments one finds

Tr.�t3E3.t// D Tr.f� t3

6
. zF0

zF 2
1 C zF1

zF0
zF1 C zF 2

1
zF0 C zF 3

1 /

C t4

24
.2 zF 2

1 ŒD
2; zF1�C zF1ŒD

2; zF1� zF1/ge�tD2

/C O.
p
t /;

and lastly
Tr.t4E4.t// D Tr. t4

24
zF 4
1 e

�tD2

/C O.
p
t /:

In summary, we have

Tr.e�tD2
A/ D Tr.f1 � t . zF0 C zF1/C t2

2
. zF 2

0 C zF1
zF0 C zF0

zF1 C zF 2
1 /

� t3

6
. zF0ŒD

2; zF1� � ŒD2; zF1� zF0 C zF1ŒD
2; zF1�C zF0

zF 2
1

C zF1
zF0

zF1 C zF 2
1

zF0 C zF 3
1 /C t4

24
. zF1ŒD

2; ŒD2; zF1��

C 2 zF 2
1 ŒD

2; zF1�C zF1ŒD
2; zF1� zF1 C zF 4

1 /ge�tD2

/C O.
p
t /:

(25)

Now we can take into account the result of Lemma 21, which says in this context that
mixed products FiJFj J �1 are already trace-class. Since JL?.g/J

�1 D R?. Ng/,
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with R? the right regular representation, we see by Lemma 4 that all terms in (25)
with products of Fi and JFj J �1 are (up to matrices) of the form

L?.f /R?.g/
4Q

�D1

.yr�/
˛�
e�tH ;

with j˛j not exceeding the number of F1 plus the number of commutators by D2.
This argument also relies on the fact that J commutes with yr� according to (13).
Thus, Corollary 22 shows that the cross-terms, i.e., the terms with powers of both Fi

and JFj J �1 resulting from products of zF0 D F0 CJF0J �1 C2F�1JF�1J �1 and
zF1 D F1 C JF1J �1, where F�1 ´ A, give rise to vanishing contributions in the

limit t ! 0. Thus, only the terms with either powers of Fi or powers of JFiJ
�1

do contribute to the diverging part of this asymptotic expansion. Since moreover
J commutes with D (we are in even KO-dimension), the trace property shows that
both terms (with only A or only JAJ �1) give the same contribution and we get the
announced result.

Remark 24. A very important feature of Proposition 23 is that if the heat-trace of
the partially fluctuated Dirac operator eDA ´ D C A, A D P

i ai ŒD ; bi �, has an
asymptotic expansion

Tr.e�teD2
A/ D a0t

�4 C
4P

kD1

akt
�2Ck=2 C O.

p
t /;

then the heat-trace of the fully fluctuated Dirac operator DA ´ D C AC JAJ �1

has the asymptotic expansion

Tr.e�tD2
A/ D a0t

�4 C 2
4P

kD1

akt
�2Ck=2 C O.

p
t /;

for the same coefficients a0; : : : ; ak . Also, this shows that the asymptotic expansion
of the heat-trace of the fully fluctuated Dirac operator is independent of the choice
of the real structure Jf of the finite spectral triple .Af ;Hf ;Df/. This fact holds for
Moyal spectral triples with harmonic propagation in any (even) dimension.

3.3. Application: the spectral action for the U.B?/-Higgs model. In the Connes–
Lott spirit [10] we take the tensor product of the 4-dimensional spectral triple
.A?;H ;D�; �; J /, • D 1; 2, with the finite Higgs spectral triple .C˚C;C2;M�1; Jf/,
whereM > 0 andJf is any real structure. The Dirac operator D D D�˝1C�˝M�1

of the product triple becomes

D D
�

D� M�

M� D�

�
:
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In this representation, the algebra is A? ˚ A? 3 .f; g/, which acts on H ˚ H by
diagonal left Moyal multiplication. The commutator of D with .f; g/ is, in case that
D1 is chosen, according to (9) given by

ŒD ; .f; g/� D
�
i��L?.@�f / M�L?.g � f /
M�L?.f � g/ i��L?.@�g/

�
:

(If we choose D2 instead, then �� has to be replaced by ��C4 everywhere.) This
shows that the selfadjoint fluctuation A D P

i ai ŒD ; bi � of the fluctuated Dirac
operators DA D D C AC JAJ �1, J D J ˝ Jf , is of the form

A D
�
��L?.A�/ �L?.�/

�L?. N�/ ��L?.B�/

�
;

for two real one-forms A�; B� 2 A? and a one complex field � 2 A?. Again, this
holds for D1; for D2 we have to replace �� by ��C4.

In terms of the connection introduced in Lemma 4 and using (11) we identify the
relevant operators arising in the expansion D2

A D D2
�

CM 2 C .F0 CF1/C J .F0 C
F1/J

�1 C 2AJAJ �1 of Proposition 23 as follows:

F0 D
 
L?.VA;�/1C i

4
Œ��; �� �L?.F

A
��/ i���L?.D��/

i���L?.D��/ L?.VB;�/1C i
4
Œ��; �� �L?.F

B
��/

!
;

F1 D
�
2iL?.A

�/r� 0

0 2iL?.B
�/r�

�
;

where

VA;� ´ � ? N� CM.� C N�/C .g�1/��.i@�A� C A� ? A�/;

VB;� ´ N� ? � CM.� C N�/C .g�1/��.i@�B� C B� ? B�/;

F A
�� ´ @�A� � @�A� � i.A� ? A� � A� ? A�/;

F B
�� ´ @�B� � @�B� � i.B� ? B� � B� ? B�/;

D�� ´ @�� � iA� ? � C i� ? B� � iM.A� � B�/:

We have used

D1�
�L?.A� /C L?.A� /D1�

�

D ��� ŒD1; L?.A� /�C 2i.g�1/��L?.@�A�/C 2iL?.A
�/r�:

According to the general asymptotic expansion we have obtained in Proposition 23,
the only further commutators we need are ŒD2; F1� and ŒD2; ŒD2; F1��. Their expres-
sion will easily result from the following computation which relies on the relations
in Lemma 4:

ŒD2; 2iL?.A
�/r��

D �2iL?..g
�1/��@�@�A

�/r� � 4iL?.@
�A�/r�r� C 4 z�2‚��L?.A

�/ Qr� ;

ŒD2; ŒD2; 2iL?.A
�/r�� D 8iL?.@

�@�A�/r�r�r� C lower order terms:



972 V. Gayral and R. Wulkenhaar

We have already computed the matrix trace of e�t z�† in Lemma 10, and the result
is 16 cosh4. z�t/. Using

�i† D .ib� � ib�
�/.b

� C b��/ D g��.�
� C z�

2
‚����C4/g

�� .��C4 C z�
2
‚���

� /;

the other matrix traces follow from the Clifford algebra:

trC16. i
4
Œ��; �� � � e�t z�†/ D �8 z�‚��t C O.t2/;

trC16. i
4
Œ��; �� � � i

4
Œ��; �� � � e�t z�†/ D 4.g�1/��.g�1/��

� 4.g�1/�� .g�1/��/C O.t/;

trC16.i��� � i��� � e�t z�†/ D 16.g�1/�� C O.t/:

In terms of the functionals T�1:::�k
.f / ´ TrL2.R4/

�
L?.f /r�1

: : :r�k
e�tH

�
on

A? introduced and computed in Proposition 6 and the similar functional

zT��.f / ´ TrL2.R4/.L?.f /r�
Qr�e

�tH /

we obtain from Proposition 23 the trace Tr.e�tD2
A/ as follows:

Tr.e�tD2
A/ D e�tM 2f16 cosh4. z�t/Tr.e�tH / � 2tT .16VA;�/ � 2tT�.32iA

�/

C t2T .16VA;� ? VA;� C 16.g�1/��D�� ? D�� C 8.g�1/��.g�1/��

� F A
��F

A
�� C 32i.g�1/��A� ? @�VA;� C 16 z�‚��F A

��/

C t2T�.32iA
� ? VA;� C 32iVA;� ? A

� � 64.g�1/��A� ? @�A
�/

C t2T��.�64A� ? A�/ � t3

3
T��.�4i..VA;� ? @

�A� � @�A� ? VA;�/

C 64A�.g�1/��@�@�A
� C 128A�.g

�1/��@�@
�A�

� 64.VA;� ? A
� ? A� C A� ? VA;� ? A

� C A� ? A� ? VA;�/

� 128i.g�1/�� .A� ? .@�A
�/ ? A� C A� ? A

� ? .@�A
�/

C A� ? A� ? .@�A
�/// � t3

3
T���.128A

� ? @�A�

� 128iA� ? A� ? A�/ � t3

3
QT��.128i z�2‚��A� ? A�/

C t4

12
T���� .�256A� ? @�@�A� C 512iA� ? A� ? @�A�

C 256iA� ? .@�A�/ ? A� C 256A� ? A� ? A� ? A� /g
C fA� 7! B�; F

A
�� 7! F B

�� ; VA;� 7! VB;� ; D�� $ D��g
C O.

p
t /: (26)

The relevant traces have been computed in Proposition 6. A similar procedure gives

zT��.f / D
� z�
2� sinh.2 z�t/

�2
Z

R4

dz
p

det g f .z/
� QN�� CZ�

QZ�

�
e� z� tanh. z�t/hz;gzi;
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with QZ� ´ �2i.‚�1z/� � 2 z� tanh. z�t/.gz/� and QN�� ´ 2i.‚�1g�1/�� C
i z�2.g‚/�� � z� tanh. z�t/ı�� . This shows that the contribution of zT��.f / is sup-
pressed with O.t/. Inserting these traces into (26) we arrive at

Tr.e�tD2
A/ D 2

z�4
t�4 � 2M 2

z�4
t�3 C

�
M 4

z�4
C 8

3 z�2

�
t�2 �

�
M 6

3 z�4
C 8M 2

3 z�2

�
t�1

C
�
52

45
C M 8

12 z�4
C 4M 4

3 z�2

�
� t�1 2 � 2M 2t

�2Z
d4x

p
det g f� ? N� CM.� C N�/C z�2

�hXA; gXAi? � hx; gxi?/

C N� ? � CM.� C N�/C z�2.hXB ; gXBi? � hx; gxi?/g
C 1

�2

Z
d4x

p
det g f2.g�1/��D�� ? D��

C .� ? N� CM.� C N�/C z�2hXA; gXAi?/
2 � . z�2hx; gxi?/

2

C . N� ? � CM.� C N�/C z�2hXB ; gXBi?/
2 � . z�2hx; gxi?/

2

C .1
2
.g�1/��.g�1/�� � 1

6
.g�1 C z�2‚g‚/��.g�1 C z�2‚g‚/�� /

� .F A
�� ? F

A
�� C F B

�� ? F
B
�� /g C O.

p
t /; (27)

where

X
�
A .x/ ´ x� C‚��A� ; hX; gY i? ´ g��X

� ? Y � :

To reduce (26) to (27) we have used

– the traciality (4) of the Moyal product and the resulting cyclicity under the
integral,

– integration by parts where appropriate,

– x�?f D 1
2
fx�; f g?C 1

2
Œx�; f �? D 1

2
fx�; f g?Ci‚��@�f where appropriate,

– symmetries and antisymmetries in the indices.

The matrix g�1 C z�2‚g‚ appearing in front of the curvature term in (27) can be
equivalently written as

g�1 C z�2‚g‚ D g�1 C 4g.1 � g�1/ D g�1.1 � 2g/2:

Since g�1 � 1 according to (10), hence 0 � g � 1, we have 0 � g�1 C z�2‚g‚ �
g�1, showing that the matrix in front of the curvature term in (27) is strictly positive.
It is minimal for g D 1

2
, i.e., z�2.‚t‚/�� D 4ı�� . The curvature F�� can also be

expressed in terms of the covariant coordinates, ŒX�
A ; X

�
A�? D i‚�� Ci‚��‚��F A

�� .

With the moments ��n D R1
0
ds sn�1�.s/ of the “characteristic function” and
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�0 D �.0/, we identify the spectral action (23) as

Sƒ.DA/ D 2ƒ8

z�4
��4 � 2M 2ƒ6

z�4
��3 C

�
M 4ƒ4

z�4
C 8ƒ4

3 z�2

�
��2

�
�
M 6ƒ2

3 z�4
C 8M 2ƒ2

3 z�2

�
��1 C

�
52

45
C M 8

12 z�4
C 4M 4

3 z�2

�
�0

C �0

�2

Z
d4x

p
det gf2.g�1/��D�� ? D�� C .� ? N� CM.� C N�/

C z�2hXA; gXAi? CM 2 � ��1

�0
ƒ2/2 � . z�2hx; gxi? CM 2 � ��1

�0
ƒ2/2

C . N� ? � CM.� C N�/C z�2hXB ; gXBi? CM 2 � ��1

�0
ƒ2/2

� . z�2hx; gxi? CM 2 � ��1

�0
ƒ2/2 C .1

2
.g�1/��.g�1/��

� 1
6
.g�1 C z�2‚g‚/��.g�1 C z�2‚g‚/�� /

� .F A
�� ? F

A
�� C F B

�� ? F
B
�� /g C O.ƒ�1/: (28)

The final result (28) for the spectral action agrees, up to typos, with the result obtained
in [27]. We recall that with the cumbersome computational method of [27] it was only
possible to identify the part of the spectral action at most bilinear in the gauge fields
A, B . By gauge-invariant completion it was argued that the total spectral action has

to be (28). In [27] the‚-matrix was chosen as‚ D �
�

i�2 0
0 i�2

�
. In terms of� ´ � z�

2

this choice leads to .g�1/�� D .1C�2/ı�� and
p

det g D 1
.1C�2/2 . Up to the global

factor of 2 due to the real structure, the few differences in the prefactors2 are easily
identified as typos in [27]. We finish by a brief discussion of the spectral action:

� The square of covariant coordinates XA, XB combines with the Higgs field �
to a non-trivial potential. This was not noticed in [13], [21]. We observe here
a much deeper unification of the continuous geometry described by Yang–Mills
fields and discrete geometry described by the Higgs field than previously in
almost-commutative geometry.

� The coefficient in front of the Yang–Mills action is strictly positive for any real-
valued z�. In the bosonic model of [13], [21] there was only the analogue of the
negative part, which leads to problems with the field equations.

Unlike the scalar model renormalized in [24] where� D � z�
2

can by Langmann–
Szabo duality be restricted to � 2 Œ0; 1�, the full spectral action (28) does not
have a distinguished frequency parameter z� > 0.

� The action (28) is invariant under gauge transformations

� CM 7! uA ? .� CM/ ? uB ; XA� 7! uA ? XA� ? uA;

XB� 7! uB ? XB� ? uB ;

2These are
�

.1C�2/2

2
� .1��2/4

6.1C�2/2

�
versus

�
.1��2/2

2
� .1��2/4

3.1C�2/2

�
in [27] in front of F��F �� and

.1C�2/

2
versus 1

2
in [27] in front of .D�/2.
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where uA; uB 2 U.B?/ are unital elements of the preferred unitization.

� For any value of the free parameter M 2�0

ƒ2��1
, the action contains .A;B; �/-linear

terms which lead to a complicated vacuum which is not attained at vanishing
A, B , �. Since A, B , � are Schwartz functions, the formal vacuum solution

XA D 0 D XB and � C M D
q

��1

�0
ƒ is excluded. An enlargement of

Schwartz class function to e.g. polynomially bounded functions does not help
either, because then we are not allowed to expand the Gaußian e� z� tanh. z�t/hx;gxi?

in t , making the spectral action different from (28).

� If we formally regard �CM ,XA,XB as dynamical variables of the model, then
(28) can be viewed as translation-invariant with respect to

�.x/CM 7! �.xCa/CM; XA.x/ 7! XA.xCa/; XB.x/ 7! XB.xCa/:
This would clear away a frequent objection against the renormalizable �4

4 -
models, breaking of translation invariance. However, this transformation aban-
dons the space of Schwartz class functions for A, B , �, so that translation
invariance remains broken in the consistent spectral action.

� The vacuum part of the spectral action is finite. In general, the heat kernel
expansion for non-compact spectral triples is ill-defined, so that a spatial reg-
ularization of the operator trace is unavoidable. See e.g. [19]. The oscillator
potential is one of many possibilities. We want to advertise the point of view
that if one takes the spectral action principle serious, the spatial regularization
is part of the geometry. The removal of the spatial regularization must be care-
fully studied. In general, we should expect that other limiting procedures such
as those of quantum field theory make it impossible to remove the regularization
(UV/IR).

Appendix: Locally compact noncommutative spin manifolds

Definition 25. A non-compact spectral triple is given by the data

.A;B;H ;D ; J; �; c/

satisfying conditions (0)–(6) given below. The data consist of a non-unital algebra
A acting faithfully (via a representation denoted by �) by bounded operators on the
Hilbert space H ; a preferred unitization B of A acting by bounded operators on the
same Hilbert space; and an essentially self-adjoint unbounded operator D on H such
that ŒD ; �.a/� extends to a bounded operator for any a 2 B. The spectral triple is
said to be even if there exists a Z2-grading operator � on H satisfying �2 D 1, for
which B is even and D is odd. The spectral triple is said to be real if there exists an
antiunitary operator J on H which satisfies conditions (4) and (5) below.
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(0) Compactness. The operator �.a/.D � �/�1 is compact for all a 2 A and � in
the resolvent set of D .

(1) Regularity. For any a 2 B, both �.a/ and ŒD ; �.a/� belong to
T1

nD1 dom.ın/,

with ı.T / ´ ŒhDi; T � and hDi ´ .D2 C 1/
1
2 .

For any element b of the algebra ‰0.A/ generated by ın.�.A// and
ın.ŒD ; �.A/�/, the function �b.z/ ´ Tr.bhDi�z/ is well defined and holo-
morphic for Re.z/ large and analytically continues to C n Sd for some discrete
set Sd � C (the dimension spectrum). Moreover the dimension spectrum is
said to be simple if all the poles are simple, finite if there is k 2 N such that all
the poles are order at most k and if not, infinite.

(2) Metric dimension. For the metric dimension d ´ supfRe.z/; z 2 Sdg, the
operator �.a/hDi�d belongs to the Dixmier ideal L1;1.H / for any a 2 A.
Moreover, for any Dixmier trace, the map AC 3 a 7! Tr!.�.a/hDi�d / is
non-vanishing.

(3) Finiteness.3 The algebra A and its preferred unitization B are pre-C ?-algebras,
i.e., each one is a ?-subalgebra of some C �-algebra and stable under holomor-
phic functional calculus.

The space of smooth spinors H 1 ´ T1
kD0 H k , with H k ´ dom.Dk/ com-

pleted with norm k
k2
k

´ k
k2 C kDk
k2, is a finitely generated projective
A-modulepAm, for somem 2 N and some projectorp D p2 D p� 2 Mm.B/.
The composition of the Dixmier trace with the induced hermitian structure
h ; iA W H 1 � H 1 ! A coincides with the scalar product . ; / on H 1,

.
; �/ D Tr!.h
; �iA hDi�d /; 
; � 2 H 1:

(4) Reality. The operator J defines a real structure of KO-dimension k 2 Z8. This
means

J 2 D "; JD D "0DJ; J� D "00�J (even case)

with signs ", "0, "00 2 f�1; 1g given as a function of k mod 8 by

k 0 1 2 3 4 5 6 7

" 1 1 �1 �1 �1 �1 1 1

"0 1 �1 1 1 1 �1 1 1

"00 1 �1 1 �1
:

Additionally, the action � of B on H satisfies the commutation rule
Œ�.f /; �o.g/� D 0 for all f; g 2 B, where �o.g/ D J�.g�/J�1 is the action
of the opposite algebra Bo.

3This is a simplified version of those in [18], as in there the authors are forced to use a third algebra
which possesses quasi-local units.
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(5) First order. ŒŒD ; �.f /�; �o.g/� D 0 for all f; g 2 B.

(6) Orientability.4 Whenever the metric dimension d is an integer, there is a
Hochschild d -cycle c on B with values in B ˝ Bo, i.e., a finite sum of terms
.a0 ˝b0/˝a1 ˝� � �˝ad . Its representation �D.c/with �D..a0 ˝b0/˝a1 ˝
� � �˝ad / ´ �.a0/J�.b

�
0 /J

�1ŒD ; �.a1/� : : : ŒD ; �.ad /� satisfies �D.c/
2 D 1

and defines the volume form on A, i.e.,

�c.f0; : : : ; fd / D Tr!.�D.c/�.f0/ŒD ; �.f1/� : : : ŒD ; �.fd /�hDi�d /

provides a non-vanishing Hochschild d -cocycle �c on A.
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