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Abstract. The category of fibrant objects is a convenient framework to do homotopy the-
ory, introduced and developed by Ken Brown. In this paper, we apply it to the category of
C�-algebras. In particular, we get a unified treatment of (ordinary) homotopy theory for C�-
algebras, KK-theory and E-theory, since all of these can be expressed as the homotopy theory
of a category of fibrant objects.
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0. Introduction

Basic homotopy theory for C�-algebras can be developed in a way analogous to the
homotopy theory for topological spaces, using the Gelfand–Naimark duality between
pointed compact Hausdorff spaces and abelian C�-algebras. This is carried out, for
example, by Rosenberg in [Ros82] and Schochet in [Sch84]. Thus, for instance,
we have a version of the Puppe exact sequence, with essentially the same proof (cf.
[Sch84], Proposition 2.6).

There is one big difference: the homotopy theory for C�-algebras does not admit
a Quillen model category structure, as first pointed out by Andersen–Grodal (see
Appendix). This is unfortunate, since model categories provide a standard and pow-
erful framework to study various aspects of homotopy theories. However, it turns
out that not everything is lost: the category of C�-algebras behave as if it was the
subcategory of the fibrant objects in a model category, and this is enough for many
purposes because many proofs in model category theory start by reducing to the case
of (co)fibrant objects.

The notion of a “category of fibrant objects” is abstracted and developed by Brown
in [Bro74]. In this paper, we apply Brown’s theory to the category of C�-algebras. In
Section 1, we review some basic facts about abstract homotopy theory in the setting
of category of fibrant objects.

In Section 2, we first apply the abstract theory of Section 1 to the ordinary homo-
topy theory for C�-algebras (this essentially recovers [Sch84]). We also show that
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the Meyer–Nest’s UCT category (cf. [MN06]), Kasparov’s KK-theory (cf. [Kas80],
[Kas88]), and Connes–Higson’s E-theory (cf. [Hig90], [CH90]) can be described as
the homotopy category of a category of fibrant objects. As a corollary, we get a
unified treatment of the triangulated structures on these categories.

In addition to ordinary homotopy theory, we also have shape theories for (separa-
ble) C�-algebras (cf. [EK86], [Bla85]). In [Dad94], Dadarlat constructed the strong
shape category and showed that it is equivalent to the asymptotic homotopy category
of separable C�-algebras of Connes–Higson (cf. [CH90]).

Unfortunately and unlike the commutative case (cf. [Cat81], [CH81]), we do not
(yet) have a category of fibrant objects whose homotopy category describes the strong
shape category. However, as we show in Section 2.5, the suspension-stable version
considered by Thom (cf. [Tho03]) does arise as the stable homotopy category of a
category of fibrant objects. We also show that Thom’s connective K-theory category
fits well in this framework (cf. loc.cit.).

Needless to say, Brown’s theory of category of fibrant objects is not the only way to
approach the homotopy theory for C�-algebras. The main “reason” for the failure for
the existence of a model structure on the category of C�-algebras is that the category is
too small, so an alternative approach would be to enlarge the category of C�-algebras.
Joachim–Johnson produced a model category structure for KK-theory by enlarging
the category of C�-algebras to a suitable category of topological algebras (cf. [JJ06]).
Østvær developed a homotopy theory by enlarging the category of C�-algebras to the
category of C�-spaces (cf. [Øst10]). Cuntz described an alternative construction of
bivariant K-theories in [Cun98].

We also note that Voigt computed the K-theory of free orthogonal quantum groups
in [Voi11] using Meyer–Nest’s triangulated category approach to the Baum–Connes
conjecture (cf. [MN06]). This seems to be the first concrete results in the theory
of operator algebras which can be proved only using abstract homotopy-theoretic
methods.

Applications of the framework developed in this paper will appear elsewhere.

Acknowledgments This research was supported by the Danish National Research
Foundation (DNRF) through the Centre for Symmetry and Deformation at the Uni-
versity of Copenhagen. I thank the referee for many useful suggestions and Ilan
Barnea for pointing out a mistake in an earlier version.

1. Abstract homotopy theory

For the convenience of the reader we recall some basic notions and results from
abstract homotopy theory. See [Qui67], [Bro74], [Hel68], [KP97], [GJ99] for details.

1.1. Categories of fibrant objects. The following is our main definition.



Homotopical algebra for C�-algebras 983

Definition 1.1 (Brown [Bro74]). Let C be category with terminal object � and let
F � C and W � C be distinguished subcategories. We say that C is a category of
fibrant objects if the following conditions (F0)–(FW2) hold.

(F0) The class F is closed under composition.

(F1) Isomorphisms of C are in F .

(F2) The pullback in C of a morphism in F exists and is in F .

(F3) For any object B of C, the morphism B ! � is in F .

Morphisms of F are called fibrations and denoted by �.

(W1) Isomorphisms of C are in W .

(W2) If two of f , g and gf are in W , then so is the third.

Morphisms of W are called weak equivalences and denoted by ��!� .

(FW1) The pullback in C of a morphism in W \ F is in W \ F .

Morphisms of W \ F are called trivial fibrations and denoted by ��!��!� .

(FW2) For any object B of C, the diagonal map B ! B �B admits a factorization

B ��!��!�s BI ��!��!
d

B � B;

where s 2W is a weak equivalence, d D .d0; d1/ 2 F is a fibration.

The object BI or more precisely the quadruple .BI ; s; d0; d1/ is called a path-
object of B .

If there is no risk for confusion, we simply say that C is a category of fibrant
objects. If the terminal object is also an initial object, we say that C is a pointed
category of fibrant objects.

Remark1.2. The condition (F0) is superfluous since F is assumed to be a subcategory.
But it is convenient to have a notation for this property.

The conditions (F1) and (W1) imply that F and W contain all objects of C.
The conditions (F2) and (F3) imply that C is has finite products.

Remark 1.3. Dually there is a notion of a category of cofibrant objects.

The following is the motivating example.

Example 1.4. For any model category M, the full subcategory Mf consisting of the
fibrant objects in M is naturally a category of fibrant objects, by restricting the weak
equivalences and the fibrations to Mf .

In particular, if Top denotes the category of compactly generated weakly Haus-
dorff topological spaces and continuous maps, then

(1) Top, homotopy equivalences, Hurewicz fibrations,
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(2) Top, weak homotopy equivalences, Serre fibrations,

are examples of categories of fibrant objects. In this paper, we only consider the latter
one.

A more algebraic example is the following: let R be a ring and let Ch.R/ denote
the category of chain complexes of left R-modules and chain maps. Then

(3) Ch.R/, quasi-isomorphisms, degreewise epimorphisms,

is a category of fibrant objects. In these three examples, all objects are fibrant, i.e.,
Mf DM.

Definition 1.5. A functor between categories of fibrant objects is said to be exact if it
preserves all the relevant structure: it sends the terminal object to the terminal object,
fibrations to fibrations, weak equivalences to weak equivalences and pullbacks (of
fibrations) to pullbacks.

Example 1.6. Let C be a category of fibrant objects and let A � C be a full reflective
subcategory, i.e., the inclusion i W A ! C is a right-adjoint. Suppose that for any
B 2 A, a path-object BI can be chosen to lie in A. Then A is a category of fibrant
objects by restricting weak equivalences and fibrations, since limits in A can be
computed in C; and the inclusion i W A! C is exact.

Occasionally, we find it convenient to isolate the notions of weak equivalences
and fibrations.

Definition 1.7. Let C be a category. A subcategory of weak equivalences is a subcat-
egory W � C satisfying (W1) and (W2). If C has a terminal object, a subcategory
of fibrations is a subcategory F � C satisfying (F0)–(F3).

1.2. Fibre and homotopy fibre

Lemma 1.8 (Factorization Lemma). Let f W A! B be a morphism in a category of
fibrant objects. Consider the diagram

Nf
p

�� B

Nf
d�

0
.f /

��

��

BI

d0

��

d1

��

A
f

��

i

��

B ,

s

��

where .BI ; s; d0; d1/ is a path-object for B and Nf is the pullback A�B BI and p

is the composition d1 B d �
0 .f / and i is the map determined by the section s.

Then p is a fibration and i is a right inverse to a trivial fibration (in particular, a
weak equivalence) and f D p B i .
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Proof. See [Bro74], Factorization Lemma.

Definition 1.9. We call Nf a mapping path-object of f .

Corollary 1.10. Let C be a category of fibrant objects and let D be a category with
weak equivalences. Let F W C ! D be a functor that sends trivial fibrations to weak
equivalences. Then F sends weak equivalences to weak equivalences.

Now we consider pointed categories.

Definition 1.11. Let p be a fibration in a pointed category of fibrant objects. The
fibre F of f is the pullback

F
i ��

��

E

p

��

� �� B .

We express this situation by the diagram

F �� i �� E
p

�� �� B :

Definition 1.12. Let f W A ! B be a morphism in a pointed category of fibrant

objects. The homotopy fibre Ff of f is the fibre of Nf
p

� B , where p is as in the
Factorization Lemma (Lemma 1.8).

Lemma 1.13. Let p be a fibration in a pointed category of fibrant objects with fibre
F . Then the natural map

F ! Fp

is a weak equivalence.

Proof. Apply [Bro74], Lemma 4.3, to

F �� ��

��

E

o
��

p
�� �� B

Fp �� �� Np �� �� B .

1.3. Homotopy category

Notation 1.14. If C is a category, we write Ob C for the objects of C and write
MorC.A; B/ for the space of morphisms from A to B , with A; B 2 C.
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Definition 1.15. The homotopy category of a category C of fibrant objects with weak
equivalences W is the localization

Ho.C/´ CŒW �1�:

In other words, there is given a functor � W C ! Ho.C/, called the localization
functor, with the property that for any functor k W C ! D such that k.t/ is invertible
in D for all t 2W there exists a unique functor Ho.C/! D making the diagram

Ho.C/

���
�

�
�

�

C

�
����������� k �� D

commutative.
Often we write ŒA; B�C for MorHo.C/.A; B/. Note that there is no guarantee that

ŒA; B�C is a small set (see Corollary 1.19).

Definition 1.16. Let C be a category of fibrant objects. Two morphisms

f0; f1 W A � B

are said to be right-homotopic if for some path-object .BI ; s; d0; d1/ of B , there is a
morphism h W A! BI such that f0 D d0h and f1 D d1h.

The two are said to be homotopic if there is a weak equivalence t W A0 ! A such
that f0t; f1t W A0 � B are right-homotopic.

Right-homotopy and homotopy are equivalence relations, and moreover, homo-
topy is compatible with the composition in C (cf. [Bro74], Section 2).

Definition 1.17. Let C be a category of fibrant objects. We denote the category of
homotopy classes in C by �C and let � W C ! �C denote the quotient functor.

The following is the fundamental result of Brown.

Theorem 1.18 (Brown [Bro74], Theorem 2.1). Let C be a category of fibrant objects.
Then �W � �C admits a calculus of right fractions.

It follows that, for A, B 2 C,

ŒA; B�C Š colim
A0�!� A

Mor�C.A0; B/

and hence if � W C ! Ho.C/ is the localization functor, then

(1) any morphism in ŒA; B�C can be written as a right-fraction

A
�.t/�1

 ���� A0 �.f /���! B

where t 2W is a weak equivalence, and
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(2) if f0, f1 are morphisms in MorC.A; B/, then �.f0/ D �.f1/ if and only if f0

and f1 are homotopic, i.e., �.f0/ D �.f1/.

Corollary 1.19. Let C be a category of fibrant objects and let A be an object in C.
Suppose that the category WA of weak equivalences over A is “coinitially small” i.e
there exists a set SA of objects in C such that for any A0 ��!� A, there is a A00 ��!� A0
such that A00 2 SA, then ŒA; B�C is a small set for every B 2 C.

Proof. See [GZ67], Proposition 2.4.

Now we consider pointed categories.

Definition 1.20. Let B be an object of a pointed category of fibrant objects. A loop
object of B is the fibre �B of .d0; d1/ W BI ! B � B , where .BI ; s; d0; d1/ is a
path-object of B .

Lemma 1.21. Let C be a pointed category of fibrant objects. Then � defines a
functor

� W Ho.C/! Ho.C/;

called the loop object functor.

(1) For any B 2 C, the object �B is naturally a group object in Ho.C/ and �2B

is naturally an abelian group object in Ho.C/.

(2) For any fibration p W E � B with fibre F , there is a natural right-action
F � �B ! F in Ho.C/. In particular, we have a natural map �B ! F in
Ho.C/.

Proof. See [Bro74], Section 4.

Theorem 1.22. Let C be a pointed category of fibrant objects and let p W E � B

be a fibration with fibre F . Then for any D 2 C, there is an exact sequence

� � � ! ŒD; �2B�C ! ŒD; �F �C ! ŒD; �E�C

! ŒD; �B�C ! ŒD; F �C ! ŒD; E�C ! ŒD; B�C:

Proof. See [Bro74], Section 4, and [Qui67], Section I.3.

Note that while Ho.C/ depends only on the weak equivalences, the loop object
functor � depends also on the fibrations.

Definition 1.23. Let C be a pointed category of fibrant objects. We define the stable
homotopy category of C as the category

SHo.C/´ Ho.C/Œ��1�;

obtained from Ho.C/ by inverting the endofunctor �.
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Objects of SHo.C/ are .A; n/ with A 2 Ho.C/ and n 2 Z and the morphisms
are given by

MorSHo.C/..A; n/; .B; m//´ colim
k!1

Œ�nCkA; �mCkB�C:

For n 2 Z, we have natural functors, also denoted by �n,

�n W Ho.C/! SHo.C/; A 7! .A; n/;

which send morphisms in MorHo.C/.A; B/ to the corresponding element in
MorSHo.C/..A; n/; .B; n//.

Theorem 1.24. Let C be a pointed category of fibrant objects. Then the stable
homotopy category SHo.C/ is a triangulated category with the shift

† D ��1 W SHo.C/! SHo.C/

given by .A; n/ 7! .A; n � 1/ and the distinguished triangles given by triangles
isomorphic to triangles of the form

.�B; n/! .F; n/! .E; n/! .B; n/;

where n 2 Z and E ! B is a fibration, F ! E is the fibre inclusion and �B ! F

is the morphism obtained from Lemma 1.21.

Proof. See [Hel68] or [Hov99], [May01].

Remark 1.25. We note that for any f 2 ŒA; B�C and n 2 Z, we have a natural
distinguished triangle

.�B; n/! .Ff; n/! .A; n/
�nf���! .B; n/:

Definition 1.26. We say that a pointed category of fibrant objects C is stable if the
loop functor � W Ho.C/! Ho.C/ is invertible.

Remark 1.27. If C is a stable pointed category of fibrant objects, then

�0 W Ho.C/! SHo.C/

is an equivalence of categories. In particular, Ho.C/ is naturally a triangulated
category with shift † D ��1 W Ho.C/! Ho.C/.

Example 1.28. Let M be a pointed Quillen model category and let Mf be the full
subcategory of fibrant objects in M, considered a category of fibrant objects as in
Example 1.4. Then the inclusion Mf ! M induces an equivalence Ho.Mf / Š
Ho.M/, with compatible loop objects and fibration sequences. Compare [Bro74]
and [Qui67].
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1.4. Homology theories and localizations

Definition 1.29. A homology theory on a pointed category of fibrant objects C is a
homology theory on SHo.C/, i.e., an exact functor H W SHo.C/! Ab.

Definition 1.30. Let C be a pointed category of fibrant objects and let H be a
homology theory on C.

A morphism t W A! B is said to be an H -equivalence if the induced maps

.�nt /� W H .A; n/! H .B; n/

are isomorphisms for all n 2 Z.
An object F 2 C is said to be H -acyclic if H .F; n/ D 0 for all n 2 Z.

Note that since homology theories are homotopy invariant by definition, weak
equivalences in C are H -equivalences.

Lemma 1.31. Let C be a pointed category of fibrant objects and let H be a homology
theory on C. Then a morphism t in C is an H -equivalence if and only if its homotopy
fibre F t is H -acyclic.

Proof. Clear from the long-exact sequence associated to the distinguished triangle of
Remark 1.25.

Corollary 1.32. Let C be a pointed category of fibrant objects and let H be a
homology theory on C. Then a fibration p 2 C with fibre F is an H -equivalence if
and only if F is H -acyclic.

Proof. By Lemma 1.13, the natural map F ! Fp is a weak equivalence, hence an
H -equivalence. The proof is complete by Lemma 1.31.

Theorem 1.33. Let C be a pointed category of fibrant objects and let H be a homol-
ogy theory on C. Then H -equivalences and fibrations define a pointed category of
fibrant objects on C, denoted by RH C, with the same path and loop objects as in C.

Proof. It is clear that H -equivalences form a subcategory of weak equivalences.
Hence we need to show the compatibility conditions (FW1) and (FW2) are satisfied.

(FW1) Let p W E � B be a fibration which is also an H -equivalence. We need
to show that for any f W A! B , the pullback f �.p/ is again an H -equivalence. But
this is immediate from Corollary 1.32 applied to the diagram:

F �� �� E �B A
f �.p/

�� ��

��

A

f

��

F �� �� E
p

�� �� B ,

(1.1)
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where F is the fibre of p.
(FW2) Since weak equivalences are H -equivalences, path-objects in C also give

path-objects in the new category of fibrant objects RH C.

Definition 1.34. Let C be a pointed category of fibrant objects and let S � C be
a class of morphisms. We say that a morphism t 2 MorC.A; B/ is a S�1-weak
equivalence if for any homology theory H W SHo.C/! Ab such that every s 2 S is
an H -equivalence, t is an H -equivalence.

Theorem1.35. Let C be a pointed category of fibrant objects and let S � C be a class
of morphisms. Then S�1-weak equivalences and fibrations define a pointed category
of fibrant objects, denoted by RSC. The stable homotopy category SHo.RSC/ is
naturally equivalent to the Verdier localization SHo.C/Œ.�0S/�1� as a triangulated
category.

Proof. Considering all homology theories H W SHo.C/! Ab in which every t 2 S

is an H -equivalence in Theorem 1.33, we see that RSC is indeed a category of fibrant
objects.

Now consider the natural triangulated functor Q W SHo.C/ ! SHo.RSC/ in-
duced by C ! RSC. Since any s 2 S is a S�1-weak equivalence, we see that
Q.�0s/ is invertible in SHo.RSC/.

We show that Q is the universal triangulated functor that invert �0S � SHo.C/.
Indeed, let R W SHo.C/! .P ; ��1/ be a triangulated functor such that morphisms
in R.�0S/ � MorP .R.A; 0/; R.B; 0// are all invertible.

Let t 2 MorC.A; B/ be a S�1-weak equivalence. Then for any D 2 P ,

H W SHo.C/! Ab; .A; n/ 7! MorP .D; R.A; n//;

is a homology theory by [Tho03], Theorem 2.3.8, and every s 2 S is an H -
equivalence, hence we see that t too is an H -equivalence. By Yoneda’s Lemma,
R.�0t / is invertible in P . Thus R induces a functor R� W Ho.RSC/ ! P which
is easily seen to intertwine the �’s, hence induces a functor �R W SHo.RSC/ ! P .
Since R is a triangulated homology theory, �R is a triangulated functor and R D �RBQ.
The uniqueness of �R is clear.

In other words, SHo.RSC/ is the universal triangulated homology theory for
which all morphisms of S are equivalences (cf. [Tho03], Definition 2.3.3).

2. Applications to the category of C�-algebras

Let C� denote the category of C�-algebras and �-homomorphisms. It is complete
and cocomplete and pointed – the zero object is the zero algebra 0 – symmetric
monoidal category with respect to the maximal tensor product, which we denote
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by ˝ (instead of the more standard notation ˝max, since we will not consider any
other tensor product). We refer to [Mey08] for the details.

The category C� is naturally enriched over Top, the Cartesian closed category
of compactly generated weakly Hausdorff topological spaces. Indeed, since C�-
algebras are normed, they are compactly generated and weakly Hausdorff as spaces,
hence there is a forgetful functor C� ! Top. For C�-algebras A and B , we give
MorC�.A; B/ the subspace topology from MorTop.A; B/ via the forgetful functor. It
is easy to see that MorC�.A; B/ is a closed subspace of MorTop.A; B/, hence itself a
compactly generated weakly Hausdorff space.

Let A� � C� denote the full subcategory of abelian C�-algebras. By the Gelfand–
Naimark duality, A� is equivalent to the opposite category of the category CH� of
pointed, compact Hausdorff topological spaces and pointed continuous maps. If X is
a compact Hausdorff space, we write C.X/ for the (unital) C�-algebra of continuous
functions on X . If in addition X has a base point, we write C0.X/ for the C�-algebra
of continuous functions on X vanishing at the base point.

Remark 2.1. The category C� of C�-algebras is also enriched over the category of
Hausdorff spaces, using the compact-open topology on morphism spaces. However,
in order to facilitate the connection to algebraic topology, we use the compactly
generated compact-open topology. Note that if A is separable, then the compact-
open topology on MorC�.A; B/ is metrizable, hence compactly generated.

Lemma 2.2. Let B be a C�-algebra and let X be a compact Hausdorff space. Then
the set of maps MorTop.X; B/ is naturally a C�-algebra isomorphic to C.X/˝ B .

Proof. By [Str], Proposition 2.13, the topology on MorTop.X; B/ coincides with the
topology given by the norm kf k ´ supx2X kf .x/kB . The rest is standard (cf.
[WO93], Corollary T.6.17).

Notation 2.3. Let B be a C�-algebra and let X be a compact Hausdorff space. We
write BX for the C�-algebra MorTop.X; B/ Š C.X/˝B . For x 2 X , the evaluation
map f 7! f .x/ is denoted by evx W BX ! B .

The following is the main property of the enrichment that we use. See also [JJ06],
Proposition 3.4, and [Mey08], Proposition 24.

Lemma 2.4. Let A and B be C�-algebras and let X be a compact Hausdorff space.
Then there is an identification

MorTop.X; MorC�.A; B// Š MorC�.A; BX / (2.1)

natural in A, B and X .
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Proof. Since A and B are compactly generated weakly Hausdorff spaces, we have a
natural identification

MorTop.X; MorTop.A; B// Š MorTop.A; MorTop.X; B//

by [Str], Proposition 2.12. Hence by Lemma 2.2,

MorTop.X; MorTop.A; B// Š MorTop.A; BX /:

Now it is easy to check that this restricts to the identification in (2.1).

Often we will make this identification implicitly.

Remark 2.5. Lemma 2.2 and Lemma 2.4 have pointed analogues.
Let Top� denote the category of pointed spaces and pointed maps. Since C�-

algebras have a natural base point 0 and �-homomorphisms are pointed maps, there
is in fact a forgetful functor C� ! Top� and C� is enriched over Top�.

Let A and B are C�-algebras and let X be a pointed compact Hausdorff space.
Let BX denote the C�-algebra C0.X/˝B Š MorTop

�
.X; B/. Then it follows from

Lemma 2.4 that there is a natural identification

MorTop
�
.X; MorC�.A; B// Š MorC�.A; BX /:

Corollary 2.6. For any D 2 C�, the functor MorC�.D;�/ W C� ! Top preserves
pullbacks.

Proof. Let D be fixed and let F ´ MorC�.D;�/.
Consider a pullback diagram

A �B E ��

��

E

��

A �� B

in C�. We need to prove that the natural map

ˆ W F.A �B E/! F.A/ �F .B/ F.E/

is a homeomorphism. It is clear that ˆ is a continuous bijection. Hence it suffices to
prove that for any X compact Hausdorff, a map X ! F.A �B E/ is continuous if
the compositions X ! F.A/ and X ! F.E/ are continuous. However, this follows
from Lemma 2.4 and its proof.
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2.1. Ordinary homotopy theory

Notation 2.7. We denote the interval Œ0; 1�´ fx 2 R j 0 � x � 1g by I .

Definition2.8. Let A and B be C�-algebras. Two�-homomorphisms f0, f1 W A! B

are said to be homotopic if there exists a �-homomorphism F W A ! BI , called a
homotopy, such that f0 D ev0 B F and f1 D ev1 B F , where evt W BI ! B is
the evaluation map at t 2 Œ0; 1�. We denote the set of homotopy classes of �-
homomorphisms A! B by

ŒA; B�´ fhomotopy classes of maps A! Bg:
Remark 2.9. By Lemma 2.4, two �-homomorphisms f0, f1 W A! B are homotopic
if and only if �0.f0/ D �0.f1/ in �0.MorC�.A; B//, where �0 is the path-connected
components functor.

The (ordinary) homotopy category of C�-algebras is the category of C�-algebras
and homotopy classes of �-homomorphisms. In view of Remark 2.9, we denote this
category �0C�:

Mor�0C�.A; B/´ �0 MorC�.A; B/ D ŒA; B�:

We have a natural functor �0 W C� ! �0C�.
We now give C� the structure of a category of fibrant objects, whose homotopy

category is �0C�, following [Sch84]. We consider Top as a category of fibrant objects
using weak homotopy equivalences and Serre fibrations (see Example 1.4) and we
“pullback” this structure to C� using Corollary 2.6.

Definition 2.10. A �-homomorphism t 2 C� is called a homotopy equivalence if
�0.t/ is invertible in �0C�.

Lemma 2.11. Let F 2 C�. If f0, f1 2 MorC�.A; B/ are homotopic, then the maps
f0 ˝ idF , f1 ˝ idF 2 MorC�.A ˝ F; B ˝ F / are homotopic. In particular, the
functor A 7! A˝ F preserves homotopy equivalences.

Proof. Clear.

Lemma 2.12. If f0, f1 2 MorC�.A; B/ are homotopic then for any D 2 C�, the
induced maps .f0/�, .f1/� W MorC�.D; A/! MorC�.D; B/ are homotopic in Top.

Proof. This follows from Lemma 2.4.

Proposition 2.13. Let t 2 MorC�.A; B/. Then t is a homotopy equivalence if and
only if the induced map

t� W MorC�.D; A/! MorC�.D; B/

is a weak homotopy equivalence in Top for all D 2 C�.
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Proof. If t 2 MorC�.A; B/ is a homotopy equivalence, then for any D 2 C�, the
induced map t� W MorC�.D; A/ ! MorC�.D; B/ is a homotopy equivalence by
Lemma 2.12, hence a weak homotopy equivalence. Conversely, suppose that the
induced map t� W MorC�.D; A/ ! MorC�.D; B/ is a weak homotopy equivalence
in Top for all D 2 C�. Then in particular, �0.t/� D �0.t�/ W �0 MorC�.D; A/ !
�0 MorC�.D; B/ is a bijection for all D 2 C�. By Yoneda’s Lemma, �0.t/ is
invertible.

Definition 2.14. A �-homomorphism p W E ! B is called a Schochet fibration if the
induced map

p� W MorC�.D; E/! MorC�.D; B/

has the path lifting property (i.e., the right lifting property with respect to the inclusion
f0g ,! Œ0; 1�) in Top for all D 2 C�.

Definition 2.15. Let f W A! B be a �-homomorphism. Let Nf denote the pullback

NF ��

��

BI

ev0

��

A
f

�� B .

Lemma 2.16. A �-homomorphism p W E ! B is a Schochet fibration if and only if
the natural map EI ! Np splits.

Proof. See [Sch84], Proposition 1.10.

Lemma 2.17. For any F 2 C�, the functor A 7! A ˝ F preserves pullbacks and
Schochet fibrations.

Proof. The functor A 7! A˝F preserves pullbacks by [Ped99], Remark 3.10, and it
preserves Schochet fibrations by Lemma 2.16. See [Sch84], Proposition 1.11.

Proposition 2.18. Let p 2 MorC�.E; B/. Then p is a Schochet fibration if and only
if the induced map

p� W MorC�.D; E/! MorC�.D; B/

is a Serre fibration (i.e., has the right lifting property with respect to the natural
inclusion f0g � I n ,! Œ0; 1� � I n for all n 	 0) in Top for all D 2 C�.

Proof. Clearly, Serre fibrations have the path lifting property. Hence it is enough to
show that if p is a Schochet fibration then p� is a Serre fibration. For any compact
Hausdorff space X , by Lemma 2.4, the map p� W MorC�.D; E/ ! MorC�.D; B/

has the right lifting property with respect to f0g �X ,! Œ0; 1� �X if and only if the
map .idC.X/˝p/� W MorC�.D; C.X/˝E/! MorC�.D; C.X/˝B/ has the path
lifting property. Now the proof is complete by Lemma 2.17.
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The following theorem is contained in [Sch84].

Theorem 2.19. The category of C�-algebras C� is a pointed category of fibrant
objects with weak equivalences the homotopy equivalences and fibrations the Scho-
chet fibrations, whose homotopy category is the ordinary homotopy category, i.e.,
Ho.C�/ D �0C�.

Proof. Properties (F0), (F1), (F3) follow from Proposition 2.18. Properties (W1)
and (W2) are clear (or use Proposition 2.13). For properties (F2) and (FW1), use
Corollary 2.6 in addition.

For (FW2): Let Œa; b� be a compact interval, a < b, let

B Œa;b� ´ MorTop.Œa; b�; B/ Š C Œa; b�˝ B;

and let evt W B Œa;b� ! B denote the evaluation at t 2 Œa; b� (cf. Notation 2.3). Then
the map .eva; evb/ W B Œa;b� ! B�B is a Schochet fibration, since the rectangle Œ0; 1��
Œa; b� retracts to the union of its three sides @. The constant-path map s W B ! B Œa;b�

is a homotopy equivalence with homotopy inverse eva. Thus .B Œa;b�; s; eva; evb/ is
a path-object for B . For fixed a and b, this is functorial.

It follows from the construction of the path-object in C� that two �-homo-
morphisms are right-homotopic if and only if they are homotopic in the sense of
Definition 2.8 and this happens if and only if they are homotopic in the sense of
Definition 1.16. Hence

Ho.C�/ D �C� D �0C�:

Note that C� has a functorial path-object, given by C Œ0; 1� ˝ B D BI , hence
also a functorial loop object �B ´ C0.0; 1/˝ B .

Remark 2.20. Schochet called these maps cofibrations in [Sch84], because, under the
Gelfand–Naimark duality, the condition in Definition 2.14 for a �-homomorphism of
abelian algebras corresponds to the homotopy extension property for the correspond-
ing map of (pointed compact Hausdorff) spaces.

In a similar way, it is customary that MorTop
�
.S1; B/ Š C0.S1/˝B Š C0.0; 1/˝

B is called the suspension of B , since C0.S1/ ˝ C0.X/ Š C0.S1 ^ X/ for B D
C0.X/, where X is a pointed compact Hausdorff space. See also Remark A.3.

However, for the sake of consistency, in this paper we will keep our notations and
terminologies compatible with that of Section 1.

The stable homotopy category SHo.C�/ is the suspension-stable homotopy cat-
egory of C�-algebras studied by Rosenberg [Ros82] and Schochet [Sch84].

Remark 2.21. Let sC� denote the category of separable C�-algebras. Then consid-
ering only D separable in Definitions 2.10 and 2.14, we get a structure of a category
of fibrant objects on sC�.
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Lemma 2.22. All Schochet fibrations are surjective.

Proof. Let p W E � B be a Schochet fibration. Consider the universal algebra
generated by a positive contraction:

C ´ C�.x j 0 � x � 1/ D C0.0; 1�:

Then for any b 2 B , 0 � b � 1, there is a path

Œ0; 1� 3 r 7! .x 7! rb/ 2 MorC�.C; B/;

which lifts to 0 2 MorC�.C; E/ at r D 0. Lifting the path to MorC�.C; E/, we get
e 2 E, 0 � e � 1, such that p.e/ D b. It follows that p is surjective.

Remark 2.23. The following are well known and/or easy to see.

(1) The localization C� ! Ho.C�/ preserves arbitrary coproducts and arbitrary
products:

Œ
`

i2ƒ Ai ; B�C� ŠQ
i2ƒŒAi ; B�C� ; ŒA;

Q
i2ƒ Bi �C� ŠQ

i2ƒŒA; Bi �C� :

(2) The loop functor � W Ho.C�/! Ho.C�/ preserves finite products,

�.B1 � B2/ Š �B1 ��B2;

but not finite coproducts (for example, the natural map �C
`

�C! �.C
`

C/

is not a homotopy equivalence).

(3) The loop functor � W Ho.C�/ ! Ho.C�/ does not preserve infinite products,
and in particular does not admit a left-adjoint; see Appendix.

(4) The “stable homotopy functor” �0 W Ho.C�/! SHo.C/� preserves finite prod-
ucts but not finite coproducts.

2.2. C�-stable homotopy theory. Let K denote the C�-algebra of compact opera-
tors on a separable infinite-dimensional Hilbert space.

Proposition 2.24. Defining the weak equivalences to be

ft 2 C� j t ˝ idK is a homotopy equivalenceg
and the fibrations to be

fp 2 C� j p ˝ idK is a Schochet fibrationg
defines a category of fibrant objects on C�, denoted by M.

Proof. This is clear since �˝ idK preserves pullbacks.
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Let e11 W C ! K denote a rank one projection. Then for any B 2 M, the
morphism idB ˝ e11 is a weak equivalence in M. It follows that Ho.M/ is the
“monoidal” localization Ho.C�/Œ˝e�1

11 �:

ŒA; B�M Š ŒA; B ˝K�C� Š ŒA˝K; B ˝K�C� :

In the notation of [Hig90], the categories Ho.M/ and SHo.M/ are the not necessarily
separable versions of TH and TS respectively. When restricted to the abelian algebras,
SHo.M/ gives the kk groups of Dadarlat–McClure [DM00].

2.3. Topological K-theory. Taking H to be topological K-theory in Theorem 1.33,
we get a category K D RKC� of fibrant objects whose weak equivalences are K-
equivalences and fibrations are Schochet fibrations. Compare [JJ06] and [MN06]. It
follows from Theorem 2.25 that Ho.K/ has small hom sets.

Let K be the algebra of compact operators on a separable Hilbert space and let
e11 W C!K denote a rank one projection. Then

idA ˝ e11 W A! A˝K

is a K-equivalence. We also have a natural isomorphism �2A! A˝K in Ho.K/,
since Bott periodicity can be implemented by a boundary map associated to a Toeplitz
type extension. It follows that

� W ŒA; B�K ! Œ�A; �B�K

is invertible. Hence K is stable and the natural functor Ho.K/ ! SHo.K/ is an
equivalence of categories. In particular, Ho.K/ is a triangulated category in a natural
way, and SHo.C/� ! Ho.K/ is a triangulated functor.

The following is a version of the Universal Coefficient Theorem of Rosenberg
and Schochet (cf. [RS87]). It can be deduced from results in [MN06], but we give a
self-contained proof.

Theorem 2.25. For B 2 K, we have

ŒC; B�K Š K0.B/: (2.2)

More generally, for A, B 2 K, there is a natural short exact sequence

Ext.K��1.A/; K�.B// � ŒA; B�K � Hom.K�.A/; K�.B//;

where

Hom.K�.A/; K�.B//´ L
iD0;1

HomZ.Ki .A/; Ki .B//

and

Ext.K��1.A/; K�.B//´ L
iD0;1

Ext1
Z.Ki�1.A/; Ki .B//:
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Proof. We have a natural (additive) map

ŒA; B�K ! HomZ.K�.A/; K�.B//: (2.3)

We claim that this is an isomorphism if K�.A/ is free – for A D C we get (2.2).
Indeed, suppose that K�.A/ is free. First recall that we have natural isomorphisms

K0.D/ D ŒqC; D ˝K�C� ; K1.D/ D Œ�C; D ˝K�C� ;

where qC is the kernel of the folding map .C
`

C! C/. We have a K-equivalence
qC ��!� C.

Then it is clear that any map K�.A/! K�.B/ can be implemented by an element
of the form

.
`

I qC/
`

.
`

J �C/

o
��

�� B ˝K

A˝K

A

o
��

B

o

��

in Ho.K/. Hence (2.3) is surjective. To see injectivity of (2.3), let

A ��� A0 ! B (2.4)

be a morphism in ŒA; B�K that maps to 0 2 Hom.K�.A/; K�.B//. Then we can
complete (2.4) to a homotopy-commutative diagram

.
`

I qC/
`

.
`

J �C/

o
��

� �� A0 ˝K �� B ˝K

A˝K

A

o
��

A0 ���		

o

��

B

o

��

in Ho.C�/. Then the top horizontal map is null-homotopic, i.e., zero in Ho.C�/,
hence zero in Ho K. In other words, (2.3) is injective if K�.A/ is free.

The general case follows using a geometric resolution of K�.A/. See for instance
[Uuy11].

2.4. KK-theory. In the next two subsections, we will concentrate on the category
sC� of separable C�-algebras. We refer to [Bla98], Chapter VIII, for details about
Kasparov’s KK-theory.
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Recall that, in the Cuntz picture of KK-theory (cf. [Cun87]), we have

KK.A; B/´ ŒqA; B ˝K�C� D ŒqA; B�M;

where qA is the kernel of the folding map idA

`
idA W A `

A! A.

Lemma 2.26. Let E ! B be a Schochet fibration with fibre F . Then for any
D 2 C�, we have a natural 6-term exact sequence:

KK.D; F / �� KK.D; E/ �� KK.D; B/

��

KK.D; �B/

��

KK.D; �E/		 KK.D; �F /.		

Proof. This follows from the fibre exact sequence (cf. Theorem 1.22) in Ho.M/ (or
Ho.C�/) and Bott periodicity.

Definition 2.27. A �-homomorphisms t W A! B in sC� is called a KK-equivalence
if

t� W KK.D; A/! KK.D; B/

is an isomorphism for all D 2 sC�.

The following example is the cornerstone of the Cuntz picture of KK-theory.

Example 2.28. For any A 2 sC�, the composition

qA � A
a

A
idA

`
0����! A

is a KK-equivalence.

In particular, we have an identification

KK.A; B/ Š ŒqA; qB�M D ŒqA˝K; qB ˝K�C� :

Under this identification, composition of KK-elements corresponds to composition
of homotopy classes (cf. [Cun87]). In particular, a �-homomorphism is a KK-
equivalence if and only if it determines an invertible element in KK, as expected.

Theorem 2.29. The category of separable C�-algebras forms a category of fibrant
objects with weak equivalences the KK-equivalences and fibrations the Schochet fi-
brations, denoted by KK, whose homotopy category Ho.KK/ is equivalent to the
KK-category of Kasparov. It follows that Kasparov’s KK-category is a stable trian-
gulated category.
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Proof. The category of fibrant objects structure follows from Theorem 1.33, since
KK.D;�/ gives a homology theory on C� in the sense of Definition 1.29 for all D

by Lemma 2.26.
Now the functor Ho.KK/! KK given by A 7! qA˝K is easily seen to be an

equivalence of categories. Stability follows from Bott periodicity.

Remark 2.30. Note that in Theorem 2.29, we can take the semi-split surjections,
i.e., surjections with a completely positive contractive splitting, to be the fibrations.
Indeed, the only nontrivial part is (FW1): if p W E ! B is a semi-split surjection
which is also a KK-equivalence and f W A! B is arbitrary, then the pullback f �.p/

is also a KK-equivalence. However, this is clear since if p is a semi-split surjection
with kernel F , then F ! Fp is a KK-equivalence (see [Bla98], Theorem 19.5.5),
hence p is a KK-equivalence if and only F is KK-contractible if and only if f �.p/

is a KK-equivalence (see diagram (1.1)).
Note also that Schochet fibrations and semi-split surjections give rise to the same

class of distinguished triangles in Ho.KK/ Š SHo.KK/.

2.5. Universal homology theories. We consider sC� as a category of fibrant ob-
jects with weak equivalences the homotopy equivalences and fibrations the Schochet
fibrations. In this subsection, we identify various localizations of sC�.

Definition 2.31. A fibre homology theory on sC� is a homology theory the pointed
category of fibrant objects sC� in the sense of Definition 1.29, i.e., a homological
functor on the triangulated category SHo.sC�/ to Ab.

Definition 2.32. We say that a fibre homology theory H on sC� is excisive with
respect to a surjection p, if the inclusion ker.p/ ! Fp is an H -equivalence. A
homology theory on sC� is a fibre homology theory excisive with respect to all
surjections.

Definition 2.33. We say that a morphism t 2 sC� is a weak equivalence if it is an
H -equivalence for all homology theories H on sC�.

Remark 2.34. Note that homotopy equivalences are weak equivalences.

Theorem 2.35. The category sC� forms a pointed category of fibrant objects with
weak equivalences as in Definition 2.33 and fibrations the Schochet fibrations, whose
stable homotopy category is triangulated equivalent to the stable homotopy category
of [Tho03], Theorem 3.3.5.

By [Dad94], the stable homotopy category mentioned above is equivalent to the
suspension-stable version of the strong shape category.
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Proof. It follows from Theorem 1.35 that the stable homotopy category is a univer-
sal triangulated homology theory in the sense of [Tho03], Definition 2.3.3. Then
[Tho03], Theorem 3.3.6, finishes the proof.

For a Hilbert space H , let eH W C!K.H/ denote a rank one projection.

Definition 2.36. A (fibre) homology theory H on sC� is said to be

(1) matrix-invariant if idB ˝ eH is an H -equivalence for all B 2 sC� and H finite
dimensional, and

(2) C�-invariant if idB˝eH is an H -equivalence for all B 2 sC� and H separable.

Definition 2.37. A morphism t 2 sC� is said to be

(1) a bu-equivalence if it induces isomorphism on all matrix-invariant homology
theories, and

(2) an E-equivalence if it induces isomorphism on all C�-invariant homology theo-
ries.

Theorem 2.38. (1) The category sC� forms a pointed category of fibrant objects with
weak equivalences the bu-equivalences and fibrations the Schochet fibrations, whose
stable homotopy category is triangulated equivalent to the category bu of [Tho03],
Theorem 4.2.1.

(2) The category sC� forms a stable pointed category of fibrant objects with
weak equivalences the E-equivalences and fibrations the Schochet fibrations, whose
homotopy category is a triangulated category, equivalent to the E-theory of Higson.

Proof. This follows from Theorem 1.35 and the universal properties of bu and E

(cf. [Tho03]).

Remark 2.39. (1) Let p W E ! B be a surjection with kernel F . Then p is a
weak equivalence in the sense of Definition 2.33 if and only if F is H -acyclic for
all homology theories H on sC�. Indeed, we have a map of extensions where the
vertical maps are all weak equivalences:

0 �� F

o
��

i �� E
p

��

o
��

B �� 0

0 �� Fp �� �� Np �� �� B �� 0.

(2.5)

Hence the claim follows from the naturality of the long exact sequence associated to
homology theories. It follows that in Theorem 2.35 and Theorem 2.38, we can take
the fibrations to be all surjections. However, the distinguished triangles in the stable
homotopy category would be the same (see the diagram (2.5)).

(2) We can also describe the KK-category of Kasparov as the universal split-exact
triangulated homology theory in a similar way.
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Appendix: No Quillen model structure (following Andersen–Grodal)

As noted in the introduction, the homotopy theory of C�-algebras does not come from
a Quillen model structure. This was perhaps first pointed out as part of a 1997 preprint
by Andersen–Grodal [AG97], where they also established a Baues fibration category
structure [Bau89] on C �-algebras (a notion very similar to a category of fibrant
objects; see [Bau89], Remark I.1a.6). Since their work however remains unpublished,
we, by permission of the authors, reproduce their non-existence argument in this
appendix.

Recall that if M is a Quillen model category, then the full subcategory Mf of
fibrant objects in M is a category of fibrant objects (cf. Example 1.4).

TheoremA.1. Let C� denote the pointed category of fibrant objects of Theorem 2.19.
Then C� is not the full subcategory of fibrant objects of a Quillen model category.

The essential part of the proof is to see that the loop functor does not admit a left
adjoint, as already remarked on in Remark 2.23 (3).

Lemma A.2. Let Mf be the full subcategory fibrant objects of a Quillen model
category M, considered as a category of fibrant objects as in Example 1.4. Then the
loop functor

� W Ho.Mf /! Ho.Mf / (A.1)

admits a left-adjoint.

Proof. Follows from Theorem I.1.1 and Theorem I.2.2 of [Qui67] and the definitions.

The following Lemma is clear.

Lemma A.3. Let A� � C� denote the full subcategory consisting of abelian C�-
algebras. Then A� is a reflective (monoidal) subcategory of C� – the left-adjoint of
the inclusion i W A� ! C� is the abelianization .�/ab W C� ! A�:

MorA�.Dab; B/ Š MorC�.D; iB/ (A.2)

for D 2 C�, B 2 A�.

In particular, A� is a pointed category of fibrant objects (cf. Example 1.6).

Corollary A.4. The homotopy category Ho.A�/ is a full reflective subcategory of
Ho.C�/ and the loop functor

� W Ho.A�/! Ho.A�/

is the restriction of � W Ho.C�/! Ho.C�/ to Ho.A�/.
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Proof. The adjunction (A.2) descends to the homotopy categories and gives and
adjunction:

ŒDab; B�A� Š ŒD; iB�C� ;

for D 2 C�, B 2 A�. See also [Bro74], Adjoint Functor Lemma. The rest of the
statements are clear.

Consequently, we see that SHo.A/� is a full triangulated subcategory of SHo.C/�.

LemmaA.5. The loop functor � W Ho.A�/! Ho.A�/ does not admit a left-adjoint.

Proof. By Gelfand–Naimark duality, the category CM� of pointed compact Haus-
dorff spaces is contravariantly equivalent to A�, hence form a category of cofibrant
objects. We need to show that the functor

† D S1 ^ �W Ho.CM�/! Ho.CM�/ (A.3)

does not admit a right-adjoint. We show that, in fact, the functor

Ho.CM�/! Set�; X 7! Œ†X; S1�CM�
;

is not representable, where Set� denote the category of pointed sets. Indeed, suppose
that for some Y 2 Ho.CM�/ we have a natural identification

Œ†X; S1�CM�
Š ŒX; Y �CM�

:

Let Top� denote the category of pointed compactly generated weakly Hausdorff topo-
logical spaces. Then CM� is a full (reflective) subcategory of Top� and Ho.CM�/ is
a full subcategory of Ho.Top�/. Moreover, the functor † of (A.3) is the restriction
of

† D S1 ^ �W Ho.Top�/! Ho.Top�/;

which does have a right-adjoint

� D MorTop
�
.S1;�/ W Ho.Top�/! Ho.Top�/:

Hence for X 2 CM�, we have

ŒX; Y �Top
�
Š ŒX; Y �CM�

Š Œ†X; S1�CM�
Š ŒX; �S1�Top

�
:

Moreover, by Yoneda’s Lemma, the natural identification above must be induced by
a map f W Y ! �S1 of Top�. This is a contradiction, for since Y is compact, f

cannot be surjective on �0.

Corollary A.6. The loop functor � W Ho.C�/ ! Ho.C�/ does not admit a left-
adjoint.
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Proof. Suppose that † W Ho.C�/ ! Ho.C�/ is a left-adjoint of �. It follows that
the composition

.�/ab B† B i W Ho.A�/! Ho.C�/! Ho.C�/! Ho.A�/

is a left-adjoint of � W Ho.A�/! Ho.A�/, contradicting Lemma A.5.

Now Theorem A.1 follows from Lemma A.2 and Corollary A.6.
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