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Tate–Hochschild homology and cohomology of
Frobenius algebras
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Abstract. Let ƒ be a two-sided Noetherian Gorenstein k-algebra, for k a field. We introduce
Tate–Hochschild homology and cohomology groups for ƒ, which are defined for all degrees,
non-negative as well as negative, and which agree with the usual Hochschild homology and
cohomology groups for all degrees larger than the injective dimension ofƒ. We prove certain
duality theorems relating the Tate–Hochschild (co)homology groups in positive degree to those
in negative degree, in the case whereƒ is a Frobenius algebra. We explicitly compute all Tate–
Hochschild (co)homology groups for certain classes of Frobenius algebras, namely, certain
quantum complete intersections.
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1. Introduction

Hochschild cohomology was introduced by Hochschild in [Ho1], [Ho2] as a tool for
studying the structure of associative algebras. A bit later, Tate introduced a cohomol-
ogy theory based on complete resolutions, which consequently defined cohomology
in all degrees, positive and negative (cf. the end of [Tat]). In this paper we combine
these two notions of cohomology and extend Hochschild cohomology to the ‘neg-
ative side,’ arriving at what we call Tate–Hochschild cohomology. It turns out that
the ‘positive side’ of Tate–Hochschild cohomology agrees with the usual Hochschild
cohomology. We show that in some cases the ‘positive’ and ‘negative’ sides are sym-
metric. However, this is not the case in general, and we illustrate this by computing
explicitly both sides of Tate–Hochschild cohomology for certain classes of algebras.

More specifically, let k be a field andƒ denote a two-sided Noetherian Gorenstein
k-algebra. Thenƒ has a complete resolution T over the enveloping algebraƒe ofƒ,
and for a ƒ-ƒ-bimodule B one can define the Tate–Hochschild cohomology groups
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a visit by the second author to the first. The second author thanks the Institutt for Matematiske Fag, NTNU,
for their hospitality and generous support.
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with coefficients in B by

bHH
n
.ƒ;B/ D Hn.Homƒe.T ; B//

for all n 2 Z. (See Section 2 for details.)
Whenƒ is a finite dimensional algebra andB is finitely generated, then the Tate–

Hochschild cohomology groups are finite dimensional vector spaces overk. We prove
in Section 2 general duality results which relate the vector space dimensions of the
positive cohomology to those of the negative cohomology with coefficients in a dual
module. We use these results in Section 3 to establish, for example, the following
consequence when ƒ is moreover a Frobenius algebra:

Theorem. Let ƒ be a Frobenius algebra, with Nakayama automorphism �. Then

dimk
bHH

n
.ƒ;ƒ/ D dimk

bHH
�.nC1/

.ƒ; �2ƒ1/

for all n 2 Z, where �2ƒ1 denotes the bimodule ƒ twisted on the right by the
automorphism �2.

Thus Tate–Hochschild cohomology is symmetric when � squares to the iden-
tity automorphism, and this is the case, for example, when ƒ is a symmetric al-
gebra or an exterior algebra. On the other hand, for certain classes of Frobe-
nius algebras, Tate–Hochschild cohomology is not symmetric. In Section 4 we
compute the Tate–Hochschild cohomology for the quantum complete intersection
A D khX; Y i=.Xa; XY � qYX; Y b/ with a; b � 2 and q not a root of unity in k,
finding that

dim bHH
n
.A;A/ D

8̂̂̂<̂
ˆ̂:
1 if n D 0;

2 if n D 1;

1 if n D 2;

0 if n ¤ 0; 1; 2:

Throughout the paper we simultaneously treat the homology version as well, Tate–
Hochschild homology. It turns out that the Tate–Hochschild homology behaves quite
different than does the cohomology. For example, in Section 3 we give the companion
to the theorem above, showing that Tate–Hochschild homology is always symmetric
when ƒ is a Frobenius algebra. This result was first proved in [EuS].

Theorem. Let ƒ be a Frobenius algebra. Then

dimk
bHHn.ƒ;ƒ/ D dimk

bHH�.nC1/.ƒ;ƒ/

for all n 2 Z.

Again, this theorem is a consequence of more general duality statements which
we prove in Section 2.
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2. Tate–Hochschild (co)homology

Letk be a commutative ring andƒ ak-algebra. We denote byƒop the opposite algebra
of ƒ, and by ƒe the enveloping algebra ƒ˝k ƒ

op of ƒ. The k-dual Homk.�; k/ is
denoted by D.�/, and the ring dual Homƒ.�; ƒ/ by .�/�.

As mentioned, the classical Hochschild cohomology groups of an algebra were
introduced by Hochschild in [Ho1], [Ho2], as a tool for studying the structure of
associative algebras. For instance, the second cohomology group controls the defor-
mations of the algebra, cf. [Ge1], [Ge2]. For every non-negative integer n, let Qn
denote the n-fold tensor product ƒ˝k � � � ˝k ƒ of ƒ over k, with Q0 D k. If B is
a ƒ-ƒ-bimodule, the corresponding Hochschild cohomology complex

� � � ! 0 ! 0 ! H 0 @0�! H 1 @1�! H 2 @2�! H 3 ! � � �
is defined as follows:

Hn D

8̂<̂
:
0 for n < 0;

B for n D 0;

Homk.Qn; B/ for n > 0;

with differentiation given by

.@0b/.�/ D �b � b�;
.@nf /.�1 ˝ � � � ˝ �nC1/ D �1f .�2 ˝ � � � ˝ �nC1/

C
nP
iD1
.�1/if .�1 ˝ � � � ˝ �i�iC1 ˝ � � � ˝ �nC1/

C .�1/nC1f .�1 ˝ � � � ˝ �n/�nC1:

The cohomology of this complex is the Hochschild cohomology ofƒ, with coefficients
inB . We denote this by HH�.ƒ;B/. The homological counterpart to Hochschild co-
homology is defined using tensor product instead of the Hom-functor. The Hochschild
homology complex

� � � ! H3
@3�! H2

@2�! H1
@1�! H0 ! 0 ! 0 ! � � �

is defined as follows:

Hn D

8̂<̂
:
0 for n < 0;

B for n D 0;

B ˝k Qn for n > 0;

with differentiation given by

@n.b ˝ �1 ˝ � � � ˝ �n/ D b�1 ˝ �2 ˝ � � � ˝ �n

C
n�1P
iD1
.�1/ib ˝ �1 ˝ � � � ˝ �i�iC1 ˝ � � � ˝ �n

D .�1/n�nb ˝ �1 ˝ � � � ˝ �n�1:
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The homology of this complex is the Hochschild homology ofƒ, with coefficients in
B . We denote this by HH�.ƒ;B/.

When the algebra ƒ is projective as a module over the ground ring k, the Hoch-
schild cohomology and homology groups can be interpreted using Ext and Tor over
the enveloping algebraƒe. Namely, for each non-negative integer n, letPn D QnC2,
that is, the .n C 2/-fold tensor product of ƒ over k. We endow Pn with a left ƒe-
module structure (that is, a bimodule structure) by defining

.�˝ �0/.�0 ˝ � � � ˝ �nC1/ D ��0 ˝ � � � ˝ �nC1�0;

and for each n � 1, define a bimodule homomorphism Pn
dn�! Pn�1 by

�0 ˝ � � � ˝ �nC1 7!
nP
iD0
.�1/i�0 ˝ � � � ˝ �i�iC1 ˝ � � � ˝ �nC1:

The sequence

S W � � � ! P3
d3�! P2

d2�! P1
d1�! P0

��! ƒ ! 0

of bimodules and homomorphisms, where � is the multiplication map, is exact (cf.
[CaE], p. 174–75), and we denote by Sƒ the complex obtained by deletingƒ. Since
Pn and ƒe ˝k Qn are isomorphic as ƒe-modules, adjointness gives

Homƒe.Pn; B/ Š Homk.Qn;Homƒe.ƒe; B// Š Homk.Qn; B/;

and the Hochschild cohomology complex is isomorphic to the complex Homƒe.Sƒ;B/
(where we view B as a left ƒe-module). Similarly, the Hochschild homology com-
plex is isomorphic to the complex B ˝ƒe Sƒ (where we view B as a right ƒe-
module). Now, ifƒ is projective as a module over k, then so isQn, hence the functor
Homk.Qn;�/ is exact. By adjointness, this functor is isomorphic to the functor
Homƒe.Pn;�/, and therefore Pn is a projective bimodule. Thus the sequence S is a
projective bimodule resolution of ƒ, giving isomorphisms

HH�.ƒ;B/ Š Ext�
ƒe.ƒ;B/;

HH�.ƒ;B/ Š Torƒ
e

� .B;ƒ/:

The Hochschild cohomology of an algebra lives only in positive degrees, as does
the Hochschild homology. The focus of this paper is a (co)homological theory which
extends the classical one. In order to give the definition, we recall some general
notions from [AvM]. Suppose ƒ is a two-sided Noetherian Gorenstein ring, say of
Gorenstein dimension d . That is to say, the injective dimensions of ƒ, both as a left
and as a right module over itself, are equal to d . Then every finitely generated left
ƒ-module M admits a complete resolution

T W � � � ! T2 ! T1 ! T0 ! T�1 ! T�2 ! � � � ;
i.e., an acyclic complex of finitely generated projective modules with the following
properties (see [AvM], Theorem 3.2):
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(1) the dual complex T � is acyclic,

(2) there exists a projective resolution P of M and a chain map T
f�! P with the

property that fn is bijective for n � d .

Property (2) implies that T is “eventually” a projective resolution of M . Given
anotherƒ-moduleN and an integer n 2 Z, the Tate cohomology groupbExt

n

ƒ.M;N /

is the n-th cohomology of the complex Homƒ.T ; N /. If N is a right module, the

Tate homology group cTor
ƒ

n .N;M/ is the n-th homology of the complex N ˝ƒ T .
Naturally, the Tate (co)homology is independent of the complete resolution of M ,
and, in the homological case, it can be computed using a complete resolution of N
[ChJ]. Moreover, by property (2) there are isomorphisms

bExt
n

ƒ.M;N / Š Extnƒ.M;N /;cTor
ƒ

n .N;M/ Š Torƒn .N;M/

for alln � dC1. The original cohomological definition is due to Tate, who introduced
the cohomology groups for modules over the integral group ring of a finite group in
order to study class field theory (cf. [CaE], XII, §3).

Having recalled the classical definition of Tate cohomology and homology, we
may now define the Hochschild cohomological and homological versions.

Definition. Let k be a commutative ring andƒ a k-algebra such that the enveloping
algebra ƒe is two-sided Noetherian and Gorenstein. For an integer n 2 Z and a
bimodule B , the n-th Tate–Hochschild cohomology group bHH

n
.ƒ;B/ and the n-th

Tate–Hochschild homology group bHHn.ƒ;B/ are defined by

bHH
n
.ƒ;B/ D bExt

n

ƒe.ƒ;B/;

bHHn.ƒ;B/ D cTor
ƒe

n .B;ƒ/:

Note that if the Gorenstein dimension of the enveloping algebra isd , then for every
n � d C 1 there are isomorphisms bHH

n
.ƒ;B/ Š Extnƒe.ƒ;B/ and bHHn.ƒ;B/ Š

Torƒ
e

n .B;ƒ/. In particular, when ƒ is projective as a k-module, then there are
isomorphisms

bHH
n
.ƒ;B/ Š HHn.ƒ;B/;

bHHn.ƒ;B/ Š HHn.ƒ;B/

whenever n � d C 1. A special case appears when the enveloping algebra is two-
sided Noetherian and selfinjective. By definition, the enveloping algebra is then
of Gorenstein dimension zero, and the Tate–Hochschild (co)homology groups are
therefore defined and agree with the classical Hochschild (co)homology groups in
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all positive degrees. In particular, this is the case for finite dimensional Frobenius
algebras (see the next section); for such algebras, the Tate–Hochschild (co)homology
agrees with the stable Hochschild (co)homology introduced in [EuS].

We shall mainly be working with finite dimensional k-algebras (hence k will
be a field), hence the requirement (in the definition of Gorenstein algebras) that the
enveloping algebra be two-sided Noetherian is unnecessary. In other words, a finite
dimensional algebra is Gorenstein if and only if its injective dimensions as a left
and right module over itself are finite. It is known that in this case the two injective
dimensions are the same. The following result shows that if a finite dimensional
algebra is Gorenstein, then so is its enveloping algebra. We include a proof due to
the lack of a reference. Consequently, Tate–Hochschild (co)homology is defined for
finite dimensional Gorenstein algebras. Note that the result shows in particular that
the enveloping algebra of a selfinjective algebra is again selfinjective.

Lemma 2.1. If k is a field andƒ and� are finite dimensional Gorenstein k-algebras
of Gorenstein dimensions s and t , respectively, then their tensor product ƒ˝k � is
Gorenstein of Gorenstein dimension at most s C t . In particular, the enveloping
algebra ƒe is Gorenstein of Gorenstein dimension at most 2s.

Proof. Choose injective resolutions

0 ! ƒ ! I 0ƒ ! � � � ! I sƒ ! 0 (1)

and

0 ! � ! I 0� ! � � � ! I t� ! 0 (2)

over ƒ and � , respectively, both as left modules. When we delete the algebras and
tensor the resulting complexes over k, we obtain a complex

E W 0 ! E0 ! E1 ! � � � ! EsCt ! 0

in which En D Ln
jD0.I

j
ƒ ˝k I

n�j
� /. In general, if Iƒ and I� are injective left

modules over ƒ and � , respectively, then the right modules D.Iƒ/ and D.I�/ are
projective, and so D.Iƒ/ ˝k D.I�/ is a projective right (ƒ ˝k �)-module. But
this right (ƒ˝k �)-module is isomorphic toD.Iƒ˝k I�/, and consequently the left
(ƒ˝k�)-module Iƒ˝k I� is injective. This shows that the complex E is an injective
resolution ofƒ˝k � as a left module over itself. Similarly, by starting with injective
resolutions of right modules, we end up with an injective resolution (of length sC t )
ofƒ˝k � as a right module over itself. This proves the first part of the lemma. The
second part follows immediately, since the opposite algebra of a Gorenstein algebra
is also Gorenstein of the same dimension.

Note also that when ƒ is finite dimensional algebra and B is a ƒ-ƒ-bimodule
which is finitely generated as either a left or rightƒ-module, then the Tate–Hochschild
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homologybHHn.ƒ;B/ and cohomologybHH
n
.ƒ;B/ are just finite dimensional vector

spaces over k for all n 2 Z.
The main results in this section establish Tate–Hochschild duality isomorphisms

for Gorenstein algebras. These results follow from a more general duality result for
Tate homology, which we prove after the following two lemmas. The first lemma
is well known in the case of ordinary (co)homology: over any finite dimensional
algebra � there is an isomorphism

D.Exti�.X; Y // Š Tor�i .D.Y /;X/

for all i � 0 and all modules X; Y (cf. citeCartanEilenberg, VI, Proposition 5.3).

Lemma 2.2. Let ƒ be a finite dimensional Gorenstein algebra and M and N two
left ƒ-modules, withM finitely generated. Then there is an isomorphism

D.bExt
n

ƒ.M;N // Š cTor
ƒ

n .D.N/;M/

for all n 2 Z. In particular, if B is a bimodule, then there is an isomorphism

D.bHH
n
.ƒ;B// Š bHHn.ƒ;D.B//

for all n 2 Z.

Proof. Let T be a complete resolution of M , and for each i 2 Z, denote by �iƒ.T /
the image of the i -th differential in T . Fix n 2 Z, and denote the Gorenstein
dimension of ƒ by d . Let m be any integer with the property that mC n > d . Then
there are isomorphisms

D.bExt
n

ƒ.M;N // Š D.Hn.Homƒ.T ; N ///

Š D.bExt
nCm
ƒ .��m

ƒ .T /; N //

Š D.ExtnCm
ƒ .��m

ƒ .T /; N //

Š TorƒnCm.D.N/;��m
ƒ .T //

Š cTor
ƒ

nCm.D.N/;��m
ƒ .T //

Š Hn.D.N/˝ƒ T /

Š cTor
ƒ

n .D.N/;M/;

and we have proved the first part. The second part follows from the first and the
definition of Tate–Hochschild (co)homology.

The second lemma seems to be well known; it is a special case of [AnF], Propo-
sition 20.10. We include a proof.
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Lemma 2.3. Let ƒ be any ring andM a left ƒ-module. If P is a finitely generated
projective left ƒ-module, then there is an isomorphism

 P W Homƒ.P;ƒ/˝ƒM ! Homƒ.P;M/

given by  P .f ˝m/.p/ D f .p/m. This isomorphism is natural in P .

Proof. The map  P is well defined since the pairing

Homƒ.P;ƒ/ �M ��! Homƒ.P;M/; .f;m/ 7! .p 7! f .p/m/;

satisfies �.f �;m/ D �.f; �m/ for all � 2 ƒ. When P D ƒ, this map is just the
composition of the isomorphisms

Homƒ.ƒƒ;ƒƒƒ/˝ƒM ! ƒƒ ˝ƒM ! M ! Homƒ.ƒƒ;M/

and hence an isomorphism itself. Extending to the case whenP is a finitely generated
free module, and then to the case when P is a summand of such a module, we see
that the first half of the lemma holds.

As for the naturality in P , let P1
h�! P2 be a map between finitely generated

projective left ƒ-modules, and consider the diagram

Homƒ.P2; ƒ/˝ƒM

 P2
��

h�˝1M �� Homƒ.P1; ƒ/˝ƒM

 P1
��

Homƒ.P2;M/
h�

�� Homƒ.P1;M/.

If f 2 Homƒ.P2; ƒ/;m 2 M and p 2 P1, then

Œ.h� B  P2/.f ˝m/�.p/ D . P2.f ˝m/ B h/.p/
D  P2.f ˝m/.h.p//

D f .h.p//m

D .f B h/.p/m
D  P1.f B h˝m/.p/

D Œ. P1 B .h� ˝ 1M //.f ˝m/�.p/;

hence the diagram commutes.

We are now ready to prove the general duality result for Tate homology and
cohomology. Recall first that when k is a field andƒ is a finite dimensional k-algebra,
then every finitely generated module M admits a minimal projective resolution

� � � ! P2
d2�! P1

d1�! P0
d0�! M ! 0:

This projective resolution appears as a direct summand of every projective resolution
of M , and it is unique up to isomorphism. For every n � 0, the n-th syzygy of M ,
denoted �nƒ.M/, is the image of the map dn.
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Theorem 2.4. Let ƒ be a finite dimensional Gorenstein algebra, M , L two finitely
generated left modules, and N a finitely generated right module. If the Gorenstein
dimension of ƒ is at most d , then there are vector space isomorphisms

cTor
ƒ

n .N;M/ Š cTor
ƒ

�.n�dC1/.�dƒ.M/�;D.N //;

bExt
n

ƒ.M;L/ Š bExt
�.n�dC1/
ƒ .L;D.�dƒ.M/�//

for all n 2 Z.

Proof. Consider the minimal projective resolution

� � � ! P2 ! P1 ! P0 ! M ! 0

of M . It follows from [AvM], Lemma 2.5 and Construction 3.6, that M admits a
complete resolution

T W � � � ! T2
@2�! T1

@1�! T0
@0�! T�1

@�1��! T�2 ! : : :

such that there exists a chain map

: : : �� T2
@2 ��

f2
��

T1
@1 ��

f1
��

T0
@0 ��

f0
��

T�1
@�1 ��

f�1

��

T�2
f�2

��

�� : : :

: : : �� P2 �� P1 �� P0 �� 0 �� 0 �� : : :

in which fn is bijective for n � d . Consequently the image of the map @d is
isomorphic to �dƒ.M/; we denote this module by X . We must show that

cTor
ƒ

n .N;X/ Š cTor
ƒ

�.nC1/.X�;D.N //

for all n, since cTor
ƒ

n .N;X/ is isomorphic to cTor
ƒ

nCd .N;M/.
By adjointness, the complexes Homk.N ˝ƒ T ; k/ and Homƒ.T ;Homk.N; k//

are isomorphic, that is, there is an isomorphism

D.N ˝ƒ T / Š Homƒ.T ;D.N //

of complexes. Moreover, by Lemma 2.3, there is an isomorphism

� � � ! Homƒ.Tn�1;D.N //

 �1
Tn�1

��

@n �� Homƒ.Tn;D.N //

 �1
Tn

��

�� : : :

� � � ! Homƒ.Tn�1; ƒ/˝ƒ D.N/
@n �� Homƒ.Tn; ƒ/˝ƒ D.N/ �� : : :
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between the complexes Homƒ.T ;D.N // and T �˝ƒD.N/. In general, note that ifC
is a complex of finite dimensional vector spaces over k, then Hn.C / and H�n.D.C //
have the same dimension, and are therefore isomorphic as vector spaces. This explains
the second isomorphism below. Now since T � is a complete resolution of X�, we
see that

cTor
ƒ

n .N;X/ Š HnCd .N ˝ƒ T /

Š H�.nCd/.D.N ˝ƒ T //

Š H�.nCd/.Homƒ.T ;D.N ///

Š H�.nCd/.T � ˝ƒ D.N//

Š cTor
ƒ

�.nC1/.X�;D.N //;

and the proof of the homology part is complete.
For the cohomology part, we use Lemma 2.2 twice, together with the homology

part we just proved:

D.bExt
n

ƒ.M;L// Š cTor
ƒ

n .D.L/;M/

Š cTor
ƒ

�.n�dC1/.�dƒ.M/�;D2.L//

Š cTor
ƒ

�.n�dC1/.�dƒ.M/�; L/

Š D.bExt
�.n�dC1/
ƒ .L;D.�dƒ.M/�///:

Hence bExt
n

ƒ.M;L/ and bExt
�.n�dC1/
ƒ .L;D.�dƒ.M/�// are isomorphic.

We can now prove the duality result for Tate–Hochschild (co)homology; this is
just a direct application of Theorem 2.4.

Theorem 2.5. If ƒ is a finite dimensional Gorenstein algebra of Gorenstein dimen-
sion d and B is a ƒ-ƒ-bimodule which is finitely generated as either a left or right
ƒ-module, then there are isomorphisms of vector spaces

bHHn.ƒ;B/ Š cTor
ƒe

�.n�2dC1/.�2dƒe .ƒ/
�;D.B//;

bHH
n
.ƒ;B/ Š bExt

�.n�2dC1/
ƒe .B;D.�2dƒe .ƒ/

�//

for all n 2 Z, where .�/� D Homƒe.�; ƒe/. In particular, there are isomorphisms

bHHn.ƒ;ƒ/ Š cTor
ƒe

�.n�2dC1/.�2dƒe .ƒ/
�;D.ƒ//;

bHH
n
.ƒ;ƒ/ Š bHH

�.n�2dC1/
.ƒ;D.�2dƒe .ƒ/

�//

for all n 2 Z.
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Proof. By Lemma 2.1, the enveloping algebraƒe is Gorenstein of dimension at most
2d , hence the isomorphisms in the first part follow immediately from Theorem 2.4:

bHHn.ƒ;B/ D cTor
ƒe

n .B;ƒ/ Š cTor
ƒe

�.n�2dC1/.�2dƒe .ƒ/
�;D.B//;

bHH
n
.ƒ;B/ D bExt

n

ƒe.ƒ;B/ Š bExt
�.n�2dC1/
ƒe .B;D.�2dƒe .ƒ/

�//:

The last part of the theorem follows directly from the first.

We end this section by specializing to selfinjective algebras. Such and algebra is
by definition Gorenstein, and its Gorenstein dimension is zero. Therefore, for this
class of algebras, Theorem 2.5 takes the following form.

Theorem 2.6. Ifƒ is a finite dimensional selfinjective algebra, and B is a bimodule,
then there are isomorphisms of vector spaces

bHHn.ƒ;B/ Š cTor
ƒe

�.nC1/.ƒ�;D.B//;

bHH
n
.ƒ;B/ Š bExt

�.nC1/
ƒe .B;D.ƒ�//

for all n 2 Z, where .�/� D Homƒe.�; ƒe/. In particular, there are isomorphisms

bHHn.ƒ;ƒ/ Š cTor
ƒe

�.nC1/.ƒ�;D.ƒ//;

bHH
n
.ƒ;ƒ/ Š bHH

�.nC1/
.ƒ;D.ƒ�//

for all n 2 Z.

3. Frobenius algebras

In this section, we apply the Tate–Hochschild duality results from the last section
to a special class of selfinjective algebras. Recall that a finite dimensional algebra
ƒ is Frobenius if ƒ and D.ƒ/ are isomorphic as left ƒ-modules, and symmetric if
they are isomorphic as bimodules. Suppose ƒ is Frobenius, and fix an isomorphism
	 W ƒ ! D.ƒ/ of left modules. Let y 2 ƒ be any element, and consider the
linear functional 	.1/ � y 2 D.ƒ/. This is the k-linear map ƒ ! k defined by
� 7! 	.1/.y�/, where k is the ground field. Since 	 is surjective, there is an element
x 2 ƒ having the property that 	.x/ D 	.1/ � y, giving x � 	.1/ D 	.1/ � y since
	 is a map of left ƒ-modules. The map y 7! x defines a k-algebra automorphism
on ƒ, and its inverse � is the Nakayama automorphism of ƒ (with respect to 	).
Thus � is defined by 	.1/.�x/ D 	.1/.�.x/�/ for all �; x 2 ƒ. The Nakayama
automorphism is unique up to an inner automorphism. Namely, if 	0 W ƒ ! D.ƒ/

is another isomorphism of left modules yielding a Nakayama automorphism �0, then
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there exists an invertible element z 2 ƒ such that � D z�0z�1. Note that ƒ is
symmetric if and only if the Nakayama automorphism is the identity.

SinceD.ƒ/ is an injective leftƒ-module, a Frobenius algebra is always left self-
injective. However, the definition is left-right symmetric. For if 	 W ƒƒ ! D.ƒƒ/

is an isomorphism of left ƒ-modules, we can dualize and obtain an isomorphism
D.	/ W D2.ƒƒ/ ! D.ƒƒ/ of right modules. Composing with the natural iso-
morphism ƒƒ Š D2.ƒƒ/, we obtain an isomorphism ƒƒ ! D.ƒƒ/ of right
ƒ-modules. This left-right symmetry implies that the opposite algebra of a Frobe-
nius algebra is also Frobenius, and that its Nakayama automorphism is the inverse of
the original one.

Lemma 3.1. If ƒ is a Frobenius algebra with a Nakayama automorphism �, then
ƒop is Frobenius with ��1 as a Nakayama automorphism.

Proof. As seen above, the definition of a Frobenius algebra is left-right symmetric.
Moreover, an isomorphism ƒ ! D.ƒ/ of right ƒ-modules may be viewed as an
isomorphismƒop ! D.ƒop/ of leftƒop-modules. Henceƒ is Frobenius if and only
if ƒop is.

Now suppose ƒ is Frobenius, and let 	 W ƒ ! D.ƒ/ be an isomorphism of left
modules with corresponding Nakayama automorphism � W ƒ ! ƒ. The composition
of isomorphisms

ƒ ! D2.ƒ/
D.�/���! D.ƒ/

of right ƒ-modules can then be viewed as an isomorphism 	op of left ƒop-modules.
Thus	op.1/.�/ D 	.�/.1/ for all� 2 ƒop. Denote the multiplication of two elements
x and y in ƒop by x � y, so that x � y D yx, where yx is the ordinary product in ƒ.
Then

	op.1/.� � x/ D 	op.1/.x�/

D 	.x�/.1/

D 	.���1.x//.1/
D 	op.1/.���1.x//
D 	op.1/.��1.x/ � �/

for all �; x 2 ƒop, hence ��1 is a Nakayama automorphism for ƒop.

The tensor product of two Frobenius algebras is also Frobenius, with the obvious
Nakayama automorphism. We record this in the following lemma.

Lemma 3.2. If ƒ and � are Frobenius k-algebras with Nakayama automorphisms
�ƒ and �� , respectively, then ƒ ˝k � is Frobenius with �ƒ ˝ �� as a Nakayama
automorphism.
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Proof. Let 	ƒ W ƒ ! D.ƒ/ and 	� W � ! D.�/ be isomorphisms of left modules,
with corresponding Nakayama automorphisms �ƒ and �� , respectively. Then the
composition

ƒ˝k �
�ƒ˝�������! D.ƒ/˝k D.�/ ! D.ƒ˝k �/

of left .ƒ˝k �/-isomorphisms shows that ƒ˝k � is Frobenius.
Denote this composition by 	. Then

	.1˝ 1/.Œ�˝ 
�Œx ˝ y�/ D 	.1˝ 1/.�x ˝ 
y/

D 	ƒ.�x/	�.
y/

D 	ƒ.�ƒ.x/�/	�.��.y/
/

D 	.1˝ 1/.�ƒ.x/�˝ ��.y/
/

D 	.1˝ 1/.Œ�ƒ.x/˝ ��.y/�Œ�˝ 
�/

for all�˝
 andx˝y inƒ˝� . This shows that �ƒ˝�� is a Nakayama automorphism
for ƒ˝ � .

Combining Lemma 3.1 and Lemma 3.2, we see that the enveloping algebra of a
Frobenius algebra is again Frobenius.

Corollary 3.3. If ƒ is a Frobenius algebra with a Nakayama automorphism �, then
ƒe is Frobenius with � ˝ ��1 as a Nakayama automorphism.

The Tate–Hochschild duality results below for Frobenius algebras involve twisted

modules. Ifƒ is an arbitrary ring andƒ
f�! ƒ is an automorphism, then we can endow

aƒ-moduleM with a newƒ-module structure as follows: for � 2 ƒ andm 2 M , let
� �m D f .�/m. We denote this twisted ƒ-module by fM . If B is a bimodule over

ƒ, and ƒ
g�! ƒ another automorphism, then we can twist on both sides and obtain a

bimodulef Bg . A special case is the bimodulefƒg , which is isomorphic to g�1ƒ
f �1

when the two automorphisms f and g commute. In particular, the bimodules fƒ1
and 1ƒf �1 are isomorphic, and so arefƒf andƒ itself. Note that the twisted module
fM is isomorphic tofƒ1 ˝ƒM .

Suppose now, as before, thatƒ is Frobenius with an isomorphism 	 W ƒ ! D.ƒ/

of left modules, and let � be a corresponding Nakayama automorphism. Then 	 is
an isomorphism between the bimodules 1ƒ��1 and D.ƒ/, and from above we see
that D.ƒ/ is also isomorphic to �ƒ1. We can use this to show that the ring dual of a
ƒ-module is just the k-dual twisted by �.

Lemma 3.4. If ƒ is a Frobenius algebra with a Nakayama automorphism �, then
for any finitely generated left module M , the right modules M � and D.M/� are
isomorphic.
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Proof. Standard Hom-tensor adjunction gives

M � D Homƒ.M;ƒ/

Š Homƒ.M;D
2.ƒ//

D Homƒ.M;Homk.D.ƒ/; k//

Š Homk.D.ƒ/˝ƒM;k/

Š Homk.�ƒ1 ˝ƒM;k/

Š Homk.�M;k/

D D.�M/:

Since D.M/� D D.�M/, the result follows.

Using this lemma, Theorem 2.4 takes the following form for modules over a
Frobenius algebra.

Theorem 3.5. Letƒ be a Frobenius algebra with a Nakayama automorphism �,M ,
L two finitely generated left modules, andN a finitely generated right module. Then
there are isomorphisms of vector spaces

cTor
ƒ

n .N;M/ Š cTor
ƒ

�.nC1/.D.M/� ;D.N //;

bExt
n

ƒ.M;L/ Š bExt
�.nC1/
ƒ .L; �M/

for all n 2 Z.

Proof. The homology isomorphism is obtained directly by combining Theorem 2.4
with Lemma 3.4, and so does the cohomology isomorphism, when noting that there
are isomorphisms

D.M �/ Š D.D.M/�/ D �D
2.M/ Š �M

of left ƒ-modules.

Before applying this to Tate–Hochschild (co)homology, we include a result which
shows the following: if one of the modules in a Tate homology group is twisted by
an automorphism, then we may instead twist the other module by the inverse.

Lemma 3.6. Let ƒ be a ring with an automorphism ƒ
f�! ƒ, andM and N a right

and a left ƒ-module, respectively. Then there is an isomorphism Torƒn .Mf ; N / Š
Torƒn .M;f �1N/ for every n � 0. If in addition ƒ is a finite dimensional Gorenstein

algebra and M is finitely generated, then there are isomorphisms cTor
ƒ

n .Mf ; N / ŠcTor
ƒ

n .M;f �1N/ for every n 2 Z.
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Proof. For the first part, note that the map Mf ˝ƒ N ! M ˝ƒ f �1N given by
m ˝ n 7! m ˝ n is well defined, and therefore an isomorphism. Moreover, if P
is a projective right ƒ-module, then so is Pf , and the twisting operation is exact.
Therefore, if P is a projective resolution of M , then Pf is a projective resolution of
Mf , giving

Torƒn .Mf ; N / Š Hn
�
Pf ˝ƒ N

� Š Hn.P ˝ƒf �1N/ Š Torƒn .M;f �1N/:

Suppose now that ƒ is a finite dimensional Gorenstein algebra, and M is finitely
generated. If T is a complete resolution of M , then by definition there exists a

projective resolution P of M and a chain map T
h�! P with the property that hn is

bijective for n � d . Twisting by f , we see that h is also a chain map Tf
h�! Pf .

Moreover, we know that Pf is a projective resolution of Mf , and that the complex
Tf is acyclic and consists of finitely generated projective modules. Now, if X is
an arbitrary right ƒ-module and Y is a bimodule, then the map Homƒ.Xf ; Y / !
Homƒ.X; Yf �1/ given by g 7! g is an isomorphism of left ƒ-modules. Therefore

.Tf /
� D Homƒ.Tf ; ƒ/ Š Homƒ.T ; 1ƒf �1/ Š Homƒ.T ;fƒ1/ Š f .T

�/;

hence .Tf /� is also acyclic. Consequently Tf is a complete resolution ofMf , giving

cTor
ƒ

n .Mf ; N / Š Hn.Tf ˝ƒ N/ Š Hn.T ˝ƒf �1N/ Š cTor
ƒ

n .M;f �1N/:

This completes the proof.

We may now prove the Tate–Hochschild duality result for Frobenius algebras.
The duality for the Tate–Hochschild homology bHHn.ƒ;ƒ/ was proved by Eu and
Schedler in [EuS].

Theorem 3.7. Ifƒ is a Frobenius algebra with a Nakayama automorphism � and B
a bimodule, then there are isomorphisms

bHHn.ƒ;B/ Š cTor
ƒe

�.nC1/.ƒ; ��1D.B/1/;

bHH
n
.ƒ;B/ Š bExt

�.nC1/
ƒe .B; �2ƒ1/

for all n 2 Z. In particular, there are isomorphisms

bHHn.ƒ;ƒ/ Š bHH�.nC1/.ƒ;ƒ/;

bHH
n
.ƒ;ƒ/ Š bHH

�.nC1/
.ƒ; �2ƒ1/

for all n 2 Z.
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Proof. For the homology isomorphism, we useTheorem 3.5 together with Lemma 3.6:

bHHn.ƒ;B/ D cTor
ƒe

n .B;ƒ/

Š cTor
ƒe

�.nC1/.D.ƒ/�ƒe ;D.B//

Š cTor
ƒe

�.nC1/..�ƒ1/.�˝��1/;D.B//

Š cTor
ƒe

�.nC1/.ƒ.�˝1/;D.B//

Š cTor
ƒe

�.nC1/.ƒ; .�˝1/�1D.B//

D cTor
ƒe

�.nC1/.ƒ; ��1D.B/1/:

For the cohomology isomorphism, we use Theorem 3.5 directly:

bHH
n
.ƒ;B/ D bExt

n

ƒe.ƒ;B/

Š bExt
�.nC1/
ƒe .B; �ƒeƒ/

D bExt
�.nC1/
ƒe .B; �˝��1ƒ/

D bExt
�.nC1/
ƒe .B; �ƒ��1/

Š bExt
�.nC1/
ƒe .B; �2ƒ1/:

When B D ƒ, then the isomorphism bHH
n
.ƒ;ƒ/ Š bHH

�.nC1/
.ƒ; �2ƒ1/ follows

directly, whereas the isomorphism bHHn.ƒ;ƒ/ Š bHH�.nC1/.ƒ;ƒ/ follows from the
fact that D.ƒ/ Š �ƒ1.

Of course, when the Nakayama automorphism squares to the identity, then the
duality for Tate–Hochschild cohomology is as nice as for the homology. We end this
section by recording this in the following corollary.

Corollary 3.8. If ƒ is a Frobenius algebra with a Nakayama automorphism � such
that �2 D 1, then there is an isomorphism

bHH
n
.ƒ;ƒ/ Š bHH

�.nC1/
.ƒ;ƒ/

for all n 2 Z.

4. Quantum complete intersections

Quantum complete intersections are noncommutative analogues of truncated polyno-
mial rings, and are obtained by replacing the ordinary commutation relations between
the generators by quantum versions. The terminology dates back to work byAvramov,
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Gasharov and Peeva, and, ultimately, Manin; the notion of quantum symmetric alge-
bras was introduced in [Man], and that of quantum regular sequences in [AGP].

Fix a field k, let c � 1 be an integer, and let q D .qij / be a c � c commutation
matrix with entries in k. That is, the diagonal entries qi i are all 1, and qij qj i D 1

for all i , j . Furthermore, let ac D .a1; : : : ; ac/ be an ordered sequence of c integers
with ai � 2. The quantum complete intersection Aac

q determined by these data is the
algebra

Aac
q

defD khX1; : : : ; Xci=.Xaii ; XiXj � qijXjXi /;
a finite dimensional algebra of dimension

Qc
iD1 ai . The image of Xi in this quotient

will be denoted by xi . Note that the class of all quantum complete intersections
includes the exterior algebras

khX1; : : : ; Xci=.X2i ; XiXj CXjXi /;

as well as finite dimensional commutative complete intersections of the form

kŒX1; : : : ; Xc�=.X
a1
1 ; : : : ; X

ac
c /:

These two types of algebras are Frobenius, and the following result shows that this
is the case with all quantum complete intersections.

Lemma 4.1 ([Ber], Lemma 3.1). A quantum complete intersectionAac
q is Frobenius,

with an isomorphism A
ac
q

��! D.A
ac
q / of left modules and corresponding Nakayama

automorphism A
ac
q

��! A
ac
q given by

	.1/.
P

i1;:::;ic

˛i1;:::;icx
ic
c : : : x

i1
1 / D ˛a1�1;:::;ac�1; �.xw/ D .

cQ
iD1

q
ai�1
iw /xw

for 1 � w � c.

Thus the Tate–Hochschild duality results from the previous section applies to
quantum complete intersections, in particular, there are isomorphisms

bHHn.A
ac
q ; A

ac
q / Š bHH�.nC1/.Aac

q ; A
ac
q /;

bHH
n
.Aac

q ; A
ac
q / Š bHH

�.nC1/
.Aac

q ; �2.A
ac
q /1/

for all n 2 Z. As in Corollary 3.8, the quantum complete intersections whose
Nakayama automorphisms square to the identity satisfies the same nice duality for
Tate–Hochschild cohomology as for homology. In particular, this holds for the exte-
rior algebras.

Theorem 4.2. If k is a field and A an exterior algebra,

A D khX1; : : : ; Xci=.X2i ; XiXj CXjXi /;
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then there are isomorphisms

bHHn.A;A/ Š bHH�.nC1/.A;A/;

bHH
n
.A;A/ Š bHH

�.nC1/
.A;A/

for all n 2 Z.

Proof. Only the cohomology isomorphism needs explanation. By Lemma 4.1, the
Nakayama automorphism of ƒ is the identity when c is odd, and maps a generator
xi to �xi when c is even. In either case, the automorphism squares to the identity.

We shall calculate the dimensions of the Tate–Hochschild (co)homology groups of
all exterior algebras and certain commutative complete intersections. Moreover, we
shall also find lower bounds for the dimensions of the homology groups of a general
quantum complete intersection. In order to do this, we need an explicit description of
a complete bimodule resolution of these algebras “near zero”. Let thereforeA denote
a general quantum complete intersection Aac

q , and consider the element

s D P
0�i1<a1
:::

0�ic<ac

.
Q

1�u<v�c
q

�iv.au�iu�1/
uv /x

ic
c : : : x

i1
1 ˝ x

ac�ic�1
c : : : x

a1�i1�1
1

in the enveloping algebra Ae. Furthermore, let .Ae/c
f�! Ae be the map obtained by

multiplying an element of .Ae/c by the c � 1 matrix

.1˝ x1 � x1 ˝ 1 : : : 1˝ xc � xc ˝ 1/T

from the right. We claim that the sequence

.Ae/c
f�! Ae �s�! Ae

of left Ae-homomorphisms is exact. A direct (but tedious) computation shows that,
for 1 � t � c, the expressionP P

0�i1<a1
:::

0�ic<ac

.
Q

1�u<v�c
q

�iv.au�iu�1/
uv /x

ic
c : : : x

i1
1 ˝ x

ac�ic�1
c : : : x

a1�i1�1
1 xt

� P
0�i1<a1
:::

0�ic<ac

.
Q

1�u<v�c
q

�iv.au�iu�1/
uv /xtx

ic
c : : : x

i1
1 ˝ x

ac�ic�1
c : : : x

a1�i1�1
1

is zero in Ae. But this expression is the product .1 ˝ xt � xt ˝ 1/s, hence the
sequence is a complex. Since the cokernel of the left map is A, it is enough to show
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that the dimension of the image of the right map is at least the dimension ofA, namely
a1a2 : : : ac . This is easy: the elements

.xjcc : : : x
j1
1 ˝ 1/s; 0 � j1 < a1; : : : ; 0 � jc < ac ;

are linearly independent in Ae.
Consequently the sequence is exact, and may therefore be considered as the part

P1
d1�! P0

d0�! P�1

of a complete bimodule resolution of A. We shall use it to calculate bHH0.A; A1/
for various twisted bimodules  A1, with the help of the following lemma.

Lemma 4.3. LetA D A
ac
q be a quantum complete intersection andA

 �! A an auto-
morphism given by xi 7! ˛ixi , where ˛1; : : : ; ˛c are nonzero scalars. Furthermore,
let ecw denote the w-th standard generator in the c-fold direct sum  A

c
1, and ˛ the

element

.1C ˛1 C � � � C ˛
a1�1
1 /.1C ˛2 C � � � C ˛

a2�1
2 / : : : .1C ˛c C � � � C ˛ac�1

c /:

Then there is an isomorphism

 A1 ˝Ae .Ae/c
1˝f ��

o
��

 A1 ˝Ae Ae 1˝.�s/ ��

o
��

 A1 ˝Ae Ae

o
��

 A
c
1

d
 
1 ��

 A1
d
 
0 ��

 A1

of complexes, where the maps d i are given as follows:

d
 
1 .x

uc
c : : : x

u1
1 e

c
w/ D .˛w

cQ
iDw

q
ui
wi �

wQ
jD1

q
uj
jw/.x

uc
c : : : x

uwC1
w : : : x

u1
1 /

d
 
0 .x

uc
c : : : x

u1
1 / D

´
0 if ui > 0 for one i;

˛x
ac�1
c : : : x

a1�1
1 if u1 D � � � D uc D 0:

Proof. Clearly

d
 
1 .x

uc
c : : : x

u1
1 e

c
w/ D .xucc : : : x

u1
1 / � .1˝ xw � xw ˝ 1/;

where the product means right scalar action on  A1 from Ae. Therefore

d
 
1 .x

uc
c : : : x

u1
1 e

c
w/ D  .xw/x

uc
c : : : x

u1
1 � xucc : : : x

u1
1 xw

D ˛wxwx
uc
c : : : x

u1
1 � xucc : : : x

u1
1 xw

D .˛w
cQ

iDw
q
ui
wi �

wQ
jD1

q
uj
jw/.x

uc
c : : : x

uwC1
w : : : x

u1
1 /:
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As for d 0 , this is just right multiplication with s. Since the total weight of xi in s
is ai � 1, it is easy to see that d 0 .x

uc
c : : : x

u1
1 / D 0 if ui � 1. Thus only d 0 .1/

remains:

d
 
0 .1/ D 1 � s

D P
0�i1<a1
:::

0�ic<ac

.
Q

1�u<v�c
q

�iv.au�iu�1/
uv / .x

ac�ic�1
c : : : x

a1�i1�1
1 /x

ic
c : : : x

i1
1

D ˛xac�1
c : : : x

a1�1
1 :

As a first application of Lemma 4.3, we calculate the Tate–Hochschild (co)homo-
logy groups of certain finite dimensional commutative complete intersections.

Theorem 4.4. Let k be a field of characteristic p and A a finite dimensional com-
mutative complete intersection of the form

A D kŒX1; : : : ; Xc�=.X
a
1 ; : : : ; x

a
c /;

where a � 2. Then

dim bHHn.A;A/ D

8̂<̂
:

�
cCn�1
n

�
ac if p ja;

ac � 1 if p−a and n D 0;Pc
tD0

�
c
t

��
n�1
n�cCt

�
at .a � 1/c�t if p−a and n � 1;

for n � 0 and

dim bHHn.A;A/D dim bHH
n
.A;A/D dim bHH�.nC1/.A;A/D dim bHH

�.nC1/
.A;A/

for all n 2 Z.

Proof. Since A is symmetric, it follows from Lemma 2.2 that the dimension of
bHH

n
.A;A/ equals that of bHHn.A;A/ for all n 2 Z. Together with Theorem 3.7,

this gives the three dimension equalities.
To calculate bHH0.A;A/, we use Lemma 4.3 with  D 1. The map d11 is clearly

the zero map, hence dim bHH0.A;A/ D dim Ker d10 . Since

d10 .x
uc
c : : : x

u1
1 / D

´
0 if ui > 0 for one i;

acxa�1
c : : : xa�1

1 if u1 D � � � D uc D 0;

we obtain

dim bHH0.A;A/ D
´
ac � 1 if p−a;
ac if p ja:
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To calculate bHHn.A;A/ for n � 1, we use the fact that dim bHH
n
.A;A/ D

dim bHHn.A;A/ and that there is an isomorphism bHH
n
.A;A/ Š HHn.A;A/ for

such n. Moreover, by [Mac], Theorem X.7.4, there is an isomorphism

HHn.A;A/ D L
n1C���CncDn

.HHn1.kŒX�=.Xa//˝k � � � ˝k HHnc .kŒX�=.Xa///;

hence

dim HHn.A;A/ D P
n1C���CncDn

.
cQ
iD1

dim HHni .kŒX�=.Xa///: (�)

By [Hol], Proposition 2.2, the dimensions of the Hochschild cohomology groups of
the truncated polynomial algebra kŒX�=.Xa/ are given by

dim HHn kŒX�=.Xa// D

8̂<̂
:
a when n D 0;

a when n > 0 and p ja;
a � 1 when n > 0 and p−a:

Therefore, when p ja, then

dim HHn.A;A/ D P
n1C���CncDn

ni�0
ac D �

cCn�1
n

�
ac :

When p−a, then we have to keep track of how many times HH0 .kŒX�=.Xa// appears
in each summand in the formula (�), since now dim HH0.kŒX�=.Xa// D a whereas
dim HHm.kŒX�=.Xa// D a � 1 for m � 1. If exactly t out the numbers n1; : : : ; nc
are zero, then the remaining c � t are nonzero. The number of integer solutions to

x1 C � � � C xc�t D n; xi � 1;

is the same as the number of solutions to

y1 C � � � C yc�t D n � c C t; yi � 0;

namely �
n � 1

n � c C t

�
:

Therefore, in the formula (�), the total contribution from all the summands in which
precisely t out the numbers n1; : : : ; nc are zero, is�

c

t

��
n � 1

n � c C t

�
at .a � 1/c�t :

Summing up, we see that when p−a, then

dim HHn.A;A/ D
cX
tD0

�
c

t

��
n � 1

n � c C t

�
at .a � 1/c�t :
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Remark. Theorem 4.4 is probably well known to some, at least in terms of the ordi-
nary Hochschild (co)homology. However, we were unable to find a reference. Note
that the same method of proof also applies to general finite dimensional commutative
complete intersections of the form

kŒX1; : : : ; Xc�=.X
a1
1 ; : : : ; X

ac
c /:

However, the resulting formulas become much more complicated.

Next, we calculate the Tate–Hochschild (co)homology groups of all exterior al-
gebras.

Theorem 4.5. Let k be a field of characteristic p, and A an exterior algebra

A D khX1; : : : ; Xci=.X2i ; XiXj CXjXi /:

Then

dim bHHn.A;A/ D

8̂<̂
:
2c

�
cCn�1
c�1

�
if p D 2;

2c � 2c�1 if p ¤ 2 and n D 0;

2c�1�cCn�1
c�1

�
if p ¤ 2 and n � 1;

for n � 0 and

dim bHHn.A;A/D dim bHH
n
.A;A/D dim bHH�.nC1/.A;A/D dim bHH

�.nC1/
.A;A/

for all n 2 Z.

Proof. For positive n, the dimensions of bHHn.A;A/ and bHH
n
.A;A/ are given by

[XuH], Theorems 2 and 3, and those results also show equality. In view of Theo-

rem 4.2, we therefore only have to calculate bHH0.A;A/ and bHH
0
.A;A/.

First we calculate the dimension ofbHH0.A;A/. In the terminology of Lemma 4.3,
we must calculate the homology of the complex

Ac
d1
1�! A

d1
0�! A;

with maps given by

d11 .x
uc
c : : : x

u1
1 e

c
w/ D �

.�1/uwC1C���Cuc � .�1/u1C���Cuw�1
�
.xucc : : : xuwC1

w : : : x
u1
1 /;

d10 .x
uc
c : : : x

u1
1 / D

´
0 if ui > 0 for one i;

2cxc : : : x1 if u1 D � � � D uc D 0:

Suppose that p ¤ 2. Then xucc : : : x
u1
1 2 Im d11 if and only if u1 C � � � C uc is a

positive even number, and so

dim Im d11 D
�
c

2

�
C

�
c

4

�
C � � � D 2c�1 � 1:
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Moreover, the dimension of Ker d10 is 2c � 1. If p D 2, then d11 and d10 are both
zero, and consequently

dim bHH0.A;A/ D
´
2c if p D 2;

2c � 2c�1 if p ¤ 2:

Next, we calculate the dimension of bHH
0
.A;A/. If c is odd or p D 2, then A is

symmetric, and so dim bHH
0
.A;A/ D dim bHH0.A;A/ in this case. Suppose therefore

that c is even and p ¤ 2. By Lemma 2.2, the dimension of dim bHH
0
.A;A/ equals

that of dim bHH0.A; �A1/, and the Nakayama automorphism � maps xi to �xi . Using
Lemma 4.3, we must therefore calculate the homology of the complex

�A
c
1

d�
1��! �A1

d�
0��! �A1;

with
d �1 .x

uc
c : : : x

u1
1 e

c
w/

D �..�1/uwC1C���Cuc C .�1/u1C���Cuw�1/.xucc : : : xuwC1
w : : : x

u1
1 /

and d �0 D 0. We see that xucc : : : x
u1
1 2 Im d11 if and only if u1C� � �Cuc is a positive

odd number, and so

dim Im d11 D
�
c

1

�
C

�
c

3

�
C � � � D 2c�1:

Consequently, the dimension of bHH
0
.A;A/ equals that of bHH0.A;A/ also in this

case, namely 2c � 2c�1.

The next result establishes lower bounds for the dimensions of theTate–Hochschild
homology groups of an arbitrary quantum complete intersection.

Theorem 4.6. Let k be a field of characteristic p, and

Aac
q D khX1; : : : ; Xci=.Xaii ; XiXj � qijXjXi /

a quantum complete intersection with ai � 2 for all i . Furthermore, suppose that p
divides d of the exponents a1; : : : ; ac . Then

dim bHHn.A
ac
q ; A

ac
q / �

8̂<̂
:

Pc
iD1 ai � c if n D 0;�1 and p−ai for all i;Pc
iD1 ai � c C 1 if n D 0;�1 and p jai for some i;Pc
iD1 ai � c C d if n ¤ 0;�1:

In particular, bHHn.A
ac
q ; A

ac
q / ¤ 0 for all n 2 Z.
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Proof. Denote the algebra by A. It follows from [BeM], Proposition 4.9, that the
dimension of bHHn.A;A/ is at least

Pc
iD1 ai � c C d when n � 1. Therefore, by

Theorem 3.7, we only need to establish the bound for the dimension of bHH0.A;A/.
As before, we use Lemma 4.3: the space bHH0.A;A/ is the homology of the

complex

Ac
d1
1�! A

d1
0�! A;

with maps given by

d11 .x
uc
c : : : x

u1
1 e

c
w/ D .

cQ
iDw

q
ui
wi �

wQ
jD1

q
uj
jw/.x

uc
c : : : x

uwC1
w : : : x

u1
1 /;

d10 .x
uc
c : : : x

u1
1 / D

´
0 if ui > 0 for one i;

.
Qc
iD1 ai /x

ac�1
c : : : x

a1�1
1 if u1 D � � � D uc D 0:

For any 1 � w � c and 1 � u � aw � 1, the element xuw in A is not contained in
the image of d11 , because d11 .x

u�1
w ecw/ D 0. Also, the identity in A is not contained

in this image, hence

dim Im d11 � dimA �
cP
iD1
.ai � 1/ � 1:

As for the dimension of Ker d10 , this is dimA when p divides one of the exponents
a1; : : : ; ac , and dimA � 1 if not. The lower bound for the dimension of bHH0.A;A/
follows immediately from this.

Of course, for some quantum complete intersections, the difference between the
actual dimensions of the Tate–Hochschild homology groups and the lower bound
given in Theorem 4.6 can be arbitrarily large. For example, suppose that A is either
a finite dimensional commutative complete intersection of the form

kŒX1; : : : ; Xc�=.X
a
1 ; : : : ; x

a
c /;

or an exterior algebra

khX1; : : : ; Xci=.X2i ; XiXj CXjXi /:

Then Theorem 4.4 and Theorem 4.5 show that

lim
n!˙1 dim bHHn.A;A/ D 1;

in fact, when n � 1, then dim bHHn.A;A/ is given by a polynomial of degree c � 1.
However, as the following result shows, there are quantum complete intersections

where the lower bound given in Theorem 4.6 is the actual dimension of the Tate–
Hochschild homology groups.
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Theorem 4.7. Let k be a field of characteristic p, and

A D khX; Y i=.Xa; XY � qYX; Y b/
a quantum complete intersection with a; b � 2 and q not a root of unity in k. Then

dim bHHn.A;A/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

aC b � 2 if n D 0;�1 and p−a; b;
aC b � 1 if n D 0;�1 and p ja or p jb;
aC b � 2 if n ¤ 0;�1 and p−a; b;
aC b � 1 if n ¤ 0;�1 and either p ja or p jb;
aC b if n ¤ 0;�1 and p ja; b:

Proof. The dimensions of bHHn.A;A/ for n � 1 follow from [BeE], Theorem 3.1,
and so by Theorem 3.7, we only need to calculate the dimension of bHH0.A;A/. By
Lemma 4.3, this homology group is the homology of the complex

A2
d1
1�! A

d1
0�! A;

with maps given by

d11 .y
uxve21/ D .qu � 1/yuxvC1;

d11 .y
uxve22/ D .1 � qv/yuC1xv;

d10 .y
uxv/ D

´
0 if u > 0 or v > 0;

abyb�1xa�1 if u D v D 0:

It is easy to see that an element yuxv 2 A belongs to Im d11 if and only if both u and v
are positive: for then d11 .y

u�1xve22/ D .1� qv/yuxv , and 1� qv is nonzero since q
is not a root of unity. This shows that dim Im d11 D .a�1/.b�1/ D ab�a�bC1.
The dimension of Ker d10 is ab � 1 if p does not divide any of a, b, and ab if not.
The dimension of bHH0.A;A/ follows from this.

When it comes to cohomology, the situation is totally different than for homology.
On the one hand, if A is either a finite dimensional commutative complete intersec-
tion, or an exterior algebra, then from Theorem 4.4 and Theorem 4.5 we see that
bHH

n
.A;A/ is nonzero for all n 2 Z. In fact, just as for homology, when n � 1,

then dim bHH
n
.A;A/ is given by a polynomial of degree c�1 (where c is the number

of defining generators for A). On the other hand, if A is as in Theorem 4.7, then it
follows from [BeE], Theorem 3.2, that bHH

n
.A;A/ D 0 when n � 3. Consequently,

there is no cohomological counterpart to Theorem 4.6: there is no universal lower
bound for the dimensions of the Tate–Hochschild cohomology groups of quantum
complete intersections.
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Our final main result in this paper is the cohomological version of Theorem 4.7;
we shall determine the dimensions of all the Tate–Hochschild cohomology groups of
the quantum complete intersection

A D khX; Y i=.Xa; XY � qYX; Y b/

when q is not a root of unity in k. To do this, we first calculate the dimension of the
(ordinary) Hochschild homology group HHn.A; ��1A1/ for n � 1. By Lemma 4.1,
the automorphism ��1 is given by x 7! qb�1x; y 7! q1�ay.

For parameters t , i , u, v, all non-negative integers, define the following eight
scalars:

K1.t; i; u; v/ D qaCb�ab�1 b�1P
jD0

qj.aCai
2 Cv�1/; i even; i � 2t;

K2.t; i; u; v/ D
a�1P
jD0

qj.btCb� bi2 Cu�1/; i even; i � 2t;

K3.t; i; u; v/ D q
ai�aC2C2v

2 � q1�a; odd; i � 2t � 1;
K4.t; i; u; v/ D q

2bt�biCbC2u
2 � 1; i odd; i � 2t � 1;

K5.t; i; u; v/ D q1�a � q aiC2v2 ; i even; i � 2t;

K6.t; i; u; v/ D
a�1P
jD0

qj.btCb� bi2 Cu/; i even; i � 2t;

K7.t; i; u; v/ D qaCb�ab�1 b�1P
jD0

qj.aCa.i�1/
2 Cv/; i odd; i � 2t C 1;

K8.t; i; u; v/ D q
2bt�biC3bC2u�2

2 � 1; i odd; i � 2t C 1:

Note that since q is not a root of unity and a; b � 2, all these scalars are nonzero in
k. Next, for each integer n � 0, denote by

Ln
iD0Aeni the vector space consisting of

nC 1 copies of A. Finally, for each n � 1, define a map

nL
iD0

Aeni
ın�!

n�1L
iD0

Aen�1
i

by

ı2t W yuxve2ti 7!

8̂̂̂̂
<̂
ˆ̂̂:
K1.t; i; u; v/y

uCb�1xve2t�1i CK2.t; i; u; v/y
uxvCa�1e2t�1i�1

for i even;

K3.t; i; u; v/y
uC1xve2t�1i CK4.t; i; u; v/y

uxvC1e2t�1i�1
for i odd;
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ı2tC1 W yuxve2tC1i 7!

8̂̂̂̂
<̂
ˆ̂̂:
K5.t; i; u; v/y

uC1xve2ti CK6.t; i; u; v/y
uxvCa�1e2ti�1
for i even;

K7.t; i; u; v/y
uCb�1xve2ti CK8.t; i; u; v/y

uxvC1e2ti�1
for i odd;

where we use the convention en�1 D ennC1 D 0. With this notation, it follows from
[BeE], p. 510–11, that HHn.A; ��1A1/ is the homology of the complex

� � � !
nC1L
iD0

AenC1
i

ınC1���!
nL
iD0

Aeni
ın�!

n�1L
iD0

Aen�1
i ! � � �

of k-vector spaces.

Proposition 4.8. Let k be a field and

A D khX; Y i=.Xa; XY � qYX; Y b/
a quantum complete intersection with a; b � 2 and q not a root of unity in k. Then
HHn.A; ��1A1/ D 0 for n � 1.

Proof. We first compute the kernel of ı2t for t � 1. If i is even, then

ı2t .y
uxve2ti / D 0 ()

8̂<̂
:
u � 1; v � 1; i 2 f0; 2; : : : ; 2tg; or

u � 1; v D 0; i D 0; or

u D 0; v � 1; i D 2t:

There are .b � 1/.a � 1/.t C 1/C .b � 1/C .a � 1/ such vectors. If i is odd, then

ı2t .y
uxve2ti / D 0 () u D b � 1; v D a � 1; i 2 f1; 3; : : : ; 2t � 1g;

and there are t such vectors. Finally, the nontrivial linear combinations in Ker ı2t are

xve2ti C C1.t; i; u; v/y
b�1xv�1e2tiC1; v � 1; i 2 f0; 2; : : : ; 2t � 2g;

yue2ti C C2.t; i; u; v/y
u�1xa�1e2ti�1; u � 1; i 2 f2; 4; : : : ; 2tg;

where C1.t; i; u; v/ and C2.t; i; u; v/ are suitable nonzero scalars in k. There are
.aCb�2/t such linear combinations in total. Summing up, we see that the dimension
of Ker ı2t is abt C ab � 1.

Next, we compute the kernel of ı2tC1 for t � 0. If i is even, then

ı2tC1.yuxve2tC1i / D 0 ()
´
u D b � 1; v � 1; i 2 ¹0; 2; : : : ; 2tº; or

u D b � 1; v D 0; i D 0:

There are .a � 1/.t C 1/C 1 such vectors. If i is odd, then

ı2tC1.yuxve2tC1i / D 0 ()
´
u � 1; v D a � 1; i 2 ¹1; 3; : : : ; 2t C 1º; or

u D 0; v D a � 1; i D 2t C 1;
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and there are .b�1/.tC1/C1 such vectors. Finally, the nontrivial linear combinations
in Ker ı2tC1 are

yuxve2tC1i C C3.t; i; u; v/y
uC1xv�1e2tC1iC1 ; u � b � 2; v � 1; i 2 f0; 2; : : : ; 2tg;

yb�1e2tC1i C C4.t; i; u; v/x
a�1e2tC1i�1 ; i 2 f2; 4; : : : ; 2tg;

for suitable nonzero scalars C3.t; i; u; v/ and C4.t; i; u; v/ in k. There exist
.b � 1/.a � 1/.t C 1/ C t such linear combinations. Consequently, the total di-
mension of Ker ı2tC1 is abt C ab C 1.

We have shown that when n � 1, then

dim Ker ın D
´
ab nC2

2
� 1 for n even;

ab nC1
2

C 1 for n odd:

The exact sequence

0 ! Ker ın !
nL
iD0

Aeni
ın�! Im ın ! 0

gives dim Im ın D .nC 1/ab � dim Ker ın, and so

dim Im ınC1 D
´
ab nC2

2
� 1 for n even;

ab nC1
2

C 1 for n odd:

This shows that HHn.A; ��1A1/ D 0 for n � 1.

Using Proposition 4.8, we can now compute all the Tate–Hochschild cohomology
groups ofA. Note that the characteristic of the ground field does not matter, contrary
to the homology case in Theorem 4.7.

Theorem 4.9. Let k be a field and

A D khX; Y i=.Xa; XY � qYX; Y b/
a quantum complete intersection with a; b � 2 and q not a root of unity in k. Then

dim bHH
n
.A;A/ D

8̂̂̂<̂
ˆ̂:
1 if n D 0;

2 if n D 1;

1 if n D 2;

0 if n ¤ 0; 1; 2:

Proof. For n � 1, the dimensions follow from [BeE], Theorem 3.2. Moreover, by
Theorem 3.7 and Lemma 2.2 there are equalities

dim bHH
n
.A;A/ D dim bHH

�.nC1/
.A; �2A1/

D dim bHH�.nC1/.A;D.�2A1//
D dim bHH�.nC1/.A; ��1A1/
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for all n 2 Z. It follows from Proposition 4.8 that bHHn.A; ��1A1/ D 0 for n � 1,

hencebHH
n
.A;A/ D 0 for n � �2. What remains is therefore to computebHH

0
.A;A/

and bHH
�1
.A;A/.

Since dim bHH
0
.A;A/ D dim bHH0.A; �A1/ by Lemma 2.2, we use Lemma 4.3.

Namely, the space bHH0.A; �A1/ is the homology of the complex

�A
2
1

d�
1��! �A1

d�
0��! �A1;

with maps given by

d �1 .y
uxve21/ D .quC1�b � 1/yuxvC1;

d �1 .y
uxve22/ D .qa�1 � qv/yuC1xv;

d �0 .y
uxv/ D

´
0 if u � 1 or v � 1;
qa�ba�1
q1�b�1

qba�b�1
qa�1�1 y

b�1xa�1 if u D v D 0:

We see that

yuxv 2 Im d �1 () .u; v/ … f.0; 0/; .b � 1; a � 1/g;
hence dim Im d �1 D ab�2. Since dim Ker d �0 D ab�1, it follows that the dimension

of bHH
0
.A;A/ is 1.

Finally, we compute bHH
�1
.A;A/. From the beginning of the proof we know that

dim bHH
�1
.A;A/ D dim bHH0.A; ��1A1/, so once again we use Lemma 4.3. The

space bHH0.A; ��1A1/ is the homology of the complex

��1A21
d�

�1

1���! ��1A1
d�

�1

0���! ��1A1;

with maps given by

d �
�1

1 .yuxve21/ D .quCb�1 � 1/yuxvC1;

d �
�1

1 .yuxve22/ D .q1�a � qv/yuC1xv;

d �
�1

0 .yuxv/ D
´
0 if u � 1 or v � 1;
qb�ba�1
q1�a�1

qba�b�1
qb�1�1 y

b�1xa�1 if u D v D 0:

Here we see that
yuxv 2 Im d �

�1

1 () .u; v/ ¤ .0; 0/;

hence dim Im d �
�1

1 D ab � 1. Since dim Ker d �
�1

0 D ab � 1, it follows that
bHH

�1
.A;A/ D 0.
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