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Tate—Hochschild homology and cohomology of
Frobenius algebras
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Abstract. Let A be a two-sided Noetherian Gorenstein k-algebra, for k a field. We introduce
Tate—Hochschild homology and cohomology groups for A, which are defined for all degrees,
non-negative as well as negative, and which agree with the usual Hochschild homology and
cohomology groups for all degrees larger than the injective dimension of A. We prove certain
duality theorems relating the Tate—Hochschild (co)homology groups in positive degree to those
in negative degree, in the case where A is a Frobenius algebra. We explicitly compute all Tate—
Hochschild (co)homology groups for certain classes of Frobenius algebras, namely, certain
quantum complete intersections.
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1. Introduction

Hochschild cohomology was introduced by Hochschild in [Hol], [Ho2] as a tool for
studying the structure of associative algebras. A bit later, Tate introduced a cohomol-
ogy theory based on complete resolutions, which consequently defined cohomology
in all degrees, positive and negative (cf. the end of [Tat]). In this paper we combine
these two notions of cohomology and extend Hochschild cohomology to the ‘neg-
ative side,” arriving at what we call Tate—Hochschild cohomology. 1t turns out that
the ‘positive side’ of Tate—Hochschild cohomology agrees with the usual Hochschild
cohomology. We show that in some cases the ‘positive’ and ‘negative’ sides are sym-
metric. However, this is not the case in general, and we illustrate this by computing
explicitly both sides of Tate—Hochschild cohomology for certain classes of algebras.

More specifically, let k be a field and A denote a two-sided Noetherian Gorenstein
k-algebra. Then A has a complete resolution T over the enveloping algebra A€ of A,
and for a A-A-bimodule B one can define the Tate—Hochschild cohomology groups
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a visit by the second author to the first. The second author thanks the Institutt for Matematiske Fag, NTNU,
for their hospitality and generous support.
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with coefficients in B by
HH (A, B) = H"(Hom:(T, B))

foralln € Z. (See Section 2 for details.)

When A is a finite dimensional algebra and B is finitely generated, then the Tate—
Hochschild cohomology groups are finite dimensional vector spaces over k. We prove
in Section 2 general duality results which relate the vector space dimensions of the
positive cohomology to those of the negative cohomology with coefficients in a dual
module. We use these results in Section 3 to establish, for example, the following
consequence when A is moreover a Frobenius algebra:

Theorem. Let A be a Frobenius algebra, with Nakayama automorphism v. Then

dimg HH' (A, A) = dim HH (A, A1)

for all n € Z, where 2\, denotes the bimodule A twisted on the right by the

automorphism v2.

Thus Tate—-Hochschild cohomology is symmetric when v squares to the iden-
tity automorphism, and this is the case, for example, when A is a symmetric al-
gebra or an exterior algebra. On the other hand, for certain classes of Frobe-
nius algebras, Tate—Hochschild cohomology is not symmetric. In Section 4 we
compute the Tate—Hochschild cohomology for the quantum complete intersection
A=k(X,Y)/(X* XY —qYX,Y?) witha,b > 2 and ¢ not a root of unity in k,
finding that

1 ifn =0,
_ 2 iftn=1
dimHA" (4, 4) =1~ " T
1 ifn =2,

0 ifn#0,1,2.

Throughout the paper we simultaneously treat the homology version as well, Tate—
Hochschild homology. 1t turns out that the Tate—Hochschild homology behaves quite
different than does the cohomology. For example, in Section 3 we give the companion
to the theorem above, showing that Tate—Hochschild homology is always symmetric
when A is a Frobenius algebra. This result was first proved in [EuS].

Theorem. Let A be a Frobenius algebra. Then
dimy HH, (A, A) = dimg HH_(, 1 1(A, A)
foralln € Z.

Again, this theorem is a consequence of more general duality statements which
we prove in Section 2.
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2. Tate—Hochschild (co)homology

Letk be acommutative ring and A a k-algebra. We denote by A °P the opposite algebra
of A, and by A° the enveloping algebra A ®; A of A. The k-dual Homy (—, k) is
denoted by D(—), and the ring dual Homa (—, A) by (—)*.

As mentioned, the classical Hochschild cohomology groups of an algebra were
introduced by Hochschild in [Hol], [Ho2], as a tool for studying the structure of
associative algebras. For instance, the second cohomology group controls the defor-
mations of the algebra, cf. [Gel], [Ge2]. For every non-negative integer n, let Q,
denote the n-fold tensor product A ®g --- Q¢ A of A over k, with Q¢ = k. If B is
a A-A-bimodule, the corresponding Hochschild cohomology complex

a0 ! 92
i 5>0>0—>H" > H!' > H> > H? > ...

is defined as follows:
0 forn <0,
H" =B forn =0,
Homg (Qy, B) forn > 0,

with differentiation given by

(39b)(1) = Ab — bA.
@ HA ® - ®Apt1) = A1 f(A2 ® - ® Apt1)

FXED A ® @Akt @ - @ Ant1)

i=1
+ DT A ® - ® An)Ang
The cohomology of this complex is the Hochschild cohomology of A, with coefficients
in B. We denote this by HH* (A, B). The homological counterpart to Hochschild co-

homology is defined using tensor product instead of the Hom-functor. The Hochschild
homology complex
a a
is defined as follows:
0 forn <O,
H, =B forn =0,
B ®r O, forn >0,

with differentiation given by

bR ® @A) =bAi ® A ®@ -+ ® Ay

n—1 .
+ 2 DDA ® - ® A @ ® Ay

i=1

=(=D)"Ab @A ® - ® An-1.
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The homology of this complex is the Hochschild homology of A, with coefficients in
B. We denote this by HH. (A, B).

When the algebra A is projective as a module over the ground ring k, the Hoch-
schild cohomology and homology groups can be interpreted using Ext and Tor over
the enveloping algebra A°. Namely, for each non-negative integer n, let P, = Qp42,
that is, the (n + 2)-fold tensor product of A over k. We endow P, with a left A°-
module structure (that is, a bimodule structure) by defining

ARA)Y Ao ® @ Ant1) =Aho ® -+ ® App1d/,
dy
and for each n > 1, define a bimodule homomorphism P, — P,_; by

A ®Anyl > Z(—l)i)t()@-"@)kili_u Q@ Ayt1.

i=0
The sequence
d3 d> d; M
$: o> P33 > P —>P—Ph—>A—0

of bimodules and homomorphisms, where p is the multiplication map, is exact (cf.
[CaE], p. 174-75), and we denote by $ o the complex obtained by deleting A. Since
P, and A° ®; @, are isomorphic as A®-modules, adjointness gives

Hompe(P,, B) = Homy (Qn, Hompc(A®, B)) = Homy (Q,, B),

and the Hochschild cohomology complex is isomorphic to the complex Hom e (% 5 , B)
(where we view B as a left A°-module). Similarly, the Hochschild homology com-
plex is isomorphic to the complex B ®pc $a (where we view B as a right A°-
module). Now, if A is projective as a module over k, then so is O}, hence the functor
Homy (0, —) is exact. By adjointness, this functor is isomorphic to the functor
Hom e (P,, —), and therefore P, is a projective bimodule. Thus the sequence $ is a
projective bimodule resolution of A, giving isomorphisms

HH*(A, B) = Ext}.(A, B),
HH. (A, B) = TorX (B, A).

The Hochschild cohomology of an algebra lives only in positive degrees, as does
the Hochschild homology. The focus of this paper is a (co)homological theory which
extends the classical one. In order to give the definition, we recall some general
notions from [AvM]. Suppose A is a two-sided Noetherian Gorenstein ring, say of
Gorenstein dimension d. That is to say, the injective dimensions of A, both as a left
and as a right module over itself, are equal to d. Then every finitely generated left
A-module M admits a complete resolution

T: '--—>T2—>T1—)To—)T_1—>T_2—)---,

i.e., an acyclic complex of finitely generated projective modules with the following
properties (see [AvM], Theorem 3.2):



Tate—Hochschild homology and cohomology of Frobenius algebras 911

(1) the dual complex T* is acyclic,

(2) there exists a projective resolution [P of M and a chain map T i> [P with the
property that f; is bijective forn > d.
Property (2) implies that T is “eventually” a projective resolution of M. Given
another A-module N and an integer n € Z, the Tate cohomology group Ex\t’;\ (M,N)
is the n-th cohomology of the complex Homp (T, N). If N is a right module, the
—~ A

Tate homology group Tor, (N, M) is the n-th homology of the complex N ®a T.
Naturally, the Tate (co)homology is independent of the complete resolution of M,
and, in the homological case, it can be computed using a complete resolution of N
[ChJ]. Moreover, by property (2) there are isomorphisms

Ext, (M, N) = Ext’ (M, N),
—~ A
Tor, (N, M) = Tor,‘,\(N, M)

foralln > d +1. The original cohomological definition is due to Tate, who introduced
the cohomology groups for modules over the integral group ring of a finite group in
order to study class field theory (cf. [CaE], XII, §3).

Having recalled the classical definition of Tate cohomology and homology, we
may now define the Hochschild cohomological and homological versions.

Definition. Let k be a commutative ring and A a k-algebra such that the enveloping
algebra A° is two-sided Noetherian and Gorenstein. For an integer n € Z and a

bimodule B, the n-th Tate—Hochschild cohomology group HH (A, B) and the n-th
Tate—Hochschild homology group HH,, (A, B) are defined by

HH (A, B) = Ext4e(A, B),
— —~ A¢
HH, (A, B) = Tor,, (B,A).

Note that if the Gorenstein dimension of the enveloping algebra s d, then for every
n > d + 1 there are isomorphisms P/Iﬁn(A, B) =~ Ext’.(A, B) and HAH,,(A, B) =~
Tor,fe(B, A). In particular, when A is projective as a k-module, then there are
isomorphisms

HH' (A, B) = HH"(A., B),

HH, (A, B) = HH, (A, B)
whenever n > d + 1. A special case appears when the enveloping algebra is two-
sided Noetherian and selfinjective. By definition, the enveloping algebra is then

of Gorenstein dimension zero, and the Tate—Hochschild (co)homology groups are
therefore defined and agree with the classical Hochschild (co)homology groups in
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all positive degrees. In particular, this is the case for finite dimensional Frobenius
algebras (see the next section); for such algebras, the Tate—Hochschild (co)homology
agrees with the stable Hochschild (co)homology introduced in [EuS].

We shall mainly be working with finite dimensional k-algebras (hence k will
be a field), hence the requirement (in the definition of Gorenstein algebras) that the
enveloping algebra be two-sided Noetherian is unnecessary. In other words, a finite
dimensional algebra is Gorenstein if and only if its injective dimensions as a left
and right module over itself are finite. It is known that in this case the two injective
dimensions are the same. The following result shows that if a finite dimensional
algebra is Gorenstein, then so is its enveloping algebra. We include a proof due to
the lack of a reference. Consequently, Tate—Hochschild (co)homology is defined for
finite dimensional Gorenstein algebras. Note that the result shows in particular that
the enveloping algebra of a selfinjective algebra is again selfinjective.

Lemma 2.1. If k is afield and A and T are finite dimensional Gorenstein k-algebras
of Gorenstein dimensions s and t, respectively, then their tensor product A Q@ I is
Gorenstein of Gorenstein dimension at most s 4+ t. In particular, the enveloping
algebra A°® is Gorenstein of Gorenstein dimension at most 2.

Proof. Choose injective resolutions

0> A—1I) =I5 =0 (1)
and

0T —>I—-->IL—0 )

over A and I, respectively, both as left modules. When we delete the algebras and
tensor the resulting complexes over k, we obtain a complex

F:0—> E' S E! ... 5 EStE 50

in which E" = @7_,(/ A ®k It 7). In general, if I and Ir are injective left
modules over A and I', respectively, then the right modules D(/) and D(Ir) are
projective, and so D(I5) ®; D(Ir) is a projective right (A ®; I')-module. But
this right (A ®; I')-module is isomorphic to D(/5 ®g IT), and consequently the left
(A ® I')-module 15 ®x IT is injective. This shows that the complex [ is an injective
resolution of A ®y I' as a left module over itself. Similarly, by starting with injective
resolutions of right modules, we end up with an injective resolution (of length s + )
of A ®x I' as a right module over itself. This proves the first part of the lemma. The
second part follows immediately, since the opposite algebra of a Gorenstein algebra
is also Gorenstein of the same dimension. 0

Note also that when A is finite dimensional algebra and B is a A-A-bimodule
which is finitely generated as either a left or right A-module, then the Tate—Hochschild
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homology HH,, (A, B) and cohomology HH (A, B) are just finite dimensional vector
spaces over k foralln € Z.

The main results in this section establish Tate—Hochschild duality isomorphisms
for Gorenstein algebras. These results follow from a more general duality result for
Tate homology, which we prove after the following two lemmas. The first lemma
is well known in the case of ordinary (co)homology: over any finite dimensional
algebra I' there is an isomorphism

D(Exth(X,Y)) = Torl (D(Y), X)
for all i > 0 and all modules X, Y (cf. citeCartanEilenberg, VI, Proposition 5.3).

Lemma 2.2. Let A be a finite dimensional Gorenstein algebra and M and N two
left A-modules, with M finitely generated. Then there is an isomorphism

D(Exiy (M. N)) = Tor, (D(N). M)
foralln € Z. In particular, if B is a bimodule, then there is an isomorphism
D(HH'"(A. B)) = HH,(A. D(B))
foralln € Z.

Proof. Let T be a complete resolution of M, and for each i € Z, denote by Q"A('[I')
the image of the i-th differential in T. Fix n € Z, and denote the Gorenstein
dimension of A by d. Let m be any integer with the property that m +n > d. Then
there are isomorphisms

D(Ext (M, N)) = D(H"(Homn (T, N)))
~ D(Exty " (Q7™(T). N))
~ D(Ext}™(Q,™(T),N))
= Tor,,,(D(N), Q™ (T))
= Tora,, (D(N), 25"(T))
~ H,(D(N)®x T

n+m

—~ A
= Tor, (D(N), M),

and we have proved the first part. The second part follows from the first and the
definition of Tate—Hochschild (co)homology. O

The second lemma seems to be well known; it is a special case of [AnF], Propo-
sition 20.10. We include a proof.
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Lemma 2.3. Let A be any ring and M a left A-module. If P is a finitely generated
projective left A-module, then there is an isomorphism
Yp: Homp (P, A) @ M — Homy (P, M)
given by Yp(f ® m)(p) = f(p)m. This isomorphism is natural in P.

Proof. The map yp is well defined since the pairing

Homa (P, A) x M 5 Homa(P.M). (fim) > (p > f(p)m).

satisfies O(fA,m) = 0(f,Am) forall A € A. When P = A, this map is just the
composition of the isomorphisms

Homp (AA, AAA) @A M — Ap @A M — M — Homp (A A, M)

and hence an isomorphism itself. Extending to the case when P is a finitely generated
free module, and then to the case when P is a summand of such a module, we see
that the first half of the lemma holds.

h
As for the naturality in P, let Py — P, be a map between finitely generated
projective left A-modules, and consider the diagram

h*
Homa (P2, A) ®a M ——2". Homa(Py. A) @4 M

I/IPZ l \L '(/fPI

Homp (P2, M) h—*>HomA(P1, M).

If f € Homp (P, A),m € M and p € Py, then

[(h* o yp,)(f @ m)](p) = (Y, (f @ m)oh)(p)
= ¥p,(f @ m)(h(p))
= f(h(p))m
= (f o) (p)m
=Yp (f ch®@m)(p)
= [(Yp, o (" @ L)) (f @ m)](p).

hence the diagram commutes. O

We are now ready to prove the general duality result for Tate homology and
cohomology. Recall first that when & is a field and A is a finite dimensional k-algebra,
then every finitely generated module M admits a minimal projective resolution

d> d do
...%Pz—)Pl—)PO%M%().
This projective resolution appears as a direct summand of every projective resolution
of M, and it is unique up to isomorphism. For every n > 0, the n-th syzygy of M,
denoted Q'} (M), is the image of the map d,,.
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Theorem 2.4. Let A be a finite dimensional Gorenstein algebra, M, L two finitely
generated left modules, and N a finitely generated right module. If the Gorenstein
dimension of A is at most d, then there are vector space isomorphisms

A —~ A
Tor, (N, M) = Tor_,_g.,1,(Q%(M)*, D(N)),
— ——(n—d+1
Exty(M. L) = Ext, V(L. D@4 (M)"))
foralln € Z.
Proof. Consider the minimal projective resolution

o> P> P> Py—> M —>0

of M. It follows from [AvM], Lemma 2.5 and Construction 3.6, that M admits a
complete resolution

T s 2o, 2,
such that there exists a chain map
2o N o
J{fz lfl ifo lf—l if—z
P Py Po 0 0

in which f, is bijective for n > d. Consequently the image of the map 9y is
isomorphic to Q‘j\ (M); we denote this module by X. We must show that

A —~ A
Tor, (N, X) = Tor_, . )(X™, D(N))
. —~ A L. . —~ A
for all n, since Tor,, (N, X) is isomorphic to Tor, , ;(N, M).

By adjointness, the complexes Homy (N ® A T, k) and Homu (T, Homg (N, k))
are isomorphic, that is, there is an isomorphism

D(N ®x T) = Homp (T, D(N))

of complexes. Moreover, by Lemma 2.3, there is an isomorphism

-+« = Homp (T,,—1, D(N)) o Hom (T, D(N))

vz, i iw;;

on
-+ = Homa (Ty-1,A) ® D(N) —— Homp (T, A) ® D(N) ——---
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between the complexes Homa (T, D(N)) and T*® o D(N). In general, note thatif C
is a complex of finite dimensional vector spaces over k, then H,,(C) and H_,,(D(C))
have the same dimension, and are therefore isomorphic as vector spaces. This explains
the second isomorphism below. Now since T* is a complete resolution of X*, we
see that

Tor, (N, X) = Hyg(N @4 T)
=~ H_(y+a)(D(N ®4 T))
=~ H_(n+q)(Homa (T, D(N)))
= H._(y+a)(T* ® D(N))

—~ A
= Tor_(n_H)(X*, D(N)),

and the proof of the homology part is complete.
For the cohomology part, we use Lemma 2.2 twice, together with the homology
part we just proved:

— —~ A
D(Ext, (M, L)) = Tor, (D(L), M)
—~ A %
=~ Tor_,_q41)(Q4(M)*. D*(L))
—~ A %
>~ Tor_(n_dﬂ)(Qfl\(M) L)

~ DExt, (L. D@ (M)")).

— —_— —d 1
Hence Ext';\ (M, L) and Ext A(n - )(L, D(Q‘j\(M )*)) are isomorphic. O
We can now prove the duality result for Tate—Hochschild (co)homology; this is

just a direct application of Theorem 2.4.

Theorem 2.5. If A is a finite dimensional Gorenstein algebra of Gorenstein dimen-
sion d and B is a A-A-bimodule which is finitely generated as either a left or right
A-module, then there are isomorphisms of vector spaces

— —~ A°¢ %

HH,, (A, B) = Tor_,_,q441,(234(A)*. D(B)).
— ——(n—2d

HH" (A, B) = Exte 77 (B, D(Q34(A)*))

foralln € Z, where (—)* = Hompe(—, A®). In particular, there are isomorphisms

— —~ A°¢

HH, (A, A) 2 Tor_,_pq41)(Q34(A)*. D(A)),
-~ ——(m—-2d

A (A A) = T (A, D@34 (0)*))

foralln € 7.
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Proof. By Lemma 2.1, the enveloping algebra A° is Gorenstein of dimension at most
2d, hence the isomorphisms in the first part follow immediately from Theorem 2.4:

o _~ A® ~ A®
HH, (A, B) = Tor,, (B.A) = Tor_,_,4,1)(Q3%(A)*. D(B)),

T e —~—(n—2d
HH" (A, B) = Extye(A, B) = Bxtye (B, D(Q34(A)")).
The last part of the theorem follows directly from the first. O

We end this section by specializing to selfinjective algebras. Such and algebra is
by definition Gorenstein, and its Gorenstein dimension is zero. Therefore, for this
class of algebras, Theorem 2.5 takes the following form.

Theorem 2.6. If A is a finite dimensional selfinjective algebra, and B is a bimodule,
then there are isomorphisms of vector spaces

— —~ A°
AH, (A, B) = Tor_, . 1,(A*, D(B)),

HH" (A, B) = Extre (B, D(A®))

foralln € Z, where (—)* = Hompe(—, A®). In particular, there are isomorphisms

— —~ A¢ %
HH, (A, A) 2= Tor_ g, 1, (A*, D(A)),

—(n+1)

HH (A, A) ~ HH (A, D(A*))

foralln € Z.

3. Frobenius algebras

In this section, we apply the Tate—Hochschild duality results from the last section
to a special class of selfinjective algebras. Recall that a finite dimensional algebra
A is Frobenius if A and D(A) are isomorphic as left A-modules, and symmetric if
they are isomorphic as bimodules. Suppose A is Frobenius, and fix an isomorphism
¢: A — D(A) of left modules. Let y € A be any element, and consider the
linear functional ¢(1) - y € D(A). This is the k-linear map A — k defined by
A+ ¢(1)(yA), where k is the ground field. Since ¢ is surjective, there is an element
X € A having the property that ¢(x) = ¢(1) - y, giving x - ¢(1) = ¢(1) - y since
¢ is a map of left A-modules. The map y > x defines a k-algebra automorphism
on A, and its inverse v is the Nakayama automorphism of A (with respect to ¢).
Thus v is defined by ¢(1)(Ax) = ¢(1)(v(x)A) for all A,x € A. The Nakayama
automorphism is unique up to an inner automorphism. Namely, if ¢': A — D(A)
is another isomorphism of left modules yielding a Nakayama automorphism v’, then
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there exists an invertible element z € A such that v = zv'z~!. Note that A is
symmetric if and only if the Nakayama automorphism is the identity.

Since D(A) is an injective left A-module, a Frobenius algebra is always left self-
injective. However, the definition is left-right symmetric. Forif ¢: oA — D(Aa)
is an isomorphism of left A-modules, we can dualize and obtain an isomorphism
D(¢): D?>(Ap) — D(aA) of right modules. Composing with the natural iso-
morphism A, = D?(A,), we obtain an isomorphism A, — D(apA) of right
A-modules. This left-right symmetry implies that the opposite algebra of a Frobe-
nius algebra is also Frobenius, and that its Nakayama automorphism is the inverse of
the original one.

Lemma 3.1. If A is a Frobenius algebra with a Nakayama automorphism v, then
AP is Frobenius with v™—' as a Nakayama automorphism.

Proof. As seen above, the definition of a Frobenius algebra is left-right symmetric.
Moreover, an isomorphism A — D(A) of right A-modules may be viewed as an
isomorphism A°? — D(A°P) of left A°°-modules. Hence A is Frobenius if and only
if AP is.

Now suppose A is Frobenius, and let ¢: A — D(A) be an isomorphism of left
modules with corresponding Nakayama automorphismv: A — A. The composition
of isomorphisms

2 D(¢)
A — D“(A) —> D(A)
of right A-modules can then be viewed as an isomorphism ¢°P of left A°P-modules.
Thus ¢°P(1)(A) = ¢(A)(1) forall A € A°P. Denote the multiplication of two elements
x and y in A°? by x - y, so that x - y = yx, where yx is the ordinary product in A.
Then

PP - x) = ¢*P(1)(xA)
= ¢(xA)(1)
= ¢~ (0))(1)
= ¢ (x))
= ¢ (x)- )

forall A, x € A°, hence v™! is a Nakayama automorphism for A°P. (|

The tensor product of two Frobenius algebras is also Frobenius, with the obvious
Nakayama automorphism. We record this in the following lemma.

Lemma 3.2. If A and T are Frobenius k-algebras with Nakayama automorphisms
va and vr, respectively, then A Qy T is Frobenius with vy ® vr as a Nakayama
automorphism.
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Proof. Let pp: A — D(A) and ¢r: ' — D(T") be isomorphisms of left modules,
with corresponding Nakayama automorphisms v and vr, respectively. Then the
composition
PA QT
A®, I —— D(A) @ D(I') > D(A ®; )
of left (A ®x I')-isomorphisms shows that A ®; I" is Frobenius.
Denote this composition by ¢. Then

PR D([A®Y]x®y]) =¢(1®1H(Ax Q yy)
= ¢A(Ax)¢r(vy)
= ¢a(va (X)) dr(vr(y)y)
=¢(1® DWA(x)A @ vr(y)y)
=¢(1® D([va(x) @ vr(»)][A ® y])

forallA®y and x®y in AQT". This shows that vy ® vr is a Nakayama automorphism
for A®T. O

Combining Lemma 3.1 and Lemma 3.2, we see that the enveloping algebra of a
Frobenius algebra is again Frobenius.

Corollary 3.3. If A is a Frobenius algebra with a Nakayama automorphism v, then
A® is Frobenius with v ® v™' as a Nakayama automorphism.

The Tate—Hochschild duality results below for Frobenius algebras involve twisted

modules. If A is an arbitrary ring and A i> A is an automorphism, then we can endow
a A-module M with anew A-module structure as follows: forA € A andm € M, let
A-m = f(A)m. We denote this twisted A-module by s M. If B is a bimodule over

A,and A LN A another automorphism, then we can twist on both sides and obtain a
bimodule s B . A special case is the bimodule y A . which is isomorphicto ;-1 A .,
when the two automorphisms f and g commute. In particular, the bimodules s A
and ; A g1 are isomorphic, and so are s A f and A itself. Note that the twisted module
£ M is isomorphic to A, ®A M.

Suppose now, as before, that A is Frobenius with an isomorphism ¢: A — D(A)
of left modules, and let v be a corresponding Nakayama automorphism. Then ¢ is
an isomorphism between the bimodules ; A,—1 and D(A), and from above we see
that D(A) is also isomorphic to , A ;. We can use this to show that the ring dual of a
A-module is just the k-dual twisted by v.

Lemma 3.4. If A is a Frobenius algebra with a Nakayama automorphism v, then
for any finitely generated left module M, the right modules M* and D(M), are
isomorphic.
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Proof. Standard Hom-tensor adjunction gives

M* = Homp (M, A)
=~ Homy (M, D*(A))
= Homp (M, Homg (D(A), k))
=~ Homy (D(A) @A M, k)
~ Homy (A1 ®a M, k)
~ Homg (, M , k)
=D\LM).

Since D(M),, = D(, M), the result follows. O

Using this lemma, Theorem 2.4 takes the following form for modules over a
Frobenius algebra.

Theorem 3.5. Let A be a Frobenius algebra with a Nakayama automorphism v, M,
L two finitely generated left modules, and N a finitely generated right module. Then
there are isomorphisms of vector spaces

—~ A —~ A
Tor, (N, M) = Tor_,;1)(D(M),, D(N)),

Exta (M, L) = Extn (L, M)

foralln € Z.

Proof. The homology isomorphism is obtained directly by combining Theorem 2.4
with Lemma 3.4, and so does the cohomology isomorphism, when noting that there
are isomorphisms

D(M*) = D(D(M)v) = sz(M) = vM
of left A-modules. O

Before applying this to Tate—Hochschild (co)homology, we include a result which
shows the following: if one of the modules in a Tate homology group is twisted by
an automorphism, then we may instead twist the other module by the inverse.

Lemma 3.6. Let A be a ring with an automorphism A i> A, and M and N a right

and a left A-module, respectively. Then there is an isomorphism Torfl\ (My,N) =

Torfl\ (M, s~ N) for every n > 0. If in addition A is a finite dimensional Gorenstein
—~ A

algebra and M is finitely generated, then there are isomorphisms Tor, (Mg, N) =

—~ A
Tor, (M, 1 N) for everyn € Z.
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Proof. For the first part, note that the map My A N — M &4 s—1 N given by
m @ n +— m Q@ n is well defined, and therefore an isomorphism. Moreover, if P
is a projective right A-module, then so is Pr, and the twisting operation is exact.
Therefore, if P is a projective resolution of M, then Py is a projective resolution of
My, giving

Tor) (My, N) = H, (Py ®a N) = Hy(P ®4 ;-1 N) = Torh (M, s-1 N).
Suppose now that A is a finite dimensional Gorenstein algebra, and M is finitely
generated. If T is a complete resolution of M, then by definition there exists a

h
projective resolution P of M and a chain map T — P with the property that 4, is

bijective for n > d. Twisting by f, we see that / is also a chain map Ty L Pr.
Moreover, we know that Py is a projective resolution of My, and that the complex
Ty is acyclic and consists of finitely generated projective modules. Now, if X is
an arbitrary right A-module and Y is a bimodule, then the map Homy (X¢,Y) —
Homa (X, Yz—1) given by g > g is an isomorphism of left A-modules. Therefore

(—U—f)* = HomA(Tf, A) = HomA(T, 1Af—1) = HomA("I]',fAl) = f(—ﬂ—*),

hence (T)* is also acyclic. Consequently T is a complete resolution of My, giving

—~ A —~ A
Tor, (Mg, N) = Hp(Ty ®A N) = Hy(T ®4 p—1N) = Tor, (M, ;~1N).
This completes the proof. O

We may now prove the Tate—Hochschild duality result for Frobenius algebras.
The duality for the Tate—Hochschild homology HH,,(A, A) was proved by Eu and
Schedler in [EuS].

Theorem 3.7. If A is a Frobenius algebra with a Nakayama automorphism v and B
a bimodule, then there are isomorphisms

— _— A®
HHy (A, B) = Tor_,41)(A, ,-1 D(B),),
— —_— 1
HH" (A, B) = Extre (B, 2A,)
foralln € Z. In particular, there are isomorphisms
HH, (A, A) = HH_(141)(A, A),
— — 1
A (A, A) = HH " T(AL 0A )

foralln € Z.
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Proof. Forthe homology isomorphism, we use Theorem 3.5 together with Lemma 3.6:

HH, (A, B) = Tor, (B, A)
~ Tort s 1)(D(A)use. D(B))
=~ "l/"(;rﬁ:n+1)((v/\1)(v®rl)’ D(B))
= Tor' oy (A s D(B))
= Tty 1) (A 1)1 D(B))
= Tor™ 1) (As y1 D(B),).
For the cohomology isomorphism, we use Theorem 3.5 directly:

AH (A, B) = Extxe(A, B)

(41
~ Exty T (B A)

— —(n41
= Extye TV (B, gyt A)

——(n+1
— By T (BA, )

=~ Extpe (B, 2A).
. e ———(n+1)
When B = A, then the isomorphism HH (A, A) =~ HH (A, ,2A,) follows
directly, whereas the isomorphism HH, (ALA) = ﬁﬁ_(nH) (A, A) follows from the
fact that D(A) = ,A;. O

Of course, when the Nakayama automorphism squares to the identity, then the
duality for Tate—Hochschild cohomology is as nice as for the homology. We end this
section by recording this in the following corollary.

Corollary 3.8. If A is a Frobenius algebra with a Nakayama automorphism v such
that v2 = 1, then there is an isomorphism

A (A, A) =m0 "V A)

foralln € Z.

4. Quantum complete intersections

Quantum complete intersections are noncommutative analogues of truncated polyno-
mial rings, and are obtained by replacing the ordinary commutation relations between
the generators by quantum versions. The terminology dates back to work by Avramov,
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Gasharov and Peeva, and, ultimately, Manin; the notion of quantum symmetric alge-
bras was introduced in [Man], and that of quantum regular sequences in [AGP].
Fix a field k, let ¢ > 1 be an integer, and let ¢ = (g;;) be a ¢ x ¢ commutation
matrix with entries in k. That is, the diagonal entries g;; are all 1, and ¢;;¢q;; = 1
for all i, j. Furthermore, let a, = (ay,...,a.) be an ordered sequence of ¢ integers
with @; > 2. The quantum complete intersection Az determined by these data is the

algebra

. def i
A = h(X1. .. Xe) /(X X X — qi; X X)),

a finite dimensional algebra of dimension [];_, a;. The image of X; in this quotient
will be denoted by x;. Note that the class of all quantum complete intersections
includes the exterior algebras

(X1 Xe) /(X2 Xi X + X;Xo),
as well as finite dimensional commutative complete intersections of the form
k(X1 ... Xe)/(X{ . X ).

These two types of algebras are Frobenius, and the following result shows that this
is the case with all quantum complete intersections.

Lemma 4.1 ([Ber], Lemma 3.1). A quantum complete intersection AZ” is Frobenius,

. . . ¢ . .
with an isomorphism Azc — D(AZ‘) of left modules and corresponding Nakayama
automorphism Ag¢ 5 Ag© given by
a;—1

. . c
Z Olil,.,.,icxéc .. ~x111) = Og—1,....ac—1> V(xy) = (l_[ 9iw )Xw
in i=1

..... c

$(1)(

forl <w <ec.

Thus the Tate—-Hochschild duality results from the previous section applies to
quantum complete intersections, in particular, there are isomorphisms

HH, (AZC ’ Azc) = HH—(n+1)(AZC ’ AZC)7
—n —~—(n+1)
HH' (4%, A%) ~ HH (A%, 2(4%)))

for all n € Z. As in Corollary 3.8, the quantum complete intersections whose
Nakayama automorphisms square to the identity satisfies the same nice duality for
Tate—Hochschild cohomology as for homology. In particular, this holds for the exte-
rior algebras.

Theorem 4.2. If k is a field and A an exterior algebra,
A=k(X1,....X)/(X2. XiX; + X; Xi).
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then there are isomorphisms

HH, (A, A) = HH_(,41)(4. A),
HH (4, 4) =~ 70 "4, 4)
foralln € Z.

Proof. Only the cohomology isomorphism needs explanation. By Lemma 4.1, the
Nakayama automorphism of A is the identity when c is odd, and maps a generator
X; to —x; when c¢ is even. In either case, the automorphism squares to the identity.

O

We shall calculate the dimensions of the Tate—Hochschild (co)homology groups of
all exterior algebras and certain commutative complete intersections. Moreover, we
shall also find lower bounds for the dimensions of the homology groups of a general
quantum complete intersection. In order to do this, we need an explicit description of
a complete bimodule resolution of these algebras “near zero”. Let therefore A denote
a general quantum complete intersection Ag¢, and consider the element

_ —iy(ay—iy—1)\ _i i1 ac—ic—1 a1—i;j—1
s= Y Il Yuv )xe L xy @ XTI x]
0<iy<a; 1<u<v=<c

0<ic<ac

in the enveloping algebra A°. Furthermore, let (A4°)¢ L A® be the map obtained by
multiplying an element of (A°)¢ by the ¢ x 1 matrix

1Qx1—x1®1...10x.—x. DT
from the right. We claim that the sequence
A0y Ly ae 5 g0
of left A°-homomorphisms is exact. A direct (but tedious) computation shows that,
for 1 <t < c, the expression
D > o<iy<a, (1 q;,i”(a"_i”_l))xic ...xi‘ @ xfeTie™l ..x;”_i‘_lxt
. l<u<v<c

0<ic<ac

—iy(@y—iy—1) ic i ac—ic—1 a;—i;—1
— > C I quw VXX X @ xS LX)
0<iy<a; 1<u<v=<c

0<ic<ae

is zero in A°. But this expression is the product (1 ® x; — x; ® 1)s, hence the
sequence is a complex. Since the cokernel of the left map is A, it is enough to show
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that the dimension of the image of the right map is at least the dimension of A, namely
aias...ac. This is easy: the elements

(xg“ ...x{l ®1ls, 0<ji<ai,...,0<j.<ac,
are linearly independent in A°.
Consequently the sequence is exact, and may therefore be considered as the part
d do
P1 —> PO —> P_1

of a complete bimodule resolution of A. We shall use it to calculate HH, (A, yA1)
for various twisted bimodules A1, with the help of the following lemma.

. . ¥
Lemma4.3. Let A = AZC be a quantum complete intersection and A — A an auto-
morphism given by x; — «a;xi, where a1, . ..,ac are nonzero scalars. Furthermore,
let e, denote the w-th standard generator in the c-fold direct sum yAS, and o the
element

Atar+-+af" ™ DN +or+-+a32 ) (I ae +--+al™h,
Then there is an isomorphism

1Q(-s)

wAl ®ge (A°)€ ¢A1 Rge A® wAl ®Rge A°

\LZ i? i?
. dy dy

v A v vA1
of complexes, where the maps diw are given as follows:

dlﬁ Ue ul c s Uj Uc uy+1 up
L (xge. = (ay ]_[q ]_[qu)(xc e Xy oxph)
j=1
) 0 ifu; > 0 forone i,
d(‘)/’(lec . 1) = ac—1 a;—1 . '
aXe S X ifuy =--+=u,=0.

Proof. Clearly
d{/'(xz’“ xpted) = (ke xi) (1@ xy —xy ® 1),
where the product means right scalar action on A from A°. Therefore

dlw(xg‘ xpted) = Ylxp)xle . oxt = xke L x] Xy

. u
= XXl oxy = xte L x Xy

Cc w
u; +1
= (aw [ gy — .nlqjd))(xgc...x,'fjw cooxph).
= J=
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As for d(;p , this is just right multiplication with s. Since the total weight of x; in s

is a; — 1, it is easy to see that d(;/’(xg" ...x{") = 0if u; > 1. Thus only d(;/’(l)
remains:

dy(1)=1-s

= Y (I gu@ ™ Dyl T e !

0<iy<a; 1<u<v=<c

Ogic'<ac
_ ac—1 a—1
=ax;cT...x; . O

As afirst application of Lemma 4.3, we calculate the Tate—Hochschild (co)homo-
logy groups of certain finite dimensional commutative complete intersections.

Theorem 4.4. Let k be a field of characteristic p and A a finite dimensional com-
mutative complete intersection of the form

A=k[X1..... Xc]/(X9, ... x9),

where a > 2. Then

+n—1 ;
__ ()t if pla.
dimHH, (A4, A) = Ja° — 1 if ptaandn =0,

Ym0 () ci)a @ =D if praandn > 1.

forn > 0and

dim HH, (A, A) = dim HH" (4, A) = dim AH_u41)(4, A) = dimAH (4, A)

foralln € 7.

Proof. Since A is symmetric, it follows from Lemma 2.2 that the dimension of
HH (A, A) equals that of HH, (A, A) for all n € Z. Together with Theorem 3.7,
this gives the three dimension equalities.

To calculate HH, (A, A), we use Lemma 4.3 with ¥ = 1. The map d is clearly
the zero map, hence dim ﬁﬁo(A, A) = dim Ker dol. Since

dl(x¥e . x"1) = 0 if u; > 0 for one i,
0 c X acx“_l Xa_l Uy == —0
c M 1= =Uc =V,

we obtain
a®—1 ifpta,

c

a

dim HHo (4, A) = { i pla
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To calculate HH,, (A, A) for n > 1, we use the fact that dim HH (4,4) =
dim HH,, (A, A) and that there is an isomorphism A (A, A) =~ HH"(A, A) for
such n. Moreover, by [Mac], Theorem X.7.4, there is an isomorphism

HH" (A4, A) = +€+B ~ (HH"' (k[X]/(X?)) ®k --- @ HH" (k[X]/(X?))),
hence .
dimHH" (4, A) = > ([] dimHH" (k[X]/(X%))). ()

ni+-+ne=n i=1
By [Hol], Proposition 2.2, the dimensions of the Hochschild cohomology groups of
the truncated polynomial algebra k[X]/(X¢) are given by

a whenn = 0,
dim HH"” k[X]/(X%)) = 3 a whenn > 0 and p|la,
a—1 whenn >0and pta.
Therefore, when p|a, then
dmHH"(4, )= Y a¢= ("""
ny+-+ne=n

n;>0

When pta, then we have to keep track of how many times HH? (k[X]/(X¢)) appears
in each summand in the formula (%), since now dim HH® (k[X]/(X?)) = a whereas
dim HH" (k[X]/(X%)) = a — 1 for m > 1. If exactly ¢ out the numbers ny, ..., n,
are zero, then the remaining ¢ — ¢ are nonzero. The number of integer solutions to

Xyt Xey =0, X 21,
1s the same as the number of solutions to

Vit A Yer=n—c+t, yi =0,

(")
n—c+t)

Therefore, in the formula (1), the total contribution from all the summands in which
precisely ¢ out the numbers ny, ..., n, are zero, is

HIRERES

Summing up, we see that when p }a, then

dimHH”(A,A)=i(j)(ni:i[)a’(cx—l)c—’. 0

t=0

namely
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Remark. Theorem 4.4 is probably well known to some, at least in terms of the ordi-
nary Hochschild (co)homology. However, we were unable to find a reference. Note
that the same method of proof also applies to general finite dimensional commutative
complete intersections of the form

k(X1 ..., Xc]/(XT1 o0, X 2.
However, the resulting formulas become much more complicated.

Next, we calculate the Tate—Hochschild (co)homology groups of all exterior al-
gebras.

Theorem 4.5. Let k be a field of characteristic p, and A an exterior algebra
A=k(X1,....Xe)/(X2. XiX; + X; X;).

Then .
_ 21 =2
dim HH, (4, A) = 2¢ —2¢71 ifp#2andn =0,
2071 ifp #£ 2andn > 1,
forn > 0and

dim HH, (4. 4) = dim HH" (4, 4) = dim HH_(u41)(4, 4) = dim A (4, A)

foralln € Z.

Proof. For positive n, the dimensions of HH,, (A, A) and g (A, A) are given by

[XuH], Theorems 2 and 3, and those results also show equality. In view of Theo-
— —0

rem 4.2, we therefore only have to calculate HHy (A4, A) and HH (4, A).

First we calculate the dimension of HH, (A, A). In the terminology of Lemma 4.3,
we must calculate the homology of the complex

di  dy
A¢ — A — A,
with maps given by
w

dh(xte . x1e8) = ((—1)tuwrbbite bt (gtte il

0 ifu; > 0 f ,
dl(xte .. iy :{ if u; or one i

2% ...x17 fuy=---=u,=0.

Suppose that p # 2. Then x/¢...x;' € Imd} if and only if u; + --- + uc is a
positive even number, and so

dlmlmdll = (;) + (Z) +...=2C—1_1'
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Moreover, the dimension of Kerd, is 2¢ — 1. If p = 2, then d| and d; are both
zero, and consequently

— 2¢ ifp=2
dim HHo(A4, 4) = o Bp=s
2¢ — 271 if p #£ 2,
—0
Next, we calculate the dimension of HH (A, A). If ¢ is odd or p = 2, then A4 is
—0 —
symmetric, and sodim HH (A4, A) = dim HHy (A, A) in this case. Suppose therefore

—0
that ¢ is even and p # 2. By Lemma 2.2, the dimension of dim HH (A4, A) equals
that of dim HH¢ (4, , A1), and the Nakayama automorphism v maps x; to —x;. Using
Lemma 4.3, we must therefore calculate the homology of the complex

v v

vAi —1> vAl —0> VAlv
with

V., Ue ui ¢
di(x;c...xq ey

= _((_1)uw+1+...+uc + (_1)u1+...+uw71)(xgc o xllzw+l o x’lﬂ)

anddgj = 0. We see that x/¢ . ..x;” € Im d11 ifand only if u; +-- -+ u. is a positive

odd number, and so
dimImd} = (i) + (;) go= 20t

—0 —
Consequently, the dimension of HH (A, A) equals that of HHy(A4, A) also in this
case, namely 2¢ — 2¢71, O

The nextresult establishes lower bounds for the dimensions of the Tate—Hochschild
homology groups of an arbitrary quantum complete intersection.

Theorem 4.6. Let k be a field of characteristic p, and
AG = k(X1 .., Xe) /(X[ Xi X — qij X Xi)

a quantum complete intersection with a; > 2 for all i. Furthermore, suppose that p
divides d of the exponents ay, . ..,ac. Then

Y _jai—c ifn =0,—1and pta; foralli,
dimﬁﬁn(Azc,AZ“) >33 _1ai—c+1 ifn=0,—1and p|a; for some i,
i _ai—c+d ifn#0,—1.

In particular, HH, (A%, A%) # 0 for all n € Z.
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Proof. Denote the algebra by A. It follows from [BeM], Proposition 4.9, that the
dimension of HH,, (A, A) is at least > ;_, a; — ¢ + d when n > 1. Therefore, by
Theorem 3.7, we only need to establish the bound for the dimension of H/ﬁo(A, A).

As before, we use Lemma 4.3: the space ﬁﬁo(A, A) is the homology of the
complex

4l 4
A°— A — A,

with maps given by
1/ uc ui c ¢ uj © u; Uc uyp+1 uj
dy(xge..xytey) = (I gy — T @) e oxw” ™ oxph),
i=w j=1

0 if u; > 0 for one i,

dl (x*e ... x4 = _ _
0 ! Ty anx@e™ .. x87 ifuy = =u, = 0.
Forany ]l <w <cand1 <u < ay, — 1, the element x}{ in A4 is not contained in
the image of d, because d (x%'eS) = 0. Also, the identity in A is not contained
in this image, hence

c
dimImd; <dimA4 — Y (a; — 1) — 1.
i=1
As for the dimension of Ker d, this is dim 4 when p divides one of the exponents

ai,...,dc,and dim A — 1 if not. The lower bound for the dimension of }/Iﬁo (A, A)
follows immediately from this. O

Of course, for some quantum complete intersections, the difference between the
actual dimensions of the Tate—Hochschild homology groups and the lower bound
given in Theorem 4.6 can be arbitrarily large. For example, suppose that A4 is either
a finite dimensional commutative complete intersection of the form

k[X1,..., X/ (XT,...,x2

c/
or an exterior algebra

k(Xy,...,Xe) /(X2 X X; + X; X)),
Then Theorem 4.4 and Theorem 4.5 show that

lim dim HH, (4, 4) = oo,

n—>too

in fact, when n > 1, then dim HH,, (A, A) is given by a polynomial of degree ¢ — 1.

However, as the following result shows, there are quantum complete intersections
where the lower bound given in Theorem 4.6 is the actual dimension of the Tate—
Hochschild homology groups.
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Theorem 4.7. Let k be a field of characteristic p, and
A=k(X,Y)/(X* XY —qYX,Y?)
a quantum complete intersection with a, b > 2 and q not a root of unity in k. Then

a+b—-2 ifn=0,—land pta,b,
a+b—1 ifn=0,—1and plaor plb,
dim}/lﬁn(A,A) =sa+b—-2 ifn#0,—land pta,b,
a+b—1 ifn#0,—1 and either p|a or p|b,
a+b ifn #0,—1and p|a,b.

Proof. The dimensions of ITI?I,, (A, A) for n > 1 follow from [BeE], Theorem 3.1,
and so by Theorem 3.7, we only need to calculate the dimension of HHo (A4, A). By
Lemma 4.3, this homology group is the homology of the complex

2d1 d}
A —>A—>A

with maps given by

di (y*xVe}) = (¢* — D)y*x"t1,
di (y*xVe3) = (1 —q")y"+'x?,

0 ifu>0o0rv >0
1 _ )
do (V") = {abyb_l)c“_1 ifu=v=0.

Itis easy to see that an element y*x¥ € A belongs to Im d 11 if and only if both ©# and v
are positive: for then d{ (y*~1xve?) = (1 —¢?)y*x?, and 1 — ¢V is nonzero since ¢
is not a root of unity. This shows thatdimImd| = (a—1)(b—1) =ab—a—b+1.
The dimension of Ker alo1 is ab — 1 if p does not divide any of a, b, and ab if not.

The dimension of HH, (A, A) follows from this. O

When it comes to cohomology, the situation is totally different than for homology.
On the one hand, if A is either a finite dimensional commutative complete intersec-
tion, or an exterior algebra, then from Theorem 4.4 and Theorem 4.5 we see that
HH (A, A) is nonzero for all n € Z. In fact, just as for homology, when n > 1,
then dim HH" (A, A) is given by a polynomial of degree ¢ — 1 (where ¢ is the number
of defining generators for A). On the other hand, if A4 is as in Theorem 4.7, then it
follows from [BeE], Theorem 3.2, that ﬁﬁn (A, A) = 0 when n > 3. Consequently,
there is no cohomological counterpart to Theorem 4.6: there is no universal lower
bound for the dimensions of the Tate—Hochschild cohomology groups of quantum
complete intersections.
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Our final main result in this paper is the cohomological version of Theorem 4.7;
we shall determine the dimensions of all the Tate—Hochschild cohomology groups of
the quantum complete intersection

A=k(X,Y)/(X* XY —qYX.Y?)

when ¢ is not a root of unity in k. To do this, we first calculate the dimension of the
(ordinary) Hochschild homology group HH,, (A4, ,-14;) forn > 1. By Lemma 4.1,
the automorphism v~! is given by x — ¢?~'x, y > g1 %y.

For parameters ¢, i, u, v, all non-negative integers, define the following eight
scalars:

b—1 .
Ki(t.iu,v) = qthmab=l 3~ giat S +v= " even, i <21,
j=0

a—1 .
. - _bi,_ . .
Ky(t,iyu,v) = Y g/Or+b=5+u=1 " jeven, i <21,

Jj=0
. ai—a+2+42v _ .
Ki(t,i,u,v)=¢q 2 —¢'®, odd, i <2t—1,
) 2bt—bi+h+2u ) i
Kq(t,i,u,v) =¢q 2 —1, iodd, i <2t-—1,
. _ ai+2v . .
Ks(t,i,u,v) =¢q" "% —¢q =2 , ieven, i <2t
a1l bi
Ke(t,i,u,v) = Y qg/®r+b=%+w  jeven, i <2t,
j=0
; a+b—ab—1 bl jla+24D) 1) . .
Kq(t,i,u,v) =g¢q > q 2 , iodd, i <2r+1,

Jj=0
2bt—bi+3b+2u—2
2

Ks(t,i,u,v) =¢q —1, iodd,i<2t+1.

Note that since ¢ is not a root of unity and a, b > 2, all these scalars are nonzero in
k. Next, for each integer n > 0, denote by EB:.':O Ae? the vector space consisting of
n + 1 copies of A. Finally, for each n > 1, define a map

T n 8n P~ n—1
D Aef — D A¢;
i=0 i=0
by
. - 2t—1 : —1,2t—1
Ki(t,i,u,v)y¥t? Ixve? ™1 + Ky (t,i,u, v)y"xvTete2t]
C wv oo for i even,
82 yixVe;it

Ki(t,i,u,v)y*t xve? ™1 + Kyu(t,i,u, v)y¥x?Tle?! 1

for i odd,
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Ks(t,i,u,v)y*txve?" + Ke(t,i,u,v)y"xv+a1e2!
for i even,

K7 (t.i,u,v)y* o7 xve?! 4+ Kg(t.i,u,v)y*x? e |
for i odd,

u v, 2t+1
dar41: yixe; =

where we use the convention e, = e} 41 = 0. With this notation, it follows from
[BeE], p. 510-11, that HH,, (A, ,—1 A1) is the homology of the complex

S+
—>@Ae”+1—>@Ae —>@Ae — ..
i=0 i=0 i=0

of k-vector spaces.
Proposition 4.8. Let k be a field and
A=k(X,Y)/(X* XY —qYX,Y?)
a quantum complete intersection with a,b > 2 and q not a root of unity in k. Then
HH, (A, ,-141) =0forn > 1.

Proof. We first compute the kernel of 85, for ¢ > 1. If i is even, then

u>1l,v>1,i€e{0,2,...,2t}, or
8 (Y"x%e?) =0 <= Ju=>1,v=0,i=0, or
u=0, le,l:Zt
There are (b — 1)(a — 1)(t + 1) + (b — 1) + (a — 1) such vectors. If i is odd, then
S0 (Y"x%e?) =0 <= u=b—1l,v=a—-1, ie{l3,...,2t—1}
and there are ¢ such vectors. Finally, the nontrivial linear combinations in Ker 85, are
xVe! + Ci(t,i,u, v)yb~ 1x”_leizj_l, v>1,i€{0,2,...,2t =2},
yH 2’ + Co(t,i,u,v)y" x4~ lelzll, u>1,i€{2,4,...,2t},
where Ci(¢,i,u,v) and C,(¢,i,u,v) are suitable nonzero scalars in k. There are
(a+b—2)t such linear combinations in total. Summing up, we see that the dimension
of Ker 8,; is abt + ab — 1.
Next, we compute the kernel of 5,41 for t > 0. If i is even, then
=b—1,v>1,i€{0,2,...,2t}, or
8 uxvezt+l — 0 — u ) i 9 &y ) )
2041 (Y127 wu=b—1,0v=0,i=0,

There are (@ — 1)(¢ 4+ 1) 4 1 such vectors. If i is odd, then

>1l,v=a-1i€{l,3,...,2t + 1}, or
8 uv2t+1 :O<:> u=1, s s Dy 5 5
241077 ) W=0v=a—1i=2+1
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and there are (b—1)(¢ + 1)+ 1 such vectors. Finally, the nontrivial linear combinations
in Ker 85,41 are
y“xveztﬂ + Cs(t,i,u, v)y”+1 V= lelzflrl, u<b-2,v>1,ie{0,2,...,2t}

o1 X 4 Colt i u,v)x® 12T e {2,4,...,21},

for suitable nonzero scalars Cs(t,i,u,v) and Cq4(¢,i,u,v) in k. There exist
(b —1)(a — 1)(t + 1) + t such linear combinations. Consequently, the total di-
mension of Ker 8,;41 is abt + ab + 1.

‘We have shown that when n > 1, then
b# —1 forn even,

dim Ker §,, =
" {ab% 4+ 1 forn odd.

The exact sequence
n n
0 — Kerd, — @ A4e? — Imé, — 0
i=0
gives dimIm §, = (n + 1)ab — dim Ker §,, and so
b# —1 forn even,

dim Im § =
n {ab% + 1 forn odd.
This shows that HH,, (A, ,-141) = 0 forn > 1. O

Using Proposition 4.8, we can now compute all the Tate—Hochschild cohomology
groups of A. Note that the characteristic of the ground field does not matter, contrary
to the homology case in Theorem 4.7.

Theorem 4.9. Let k be a field and
A=k(X,Y)/(X* XY —qYX,Y?)

a quantum complete intersection with a,b > 2 and g not a root of unity in k. Then

1 ifn=0,
— 2 1 =1
dim A" (4, 4) = |2 =1L
1 ifn =2,

0 ifn#0,1,2.

Proof. For n > 1, the dimensions follow from [BeE], Theorem 3.2. Moreover, by
Theorem 3.7 and Lemma 2.2 there are equalities

dimBH" (4, 4) = dimAH TV (4, 24))

= dim HH_(s11)(4, D(,241))
= dim HH_ (4 1)(4, -1 41)
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for all n € Z. It follows from Proposition 4.8 that I/{ﬁn (A,,-147) =0forn > 1,
hence HH" (A, A) = Oforn < —2. What remains is therefore to compute ITI?I0 (A, A)
and HH ' (4, A).

Since dim I/{ﬁogi A) = dim HH, (A,,A7) by Lemma 2.2, we use Lemma 4.3.
Namely, the space HH¢ (A4, , A1) is the homology of the complex

vA7 4, vA1 5, vAL,
with maps given by
dY(y*xve?) = (@170 — 1)y avtl
dy (y'xe3) = (¢°7" =gy T x?,

ifu>1lorv>1,

v

VU VY
dO (y X )— {qaba_l qbafb_lyb_lxa_l

1 ga=T—1 ifu=v=0.

We see that
y'x¥ eImd{ <= (u,v) ¢ {(0,0), (b—1,a—1)},

hence dimIm d{ = ab—2. Since dim Ker dj = ab—1, itfollows that the dimension
of AH (4, A) is 1.
——1
Finally, we compute HH (A, A). From the beginning of the proof we know that

——1 —
dimHH (A4,A4) = dimHH( (A4, ,-141), so once again we use Lemma 4.3. The
space HHo (A4, ,—1 A1) is the homology of the complex

—1 1

dy dy—
2 1 0
1A —— 14 —— -1 4,

with maps given by

df_l (yuxve%) — (qu+b—l _ 1)yuxv+1’
—1 _
i (y"x"e3) = (q'™* —q")y" T x”,
ifu>1lorv>1,

-1
dy  (Y"x%) =1 b ba—b
o W q° % —1¢%97°—-1 pb—1_.a—1 ¢, _ ., _
T A ifu=v=0.

Here we see that »
y'x¥ €eImd{ < (u,v) # (0,0),

hence dim Im d{’_l = ab — 1. Since dim Ker da’_l = ab — 1, it follows that
—_1
AH (4, A) = 0. 0
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