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Abstract. We construct the quantum group GLq.2/ as the semi-infinite cohomology of the
tensor product of two braided vertex operator algebras based on the algebra W2 with com-
plementary central charges c C Nc D 28. The conformal field theory version of the Laplace
operator on the quantum group is also obtained.
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1. Introduction

We have shown in [7] that the quantum group SLq.2/ admits a realization as the semi-
infinite cohomology of the Virasoro algebra with coefficients in the tensor product
of two braided vertex operator algebras (VOA) with complementary central charges
c C Nc D 26. At the end of the paper we have discussed extensions of our results
to higher ranks and more general W -algebras (see e.g. [1] and references therein).
In the present paper we consider a simplest generalization of this type, namely the
algebraW2, which is the semi-direct sum of the Virasoro and the Heisenberg algebra.
We prove that the semi-infinite cohomology of W2 in the tensor product of two
appropriate braided vertex operator algebras yields the quantum group GLq.2/. The
central charges of the two braided VOAs add up to the critical value for W2, namely
c C Nc D 28.

It is well known that one can develop the calculus of differential forms on GLq.2/
and define the q-analogues of partial derivatives and the quantum version of the
Laplace operator. Since GLq.2/ is realized as semi-infinite cohomology of W2, one
can look for a “lift” of various structures on the quantum group to the corresponding
braided VOA. In this paper we do find a simple operator on the braided VOA that
commutes with the action of W2 and induces the quantum Laplace operator on the
cohomology. This suggests that other structures of noncommutative geometry might
admit an equally simple and natural realization in terms of chiral two-dimensional
conformal field theory.
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The structure of the paper is as follows. In Section 2 we recall the basic facts about
representation theory of Uq.gl.2//. In Section 3 we discussW2 and the related semi-
infinite cohomology complex. In Section 4 we construct the intertwining operators
forW2 and the related braided VOA (see [12], [7]). In Section 5 we find a realization
of GLq.2/ as the semi-infinite cohomology of a certain braided VOA and develop a
simple formula for the quantum Laplace operator using a Fock space realization of
W2-modules.

2. Uq.gl.2//, its representations and intertwining operators

Let Uq.gl.2// be the Hopf algebra over C.q/ with generators E, F , q˙H ; I and
commutation relations

qHE D q2EqH ; qHF D q�2FqH ; ŒE; F � D qH � q�H

q � q�1 ;

and I is a central element. The comultiplication is given by

�.I/ D I ˝ 1C 1˝ I;

�.qH / D qH ˝ qH ;

�.E/ D E ˝ qH C 1˝E;

�.F / D F ˝ 1C q�H ˝ F:

The universal R-matrix for Uq.gl.2//, which is an element of a certain completion
of Uq.gl.2//˝ Uq.gl.2//, is given by

R D C‚; C D qI˝Iq
H˝H

2 ;

‚ D
X
k>0

qk.k�1/=2 .q � q�1/k

Œk�Š
Ek ˝ F k;

where Œn� D qn�q�n

q�q�1 and Œn�Š D Œ1�Œ2� : : : Œn�.

For any given pair V ,W of representations, theR-matrix gives the commutativity
isomorphism {R D PR W V ˝W ! W ˝V , where P is a permutation: P.v˝w/ D
w ˝ v.

Let � 2 ZC and k 2 Z. We denote by V�;k the finite dimensional irreducible
representation of Uq.gl.2// such that V�;k is the highest weight representation with
the highest weight� for the subalgebraUq.sl.2// ofUq.gl.2//, and k is the eigenvalue
of central element I .

One can construct the intertwining operators for finite dimensional representa-
tions, i.e., elements of Hom.V�;l ˝ V�;m; V�;n/ and Hom.V�;n; V�;l ˝ V�;m/. The
following proposition holds:



Quantum group GLq.2/ and quantum Laplace operator via semi-infinite cohomology 1009

Proposition 2.1. Let �, �, � 2 ZC and l , m, n 2 Z. Then dim Hom.V�;l ˝
V�;m; V�;n/ D 1 if and only if � C � � � � j� � �j and n D m C l . Otherwise
dim Hom.V�;l ˝ V�;m; V�;n/ D 0.

Proof. This follows from a similar fact from Uq.sl.2// representation theory.

The same statement holds for intertwiners from Hom.V�;n; V�;l˝V�;m/. The next
proposition gives quadratic relations between intertwiners and will be very crucial in
the following.

Proposition 2.2. Let �i 2 ZC, li 2 Z (i D 0; 1; 2; 3). Then there exists an invertible
operator

B

�
�0; l0I�1; l1
�2; l2I�3; l3

�

such that the diagram

L
�.Hom.V�;r ; V�1;l1

˝ V�2;l2
/

˝ Hom.V�0;l0
; V�;r ˝ V�3;l3

//

i

��

B

�
�0;l0I�1;l1

�2;l2I�3;l3

�
��
L

�;k.Hom.V�;k ; V�1;l1
˝ V�3;l3

/

˝ Hom.V�0;l0
; V�;k ˝ V�2;l2

//

i

��
Hom.V�0;l0

; V�1;l1
˝ V�2;l2

˝ V�3;l3
/

PR �� Hom.V�0;l0
; V�1;l1

˝ V�3;l3
˝ V�2;l2

/

is commutative, where j�1 C �2j � � � j�1 � �2j, j�3 C �j � �0 � j�3 � �j,
j�1 C �3j � � � j�1 � �3j, j�2 C �j � �0 � j�2 � �j, and i is an isomorphism.

This fact follows from a similar fact from the representation theory of Uq.sl.2//.
Moreover, when the braiding matrix

B

�
�0; l0I�1; l1
�2; l2I�3; l3

�

is not equal to zero, it is equal to

ql2l3BV
�
�0I�1
�2I�3

�
;

where BV is the braiding matrix of Uq.sl.2//. Let us now denote by 	�;n
�;lI�;m the

generating element of Hom.V�;l˝V�;m; V�;n/ and by	�;lI�;m�;n the generating element
of Hom.V�;n; V�;l ˝ V�;m/. Then Proposition 2.2 gives the following quadratic
relations between intertwining operators:

.1˝ PR/	�1;l1I�2;l2
� 	

�;rI�3;l3
�0;l0

D
X
�

B�;rI�;k
�
�0; l0 �1; l1
�2; l2 �3; l3

�
	
�1;l1I�3;l3
�;k

	
�;kI�2;l2
�0;l0

;

	
�0;l0
�;rI�3;l3

	
�

�1;l1�2;l2
.1˝ PR/ D

X
�;k

B�;kI�;r
�
�0; l0 �1; l1
�2; l2 �3; l3

�
	
�0;l0
�;kI�2;l2

	
�;k

�1l1;�3;l3
:
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3. Virasoro, W2-algebras and semi-infinite cohomology: basic facts

3.1. Virasoro algebra and Feigin–Fuks representation. The Virasoro algebra

ŒLn; Lm� D .n �m/LmCn C Oc
12
.n3 � n/ın;�m

has been extensively studied for many years. Here we need only basic facts. Let
us denote by M Oc;h and V Oc;h the Verma module and irreducible module (with highest
weight h), respectively. Throughout the paper we will consider only generic values
of Oc. This means that the central charge Oc is parametrized in the following way:

Oc D 13 � 6.~ C 1
~
/:

Here the parameter ~ is in RnQ. Then we have the following proposition (see e.g. [2]
and references therein).

Proposition 3.1. For generic value of Oc, the Verma module M Oc;h has a unique
singular vector in the case if h D hm;n, where

hm;n D 1
4
.m2 � 1/~ C 1

4
.n2 � 1/~�1 � 1

2
.mn � 1/:

This singular vector occurs on the level mn, i.e., the value of L0 is hm;n Cmn.

In the following we will be interested in the modules with h D h1;n D �.�/,
where � D n � 1, �.�/ D ��

2
C �.�C2/

4~
.

Corollary 3.1. Let Oc be generic and � � 0. Then V�.�/; Oc D M�.�/; Oc=M�.�/C�C1; Oc ,
where V�.�/; Oc is the irreducible Virasoro module with the highest weight �.�/. For
� < 0 and generic values of c the irreducible module is isomorphic to the Verma
module, namely, V�.�/; Oc D M�.�/; Oc .

Let us consider the Heisenberg algebra

Œ˛n; ˛m� D 2~mınCm;0

and denote by F�;~ the Fock module associated to this algebra. Namely, F�;~ D
S.˛�1; ˛�2; : : : /˝ 1� such that an1� D 0 if n > 0 and a01� D �1� (� 2 C). It is
well known (see e.g. [2], [4] and references therein) that F0;~ gives rise to the vertex
operator algebra generated by the field ˛.z/ D P

anz
�n�1 such that deg.a.z// D 1,

which has the operator product expansion (OPE)

˛.z/˛.w/ � 2~

.z � w/2 :

We will denote this vertex algebra by F0;~.˛/. The following proposition holds.
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Proposition 3.2. The vertex algebraF0;~.a/ has a vertex operator algebra structure,
where the vertex operator corresponding to the Virasoro element is given by the
formula

L.z/ D 1

4~
W ˛.z/2 W C~ � 1

2~
@˛.z/

such that L.z/ D P
nLnz

�n�2 and Ln satisfy the Virasoro algebra relations with
central charge Oc D 13 � 6.~ C 1

~
/.

3.2. W2 as an extension ofVirasoro algebra. W2 is the semi-direct sum ofVirasoro
and Heisenberg algebras. The commutation relations are

ŒLn;Lm� D .n �m/LmCn C c
12
.n3 � n/ın;�m;

Œan; am� D 2
mınCm;0;
ŒLn; am� D �manCm:

(3.1)

The pair of central charges .c; 
/ determines the algebra. Throughout this paper we
will use the following parameterization of the central charge:

c D 14 � 6.~ C 1
~
/:

Moreover, we will require that ~ 2 RnQ. However, for any representation of W2-
algebra one can find a direct sum of Virasoro and Heisenberg algebras acting in the
same representation. Let us define generators

Ln � Ln � 1

2


1X
mD�1

W an�mam W;

where symbol W W stands for standard Fock space normal ordering. Then the following
proposition holds.

Proposition 3.3. Let Ln, am generate the algebra W2 with central charges .c; 
/.
Then Ln, an satisfy the commutation relations

ŒLn; Lm� D .n �m/LmCn C Oc
12
.n3 � n/ın;�m;

Œan; am� D 2
mınCm;0;
ŒLn; am� D 0;

where Oc D c � 1.
We will be interested in the highest weight modules for the W2-algebra

W
~;�

�.�/;k
D V�.�/;~ ˝ Fk;�

which are the tensor products of the irreducible highest weight module of the Virasoro
algebra V�.�/;~ , generated by Ln, and the Fock module Fk;� for the Heisenberg
algebra, generated by an.
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3.3. Ghost VOAs and semi-infinite cohomology for W2. In this section we will
show how to reduce the semi-infinite cohomology of W2 to the semi-infinite coho-
mology of the Virasoro algebra [3].

In the case of W2, semi-infinite forms can be realized by means of the following
Heisenberg superalgebras:

f n; �mg D ınCm;0;
fbn; cmg D ınCm;0; n;m 2 Z:

One can construct Fock modules ƒ, ƒ0 in the following way:

ƒ D Cfb�n1
: : : b�nk

c�m1
: : : c�m`

1I ck1 D 0; k > 2I bk1 D 0; k > �1g;
ƒ0 D Cf��n1

: : : ��nk
 �m1

: : :  �m`
1I  k1 D 0; k > 1I �k1 D 0; k > 0g:

Let us write M D ƒ˝ƒ0. Each of ƒ, ƒ0 and therefore M has a VOA structure on
it, namely, one can define four quantum fields

b.z/ D P
m

bmz
�m�2; c.z/ D P

n

cnz
�nC1;

 .z/ D P
m

 mz
�m; �.z/ D P

m

bmz
�m�1;

which according to the commutation relations between modes have the operator
products

b.z/c.w/ � 1

z � w ; �.z/ .w/ � 1

z � w ;
such that all other operator products do not contain singular terms. The Virasoro
element is given by the expression

LM .z/ D 2 W @b.z/c.z/ W C W b.z/@c.z/ W C W @ .z/�.z/ W
such that b.z/, c.z/ have conformal weights 2, �1, and  .z/, �.z/ have conformal
weights 0, 1, respectively. The central charge of the corresponding Virasoro algebra
is equal to �28. One can define the operator

Ng.z/ D W c.z/b.z/ W C W  .z/�.z/ W;
which is known as ghost number current.

One can show that the module W ~;�

�.0/;0
has the structure of the VOA generated

by the quantum fields L.z/ D P
n Lnz

�n�2 and a.z/ D P
n anz

�n�1, which have
the following operator products (which are equivalent to the commutation relations
(3.1)):

L.z/L.w/ � c

2.z � w/4 C 2L.w/

.z � w/2 C @L.w/

z � w ;

L.z/a.w/ � a.w/

.z � w/2 C @a.w/

z � w ;

a.z/a.w/ � 2


.z � w/2 :
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Let the space W be such that 
 D 0, c D 28. Then the following proposition is
true.

Proposition 3.4. The operator of ghost number 1,

Q D
Z

dz

2�i
J.z/;

J.z/ D W c.z/L.z/ W C W c@cb.z/ W 3
2
@2c.z/C  .z/a.z/C W c@ �.z/ W;

is nilpotent: Q2 D 0 on W ˝M .

The space W ˝ M is known as the semi-infinite cohomology complex, where
the differential is Q, which is sometimes called the BRST operator. The grading in
the complex is given by ghost number operator Ng . The k-th cohomology group is
usually denoted by H

1
2 Ck.W2;Cc;W/.

In this article we will be interested in computing the semi-infinite cohomology for
W2-modules of the form W D W ˝ xW . Here each ofW , xW are representations ofW2,
with central charges .c; 
/, . Nc, N
/, respectively, such that the relations cC Nc D 28 and

C N
 D 0 are satisfied. Let us denote the quantum fields for Virasoro and Heisenberg
algebras in W and xW by L.z/, a.z/ and NL.z/, Na.z/, respectively. Then the BRST
operator on W has the form

QW D
Z

dz

2�i
JW .z/;

JW .z/ D W c.z/.L.z/C NL.z// W C W c@cb.z/ W C3
2
@2c.z/

C  .z/aC.z/C W c@ �.z/ W;
where aC.z/ D a.z/ C Na.z/. It makes sense to also define the field a�.z/ D
a.z/ � Na.z/, which is crucial in the following statement.

Proposition 3.5. The operatorQW can be rewritten in the form

QW D
Z

dz

2�i
J˚

W
.z/;

J˚
W
.z/ D W Qc.z/.L.z/C NL.z// W C W Qc@ Qc Qb.z/ W C3

2
@2 Qc.z/C z .z/ QaC.z/:

Here L.z/ D L.z/ � 1
4�

W a.z/2 W, NL.z/ D L.z/ � 1
4�

W Na.z/2 W and QA.z/ D
eRA.z/e�R (A is any quantum field ), where R D 1

8�	i

R
dzc.z/a�.z/�.z/.

Proof. Let us write explicitly the action of the transformation QA.z/ D eRA.z/e�R
for every quantum field:

QaC.z/ D aC.z/C @.c.z/�.z//.z/; Qb.z/ D b.z/ � 1
4�
a�.z/�.z/;

z .z/ D  .z/C 1
4�
c.z/a�.z/; Qa� D a�; Qc D c; Q� D �:
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To prove this proposition we just expand the tilded quantum fields in terms of
usual ones:

J˚
W
.z/ D W c.z/.L.z/C NL.z// W C W c@c Qb.z/ W C3

2
@2c.z/C z .z/ QaC.z/

D W c.z/.L.z/C NL.z// W C W c@c.b.z/ � 1
4�
a�.z//�.z/ W C3

2
@2c.z/

C W . .z/C 1
4�
c.z/a�.z//.aC.z/C @.c.z/�.z//.z// W

D W c.z/.L.z/C NL.z/C 1
4�
.a2.z/ � Na2.z/// W C W c@c Qb.z/ W C3

2
@2c.z/

C  .z/aC.z/C W  .z/@.c.z/�.z// W :

In other words, by means of similarity transformation, one can transform the
BRST operator associated with semidirect sum of Virasoro and Heisenberg algebras
to the one associated with the direct sum of those algebras. This proposition has the
following corollary, which will be crucial for computing the semi-infinite cohomol-
ogy.

Corollary 3.2. All nontrivial cycles of the semi-infinite cohomology belong to the
kernels of the operators

(i) L0 C NL0 C QLM0 ,

(ii) a0 C Na0,
(iii) T0,

where T .z/ D 1
4�

W QaC.z/ Qa�.z/ W C W @ z .z/ Q�.z/.

Proof. Let us prove (i) first. We know that ŒQW ; Qb0� D L0 C NL0 C QLM0 . Therefore,

ŒQW ; Qb0�ˆ D QW
Qb0ˆ D �ˆ:

Hence, for � ¤ 0, ‰ D ��1b0ˆ the proofs of (ii) and (iii) are identical to (i); one
just needs to use the conditions that ŒQW ; Q�0� D a0C Na0 and ŒQW ; S0� D T0, where
S0 is the zero mode of an operator S.z/ D 1

4�
a�.z/�.z/.

4. Intertwiners and braided VOAs

In this section we will study braided VOAs. This will provide a necessary framework
for the next section, where we will study semi-infinite cohomology and the Lian–
Zuckerman multiplication.

4.1. Definition of a braided VOA and the simplest example. First, we give a
definition of braided VOAs.
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Definition ([7]). Let V D L
�2I V� be a direct sum of graded complex vector

spaces, called sectors, V� D L
n2ZC

V�Œn�, indexed by some set I . Let ��, � 2 I
be complex numbers, which we will call conformal weights of the corresponding
sectors. We say that V is a braided vertex algebra if there are distinguished elements
0 2 I such that �0 D 0, 1 2 V0Œ0�, linear maps D W V ! V , R W V ˝ V ! V ˝ V
and the linear correspondence

Y . � ; z/� W V ˝ V ! V fzg; Y D P
�;�1;�2

Y �1�2

�
.z/;

where

Y �1�2

�
.z/ 2 Hom.V�1

˝ V�2
;V�/˝ z�����1

���2 CŒŒz; z�1��;

such that the following properties are satisfied:

(i) Vacuum property: Y .1; z/v D v, Y .v; z/1jzD0 D v.

(ii) Complex analyticity: for any vi 2 V�i
(i D 1; 2; 3; 4) the matrix elements

hv�
4 ;Y .v3; z2/Y .v2; z1/v1i regarded as formal Laurent series in z1 and z2 con-

verge in the domain jz2j > jz1j to a complex analytic function r.z1; z2/ 2
z
h1

1 z
h2

2 .z1 � z2/h3CŒz˙1
1 ; z˙1

2 ; .z1 � z2/�1�, where h1; h2; h3 2 C.

(iii) Derivation property: Y .Dv; z/1 D d
dzY .v; z/.

(iv) Braided commutativity (understood in the weak sense1):

Az;w.Y .v; z/Y .u;w// D P
i

Y .ui ; w/Y .vi ; z/;

where R.u ˝ v/ D P
i ui ˝ vi and Az;! denote the monodromy around the

path

w.t/ D 1
2
..z C w/C .w � z/e	it /; z.t/ D 1

2
..z C w/C .z � w/e	it /;

as shown in the picture
z � ��� w.

��

(v) There exists an element ! 2 V0 such that

Y.!; z/ D P
n2Z

Lnz
�n�2

and the Ln satisfy the relations of Virasoro algebra with L�1 D D.

(vi) Associativity (understood in the weak sense):

Y .Y .u; z � w/v;w/ D Y .u; z/Y .v; w/:

1By the weak sense we mean that the relation holds for the matrix elements of the corresponding
operator products.
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The associativity condition puts a restriction on the operator R, namely one can
show that matrix R satisfies the Yang–Baxter equation (see [7], [12]).

The simplest example of braided VOA (which does not reduce to the usual VOA)
is a natural extension of the VOAF�.a/ generated by Heisenberg algebra, considered
in the previous section. Let us consider the space

yF� D L
�2Z

F�;�:

Below we will show that yF� carries a structure of braided VOA. The operators

X.�; z/ D 1�z
�a0
2� e.

�
2~

P
n>0

a�n
n zn/e�. �

2~

P
_n>0an

n z�n/;

where � 2 Z, generate vacuum vectors in Fock modules. It is obvious that
X.�; z/10jzD0 D 1�. Denoting

Xn1;:::;nk
.�; z/ � W a.n1/.z/ : : : a.nk/.z/X.�; z/ W;

where a.n/.z/ D 1
nŠ

�
d

dz

�n
a.z/, one can see that

Xn1;:::;nk
.�; z/10jzD0 D a�n1

; : : : ; a�nk
1�:

In such a way, we build the correspondence

i W v ! Y.v; z/ D P
n2Z

v.n/z
�n�1

such that v 2 yF� and v.n/ 2 End. yF�/. To see the connection with definition of
braided VOA, we note that in this case I D Z, the sectors are Fock spaces F�;� , and
�.�/ is the conformal weight of the vacuum.

Let jzj > jwj. Then

X.�; z/X.�;w/ D .z � w/���
2 .X.�C �;w/C � � � /;

where dots stand for the terms regular in .z � w/, hence

Az;w.X.�; z/X.�;w// D p
��
2 X.�;w/X.�; z/; (4.1)

where p D e	i� . Here we underline that the expression above should be understood
in a weak sense, i.e., the analytical continuation is performed for the matrix elements
of the corresponding operator products. Moreover, the matrix elements of operator
product expansion X.�; z/X.�;w/ exist in the domain jzj > jwj and the analyti-
cal continuation relates it to the matrix elements of the operator product expansion
X.�;w/X.�; z/, which converge in the domain jwj > jzj. The relation (4.1) is a
simplified case of associativity condition, since in our case Y �

�1�2
is nonzero only for

� D �1 C �2 and the R-operator is therefore reduced to the multiplication on some
power of p.

In the remaining part of this section we will discuss examples which are more
involved. In order to construct them we need to use additional constructions.
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4.2. Intertwiners for Virasoro and W2-algebras. In [7] we have constructed an
intertwiner for the Virasoro algebra. This is a map

ˆ���.z/ W V�.�/;~ ˝ V�.�/;~ ! V�.�/;~ ŒŒz; z
�1��z�.�/��.�/��.�/;

which has the following property [11]:

Ln �ˆ���.z/ D ˆ���.z/�z;0.Ln/;

where

�z;0.Ln/ D
I
z

d�

2�i
�nC1

� X
m

.� � z/�m�2Lm
�

˝ 1C 1˝ Ln:

Moreover, we have found that they satisfy the relation involving the braiding matrix
BV of Uq.sl.2//.

Proposition 4.1 ([7]). Let z1; z2 2 C such that 0 < jz1j < jz2j, �i � 0 (i D
0; 1; 2; 3). Then the relation

Az1;z2
.ˆ

�0

�3�
.z2/ˆ

�

�2�1
.z1//.P ˝ 1/ D

X
�

BV��

�
�0 �1
�2 �3

�
ˆ
�0

�2�
.z1/ˆ

�

�3�1
.z2/

holds, where P is an interchange operator, namely P.v1 ˝ v2/ D v2 ˝ v1 and
q D e

�i
~ .

Now we show that there exists an intertwining operator between the corresponding
irreducible highest weight representations of the W2-algebra.

Proposition 4.2. (i) There exists a map

ˆ
�;n
�;lI�;m.z/ W W �;


�.�/;l
˝W

�;


�.�/;m
! W

�;


�.�/;n
ŒŒz; z�1��z�.n2�m2�l2/z�.�/��.�/��.�/;

such that

Ln �ˆ�;n
�;lI�;m.z/ D ˆ

�;n
�;lI�;m.z/�z;0.Ln/;

ak �ˆ�;n
�;lI�;m.z/ D ˆ

�;n
�;lI�;m.z/�z;0.ak/;

where

�z;0.Ln/ D
I
z

d�

2�i
�nC1

� X
m

.� � z/�m�2Lm

�
˝ 1C 1˝ Ln;

�z;0.ak/ D
I
z

d�

2�i
�k

� X
m

.� � z/�m�1am
�

˝ 1C 1˝ ak :
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(ii) The intertwining operators ˆ�;n
�;lI�;m.z/ satisfy the following quadratic rela-

tion:

Az1;z2

�
ˆ
�0;l0
�3;l3I�;r.z2/ˆ

�;r

�2;l2I�1;l1
.z1/

�
.P ˝ 1/

D
�
p

q

	l2l3 X
�;k

B�;rI�;k
�
�0; l0 �1; l1;

�2; l2 �3; l3;

�
ˆ
�0;l0
�2;l2I�;k.z1/ˆ

�;k

�3;l3I�1;l1
.z2/;

where p D e	i� , q D e
�i
~ .

Proof. (i) First, we construct an intertwining operator

‰nlm W Fl;� ˝ Fm;� ! Fn;�ŒŒz; z
�1��z�.n2�m2�l2/;

which obeys the rule

ak �‰nlm.z/ D ˆnlm.z/�z;0.ak/: (4.2)

However, we already constructed one when we studied the first example of braided
algebra in Section 4.1. The operator

ılCm;nY. � ; z/ � W Fl;� ˝ Fm;� ! Fn;�ŒŒz; z
�1��z�.n2�m2�l2/

satisfies the property (4.2). Now we introduce an operator

ˆ
�;n
�;lI�;m.z/ D ˆ��;�.z/˝‰nlm.z/;

whereˆ�
�;�
.z/ is the intertwining operator for irreducible highest weight modules of

the Virasoro algebra, generated by Ln � Ln � 1
4�

P
m W an�mam W operators, and

therefore is the intertwining operator for the irreducible highest weight representations
of the W2-algebra.

(ii) This follows from the commutativity condition of Y and a similar statement
for intertwining operators for the Virasoro algebra.

4.3. From W2 and Uq.gl.2// to braided VOA. Now we have all necessary tools
to build a more sophisticated example of a braided vertex algebra than the one in
Section 4.1. In [7] we have constructed the braided VOA on the space

F~ D L
�2ZC

.V�.�/;~ ˝ V�/;

where V� is an irreducible representation of Uq.sl.2// with highest weight � and
V�.�/ are highest weight Virasoro modules discussed in Section 3.1 such that the
R-operator from the braided commutativity relation of F~ is related to the universal
R-matrix for Uq.sl.2//.
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Here we modify the construction of [7] in order to build braided VOA compatible
with the W2 and Uq.gl.2// structures, namely, it will be defined on the space

G~;� D
M

�2ZC;k2Z

.W
~;�

�.�/;k
˝ V�;k/:

We define a map
Y. � ; z/ � W G~;� ˝ G~;� ! G~;�fzg

in such a way that

Y W v ˝ a ! Y.v ˝ a; z/ D P
�;�

ˆ
�;n
�;lI�;m.z/.v ˝ � /˝ 	

�;n
�;mI�;l.� ˝ a/;

where v 2 W ~;�

�.�/;l
and a 2 V�;l .

Let us write G~;�.l; �/ � W
~;�

�.�/;l
˝ V�;l . One can see that the sectors for the

map Y are given by the spaces G~;�.l; �/ and the conformal weight of the sector is
�.�/ C 
k2. Let us prove that Y satisfies the braided commutativity relation and
compute an explicit expression for the R-operator. Let vi ˝ ai 2 W ~;�

�.�i /;li
˝ V�i ;li

.i D 1; 2; 3/. Then

Az2;z1
.Y.v1 ˝ a1; z2/Y.v2 ˝ a2; z1//.v3 ˝ a3/

D Az2;z1
.
P
�1;�2;�;�

ˆ
�;n
�1;l1�;r

.z2/ˆ
�;r

�2;l2I�3;l3
.z1/˝ 	

�;n
�;rI�1;l1

	
�;r

�3;l3I�2;l2
/

� .v1 ˝ v2 ˝ v3/˝ .a3 ˝ a2 ˝ a1/

D .
P
�1;l1;�2;l2;�;n;�;r;�;k

ˆ
�;n
�2;l2;�;k

.z1/ˆ
�;k

�1;l1I�3;l3
.z2/�

p
q

�l1l2B�;rI�;k
h
�;n �3;l3;
�2;l2 �1;l1;

i
˝ 	

�;n
�;rI�1;l1

	
�;r

�3;l3I�2;l2
/

� .v2 ˝ v1 ˝ v3/.a3 ˝ a2 ˝ a1/

D .
P
�1;l1;�2;l2;�;n;�;k

ˆ
�;n
�2;l2I�;k.z1/ˆ

�;k

�2;l2I�3;l3
.z2/˝ 	

�;n
�;kI�2;l2

	
�;k

�3;l3I�1;l1
/

� .v2 ˝ v1 ˝ v3/˝ .a3 ˝ P
i r
.2/
i a1 ˝ r

.1/
i a2/

D P
i Y.v2 ˝ r

.1/
i a2; z1/Y.v1 ˝ r

.2/
i a1; z1/.v3 ˝ a3/;

where

R � r
.1/
i ˝ r

.2/
i D

�
p

q

	I˝I
R;

and R is a universal R-matrix for Uq.gl.2//. Therefore Y satisfies the braided com-
mutativity relation. One can prove that Y satisfies all other necessary properties along
the lines of [7], and we arrive at the following proposition.

Proposition 4.3. The map Y defines a structure of braided VOA on G~;� .

The braided VOA G~;� possesses the following remarkable subalgebras.
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Corollary 4.1. G~;� possesses braided vertex subalgebras yG~;� , bGC
~;� with the

spaces

yG~;� D L
�2ZC;r2Z

.W
~;�

�.�/;�C2r ˝ V�;�C2r/;

bGC
~;� D L

�;r2ZC

.W
~;�

�.�/;�C2r ˝ V�;�C2r/:

Here bGC
~;� is the minimal braided subalgebra of G~;� containing the subspace

G~;�.1; 1/, and yG~;� can be obtained from it by extending via the subspace
G~;�.�2;�2/.

Finally, we mention the following important property. There is a natural action of

Uq.gl.2// on G~;� , yG~;� , bGC
~;� . The next proposition shows that it is compatible

with the braided VOA structure.

Proposition 4.4. There is a natural Uq.gl.2// action on the vertex algebras G~;� ,
yG~;� , bGC

~;� such that gY D Y�.g/, where g 2 Uq.gl.2//.

Proof. This is a direct consequence of the definition of Y and the properties of the
intertwining operator on Uq.gl.2//.

5. GLq.2/ as semi-infinite cohomology and Laplace operator

5.1. Computation of the semi-infinite cohomology. We are interested in comput-
ing the semi-infinite cohomology of the tensor product of the following modules of
W2:

W
~;�

�.�/;l
˝W

�~;��
�.�/;m

:

For H
1
2 C0.W2;Cc; � / the answer is given in the following proposition.

Proposition 5.1. The 0-th semi-infinite cohomology group for the tensor product of
two irreducible highest weightW2-modules is given by

H
1
2 C0.W2;Cc; W

~;�

�.�/;l
˝W

�~;��
�.�/;m

/ D Cı�;�ıl;m:

Proof. First, to simplify the semi-infinite cohomology operator we use Proposi-
tion 3.5. As well as there we have tensor product ofW2-modules with complimentary
central charges. Moreover, the associated semi-infinite complexes formed out of
“tilded” variables and original ones are isomorphic to each other. Therefore, we can
compute the semi-infinite cohomology using the operator Q˚. Part (ii) of Corol-
lary 3.2 says that H

1
2 C0 is nontrivial iff l D m. Part (i) says that � should be equal
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to �, since ~ is generic. Part (iii) leads to the fact that only the highest weight vectors
of the tensor product of Fock modules F~;� ˝ F�~;�� ˝ M ;� (where M ;� is the
part ofM generated by  m, �n modes) contribute to nontrivial cohomology classes.
Hence, the problem is reduced to the computation of the 0-th semi-infinite cohomol-
ogy group of Virasoro modules, i.e., H

1
2 C0.Vir;Cc; V�.�/;~ ˝ V�.�/;�~/, which is

known to be equal to C (see [8], [10], [6]). Hence, the proposition is proven.

Let us introduce the following spaces with the structure of braided VOA:

G D G~;� ˝ G�~;��; yG D yG~;� ˝ yG�~;��; bGC D bGC
~;� ˝ bGC�~;��:

We see that yG is a braided VOA subalgebra in G. An immediate consequence of
Proposition 5.1 is the following theorem.

Theorem 5.1. The 0-th cohomology groups of the spaces of braided vertex algebras

G, yG, bGC are given by

H
1
2 C0.Vir;Cc;G/ D L

�;k2Z

V�;k ˝ xV�;k;

H
1
2 C0.Vir;Cc; yG/ D L

�2ZC;r2Z

V�;�C2r ˝ xV�;�C2r ;

H
1
2 C0.Vir;Cc;bGC/ D L

�;r2ZC

V�;�C2r ˝ xV�;�C2r ;

where xV�;k stands for an irreducible representation of Uq.gl.2// after application of
the involution q ! q�1.

Now we will define a product structure on these cohomology spaces using the
natural product structure on VOA.

5.2. Ring structureon the semi-infinite cohomology spaces. The Lian–Zuckerman
associative product structure is defined on the representativesU ,V of the cohomology
classes of VOA as follows [10]:

�.U; V / D Resz

�
U.z/V

z

	
: (5.1)

In [7] we have shown that it is also gives an associative algebra structure on the space
F D F~ ˝ F~ . The same reasoning we used in that case applies to G. Hence, we
obtain the following proposition.

Proposition 5.2. The 0-th semi-infinite cohomology space of the braided VOAs G,
yG and yGC possesses an associative product, given by the formula (5.1), on the
representatives of cohomology classes such that it has the following subalgebras:

.H
1
2 C0.W2;Cc;bGC/; �/ � .H

1
2 C0.W2;Cc; yG/; �/ � .H

1
2 C0.W2;Cc;G/; �/:
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This proposition has an immediate corollary, which follows from the braided
commutativity property.

Corollary 5.1. The operation � being considered on H
1
2 C0.W2;Cc;G/ is asso-

ciative and satisfies the commutativity relation

�.U; V / D �. Or .1/i V; Or .2/i U/:

Here yR D P
i Or .1/i ˝ Or .2/i D R xR, where R, xR are the braiding operators on G~ ,

G�~ , respectively.

Now we want to find the generating set for both H
1
2 C0.W2;Cc; yG/ and

H
1
2 C0.W2;Cc;G/ under the multiplication �.
We recall that we used the notation G~;�.l; �/ � W

~;�

�.�/;l
˝V�;l . Let G.�; k/ D

G~;�.�; k/˝ G�~;��.�; k/. Due to the structure of the braided VOA on G and yG
we have the following proposition.

Proposition 5.3. (i) The algebra .H
1
2 C0.W2;Cc;bGC/; �/ is generated by

H
1
2 C0.W2;Cc;G.1; 1//.

(ii) .H
1
2 C0.W2;Cc; yG/; �/ is generated by H

1
2 C0.W2;Cc;G.1; 1// and

H
1
2 C0.W2;Cc;G.0;�2//.
(iii) .H

1
2 C0.W2;Cc;G/; �/ is generated by H

1
2 C0.W2;Cc;G.1; 1// and

H
1
2 C0.W2;Cc;G.0;�1//.
Note thatH

1
2 C0.W2;Cc;G.1; 1//Š V1;1˝ xV1;1 andH

1
2 C0.W2;Cc;G.0;�2//

Š C, H
1
2 C0.W2;Cc; yG.0;�1// Š C.

Since R D pI˝IR0, where R0 is the universal R-matrix for Uq.sl.2// (i.e.,
the braiding operator from braided commutativity relation for F~), we have yR D
R0 NR0. Now we calculate the commutation relations between the elements from the
generating set. There are only two vectors in each ofV1;1, xV1;1, i.e., the highest weight
and the lowest weight vectors. We denote them by aC, a� and NaC, Na�, respectively.
Let us make the notation

v ˝ a� ˝ NaC D A; v ˝ aC ˝ Na� D D;

v ˝ aC ˝ NaC D B; v ˝ a� ˝ Na� D C;

where v 2 H 1
2 C0.W2;Cc; W

~;�
1;1 ˝W �~;��

1;1 /. Then the following proposition holds,
which is a consequence of Proposition 6.9 of [7].

Theorem 5.2. (i) The generators A, B , C ,D satisfy the relations

AB D BAq�1; CB D BC; DB D BDq; CA D ACq;

AD �DA D .q�1 � q/BC; CD D DCq�1;
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and detq � AD � q�1BC is a nonzero element inH
1
2 C0.W2;Cc; yG.0; 2//.

(ii) The element detq has an inverse which belongs toH
1
2 C0.W2;Cc; yG.0;�2//,

i.e., .H
1
2 C0.W2;Cc; yG/; �/ Š GLq.2/.

Remark. One can see that the algebra .H
1
2 C0.W2;Cc;bGC/; �/ is a subalgebra of

GLq.2/ generated by the elements A, B , C , D only, and .H
1
2 C0.W2;Cc;G/; �/

corresponds to GLq.2/ extended by an element t 2 H
1
2 C0.W2;Cc; yG.0; 1// such

that t2 D detq .

5.3. Quantum Laplacian. Let us write GLq.2/C � .H
1
2 C0.W2;Cc;bGC/; �/. In

[5] it was defined an extension of this algebra by the invertible element ı, obeying
the following commutation relations with the generating elements:

ıA D Aı; ıB D qBı;

ıC D q�1Cı; ıD D Dı:

In such a way one can define elements x11, x12, x21, x22,

x11 D ıA; x12 D q�1=2ıB;
x21 D q1=2ıC; x22 D ıD

satisfying commutation relations

x11x12 D x12x11;

x21x22 D x22x21;

Œx11; x22�C Œx21; x12� D 0;

x11x21 D q�2x21x11;
x12x22 D q�2x22x12;
x21x12 D q2x12x21:

The space generated byx11, x12, x21, x22 will be called, according to [5], the quantum
Minkowski space-time. One can define the quantum Laplacian operator on this space
by the formula

�x D @11@22 � @12@21;
where @11@22, @12, @21 obey the following commutation relations:

@11@21 D @21@11;

@12@22 D @22@21;

Œ@11; @22�C Œ@21; @12� D 0;

@11@12 D q�2@12x11;
@21@22 D q�2@22@21;
@12@21 D q2@21@12:
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It was shown in [5] that the kernel of the quantum Laplacian operator is spanned by
elements of the kind

X�rk D 1

2�i

I
.x11s C x21/

��r
2 .x12s C x22/

�Cr
2 s

k��
2 �1ds;

where
�� 	 r; k 	 �; � 2 ZC; r; k � � .mod 2/:

Moreover, the operator

z�x � det.x/�x; where det.x/ D ı2 detq D x11x22 � x12x21;
is diagonalizable on the quantum Minkowski space-time.

Proposition 5.4 ([5]). The eigenvectors of the operator z�x have the form

det.x/jX�rk;

such that the eigenvalues are

.j /q.j C �C 1/q; (5.2)

where .n/q D q2n�1
q2�1 .

Let us write
Y
�;j

r;k
.A;B; C;D/ � ı�2j�� det.x/jX�rk :

The following proposition holds.

Proposition 5.5. The elements Y �;j
r;k

.A;B; C;D/ form a basis in the subspace

V�;�C2j ˝ xV�;�C2j of GLC
q .2/.

Proof. It is enough to prove that Y �;0
r;k
.A;B; C;D/ form a basis in V�;� ˝ xV�;�.

We will prove this by induction on �. The assertion is obvious in the case � D 1.
Then V1;1 ˝ xV1;1 has a basis Y 1;0

r;k
.A;B; C;D/, where r , k are equal to 0 or 2.

Suppose that this statement holds for � � k, where � � k � 0. Let us show it
for � C 1. First of all, we know that the monomials of � elements form a basis
in the space U� D L

��2m�0 V��2m;� ˝ xV��2m;�. By induction, we know that
Y ��2m
r;k

.A;B; C;D/ form a basis in all U�, where � 	 �.
As a consequence of Proposition 4.4 we have two natural actions of Uq.gl.2//

on GLC
q .2/ inherited from vertex algebras. Let us consider the action of Uq.gl.2//,

obtained from G�~;�� braided VOA. The action of the corresponding I , qH , E,
F -generators on A, B , C , D is as follows:

IA D A; IB D B; IC D C; ID D D;

FB D A; FD D C; FC D 0; FA D 0;

qHB D qB; qHD D qD; qHC D q�1C; qHA D q�1A;
EA D B; EC D D; EB D 0; ED D 0:
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One can see that action ofE,F interchanges the commuting elements .x11sCx21/ $
.x12s C x22/ and therefore the space generated by Y �;0

r;k
.A;B; C;D/ is invariant

under Uq.gl.2// action. Moreover, for fixed k, Y �;0
r;k
.A;B; C;D/ span the .�C 1/-

dimensional representation ofUq.gl.2//. At the same time, the elements ofU� which
belong to Uq.gl.2// irreducible representations with highest weight � should belong
to the space V�;�˝ xV�;�. Therefore, Y �;0

r;k
.A;B; C;D/ 2 V�;�˝ xV�;� and hence the

Y
�;0
r;k
.A;B; C;D/ form a basis in V�;� ˝ xV�;�, since they are linearly independent.

Thus the proposition is proven.

Now we give meaning to the operator z�x in vertex algebra setting. Consider an
operator z�CFT

x on the braided VOA OGC
~;� of the form

z�CFT
x D . Oa0 � ˛0/q. Oa0 C 1/q;

where ˛0 is the zero mode of the quantum field ˛.z/ from the Feigin–Fuks realization
of the Virasoro algebra with generators fLng and Oa0 D 
�1a0.

Being constructed by means of zero modes, this operator commutes with the
action of the W2-algebra and the semi-infinite cohomology operator. Comparing the
eigenvalues of z�CFT

x and z�x (see (5.2)) we obtain the following theorem.

Theorem 5.3. The operator z�CFT
x induces the operator z�x on

.H
1
2 C0.W2;Cc;bGC/; �/ Š GLC

q .2/:
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