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Introduction

In [3], N. Andruskiewitsch and H.-J. Schneider classified pointed Hopf algebras
with finite Gelfand–Kirillov dimension, which are domains with a finitely generated
abelian group of group-like elements, and a positive braiding. In the same paper,
the authors constructed a class of Hopf algebra U.D ; �/, generalizing the quantized
enveloping algebra Uq.g/ of a finite dimensional semisimple Lie algebra g. These
pointed Hopf algebras turn out to be Artin–Schelter (AS-) Gorenstein Hopf alge-
bras. AS-Gorenstein Hopf algebras have been recently intensively studied (e.g. [6],
[7], [15], [16], [25], [26]). One of the important properties of an AS-Gorenstein
Hopf algebra is the existence of a homological integral which generalizes Sweedler’s
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classical integral of a finite dimensional Hopf algebra, cf. [15]. Brown and Zhang
proved that the rigid dualizing complex of an AS-Gorenstein Hopf algebra is deter-
mined by its homological integral and antipode [7]. He, Van Oystaeyen and Zhang
used homological integrals to investigate the Calabi–Yau property of cocommutative
Hopf algebras [12]. They successfully classified the low-dimensional cocommutative
Calabi–Yau Hopf algebras over an algebraically closed field of characteristic zero.

The main aim of this paper is to find out when a pointed Hopf algebra U.D ; �/ of
finite Cartan type is Calabi–Yau, and to classify those low-dimensional Calabi–Yau
pointed Hopf algebras. It turns out that the class U.D ; �/ of pointed Hopf algebras
contains many Calabi–Yau Hopf algebras. Most of them are of types different from
the quantum groups Uq.g/, which were proved to be Calabi–Yau by Chemla [8].
This give us more interesting examples of Calabi–Yau Hopf algebras. The paper is
organized as follows.

In Section 1, we recall the pointed Hopf algebras U.D ; �/ of finite Cartan type,
the definition of a Calabi–Yau algebra, the notion of a homological integral and a
(rigid) dualizing complex over a Noetherian algebra. In Section 2, we study the
Calabi–Yau pointed Hopf algebras of finite Cartan type. We give a necessary and
sufficient condition for a Hopf algebra U.D ; �/ to be Calabi–Yau, and calculate
the rigid dualizing complex of U.D ; �/ (Theorem 2.3). In [8], Chemla calculated
the rigid dualizing complexes of quantum groups Uq.g/. As a consequence of the
characterization theorem, the quantum groups Uq.g/ are Calabi–Yau Hopf algebras.

A pointed Hopf algebra of the form U.D ; �/ is a (cocycle) deformation of the
smash product B.V / # k� , where V is the space of skew-primitive elements of
U.D ; �/, B.V / is the Nichols algebra of V and k� is the group algebra of the group
formed by group-like elements of U.D ; �/. Our second aim in this paper is to study
the Calabi–Yau property of the Nichols algebra B.V /. The algebra B.V / is an NpC1-
filtered algebra. By analyzing the rigid dualizing complex of the associated graded
algebra Gr B.V /, we obtain the rigid dualizing complex of B.V /. We then are able
to give a necessary and sufficient condition for the algebra B.V / to be Calabi–Yau,
which forms the main result of Section 3 (see Theorem 3.9).

In Section 4, we discuss the relation between the Calabi–Yau property of a pointed
Hopf algebraU.D ; �/ and the Calabi–Yau property of the associated Nichols algebra
B.V /. It turns out that for a pointed Hopf algebraU.D ; �/ and its associated Nichols
algebra B.V /, if one of them is CY, the other one is not.

In the final Section 5, we classify the Calabi–Yau pointed Hopf algebras U.D ; �/

of dimension less than 5. It turns out that Uq.sl2/ is the only known non-cocommu-
tative example in the classification. The other non-cocommutative Hopf algebras are
new examples of Calabi–Yau Hopf algebras.
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1. Preliminaries

Throughout this paper, we fix an algebraically closed field k. All vector spaces,
algebras are over k. The unadorned tensor ˝ means ˝k. Given an algebra A, we
write Aop for the opposite algebra of A and Ae for the enveloping algebra A˝ Aop

of A.
LetAbe an algebra. For a leftA-moduleM and an algebra automorphism� W A !

A, �M stands for the left A-module twisted by the automorphism �. Similarly, for
a right A-module N , we have N� . Observe that A� Š ��1A as A-A-bimodules.
A� Š A as A-A-bimodules if and only if � is an inner automorphism.

Let A be a Hopf algebra, and � W A ! k an algebra homomorphism. We write Œ��
to be the winding homomorphism of � defined by

Œ��.a/ D P
�.a1/a2;

for any a 2 A.
A Noetherian algebra in this paper means a left and right Noetherian algebra.

1.1. Pointed Hopf algebra U.D; �/. In this section we recall the definitions and
basic properties of Nichols algebras and pointed Hopf algebras of finite Cartan type.
More details can be found in [3]. We fix the following terminology:

� A free abelian group � of finite rank s.

� A Cartan matrix .aij / 2 Z��� of finite type, where � 2 N. Denote by
.d1; : : : ; d� / a diagonal matrix of positive integers such that diaij D djaj i ,
which is minimal with this property.

� A set X of connected components of the Dynkin diagram corresponding to the
Cartan matrix .aij /. If 1 6 i; j 6 � , then i � j means that they belong to the
same connected component.

� A family .qI /I2X of elements in k which are not roots of unity.

� Elements g1; : : : ; g� 2 � and characters �1; : : : ; �� 2 y� such that

�j .gi /�i .gj / D q
diaij

I ; �i .gi / D q
di

I for all 1 6 i; j 6 �; I 2 X: (1)

Let D be the collection D.�; .aij /16i;j6� ; .qI /I2X ; .gi /16i6� ; .�i /16i6� /. A
linking datum � D .�ij / for D is a collection of elements .�ij /16i<j6�;iœj 2 f0; 1g
such that �ij D 0 if gigj D 1 or �i�j ¤ ". We write the datum � D 0 if �ij D 0 for
all 1 6 i < j 6 � . The datum .D ; �/ D .�; .aij /; qI ; .gi /; .�i /; .�ij // is called a
generic datum of finite Cartan type for group � .

Definition 1.1 ([3], Section 4). Let .D ; �/ be a generic datum of finite Cartan type.
Let U.D ; �/ be the algebra generated by x1; : : : ; x� and y˙1

1 ; : : : ; y˙1
s subject to the
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relations

y˙1
m y˙1

h D y˙1
h y˙1

m ; y˙1
m y�1

m D 1; 1 6 m; h 6 s;

group action: yhxj D �j .yh/xjyh; 1 6 j 6 �; 1 6 h 6 s;

Serre relations: .adc xi /
1�aij .xj / D 0; 1 6 i ¤ j 6 �; i � j;

linking relations: xixj � �j .gi /xjxi D �ij .1 � gigj /; 1 6 i < j 6 �; i œ j;

where adc is the braided adjoint representation defined in [3], Section 1.

For a generic datum of finite Cartan type .D ; �/, denote by qj i D �i .gj /. Then
equation (1) reads as follows:

qi i D q
di

I and qij qj i D q
diaij

I for all 1 6 i; j 6 �; I 2 X: (2)

Let V be a Yetter–Drinfeld module over the group algebra k� with basis xi 2 V �i
gi

,
1 6 i 6 � . In other words, V is a braided vector space with basis x1; : : : ; x� , whose
braiding is given by

c.xi ˝ xj / D qijxj ˝ xi :

It can be easily derived from the proof of [3], Theorem 4.3, that the Nichols algebra
B.V / is isomorphic to the algebra

khx1; : : : ; x� j .adc xi /
1�aij .xj / D 0; 1 6 i; j 6 �; i ¤ j i:

We refer to [1], Section 2, for the definition of a Nichols algebra.
Letˆbe the root system corresponding to the Cartan matrix .aij /with f˛1; : : : ; ˛�g

a set of fix simple roots, and W the Weyl group. We fix a reduced decomposition of
the longest element w0 D si1 : : : sip of W in terms of the simple reflections. Then
the positive roots are precisely

ˇ1 D ˛i1 ; ˇ2 D si1.˛i2/; : : : ; p̌ D si1 : : : sip�1
.˛ip /:

If ˇi D P�
iD1mi˛i , then we write

gˇi
D g

m1

1 : : : g
m�

�
and �ˇi

D �
m1

1 : : : �
m�

�
:

Similarly, we write q
ǰˇi

D �ˇi
.g

ǰ
/.

Root vectors for a quantum group Uq.g/ were defined by Lusztig [17]. Up to a
non-zero scalar, each root vector can be expressed as an iterated braided commutator.
As in [2], Section 4.1, this definition can be generalized to a pointed Hopf algebras
U.D ; �/. For each positive root ˇi , 1 6 i 6 p, the root vector xˇi

is defined by the
same iterated braided commutator of the elements x1; : : : ; x� , but with respect to the
general braiding.

Remark 1.2. If ǰ D ˛l , then we have x
ǰ

D xl , that is, x1; : : : ; x� are the simple
root vectors.
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Lemma 1.3 ([3], Theorem 4.3). Let .D ; �/ D .�; .aij /; qI ; .gi /; .�i /; .�ij // be
a generic datum of finite Cartan type for � . The algebra U.D ; �/ as defined in
Definition 1.1 is a pointed Hopf algebra with comultiplication structure determined
by

	.yh/ D yh ˝ yh; 	.xi / D xi ˝ 1C gi ˝ xi ; 1 6 h 6 s; 1 6 i 6 �:

Furthermore, U.D ; �/ has a PBW-basis given by monomials in the root vectors

fxa1

ˇ1
: : : x

ap

ˇp
yg;

for ai > 0, 1 6 i 6 p, and y 2 � . The coradical filtration of U.D ; �/ is given by

U.D ; �/N D spanfxˇi1
: : : xˇij

y j j 6 N; y 2 �g:

There is an isomorphism of graded Hopf algebras GrU.D ; �/ Š B.V / # k� Š
U.D ; 0/. The algebra U.D ; �/ has finite Gelfand–Kirillov dimension and is a do-
main.

In [3], degrees of the PBW basis elements are defined by

deg.xa1

ˇ1
: : : x

ap

ˇp
y/ D .a1; : : : ; ap;

Pp
iD1 aiht.ˇi // 2 NpC1; (3)

where ht.ˇ/ is the height of the root ˇ. That is, if ˇ D P�
iD1mi˛i , then ht.ˇ/ DP�

iD1mi . Order the elements in .Z>0/pC1 as follows:

.a1; : : : ; ap; apC1/ < .b1; : : : ; bp; bpC1/ if and only if there is some

1 6 k 6 p C 1 such that ai D bi for i > k and ak�1 < bk�1:
(4)

Form 2 NpC1, let FmU.D ; �/ be the space spanned by the monomials xa1

ˇ1
: : : x

ap

ˇp
y

such that deg.xa1

ˇ1
: : : x

ap

ˇp
y/ 6 m. Then we obtain a filtration on the algebraU.D ; �/.

Lemma 1.4. If the root vectors xˇi
, x

ǰ
belong to the same connected component

and j > i , then
Œxˇi

; x
ǰ
�c D P

a2Np


ax
a1

ˇ1
: : : x

ap

ˇp
; (5)

where 
a 2 k and 
a ¤ 0 only when a D .a1; : : : ; ap/ is such that as D 0 for s 6 i

or s > j . In particular, in U.D ; 0/, the equation (5) holds for all root vectors xˇi
,

x
ǰ

with i < j .

Proof. This follows from [3], Proposition 2.2, and the classical relations that hold for
a quantum group Uq.g/ (see [9], Theorem 9.3, for example). It was actually proved
in step VI of the proof of Theorem 4.3 in [3].
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Lemma 1.5. The filtration defined by PBW basis is an algebra filtration. The associ-
ated graded algebra Gr U.D ; �/ is generated by xˇi

, 1 6 i 6 p, and yh, 1 6 h 6 s,
subject to the relations

y˙1
h y˙1

m D y˙1
m y˙1

h ; y˙1
h y�1

h
D 1; 1 6 h;m 6 s;

yhxˇi
D �ˇi

.yh/xˇi
yh; 1 6 i 6 p; 1 6 h 6 s;

xˇi
x

ǰ
D �

ǰ
.gˇi

/x
ǰ
xˇi
; 1 6 i < j 6 p:

Proof. This follows from Lemma 1.4 and the linking relations.

Note that the associated graded algebra Gr U.D ; �/ is an NpC1-graded algebra.

1.2. Calabi–Yau algebras. Following [11], we call an algebra Calabi–Yau of di-
mension d if

(i) A is homologically smooth, that is, A has a bounded resolution of finitely gen-
erated projective A-A-bimodules;

(ii) There are A-A-bimodule isomorphisms

ExtiAe.A;A
e/ Š

´
0; i ¤ d;

A; i D d:

In the sequel Calabi–Yau will be abbreviated to CY for short.
In [12], the CY property of Hopf algebras was discussed by using the homolog-

ical integrals of Artin–Schelter Gorenstein (AS-Gorenstein for short) algebras [12],
Theorem 2.3.

Let us recall the definition of an AS-Gorenstein algebra (cf. [7]).

(i) Let A be a left Noetherian augmented algebra with a fixed augmentation map
" W A ! k. The algebra A is said to be left AS-Gorenstein if

(a) injdimAA D d < 1,

(b) dim ExtiA.Ak;AA/ D
´
0; i ¤ d;

1; i D d;

where injdim stands for injective dimension. A right AS-Gorenstein algebras
can be defined similarly.

(ii) An algebraA is said to be AS-Gorenstein if it is both left and rightAS-Gorenstein
(relative to the same augmentation map ").

(iii) An AS-Gorenstein algebra A is said to be regular if, in addition, the global
dimension of A is finite.

Let A be a Noetherian algebra. If the injective dimension ofAA and AA are both
finite, then these two integers are equal by [29], Lemma A. We call this common
value the injective dimension of A. The left global dimension and the right global
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dimension of a Noetherian algebra are equal [24], Example 4.1.1. When the global
dimension is finite, then it is equal to the injective dimension.

In order to study infinite dimensional Noetherian Hopf algebras, Lu, Wu and
Zhang introduced the concept of a homological integral for an AS-Gorenstein Hopf
algebra in [15], which is a generalization of an integral of a finite dimensional Hopf
algebra. In [7], homological integrals were defined for general AS-Gorenstein alge-
bras.

Let A be a left AS-Gorenstein algebra with injdimAA D d . Then ExtdA.Ak;AA/

is a 1-dimensional rightA-module. Any nonzero element in ExtdA.Ak;AA/ is called a

left homological integral ofA. We write
R l
A

for ExtdA.Ak;AA/. Similarly, ifA is right
AS-Gorenstein, any nonzero element in ExtdA.kA; AA/ is called a right homological
integral of A. Write

R r
A

for ExtdA.kA; AA/.R l
A

and
R r
A

are called left and right homological integralmodules ofA, respectively.
CY algebras are closely related to algebras having rigid dualizing complexes. The

non-commutative version of a dualizing complex was first introduced by Yekutieli.

Definition 1.6 ([27], cf. [21], Definition 6.1). Assume thatA is a (graded) Noetherian
algebra. Then an object R ofDb.Ae/ (Db.GrMod.Ae//) is called a dualizing complex
(in the graded sense) if it satisfies the following conditions:

(i) R is of finite injective dimension over A and Aop.

(ii) The cohomology of R is given by bimodules which are finitely generated on
both sides.

(iii) The natural morphisms A ! RHomA.R;R/ and A ! RHomAop.R;R/ are
isomorphisms in D.Ae/ (D.GrMod.Ae//).

Roughly speaking, a dualizing complex is a complex R 2 Db.Ae/ such that the
functor

RHomA.�;R/ W Db
fg.A/ ! Db

fg.A
op/ (6)

is a duality, with adjoint RHomAop.�;R/ (cf. [27], Propositions 3.4 and 3.5). Here
Db

fg.A/ is the full triangulated subcategory ofD.A/ consisting of bounded complexes
with finitely generated cohomology modules.

In the above definition the algebra A is a Noetherian algebra. In this case, a
dualizing complex in the graded sense is also a dualizing complex in the usual sense.

Dualizing complexes are not unique up to isomorphism. To overcome this weak-
ness, Van den Bergh introduced the concept of a rigid dualizing complex in [21],
Definition 8.1.

Definition 1.7. LetA be a (graded) Noetherian algebra. A dualizing complex R over
A is called rigid (in the graded sense) if

RHomAe.A;AR ˝ RA/ Š R
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in D.Ae/ (D.GrMod.Ae//).

Note again that if Ae is Noetherian then the graded version of this definition
implies the ungraded version.

Lemma 1.8 (Cf. [7], Proposition 4.3, and [21], Proposition 8.4). LetA be a Noether-
ian algebra. Then the following two conditions are equivalent:

(a) A has a rigid dualizing complex R D A Œs�, where  is an algebra automor-
phism and s 2 Z.

(b) A has finite injective dimension d and there is an algebra automorphism � such
that

ExtiAe.A;A
e/ Š

´
0; i ¤ d;

A� ; i D d;

as A-A-bimodules.

In this case, � D  �1 and s D d .

The following corollary follows immediately from Lemma 1.8 and the definition
of a CY algebra. It characterizes the Noetherian CY algebras.

Corollary 1.9. Let A be a Noetherian algebra which is homologically smooth. Then
A is a CY algebra of dimension d if and only ifA has a rigid dualizing complexAŒd�.

2. Calabi–Yau pointed Hopf algebras of finite Cartan type

In this section we calculate the rigid dualizing complex of a pointed Hopf algebra
U.D ; �/ and study its Calabi–Yau property.

Before we give the main theorem of this section, let us recall the Koszul complex
of quadratic algebras (cf. [20]). Let V be a finite dimensional vector space and T .V /
the tensor algebra ofV . Suppose thatA is a quadratic algebra, that is,A D T .V /=hRi,
where R � V ˝ V . The quadratic dual algebra of A, denoted by AŠ, is the quadratic
algebra T .V �/=hR?i. Let fxigiD1;:::;n be a basis of V and fx�

i giD1;:::;n be the dual
basis of V �. Introduce the canonical element e D Pn

iD1 xi ˝ x�
i 2 A ˝ AŠ. The

right multiplication by e defines a complex

� � � ! A˝ AŠ�j
dj�! A˝ AŠ�j�1 ! � � � ! A˝ AŠ�1 ! A ! k ! 0: (7)

This complex is called the Koszul complex of A. The algebra A is Koszul if and
only if the complex (7) is a resolution of Ak.

Let K be the bimodule complex defined by

K W � � � ! A˝ AŠ�j ˝ A
Dj��! A˝ AŠ�j�1 ˝ A ! � � � ! A˝ A ! 0: (8)
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The differentials Dj W A ˝ AŠ�j ˝ A ! A ˝ AŠ�j�1 ˝ A, 1 6 j 6 n, are defined

by Dj D d lj C .�1/jd rj , where d lj .1 ˝ a ˝ 1/ D Pn
iD1 xi ˝ a � x�

i ˝ 1 and

d rj .1 ˝ a ˝ 1/ D Pn
iD1 1 ˝ x�

i � a ˝ xi , for any 1 ˝ a ˝ 1 2 A ˝ AŠ�j ˝ A.
The complex K is called the Koszul bimodule complex of A. If A is Koszul, then
K ! A ! 0 is exact.

In the rest of this section we fix a generic datum of finite Cartan type:

.D ; �/ D .�; .aij /16i;j6� ; .qI /I2X ; .gi /16i6� ; .�i /16i6� ; .�ij /16i<j6�;iœj /;

where� is a free abelian group of rank s. Let xˇ1
; : : : ; xˇp

be the root vectors. Recall
from Remark 1.2 that there are 1 6 jk 6 p, 1 6 k 6 � , such that x

ǰk
D xk .

The algebra A D U.D ; �/ has a natural N-filtration. It is given by FmA D
fxa1

ˇ1
: : : x

ap

ˇp
y j Pp

iD1 aiht.ˇi // 6 mg. In the following, we use GrA to denote the
associated N-graded algebra.

Lemma 2.1. The Hopf algebra A D U.D ; �/ is Noetherian with finite global di-
mension bounded by p C s.

Proof. The group algebra k� is isomorphic to a Laurent polynomial algebra with s
variables. So k� is Noetherian of global dimension s. By Lemma 1.4, the algebra
GrA Š U.D ; 0/ is an iterated Ore extension of k� . Indeed, if xˇ1

; : : : ; xˇp
are the

root vectors of A, then

GrA Š k�Œxˇ1
I �1; ı1�Œxˇ2

I �2; ı2� : : : Œxˇp
I �p; ıp�;

where �j , 1 6 j 6 p, is an algebra automorphism such that �j .xˇi
/ is just a scalar

multiple of xˇi
for i < j , and ıj is a �j -derivation such that ıj .xˇi

/, i < j , is a linear
combination of monomials in xˇiC1

; : : : ; x
ǰ �1

. By [18], Theorems 1.2.9 and 7.5.3,
we have that GrA is Noetherian of global dimension less than pC s. Now it follows
from [18], Theorem 1.6.9 and Corollary 7.6.18, that the algebra A is Noetherian of
global dimension less than p C s.

Theorem 2.2. Let (D ; �/ be a generic datum of finite Cartan andA the Hopf algebra
U.D ; �/. Then A is Noetherian AS-regular of global dimension p C s, where s is
the rank of � and p is the number of the positive roots of the Cartan matrix. The

left homological integral module
R l
A

of A is isomorphic to k� , where � W A ! k is
an algebra homomorphism defined by �.g/ D .

Qp
iD1 �ˇi

/.g/ for all g 2 � and
�.xi / D 0 for all 1 6 i 6 � .

Proof. We first show that

ExtiA.Ak;AA/ Š
´
0; i ¤ p C s;

k� ; i D p C s:
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With Lemma 1.5 and Lemma 2.1, the method in [8], Proposition 3.2.1, for computing
the group Ext�

Uq.g/
.Uq.g/k; Uq.g/Uq.g// also works in the case ofA D U.D ; �/. The

difference is that the right A-module structure on ExtpCs
A .Ak;AA/ is not trivial in

the case of U.D ; �/. Let C D Gr U.D ; �/. We also have ExtiA.Ak;AA/ D 0 for
i ¤ p C s and ExtpCs

C .Ck; CC/ Š ExtpCs
A .Ak;AA/ as right �-modules.

We now give the structure of Ext�
C .Ck; CC/. Let B be the algebra

khxˇ1
; : : : ; xˇp

j xˇi
x

ǰ
D �

ǰ
.gˇi

/x
ǰ
xˇi
; 1 6 i < j 6 pi:

Then C D B # k� . We have the isomorphisms

RHomC .k; C / Š RHomC .k� ˝k� k; C /

Š RHomk�.k;RHomC .k�;C //

Š RHomk�.k;k�/˝L
k� RHomC .k�;C /:

Let

0 ! B ˝ B Š�p ! � � � ! B ˝ B Š�j ! � � � ! B ˝ B Š�1 ! B ! k ! 0 (9)

be the Koszul complex ofB (cf. complex (7)). It is a projective resolution of k. Each
B Š�j is a left k�-module defined by

Œg.ˇ/�.x�
ˇi1

^ � � � ^ x�
ˇij

/ D ˇ.g�1.x�
ˇi1

^ � � � ^ x�
ˇij

//

D ˇ.g�1.x�
ˇi1
/ ^ � � � ^ g�1.x�

ˇij

//

D
jQ
tD1

�ˇit
.g/ˇ.x�

ˇi1

^ � � � ^ x�
ˇij

/:

Thus, each B ˝ B Š�j is a B # k�-module defined by

.c # g/ � .b ˝ ˇ/ D .c # g/.b/˝ g.ˇ/

for any b˝ˇ 2 B˝B Š�j and c #g 2 B # k� . It is not difficult to see that the complex
(9) is an exact sequence of B # k� modules. Tensoring it with k� , we obtain the
following exact sequence of B # k�-modules

0 ! B ˝ B Š�p ˝ k� ! : : : ! B ˝ B Š�j ˝ k� ! � � �
� � � ! B ˝ B Š�1 ˝ k� ! B ˝ k� ! k� ! 0;

where the �-action is diagonal. Each B ˝ B Š�j ˝ k� is a free B # k�-module.
Therefore, we obtain a projective resolution of k� over B # k� .

The complex

0 ! HomC .B ˝ k�;C / ! HomC .B ˝ B Š�1 ˝ k�;C / ! � � �
� � � ! HomC .B ˝ B Š�p ˝ k�;C / ! 0
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is isomorphic to the complex

0 ! C ! B Š1 ˝ C ! � � � ! B Šp�1 ˝ C
ıp�! B Šp ˝ C ! 0:

This complex is exact except atB Šp˝C , whose cohomology is isomorphic toB Šp˝k� .
So RHomC .k�;C / Š B Šp ˝ k�Œp�. We have

.x�
ˇ1

^ � � � ^ x�
ˇp
/˝ g D .

Qp
iD1 �ˇi

/.g/g..x�
ˇ1

^ � � � ^ x�
ˇp
/˝ 1/

for all g 2 � . The group � is a free abelian group of rank s, so RHomk�.k;k�/ Š
kŒs�. Therefore, we obtain

RHomk�.k;k�/˝L
k� RHomC .k�;C / Š k�0 Œp C s�;

where � 0 is defined by � 0.g/ D .
Qp
iD1 �ˇi

/.g/ for all g 2 � and � 0.x
ǰ
/ D 0 for all

1 6 j 6 p. That is,

ExtiC .Ck; CC/ Š
´
0; i ¤ p C s;

k�0 ; i D p C s:

ExtpCs
A .Ak;AA/ is a 1-dimensional right A-module. Let m be a basis of the

module ExtpCs
A .Ak;AA/. It follows from the right version of [19], Lemma 2.13 (1),

that m � xi D 0 for all 1 6 i 6 � . Since ExtpCs
C .Ck; CC/ Š ExtpCs

A .Ak;AA/ as
right �-modules, we have showed that

ExtiA.Ak;AA/ Š
´
0; i ¤ p C s;

k� ; i D p C s:

Similarly, we have

dim ExtiA.kA; AA/ D
´
0; i ¤ p C s;

1; i D p C s:

By Lemma 2.1, the algebra A is AS-regular of global dimension p C s.

Now we can give a necessary and sufficient condition for a pointed Hopf algebra
U.D ; �/ to be CY.

Theorem 2.3. Let .D ; �/ be a generic datum of finite Cartan type and A the Hopf
algebra U.D ; �/. Let s be the rank of � and p the number of the positive roots of
the Cartan matrix.

(a) The rigid dualizing complex of the Hopf algebra A D U.D ; �/ is  AŒp C s�,
where  is defined by  .xk/ D Qp

iD1;i¤jk
�ˇi

.gk/xk for all 1 6 k 6 � and

 .g/ D .
Qp
iD1 �ˇi

/.g/ for all g 2 � , where each jk , 1 6 k 6 � , is the integer such
that ǰk

D ˛k .
(b) The algebraA is CY if and only if

Qp
iD1 �ˇi

D " and �2A is an inner automor-
phism.
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Proof. (a) By [7], Proposition 4.5, and Theorem 2.2, the rigid dualizing complex of
A is isomorphic to Œ���2

A
AŒp C s�, where � is the algebra homomorphism defined in

Theorem 2.2. It is not difficult to see that

.Œ���2A/.g/ D .
Qp
iD1 �ˇi

/.g/

for all g 2 � . For 1 6 k 6 � , we have 	.xk/ D xk ˝ 1C gk ˝ xk and �2A.xk/ D
�k.g

�1
k
/xk . If jk is the integer such that ǰk

D ˛k , then �
ǰk
.gk/ D �k.gk/. So

.Œ���2A/.xk/ D �k.g
�1
k /Œ��.xk/

D �k.g
�1
k /

pQ
iD1

�ˇi
.gk/.xk/

D
pQ

iD1;i¤jk

�ˇi
.gk/.xk/:

(b) follows from Theorem 2.2 and [12], Theorem 2.3.

Remark 2.4. From Theorem 2.3, we can see that for a pointed Hopf algebraU.D ; �/,
it is CY if and only if its associated graded algebra U.D ; 0/ is CY.

Corollary 2.5. Assume that A D U.D ; �/. For every A-A-bimodule M , there are
isomorphisms

HHi .A;M/ Š HHpCs�i .A; �1M/; 0 6 i 6 p C s;

where  is the algebra automorphism defined in Theorem 2.3.

Proof. This follows from [7], Corollary 5.2, and Theorem 2.2.

3. Calabi–Yau Nichols algebras of finite Cartan type

As we noted in Remark 2.4, the CY property of U.D ; �/ is determined by the CY
property of U.D ; 0/, which is equal to the smash product B.V / # k� of the Nichols
algebra B.V / with the group algebra k� . It is natural to ask whether or not the
CY property of U.D ; 0/ depends on the CY property of B.V /. In this section, we
work out a criterion for the Nichols algebra B.V / to be Calabi–Yau, and answer the
question in Section 4. We fix a generic datum of finite Cartan type:

.D ; 0/ D .�; .aij /16i;j6� ; .qI /I2X ; .gi /16i6� ; .�i /16i6� ; 0/;

where � is a free abelian group of rank s. Let V be the generic braided vector space
with basis fx1; : : : ; x�g whose braiding is given by

c.xi ˝ xj / D qijxj ˝ xi
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for all 1 6 i; j 6 � , where qij D �j .gi /. Recall that the Nichols algebra B.V / is
generated by xi , 1 6 i 6 � , subject to the relations

adc.xi /
1�aij xj D 0; 1 6 i; j 6 �; i ¤ j;

where adc is the braided adjoint representation.
By [3], Theorem 4.3, the Nichols algebra B.V / is a subalgebra of U.D ; 0/, and

the monomials in root vectors

fxa1

ˇ1
: : : x

ap

ˇp
j ai > 0; 1 6 i 6 pg

form a PBW basis of the Nichols algebra B.V /. The degree (cf. (3)) of each PBW
basis element is defined by

deg.xa1

ˇ1
: : : x

ap

ˇp
/ D .a1; : : : ; ap;

P
aiht.ˇi // 2 .Z>0/pC1;

where ht.ˇi / is the height of ˇi .
The following result is a direct consequence of Lemma 1.4.

Lemma 3.1. In the Nichols algebra B.V /, for j > i , we have

Œxˇi
; x

ǰ
�c D P

a2Np


ax
a1

ˇ1
: : : x

ap

ˇp
;

where 
a 2 k and 
a ¤ 0 only when a D .a1; : : : ; ap/ satisfies ak D 0 for k 6 i

and k > j .

Order the PBW basis elements by degree as in (4). By Lemma 3.1, we obtain the
following corollary.

Corollary 3.2. The Nichols algebra B.V / is an NpC1-filtered algebra whose asso-
ciated graded algebra Gr B.V / is isomorphic to the algebra

khxˇ1
; : : : ; xˇp

j xˇi
x

ǰ
D �

ǰ
.gˇi

/x
ǰ
xˇi
; 1 6 i < j 6 pi;

where xˇ1
; : : : ; xˇp

are the root vectors of B.V /.

For elements fxa1

ˇ1
: : : x

ap

ˇp
g; where a1; : : : ; ap > 0, define

d0.x
a1

ˇ1
: : : x

ap

ˇp
/ D

pP
iD1

aiht.ˇi /:

ThenR D B.V / is a graded algebra with grading given by d0. LetR.0/ D R. Define
d1.x

a1

ˇ1
: : : x

ap

ˇp
/ D ap . We obtain an N-filtration on R.0/. Let R.1/ D GrR.0/ be the

associated graded algebra. In a similar way, we defined2.x
a1

ˇ1
: : : x

ap

ˇp
/ D ap�1 and let
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R.2/ D GrR.1/ be the associated graded algebra. Inductively, we obtain a sequence
of N-filtered algebras R.0/; : : : ; R.p/ such that R.i/ D GrR.i�1/ for 1 6 i 6 p and
R.p/ D Gr R.

The algebra Re has a PBW basis

fxa1

ˇ1
: : : x

ap

ˇp
˝ x

bp

ˇp
? � � � ? xb1

ˇ1
j a1; : : : ; ap; b1; : : : ; bp > 0g;

where “?” denotes the multiplication in Rop. Similarly, define a degree on each
element as

deg.xa1

ˇ1
: : : x

ap

ˇp
˝ x

bp

ˇp
? � � � ? xb1

ˇ1
/

D .a1 C b1; : : : ; ap C bp;
P
.ai C bi /htˇi / 2 .Z>0/.pC1/:

Then Re is an NpC1-filtered algebra whose associated graded algebra Gr .Re/ is
isomorphic to .Gr R/e.

In a similar way, we obtain a sequence of N-filtered algebras .Re/.0/; : : : ; .Re/.p/

such that .Re/.i/ D Gr..Re/.i�1// for 1 6 i 6 p and .Re/.p/ D Gr Re. In fact,
.Re/.i/ D .R.i//e for 0 6 i 6 p.

Lemma 3.3. Let R D B.V / be the Nichols algebra of V . Then the algebra Re is
Noetherian.

Proof. The sequence .Re/.0/; : : : ; .Re/.p/ is a sequence of algebras, each of which
is the associated graded algebra of the previous one with respect to an N-filtration.
The algebra .Re/.p/ is isomorphic to .Gr R/e, which is Noetherian. By [18], Theo-
rem 1.6.9, the algebra Re is Noetherian.

Lemma 3.4. The algebra R D B.V / is homologically smooth.

Proof. Since Re is Noetherian by Lemma 3.3 and R is a finitely generated Re-
module, it is sufficient to prove that the projective dimension projdim ReR is finite.
The filtration on each .R.i//e, 0 6 i 6 p � 1, is bounded below. In addition, from
the proof of the foregoing Lemma 3.3, each .R.i//e is Noetherian for 0 6 i 6 p.
Therefore, .R.i//e is a Zariskian algebra for each 0 6 i 6 p � 1. It is clear that each
R.i/, 1 6 i 6 p � 1, viewed as an .R.i//e-module has a good filtration. By [14],
Corollary 5.8, we have

projdimRe R D projdim.R.0//e R
.0/

6 projdim.R.1//e R
.1/

:::

6 projdim.R.p//e R
.p/ D projdim.Gr R/e Gr R:

The algebra Gr R is a quantum polynomial algebra of p variables. From the Koszul
bimodule complex of Gr R (cf. (8)), we obtain projdim.Gr R/e Gr R D p. Therefore,
projdimRe R 6 p and R is homologically smooth.
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Proposition 3.5. Let R D B.V / be the Nichols algebra of V .
(a) R is AS-regular of global dimension p.
(b) The rigid dualizing complex ofR in the graded sense is isomorphic to 'R.l/Œp�

for some integer l and some N-graded algebra automorphism ' of degree 0.
(c) The rigid dualizing complex in the ungraded sense is just 'RŒp�.

Proof. Let xˇ1
; : : : ; xˇp

be the root vectors. By Lemma 3.1, we can use a similar
argument to the proof of Lemma 2.1 to show that the algebra R is an iterated graded
Ore extension of kŒxˇ1

�. Indeed,

R Š kŒxˇ1
�Œxˇ2

I �2; ı2� : : : Œxˇp
I �p; ıp�;

where �j , 2 6 j 6 p, is an algebra automorphism such that �j .xˇi
/ is just a scalar

multiple of xˇi
for i < j , and ıj is a �j -derivation such that ıj .xˇi

/, i < j , is a linear
combination of monomials in xˇiC1

; : : : ; x
ǰ �1

. It is well known that AS-regularity
is preserved under graded Ore extension (see [30], Proposition 3.2, for instance). The
algebra kŒxˇ1

� is an AS-regular algebra of dimension 1, soR is an AS-regular algebra
of dimension p. Therefore, the rigid dualizing complex of R in the graded case is
isomorphic to 'R.l/Œp� for some graded algebra automorphism ' and some l 2 Z
[27]. By Lemma 3.3, Re is Noetherian. Thus the rigid dualizing complex 'R.l/Œp�

in the graded case implies the rigid dualizing complex 'RŒp� in the ungraded case.

We claim that the automorphism' in Proposition 3.5 is just a scalar multiplication.
We need some preparations to prove this claim.

If R is a �-module algebra, then the algebra Re is also a �-module algebra with
the natural action g.r ˝ s/ ´ g.r/˝ g.s/ for all g 2 � and r; s 2 R.

Lemma 3.6. Let R be a �-module algebra such that k� is the group of units of R.
Assume that U is an Re # k�-module and U Š R� for an algebra automorphism �,
as Re # k�-modules. Then

(a) the algebra automorphism � preserves the �-action;

(b) theRe # k�-module structures on U (up to isomorphism) are parameterized by
Hom.�;k/, the set of group homomorphisms from � to k�.

Proof. (a) Fix an isomorphism U Š R� . Let u 2 U be the element mapped to
1 2 R. Then U D Ru and we have g.ru/ D g.r/g.u/ for all r 2 R and g 2 � .
To determine the �-action on U , we only need to determine g.u/ for g 2 � . Since
g.u/ 2 U , there is some rg 2 R such that g.u/ D rgu. On the other hand, we have

U D g.U / D g.Ru/:

So there is some s 2 R, such that u D g.s/rgu. Since the element u forms an
R-basis of U , the element rg has a left inverse. Similarly, there is some s0 2 R such
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that u D rgug.s
0/. Since U Š R� as R-R-bimodules, we have

�.r/u D ur (10)

for any r 2 R. So u D rgug.s
0/ D rg�.g.s

0//u. Thus rg has a right inverse as
well. Consequently, rg is a unit in R and rg 2 k�. We have g.h.u// D .gh/.u/

for g; h 2 � , that is, rgh D rgrh. Therefore, the �-action on U defines a group
homomorphism from � to k�, denoted by � W � ! k�. Since U is an Re # k�-
module, we have g.rus/ D g.r/g.u/g.s/, for any r; s 2 R and g 2 � . To show that
� preserves the �-action, we compute g.�.r/.u//. On one hand, we have

g.�.r/u/ D g.ur/ D g.u/g.r/ D �.g/ug.r/
(10)D �.g/�.g.r//u:

On the other hand, we have

g.�.r/u/ D g.�.r//g.u/ D �.g/g.�.r//u:

So g.�.r// D �.g.r//. That is, the automorphism � preserves the �-action.
(b) In Part (a) we have shown that a �-action on U is determined by a group

homomorphism from � to k� such that U is an Re # k�-module.
Suppose there are two �-actions on U such that they are isomorphic. We write

these two actions as g�1.u/ D rgu and g�2.u/ D sgu. Denote by U1 and U2 the
�-modules with these two actions respectively. Let f W U1 ! U2 be an Re # k�-
module isomorphism. Then f .u/ D ru for some unit r 2 R. Since the set of units
of R is k�, we have r 2 k�. On one hand, we have

f .g�1.u// D f .rgu/ D rgru:

On the other hand, we also have

f .g�1.u// D g�2.f .u// D g�2.ru/ D rg�2.u/ D sgru:

Therefore, rg D sg , and (b) follows.

If U is an Re # k�-module, then we can define an .R # k�/e-module U # k� . It
is isomorphic to U ˝ � as vector space with bimodule structure given by

.r # h/.u˝ g/ ´ rh.u/˝ hg; .u˝ g/.r # h/ ´ ug.r/˝ gh

for any r # h 2 R # H and u˝ g 2 U ˝ � .

Lemma 3.7. Let R be a �-module algebra with k� being the group of units, and let
U be an Re # k�-module. Assume that U Š R� as Re # k�-modules, where � is an
algebra automorphism. If the �-action on U is defined by a group homomorphism
� W � ! k�, thenU #k� Š .R # k�/ as .R#k�/e-modules, where is the algebra
automorphism defined by  .r # g/ D �.g�1/�.r/ # g for any r # g 2 R # k� .



Calabi–Yau pointed Hopf algebras of finite Cartan type 1121

Proof. The homomorphism  defined in the lemma is clearly bijective. First we
check that it is an algebra homomorphism. For any r # g; s # h 2 R # k� , we have

 ..r # g/.s # h// D  .rg.s/ # gh/

D �.h�1g�1/�.rg.s// # gh

D �.h�1g�1/�.r/�.g.s// # gh

D �.h�1g�1/�.r/g.�.s// # gh

D .�.r/�.g�1/ # g/.�.s/�.h�1/ # h/

D  .r # g/ .s # h/:

The forth equation holds since � preserves the �-action by Lemma 3.6.
Next we show that U # k� Š .R # k�/ as .R # k�/e-modules. Fix an iso-

morphism U Š R� and let u 2 U be the element mapped to 1 2 R. We define a
homomorphism ˆ W U # k� ! .R # k�/ by ˆ.ru˝ g/ D �.g�1/r # g. It is easy
to see that ˆ is an isomorphism of left R # k�-modules. Now we show that it is a
right R # k�-module homomorphism. Indeed, we have

ˆ.u.r # g// D ˆ.ur ˝ g/

D ˆ.�.r/u˝ g/

D �.g�1/�.r/ # g

D ˆ.u/ .r # g/

D ˆ.u/ � .r # g/:

Now we can prove the following lemma.

Lemma 3.8. Keep the notations as in Proposition 3.5. The actions of ' on generators
x1; : : : ; x� are just scalar multiplications.

Proof. By Proposition 3.5 and Lemma 1.8, we have R-R-bimodule isomorphisms

ExtiRe.R;R
e/ Š

´
0; i ¤ p;

R' ; i D p:

The group � is a free abelian group of rank s, so the algebra k� is a CY algebra
of dimension s. Following from [10], Section 2, R' is an Re # k�-module and there
are .R # k�/e-bimodule isomorphisms

Exti.R#k�/e.R # k�; .R # k�/e/ Š
´
0; i ¤ p C s;

.R'/ # k�; i D p C s:

For the sake of completeness, we sketch the proof here. By Lemma 3.4, R is homo-
logically smooth. That is, R has a bimodule projective resolution

0 ! Pq ! � � � ! P1 ! P0 ! R ! 0; (11)
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with each Pi being finitely generated as an R-R-bimodule.
Ext�

Re.R;Re/ are the cohomologies of the complex HomRe.P�; Re/. The algebra
Re is an Re # k�-module defined by

..c ˝ d/ # g/ � .a˝ b/ D g.a/d ˝ cg.b/

for any a ˝ b 2 Re and .c ˝ d/ # g 2 Re # k� . Then each HomRe.Pi ; R
e/ is an

Re # k�-module as well,

Œ..c ˝ d/ # g/ � f �.x/ D ..c ˝ d/ # g/ � f .x/; (12)

where .c˝d/#g 2 Re #k� , f 2 HomRe.Pi ; R
e/ and x 2 Pi . Now HomRe.P�; Re/

is a complex of left Re # k�-modules. Thus we obtain that ExtpRe.R;R
e/ Š R' is

an Re # k�-module.
LetA D R#k� . Observe thatAe is anRe#k�-Ae-bimodule. The left k�-module

action is defined by

g � .a # h˝ b # k/ D g.a/gh˝ b # kg�1

for any a # h ˝ b # k 2 Ae and g 2 � . The left Re-action and right Ae-action are
given by multiplication. Let W be the vector space k� ˝ k� . Then Re ˝W is also
an Re # k�-Ae-bimodule defined by

..c ˝ d/ # g/ � .a˝ b ˝ h˝ k/ D cg.a/˝ g.b/d ˝ gh˝ kg�1

and

.a˝ b ˝ h˝ k/ � .c # h0 ˝ d # k0/ D ah.c/˝ ..k�1k0�1/d/b ˝ hh0 ˝ k0k:

It is not difficult to see that the morphism f W Ae ! Re ˝W defined by

f .a # h˝ b # k/ D a˝ k�1.b/˝ h˝ k

is an isomorphism of Re # k�-Ae-bimodules.
Let P be a finitely generated projective Re-module. The k�-Ae-bimodule struc-

ture of Re ˝ W induces a k�-Ae-bimodule structure on HomRe.P;Re ˝ W /. We
define a k�-Ae-bimodule structure on HomRe.P;Re/˝W by

g � .f ˝ h˝ k/ D g � f ˝ gh˝ kg�1

and

.f ˝ h˝ k/ � .c # h0 ˝ d # k0/ D .h.c/˝ .k�1k0�1/d/ � f ˝ hh0 ˝ k0k;

where the Re # k�-module structure on HomRe.P;Re/ is defined in (12). Now
the canonical isomorphism from HomRe.P;Re/ ˝ W to HomRe.P;Re ˝ W / is a
k�-Ae-bimodule isomorphism.

Since R admits a resolution like (11) with each Pi finitely generated, we have

ExtiRe.R;R
e ˝W / Š ExtiRe.R;R

e/˝W
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as k�-Ae-bimodules for all i > 0. On the other hand, we have Stefan’s spectral
sequence [23]:

Extmk�.k;ExtnRe.R;A
e// ) ExtmCn

Ae .A;Ae/:

Thus for m; n > 0 we have

Extmk�.k;ExtnRe.R;A
e// Š Extmk�.k;ExtnRe.R;R

e ˝W //

Š Extmk�.k;ExtnRe.R;R
e/˝W /:

Hence, Extmk�.k;ExtnRe.R;Ae// D 0 except that m D s and n D p. Therefore,

Exti.R#k�/e.R # k�; .R # k�/e/ D 0

for i ¤ p C s and

ExtpCs
Ae .A;Ae/ Š Extsk�.k;ExtpRe.R;A

e//:

Let M be a left k�-module. One can consider it as a k�-k�-bimodule M" with
the trivial right k�-module action. The algebra k� is a CY algebra of dimension s.
From Van den Bergh’s duality theorem ([22], Theorem 1) we obtain the following
isomorphisms:

Extsk�.k;M/ Š HHs.k�;M"/ Š HH0.k�;M"/ Š Tork�
0 .k;M/:

Now we have the following isomorphisms of right Ae-modules:

ExtpCs
Ae .A;Ae/ Š Extsk�.k;ExtpRe.R;A

e//

Š Extsk�.k;ExtpRe.R;R
e/˝W /

Š Extsk�.k; R' ˝W /

Š Tork�
0 .k; R' ˝W /

Š k ˝k� R' ˝W:

If we look at the k�-Ae-bimodule structure on R' ˝W carefully, we obtain

k ˝k� R' ˝W Š R' # k�

as right Ae-modules.
Since the connected graded algebra R is a domain by Lemma 1.3, the group of

units of R is k�. Following Lemma 3.6 and 3.7, we have .R'/ # k� Š .R # k�/ x ,

where x is the algebra automorphism defined by x .r # g/ D '.r/�.g�1/ for some
algebra homomorphism � W � ! k.

On the other hand, since A D R # k� Š U.D ; 0/, we have A-A-bimodule
isomorphisms

ExtiAe.A;A
e/ Š

´
0; i ¤ p C s;

A ; i D p C s;
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where  is the algebra automorphism defined in Theorem 2.3.
Therefore, we obtain an A-A-bimodule isomorphism A x Š A : That is, x and

 differ only by an inner automorphism. By Lemma 1.3, the graded algebra A is a
domain; and the invertible elements of A are in k� . The actions of  and the group
actions on generators x1; : : : ; x� are just scalar multiplications. Thus the actions of x 
on x1; : : : ; x� are also scalar multiplications. Since x .xi / D '.xi / for all 1 6 i 6 � ,
we obtain the desired result.

Now we are ready to prove the main theorem of this section.

Theorem 3.9. Let V be a generic braided vector space of finite Cartan type, and
R D B.V / the Nichols algebra of V . Let p be the number of the positive roots of
the Cartan matrix. For each 1 6 k 6 � , let jk be the integer such that ǰk

D ˛k .

(a) The rigid dualizing complex is isomorphic to 'RŒp�, where ' is the algebra
automorphism defined by

'.xk/ D .
jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk//xk

for all 1 6 k 6 � .

(b) The algebra R is a CY algebra if and only if

jk�1Q
iD1

�k.gˇi
/ D

pQ
iDjkC1

�ˇi
.gk/

for all 1 6 k 6 � .

Proof. (a) Note that Gr R is isomorphic to the following quantum polynomial alge-
bra:

khxˇ1
; : : : ; xˇp

j xˇi
x

ǰ
D �

ǰ
.gˇi

/x
ǰ
xˇi
; 1 6 i < j 6 pi:

By [21], Proposition 8.2 and Theorem 9.2, Gr R has a rigid dualizing complex
N� Gr RŒp�.Š Gr R N��1 Œp�), where N� is defined by

N�.xˇk
/ D ��1

ˇk
.gˇ1

/ : : : ��1
k .gˇk�1

/�ˇkC1
.gˇk

/ : : : �ˇp
.gˇk

/xˇk

for all 1 6 k 6 p.
On the other hand, it follows from Proposition 3.5 and Lemma 3.8 that R has a

rigid dualizing complex 'R, where ' is an algebra automorphism such that for each
1 6 k 6 � , '.xk/ is a scalar multiple of xk . Assume that '.xk/ D lkxk , with lk 2 k.

Let R.0/; : : : ; R.p/ be the sequence of algebras defined after Corollary 3.2. By
Lemma 3.1, and applying a similar argument to the one in the proof of Proposition 3.5,
we obtain that each R.i/, 0 6 i 6 p, is an iterated Ore extension of the polynomial
algebra kŒx�. Thus each of them is AS-regular. It follows from [28], Proposition 1.1,
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that each R.i/, 1 6 i 6 p, has a rigid dualizing complex '.i/.R.i//Œp�, where
'.i/ D Gr '.i�1/ and '.0/ D '. Since for each 1 6 k 6 � , '.xk/ D lkxk , we
have '.p/.xk/ D lkxk . Because R.p/ D Gr R, there is a bimodule isomorphism

'.p/.R.p// Š N� .Gr R/. We obtain '.p/ D N�, as R is connected. Therefore, for each
1 6 k 6 � ,

lkxk D N�.xk/ D .
jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk//xk;

where jk is the integer such that ǰk
D ˛k .

Now we can conclude that '.xk/ D .
Qjk�1
iD1 ��1

k
.gˇi

//.
Qp
iDjkC1 �ˇi

.gk//xk;

for each 1 6 k 6 � .
(b) The algebra R is homologically smooth by Lemma 3.4. It follows from

Corollary 1.9 that R is CY if and only if R Š 'R as bimodules. That is, R is CY if
and only if ' D id. Hence (b) follows from (a).

Example 3.10. Let .D ; �/ D .�; .aij /; .qI /; .gi /; .�i /; 0/ be a generic datum such
that the Cartan matrix is of type A2. This defines a braided vector space V . Let
fx1; x2g be a basis of V . The braiding of V is given by

c.xi ˝ xj / D �j .gi /xj ˝ xi ; i; j D 1; 2:

The Nichols algebraR D B.V / ofV is generated byx1 andx2 subject to the relations

x21x2 � q12x1x2x1 � q11q12x1x2x1 C q11q
2
12x2x

2
1 D 0;

x22x1 � q21x2x1x2 � q22q21x2x1x2 C q22q
2
21x1x

2
2 D 0;

where qij D �j .gi /. The element s1s2s1 is the longest element in the Weyl group
W . Let ˛1 and ˛2 be the two simple roots. Then the positive roots are

ˇ1 D ˛1; ˇ2 D ˛1 C ˛2; ˇ3 D ˛2:

By Theorem 3.9, the algebra R is CY if and only if

�ˇ2
.g1/�ˇ3

.g1/ D .�1�
2
2/.g1/ D 1

and

�2.gˇ1
/�2.gˇ2

/ D �2.g
2
1g2/ D 1:

That is, q11q212 D q22q
2
12 D 1. By equation (2), we have q�1

11 D q�1
22 D q12q21:

Now we conclude that the algebra R is CY if and only if there is some q 2 k�,
which is not a root of unity and satisfies the following relations

q11 D q22 D q2 and q12 D q21 D q�1:

In other words, the braiding is of DJ-type. Then the algebra R is an AS-regular
algebra of type A (see [4] for terminology). This coincides with Proposition 5.4 in
[5].
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Example 3.11. Let R be a Nichols algebra of type B2. That is, R is generated by x1
and x2 subject to the relations

x31x2 � q12x21x2x1 � q11q12x21x2x1 C q11q
2
12x1x2x

2
1

�q211q12.x21x2x1 � q12x1x2x21 � q11q12x1x2x21 C q11q
2
12x2x

3
1/ D 0

and

x22x1 � q21x2x1x2 � q22q21x2x1x2 C q22q
2
21x1x

2
2 D 0;

where qij 2 k for 1 6 i; j 6 2 and q12q21 D q�2
11 D q�1

22 . Applying a similar
argument, we obtain that R is CY if and only if there is some q 2 k�, which is not a
root of unity and satisfies

q11 D q; q12 D q�1; q21 D q�1 and q22 D q2:

4. Relation between the Calabi–Yau property of pointed Hopf algebras
and Nichols algebras

We keep the notations as in the previous section. Let .D ; �/ be a generic datum of
finite Cartan type. In this section, we discuss the relation between the CY property
of the algebra U.D ; �/ and that of the corresponding Nichols algebra B.V /. It turns
out that if one of them is CY, then the other one is not.

Lemma 4.1. For each 1 6 k 6 � , we have

pQ
iD1;i¤jk

�ˇi
.gk/ D .

jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk//:

Proof. Let!0 D si1 : : : sip be the fixed reduced decomposition of the longest element
!0 in the Weyl group. It is clear that !�1

0 is also of maximal length. By Lemma 3.11
in [13], for each 1 6 k 6 � , there exists 1 6 t 6 p such that

sksi1 : : : sit�1
D si1 : : : sit :

That is, !0 D sksi1 : : : sit�1
sitC1

: : : sip . Set

ˇ0
1 D ˛k; ˇ

0
2 D sk.˛i1/; : : : ; ˇ

0
p D sksi1 : : : sit�1

sitC1
: : : sip�1

.˛ip /:

Applying a similar argument to the one in the proof of Theorem 3.9, we conclude that
the rigid dualizing complex of the algebra R D B.V / is isomorphic to '0RŒp�. The
algebra automorphism '0 is defined by

'0.xl/ D .
j 0

l
�1Q
iD1

��1
l
.gˇ 0

i
//.

pQ
iDj 0

l
C1
�ˇ 0

i
.gl//xl
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for each 1 6 l 6 � , where j 0
l
, 1 6 l 6 � , are the integers such that ˇ0

j 0
l

D ˛l . In

particular, we have

'0.xk/ D .
pQ
iD2

�ˇ 0
i
.gk//xk :

The rigid dualizing complex is unique up to isomorphism, so '0R Š 'R as R-R-
bimodules, where ' is the algebra automorphism defined in Theorem 3.9. Since the
graded algebra R is connected, we have '0 D '. In particular, '0.xk/ D '.xk/, that
is,

pQ
iD2

�ˇ 0
i
.gk/ D .

Qjk�1
iD1 ��1

k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk//:

Both ˇ1; : : : ; p̌ and ˇ0
1; : : : ; ˇ

0
p are enumerations of positive roots. We have ˛k D

ˇ0
1 D ǰk

. Therefore,

pQ
iD2

�ˇ 0
i
.gk/ D

pQ
iD1;i¤jk

�ˇi
.gk/:

It follows that

.
jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk// D
pQ

iD1;i¤jk

�ˇi
.gk/:

Proposition 4.2. If A D U.D ; �/ is a CY algebra, then the rigid dualizing complex
of the Nichols algebra R D B.V / is isomorphic to 'RŒp�, where ' is defined by
'.xk/ D ��1

k
.gk/xk , for all 1 6 k 6 � .

Proof. By Theorem 3.9, the rigid dualizing complex of R is isomorphic to 'RŒp�,
where ' is defined by

'.xk/ D .
jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk//xk

for all 1 6 k 6 � . If A is a CY algebra, then
Qp
iD1 �ˇi

D " by Theorem 2.3.
Therefore, for 1 6 k 6 � ,

.
jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk// D
pQ

iD1;i¤jk

�ˇi
.gk/ D ��1

k
.gk/;

where the first equation follows from Lemma 4.1. Now '.xk/ D ��1
k
.gk/xk for all

1 6 k 6 � .

Note that �k.gk/ ¤ 1 for all 1 6 k 6 � . So the algebra R D B.V / is not CY if
A D U.D ; �/ is a CY algebra.
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Proposition 4.3. If the Nichols algebra R D B.V / is a CY algebra, then the rigid
dualizing complex of A D U.D ; �/ is isomorphic to  AŒp C s�, where  is defined
by  .xk/ D xk for all 1 6 k 6 � and  .g/ D Qp

iD1 �ˇi
.g/ for all g 2 � .

Proof. If the Nichols algebraR is CY, then by Theorem 3.9 and Lemma 4.1 we have

pQ
iD1;i¤jk

�ˇi
.gk/ D .

jk�1Q
iD1

��1
k
.gˇi

//.
pQ

iDjkC1
�ˇi

.gk// D 1

for each 1 6 k 6 � . Now the statement follows from Theorem 2.3.

With the assumption of Proposition 4.3, for all 1 6 k 6 � , we have

 .gk/ D
pQ
iD1

�ˇi
.gk/ D �k.gk/gk ¤ gk :

Since the invertible elements of A are in k� and � is an abelian group,  cannot be
an inner automorphism. So the algebra A is not CY.

Example4.4. LetR be the algebra in Example 3.10. Assume that� D hy1; y2i Š Z2

and gi D yi , i D 1; 2. The characters �1 and �2 are given by the following table.

y1 y2

�1 q2 q�1

�2 q�1 q2

Here q is not a root of unity.
The algebra R is a CY algebra. But the algebra A D R # k� is not. The rigid

dualizing complex of A is isomorphic to  AŒ5�, where  is defined by  .xi / D xi
and  .yi / D q2yi for i D 1; 2.

Example 4.5. Let A be an algebra with generators y˙1
1 , y˙1

2 , x1 and x2 subject to
the relations

y˙1
h y�1

h
D 1; 1 6 h;m 6 2;

y1x1 D qx1y1; y1x2 D q�1x2y1;

y2x1 D q
k
l x1y2; y2x2 D q� k

l x2y2;

x1x2 � q�kx2x1 D 1 � yk1yl2;
where k; l 2 ZC and q 2 k is not a root of unity.

By Theorem 2.3, the algebra A is a CY algebra of dimension 4. Let R be the
corresponding Nichols algebra ofA. The rigid dualizing complex ofR is isomorphic
to 'RŒ2�, where ' is defined by '.x1/ D q�kx1 and '.x2/ D qkx2.
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5. Classification of Calabi–Yau pointed Hopf algebra U.D; �/ of lower dimen-
sions

In this section we assume that k D C. We shall classify CY pointed Hopf algebras
U.D ; �/ of dimension less than 5, where .D ; �/ is a generic datum of finite Cartan
type. In a generic datum .�; .aij /; .qI /; .gi /; .�i /; .�ij // of finite Cartan type, .qI /
are determined by .�i / and .gi /. In the following, we will omit .qI / for simplicity.

Let .D ; �/ D .�; .aij /; .gi /; .�i /; .�ij // be a generic datum of finite Cartan type.
Then �i .gi / are not roots of unity for 1 6 i 6 � . Hence, in the classification, we
exclude the case where the group is trivial. If the group � in a datum .D ; �/ D
.�; .aij /; .gi /; .�i /; .�ij // is trivial, then the algebra U.D ; 0/ (in this case, U.D ; 0/

has no non-trivial lifting) is the universal enveloping algebra U.g/, where the Lie
algebra g is generated by xi , 1 6 i 6 � , subject to the relations

.ad xi /
1�aij xj D 0; 1 6 i; j 6 �; i ¤ j:

We have tr.ad x/ D 0 for all x 2 g. Therefore, U.g/ is CY by [12], Lemma 4.1. We
list those of dimension less than 5 in the following table.

CY Lie algebra

Case dimension Cartan matrix basis relations

1 1 A1 x

2 2 A1 � A1 x, y abelian Lie algebra

3 3 A1 � A1 � A1 x, y, z abelian Lie algebra

4 3 A2 x, y, z Œx; y� D z, Œx; z� D Œy; z� D 0

5 4 A1 � � � � � A1 x, y, z, w abelian Lie algebra

6 4 A1 � A2 x, y, z, w
Œx; y� D z, Œx; z� D Œy; z� D 0,
Œx; w� D Œy; w� D Œz; w� D 0

7 4 B2 x, y, z, w
Œx; y� D z, Œx; z� D w,
Œx; w� D Œy; z� D Œy; w� D Œz; w� D 0

Remark 5.1. The Lie algebra in case 4 is the Heisenberg algebra. In [12], the authors
classified those 3-dimensional Lie algebras whose universal enveloping algebras are
CY algebras. Beside the algebras in case 3 and case 4, the other two Lie algebras are

� The 3-dimensional simple Lie algebra sl2;

� The Lie algebra g, where g has a basis fx; y; zg such that Œx; y� D y, Œx; z� D �z
and Œy; z� D 0.

Now let

.D ; �/ D .�; .aij /16i;j6� ; .gi /16i6� ; .�i /16i6� ; .�ij /16i<j6�;iœj /
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and

.D 0; �0/ D .� 0; .a0
ij /16i;j6� 0 ; .g0

i /16i6� 0;; .�
0
i /16i6� 0 ; .�0

ij /16i<j6� 0;iœj /

be two generic data of finite Cartan type for groups � and � 0, where � and � 0 are
both free abelian groups of finite rank.

The data .D ; �/ and .D 0; �0/ are said to be isomorphic if � D � 0 and if there exist
a group isomorphism ' W � ! � 0, a permutation 
 2 S� , and elements 0 ¤ ˛i 2 k
for all 1 6 i 6 � subject to the relations

'.gi / D g0
	.i/ for all 1 6 i 6 �;

�i D �0
	.i/' for all 1 6 i 6 �;

�ij D
´
˛i j̨�

0
	.i/	.j /

if 
.i/ < 
.j /;

�˛i j̨�j .gi /�
0
	.j /	.i/

if 
.i/ > 
.j /;

for all 1 6 i < j 6 � and i œ j . In this case the triple .'; 
; .˛i // is called an
isomorphism from .D ; �/ to .D 0; �0/.

If .D ; �/ and .D 0; �/ are isomorphic, then we can deduce that aij D a0
	.i/	.j /

for all 1 6 i; j 6 � [3].
The following corollary can be immediately obtained from the definition of iso-

morphic data.

Corollary 5.2. Suppose that .D ; 0/ is a generic datum of finite Cartan type formed
by .�; .aij /; .gi /; .�i /; 0/. Assume that ' W � ! � 0 is a group isomorphism and 
 is
a permutation in S� . Then .D ; 0/ is isomorphic to .D 0; 0/, where D 0 is formed by
.� 0; .a	�1.i/	�1.j //; .'.g	�1.i///; .�	�1.i/'

�1//.

Let .D ; �/ be a generic datum of finite Cartan type. By [3], the pointed Hopf alge-
braU.D ; �/ is uniquely determined by the datum .D ; �/. Let Isom..D ; �/; .D 0; �0//
be the set of all isomorphisms from .D ; �/ to .D 0; �0/. For A, B two Hopf algebras,
we denote by Isom.A;B/ the set of all Hopf algebra isomorphisms from A to B .

Lemma 5.3 ([3], Theorem 4.5). Let .D ; �/ and .D 0; �0/ be two generic data of
finite Cartan type. Then the Hopf algebras U.D ; �/ and U.D 0; �0/ are isomor-
phic if and only if .D ; �/ is isomorphic to .D 0; �0/. More precisely, let x1; : : : ; x�
(resp. x0

1; : : : ; x
0
�
) be the simple root vectors in U.D ; �/ (resp. U.D 0; �0/), and let

g1; : : : ; g� (resp. g0
1; : : : ; g

0
�
) be the group-like elements in D (resp. D 0). Then the

map
Isom.U.D ; �/; U.D 0; �0// ! Isom..D ; �/; .D 0; �0//;

given by � 7! .'; 
; .˛i // where '.g/ D �.g/, '.gi / D g0
	.i/

, �.xi / D ˛ix
0
	.i/

for
all g 2 � , 1 6 i 6 � , is bijective.

The following lemma is well known.



Calabi–Yau pointed Hopf algebras of finite Cartan type 1131

Lemma 5.4. If � is a free abelian group of rank s, then the algebra k� is a CY
algebra of dimension s.

If � is a free abelian group of finite rank, we denote by j�j the rank of � .

Proposition 5.5. Let A be the algebra U.D ; �/, where .D ; �/ is a generic datum of
finite Cartan type for a group � . Then

(a) A is CY of dimension 1 if and only if A D kZ,

(b) A is CY of dimension 2 if and only if A D k� , where � is a free abelian group
of rank 2.

Proof. (a) is clear.
(b) It is sufficient to show that if A is CY of dimension 2, then A is the group

algebra of a free abelian group of rank 2. By Theorem 2.2, if the global dimension
of A is 2. Then the following possibilities arise:

(i) j�j D 2, A D k� is the group algebra of a free abelian group of rank 2;

(ii) j�j D 1 and the Cartan matrix of A is of type A1.

Let A be a pointed Hopf algebra of type (ii) and let the datum

.D ; �/ D .�; .gi /; .�i /; .aij /; .�ij //

be as follows:

� � D hy1i Š Z;

� g1 D yk1 for some k 2 Z;

� �1 2 b� is defined by �1.y1/ D q, where q is not a root of unity;

� the Cartan matrix is of type A1;

� � D 0.

Observe that in this case, the linking parameter must be 0. In addition, there is only
one root vector, that is, the simple root vector x1. Since q ¤ 1, we have �1 ¤ ". So
the algebra A is not CY by Theorem 2.3.

Therefore, if A is CY, then A is of type (i). Hence, the classification is complete.

Proposition 5.6. Let A be the algebra U.D ; �/, where .D ; �/ is a generic datum of
finite Cartan type for a group � . If A is CY of dimension 3, then the group � and the
Cartan matrix .aij / are given by one of the following two cases.

Case j�j Cartan matrix

1 3 trivial

2 1 A1 � A1
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The non-isomorphic classes of CY algebras in each case are given as follows.

Case 1: The group algebra of a free abelian group of rank 3.

Case 2: (I) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given
as follows:

� � D hy1i Š Z;

� g1 D g2 D yk1 for some k 2 ZC;

� �1.y1/ D q, where q 2 k is not a root of unity and 0 < jqj < 1, and �2 D ��1
1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 0.

(II) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given as
follows:

� � D hy1i Š Z;

� g1 D g2 D yk1 for some k 2 ZC;

� �1.y1/ D q, where q 2 k is not a root of unity and 0 < jqj < 1, and �2 D ��1
1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 1.

Proof. By Remark 2.4, it is sufficient to discuss the graded case and consider the
non-trivial liftings. We first show that the algebras listed in the proposition are all
CY. Case 1 follows from Lemma 5.4. Now we discuss case 2. The root system of the
Cartan matrix of type A1 � A1 has two simple roots, say ˛1 and ˛2. They are also
the positive roots. First we have �1�2 D ". Since �2A.xi / D �i .g

�1
i /xi , i D 1; 2,

g1 D g2 D yk1 , we have �2A.xi / D y1
�kxiy1k for i D 1; 2. It is easy to see that

�2A.y1/ D y1. It follows that �2A is an inner automorphism. Thus the algebras in
case 2 are CY by Theorem 2.3.

Now we show that the classification is complete.
If A is of global dimension 3, then the following possibilities for the group � and

the Cartan matrix .aij / arise:

(i) j�j D 3, A is the group algebra of a free abelian group of rank 3.

(ii) j�j D 2 and the Cartan matrix of A is of type A1.

(iii) j�j D 1 and the Cartan matrix of A is of type A1 � A1.

Similar to the case of global dimension 2, A cannot be CY if A is of type (ii).
Now letA be a CY graded algebra of type (iii). Then we have �2.g1/�1.g2/ D 1

(cf. equation (1)). In addition, we have �1�2 D " by Theorem 2.3. It follows that
1 D �2.g1/�1.g2/ D ��1

1 .g1/�1.g2/. Let � D hy1i and assume that g1 D yk1 ,
g2 D yl1 for some k; l 2 Z. Then �1.yl�k1 / D 1. Since �1.y1/ is not a root of unity,
we have k D l , that is, g1 D g2 D yk1 . Therefore, A Š U.D ; 0/, where the datum
D is given by
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� � D hy1i Š Z;

� g1 D g2 D yk1 , for some k 2 Z;

� �1.y1/ D q, where q 2 k is not a root of unity, and �2 D ��1
1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1.

Let D 0 be another datum given by

� � 0 D hy0
1i Š Z;

� g0
1 D g0

2 D y0k0

1 for some k0 2 Z;

� �0
1.y

0
1/ D q0, where q0 2 k is not a root of unity, and �0

2 D �0�1
1 ;

� .a0
ij /16i;j62 is the Cartan matrix of type A1 � A1.

Assume that .D 0; 0/ is isomorphic to .D ; 0/ via an isomorphism .'; 
; .˛i //. Then
' is a group automorphism such that '.y1/ D y0

1 or '.y1/ D y0�1
1 . Since 
 2 S2,

we have 
 D id or 
 D .12/. From an easy computation, there are four possibilities
for k0 and q0:

� k0 D k and q0 D q;

� k0 D �k and q0 D q;

� k0 D k and q0 D q�1;

� k0 D �k and q0 D q�1.

This shows thatA D U.D ; 0/ is isomorphic to an algebra in (I) of case 2. In addition,
every pair .k; q/ 2 ZC�k such that 0 < jqj < 1 determines a non-isomorphic algebra
in (I) of case 2. Each algebra in (I) of case 2 has only one non-trivial lifting which is
isomorphic to an algebra in (II).

Thus we have completed the classification.

We list all CY Hopf algebras U.D ; �/ of dimension 3 in terms of generators and
relations in the following table. Note that in each case q is not a root of unity.

CY algebras of dimension 3

Case Generators Relations

Case 1 yh, y�1
h

, 1 6 h 6 3
y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 3

Case 2 (I) y˙1
1 , x1, x2

y1y
�1
1 D y�1

1 y1 D 1, y1x1 D qx1y1,
y1x2 D q�1x2y1, 0 < jqj < 1,
x1x2 � q�kx2x1 D 0, k 2 ZC

Case 2 (II) y˙1
1 , x1, x2

y1y
�1
1 D y�1

1 y1 D 1, y1x1 D qx1y1,
y1x2 D q�1x2y1, 0 < jqj < 1,
x1x2� q�kx2x1 D .1�y2k1 /, k 2 ZC
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Proposition 5.7. Let A be the algebra U.D ; �/, where .D ; �/ is a generic datum of
finite Cartan type for a group � . If A is CY of dimension 4, then the group � and the
Cartan matrix .aij / are given by one of the following two cases.

Case j�j Cartan matrix

1 4 trivial

2 2 A1 � A1
In each case the non-isomorphic classes of CY algebras are given as follows.

Case 1: The group algebra of a free abelian group of rank 4.

Case 2: (I) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given
by

� � D hy1; y2i Š Z2;

� g1 D g2 D yk1 for some k 2 ZC;

� �1.y1/ D q1, �1.y2/ D q2, where q1; q2 2 k with 0 < jq1j < 1 and q1 is not
a root of unity, �2 D ��1

1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 0.

(II) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given by

� � D hy1; y2i Š Z2;

� g1 D g2 D yk1 for some k 2 ZC;

� �1.y1/ D q1, �1.y2/ D q2, where q1; q2 2 k with 0 < jq1j < 1 and q1 is not
a root of unity, �2 D ��1

1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 1.

LetA and B be two algebras in case (I) (or (II)) defined by triples .k; q1; q2/ and
.k0; q0

1; q
0
2/ respectively. They are isomorphic if and only if k D k0, q1 D q0

1 and
there is some integer b such that q0

2 D qb1q2 or q0
2 D qb1q

�1
2 .

(III) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given by

� � D hy1; y2i Š Z2;

� g1 D yk1 , g2 D yl2 for some k; l 2 ZC;

� �1.y1/ D q, �1.y2/ D q
k
l , where q 2 k is not a root of unity and 0 < jqj < 1,

�2 D ��1
1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 0.

(IV) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given by
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� � D hy1; y2i Š Z2;

� g1 D yk1 , g2 D yl2 for some k; l 2 ZC;

� �1.y1/ D q, �1.y2/ D q
k
l , where q 2 k is not a root of unity and 0 < jqj < 1,

�2 D ��1
1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 1.

(V) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given by

� � D hy1; y2i Š Z2;

� g1 D yk1 , g2 D y
l1
1 y

l2
2 for some k; l1; l2 2 ZC, k ¤ l1, 0 < l1 < l2;

� �1.y1/ D q, �1.y2/ D q
k�l1

l2 , where q 2 k is not a root of unity and 0 < jqj <
1, �2 D ��1

1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 0.

(VI) The datum .D ; �/ D .�; .g1; g2/; .�1; �2/; .aij /16i;j62; �12/ is given by

� � D hy1; y2i Š Z2;

� g1 D yk1 , g2 D y
l1
1 y

l2
2 for some k; l1; l2 2 ZC, k ¤ l1 and 0 < l1 < l2;

� �1.y1/ D q, �1.y2/ D q
k�l1

l2 , where q 2 k is not a root of unity and 0 < jqj <
1, �2 D ��1

1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1;

� �12 D 1.

Proof. We first show that the algebras listed in the proposition are all CY. That the
algebra in case 1 is a CY algebra follows from Lemma 5.4. In case 2, we have
�1�2 D " and �2A is an inner automorphism in each subcase. Indeed, �2A.xi / D
g�1
1 xig1 and �2A.yi / D g�1

1 yig1 D yi , i D 1; 2. Thus the algebras in case 2 are CY
by Theorem 2.3.

Now we show that the classification is complete and the algebras on the list are
non-isomorphic to each other.

If A is of global dimension 4, then the group � and the Cartan matrix .aij / must
be one of the following types:

(i) j�j D 4 and A is the group algebra of a free abelian group of rank 4.

(ii) j�j D 3 and the Cartan matrix of A is of type A1.

(iii) j�j D 2 and the Cartan matrix of A is of type A1 � A1.

(iv) j�j D 1 and the Cartan matrix of A is of type A1 � A1 � A1.
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(v) j�j D 1 and the Cartan matrix of A is of type A2.

Let A be a CY algebra of dimension 4. Similar to the case of global dimension 2,
A cannot be of type (ii). We claim that A cannot be of type (iv) and (v) either.

Assume thatA is of type (iv), put � D hy1i, gi D y
mi

1 for some 0 ¤ mi 2 Z and
�i .y1/ D qi for some qi 2 k, 1 6 i 6 3. Then qij D q

mi

j for 1 6 i; j 6 3. Because
each qi i is not a root of unity, each qi is not a root of unity either. Since qij qj i D 1,
we have

q
m2

1 q
m1

2 D 1; q
m3

1 q
m1

3 D 1; q
m3

2 q
m2

3 D 1:

Then q2m2m3

1 D 1. But q1 is not a root of unity. So A cannot be of type (iv).
In the case of type (v), there are three positive roots in the root system. They are

˛1, ˛2 and ˛1C˛2, where ˛1 and ˛2 are the simple roots. IfA is CY, then �21�
2
2 D "

by Theorem 2.3. So we have q211q
2
21 D 1 and q212q

2
22 D 1. However, q21q12 D q�1

11

(equation (2)). Thus q222 D 1. But q22 is not a root of unity. So A cannot be of type
(v) either.

Now to show that the classification is complete, we only need to show that if A
is a CY pointed Hopf algebra of type (iii), then A is isomorphic to an algebra in
case 2. Each algebra in (I), (III) and (V) of case 2 has only one non-trivial lifting,
which is isomorphic to an algebra in (II), (IV) and (VI) respectively. By Remark 2.4,
it suffices to show that if A is a graded CY pointed Hopf algebra of type (iii), then A
is isomorphic to an algebra in (I), (III) and (V) of case 2.

Let � D hy1; y2i be a free abelian group of rank 2. We write �1.y1/ D q1,
�1.y2/ D q2 and g1 D y

k1

1 y
k2

2 , g2 D y
l1
1 y

l2
2 , where �1.g1/ D q

k1

1 q
k2

2 is not a root
of unity, and k1; k2; l1; l2 2 Z. Following Theorem 2.3, we have �1�2 D ". So
q21 D q

l1
1 q

l2
2 and q12 D q

�k1

1 q
�k2

2 . We also have q12q21 D 1 (equation (2)). Thus

q
l1�k1

1 q
l2�k2

2 D 1. Therefore, A Š U.D ; 0/, where the datum D is formed by

� � D hy1; y2i Š Z2;

� .aij / is the Cartan matrix of type A1 � A1;

� g1 D y
k1

1 y
k2

2 , g2 D y
l1
1 y

l2
2 , k1; k2; l1; l2 2 Z;

� �1.y1/ D q1, �1.y2/ D q2, where �1.g1/ D q
k1

1 q
k2

2 is not a root of unity and

q
l1�k1

1 q
l2�k2

2 D 1, and �2 D ��1
1 .

In the above datum D , we may assume that k1 > 0 and k2 D 0. Then q1 is
not a root of unity. We show that there is a group isomorphism ' W � ! � 0, where
� 0 D hy0

1; y
0
2i is also a free abelian group of rank 2 such that '.yk1

1 y
k2

2 / D y0k
1 and

k > 0.
The integers k1 and k2 cannot be both equal to 0. If k2 D 0 and k1 > 0, then it is

done. If k2 D 0 and k1 < 0, then '.y1/ D y0�1
1 and '.y2/ D y0�1

2 defines a desired
isomorphism.

Similarly, we can obtain a desired isomorphism when k1 D 0 and k2 ¤ 0.
If k1; k2 ¤ 0, then there are some k; Nk1; Nk2 2 Z such that k1 D Nk1k, k2 D Nk2k,
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k > 0 and . Nk1; Nk2/ D 1, that is, Nk1 and Nk2 have no common divisors. We can find
integers a, b such that a Nk1 C b Nk2 D 1. Let ' W � ! � 0 be the group isomorphism

defined by '.y1/ D y0
1
a
y0
2

� Nk2 and '.y2/ D y0
1
b
y0
2

Nk1 . Then '.yk1

1 y
k2

2 / D y0
1
k and

k > 0. In conclusion, we have proved the claim.

If l2 D 0, then we have ql1�k1

1 D 1. Since q1 is not a root of unity, we have
l1 D k1. Applying a similar argument to the one in case 2 of Proposition 5.6, we find
that A is isomorphic to an algebra in (I) of case 2.

Next we consider the case when l2 ¤ 0. In case l1 D 0, like what we did for k1
and k2, we may assume that l2 > 0. If 0 < jq1j < 1, then A is isomorphic to an
algebra in (III) of case 2. Otherwise, the datum .D ; 0/ is isomorphic to the datum
given by

� � D hy1; y2i Š Z2;

� g0
1 D y

l2
1 , g0

2 D y
k1

2 , k1; l2 2 ZC;

� �0
1.y1/ D q

� k1
l2

1 , �0
1.y2/ D q�1

1 , �0
2 D �0�1

1 .

� .aij / is the Cartan matrix of type A1 � A1;

� �12 D 0

via the isomorphism .'; .12/; ˛1 D ˛2 D 1/, where ' is the algebra automorphism
defined by '.y1/ D y2 and '.y2/ D y1. So A is isomorphic to an algebra in (III) of
case 2 as well.

If l1 ¤ 0 and l2 > 0, then there is an integer c such that 0 6 l1 C cl2 < l2.
Let � 0 D hy0

1; y
0
2i be a free abelian group of rank 2, and ' W � ! � 0 the group

isomorphism defined by '.y1/ D y0
1 and '.y2/ D y0c

1 y
0
2. Then '.yk1

1 / D y0
1
k1 and

'.y
l1
1 y

l2
2 / D y0

1
l1Ccl2y0

2
l2 .

If l1 ¤ 0 and l2 < 0, then there are integers Nl1, Nl2, such that l1 D Nl1l , l2 D Nl2l ,
l > 0 and . Nl1; Nl2/ D 1. So Nl2 < 0. We can find integers a, b such that a Nl1 C b Nl2 D 1.
Since for any integer d , .aCd Nl2/ Nl1C .b�d Nl1/ Nl2 D a Nl1Cb Nl2 D 1, we may assume
that0 6 a < �Nl2. Let� 0 D hy0

1; y
0
2i be a free abelian group of rank2, and' W � ! � 0

be the group isomorphism defined by'.y1/ D y0
1
a
y0
2

�Nl2 and'.y2/ D y0
1
b
y0
2

Nl1 . Then

'.y
k1

1 / D y0
1
ak1y0

2
�Nl2k1 and '.yl11 y

l2
2 / D y0

1
l .

In summary, by Corollary 5.2, we may assume that l2 > 0 and 0 6 l1 < l2. If
l1 D 0, then we go back to the case we just discussed. If l1 ¤ 0 and 0 < jq1j < 1,
then A is isomorphic to an algebra in (V). Otherwise, .D ; 0/ is isomorphic to the
datum given by

� � D hy1; y2i Š Z2;

� g0
1 D yl1; g

0
2 D y

ak1

1 y
k1

Nl2
2 , Nl1; Nl2 2 ZC are the integers such that l Nl1 D l1,

l Nl2 D l2 and . Nl1; Nl2/ D 1, a; b 2 Z are the integers such that a Nl1 C b Nl2 D 1 and
0 < a < Nl2;
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� �0
1.y1/ D q

� k1
Nl2

l2

1 , �0
1.y2/ D q

ak1�l

l2

1 , �0
2 D �0�1

1 ;

� .aij / is the Cartan matrix of type A1 � A1;

� �12 D 0

via the isomorphism .'; .12/; ˛1 D ˛2 D 1/, where ' is the isomorphism defined by

'.y1/ D ya1y
Nl2
2 and '.y2/ D yb1y

�Nl1
2 . It follows that A is isomorphic to an algebra

in (V) as well.
It is clear that the algebras from different cases and subcases are non-isomorphic

to each other. It is sufficient to show that the algebras in the same subcases in case 2
are non-isomorphic. Each algebra in (II), (IV) and (VI) is a lifting of an algebra in
(I), (III) and (V) respectively. So it is sufficient to discuss the cases (I), (III) and (V).

First we discuss the case (I). Let D and D 0 be two data given by

� � D hy1; y2i Š Z2;

� g1 D g2 D yk1 for some k 2 ZC;

� �1.y1/ D q1, �1.y2/ D q2, where q1; q2 2 k satisfy that 0 < jq1j < 1 and q1
is not a root of unity, and �2 D ��1

1 ;

� .aij /16i;j62 is the Cartan matrix of type A1 � A1
and

� � D hy0
1; y

0
2i Š Z2;

� g1 D g2 D yk
0

1 for some k0 2 ZC;

� �1.y1/ D q0
1, �1.y2/ D q0

2, where q0
1; q

0
2 2 k satisfy that 0 < jq0

1j < 1 and q0
1

is not a root of unity, and �2 D ��1
1 ;

� .a0
ij /16i;j62 is the Cartan matrix of type A1 � A1,

respectively. Assume that .'; 
; ˛/ is an isomorphism from .D ; 0/ to .D 0; 0/. Say
'.y1/ D y0

1
a
y0
2
c and '.y2/ D y0

1
b
y0
2
d . Since g1 D g2 and g0

1 D g0
2, we have

'.yk1 / D y0k0

1 . Moreover, k; k0 > 0. So a D 1, c D 0 and d D ˙1. Consequently,
we have k D k0, q1 D q0

1. If 
 D id, then q0
2 D q�b

1 q2. Otherwise, q0
2 D qb1q

�1
2 .

We have identified the isomorphic algebras in (I).
Similarly, it is direct to show that each triple .k; l; q/ 2 ZC � ZC � k such that

0 < jqj < 1 determines a non-isomorphic algebra in (III).
Now we show that the algebras in (V) are non-isomorphic. Let D and D 0 be the

data given by

� � D hy1; y2i Š Z2;

� g1 D yk1 , g2 D y
l1
1 y

l2
2 such that k; l1; l2 2 ZC and 0 < l1 < l2;

� �1.y1/ D q, where q 2 k is not a root of unity, 0 < jqj < 1, and �1.y2/ D
q

k�l1
l2 and �2 D ��1

1 ;
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� .aij /16i;j62, the Cartan matrix of type A1 � A1
and

� � 0 D hy0
1; y

0
2i is also a free abelian group of rank 2;

� g0
1 D y0

1
k0

, g0
2 D y0

1
l 0
1y0
2
l 0
2 such that k0; l 01; l 02 2 ZC and 0 < l 01 < l 02;

� �0
1.y

0
1/ D q0, where q0 2 k is not a root of unity, 0 < jq0j < 1, and �0

1.y
0
2/ D

q
0 k0�l0

1

l0
2 and �0

2 D �0
1

�1;

� .aij /16i;j62, the Cartan matrix of type A1 � A1,

respectively. We claim that .D ; 0/ and .D 0; 0/ are isomorphic if and only if q D q0,
k D k0, l1 D l 01 and l2 D l 02.

Assume that .D ; 0/ is isomorphic to .D 0; 0/ via an isomorphism .'; 
; ˛1 D
˛2 D 1/. Suppose that '.y1/ D y0

1
a
y0
2
c and '.y2/ D y0

1
b
y0
2
d , with a; b; c; d 2 Z.

Either 
 D id or 
 D .12/. If 
 D id, then '.gi / D g0
i , i D 1; 2. So

y0
1
ak
y0
2
ck D y0

1
k0

and y0
1
al1Cbl2y0

2
cl1Cdl2 D y0

1
l 0
1y0
2
l 0
2 :

Since ' is an isomorphism, we have ad � bc D ˙1. Because k; k0; l2; l 02 > 0,
0 < l1 < l2 and 0 < l 01 < l 02, it follows that b D c D 0 and a D d D 1. Therefore,
k D k0, l1 D l 01, l2 D l 02, and q D q0. Namely, .D ; 0/ D .D 0; 0/

If 
 D .12/, then '.gi / D g0
3�i , i D 1; 2. This implies that

y0
1
ak
y0
2
ck D y0

1
l 0
1y0
2
l 0
2 and y0

1
al1Cbl2y0

2
cl1Cdl2 D y0

1
k0

:

We can find integers Nl1 and Nl2 such that l1 D Nl1l , l2 D Nl2l , l > 0 and . Nl1; Nl2/ D 1.
Since ad �bc D ˙1, we have .c; d/ D 1. From ck D l 02 > 0 and cl1Cdl2 D 0,

it follows that c D Nl2 and d D �Nl1. If ad � bc D 1, we have

k0 D al1 C bl2 D l.a Nl1 C b Nl2/ D �l.ad � bc/ D �l < 0;

a contradiction!
If ad � bc D �1, we have

q0 D �0
1.y

0
1/ D �2'

�1.y1/ D �2.y
Nl1
1 y

Nl2
2 / D q

�Nl2 k
l2 :

But Nl2; k; l2 > 0 and 0 < jqj; jq0j < 1. We get a contraction as well. In summary, we
have proved the claim.

Now we list all pointed CY Hopf algebras U.D ; �/ of dimension 4 in terms of
generators and relations in the following table. Note that q1 and q are not roots of
unity.
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CY algebras of dimension 4

Case Generators Relations

Case 1 yh, y�1
h

, 1 6 h 6 4
y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 4

Case 2 (I) y˙1
1 , y˙1

2 , x1, x2

y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 2, y1x1 D q1x1y1,
y1x2 D q�1

1 x2y1, y2x1 D q2x1y2,
y2x2 D q�1

2 x2y2, 0 < jq1j < 1,
x1x2 � q�k

1 x2x1 D 0, k 2 ZC

Case 2 (II) y˙1
1 , y˙1

2 , x1, x2

y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 2, y1x1 D q1x1y1,
y1x2 D q�1

1 x2y1, y2x1 D q2x1y2,
y2x2 D q�1

2 x2y2, 0 < jq1j < 1,
x1x2 � q�k

1 x2x1 D 1 � y2k1 , k 2 ZC

Case 2 (III) y˙1
1 , y˙1

2 , x1, x2

y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 2, y1x1 D qx1y1,
y1x2 D q�1x2y1, y2x1 D q

k
l x1y2,

y2x2 D q� k
l x2y2,

x1x2 � q�kx2x1 D 0, k; l 2 ZC,
0 < jqj < 1

Case 2 (IV) y˙1
1 , y˙1

2 , x1, x2

y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 2, y1x1 D qx1y1,
y1x2 D q�1x2y1, y2x1 D q

k
l x1y2,

y2x2 D q� k
l x2y2,

x1x2 � q�kx2x1 D 1 � yk1yl2,
k; l 2 ZC, 0 < jqj < 1

Case 2 (V) y˙1
1 , y˙1

2 , x1, x2

y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 2, y1x1 D qx1y1,

y1x2 D q�1x2y1, y2x1 D q
k�l1

l2 x1y2,

y2x2 D q
� k�l1

l2 x2y2,
x1x2 � q�kx2x1 D 0, k; l1; l2 2 ZC,
0 < l1 < l2, 0 < jqj < 1

Case 2 (VI) y˙1
1 , y˙1

2 , x1, x2

y˙1
h
y˙1
m D y˙1

m y˙1
h

, y˙1
h
y�1
h

D 1,
1 6 h;m 6 2, y1x1 D qx1y1,

y1x2 D q�1x2y1, y2x1 D q
k�l1

l2 x1y2,

y2x2 D q
� k�l1

l2 x2y2,
x1x2 � q�kx2x1 D 1 � ykCl1

1 y
l2
2 ,

k; l1; l2 2 ZC, 0 < l1 < l2, 0 < jqj < 1
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Let g be a semisimple Lie algebra and Uq.g/ its quantized enveloping algebra.
By [7], Proposition 6.4, the global dimension of the algebra Uq.g/ is the dimension
of g. Thus, if Uq.g/ is of global dimension less than 5, then Uq.g/ is isomorphic to
Uq.sl2/, which is of global dimension 3. That is, among the algebras of the form
Uq.g/, only Uq.sl2/ appears in the lists of Propositions 5.5, 5.6 and 5.7. The algebra
Uq.sl2/ is isomorphic to U.D ; �/ with the datum given by

� � D hgi, a free abelian group of rank 1;

� the Cartan matrix is of type A1 � A1;

� g1 D g2 D g;

� �1.g/ D q�2, �2.g/ D q2, where q is not a root of unity;

� �12 D 1.

It belongs to (II) of case 2 of Proposition 5.6.

The family of pointed Hopf algebrasU.D ; �/ provide more examples of CY Hopf
algebras of higher dimensions. From the classification of CY pointed Hopf algebras
U.D ; �/ of dimensions less than 5, we see that the Cartan matrices are either trivial
or of typeA1�� � ��A1. The following example provides a CY pointed Hopf algebra
of type A2 � A1 of dimension 7.

Example 5.8. Let A be U.D ; �/ with the datum .D ; �/ given by

� � D hy1; y2; y3i, a free abelian group of rank 3;

� the Cartan matrix is 0@ 2 �1 0

�1 2 0

0 0 2

1A I

� gi D yi , 1 6 i 6 3;

� �i , 1 6 i 6 3, are given by the following table, where q is not a root of unity.

y1 y2 y3

�1 q q�2 q4

�2 q q q�2

�3 q�4 q2 q�4

� � D 0.

In other words, A is the algebra with generators xi , y˙1
j , 1 6 i; j 6 3, subject to the
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relations

y˙1
i y˙1

j D y˙1
j y˙1

i ; y˙1
j y�1

j D 1; 1 6 i; j 6 3;

yj .xi / D �i .yj /xiyj ; 1 6 i; j 6 3;

x21x2 � qx1x2x1 � q2x1x2x1 C q3x2x
2
1 D 0;

x22x1 � q�2x2x1x2 � q�1x2x1x2 C q�3x1x22 D 0;

x1x3 D x3x1:

The non-trivial liftings of A are also CY.
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