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Dedicated to Alan Carey on the occasion of his 60th birthday

Abstract. Representing Z=NZ as roots of unity, we restrict a natural U.1/-action on the
Heegaard quantum sphere to Z=NZ, and call the quotient spaces Heegaard quantum lens
spaces. Then we use this representation of Z=NZ to construct an associated complex line
bundle. This paper proves the stable non-triviality of these line bundles over any of the quantum
lens spaces we consider. We use the pullback structure of the C�-algebra of the lens space to
compute itsK-theory via the Mayer–Vietoris sequence, and an explicit form of the odd-to-even
connecting homomorphism to prove the stable non-triviality of the bundles. On the algebraic
side we prove the universality of the coordinate algebra of such a lens space for a particular set
of generators and relations. We also prove the non-existence of non-trivial invertibles in the
coordinate algebra of a lens space. Finally, we prolongate the Z=NZ-fibres of the Heegaard
quantum sphere to U.1/, and determine the algebraic structure of such a U.1/-prolongation.
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Introduction and preliminaries

0.1. Introduction. It is hard to deny that lens spaces are interesting. Indeed, they
have provided a rich source of examples highlighting subtle phenomena in topology.
They are simple examples of closed 3-manifolds not determined by their homology
and fundamental group alone. They also give examples of spaces that might be
homotopic but not homeomorphic. Even today they still provide a fertile arena in
which to study topological questions, e.g., see [17].

A typical feature of lens spaces is that they possess non-trivial line bundles giving
rise to torsion in K-theory. This property of lens spaces remains a characteristic
feature of their quantum analogues, and is a focal point of this paper. In brief, we
choose a particular family of quantum lens spaces, define natural complex line bundles
over them, and prove that they generate torsion in the K0-group.

More precisely, we study a family of three-dimensional lens spaces arising from
a particular family of quantum 3-spheres, namely the Heegaard quantum spheres
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S3
pq�

[2]. The C �-algebras of these Heegaard quantum lens spaces were defined in
[13] as fixed-point subalgebras for a Z=NZ-action obtained by restricting the natural
(diagonal)U.1/-action˛ on theC �-algebraC.S3

pq�
/of the Heegaard quantum sphere.

Likewise, we consider fixed-point subalgebras of the coordinate algebra O.S3
pq�

/ of
the Heegaard quantum sphere. We denote the thus obtained coordinate algebras and
C �-algebras of these quantum lens spaces by O.LN

pq�
/ and C.LN

pq�
/ respectively.

Note that in [19] a different U.1/-action was used to define another class of
Heegaard quantum lens spaces. Both of these types of Heegaard quantum lens spaces
are different from those quantum lens spaces studied in [14]. The latter are graph
C �-algebras and the former are pullback C �-algebras. This is a crucial technical
difference between these two families of C �-algebras resulting in application of
different tools to study their K-theory.

Next, we again represent Z=NZ via roots of unity and define the following
associated module

LN WD
n
x 2 C.S3

pq� /
ˇ̌̌
˛

e
2�i
N
.x/ D e 2�i

N x
o
� C.S3

pq� / (0.1)

over C.LN
pq�

/. This is a finitely generated projective module defining a natural
complex line bundle for each of our quantum lens spaces. Our main result can be
now summarized as follows.

Theorem 0.1. The leftC.LN
pq�

/-moduleLN is not stably free, and ŒLN �� ŒC.LN
pq�

/�

generates the torsion part of K0.C.L
N
pq�

//.

On the way, we prove that O.LN
pq�

/ is universal for a certain set of genera-

tors and relations. Having done this, we show that O.S3
pq�

/ contains no invert-
ibles other than non-zero multiples of the identity. This allows us to prove that the
O.Z=NZ/-comodule algebra O.S3

pq�
/ is non-cleft, which reflects the non-triviality

of the noncommutative Z=NZ-principal bundle S3
pq�
! LN

pq�
. However, to con-

clude a stronger result that the finitely generated projective O.LN
pq�

/-module

LN WD
n
x 2 O.S3

pq� /
ˇ̌̌
˛

e
2�i
N
.x/ D e 2�i

N x
o
� O.S3

pq� / (0.2)

is not stably free, we turn to C �-algebras. Representing LN by an idempotent with
entries in O.LN

pq�
/, we infer the stable non-triviality of LN over O.S3

pq�
/ from our

main result.
The final section proves a quantum version of the classical phenomenon that

S3 �Z=N Z U.1/ Š S3 � U.1/, in both the algebraic and C �-setting. Namely, we
prove that

C.S3
pq� / N̋ C.U.1// Š .C.S3

pq� / N̋ C.U.1///Z=N Z;

O.S3
pq� /˝O.U.1// Š .O.S3

pq� /˝O.U.1///Z=N Z: (0.3)
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Here and in what follows, the unadorned tensor product stands for the algebraic
tensor product over the ground field k, typically of complex numbers. Since in
this paper there is no ambiguity concerning C �-completions of the algebraic tensor
product, we simply use N̋ to denote the completed tensor product. Also, we use
the convention that, for algebras A, B , and coalgebras C , D, the symbol C

A HomD
B

signifies the set of k-linear homomorphisms that are left A-linear, right B-linear, left
C -colinear and right D-colinear.

0.2. Principal comodule algebras. The comultiplication, counit and the anti-
pode of a Hopf algebra H are denoted by �, " and S , respectively. A right
H -comodule algebra P is a unital associative algebra equipped with an H -coaction
�P W P ! P ˝H that is an algebra map. For a comodule algebra P , we call

P co H WD fp 2 P j�P .p/ D p ˝ 1g (0.4)

the subalgebra of coaction-invariant elements in P . A left coaction on V is denoted
by V�. For comultiplications and coactions, we often employ the Heynemann–
Sweedler notation with the summation symbol suppressed:

�.h/ DW h.1/ ˝ h.2/; �P .p/ DW p.0/ ˝ p.1/; V�.v/ DW v.�1/ ˝ v.0/: (0.5)

With this notation, the convolution product of maps f and g from a coalgebra to an
algebra is given by .f � g/.h/ WD f .h.1//g.h.2//.

If M is a right comodule over a coalgebra C and N is a left C -comodule, then
we define their cotensor product as

M�
C
N WD ft 2M ˝N j .�M ˝ id/.t/ D .id˝ N�/.t/g: (0.6)

In particular, for a rightH -comodule algebraP and a leftH -comoduleV , we observe
that P�HV is a left P co H -module in a natural way. Furthermore, if V is a Hopf
algebra with comultiplication Q�, a Hopf algebra surjection � W V ! H , and a left
coaction V� WD .� ˝ id/ B Q�, then P�HV becomes a V -comodule algebra for the
coaction id˝ Q�.

An H -comodule algebra P is called principal [3] if:

(1) P˝BP 3 p ˝ q 7! can.p ˝ q/ WD pq.0/ ˝ q.1/ 2 P ˝H is bijective;

(2) 9 s 2 BHomH .P;B ˝ P / W m B s D id, where m is the multiplication map;

(3) the antipode of H is bijective.

Here (1) is the Hopf–Galois (freeness) condition, (2) means equivariant projectivity
of P , and (3) ensures a left-right symmetry of the definition (everything can be
re-written for left comodule algebras). The inverse of the map can can be written
explicitly using Heynemann–Sweedler like notation: can�1.p˝h/ D phŒ1�˝B h

Œ2�.
Here the map

H 3 h 7�! can�1.1˝ h/ DW hŒ1�

B̋
hŒ2� 2 P

B̋
P (0.7)
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is called a translation map, and satisfies hŒ1�hŒ2� D ".h/.
One of the key properties of principal comodule algebras is that, for any finite-

dimensional leftH -comodule V , the leftP co H -moduleP�HV is finitely generated
projective [3]. Here P plays the role of a principal bundle and P�HV plays the role
of an associated vector bundle. Therefore, we call P�HV an associated module.
On the other hand, if V is a Hopf algebra and P�HV is a V -comodule algebra as
described above, then (under some minor technical assumptions) the principality of
theH -coaction onP implies the principality of the V -coaction onP�HV (see [12]).
We call the principal comodule algebraP�HV the V -prolongation ofP because it is
a direct analogue of a prolongation of a principal bundle that is obtained by enlarging
its structure group.

If H is a Hopf algebra with bijective antipode and P is a right H -comodule
algebra, then one can show (cf. [3]) that it is principal if and only if there exists a
linear map

` W H �! P ˝ P; h 7�! `.h/ DW `.h/h1i ˝ `.h/h2i; (0.8)

such that, for all h 2 H , ` satisfies the three equations

`.h/h1i`.h/h2i.0/ ˝ `.h/h2i.1/ D 1˝ h; (0.9)

S.h.1//˝ `.h.2//
h1i ˝ `.h.2//

h2i D `.h/h1i.1/ ˝ `.h/h1i.0/ ˝ `.h/h2i; (0.10)

`.h.1//
h1i ˝ `.h.1//

h2i ˝ h.2/ D `.h/h1i ˝ `.h/h2i.0/ ˝ `.h/h2i.1/: (0.11)

Any such map ` can be made unital [3]. It is then called a strong connection [8, 5, 3],
and can be thought of as an appropriate lifting of the translation map. Given a
strong connection, we can explicitly compute an idempotent representing the module
P�HV [3]. In particular, if dim V D 1, the coaction V� is determined by a group-
like g 2 H , i.e., V�.1/ D g˝1. Then, in order to obtain an idempotent representing
P�HV , we write `.g/ D P

i xi ˝ ei , where elements ei are chosen to be linearly
independent. The desired idempotent matrix is given by eij WD eixj .

A special class of principal comodule algebras is distinguished by the existence of
a cleaving map. A cleaving map is defined as a unital right H -colinear convolution-
invertible map j W H ! P . Having a cleaving map, one can define a strong con-
nection as ` WD .j�1 ˝ j / B�, where j�1 stands for the convolution inverse of j .
Comodule algebras admitting a cleaving map are called cleft. In particular, if j is
a colinear algebra homomorphism, it is a cleaving map (not the other way round).
In this special case a cleaving map serves as an analogue of a trivialisation of a
principal bundle. Therefore, we can refer to comodule algebras admitting a cleav-
ing map that is an algebra homomorphism as trivial comodule algebras. Note that
proving the non-cleftness of a principal comodule algebra is stronger than proving its
non-triviality.

All modules associated with cleft comodule algebras are always free. Also, one
can show that a cleaving map is automatically injective. Therefore, as the value of a
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cleaving map on a group-like element is invertible, we can conclude that the existence
of a non-trivial group-like inH necessitates the existence of an invertible element in
P that is not a multiple of 1. Hence one of the ways to prove the non-cleftness of
a principal comodule algebra over a Hopf algebra with a non-trivial group-like is to
show the lack of non-trivial invertibles in the comodule algebra.

0.3. From quantum disc to quantum lens spaces

0.3.1. Quantum disc. A two-parameter family of quantum unit discs was defined
in [15]. Here we consider the one parameter subfamily studied therein. We start with
a coordinate �-algebra O.Dp/ generated by a single element x and the relation

x�x � pxx� D 1 � p; 0 � p < 1: (0.12)

We can introduce another algebra O�.Dp/ generated by x� with relation

x��x� � p�1x�x�� D 1 � p�1: (0.13)

Then assignment x 7! x�� can be extended to a �-algebra isomorphism

�p W O.Dp/ �! O�.Dp/: (0.14)

Let us denote for brevity X WD .1 � xx�/, so that 1 � x�x D pX . It follows
from (0.12) that Xx D pxX , and more generally

Xkxn D pknxnXk; Xkx�n D p�knx�nXk; n; k 2 N; (0.15)

where the second equation follows from the self-adjointness ofX . The universalC �-
algebra for the relation (0.12) contains O.Dp/ and is isomorphic with the Toeplitz
algebra T for all 0 � p < 1 [15]. In particular, we can take the relation (0.12) with
p D 0 as a convenient presentation for the C �-algebra T . Then (0.12) reduces to
x�x D 1, so that x becomes an isometry.

0.3.2. Heegaard quantum sphere. For 0 � p; q; � < 1, � irrational, the coordi-
nate algebra of the Heegaard quantum sphere O.S3

pq�
/ [2] is the universal �-algebra

generated by two elements a and b satisfying the relations

ab D ei2��ba; ab� D e�i2��b�a; (0.16a)

a�a � paa� D 1 � p; b�b � qbb� D 1 � q; (0.16b)

.1 � aa�/.1 � bb�/ D 0: (0.16c)

Recall that fa; a�g and fb; b�g generate algebras O.Dp/ and O.Dq/ respectively (see
[2, (2.44)]). Furthermore, by Subsection 0.3.1, for A WD .1 � aa�/,
B WD .1 � bb�/, we have the relations

Aa D paA; Ab D bA; Ba D aB; Bb D qbB; A� D A; B� D B: (0.17)
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Now we can write a basis of O.S3
pq�

/ [2] as

fAka�b� j k � 0; �; � 2 Zg [ fBka�b� j k > 0;�; � 2 Zg: (0.18)

Here for �; � < 0 we have written b� WD b�j�j and a� WD a�j�j for brevity. The C �-
algebra of the Heegaard quantum sphereC.S3

pq�
/ can also be defined as the universal

C �-algebra for the relations (0.16). One can set the parameters p and q equal to
zero without changing this C �-algebra, and prove that it is isomorphic with a certain
pullback C �-algebra [2].

Let O.U.1// be the coordinate �-Hopf algebra of U.1/ generated by a unitary u.
The coaction of O.U.1// on O.S3

pq�
/ is defined on generators by 	.a/ WD a ˝ u,

	.b/ WD b˝ u. This coaction defines a Z-grading deg W O.S3
pq�

/! Z on O.S3
pq�

/,
with deg.a/ D 1 D deg.b/. Note that all the basis elements in (0.18) have a definite
grading degree. The coaction 	 can be equivalently written as an action

˛ W U.1/ �! Aut.O.S3
pq� //; ˛ei' .a/ D ei'a; ˛ei' .b/ D ei'b: (0.19)

This action extends to the C �-algebra C.S3
pq�

/. One can prove that the algebra of
coaction-invariant (or action-invariant) elements is generated as a �-algebra byA, B ,
and z WD ab�. They satisfy the relations

A� D A; B� D B; AB D 0; Az D pzA; zB D qBz;
z�z D 1 � pA � B; zz� D 1 � A � qB: (0.20a)

The universal�-algebra for these relations coincides with the coaction-invariant subal-
gebra. We call it the coordinate algebra of a mirror quantum sphere [13]. Note that by
[9], O.S3

pq�
/ is a piecewise trivial principal comodule algebra. The covering is given

by a pair of ideals O.S3
pq�

/A and O.S3
pq�

/B . The quotients O.S3
pq�

/=O.S3
pq�

/A and

O.S3
pq�

/=O.S3
pq�

/B are both given by quantum solid tori [2].

0.3.3. Heegaard quantum lens spaces [13, 19]. The �-Hopf algebra O.Z=NZ/
is generated by a unitary element Qu satisfying QuN D 1. There is a natural surjection
� W O.U.1// ! O.Z=NZ/ given by u 7! Qu. This surjection defines a coaction
of O.Z=NZ/ on O.S3

pq�
/. The coaction-invariant subspace for this O.Z=NZ/-

coaction is simply the subspace of elements of degree divisible by N . We denote
this algebra by O.LN

pq�
/, and call LN

pq�
the Heegaard quantum lens space of typeN .

Likewise, we inject Z=NZ intoU.1/ via roots of unity, and use the action ˛ to define
the Z=NZ-invariant subalgebra of the C �-algebra C.S3

pq�
/. We call the invariant

subalgebra theC �-algebra of the Heegaard quantum lens space of typeN , and denote
by C.LN

pq�
/.
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0.4. Odd-to-even connecting homomorphism. Consider a pullback diagram

A
pr1

����������� pr2

�����������

A1

�1 �� ���������� A2

�2����������

A12

(0.21)

in the category of unital algebras. Explicitly, we can write

A Š f.a1; a2/ 2 A1 � A2 j �1.a1/ D �2.a2/g D Ker
�
A1 ˚ A2

.�1;��2/������! A12

�
:

If one of the defining morphisms (here we choose �1) is surjective, then there exists
a long exact sequence in algebraic K-theory [16]

� � � �! K
alg
1 .A1 ˚ A2/ �! Kalg

1.A12/

@
alg
10�! K

alg
0 .A/ �! K

alg
0 .A1 ˚ A2/ �! K

alg
0 .A12/: (0.22)

The mapping @alg
10 W Kalg

1 .A12/ �! K
alg
0 .A/ is obtained as follows. Take an invertible

matrix U 2 GLn.A12/ representing a class in Kalg
1 .A12/. There exist liftings c; d 2

Mn.A1/ such that �1.c/ D U�1 and �1.d/ D U . Then (e.g., see [6])

pU WD
�
.c.2 � dc/d; 1/ .c.2 � dc/.1 � dc/; 0/
..1 � dc/d; 0/ ..1 � dc/2; 0/

�
2M2n.A/ (0.23)

is an idempotent matrix. The assignment

@
alg
10 W Kalg

1 .A12/ 3 ŒU � 7�! ŒpU � � ŒIn� 2 Kalg
0 .A/; (0.24)

where In is the identity matrix of the same size as the matrixU , gives an explicit form
for the odd-to-even connecting homomorphism [16, Theorem 3.3, Page 28], which
we fix for the remainder of the paper. We refer to this as the Milnor construction.

It is known that the odd-to-even connecting homomorphism exists also for the
K-theory of C �-algebras (cf. [7]), and is given by the same explicit formula. Since
this formula is pivotal in proving our main result, for the sake of completeness, we
provide its complete proof assuming it for the algebraic K-theory1. We proceed by
translating the final part of the long exact sequence (0.22) into the K-theory of C �-
algebras. TheK0-groups are simply the same, and comparing the definitions ofKalg

1

and K1 immediately yields a functorial surjection Kalg
1 .A/3 ŒU � 7! ŒU �2K1.A/ for

any unital C �-algebra A.

1This proof is a courtesy of Nigel Higson.
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Next, we want to split this surjection and define K1.A12/
@10�!K0.A/ by com-

posing such a set-theoretical splitting with @alg
10 . In order to show that it is indepen-

dent of the choice of a splitting, we need to use the homotopy invariance of K0.
More precisely, if ŒU0� D ŒU1� 2 K1.A12/, then there exists n 2 N such thatfU0 WD diag.U0; Ik/ and fU1 WD diag.U1; Il/ are elements of GLn.A12/ that are ho-
motopic via elements ofGLn.A12/. In other words, there exists an invertible element
U in the C �-algebra

C.Œ0; 1�;Mn.A12// ŠMn.C.Œ0; 1�; A12// ŠMn.A12 N̋ C.Œ0; 1�// (0.25)

satisfying ev0.U / DfU0 and ev1.U / DfU1, where evt stands for the evaluation map
at t . Furthermore, since tensoring with nuclear C �-algebras is always exact, we can
conclude that A N̋ C.Œ0; 1�/ is isomorphic with the pullback

Ker
�
.A1 N̋ C.Œ0; 1�//˚ .A2 N̋ C.Œ0; 1�// .�1;��2/˝id �� A12 N̋ C.Œ0; 1�/

�
: (0.26)

This allows us to apply the Milnor construction to U to obtain an idempotent pU in
theC �-algebraM2n.A N̋ C.Œ0; 1�//. On the other hand, the evaluation maps ev0; ev1 W
A N̋ C.Œ0; 1�/ ! A are homotopic, so that, by the homotopy invariance of K0, we
conclude that

ŒpeU0
� D ev0�ŒpU � D ev1�ŒpU � D ŒpeU1

� 2 K0.A/: (0.27)

Consequently, we obtain

@
alg
10.ŒU0�/ D @alg

10.Œ
fU0�/ D ŒpeU0

� � ŒIn� D ŒpeU1
� � ŒIn� D @alg

10.Œ
fU1�/ D @alg

10.ŒU1�/:

Thus we have defined a map

@10 W K1.A12/
lift�! K

alg
1 .A12/

@
alg
10�! K

alg
0 .A/ D K0.A/: (0.28)

Since Œdiag.U; U 0/� 2 Kalg
1 .A12/ is a lifting of Œdiag.U; U 0/� 2 K1.A12/, the map

@10 is automatically a group homomorphism. This leads to the following diagram:

K
alg
1 .A1/˚Kalg

1 .A2/
��

alg ��

�� ��

K
alg
1 .A12/

@
alg
10 ��

��

K0.A/
.pr1�;pr2�/ �� K0.A1/˚K0.A2/

K1.A1/˚K1.A2/
��

�� K1.A12/
@10 �� K0.A/

.pr1�;pr2�/ �� K0.A1/˚K0.A2/;

where we abbreviate �� WD �1� � �2� and ��
alg WD �1�alg � �2�alg. Here the

vertical arrows are canonical surjections. The commutativity of the first two squares
follows from the functoriality of these surjections. The remaining two squares are
commutative by construction. Now, the exactness of the top row (see (0.22)) and the
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surjectivity of all vertical arrows imply the exactness of the bottom row. Combining
this with the Bott periodicity, we obtain the Mayer–Vietoris 6-term exact sequence
[18, 1]

K0.A/
.pr1�;pr2�/�������! K0.A1/˚K0.A2/

�1���2�������! K0.A12/

@10

x?? ??y
K1.A12/

�1���2� ������ K1.A1/˚K1.A2/
.pr1�;pr2�/ ������� K1.A/ :

(0.29)

1. Comodule algebras over the coordinate algebras of Heegaard lens spaces

1.1. Polynomial identities for the quantum disc. Recall the definition of p-de-
formed binomial coefficients�

n

m

	
p

WD Œn�pŠ

Œm�pŠŒn �m�pŠ ; (1.1)

where p-deformed factorials Œn�pŠ WD Œ1�pŒ2�p : : : Œn � 1�pŒn�p for n � 1 2 N,
Œ0�pŠ WD 1, are defined in terms of p-deformed naturals Œn�p WD 1 C p C p2 C
: : :C pn�2 C pn�1 for n � 1 2 N, Œ0�p WD 0.

Let Y be a variable. Define a family of polynomials in Y , for p 2 RC and
n � 1 2 N, by the formulae

QQp
n .Y / WD

nX
mD1

.�1/mp�nmCm.mC1/
2

�
n

m

	
p

Y m: (1.2)

Lemma 1.1. The polynomials (1.2) are uniquely determined by the recursive equa-
tions

QQp
1 .Y / D �Y; QQp

nC1.Y / D .1 � Y / QQp
n .p

�1Y / � Y: (1.3)

Proof. We will proceed by induction. It follows from the definition of QQp
n , Equa-

tion (1.2), that the case n D 1 is satisfied. It is useful to rewrite the right-hand side
of the second equation of (1.3) as follows:

.1 � Y / QQp
n .p

�1Y / � Y D QQp
n .p

�1Y / � Y QQp
n .p

�1Y / � Y: (1.4)

For the first term we will separate them D 1 term from the sum defining QQp
n .p

�1Y /,
while for the second we will separate the m D n term, and then renumber the sum.
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This yields

.1 � Y / QQp
n .p

�1Y / � Y

D .1 � Y /
 

nX
mD1

.�1/mp�nmCm.mC1/
2

�
n

m

	
p

p�mY m

!
� Y

D �p�n

�
n

1

	
p

Y � Y � .�1/np�n.nC1/
2

�
n

n

	
p

Y nC1

C
nX

mD2

 
.�1/mp�nmCm.mC1/

2

�
n

m

	
p

p�m

� .�1/m�1p�n.m�1/Cm.m�1/
2

�
n

m � 1
	

p

p�.m�1/

!
Y m

D �p�n

 �
n

1

	
p

C pn

�
n

0

	
p

!
� .�1/np�n.nC1/

2

�
nC 1
nC 1

	
p

Y nC1

C
nX

mD2

.�1/mp�.nC1/mCm.mC1/
2

 �
n

m

	
p

C pnC1�m

�
n

m � 1
	

p

!
Y m: (1.5)

At this point we recall that for all n � 0, m > 0, the deformed binomial coefficients
satisfy the recursive formula�

n

n

	
p

D
�
n

0

	
p

D 1;
�
nC 1
m

	
p

D
�
n

m

	
p

C pnC1�m

�
n

m � 1
	

p

: (1.6)

Applying this to our computation we obtain

� p�n

�
nC 1
1

	
p

Y C
nX

mD2

.�1/mp�.nC1/mCm.mC1/
2

�
nC 1
m

	
p

Y m

� .�1/np�n.nC1/
2

�
nC 1
nC 1

	
p

Y nC1

D
nC1X
mD1

.�1/mp�.nC1/mCm.mC1/
2

�
nC 1
m

	
p

Y m D Qp
nC1.Y /: (1.7)

This completes the proof.

Lemma 1.2. For all m; n 2 N n f0g, the family of polynomials f QQp

k
gk satisfies

QQp
mCn.Y / D .1C QQp

m.Y //
QQp

n .p
�mY /C QQp

m.Y /: (1.8)

Proof. We prove the above formula for arbitrary n 2 N by induction onm. The case
m D 1 is true by Lemma 1.1. For the inductive step, suppose that Equation (1.8) is
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satisfied for some m > 0. Then using Lemma 1.1 yields

.1C QQp
mC1.Y //

QQp
n .p

�.mC1/Y /C QQp
mC1.Y /

D .1C .1 � Y / QQp
m.p

�1Y / � Y / QQp
n .p

�1�mY /C .1 � Y / QQp
m.p

�1Y / � Y
D .1 � Y /

�
.1C QQp

m.p
�1Y // QQp

n .p
�1�mY /C QQp

m.p
�1Y /

�
� Y

D .1 � Y / QQp
nCm.p

�1Y / � Y
D QQp

nCmC1.Y /; (1.9)

as desired.

We now define polynomials for all � 2 Z by the formulae

Qp
�.Y / WD

8̂<̂
:
QQp

�.Y / if � > 0;

0 if � D 0;
QQp�1

�� .pY / if � < 0:

(1.10)

Note that the polynomials Qp�� for � > 0 satisfy the recursive relations

Q
p
�1.Y / D �pY; Q

p
���1.Y / D .1 � pY /Qp��.pY / � pY: (1.11)

Lemma 1.3. The generatorsx andx� of the quantum disc O.Dp/ satisfy the relations

x�x�� D 1CQp
�.X/; � 2 Z; x�n WD x�n; n 2 N: (1.12)

Proof. We proceed by induction on j�j, and begin by observing that the Formula (1.12)
is immediately true for � D 0;˙1. Suppose the formula is satisfied for some � > 0.
Then, using Lemma 1.1 yields

x�C1x�.�C1/ D x.x�x��/x�

D x �1CQp
�.X/

�
x�

D xx� �1CQp
�.p

�1X/
�

D .1 �X/ �1CQp
�.p

�1X/
�

D 1CQp
�C1.X/: (1.13)

The proof for � < 0 proceeds in the same way, because the identities for deformed
factorials and binomial coefficients are the same for 0 < p < 1 and p > 1.

Let us define the family Qp
�I� of polynomials, for all �; � 2 Z by the formulae

Qp
�I�.Y / WD

8̂<̂
:
0 if �� � 0;
Q

p
�.Y / if �� < 0 and j�j � j�j;

Q
p��.p

�.�C�/Y / if �� < 0 and j�j > j�j:
(1.14)

Now we can generalise Lemma 1.3.
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Lemma 1.4. Let X WD 1 � xx�, �; � 2 Z, and for � < 0 write x� WD x�j�j. Then
the generators of the algebra O.Dp/ satisfy

x�x� D .1CQp
�I�.X//x�C� : (1.15)

Proof. The statement is obvious if �� � 0, and we now consider the two cases when
�� < 0. First, for j�j � j�j we find

x�x� D .x�x��/x�C� D .1CQp
�.X//x

�C� D .1CQp
�I�.X//x�C� : (1.16)

Next, for j�j > j�j we obtain

x�x� D x�C�.x��x�/ D x�C�.1CQp��.X//

D .1CQp��.p
�.�C�/X//x�C� D .1CQp

�I�.X//x�C�; (1.17)

as needed.

1.2. Heegaard quantum lens spaces in terms of generators and relations. In
what follows we will frequently need the following formula. Let x and y be two
elements in an algebra such that xy D ei'yx, where ' 2 R. Then

x�y� D ei' �.��1/
2 .xy/�; (1.18)

for � 2 Z, x�n WD .x�/n, y�n WD .y�/n, n 2 N.

We recall the coaction of O.Z=NZ/ on O.S3
pq�

/ from Subsection 0.3.3. The
coaction-invariant subspace of this coaction is simply the subspace of elements of
degree divisible by N , and it is called a lens space LN

pq�
of type N . It follows from

(0.18) that O.LN
pq�

/ is spanned as a vector space by the set

fAka�b� j k; 
; �; � 2 Z; k � 0; �C � D 
N g
[ fBka�b� j k; 
; �; � 2 Z; k > 0; �C � D 
N g; (1.19)

where for �; � < 0 we have written b� WD b�j�j and a� WD a�j�j for brevity. Let us
also define

Qa WD aN ; Qb WD bN ; z WD ab�: (1.20)

It is not difficult to verify that the elements A, B , z, Qa, Qb satisfy the commutation
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relations

A� D A; B� D B; AB D 0; Az D pzA; zB D qBz; (1.21a)

z�z D 1 � pA � B; zz� D 1 � A � qB; (1.21b)

A Qa D pN QaA; A Qb D QbA; B Qa D QaB; B Qb D qN QbB; (1.21c)

z Qa D eiN 2�� Qaz; z Qb� D e�iN 2�� Qb�z; (1.21d)

z Qa� � e�iN 2�� Qa�z D e�iN.NC1/�� .pN � 1/Az1�N Qb�; (1.21e)

zb � eiN 2��bz D ei��N.N�1/q.q�N � 1/Bz1�N Qa; (1.21f)

Qa Qb D eiN 22�� Qb Qa; Qa Qb� D e�iN 22�� Qb� Qa; Qa Qb� D e�i��N.N�1/zN ; (1.21g)

Qa� Qa D 1CQp
�N .A/; Qa Qa� D 1CQp

N .A/; (1.21h)

Qb� Qb D 1CQq
�N .B/;

Qb Qb� D 1CQq
N .B/: (1.21i)

Here the polynomials Qp
� were defined in Equation (1.10). Formulas (1.21a)–

(1.21d) and the first two equations in (1.21g) are straightforward consequences of
Equations (0.16). In order to prove the last equality in (1.21g), we use (1.18). Equal-
ities (1.21h)–(1.21i) follow immediately from Lemma 1.3. In order to prove Equa-
tion (1.21e), we need to do a little work. First we note that for all n > 0 we have

aa�n � a�na D .pn � 1/Aa�.n�1/: (1.22)

Indeed, this formula holds for n D 1, and for n > 1 we can write

aa�n � a�na D .aa�/a�.n�1/ � a�.n�1/.a�a/
D .1 � A/a�.n�1/ � a�.n�1/.1 � pA/ (1.23)

D �Aa�.n�1/ C ppn�1Aa�.n�1/

D .pn � 1/Aa�.n�1/:

Now we are ready to prove Equation (1.21e). Using Equation (1.22) in step .a/ and
Lemma 1.4 in step .b/, we compute

z Qa� � e�iN 2�� Qa�z D ab�1a�N � e�iN 2��a�Nab�1

D e�iN 2�� .aa�N � a�Na/b�1 (1.24)
.a/D e�iN 2�� .pN � 1/Aa1�N b�1

.b/D e�iN 2�� .pN � 1/Aa1�N
�
bN�1b�N �Qq

N�1I�N .B/b
�1
�
:

Next, we use the fact that AQq
N�1I�N .B/ D 0 (due to AB D 0) and commutation
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relations for A to obtain

z Qa� � e�iN 2�� Qa�z
D e�iN 2�� .pN � 1/A.a1�N bN�1/b�N

D e�iN 2���i.N�1/22�� .pN � 1/A.aN�1b�.N�1//�b�N

D e�iN 2���i.N�1/22��Ci��.N�1/.N�2/.pN � 1/A..ab�/N�1/�b�N

D e�iN.NC1/�� .pN � 1/Az1�N Qb�: (1.25)

Here the second last equality follows from (1.18). The proof of Equation (1.21f) is
similar.

We are now ready for the main claim of this subsection.

Theorem 1.5. Let A be the universal �-algebra generated by the elements Qa0, Qb0, z0,
A0 and B 0, and satisfying the same relations (1.21) as their unprimed counterparts.
Then O.LN

pq�
/ and A are isomorphic as �-algebras, and the set of vectors

B WD f.A0/k.z0/�. Qb0/� j k > 0; �; � 2 Zg [ f.B 0/k.z0/�. Qa0/� j k � 0; �; � 2 Zg
(1.26)

is a basis of A. Here for�; � < 0we have written . Qb0/� WD . Qb0/�j�j, . Qa0/� WD . Qa0/�j�j
and .z0/� WD .z0/�j�j for brevity.

The proof of this theorem will occupy the remainder of this section. Until the final
stage of the proof, we will abuse notation by dropping the primes on the generators
of A. First we will prove some additional commutation relations.

Lemma 1.6. Let �; � 2 Z, and for �; � < 0 write Qb� WD Qb�j�j and Qa� WD Qa�j�j.
Then we have the relations

z�z� D .1CQp
�I�.A/CQq��I��.B//z

�C� ; (1.27a)

Qa� Qa� D .1CQp
N�IN�.A// Qa�C� ; (1.27b)

Qb� Qb� D .1CQq
N�IN�.B//

Qb�C� ; (1.27c)

A Qa� D e�i��N�.N��1/AzN� Qb� ; (1.27d)

Az� Qb� D eiN 2����A Qb�z� ; (1.27e)

where the polynomialsQp
�I� were defined in (1.14).

Proof. We prove each of the Equations (1.27) separately. For Equation (1.27a), we
first prove, by induction, the simpler result

znz�n D 1CQp
n .A/CQq�n.B/; z�nzn D 1CQp�n.A/CQp

n .B/: (1.28)
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Equations (1.28) is clearly satisfied for n D 0; 1 by Equations (1.21b) and (1.10).
We will prove the first equality, the second being proved similarly. So suppose that
n > 0. Then

znC1z�.nC1/ D z.znz�n/z�

D z �1CQp
n .A/CQq�n.B/

�
z�

D zz� �1CQp
n .p

�1A/CQq�n.qB/
�

D .1 � A � qB/ �1CQp
n .p

�1A/CQq�n.qB/
�

D 1C �.1 � A/Qp
n .p

�1A/ � A�C �.1 � qB/Qq�n.qB/ � qB
�

D 1CQp
nC1.A/CQq

�.nC1/
.B/; (1.29)

where in the last equality we used the recursive relations (1.3) and (1.11). Now
Equation (1.27a) clearly holds when �� � 0. When�� < 0 there are four cases, and
we will show how the proof works in a single instance. Suppose then, that j�j � j�j
and � < 0. Then using (1.28) and (1.14) we obtain

zj�jz�j�j D .zj�jz�j�j/z�.j�j�j�j/

D .1CQp
�.A/CQq��.B//z

�.j�j�j�j/

D .1CQp
�I�.A/CQq��I��.B//z

�.j�j�j�j/: (1.30)

Equations (1.27b) and (1.27c) are proved in the same way, and we just prove
Equation (1.27b). First we prove the formulae

Qan Qa�n D 1CQp
Nn.A/; Qa�n Qan D 1CQp

�Nn.A/; (1.31)

by induction. By (1.21h), these formulae are true for n D 0; 1. For n > 0 we use
Formula (1.8) and Equation (1.10) to find

QanC1 Qa�.nC1/ D Qa Qan Qa�n Qa�
D Qa.1CQp

Nn.A// Qa�
D Qa Qa�.1CQp

Nn.p
�NA//

D .1CQp
N .A//.1CQp

Nn.p
�NA//

D 1CQp

N.nC1/
.A/: (1.32)

Similarly

Qa�.nC1/ QanC1 D Qa�.1CQp
�nN .A// Qa

D .1CQp
�N .A//.1CQp

�nN .p
NA//

D 1CQp

�N.nC1/
.A/: (1.33)

Now the full Formula (1.27b) can be easily proven using (1.31) and (1.14) by applying
similar methods to those used to prove Equation (1.27a).
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To prove Equation (1.27d), first note that, as a direct consequence of (1.18) and
(1.21g), for all �; n 2 Z; n > 0, we obtain

Qa� Qb�� D e�i��N�.N��1/zN�; Qa�n WD Qa�n; Qb�n WD Qb�n: (1.34)

Then Equation (1.27c) and Equation (1.34) yield

A Qa� D A Qa� Qb�� Qb� � A Qa�Q
q
��N I�N .B/

D A. Qa� Qb��/ Qb� � 0
D e�i��N�.N��1/AzN� Qb�: (1.35)

Finally, Equation (1.27e) follows directly from the commutation relations between
Qb˙1 and z˙1 (Equations (1.21d), (1.21f)) and the fact that the additional term which
might appear as a side effect of commuting Qb˙1 with z˙1 is proportional to B .

Let V be the linear subspace of A spanned by B. Our aim is to show first that the
generators of A belong to V . Then, using some additional commutation relations,
we will show that V is closed under multiplication, and hence equal to A. Finally,
we will argue that A is isomorphic to O.LN

pq�
/. First we prove that Qb; Qb� 2 V .

Equations (1.21) allow us to write

Qb D Qb. Qa� Qa �Qp
�N .A// D ei��N.N�1/z�N Qa �Qp

�N .A/
Qb: (1.36)

Similarly Qb� D Qb�. Qa Qa� �Qp
N .A// D ei��N.NC1/zN Qa� �Qp

N .A/
Qb�, which com-

pletes the argument, since Qp
N .A/ has no constant term.

The previous argument, along with the definition of V , shows that all the generators
Qa, Qb, z,A,B , are contained in V . Thus to show that V D A we just need to prove that
V is closed under multiplication. To this end, let us denote for brevity the following
linear subspaces of V :

VA WD SpanfAkz� Qb� j k; �; � 2 Z; k > 0g; (1.37a)

V0 WD Spanfz� Qa� j �; � 2 Zg; (1.37b)

VB WD SpanfBkz� Qa� j k; �; � 2 Z; k > 0g; (1.37c)

W WD Span.V0 [ VB/: (1.37d)

Here for �; � < 0 we have written Qb� WD Qb�j�j, Qa� WD Qa�j�j and z� WD z�j�j for
brevity. The relation between these subspaces and V is

V D Span.VA [W/ D Span.VA [ V0 [ VB/: (1.38)

Lemma 1.7. For all � 2 Z, we have the inclusions

VA
Qb� � VA; Qb�VA � VA; (1.39a)

VAz
� � VA; z�VA � VA; (1.39b)

VA Qa� � VA; Qa�VA � VA: (1.39c)
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Proof. It is enough to consider an arbitrary vector from the set spanning VA, namely
Akz� Qb	 , where k; �; � 2 Z and k > 0. It follows from Equation (1.27c) that
Akz� Qb	 Qb� D Akz� Qb	C� 2 VA. Similarly, using equations (1.27e) and (1.27c), we
obtain

Qb�Akz� Qb	 D Ak Qb�z� Qb	 D e�iN 2����Akz� Qb� Qb	 D e�iN 2����Akz� Qb�C	 2 VA:

Next, using equations (1.27a) and (1.27e), we get

Akz� Qb	z� D e�iN 2��	�Akz�z� Qb	 D e�iN 2��	�Ak.1CQp
� I�.A//z�C� Qb	 2 VA:

Similarly, Equation (1.27a) yields

z�Akz� Qb	 D p��kAkz�z� Qb	 D p��kAk.1CQp
�I� .A//z�C� Qb	 2 VA: (1.40)

The final inclusions follows immediately from Equations (1.39b) and (1.39a) using
Equation (1.27d).

Lemma 1.8. For all �; � 2 Z, we have the commutation relation

Qa�z� � e�iN 2����z� Qa� 2 VA: (1.41)

Here for �; � < 0 we have written Qa� WD Qa�j�j and z� WD z�j�j for brevity.

Proof. The cases � and � both positive or both negative follow immediately from
Equation (1.21d), even replacing VA by the zero subspace. For � > 0 and � < 0, the
result follows from Equation (1.21e). The final case follows by taking the adjoint of
Equation (1.21e), manipulating the result using Equations (1.21a), (1.21d), and then
finally applying Equation (1.27e).

Lemma 1.9. The vector subspace V � A is closed under multiplication.

Proof. It is enough to consider products of basis vectors. First we note that because
the only cost of commutingA andB through any other generator of V is the appearing
of central coefficients and AB D BA D 0, we can easily conclude that VAVB D
VBVA D 0. Next, from Lemma 1.7 one immediately concludes that VA � VA � VA,
VA � V0 � VA and V0 � VA � VA.

Furthermore, using (1.41), (1.39), (1.27a), (1.27b), one can infer that, for all
�; �; �; � 2 Z,

z� Qa�z� Qa	

2 e�iN 2����z�z� Qa� Qa	 C z�VA Qa	

� e�iN 2����z�z� Qa� Qa	 C VA

D e�iN 2���� .1CQp
�I� .A/CQq��I�� .B//z

�C� .1CQp
N�IN	 .A// Qa�C	C VA

D e�iN 2���� .1CQ�;	
�;� .A/CQq��I�� .B//z

�C� Qa�C	 C VA; (1.42)
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where we have denotedQ�;	
�;� .A/ WD Qp

�I� .A/CQp
N�IN	 .p

����A/.1CQp
�I� .A//

for brevity. Observe that due to Equation (1.27d) we haveQ�;	
�;� .A/z

�C� Qa�C	 2 VA,
so that z� Qa�z� Qa	 2 V for all �; �; �; � 2 Z. It follows immediately that also
W �W � V , which completes the proof.

Summarising, we conclude that V D A because V contains generators of A

and is closed under multiplication. Hence the vectors in the set B, Equation (1.26),
span A. This proves half of Theorem 1.5, and we now complete the proof. To this
end, we take the natural �-homomorphism f W A! O.LN

pq�
/ defined on generators

of A by

A0 7! A WD 1�aa�; B 0 7! B WD 1�bb�; z0 7! ab�; Qa0 7! aN ; Qb0 7! bN :

It is enough to prove that this �-homomorphism is a linear bijection.
Before doing so, we note that it follows from (0.16) and (1.18) that

f ..z0/�/ D ei���.��1/a�b��; � 2 Z: (1.43)

Also, it follows from Equation (1.15) and relations (0.16), that the values of f on
linear generators (1.26) of A are given by

f ..A0/k.z0/�. Qb0/�/ D ei���.��1/Aka�bN���; (1.44a)

f ..B 0/k.z0/�. Qa0/�/ D ei2��
�

�.��1/
2 CN��

�
Bka�CN�b��; (1.44b)

f ..z0/�. Qa0/�/ D ei2��
�

�.��1/
2 CN��

�
.1CQp

�IN�.A//a
�CN�b��; (1.44c)

for all k; �; � 2 Z, k > 0.
First we show that the homomorphism f is surjective. It is enough to prove that

an arbitrary vector from basis (1.19) is in the image of f . For all k; �; � 2 Z, k > 0,
we have

Aka�bN��� D f
�
e�i���.��1/.A0/k.z0/�. Qb0/�

�
: (1.45)

On the other hand, (1.44b) implies that for all k; �; � 2 Z, k > 0, we have

Bka�bN���

D f
�
e
�i2��

�
.�N�C�/.�N�C��1/

2 CN.�N�C�/�
�
.B 0/k.z0/�N�C�. Qa0/�

�
: (1.46)

Finally, it follows from the same computation which led to Equation (1.46) that for
all �; � 2 Z

f

�
e
�i2��

�
.�N�C�/.�N�C��1/

2 CN.�N�C�/�
�
.z0/�N�C�. Qa0/�

�
D .1CQp

�N�C�IN�.A//a
�bN���: (1.47)
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Hence, using Equation (1.45) we find that for all �; � 2 Z

a�bN��� D f
�
e
�i2��

�
.�N�C�/.�N�C��1/

2 CN.�N�C�/�
�
.z0/�N�C�. Qa0/�

�
� f

�
e�i���.��1/Q

p
�N�C�IN�.A

0/.z0/�. Qb0/�
�
: (1.48)

Next, to show that the homomorphism f is injective, we suppose that f .v/ D 0
for some v 2 A. Since the set B spans A, we can write v as a linear combination

v D
X

k>0I �;�2Z

˛k��.A
0/k.z0/�. Qb0/� C

X
k0>0I �0;�02Z

ˇk0�0�0.B 0/k0

.z0/�0

. Qa0/�0

C
X

�00;�002Z


�00�00.z0/�00

. Qa0/�00

: (1.49)

Using equations (1.44), we can explicitly compute f .v/ to be

f

0@ X
k>0I �;�2Z

˛k��.A
0/k.z0/�. Qb0/�

C
X

k0>0I �0;�02Z

ˇk0�0�0.B 0/k0

.z0/�0

. Qa0/�0

C
X

�00;�002Z


�00�00.z0/�00

. Qa0/�00

1A (1.50)

D
X

k>0I �;�2Z

˛k��e
i���.��1/Aka�bN���

C
X

k0>0I �0;�02Z

ˇk0�0�0e
i2��

�
�0.�0�1/

2 �N�0�0
�
Bk0

a�0CN�0

b��0

C
X

�00;�002Z


�00�00e
i2��

�
�00.�00�1/

2 �N�00�00
�
.1CQp

�00IN�00.A//a
�00CN�00

b��00

:

Since the set of vectors (1.19) is linearly independent, it follows immediately that
f .v/ D 0 implies thatˇk0�0�0 D 0, for allk0; �0; �0 2 Z, k0 > 0. Now considering the
terms 
�00�00a�00CN�00

b��00

in the last sum, we see that 
�00�00 D 0, for all�00; �00 2 Z.
Then also ˛k�� D 0, for all k; �; � 2 Z, k > 0. Hence v D 0, so that f is injective.
Finally, note that this also proves that the set of vectors (1.26) is linearly independent.

1.3. Non-cleftness of the Heegaard O.Z=NZ/-comodule algebras. Let us begin
by showing that O.S3

pq/ is a principal comodule algebra. As explained in the pre-
liminaries, to this end it suffices to construct a strong connection. It turns out that a
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simple modification of the formulae for a strong connection given in [11, (4.4)–(4.6)]
yields a strong connection in our case. We define the linear map

` W O.Z=NZ/ 3 h 7�! `.h/ DW hh1i ˝ hh2i 2 O.S3
pq� /˝O.S3

pq� / (1.51)

(summation understood in hh1i˝hh2i) by setting its values on the basis elements Qun,
n D 0; : : : ; N � 1, to be

`.1/ WD 1˝1; `. Qu/ WD a�˝aCp�1b�A˝b; `. Qun/ WD Quh1i`. Qun�1/ Quh2i; (1.52)

n D 2; : : : ; N � 1. Proving that the above defined map is a strong connection is
almost identical to an argument provided in [11].

The method we use to show the non-existence of a cleaving map, is to prove that
there are not enough invertibles in the comodule algebra of the quantum sphere to
accomodate the range of such a map.

Theorem 1.10. The only invertible elements in the algebra of polynomial functions
on the Heegaard quantum sphere O.S3

pq�
/ are non-zero multiples of the identity.

Proof. Our proof will follow the general idea and structure of the proof of non-
existence of non-trivial invertible elements in another noncommutative deformation
of the polynomial algebra of S3, namely the Hopf algebra O.SLq.2// [10]. Here we
use the basis (0.18) to present each element in O.S3

pq�
/ as a linear combination of

monomials a�b� , �; � 2 Z, with coefficients in the polynomial algebra generated
by A and B . The crux of the proof is that a and b are invertible up to polynomials in
A and B .

For the duration of this proof, for Z 3 �; � < 0 we will write b� WD b�j�j and
a� WD a�j�j for brevity. Recall that any element r 2 O.S3

pq�
/ can be expanded using

basis (0.18) as
r D

X
�;�2Z

finite

C r
�I�.A;B/a�b� ; (1.53)

where fC r
�I�g�;�2Z is a family of complex polynomials in two variables without

mixed monomials. Here no mixed monomials means that it can be written as

C r
�I�.X; Y / D 
 r

�I� C ˛r
�I�.X/C ˇr

�I�.Y /; (1.54)

where 
 r
�I� 2 C and ˛r

�I� and ˇr
�I� are polynomials such that ˛r

�I�.0/ D 0 and
ˇr

�I�.0/ D 0. Since the family of vectors (0.18) is a linear basis, it follows that the
polynomials C r

�I� are uniquely determined by r .
We endow Z �Z with the lexicographical order, i.e.,

.�; �/ � .�0; �0/ WD � < �0 _ .� D �0 ^ � � �0/: (1.55)

This order is linear (total) and satisfies

.�; �/ � .�0; �0/ () .��0;��0/ � .��;��/: (1.56)
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The latter justifies introducing a notation �.�; �/ D .��;��/. Next, we define a
Z2-grading deg W O.S3

pq�
/! Z2 by declaring

deg.C.A;B/a�b�/ WD .�; �/; for all �; � 2 Z and C.A;B/ ¤ 0; (1.57)

where C is a polynomial in two variables with coefficients in C.
We will also need to divide O.S3

pq�
/ into the following linear subspaces:

X WD SpanfAka�b� j k � 0; �; � 2 Zg;
X1 WD SpanfAka�b� j k > 0; �; � 2 Zg;

Y WD SpanfBka�b� j k � 0; �; � 2 Zg;
Y1 WD SpanfBka�b� j k > 0; �; � 2 Zg: (1.58)

Note that

X \ Y1 D X1 \ Y D f0g; X ˚ Y1 D X1 ˚ Y D O.S3
pq� /; (1.59)

i.e., we have two splittings of O.S3
pq�

/ into a direct sum of subspaces. The expan-

sion (1.53) and Formula (1.54) provide a way to split any element r 2 O.S3
pq�

/ into
a sum of vectors from these subspaces. For instance, we can split r into vectorsX

�;�2Z

.
 r
�I� C ˛r

�I�.A//a�b� 2 X and
X

�;�2Z

ˇr
�I�.B/a�b� 2 Y1: (1.60)

Using commutation relations (0.16) and Equation (1.15), we can write the expan-
sion of a product of elements r and s of O.S3

pq�
/ as

rs D
0@ X

�;�2Z

C r
�I�.A;B/a�b�

1A0@ X
�0;�02Z

C s
�0I�0.A;B/a

�0

b�0

1A
D

X
�;�;�0;�02Z

ei2����0

C r
�I�.A;B/C s

�0I�0.p
��A; q��B/.a�a�0

/.b�b�0

/

D
X

�;�;�0;�02Z

ei2����0

C r
�I�.A;B/C s

�0I�0.p
��A; q��B/

.1CQp
�I�0.A//.1CQq

�I�0.B//a
�C�0

b�C�0

: (1.61)

Hence we obtain

C rs
�I�.A;B/ D

X
�0;�02Z

ei2���0.���0/C r
�0I�0.A;B/C

s
���0I���0.p

��0

A; q��0

B/

�
1CQp

�0I���0.A/CQq
�0I���0.B/

�
: (1.62)
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It follows immediately that

XY1 � Y1; Y1X � Y1; YX1 � X1; X1Y � X1: (1.63)

Furthermore, writing

r D
X

�;�2Z
finite

C r
�I�.A;B/a�b� D

X
�;�2Z

finite

�

 r

�I� C ˛r
�I�.A/C ˇr

�I�.B/
�
a�b� (1.64)

we observe that if r is invertible and either all 
 r
�I�’s or all 
 r�1

�I� ’s are zero, then the
expansion of rr�1 in terms of basis (0.18) would contain only vectors from X1 or Y1.
However, this is impossible because 1 … X1 ˚ Y1. Hence, if r is invertible, then
at least one of the 
 r

�I�’s (and also one of the 
 r�1

�I� ’s) is non-zero. This observation
allows us to define maps on the invertible elements of O.S3

pq�
/ by

max degX W O.S3
pq� / �! Z �Z;

r 7�! maxf.�; �/ 2 Z �Z j 
 r
�I� C ˛r

�I�.A/ ¤ 0g; (1.65a)

max degY W O.S3
pq� / �! Z �Z;

r 7�! maxf.�; �/ 2 Z �Z j 
 r
�I� C ˇr

�I�.B/ ¤ 0g; (1.65b)

min degX W O.S3
pq� / �! Z �Z;

r 7�! minf.�; �/ 2 Z �Z j 
 r
�I� C ˛r

�I�.A/ ¤ 0g; (1.65c)

min degY W O.S3
pq� / �! Z �Z;

r 7�! minf.�; �/ 2 Z �Z j 
 r
�I� C ˇr

�I�.B/ ¤ 0g: (1.65d)

Next, let r; s 2 O.S3
pq�

/ be invertible, and let .�; �/ D max degX.r/ and
.�0; �0/ D max degX.s/. Then, by Equation (1.62),


 rs
�C�0I�C�0 C ˛rs

�C�0I�C�0.A/

D ei2����0

.
 r
�I� C ˛r

�I�.A//.
 s
�0I�0 C ˛s

�0�0.p
��A//.1CQp

�I�0.A//: (1.66)

The factors on the right-hand side are non-zero by the definition of .�; �/ and .�0; �0/
and because the algebra generated by A does not contain zero-divisors. It follows
that 
 rs

�C�0I�C�0 C ˛rs
�C�0I�C�0.A/ ¤ 0. Therefore, for all invertible r and s we have

max degX.rs/ D max degX.r/Cmax degX.s/; (1.67a)

where the addition of pairs of integers is done componentwise. Similarly, we prove
that for all invertible r and s we have

max degY.rs/ D max degY.r/Cmax degY.s/; (1.67b)

min degX.rs/ D min degX.r/Cmin degX.s/; (1.67c)

min degY.rs/ D min degY.r/Cmin degY.s/: (1.67d)
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Suppose now that r 2 O.S3
pq�

/ is invertible. Then

max degX.rr
�1/ D max degX.1/ D .0; 0/; (1.68)

and similarly

max degY.rr
�1/ D min degY.rr

�1/ D min degX.rr
�1/ D .0; 0/: (1.69)

Hence the equations (1.67) imply that

max degX.r
�1/ D �max degX.r/; max degY.r

�1/ D �max degY.r/; (1.70)

min degX.r
�1/ D �min degX.r/; min degY.r

�1/ D �min degY.r/:

In particular, starting with an obvious property that

min degX.r
�1/ � max degX.r

�1/ (1.71)

and substituting Equation (1.70) into it yields that

�min degX.r/ � �max degX.r/: (1.72)

Hence, using Equation (1.56), we obtain that max degX.r/ � min degX.r/, so that

max degX.r/ D min degX.r/ D �max degX.r
�1/ D �min degX.r

�1/: (1.73a)

Similarly we prove that

max degY.r/ D min degY.r/ D �max degY.r
�1/ D �min degY.r

�1/: (1.73b)

On the other hand, we already know that in the sum (1.64) 9 .�; �/ W 
 r
�I� ¤ 0.

By the linear independence, also 
 r
�I� C ˛r

�I�.A/ ¤ 0 and 
 r
�I� C ˇr

�I�.B/ ¤ 0.
Therefore, by (1.73a) and (1.73b), max degX.r/ D .�; �/ D max degY.r/. Using
again the linear independence, we conclude that all terms in (1.64) with the index
different from .�; �/ must vanish.

Summarising, so far we have proven that an invertible element r 2 O.S3
pq�

/ and
its inverse must have the form

r D .
 r
�I� C ˛r

�I�.A/C ˇr
�I�.B//a�b� ;

r�1 D .
 r�1

��I�� C ˛r�1

��I��.A/C ˇr�1

��I��.B//a
��b�� (1.74)

for some �; � 2 Z, with 
 r
�I�
 r�1

��I�� ¤ 0. Then inserting r and r�1 into For-
mula (1.62) yields

1 D e�i2����.
 r
�I� C ˛r

�I�.A//.
 r�1

��I�� C ˛r�1

��I��.A//.1CQp
�I��.A//

C B .polynomial.B//: (1.75)
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By linear independence, the term inB vanishes. Now by polynomial degree counting,
we can conclude that the polynomial inA is of degree zero, and hence so are its factors.
This yields

˛r
�I�.A/ D ˛r�1

��I��.A/ D Qp
�I��.A/ D 0: (1.76)

Repeating the argument for B gives

ˇr
�I�.B/ D ˇr�1

��I��.B/ D Qq
�I��.B/ D 0: (1.77)

Recalling that Qp
�I��.A/ D Q

q
�I��.B/ D 0 only if � D � D 0, we infer that

r D 
 r
0I0 2 C n f0g.

Since the Hopf algebra O.Z=NZ/ contains a non-trivial group-like element, in
the image of a cleaving map there would have to be a non-trivial invertible (see
preliminaries). Hence Theorem 1.10 implies that a cleaving map does not exist:

Corollary 1.11. O.S3
pq�

/ is a non-cleft O.Z=NZ/-comodule algebra.

2. Comodule algebras over the C �-algebras of Heegaard lens spaces

2.1. K-groups. For the K-theory calculations to come, we utilise a description
of the Heegaard quantum sphere as a pullback of U.1/-C �-algebras, see the first
example of Section 5.2 in [9]. We write T for the Toeplitz algebra, and since we will
have two copies of this algebra, we denote their generating isometries by z˙. The
corresponding unitaries implementing the crossed products T Ì˙� Z are denoted by
u˙. Finally,ZC andUC stand for the two generating unitaries of the noncommutative
torus C.S1/ Ì� Z. With this notation, the pullback structure of

C.S3
pq� / Š f.aC; a�/ 2 T Ì� Z˚ T Ì�� Z W �1.aC/ D �2.a�/g (2.1)

is given by the following diagram and maps:

C.S3
pq�

/

����
��

��
��

��

���
��

��
��

��
�

T Ì
�

Z

�1

���
��

��
��

��
��

T Ì
��

Z

�2

				
		

		
		

		
	

zC


��

uC


��

z�


��

u�


��

C.S1/ Ì
�

Z

ZC UC Z�1C ZCUC :

(2.2)
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This is a pullback diagram of U.1/-C �-algebras, with the natural U.1/-action on the
Z-parts. We restrict this action of U.1/ to Z=NZ and consider the pullback diagram
obtained by the restriction of the above one to its Z=NZ-invariant part:

C.LN
pq�

/



��
��

��
��

��
�

����
��

��
��

��
�

T Ì
�
NZ

��






















T Ì
��
NZ

����
��

��
��

��
��

�

zC


��

uNC


��

z�


��

uN�


��

C.S1/ Ì
�
NZ

ZC UNC Z�1C .ZCUC/N :

(2.3)

We can use the commutation relations in the noncommutative torus to simplify the
rightmost map as .ZCUC/N D eiN.N�1/��ZNCUNC . Introducing the generators

QzC WD zC; QuC WD uNC ; Qz� WD z�; Qu� WD uN� ; Z WD ZC; U WD UNC ; (2.4)

we can rewrite this pullback diagram as

C.LN
pq�

/

pr1



��
��

��
��

��
pr2

���
��

��
��

��
�

T Ì
N�

Z

Q�1

���
��

��
��

��
��

�
T Ì
�N�

Z

Q�2

��		
		

		
		

		
		

QzC


��

QuC


��

Qz�


��

Qu�


��

C.S1/ Ì
N�

Z

Z U Z�1 eiN.N�1/��ZNU:

(2.5)

For theK-theory calculations to come, we need to know the effect of the maps in
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the pullback diagram on K-theory generators. These are given by

K0.T Ì
N�

Z/ Š Z 3 m Q�1�7�! .m; 0/ 2 Z˚Z Š K0.C.S
1/ Ì

N�
Z/;

K0.T Ì
�N�

Z/ Š Z 3 m Q�2�7�! .m; 0/ 2 Z˚Z Š K0.C.S
1/ Ì

N�
Z/;

K1.T Ì
N�

Z/ Š Z 3 n Q�1�7�! .0; n/ 2 Z˚Z Š K1.C.S
1/ Ì

N�
Z/;

K1.T Ì
�N�

Z/ Š Z 3 n Q�2�7�! .Nn; n/ 2 Z˚Z Š K1.C.S
1/ Ì

N�
Z/: (2.6)

Inserting these K-theory groups and maps into the Mayer–Vietoris 6-term exact se-
quence (see preliminaries)

K0.C.L
N
pq�

// �� K0.T Ì
N�

Z/˚K0.T Ì
�N�

Z/ �� K0.C.S
1/ Ì

N�
Z/

��
K1.C.S

1/ Ì
N�

Z/

��

K1.T Ì
N�

Z/˚K1.T Ì
�N�

Z/�� K1.C.L
N
pq�

//��

(2.7)

yields the exact sequence

K0.C.L
N
pq�

// �� Z˚Z
.m;n/ 7!.m�n;0/ �� Z˚Z

��
Z˚Z

��

Z˚Z
.�Nn;m�n/ �.m;n/�� K1.C.L

N
pq�

//:
0��

(2.8)

Thus we immediately obtain that K1.C.L
N
pq�

// D Z. Using this information, we
can simplify the sequence (2.8) to the exact sequence

0! NZ˚Z ,! Z˚Z! K0.C.L
N
pq� //! Z˚Z! Z! 0: (2.9)

Consequently, the sequence

0! NZ ,! Z
f! K0.C.L

N
pq� //! Z! 0 (2.10)

is exact. Since Z is projective, K0.C.L
N
pq�

// D Imf ˚ Z and Imf D Z=NZ.
Summarising, we have derived

Theorem 2.1. K0.C.L
N
pq�

// D Z=NZ˚Z and K1.C.L
N
pq�

// D Z.
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2.2. The generators of K0. With the foregoing computation of K-groups at hand,
we are ready to prove the main result of this paper.

Theorem 2.2. Let LN WD fx 2 C.S3
pq�

/ j ˛
e

2�i
N
.x/ D e

2�i
N xg � C.S3

pq�
/. Then

LN is not stably free as a left C.LN
pq�

/-module.

Proof. The C �-algebra C.S3
pq�

/ is isomorphic as a U.1/-C �-algebra to C.S3
00�
/

[2, Theorem 2.8]. The latter is generated by isometries s and t with the U.1/-
action given by Q̨ei' .s/ D ei's, Q̨ei' .t/ D ei' t . The induced Z=NZ-action can
be therefore written as �R.s/ D s ˝ Qu, �R.t/ D t ˝ Qu, where Qu 2 C.Z=NZ/,
Qu.e 2�ik

N / D e 2�ik
N . One can immediately check that the formula

`. Quk/ WD s�k ˝ sk; k 2 f0; : : : ; N � 1g; (2.11)

defines a strong connection, so that C.S3
pq�

/ is a C.Z=NZ/-principal comodule
algebra (see preliminaries).

Next, let C be a left C.Z=NZ/-comodule via %.1/ WD Qu˝ 1. Then, as explained
in Subsection 0.2, we can write

LN Š C.S3
pq� / �

C.Z=N Z/
C Š C.LN

pq� /ss
�: (2.12)

Thus ss� 2 C.L3
pq�

.N // is an idempotent (in fact, projection) representing the K0-
class of LN . On the other hand, we know from the precedingK-theory computation
that the Z=NZ-part of K0.C.L

N
pq�

// is generated by the odd-to-even connecting

homomorphism applied to the K1-class of the unitary Z 2 C.S1/ ÌN� Z. In other
words, @10ŒZ� ¤ 0 and N@10ŒZ� D 0. To compute @10ŒZ�, we lift Z and Z�1 to
QzC; Qz�C 2 T ÌN� Z respectively. The Milnor construction (0.23) yields�

.1; 1/ .0; 0/

.0; 0/ .1 � QzC Qz�C; 0/
�
D
�
1 0

0 1

�
�
�
0 0

0 . QzC Qz�C; 1/
�
: (2.13)

Finally, using the pullback description of C.S3
00�
/ in Equation (2.1), we note that s

is expressed as .zCuC; u�/. Hence ss� can be written as .zCz�C; 1/. As this element
belongs to the Z=NZ-invariant part, we can rewrite it in terms of the C.LN

pq�
/ D

C.S3
pq�

/Z=N Z-generators, which in this instance just means adding Q, so that ss� D
. QzC Qz�C; 1/. Now it is clear that

@10ŒZ� D 2Œ1� � ŒLN � � Œ1� D Œ1� � ŒLN �: (2.14)

IfLN were stably free, then there would exist k; m 2 N such thatLN˚C.LN
pq�

/k

Š C.LN
pq�

/m as modules. Then the foregoing equation would imply

@10ŒZ� D Œ1�C kŒ1� � ŒLN ˚ C.LN
pq� /

k� D .k C 1 �m/Œ1�: (2.15)
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However, since @10ŒZ�¤ 0, we conclude thatkC1�m¤ 0. HenceN.kC1�m/¤ 0
and N.k C 1 � m/Œ1� D 0. This contradicts the fact that the projection map

C.LN
pq�

/
pr1�! T ÌN� Z takes the identity to the identity inducing the map

K0.C.L
N
pq� //

pr1��! K0.T Ì
N�

Z/ D ZŒ1�;

N.k C 1 �m/Œ1� pr1�7�! N.k C 1 �m/Œ1� ¤ 0: (2.16)

Hence LN is not stably free.

The above theorem shows that the module LN associated to the C.Z=NZ/-
principal comodule algebra C.Spq� // is responsible for the torsion part of the group
K0.C.L

N
pq�

// and is not stably free. There is a hierarchy of implications: associated
module not stably free) associated module not free) principal comodule algebra
not cleft) principal comodule algebra not trivial. In the algebraic part of this paper,
we managed to prove by elementary methods that the O.Z=NZ/-principal comodule
algebra O.S3

pq�
/ is not cleft. Not going beyond algebraic methods, we could also

prove that the associated O.LN
pq�

/-module

LN WD
n
x 2 O.S3

pq� /
ˇ̌̌
˛

e
2�i
N
.x/ D e 2�i

N x
o
Š O.S3

pq� / �
C.Z=N Z/

C (2.17)

is not free. However, to show that LN is not stably free, we need to take advantage
of Theorem 2.2.

Corollary 2.3. The O.LN
pq�

/-module LN is not stably free.

Proof. Replacing Formula (2.11) by (1.52) defines a strong connection onC.Z=NZ/-
principal comodule algebra C.S3

pq�
/. As in the proof of Theorem 2.2, we can use

this strong connection to compute an idempotent matrix representing the associated
C.LN

pq�
/-module LN . It turns out to be

eN WD
�
1 � A p�1zA

z� p�1A

�
2M2.O.L

N
pq� // �M2.C.L

N
pq� //: (2.18)

It follows from Theorem 2.2 that, for any non-negative integers k and l , there are no
matrices v and w over C.LN

pq�
/ such that

vw D
�
eN 0

0 Ik

�
and wv D Il ; (2.19)

where Ik and Il are identity matrices of the size k and l respectively. Hence there are
no such matrices over O.LN

pq�
/. On the other hand, since LN is associated by the

same group-like Qu as LN , and the same formulae (1.52) define a strong connection
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on both O.S3
pq�

/ and C.S3
pq�

/ comodule algebras over O.Z=NZ/ D C.Z=NZ/,

we infer that the idempotent matrix eN also represents LN as an O.LN
pq�

/-module.

Combining these two facts, we conclude that the O.LN
pq�

/-module LN is not stably

isomorphic to O.LN
pq�

/l for any positive integer l .

3. U.1/-prolongations

3.1. Prolongations in the algebraic setting. By Subsection 0.2, the prolongation
of O.S3

pq�
/ by O.U.1// is a principal comodule algebra. Furthermore, using [4,

Proposition 4.1], one can prove that it is not cleft if there are no invertible elements
in O.S3

pq�
/ other then multiples of identity. Therefore, Theorem 1.10 enjoys the

following corollary.

Corollary 3.1. The prolongation O.S3
pq�

/ �
O.Z=N Z/

O.Z=NZ/O.U.1// is a non-cleft

O.U.1//-comodule algebra.

Now we will try to describe the algebra O.S3
pq�

/�O.Z=N Z/O.U.1// in more

detail. First, we observe that the cotensor product O.S3
pq�

/�O.Z=N Z/O.U.1// is

equal to .O.S3
pq�

/˝O.U.1/// co O.Z=N Z/ for the coaction

O.S3
pq� /˝O.U.1// 3 p ˝ h

7�! p.0/ ˝ h.2/ ˝ p.1/S.�.h.1/// 2 O.S3
pq� /˝O.U.1//˝O.Z=NZ/: (3.1)

This coaction defines the following Z=NZ-action:

Q̨ W Z=NZ 3 e 2�ik
N 7�! Q̨

e
2�ik

N
2 Aut.O.S3

pq� /˝O.U.1///; (3.2)

Q̨
e

2�ik
N
.x ˝ h/ WD ˛

e
2�ik

N
.x/˝ h.� e�2�ik

N /:

With this action in mind, we can now write

O.S3
pq� / �

O.Z=N Z/
O.U.1// D .O.S3

pq� /˝O.U.1///Z=N Z: (3.3)

Next, a straightforward calculation inspired by [4, Lemma 5.3] and taking advan-
tage of the Hopf �-algebra isomorphism

 W O.U.1// 3 u 7�! uN 2 co O.Z=N Z/O.U.1//

WD fh 2 O.U.1// j �.h.1//˝ h.2/ D 1˝ hg (3.4)

allows us to prove the following result.
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Proposition 3.2. The assignments

O.S3
pq� /˝O.U.1//

'�! .O.S3
pq� /˝O.U.1///Z=N Z;

x ˝ h '7�! x.0/ ˝ x.1/ .h/;

.O.S3
pq� /˝O.U.1///Z=N Z '�1

�! O.S3
pq� /˝O.U.1//;X

i

xi ˝ hi '�1

7�!
X

i

xi
.0/ ˝  �1.S.xi

.1//h
i /;

define mutually inverse isomorphisms of �-algebras.

3.2. Prolongations in the C �-setting. As above, we can argue that the prolongation
of C.S3

pq�
/ by O.U.1// is a principal comodule algebra. However, we need to apply

a different reasoning than above to show that it is not cleft. Recall first that, by
Theorem 2.2, the finitely generated projective left C.LN

pq�
/-module LN is not free.

Together with the natural identifications

LN Š C.S3
pq� / �

O.Z=N Z/
C Š C.S3

pq� / �
O.Z=N Z/

O.U.1// �
O.U.1//

C; (3.5)

we see that the rightmost module is also not free. Since every module associated with
a cleft comodule algebra is necessarily free, we arrive at the following corollary of
Theorem 2.2.

Corollary 3.3. The O.U.1//-comodule algebra C.S3
pq�

/ �
O.Z=N Z/

O.U.1// is not

cleft.

To prove an analogue of Proposition 3.2, we use the identification C.X;A/ Š
A N̋ C.X/, whereX is a compact Hausdorff space,A is a unitalC �-algebra, C.X;A/
is the algebra of norm-continuous functions, and C.X/ WD C.X;C/. Furthermore,
we easily check that the formulae

.F1.f //.e
i'1 ; ei'2/ WD ˛ei'1 .f .e

i'2//; (3.6)

.F2.g//.e
i'/ WD g.ei' ; ei'N /; (3.7)

.G1.f //.e
i'1 ; ei'2/ WD ˛ei'1 .f .e

i'2//; (3.8)

.G2.g//.e
i'/ WD g.e�i'

N ; e
i'
N /; (3.9)
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define C �-homomorphisms in the diagram

C.U.1/; C.S3
pq�

//
F1 �� C.U.1/ � U.1/; C.S3

pq�
//

G2

��
F2 �� CZ=N Z.U.1/; C.S

3
pq�

//
G1

��

C.S3
pq�

/ N̋ C.U.1//
Š

��

�� �
C.S3

pq�
/ N̋ C.U.1//

�Z=N Z
:

Š
��

��

Here the right bottom corner is defined via an extension of the action (3.2) to the
C �-algebra C.S3

pq�
/ N̋ C.U.1//. Verifying that F2 B F1 and G2 B G1 are mutually

inverse maps yields the desired isomorphism result.

Proposition3.4. TheC �-algebras
�
C.S3

pq�
/ N̋ C.U.1//�Z=N Z

andC.S3
pq�

/ N̋ C.U.1//
are isomorphic.
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[11] P. M. Hajac, R. Matthes, and W. Szymański, A locally trivial quantum Hopf fibration.
Algebr. Represent. Theory 9 (2006), 121–146. Zbl 1132.58007 MR 2238363

[12] P. M. Hajac, R. Matthes, P. M. Sołtan, W. Szymański, and B. Zieliński, Hopf–Galois
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