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Abstract. The idea of a line bundle in classical geometry is transferred to noncommutative
geometry by the idea of a Morita context. From this we construct Z- and N-graded algebras,
the Z-graded algebra being a Hopf–Galois extension. A non-degenerate Hermitian metric
gives a star structure on this algebra, and an additional star operation on the line bundle gives
a star operation on the N-graded algebra. In this case, we carry out the associated circle
bundle and Thom constructions. Starting with a C�-algebra as base, and with some positivity
assumptions, the associated circle and Thom algebras are also C�-algebras. We conclude
by examining covariant derivatives and Chern classes on line bundles after the method of
Kobayashi and Nomizu.
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1. Introduction

In this paper we consider the generalisation of line bundles to noncommutative ge-
ometry. Of course, it has been successfully assumed for many years that finitely
generated projective modules over an algebra A should be understood as (sections of)
vector bundles in noncommutative geometry. In Section 3 we will characterise the
specialisation of this idea which generalises a line, rather than a higher dimensional,
bundle. To many readers much of the material in this section will seem familiar, and
this will be explained in Section 4, where we note that the definition of a line module
is just that of a Morita context [2], and that the results of Section 3 are essentially
taken out of the literature on algebraic K-theory. Our order of exposition has been
chosen to make things slightly clearer to readers who are not familiar with Morita
theory.

At this point, the reader may ask why we restrict a perfectly satisfactory theory
to a special case, especially if that special case has already been studied (though
in a rather different setting). The answer is that we can construct two algebras of
functions from the line module, an N-graded and a Z-graded algebra. The Z-graded
algebra can be characterised using the theory of Hopf–Galois extensions, culminating
in Theorem 7.3, which gives a 1-1 correspondence between automorphisms of the
category AM of left A-modules, left line modules over A, and Hopf–Galois CZ
extensions of A.

To study further these algebras, we introduce a Hermitian metric, or inner product
on the module, which is essentially given by a Hilbert C�-module. (See [5] for
more of this approach, and [20] for Hilbert C�-modules.) The Hermitian metric is
described in Section 9, and is used to give a star operation on the Z-graded algebra
in Section 10. To give a star operation on the N-graded algebra requires another
structure, an involution on the module itself, and this is described in Section 11. The
N-graded algebra does not have a direct interpretation as a Hopf–Galois extension,
but with the additional structure of a Hermitian metric and a star operation, we can
form a Z=2 Hopf–Galois extension from it, see Section 12.

These two algebras (and their different star operations) correspond to two dif-
ferent cases in the classical theory. The complex canonical line bundle in algebraic
geometry has a star operation, given by conjugation of the complex coordinates, but
that operation takes values in the dual of the canonical bundle rather than the original
bundle. This corresponds to the Z-graded algebra and involution. However the case
of a real line bundle on a topological space is rather different. The functions on
the total space of the bundle which are polynomial in the fibre R form an N-graded
algebra. The involution is just complex conjugation of functions on the total space
of the bundle. This corresponds to the N-graded algebra and involution.

Now we come to a case of the Thom construction [30]. Given an Rn bundle on a
compact topological space, there are two obvious compactifications to consider. One
(the Thom space) is the one point compactification of the total space, and the other
adds a point to each fibre to make an associated sphere Sn bundle. We shall consider
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the case of a line bundle, n D 1. The N-graded algebra of functions polynomial
in the fibre direction can be modified to give an algebra of functions vanishing at
infinity on the fibres. Making this into a unital algebra by adding C corresponds to
the Thom construction, whereas adding a copy of the functions on the compact space
corresponds to the associated sphere (or circle in this case) bundle.

Another successful assumption about noncommutative geometry is that compact
Hausdorff topological (noncommutative) spaces correspond to unital C�-algebras.
If the original algebra A is a unital C�-algebra, we might hope that the algebras
corresponding to the Thom construction and associated circle bundle might also be
unital C�-algebras. In Sections 13 and 14 we show that this is indeed the case, by
explicit construction of a star representation of the N-graded algebra (or rather, its
vanishing at infinity variant) on a Hilbert space.

In Section 5 we discuss automorphisms of the centre of the algebra, and how
they arise from line modules. This was extensively studied in [16]. This is used in
various other parts of the paper, as central elements give the freedom of choice in
constructing bimodule maps between line modules. Section 8 on the Picard group of
an algebra (see [2]) contains more questions than answers, but hopefully they may be
useful questions! The Picard group consists of isomorphism classes of line modules.
The basic problem is whether there exists a ‘universal’ Hopf–Galois extension of
the algebra A which gives all line modules over A. In particular the problem of
constructing a Hopf–Galois extension with group the Picard group (or some related
extension) may be bound up in choosing cocycles with values in the centre.

In Section 15 we look at a method of constructing line modules which has arisen
in the literature (e.g. [21], [22]), and give a simple example, the noncommutative
Hopf fibration. Finally in Section 16 we will look at the differential geometry of
covariant derivatives on line modules. It turns out that we can give very explicit
descriptions of these covariant derivatives. One reason to be interested in such things
is that covariant derivatives on line bundles give U.1/ gauge theory, otherwise known
as electromagnetism, in theoretical physics. For noncommutative gauge theory we
refer to [24] for a physics motivated discussion, and to [8] for the mathematics.
The idea of bimodule covariant derivative mentioned here has a long history, see for
example [15], [14], [27], [23]. However in this article we concentrate on another
application, following the example of classical differential geometry in [19], we give
a definition of the differential Chern class in terms of the trace of the curvature.

For related material in the literature, in [12] there is a version of the Thom map
for K-theory associated to a C� dynamical R-system. This refers to the topological
space results for the Thom isomorphism in K-theory given in [1]. For our current
paper, it is of interest to note that the discussion in [1] makes use of decomposable
vector bundles, i.e., vector bundles which are a sum of line bundles.

So what is the chance of extending these results to the equivalent of Rn bundles
rather than just line bundles? The basic difficulty is what reduces to the relations
between the ‘fibre coordinates’. In other words, the tensor algebras are far too big,
and we have to perform what would be classically a symmetrisation operation. This
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may involve a map � W E ˝A E ! E ˝A E, as may be indicated from the idea of
bimodule covariant derivatives, or braidings associated to Yetter–Drinfeld modules
(see [31]), but the idea of what would work in a large number of cases is not really
understood.

One idea possibly worthy of future investigation is the relation to cohomology
of algebras. For topological spaces, there is a 1-1 correspondence between principal
abelian group bundles and H 1 cohomology with coefficients in the abelian group.
It is extremely tempting to transfer this idea to algebras by taking the Hopf–Galois
extensions in place of the principal abelian group bundles. The big question, of course,
is whether this is worthwhile in terms of results, extension to H n, and examples. The
evidence presented here on Z and Z=2 Hopf–Galois extensions being related to
line modules and line modules with real structure, respectively, might be taken as
supporting this idea.

The authors would like to thank David Evans, Jeffrey Giansiracusa, Ulrich Kräh-
mer, Giovanni Landi and Claudia Pinzari for their help during the preparation of this
paper.

2. Prerequisites

We work over the field C. Begin with a unital algebra A, and suppose that E is a left
A-module.

Definition 2.1. The (left) dual Eı of a left A-module E is defined to be AHom.E; A/,
the left module maps from E to A. Then Eı has a right module structure given by
.˛:a/.e/ D ˛.e/:a for all ˛ 2 Eı, a 2 A and e 2 E.

Definition 2.2. A left A-module E is said to be finitely generated projective if there
are ei 2 E and ei 2 Eı (for integer 1 � i � n) (the ‘dual basis’) so that for all
f 2 E, f D P

ei .f /:ei . From this it follows directly that ˛ D P
ei :˛.ei / for

all ˛ 2 Eı. The A valued matrix Pqj D ej .eq/ is an idempotent associated to the
module.

If E is a bimodule, then Eı is also a bimodule, with right module structure as
in Definition 2.1 and left module structure .a:˛/.e/ D ˛.e:a/. If in addition A is
finitely generated projective as a left A-module, we have bimodule maps

ev W E ˝A Eı ! A; coev W A ! Eı ˝A E;

given by ev.e ˝ ˛/ D ˛.e/ and coev.1A/ D P
i ei ˝ ei . These obey the identities

.ev ˝ id/.id ˝ coev.1A// D id W E ! E;

.id ˝ ev/.coev.1A/ ˝ id/ D id W Eı ! Eı:
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Now suppose that A is a star algebra. We shall find it convenient to use the
notation of conjugate modules, as given in [4]. If E is an A-bimodule, then the
conjugate module xE is an A-bimodule, with, for a 2 A and Ne 2 xE,

a � Ne D e � a�; Ne � a D a� � e:

This notation has the benefit that many operations which do not look initially like
bimodule maps can be written as bimodule maps, for example the star operation on
a star algebra A can be written as a bimodule map ? W A ! xA, a 7! Sa�. We also use
the bimodule map, for A-bimodules E and F , ‡ W F ˝A E ! xE ˝A

xF , with the
inverse

‡�1 W xE ˝A
xF ! F ˝A E; ‡�1. Ne ˝A

Nf / D f ˝ e;

and the isomorphism bb W E ! xxE given by bb.e/ D NNe.
Given a differential calculus .�nA; d; ^/ defined in terms of a differential graded

algebra with �0A D A, we can define an A-covariant derivative on a left A-module
E as follows:

Definition 2.3. Given a left A-module E, a left A-covariant derivative is a map
r W E ! �1A ˝A E which obeys the condition r.a � e/ D da ˝ e C a � re for all
e 2 E and a 2 A.

If E is an A-bimodule, we have the following idea of bimodule covariant deriva-
tive, see [15], [14], [27], [23].

Definition 2.4. A bimodule covariant derivative on an A-bimodule E is a triple
.E; r; �/, where r W E ! �1A ˝A E is a left A-covariant derivative, and � W E ˝A

�1A ! �1A ˝A E is a bimodule map obeying

r.e � a/ D r.e/ � a C �.e ˝ da/ for all e 2 E; a 2 A:

3. Line modules

To the reader who is familiar with Morita contexts (see Section 4), the material in this
section will seem familiar. Propositions 3.2, 3.5 and 3.6 are basically taken from [2].

Definition 3.1. Let E be an A-bimodule that is finitely generated projective as a left A-
module. If the coevaluation bimodule map coev W A ! Eı ˝A E is an isomorphism,
then E is called a weak left line module. If in addition the evaluation map ev W E ˝A

Eı ! A is an isomorphism, then E is called a left line module.

Proposition 3.2. Let E be an A-bimodule that is finitely generated projective as a
left A-module. Then the following are equivalent:
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(I) E is a weak left line module.

(II) Every left module map from E to E is given by right action by some element of
A, and the only a 2 A for which E � a D 0 is a D 0.

Proof. (I) H) (II). First, suppose that E is a left line module and that T W E ! E is
a left module map. Then (summing over i ) ei ˝ T .ei / 2 Eı ˝A E and so is equal
to coev.a/ for some a 2 A. Then

T .e/ D T .ei .e/ � ei / D .ev ˝ id/.e ˝ coev.a// D e � a:

That E � a D 0 implies a D 0 follows from invertibility of the coevaluation.
(II) H) (I). Take ˇ 2 Eı ˝A E. Then the map

e 7! .ev ˝ id/.e ˝ ˇ/

is a left A-module map from E to E, and so is equal to e:a for some fixed a 2 A by
the hypothesis for (II). If we set � D ˇ � coev.a/ 2 Eı ˝A E, then for all e 2 E

we have .ev ˝ id/.e ˝ �/ D 0. Now set � D P
i �i ˝ ei , and then we have for all

e 2 E, (summed over i ) �i .e/ � ei D 0. Applying ej to this gives �.e/ej .ei / D 0.
Now

� D �i ˝A ei D �i ˝A ej .ei / � ej D �i � ej .ei / ˝A ej D 0:

This shows that coev is surjective. To see that it is injective, its kernel is precisely
those a 2 A for which E � a D 0.

There is a generalisation of Proposition 3.2 (II) which will prove useful later.

Proposition 3.3. Suppose that E is a weak left line A-module. Given a left A-
module map T W E ! E ˝A F for some left A-module F , there is f 2 F so that
T .e/ D e ˝ f , and f is given by the image of 1 2 A under the composition

A
coev��! Eı ˝A E

id˝T���! Eı ˝A E ˝A F
coev�1˝id������! F:

Proof. From the definition of f ,

.coev ˝ id/.f / D .id ˝ T /.coev.1//;

so

.ev ˝ id/.e ˝ .coev ˝ id/f / D .ev ˝ id/.e ˝ .id ˝ T /.coev.1///

D T ..ev ˝ id/.e ˝ coev.1//

D T .e/:

However we also have

.ev ˝ id/.e ˝ .coev ˝ id/f / D e ˝ f:
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There is yet another version of this, which will be required!

Proposition 3.4. Suppose that E is a left line A-module. Given a right A-modulemap
T W E ! F ˝A E for some right A-module F , there is f 2 F so that T .e/ D f ˝e,
and f is given by the image of 1 2 A under the composition

A
ev�1

���! E ˝A Eı T ˝id���! F ˝A E ˝A Eı id˝ev���! F:

Proof. By the definition of f ,

.idF ˝ ev�1 ˝ idE /.f ˝ e/ D .T ˝ idEı ˝ idE /.ev�1 ˝e/:

From the equation .ev ˝ idE /.idE ˝ coev/ D idE we also have

.idF ˝ ev�1 ˝ idE /.f ˝ e/ D .idF ˝ idE ˝ coev/.f ˝ e/:

Now applying idF ˝ idE ˝ coev�1 to these equations gives the result.

Proposition 3.5. Suppose that E is a weak left line A-module. Then

ev ˝ id D id ˝ coev�1 W E ˝A Eı ˝A E ! E;

id ˝ ev D coev�1 ˝ id W Eı ˝A E ˝A Eı ! Eı:

Proof. To show that the maps are equal in the first equation, we apply them after the
invertible map id ˝ coev W E ! E ˝A Eı ˝A E. In the case of id ˝ coev�1, this
just gives the identity. For the other case, we get

.ev ˝ id/.id ˝ coev/ W E ˝A A ! A ˝A E;

and this is the identity by the usual properties of evaluation and coevaluation.
To show that the maps are equal in the second equation, we apply them after the

invertible map coev ˝ id W Eı ! Eı ˝A E ˝A Eı. In the case of coev�1 ˝ id, this
just gives the identity. For the other case, we get

.id ˝ ev/.coev ˝ id/ W Eı ˝A A ! A ˝A Eı;

and this is the identity by the usual properties of evaluation and coevaluation.

Proposition 3.6. Suppose that E is a weak left line A-module. If � is in the kernel
of ev W E ˝A Eı ! A and a 2 image.ev/, then a � � D � � a D 0. In particular, if
ev W E ˝A Eı ! A is surjective, then it is an isomorphism.

Proof. Take � in the kernel of the evaluation map. Also take ˇ 2 E ˝A Eı so that
ev.ˇ/ D a. Then by Proposition 3.5,

� � a D .id ˝ id ˝ ev/.� ˝ ˇ/

D .id ˝ coev�1 ˝ id/.� ˝ ˇ/

D .ev ˝ id ˝ id/.� ˝ ˇ/ D 0:

The other way round is similar.
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4. Morita contexts

We begin with some definitions from [2] (see also [6] for modern introduction to
Morita theory). Suppose that A and B are unital algebras. Use AM and BM to
denote the category of left A- and left B-modules respectively, and AMB and BMA

the A-B- and B-A-bimodules respectively.

Definition 4.1 ([2]). A Morita context for A and B consists of E 2 AMB and
F 2 BMA together with bimodule maps �1 W E ˝B F ! A and �2 W F ˝A E ! B

so that

�1 ˝ id D id ˝ �2 W E ˝B F ˝A E ! E;

�2 ˝ id D id ˝ �1 W F ˝A E ˝B F ! F:

This is called a strict Morita context in the case where �1 and �2 are surjective.

It will be useful to recall the following results:

Proposition 4.2 ([2]). If .A; B; E; F; �1; �2/ is a strict Morita context as in Defi-
nition 4.1, then

(a) �1 and �2 are isomorphisms,

(b) E and F are finitely generated projective left A- and B-modules respectively,

(c) E and F are finitely generated projective right B- and A-modules respectively.

The main reason for the interest in Morita contexts is given by the next result.
Note that an equivalence of categories C and D is given by two functors P W C ! D

and Q W D ! C so that there are invertible natural transformations from P B Q to
the identity on D , and from Q B P to the identity on C .

Proposition 4.3 ([2]). There is a 1-1 correspondence between strict Morita con-
texts .A; B; E; F; �1; �2/ and equivalences between the categories AM and BM.
Corresponding to the strict Morita context, the functors are given by

E ˝B �W BM ! AM; F ˝A �W AM ! BM:

5. Automorphisms of the centre

Here we look at one of the implications of Proposition 3.2, which we will follow up
later. We use Z.A/ to denote the centre of the unital algebra A. The reader should
refer to [16], where the map ˆ and its algebraic implications are discussed.

Proposition 5.1. Given a weak left line module L, there is a unital algebra map
ˆL W Z.A/ ! Z.A/ given by z � e D e � ˆL.z/ for all z 2 Z.A/ and e 2 L.
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Proof. If z 2 Z.A/, then the map e 7! z � e is a left A-module map from L to L. By
Proposition 3.2 there is a y 2 A so that z � e D e � y for all e 2 L. By Proposition 3.2
it follows that this y is unique. It follows that the map e 7! e � y is a right A-module
map, so e � ay D e � ya for all e 2 L and all a 2 A, so E � .ay � ya/ D 0.
By Proposition 3.2 again, we see that ay D ya for all a 2 A, so y 2 Z.A/. By
uniqueness we get ˆL.1A/ D 1A.

If z; z0 2 Z.A/, then zz0 � e D z � e � ˆL.z0/ D e � ˆL.z/ˆL.z0/, so ˆL.zz0/ D
ˆL.z/ˆL.z0/.

This map ˆL is only interesting in the noncommutative case, as it measures the
difference between the left and right module structures on L.

Proposition 5.2. If L is a line module, then ˆL W Z.A/ ! Z.A/ is invertible, with
inverse ˆ�1

L D ˆLı .

Proof. This uses the fact that coev W A ! Lı ˝A L and ev W L ˝A Lı ! A are
bimodule maps.

Proposition 5.3. If A is a star algebra and L is a line module, then ˆxL.z/ D
.ˆ�1

L .z�//�.

Proof. Compute

z � Ne D e � z� D ˆ�1
L .z�/ � e D Ne � .ˆ�1

L .z�//�:

Proposition 5.4. If weak line modules L and N are isomorphic as A-bimodules, then
ˆL D ˆN .

Proof. Immediate.

6. The N-graded and Z-graded tensor algebras

For any A-bimodule F , we can define an N-graded tensor algebra by

TN.F / D A ˚ F ˚ .F ˝A F / ˚ .F ˝A F ˝A F / ˚ � � � :

We write this as

TN.F /n D
´

A; n D 0;

F ˝n
A ; n > 0:

The associative product on the algebra TN.F / is just ˝A. We shall also consider a
Z-graded object TZ.F / by

TZ.F /n D

8̂<̂
:

A; n D 0;

F ˝n
A ; n > 0;

.F ı/˝�n
A ; n < 0:
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In general this will not form an algebra under ˝A as F ˝A F ı ¤ A. However we
can take a special case:

Proposition 6.1. If L is a weak left line A-bimodule, then TZ.L/ with product ˝A

combined with ev and coev�1 gives an associative algebra.

Before we prove Proposition 6.1, we should comment that in the C�-algebra case
(with account taken of norms), it is likely that this construction gives the Pimsner
algebra associated to the bimodule L (see [28], [13], [29]), as the Pimsner algebra
is constructed as a representation on a space which is just TN.F / with ‘creation
operators’ acting by ˝.

We need to be more precise about the product in Proposition 6.1. For notation we
set L0 D A and for n � 1 we set Ln D L˝n

A and L�n D .Lı/˝n
A . Now recursively

define, for n � 1,
evn W Ln ˝A L�n ! A;

by ev1 D ev and evnC1 D ev.id ˝ evn ˝id/. Also define, for n � 1,

�evn W L�n ˝A Ln ! A;

by �ev1 D coev�1 and �evnC1 D coev�1.id ˝ �evn ˝ id/.
The product Ln ˝A Lm ! LnCm is simply ˝A in the case where n and m have the

same sign. For different signs, we use the isomorphisms evn and �evn. We consider
the possible cases for n; m > 0:

�evn ˝ id W L�n ˝A Lm ! Lm�n for m � n;

id ˝ �evm W L�n ˝A Lm ! Lm�n for m � n;

evn ˝ id W Ln ˝A L�m ! Ln�m for m � n;

id ˝ evm W Ln ˝A L�m ! Ln�m for m � n:

Proof of Proposition 6.1. We need to compare the products on .Ln ˝A Lm/ ˝A Lr

and Ln ˝A .Lm ˝A Lr/. By associativity of ˝A, these give the same result if n, m,
r have the same sign. In fact it is not very difficult to see that we obtain exactly the
same result if n, m have the same sign, and if m, r have the same sign. This leaves the
more difficult cases where the sequence n, m, r alternates in sign. The case where the
alternating sequence n, m, r has numbers ˙1 is exactly Proposition 3.5. The problem
is to extend this to other alternating sequences. We will suppose that n; r > 0 and
m < 0 (we write m D �s for convenience) – the other case is almost identical.
For clarity, we give idq for the identity on either Lq or L�q . The first mentioned
product on equations (1)–(5) is that on .Ln ˝A L�s/ ˝A Lr , and the second is that
on Ln ˝A .L�s ˝A Lr/.

Case 1: s � n C r . In this case the required equality between products is

evn ˝ ids�n�r ˝ �evr D evn ˝ ids�n�r ˝ �evr W Ln ˝A L�s ˝A Lr ! LnCr�s: (1)
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Case 2: n; r � s. In this case the required equality between products is

idn�s ˝ evs ˝ idr D idn ˝ �evs ˝ idr�s W Ln ˝A L�s ˝A Lr ! LnCr�s: (2)

By removing identities from both sides, it is enough to prove this for n D r D s.
Case 3: n � s � r . In this case the required equality between products is

idn�s ˝ evs ˝ idr D idn�sCr ˝ evs�r ˝ �evr W Ln ˝A L�s ˝A Lr ! LnCr�s: (3)

By removing identities from the left, it is enough to prove this for n D s � r , i.e.,
that

evn ˝ idr D idr ˝ evn�r ˝ �evr W Ln ˝A L�n ˝A Lr ! Lr :

But both of these sides can be given as a composition with the same beginning, as

evn ˝ idr D .evr ˝ idr/.idr ˝ evn�r ˝ id2r/;

idr ˝ evn�r ˝ �evr D .idr ˝ �evr
/.idr ˝ evn�r ˝ id2r/:

Using this we are reduced to the case n D r D s again.
Case 4: n � s � r . In this case the required equality between products is

evn ˝ �evs�n ˝ idnCr�s D idn ˝ �evs ˝ idr�s W Ln ˝A L�s ˝A Lr ! LnCr�s: (4)

By removing identities from the right, it is enough to prove this for r D s � r , i.e.,
that

evn ˝ �evs�n ˝ idn D idn ˝ �evs W Ln ˝A L�n ˝A Lr ! Lr :

But both of these sides can be given as a composition with the same beginning, as

evn ˝ idr D .evn ˝ idn/.id2n ˝ �evs�n ˝ idn/;

idr ˝ evn�r ˝ �evr D .idn ˝ �evn
/.id2n ˝ �evs�n ˝ idn/:

Using this we are reduced to the case n D r D s again.
Case 5: n C r � s � n; r . In this case the required equality between products is

evn˝�evs�n˝idrCn�s D idn�sCr ˝evs�r ˝�evr W Ln˝AL�s˝ALr ! LnCr�s: (5)

But both of these sides can be given as a composition with the same beginning, as

evn ˝ �evs�n ˝ idrCn�s D .evnCr�s ˝ idnCr�s/

� .idnCr�s ˝ evs�r ˝ idrCn�s ˝ �evs�n ˝ idrCn�s/;

idn�sCr ˝ evs�r ˝ �evr D .idnCr�s ˝ zevnCr�s/

� .idnCr�s ˝ evs�r ˝ idrCn�s ˝ �evs�n ˝ idrCn�s/:

Using this we are reduced to the case n D r D s again.
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All but one of these cases reduces to showing the following equality

evn ˝ idn D idn ˝ �evn W Ln ˝A L�n ˝A Ln ! Ln: (6)

We do this by induction on n, noting that the starting case n D 1 is done in Proposi-
tion 3.5. Now suppose that (6) is true. We need to show the following equality:

evnC1 ˝ idnC1 D idnC1 ˝ �evnC1 W LnC1 ˝A L�n�1 ˝A LnC1 ! LnC1:

Then, by using Proposition 3.5,

evnC1 ˝ idnC1 D .ev ˝ idnC1/.id ˝ evn ˝ idnC2/

D .id ˝ �ev ˝ idn/.id ˝ evn ˝ idnC2/

D .id ˝ evn ˝ idn/.id2nC1 ˝ �ev ˝ idn/;

and using (6) gives

evnC1 ˝idnC1 D .idnC1 ˝ �evn
/.id2nC1 ˝ �ev ˝ idn/ D idnC1 ˝ �evnC1

:

7. Hopf–Galois extensions

The reader is reminded that if H is a Hopf algebra and B a unital algebra, then B is
a comodule algebra for the right action � W B ! B ˝ H (written �.b/ D bŒ0� ˝ bŒ1�)
if the following equations hold for all b; b0 2 B:

�.bb0/ D bŒ0�b
0
Œ0� ˝ bŒ1�b

0
Œ1�; �.1B/ D 1B ˝ 1H :

If A is the invariant subalgebra of B (i.e., A D fb 2 B j �.b/ D b ˝ 1H g), then the
canonical map is

can W B ˝A B ! B ˝ H; b0 ˝ b 7! b0bŒ0� ˝ bŒ1�:

If the canonical map is a 1-1 correspondence, then B is said to be a Hopf–Galois
extension of A.

Any Z-graded algebra C D L
n2Z Cn can be thought of as a comodule algebra

over CZ, the group algebra of .Z; C/. This is given by mapping c 2 Cn to c ˝ n,
where we write n to be a basis element of the group algebra of Z. The invariant
subalgebra is then C0.

Proposition 7.1. The Z-graded algebra C D L
n2Z Cn is a CZ Hopf–Galois ex-

tension of C0 if and only if every product Cn ˝ Cm ! CnCm is surjective.

Proof. For the CZ coaction, the canonical map can be written as

c ˝ c0 7! cc0 ˝ m
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for c0 2 Cm. For the canonical map to be surjective, we must have the map C ˝Cm !
C being surjective, so it follows that Cn ˝Cm ! CnCm is surjective for all n; m 2 Z.

In fact Proposition 7.1 holds more generally for any algebra which is graded by a
group, as is shown in Prop. 8.2.1 of [10].

Proposition 7.2. For a weak left line module L over the unital algebra A, the tensor
algebra TZ.L/ is a CZ Hopf–Galois extension of A if and only if L is a left line
module.

Proof. We need to show that every product TZ.F /n ˝ TZ.F /m ! TZ.F /nCm is
surjective. We split this into cases: First note that it is automatic for either of n or m

being zero. If n; m > 0 we have

˝A W L˝n
A ˝ L˝m

A ! L˝nCm
A ;

which is onto by definition. Likewise if n; m < 0 we have the surjective map

˝A W .Lı/˝�n
A ˝ .Lı/˝�m

A ! .Lı/˝�n�m
A :

It is not too hard to see that the remaining cases, where n and m have opposite sign,
reduce to the cases of showing that the following two maps are onto for all r > 0:

evr W Lr ˝A L�r ! A and �evr W L�r ˝A Lr ! A:

By the recursive definitions of evr and Qevr this follows immediately from the case
r D 1, and this is the case if L is a left line module.

Theorem 7.3. Let A be an algebra. There is a 1-1 correspondence between

(a) autoequivalences of the category AM of left A-modules,

(b) left line modules over A,

(c) Hopf–Galois CZ (group algebra of Z) extensions of A.

Proof. (a) H) (b). From Proposition 4.3, autoequivalences of the category AM
correspond to strict Morita contexts .A; A; E; F; �1; �2/. By Proposition 4.2, E is a
finitely generated projective left A-module, and we have A-bimodule isomorphisms
�1 W E ˝A F ! A and �2 W F ˝A E ! A obeying the conditions of Definition 4.1.
If we relabel the maps as ev D �1 W E ˝A F ! A and coev D ��1

2 W A ! F ˝A E,
we see that F D Eı D AEnd.E; A/. The ‘associativity’ conditions in 4.1 ensure
the usual behaviour of the evaluation and coevaluation maps. Then E satisfies the
conditions to be a left line module given in Definition 3.1.

(b) H) (c). Given a left line module L, TZ.L/ is a CZ Hopf–Galois extension
of A by Proposition 7.2.



74 E. J. Beggs and T. Brzeziński

(c) H) (a). Given an algebra C which is a CZ Hopf–Galois extension of A,
the CZ coaction splits C into a direct sum of integer graded parts Cn. We have
C0 D A, and set E D C1 and F D C�1. Then E and F are A-bimodules, and
the multiplication maps �1 W E ˝A F ! A and �2 W F ˝A E ! A are onto by the
Hopf–Galois condition in Proposition 7.1. The ‘associativity’ conditions in 4.1 are
implied by the associativity of the algebra C .

8. The Picard group of an algebra

In topology the Picard group Pic.X/ has elements the line bundles on a topolog-
ical space X (up to isomorphism), and the group product is tensor product. In
the noncommutative case, suppose that we have two line modules, L and M , over
an algebra A. Then L ˝A M is another line module, as we now show. Define
.L ˝A M/ı D M ı ˝A Lı, with

evL˝M D evL.idL ˝ evM ˝ idLı/ W L ˝A M ˝A M ı ˝A Lı ! A;

coevL˝M D .idM ı ˝ coevL ˝ idM /coevM W A ! M ı ˝A Lı ˝A L ˝A M:

We could define Pic.A/ for an algebra A to be the isomorphism classes of line modules
under ˝A (see [2], [17], [7], [26]).

Now we give a result on the algebra map of the centre given in Proposition 5.1

Proposition 8.1. The map ˆ W Pic.A/ ! Aut.Z.A// given by the isomorphism class
of L mapping to ˆL is an order reversing group homomorphism.

Proof. For e ˝ f 2 L ˝A N we have

z � e ˝ f D e � ˆL.z/ ˝ f D e ˝ ˆL.z/ � f D e ˝ f � ˆN .ˆL.z//:

Suppose we wished to look at this from the point of view of principal bundles, or
rather CZ Hopf–Galois extensions. We might ask if TZ.L ˝A M/ was a subalgebra
of TZ.L/ ‹‹ TZ.M/, where ‹‹ denotes some sort of product. We know of no answer
to this, but we have some comments. One way to get such a product would be to
suggest some form of ‘exchange law’ (e.g. see results on factorisation in Section 7 of
[25] or [11]), possibly a bimodule map from L˝A M to M ˝A L. If such a bimodule
map existed and was invertible, then L and M would commute in Pic.A/. We do not
know if Pic.A/ is abelian in general (though we would not be surprised if someone
did know). One way to get such bimodule maps would be to look at Section 4.2 of
[4], where a star operation on all of L, M and L ˝A M is used to give an invertible
map � W L ˝A M ! M ˝A L. Of course another comment on this is that it is not at
all obvious how to extend a star operation to tensor products.

Following this, it is tempting to think that there is some sort of universal extension
of A for line bundles, which would be a Pic.A/-graded Hopf–Galois extension of
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A, for which the ŒL� degree part of the algebra is isomorphic to L as a bimodule.
The problem here is that it is not at all obvious that an associative product can be
derived if we have to choose representatives of isomorphism classes of bimodules at
every stage. This is then another open problem. Since the quotient of two bimodule
isomorphisms between line modules is an invertible element of the centre Z.A/ (from
Proposition 3.2), it is quite likely that cocycles will be involved.

9. Hermitian metrics on modules

A Hermitian metric is the equivalent of a Riemannian metric, but on an arbitrary
complex vector bundle. It is similar to the idea of Hilbert C�-module in C�-algebra
theory (see [20]). As is usual on complex vector spaces, the (generalised) inner
product is linear in one variable, and conjugate linear in the other. At the moment,
we do not make any assumption about positivity.

Definition 9.1. [5] A non degenerate Hermitian structure on an A-bimodule E is
given by an invertible A-bimodule morphism G W xE ! Eı. From this we define an
inner product h ; i D evE .id ˝ G/ W E ˝A

xE ! A, and this is required to satisfy the
condition that the following composition is just h ; i:

E ˝A
xE bb˝id���! xxE ˝A

xE ‡�1

���! E ˝A
xE h ; i��! NA ?�1

��! A:

We write he; Nf i D ev.e ˝A G. Nf //. For e; f 2 E the composition in 9.1 is

e ˝ Nf 7�! NNe ˝ Nf 7�! f ˝ Ne 7�! hf; Nei 7�! hf; Nei�:

Thus the condition in 9.1 is that he; Nf i D hf; Nei�. There are some other formulae
which are virtually automatic from the definition. Since evE is a right A-module
map, for all a 2 A,

he; a � f i D he; Nf � a�i D he; Nf ia�:

Since evE is a left A-module map, for all a 2 A,

ha � e; Nf i D ahe; Nf i:
Since we are using the tensor product over A,

he � a; Nf i D he; a � Nf i D he; f � a�i:
The following proposition from [5] will prove useful.

Proposition 9.2. Suppose that E is finitely generated projective as a left module, with
dual basis ei ˝ ei 2 Eı ˝ E, and let G be a non-degenerate Hermitian structure
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on E. Set gij D hei ; Sej i, so it is automatic that gij � D gj i . Then G.Sei / D ej � gj i

(summation convention applies). Define G�1.ei / D gij � ej , where without loss of
generality it can be assumed that gij � ev.ej ˝ ek/ D gik . Then

(a) gij gjk D ev.ei ˝ ek/,

(b) gij gjk D ev.ek ˝ ei /
�,

(c) g�
iq D gqi .

Proof. Begin with

Sei D G�1.G.Sei // D G�1.ej � gj i / D G�1.ej / � gj i D gjk � ek � gj i D gij gjk � ek;

and apply en to both sides to get (a). Also

ei D G.G�1.ei // D G.gij � ej / D G.Sej / � g�
ij D ek � gkj g�

ij ;

and applying both sides to ep gives ev.ek ˝ ei / D gkj g�
ij , while applying � to this

gives (b). Finally

gni D gnk ev.ek ˝ ei / D gnkgkj g�
ij D ev.ej ˝ en/�g�

ij

D .gij ev.ej ˝ en//� D g�
in:

Note that the fact that we have not defined gnk as the inverse to the matrix gnk

is nothing to do with noncommutativity. Even in ordinary differential geometry, this
identification with the inverse requires choosing a chart which trivialises the bundle.

In the presence of a nondegenerate Hermitian metric, we have the following
corollary to the results of Section 5:

Corollary 9.3. If A is a star algebra and L is a line module with nondegenerate
Hermitian metric, then ˆL W Z.A/ ! Z.A/ is a star algebra map.

Proof. A nondegenerate Hermitian metric on L is simply an A-bimodule isomor-
phism between xL and Lı. Now use Propositions 5.2, 5.3 and 5.4.

10. Involution on the Z-graded tensor algebra

For the Z-graded tensor algebra we will give a star operation which sends (the con-
jugate of) grade 1 to grade �1, i.e., xL and Lı are related by the star map. There is an
example from complex geometry to motivate this star operation: The canonical line
bundle in algebraic geometry has a star operation, given by conjugation of the com-
plex coordinates, but that operation takes values in the dual of the canonical bundle
rather than the original bundle. The reader should note that specifying a bimodule
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isomorphism between xL and Lı is just giving a non-degenerate Hermitian structure
to the module L.

Given a non-degenerate Hermitian inner product G W xL ! Lı on L, we define a
star operation z 7! Sz� by

L
bb�! xxL xG�! SLı; Lı G�1

���! xL: (7)

In terms of the dual basis and the matrices in Proposition 9.2 this means

ei� D ej gj i ; ek
� D gkqeq: (8)

Now we have to check the compatibility of the star operation and the product in
TZ.L/:

Lemma 10.1. For all x 2 L and y 2 Lı in TZ.L/, we have, using the star operation
in (7), .xy/� D y�x� and .yx/� D x�y�.

Proof. First we verify .xy/� D y�x�. The two maps from L ˝A Lı to A given by
x ˝ y 7! xy and x ˝ y 7! .y�x�/� are bimodule maps, so it is sufficient to verify
that they are equal on a left basis of L and a right basis of Lı, so we use x D ei and
y D ek . Then, by (8), where Pqj D ev.eq ˝ ej /,

y�x� D gkqeqej gj i D gkqPqj gj i D gkqgqi D .Pik/� D .eiek/�:

Verifying .yx/� D x�y� is rather more difficult. If we set a D x�y�, by definition

coev.a/ D x� ˝ y� 2 Lı ˝A L:

This means that, for every basis element en 2 L,

en � a D ev.en ˝ x�/ � y�:

Applying star to this gives

a�emgmn D y � ev.en ˝ x�/�:

Using the formulae for the matrices, we get (using the previous result for the last step)

a�em D y � ev.en ˝ x�/�gnm

D y � ev.gmnen ˝ x�/� D y � ev.em
� ˝ x�/� D y � ev.x ˝ em/:

Then
ev.ep ˝ a�em/ D ev.ep ˝ y/ ev.x ˝ em/;

which we rearrange to obtain

ev.epa� ˝ em/ D ev.ev.ep ˝ y/x ˝ em/:

As this is true for all em, we get, for all ep ,

epa� D ev.ep ˝ y/x:

But this is exactly the statement that coev.a�/ D y ˝ x 2 Lı ˝A L.
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Proposition 10.2. If the star operation on TZ.L/ is defined in terms of the previous
star operations on L and Lı by order reversal,

x1 ˝ x2 ˝ � � � ˝ xm 7�! x�
m ˝ � � � ˝ x�

2 � � � ˝ x�
1 ;

then TZ.L/ becomes a star algebra.

Proof. There are only two non-trivial products to check consistency with, that is
L ˝A Lı ! A and Lı ˝A L ! A. This is done in Lemma 10.1.

11. Involution on the N-graded tensor algebra

Here we assume that there is a star operation on a bimodule E, which we write as
a bimodule map ? W E ! xE or e 7! Se�. We stress that this is an entirely different
construction to that for the Z-graded tensor algebra, we are not assuming the existence
of a Hermitian metric on E.

Given this, we define a star operation ?n on E˝m
A by

x1 ˝ x2 ˝ � � � ˝ xm 7�! x�
m ˝ � � � ˝ x�

2 � � � ˝ x�
1 :

The algebra TN.E/ with this star operation becomes a star algebra. Unlike the TZ.E/

case, there are no non-trivial relations to check.
In general it is not expected that TN.E/ will be the star algebra of functions on the

total space of a bundle. It is too big, as we have not included any form of symmetry
requirement. (Recall that on R2, the functions are polynomials in the coordinates,
and therefore obey a symmetry condition.) However in the case of a line bundle, this
is not a concern, as classically locally there is only one generator of the functions on
the bundle - the fibre coordinate. If L is a line module, we should think of TN.L/

as the star algebra of functions on the line bundle which are polynomial in the fibre
direction.

12. The Z=2-graded Hopf–Galois extension

In the N-graded tensor algebra TN.L/, the summand L˝n
A can be thought of as the

functions on the line bundle with polynomial growth of order n. In this section
we suppose that L has a non-degenerate Hermitian metric G W xL ! Lı and a star
operation ? W L ! xL.

Definition 12.1. Define 	 2 L ˝A L to be the image of 1A under

A
coev��! Lı ˝A L

G�1˝id�����! xL ˝A L
?�1˝id�����! L ˝A L:
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Also define ˛ 2 A to be the image of 1A under

A
coev��! Lı ˝A L

.G?/�1˝G?��������! L ˝A Lı ev�! A:

Proposition 12.2. The element ˛ 2 A in Definition 12.1 is invertible and central in
A. Similarly a � 	 D 	 � a for all a 2 A. Also 	 and ˛ are Hermitian, as can be
deduced from the formulae

˛ D hej �gj i ; ei�i; 	 D ej �gj i ˝ ei :

Proof. As a � 1A D a D 1A � a for all a 2 A, applying the bimodule maps in
Definition 12.1 gives a � ˛ D ˛ � a and a � 	 D 	 � a. Next note that all the maps which
are composed to give ˛ are invertible, so the bimodule map is onto, and hence its
image contains 1A. Therefore, there is an a 2 A with a˛ D 1A. For the formula for
˛, just write the evaluation in terms of the dual basis and use Proposition 9.2. Finally,

˛� D hei�; ej �gj i i D hei�; g�
j ie

j �i D hei�; gij ej �i D hei�gij ; ej �i:
In terms of the dual basis, we have

	 D .?�1G�1 ˝ id/.ei ˝ ei / D .?�1 ˝ id/.gij � ej ˝ ei / D ej �gj i ˝ ei :

This formula, together with gj i
� D gij , is enough to show that 	� D 	 .

If the next corollary is worded somewhat strangely, it is because we were thinking
about C�-algebras and Hilbert C�-modules, but wanted to make the statement rather
more generally. This should be regarded as a comment, rather than an assumption
that will prove vital.

Corollary 12.3. Suppose that the matrix gij 2 Mn.A/ can be factored into a product
of matrices with entries in A, gij D rikrkj , so that the matrix rij 2 Mn.A/ is also
Hermitian. Then the elements ˛ 2 A and 	 2 TN.L/ are positive, in the sense that,
for some x1; : : : ; xn 2 L,

(a) ˛ D hx1; Sx1i C � � � C hxn; Sxni,
(b) 	 D x1 ˝ x�

1 C � � � C xn ˝ x�
n .

Proof. We use the formulae given in Proposition 12.2. First

˛ D hej �gj i ; ei�i
D hej �rjkrki ; ei�i D hej �rjk; rkie

i�i D hej �rjk; ei�r�
ki i D hej �rjk; ei�riki;

and then we put xk D ej �rjk . Finally,

	 D ej �gj i ˝ ei D ej �rjkrki ˝ ei D ej �rjk ˝ rkie
i

D ej �rjk ˝ .ei�r�
ki /

� D ej �rjk ˝ .ei�rik/�:
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Proposition 12.4. For all e 2 L,

	 ˝ e D e ˝ 	 � ˆL.˛/ 2 L ˝A L ˝A L;

where ˆL W Z.A/ ! Z.A/ is the algebra map constructed in Proposition 5.1.

Proof. As a � 	 D 	 � a for all a 2 A, the map e 7! 	 ˝ e is a left module map from
L to L ˝A L ˝A L. It follows from Proposition 3.3 that there is an 
 2 L ˝A L so
that 	 ˝ e D e ˝ 
 2 L ˝A L ˝A L for all e 2 L. Hence

.ev.id ˝ G?/ ˝ id/.e ˝ 
/ D ev.id ˝ G?/.	 ˝ e/ D ˛ � e D e � ˆL.˛/:

As coevaluation is an isomorphism, .G ? ˝id/
 D coev.ˆL.˛//. The result follows
by the definition of 	.

Corollary 12.5. We have ˛ˆL.˛/ D 1A.

Proof. Applying Proposition 12.4 twice, for all e ˝ f 2 L ˝A L,

	 ˝ e ˝ f D e ˝ 	 � ˆL.˛/ ˝ f 2 L ˝A L ˝A L ˝A L

D e ˝ 	 ˝ f � ˆL.ˆL.˛//

D e ˝ f ˝ 	 � ˆL.˛/ˆL.ˆL.˛//:

But we can set (summing implicitly) e ˝ f D 	 , giving

	 ˝ 	 D 	 ˝ 	 � ˆL.˛/ˆL.ˆL.˛// 2 L ˝A L ˝A L ˝A L:

This gives ˆL.˛ˆL.˛// D 1A as required.

As we shall see, it would be rather useful if ˛ D 1A. If ˆL is the identity (as
it is in the commutative case), then Corollary 12.5 says that ˛2 D 1A. As ˛ is
central and Hermitian, this is quite a restriction. If, in a subalgebra of a C�-algebra,
˛ were positive (see Corollary 12.3), we would likely be able to recover ˛ D 1A from
this. But in general ˆL is not the identity, and as it only depends on the bimodule
isomorphism class of L, there is not much we can do about this. However there is
one bit of Definition 12.1 that we are reasonably free to change – we can rescale the
nondegenerate metric G.

Proposition 12.6. Two non-degenerate Hermitian metrics G; G0 W xL ! Lı are re-
lated by G0 D RzG, where Rz is right multiplication by an invertible central element
z 2 Z.A/. The corresponding inner products and the ˛ (see Definition 12.1) are re-
lated by

he; Nf i0 D he; Nf iz; ˛0 D ˛ˆLı.z�1/z:

The symmetry condition on the metric requires that z is Hermitian, i.e., z� D z.
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Proof. Recall that G; G0 W xL ! Lı are invertible bimodule maps. Therefore we
have that G0G�1 W Lı ! Lı is an invertible bimodule map, and by using similar
arguments to those used previously, it is right multiplication Rz by an invertible
central element z 2 Z.A/. Now G0 D RzG, and substituting this into the expression
in Definition 12.1 gives ˛0 2 A to be the image of 1A under

A
coev��! Lı ˝A L

.G0?/�1˝G0?���������! L ˝A Lı ev�! A:

Since ? is a bimodule map, this is the same as

A
coev��! Lı ˝A L

.G?/�1˝G?��������! L ˝A Lı R
z�1 ˝Rz�������! L ˝A Lı ev�! A:

For an element e ˝ f 2 L ˝A Lı we have

ev.Rz�1 ˝Rz/.e˝f / D ev.ez�1˝f z/ D ev.e˝z�1f /z D ev.e˝f /ˆLı.z�1/z:

The conditions applied to the next proposition are again motivated by C�-algebras,
but restricting to C�-algebras would be too strong, as it is quite likely that the result
might be applied to smooth subalgebras of C�-algebras or similar cases.

Proposition 12.7. Suppose that ˛ in Definition 12.1 has a central Hermitian fourth
root, i.e., ˇ D ˇ� 2 Z.A/ and ˇ4 D ˛. Rescale the metric G (see Proposition 12.6)
to get G0 D Rˇ�2G. Then G0 has corresponding .˛0/2 D 1A. Also, if the original
metric was positive, so is the new one, in the sense that

he; Nf i0 D ˇ�1�he; Nf iˇ�1:

Proof. From Proposition 12.6,

˛0 D ˛ˆLı.ˇ2/ˇ�2 D ˇ2ˆ�1
L .ˇ2/ D ˆ�1

L .ˇ2ˆL.ˇ2//:

Now Proposition 12.5 shows that .˛0/2 D 1A.

In a C�-algebra, if a positive element squares to the identity, then it must be the
identity. This leads us to make the following definition, in the expectation that (from
Corollary 12.3 and Proposition 12.7) it should not be an uncommon possibility:

Definition 12.8. A non-degenerate Hermitian metric G is called star compatible if
˛ D 1 in Definition 12.1.

And here is where this account would likely end, were it not for what is perhaps
the most striking property of the element 	 2 L˝2

A .
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Proposition 12.9. If the metric G is star compatible, then any element of L˝2n
A can

be written in the form a � 	n for some a 2 A. In particular, for e; f 2 L,

e ˝ f D ev.e ˝ .G?/.f // � 	:

Proof. Since 	 commutes with all elements of A, it is enough to prove this for n D 1,
as repeated application of this will work for higher powers. For any e ˝ f 2 L˝2

A ,

e ˝ f D .ev ˝ id˝2/.id ˝ ev ˝ id˝3/.e ˝ f ˝ .id ˝ coev ˝ id/coev/: (9)

As 	 D ..G?/�1 ˝ id/ coev.1/ commutes with elements of L by Proposition 12.4,
we can compute

.id ˝ coev ˝ id/ coev.1/ D .id ˝ ..G?/.G?/�1 ˝ id/coev ˝ id/ coev.1/

D .id ˝ .G?/ ˝ id˝2/.id ˝ 	 ˝ id/ coev.1/

D .id ˝ .G?/ ˝ id˝2/.coev.1/ ˝ 	/

D .id ˝ .G?// coev.1/ ˝ 	:

Substituting this into (9) gives

e ˝ f D ev.id ˝ ev ˝ id/.e ˝ f ˝ .id ˝ .G?// coev.1// � 	

D ev.e ˝ .G?/.f // � 	:

Theorem 12.10. Suppose there is a star algebra A and a left line module L over A

with a star operation ? W L ! xL. In addition assume that there is a nondegenerate
Hermitian metric G W xL ! Lı which is star compatible. Then:

(a) The star algebra TN.L/ is isomorphic as an N-graded algebra to

A ˝C P.	/ ˚ L ˝C P.	/;

where P.	/ is the polynomial algebra in the variable 	 of degree 2, and the
degree of L is 1. The product is given by 	 being central, the bimodule actions
of A on L, and ef D he; f �i	 for e; f 2 L. The star operation is given by that
specified on A and L, together with 	� D 	 .

(b) The even-odd graded algebra A ˚ L (with product ef D he; f �i for e; f 2 L)
is a Z=2-graded Hopf–Galois extension of A.

Proof. Combining the results in this section gives (a). To check consistency of the
odd-odd product with the star operation, we need to check that

ev.e ˝ .G?/.f //� D ev.f � ˝ .G?/.e�//;

but this simply becomes he; f �i� D hf �; Nei, the usual symmetry relation for the
inner product. To get (b), just quotient by the relation 	 D 1.
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We should comment that Theorem 12.10 is just what we should expect from the
classical theory. Consider a locally trivial real line bundle over a compact Hausdorff
topological space X . The star algebra TN.L/ corresponds to the functions on the line
bundle which are polynomial in the fibre direction. The grading of TN.L/ corresponds
to the order of the polynomial.

The transition functions for the line bundle can be taken to be in R�. However if
there is a metric on the bundle, we can reduce the transition functions to have values
˙1. If we consider functions which are even in the fibre direction (i.e., f .�x/ D
f .x/), then the ˙1 makes no difference, and we may as well look at even functions
on the trivial bundle X �R. Now the odd functions are given by some (not identically
zero) linear odd function times even functions. (Of course, this requires a regularity
condition, but we are not at present considering all continuous functions.) However
if the bundle is not trivial, we cannot continuously choose a global non-vanishing
linear function on all the fibres, so we are stuck with several choices on several open
sets.

Again using the metric, we can restrict to the points on the line bundle which are
distance one from the zero section. This is a double cover of X , and functions on
this space correspond to the Z=2-graded Hopf–Galois extension of A mentioned in
Theorem 12.10.

13. Representations of functions on R

Here we will generalise the algebra in Theorem 12.10 to functions other than poly-
nomials. In particular we assume the conditions for Theorem 12.10: That is we
assume that there is a star algebra A and a left line module L over A with a star
operation ? W L ! xL. In addition assume that there is a nondegenerate Hermitian
metric G W xL ! Lı which is star compatible. We use x as the standard coordinate
function on R. We identify 	 2 L ˝A L with the function x2 on R. Generically we
have a Z=2-graded algebra

BL D f.f0; f1/ j f0 W R ! A; f1 W R ! Lg: (10)

We have not yet specified exactly which classes of functions are to be used in (10),
but the product is given by .f0; f1/.g0; g1/ D .h0; h1/, where

h0.x/ D f0.x/g0.x/ C x2hf1.x/; g1.x/�i;
h1.x/ D f0.x/g1.x/ C f1.x/g0.x/:

(11)

This product is not at all random – it is chosen to generalise the case in Section 12
where the functions are polynomials in the fibre direction. However we still need to
check associativity:
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Proposition 13.1. In the star compatible case, the product in (11) and the star
operation

.f0.x/; f1.x//� D .f0.x/�; f1.x/�/

make BL into an associative star algebra.

Proof. We need to show that

..f0.x/; f1.x//.g0.x/; g1.x///.h0.x/; h1.x//

D .f0.x/; f1.x//..g0.x/; g1.x//.h0.x/; h1.x///:

The products with all 0 indices are just products in A, so the associative law holds. The
products with one 1 index are associative just by the usual properties of bimodules.
The products with two 1 indices are:

f0.x/.g1.x/h1.x// D x2f0.x/hg1.x/; h1.x/�i
D x2hf0.x/g1.x/; h1.x/�i
D .f0.x/g1.x//h1.x/;

f1.x/.g0.x/h1.x// D x2hf1.x/; h1.x/�g0.x/�i
D x2hf1.x/; g0.x/h1.x/�i
D x2hf1.x/g0.x/; h1.x/�i
D .f1.x/g0.x//h1.x/;

f1.x/.g1.x/h0.x// D x2hf1.x/; h0.x/�g1.x/�i
D x2hf1.x/; g1.x/�h0.x/i
D x2hf1.x/; g1.x/�ih0.x/

D .f1.x/g1.x//h0.x/:

The most difficult case is three 1 indices:

f1.x/.g1.x/h1.x// D x2f1.x/hg1.x/; h1.x/�i;
.f1.x/g1.x//h1.x/ D x2hf1.x/; g1.x/�ih1.x/:

To show that the right-hand sides are mutually equal we need to verify that

.id ˝ ev/.id˝2 ˝ G?/ D ev.id ˝ G?/ ˝ id W L ˝A L ˝A L ! L: (12)

By Definitions 12.8 and 12.1,

ev.id ˝ G?/ D coev�1.G ? ˝id/ W L ˝A L ! A;

so (12) becomes

id ˝ coev�1 D ev ˝ id W L ˝A Lı ˝A L ! L;
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and these are shown to be equal in Proposition 3.5.
To check the star algebra property, we need to verify

.g0.x/�; g1.x/�/.f0.x/�; f1.x/�/ D ..f0.x/; f1.x//.g0.x/; g1.x///�:

This is trivial, apart from the two 1 index product. In this case

.g1.x/�f1.x/�/� D hg1.x/�; f1.x/i� D hf1.x/; g1.x/�i D f1.x/g1.x/;

as required.

Next we specify a vector space for BL to act on. If we consider A � B.H / (the
bounded linear operators on the Hilbert space H ), we define a new vector space as a
sum H0 ˚ H1, where

H0 D C.R1; H /; H1 D Cc.R; xL ˝A H /: (13)

Here C.R1; H / is simply the algebra of continuous functions from R1 (the one
point compactification of R, topologically a circle) to H . Then Cc.R; xL ˝A H / is a
sum of Sei ˝ ki .x/, where the ei are elements of the basis of L (see Definition 2.2)
and the ki W R ! H are continuous functions of compact support.

We feel obliged to give an apology for the way the bars are going to work out –
this is due to the convention of writing a C�-algebra left acting on a Hilbert space. If
we write the inner product on H as h ; iH W xH ˝ H ! C and the Hilbert C�-module
inner product on L as h ; i, then we define (generalised) inner products h ; i0 on H0

and h ; i1 on H1 as the following continuous C valued functions on R, respectively

hSv0; w0i0 D x 7! hv0.x/; w0.x/iH ;

hSv1; w1i1 D x 7! h ; iH .id ˝ h ; i F id/..id ˝ bb�1/‡.v1.x// ˝ w1.x//:
(14)

The first equation in (14) is quite simple – evaluate the functions on R pointwise and
apply the Hilbert space inner product. The second is rather more complicated. To
explain it, write v1.x/ D Ne ˝ u and w1.x/ D xe0 ˝ u0, and then, where F is used to
denote the action of A on H ,

h ; iH .id ˝ h ; i F id/..id ˝ bb�1/‡.vL.x// ˝ wL.x//

D h ; iH .id ˝ h ; i F id/..id ˝ bb�1/‡. Ne ˝ u/ ˝ xe0 ˝ u0/
D h ; iH .id ˝ h ; i F id/..id ˝ bb�1/. Nu ˝ NNe/ ˝ xe0 ˝ u0/
D h ; iH .id ˝ h ; i F id/. Nu ˝ e ˝ xe0 ˝ u0/
D h ; iH . Nu ˝ he; xe0i F u0/
D h Nu; he; xe0i F u0iH :

(15)
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Proposition 13.2. The formula .f0; f1/ F .v0; v1/ D .w0; w1/, where

w0.x/ D f0.x/ F v0.x/ C x2.h ; i F id/.f1.x/ ˝ v1.x//;

w1.x/ D f1.x/� ˝A v0.x/ C f0.x/ F v1.x/;

gives an action of the algebra BL (see (10)) on H0 ˚ H1. Note that if we write
v1.x/ D Ne ˝ u, then the two less obvious terms above are

.h ; i F id/.f1.x/ ˝ v1.x// D hf1.x/; Nei F u;

f0.x/ F v1.x/ D f0.x/ F Ne ˝ u

D e G f0.x/� ˝ u:

Proof. Set .g0; g1/ F .w0; w1/ D .y0; y1/, where

y0.x/ D .g0.x/f0.x// F v0.x/ C x2g0.x/hf1.x/; Nei F u

C x2hg1.x/; f1.x/�i F v0.x/ C x2hg1.x/; f0.x/ F Nei F u

D .g0.x/f0.x/ C x2hg1.x/; f1.x/�i/ F v0.x/

C x2h.g1.x/f0.x/ C g0.x/f1.x//; Nei F u;

as required. Similarly, where w1.x/ D xe0 ˝ u0,

y1.x/ D g1.x/� ˝A w0.x/ C g0.x/ F xe0 ˝ u0

D g1.x/� ˝A f0.x/ F v0.x/ C x2g1.x/� ˝A hf1.x/; Nei F u

C g0.x/ F f1.x/� ˝A v0.x/ C .g0.x/f0.x// F v1.x/

D .g1.x/f0.x//� ˝A v0.x/ C x2g1.x/� ˝A hf1.x/; Nei F u

C .g0.x/f1.x//� ˝A v0.x/ C .g0.x/f0.x// F v1.x/;

and this is not so obvious. We would require the following equality to get an action:

hg1.x/; f1.x/�i F Ne ˝ u D g1.x/� ˝A hf1.x/; Nei F u;

which can be simplified to showing

hg1.x/; f1.x/�i Ne D g1.x/�hf1.x/; Nei:
This is implied by the following equality, proved in Lemma 13.3,

.ev ˝ id/.id ˝ G ? ˝id/ D .id ˝ ev/.? ˝ id ˝ G/ W L ˝A L ˝A
xL ! xL:

Lemma 13.3. Assuming that the metric is star compatible,

.ev ˝ id/.id ˝ G ? ˝id/ D .id ˝ ev/.? ˝ id ˝ G/ W L ˝A L ˝A
xL ! xL:
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Proof. This is equivalent to showing

.ev ˝ id/.id ˝ G ? ˝?/ D .id ˝ ev/.? ˝ id ˝ G?/ W L ˝A L ˝A L ! xL:

As these are both bimodule maps, it is enough to prove that these maps coincide on
e ˝ 	 2 L˝3

A . Since 	 is central,we have e ˝ 	 D 	 ˝ e, so it is enough to prove that

.ev ˝ id/.id ˝ G ? ˝?/.	 ˝ e/ D .id ˝ ev/.? ˝ id ˝ G?/.e ˝ 	/: (16)

Note that ev.id ˝ G?/	 D 1A by star compatibility, thus verifying (16).

14. C�-algebra completions and the Thom construction

We suppose that A is a unital C�-algebra with norm written jajA for a 2 A, and
that L is a left line module for A. We take a nondegenerate positive inner product
h ; i W L ˝A

xL ! A which is a Hilbert C�-module on L. The corresponding matrix
gij 2 Mn.A/ (see Proposition 9.2) we take to have Hermitian square root r ij , i.e.,
r iprpj D gij . We also assume that there is a constant M � 0 so that, for all i; j and
all a 2 A,

jei .e
j � a/jA � M jajA: (17)

The direct sum H0 ˚ H1 is made into a Hilbert space as follows:

Definition 14.1. Define a C valued inner product on H0˚H1 in terms of the function
valued ones from (14) by

h.v0; v1/; .w0; w1/i0;1 D
Z

R

�hSv0; w0i0 C x2hSv1; w1i1

1 C x2

�
dx: (18)

The definition of H0 and H1 in (13) guarantees that this is finite, and positivity is
guaranteed by the definitions of the inner products in (14). Now define H0;1 to be
the Hilbert space given by completing H0 ˚ H1 with inner product h ; i0;1.

If the readers have any doubts over the positivity of h ; i1, Lemma 14.2 should
convince them. Note that we spell out the summation over the indices explicitly
in Lemma 14.2. In future, we will assume that repeated indices inside a norm are
summed before the norm is taken, as in this case.

Lemma 14.2. For any v1.x/ D P
i

Sei ˝ ki .x/ 2 H1,

hv1.x/; v1.x/i1 D P
p k P

j rpj kj .x/k2
H

:

Proof. From (15),

hv1.x/; v1.x/i1 D hki .x/; hei ; Sej ikj .x/iH

D hki .x/; gij kj .x/iH

D hrpiki .x/; rpj kj .x/iH :
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Lemma 14.3. There is a constant C1 � 0 (depending only on A, L, the dual basis
of L and the Hilbert C�-module structure on L) so that

hf0.x/ F v1.x/; f0.x/ F v1.x/i1 � C1jf0.x/j2Ahv1.x/; v1.x/i1:

Proof. If we write v1.x/ D Sei ˝ ki .x/ (summation implicit), then

f0.x/ F v1.x/ D f0.x/ F Sei ˝ ki .x/

D ei G f0.x/� ˝ ki .x/

D ej .eif0.x/�/ej ˝ ki .x/

D Sej ˝ ej .eif0.x/�/�ki .x/:

By Lemma 14.2,

hf0.x/ F v1.x/; f0.x/ F v1.x/i1 D P
p krpj ej .eif0.x/�/�ki .x/k2

H
:

Using the dual basis property and Proposition 9.2 we can write

rpj ej .eif0.x/�/�ki .x/ D rpj ej .emf0.x/�/�em.ei /�ki .x/

D rpj ej .emf0.x/�/�gmqgqiki .x/

D rpj ej .emf0.x/�/�gmqrqsrsiki .x/;

krpj ej .eif0.x/�/�ki .x/kH � jrpj ej .emf0.x/�/�gmqrqsjAkrsiki .x/kH :

We use the Cauchy–Schwarz inequality on this sum over s to obtain

krpj ej .eif0.x/�/�ki .x/k2
H

� .
P

s jrpj ej .emf0.x/�/�gmqrqsj2A/.
P

s krsiki .x/k2
H

/

� .
P

s jrpj ej .emf0.x/�/�gmqrqsj2A/hv1.x/; v1.x/i1;

and summing this over p gives

hf0.x/ F v1.x/; f0.x/ F v1.x/i1

� .
P

s;p jrpj ej .emf0.x/�/�gmqrqsj2A/hv1.x/; v1.x/i1:

The result follows from (17).

Lemma 14.4. h.h ; i F id/.f1.x/ ˝ v1.x//; .h ; i F id/.f1.x/ ˝ v1.x//i0

� jhf1.x/; f1.x/ijA hv1.x/; v1.x/i1 .

Proof. Write v1.x/ D Sei ˝ ki .x/ (summation implicit), so that

.h ; i F id/.f1.x/ ˝ v1.x// D hf1.x/; Sei i F ki .x/:
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Then

h.h ; i F id/.f1.x/ ˝ v1.x//; .h ; i F id/.f1.x/ ˝ v1.x//i0

D hhf1.x/; Sei iki .x/; hf1.x/; Sei iki .x/iH

D hki .x/; hei ; f1.x/ihf1.x/; Sei iki .x/iH :

(19)

Recall from [20] (with a brief check that the different side used for the conjugate does
not matter) that for a Hilbert C�-module there is a version of the Cauchy–Schwartz
lemma as follows, in terms of inequalities of positive operators

hy; Nxihx; Nyi � jhx; NxijAhy; Nyi;

and using this in (19) gives

h.h ; i F id/.f1.x/ ˝ v1.x//; .h ; i F id/.f1.x/ ˝ v1.x//i0

� jhf1.x/; f1.x/ijAhki .x/; hei ; Sei iki .x/iH :

Finally, use the definition of h ; i1 again.

Proposition 14.5. Elements .f0; f1/ 2 BL act on H0;1 (with inner product given
by (18)) as linear operators, with operator norm bounded by a constant (depending
only on A, L, the dual basis of L and the Hilbert C�-module structure on L) times
the square root of

sup
x2R

jf0.x/j2A C sup
x2R

x2.jhf1.x/�; f1.x/�ijA C jhf1.x/; f1.x/ijA/:

Proof. We check this on the dense subset H0 ˚ H1. Set .f0; f1/ F .v0; v1/ D
.w0; w1/, where

w0.x/ D f0.x/ F v0.x/ C x2.h ; i F id/.f1.x/ ˝ v1.x//;

w1.x/ D f1.x/� ˝A v0.x/ C f0.x/ F v1.x/:
(20)

The two less obvious terms in (20) (those involving v1.x/) are dealt with in Lem-
mas 14.3 and 14.4, and we will import these results. For the other two terms, (using
k � k2

0 and k:k2
1 for the h ; i0 and h ; i1 inner product of an element with itself),

kf0.x/ F v0.x/k0 � jf0.x/jAkv0.x/kH ;

kf1.x/� ˝A v0.x/k2
1 D hv0.x/; hf1.x/�; f1.x/�i F v0.x/iH

� jhf1.x/�; f1.x/�ijA kv0.x/k2
H :
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Now we write out the contributions to h.w0; w1/; .w0; w1/i0;1 as follows:Z
R

kf0.x/ F v0.x/k2
0

1 C x2
dx �

Z
R

jf0.x/j2Akv0.x/k2
0

1 C x2
dxZ

R

kx2.h ; i F id/.f1.x/ ˝ v1.x//k2
0

1 C x2
dx �

Z
R

x4jhf1.x/; f1.x/ij2Akv1.x/k2
1

1 C x2
dxZ

R

x2

1 C x2
kf1.x/� ˝A v0.x/k2

1 dx �
Z

R

x2

1 C x2
jhf1.x/�; f1.x/�ijA

kv0.x/k2
0 dxZ

R

x2

1 C x2
kf0.x/ F v1.x/k2

1 dx � C1

Z
R

x2

1 C x2
jf0.x/j2Akv1.x/k2

1 dx:

The adjoint of a bounded operator T W H0;1 ! H0;1 is an operator T � W H0;1 !
H0;1 defined so that

h.u0; u1/; T .v0; v1/i0;1 D hT �.u0; u1/; .v0; v1/i0;1:

Proposition 14.6. The star operation on BL (see Proposition 13.1) gives a star
representation of the algebra on bounded operators on H0;1.

Proof. Set v1.x/ D Sei ˝ ki .x/ and u1.x/ D Sei ˝ si .x/. There are four terms to
check to verify that the star operations coincide, the easiest one being

hu0.x/; f0.x/ � v0.x/i0 D hf0.x/� � u0.x/; v0.x/i0:

Next consider

hu0.x/; .h ; i ˝ id/.f1.x/ ˝ v1.x//i0 D hu0.x/; hfi .x/; Sei iki .x/iH

D hf1.x/ ˝ u0.x/; Sei ˝ ki .x/i1:

Then

hu1.x/; f0.x/ F v1.x//i1 D hsj .x/; hej ; f0.x/Sei iki .x/iH

D hsj .x/; hej f0.x/; Sei iki .x/iH

D hf0.x/� Sej ˝ sj .x/; Sei ˝ ki .x/i1

D hf0.x/� F u1.x/; v1.x/i1:

Finally,

hu1.x/; f1.x/� ˝ v0.x//i1 D hsj .x/; hej ; f1.x/�iv0.x/iH

D hhej ; f1.x/�i�sj .x/; v0.x/iH

D hhf1.x/�; Sej isj .x/; v0.x/iH :
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Suppose that X is a compact topological space. Given an Rn bundle on X , the
Thom construction adds a single point at infinity common to all the fibres, so it is
just the one point compactification of the total space of the bundle. Alternatively, we
could add a point at infinity to each fibre separately (i.e., we add a whole copy of X ),
so that we get an associated Sn bundle. For noncommutative line bundles (the n D 1

case) and unital C�-algebras A, we can perform both of these compactifications, to
get unital C�-algebras.

One question should be raised now, before it causes confusion. A circle bundle
from a line bundle? Surely we did this by the Z-graded algebra in Section 6, with
star structure included in Section 10? In Section 7 it was shown that there was a CZ
coaction on the Z-graded algebra, and this should give a circle group coaction. By
now the reader should be becoming suspicious, there is no reason why a circle bundle
associated to a line bundle should be a circle group principal bundle. The confusion
is caused by taking the wrong star structure. The star structure given by functions on
the total space of a classical real line bundle follows the pattern of Section 11, and
the relevant algebra is the N-graded algebra.

Theorem 14.7. From the action of BL on the Hilbert space H0;1 three C�-algebras
can be formed. The functions .f0; f1/ 2 BL have f1 W R ! L chosen so that

f1.x/ D P
i f1;i .x/ei ;

where each f1;i W R ! A is of compact support. The choice of f0 W R ! A depends
on the case, as given below. Then the C� completion is taken as operators on H0;1.

(a) The non-unital algebra of functions vanishing at infinity on the fibres. This is
given by taking f0 2 C0.R; A/.

(b) The unital Thom algebra, given by adjoining C to the first case (a) (i.e., the
one point compactification).

(c) The unital associated circle bundle algebra. This is given by taking f0 2
C.R1; A/.

Proof. Use Propositions 14.5 and 14.6, and take completions.

Note that the whole idea of a star operation on TN.L/ depends on the existence
of a star operation ? W L ! xL. So when do we have a star operation ? W L ! xL?
Note that for L to be isomorphic to xL as a bimodule is likely not sufficient, we need

to have bb D N?? W L ! xxL. But let us simply suppose that L and xL are isomorphic,
and see how far we can get.

Proposition 14.8. Suppose that L is a left line bimodule and that � W L ! xL is an
invertible bimodule map. Then the map

L
��! xL N��! xxL bb�1

���! L (21)
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is given by e 7! e � z where ˆL.z�/ D z 2 Z.A/ is invertible. A bimodule map

? W L ! xL satisfying N?? D bb W L ! xxL exists if and only if there is a y 2 Z.A/ with
ˆL.y�/y D z�1, in which case we can have ?.e/ D �.e/ � y.

Proof. Write �.x/ D g.x/. Then the composition in (21) is a bimodule map from L

to itself, and by Proposition 3.2 is given by e 7! e:z, for some z 2 Z.A/. Consider
the map

L
��! xL N��! xxL

NN��! xxxL bb�1

���! xL ��1

��! L: (22)

One way of calculating (22) is as

L
��! xL bb�1 N�������! xL ��1

��! L;

which gives e 7! xe0 7! e0 � z D z� xe0 7! z�e. Alternatively the composition of the
last three maps in (22) is

NNe 7�! g.e/ 7�! g.e/ 7�! e;

so (22) is just another way of writing (21). Comparing these gives z�e D ez for all
e 2 L, so ˆL.z�/ D z. Any map ? W L ! xL is given by ?.e/ D �.e/ � y, for some
y 2 Z.A/, hence

N? ? .e/ D ? .g.e// � y D .g.g.e// � y/ � y D y� � g.g.e// � y;

and then

bb�1 N? ? .e/ D y�g.g.e//y D g.g.e//ˆL.y�/y D ezˆL.y�/y:

So just how restrictive is the condition in Proposition 14.8 for the existence of
a star structure on a line module L, given that L and xL are in the same bimodule
isomorphism class? Suppose that A is a unital C�-algebra, and then its centre Z.A/

consists of complex valued continuous functions on a compact topological space. If
we restrict to the case where ˆL is the identity, then the z of Proposition 14.8 is a
Hermitian function, i.e., a nowhere vanishing continuous real valued function on X .
Hence the existence of y reduces to asking whether z is positive or not, looking at
components of X .

15. An example of constructing line modules

Here we take an example of a construction of line modules, which has been used
in the literature [21], [22]. Suppose that B is a comodule algebra for the coaction
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� W B ! B ˝CG of the group algebra of a (discrete) group G. Let A be the invariant
part of B under the coaction. Further suppose that there are two column vectors

v D

0BBB@
v1

v2

:::

vn

1CCCA ; w D

0BBB@
w1

w2

:::

wn

1CCCA ;

with the following properties. All the vi are in a particular g 2 G graded part Bg of
B (i.e., �.vi / D vi ˝ g where g is a basis element of the group algebra CG). All
the wi are in the g�1 2 G graded part of B . Finally, the column vectors satisfy the
following equation

wT v D P
i wivi D 1B :

Then P D vwT is an n by n matrix with entries in A and satisfies P 2 D P . In
the case where g 2 G is the group identity, the corresponding line module would
be trivial as a module over A, but not in general. This construction was used in
[21] to explain the classical Dirac monopole bundle, and it was subsequently used to
construct very non-trivial noncommutative bundles for example in [9] or [22].

Let L and Lı be defined as

L D fb � wT � A˚n j b 2 Bgg; Lı D fv � b � A˚n j b 2 Bg�1g:
These are A bimodules, with left and right action

a F .b � wT / D ab � wT ; .b � wT / G a D b � wT � P.a/ D ba � wT ;

a F .v � b/ D P.a/ � v � b D v � ab; .v � b/ G a D v � ba;

where P.a/ D vawT . The evaluation map can be quite simply defined by matrix
multiplication:

ev W L ˝A Lı ! A; ev.b � wT ˝ v � b0/ D b � wT v � b0 D bb0:

For the coevaluation map, we choose c ˝ c0 2 Bg�1 ˝ Bg (summation implicit) so
that cc0 D 1. Of course, we can choose c ˝ c0 D wi ˝ vi , but it may cause less
complications to keep c ˝ c0 separate, as they will frequently appear in the same
formula as v and w. Then define

coev W A ! Lı ˝A L; coev.a/ D vac ˝ c0wT :

Now we check the required properties for the evaluation and coevaluation:

.ev ˝ idL/.b � wT ˝ coev.1// D b � wT � vc F c0wT D bcc0wT D b � wT ;

.idLı ˝ ev/.coev.1/ ˝ vb/ D vc G c0wT v � b D vcc0b D vb:
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Proposition 15.1. Suppose that the G-graded algebra B is a CG Hopf–Galois ex-
tension of A. Then L is a left line module.

Proof. As B is a CG Hopf–Galois extension of A, the product Bg ˝Bg�1 ! B0 D A

is surjective. Then we can choose c00 ˝ c000 2 Bg ˝ Bg�1 (summation implicit) with
c00c000 D 1. We shall define maps which we will then check are inverses to evaluation
and coevaluation, by

coev�1.x ˝ yT / D wT xyT v; ev�1.a/ D ac00wT ˝ vc000:

First we do the easy checks:

coev�1 B coev.1/ D coev�1.vc ˝ c0wT / D wT vcc0wT v D 1;

ev B ev�1.a/ D ev.ac00wT ˝ vc000/ D ac00 � c000 D a:

The more difficult checks depend on the Hopf–Galois condition:

coev B coev�1.vb ˝ b0wT / D coev.wT vbb0wT v/

D vwT vbb0wT vc ˝ c0wT

D vbb0c ˝ c0wT :

At this point we use the fact that product gives an isomorphism Bg�1 ˝A Bg ! A,
as this shows that bb0c ˝A c0 D b ˝A b0. Next we have

ev�1 B ev.b0 � wT ˝ v � b/ D ev�1.b0b/ D b0bc00wT ˝ vc000:

Now we use the fact that product gives an isomorphism Bg ˝A Bg�1 ! A, as this
shows that b0bc00 ˝A c000 D b0 ˝A b. Finally we write b0bc00 ˝ c000 � b0 ˝ b D
r � a ˝ s � r ˝ a � s for a 2 A (summation implicit), and then in L ˝A Lı,

ev�1 B ev.b0 � wT ˝ v � b/ � b0 � wT ˝ v � b D rawT ˝ vs � rwT ˝ vas

D rwT P.a/ ˝ vs � rwT ˝ P.a/vs

D 0:

For a coaction of a Hopf �-algebra on a comodule V , the coaction on the conjugate
comodule is defined by Ne 7! eŒ0� ˝ e�

Œ1�
. The usual star algebra structure on the group

algebra of G is such that every group element is unitary, i.e., g� D g�1 for g 2 G.

Proposition 15.2. Suppose that the G-graded algebra B is a star algebra with b 2
Bg implying b� 2 Bg�1 . If wT D v� (star on a matrix being star element-wise,
then transpose), then we can define a non-degenerate Hermitian inner product by

G.yT / D .yT /�. In addition the corresponding inner product is positive, meaning

that each hyT ; yT i is a sum of elements of the form a�a for a 2 A.
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Proof. First we check that G W xL ! Lı, by

G.bwT / D .bwT /� D v��b� D vb� 2 Lı:

Now we check that it is a bimodule map. For a 2 A,

G.a F bwT / D G..bwT / G a�/ D G.ba�wT / D v.ba�/� D vab� D a F .vb�/;

G.bwT G a/ D G.a� F .bwT // D G.a�bwT / D v.a�b/� D vb�a D .vb�/ G a:

The symmetry of the corresponding inner product is checked as follows:

hyT ; xT i� D ev.yT ˝ .xT /�/�

D .yT .xT /�/� D .
P

yix
�
i /� D P

xiy
�
i D hxT ; yT i:

The formula for G�1 W Lı ! xL is just G�1.z/ D Sz�. To check positivity, we use the
formula above

hyT ; yT i D P
yiy

�
i :

In the beginning of this section, using the vectors v and w was sold as a method
of constructing examples of line modules. In fact, it is rather more than that, any line
module can be constructed by this method. The catch is that different bundles may
require different Hopf–Galois extensions to realise them. An interesting question
would be whether there is some form of universal Hopf–Galois extension from which
any line module can be constructed up to isomorphism – see the comment in Section 8.

Proposition 15.3. Given any left line module L over an algebra A, there is an integer
graded Hopf–Galois extension C of A so that L is given, up to isomorphism, by the
vector construction in the beginning of this section.

Proof. From Theorem 7.3, there is an integer graded Hopf–Galois extension C of
A so that, by construction, C1 D L, C�1 D Lı and C0 D A. As multiplication
C1 ˝ C�1 ! C0 is onto, there are elements wi 2 C�1 and vi 2 C1 (1 � i � n) so
that P

wivi D 1:

The bimodules C1wT and L are isomorphic by the maps

b 2 C1 7! bwT ; yT 7! yT v:

It is worthwhile to note that the vectors v and w do not alter the isomorphism
class of the line module, that is determined purely by the graded algebra. However
their existence is used to demonstrate that we actually have a line module, and in
constructing the projection matrix P D vwT .
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Example 15.4. The example of a line bundle on the quantum sphere associated to
CqŒSL2� is well known; see [18]. Suppose that q 2 C with q2 ¤ 1. The quantum
group CqŒSL2� has generators a, b, c, d with relations

ba D qab; ca D qac; db D qbd; dc D qcd; cb D bc;

da � ad D q.1 � q�2/bc; ad � q�1bc D 1:

The coproduct � and counit 
 have the usual matrix coalgebra form. We denote the
antipode or ‘matrix inverse’ by S :

S

�
a b

c d

�
D

�
d �qb

�q�1c a

�
:

The algebra CqŒSL2� equipped with the star operation a� D d , d � D a, c� D �qb

and b� D �q�1c, where q is real, is denoted CqŒSU2�.
There is a grading on CqŒSL2� for which the generators a, c have degree C1 and

b, d have degree �1. This grading makes B D CqŒSL2� into a CZ Hopf–Galois
extension of the 0 graded part, which we call A. In fact A is a well known construction
of the standard q-sphere. Now use the column vector construction given earlier, with
entries in B1 and B�1,

w D
�

a
c
q

�
; v D

�
d

�b

�
:

As wT v D 1 it follows that we have a line module L for the algebra A. As .wT /� D v,
we see that L has a Hermitian inner product.

But what of a star operation ? W L ! xL? We do not expect one in the case of the
sphere. To explain, we can consider constructing line bundles on the ordinary sphere.
The complex line bundles are given by ‘clutching functions’ from the equator to C�
(or S1 with a metric) (see [1]). These are classified by the winding number in Z. If
L has winding number n, then Lı has winding number �n, so we do not expect an
isomorphism from L to xL. Looked at another way, real line bundles (with metric)
are classified by clutching functions from the equator to Z=2, giving only one real
bundle (the trivial one).

16. An example of a Chern class in de Rham cohomology

Here we shall consider the differential geometry of a line module, and do several
calculations. It has not escaped our notice that connections on line bundles is an
important part of gauge theory in theoretical physics, and the framework of metrics
which we have presented, and the space of covariant derivatives in this section, may
be relevant (see [9]). In particular we shall be concerned with the definition in [19]
of Chern class of a vector bundle as a de Rham cohomology class given by taking
traces of powers of the curvature. In particular, in [19] there is a proof that the de
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Rham cohomology class does not depend on the covariant derivative r chosen on the
vector bundle. First this depends on the fact that the set of covariant derivatives is
connected (in fact, it is an affine space), and then takes differentiable paths between
different covariant derivatives (parameterised by time t , say). The derivative of the
constructed element of �2 is shown to be in the image of d W �1 ! �2, so the de
Rham class for the two covariant derivatives is the same. We shall attempt to produce
a ‘plausible’ copy of this proof in a noncommutative context, for an example with
line modules.

Suppose that we have a differential calculus .��A; d/ on the algebra A. In this
section we want to study the left covariant derivatives on the line module L D Bg .
As in Section 15, suppose that B is a Hopf–Galois extension of the algebra A for the
coaction � W B ! B ˝ CG of the group algebra of a (discrete) group G. It will be
convenient to fix an element g 2 G, c ˝ c0 2 Bg�1 ˝C Bg (summation implicit) so
that cc0 D 1B and c00 ˝ c000 2 Bg ˝C Bg�1 (summation implicit) so that c00c000 D 1B .
In the star algebra case we shall also assume, without further loss of generality, that
c ˝ c0 D c0� ˝ c� 2 Bg�1 ˝C Bg . This can be done by taking a new c ˝ c0 to be the
average of the old c ˝c0 and c0� ˝c�. We also use h˝h0 and f ˝f 0 as independent
copies of c ˝ c0.

Proposition 16.1. A general left covariant derivative on L D Bg can be written as

rL.e/ D d.ec/ ˝ c0 C z�.e/ 2 �1A ˝A L;

where z� W L ! �1A ˝A L is a left A-module map.

Proof. If we define z�.e/ D rL.e/ � d.ec/ ˝ c0, then for a 2 A,

z�.a � e/ D rL.a:e/ � d.aec/ ˝ c0

D da ˝ e C a � rL.e/ � da � ec ˝ c0 � a � d.ec/ ˝ c0

D da ˝ e � da � ec ˝ c0 C a � z�.e/:

Now we use the fact that for the Hopf–Galois extension, ec˝c0 D 1A˝e 2 A˝ABg .

Suppose that B is equipped with a differential calculus which is also G-graded,
and that Bg � �1A � Bg�1 � �1A. This is not an arbitrary condition, it fits with the
idea that the 1-forms on A are the horizontal invariant 1-forms on B , see [3]. Using
this we can define a useful bimodule map

�0 W L ˝A �1A ! �1A ˝A L; e ˝ 
 7! e � 
 � c ˝ c0: (23)

This is obviously a left module map, and to show that it is a right module map we use
ac ˝ c0 D c ˝ c0a 2 Bg�1 ˝A Bg for all a 2 A. Also �0 is invertible, with inverse
��1

0 .
 ˝ b/ D c00 ˝ c000 � 
 � b. This will prove useful in the next result:
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Proposition 16.2. The general form of z� is given, for some � 2 �1A, by the formula

z�.e/ D e � � � c ˝ c0;

and this gives the general form of the covariant derivative and curvature as

rL.e/ D d.ec/ ˝ c0 C e � � � c ˝ c0

RL.e/ D eh � d.h0 � � � c/ ˝ c0 � ef � d.f 0c/ ^ d.c0h/ ˝ h0

� e � � � c ^ c0 � � � h ˝ h0

D eh � d.h0 � � � c/ ˝ c0 � d.ec/ ^ d.c0h/ ˝ h0 � e � � � c ^ c0 � � � h ˝ h0:

Proof. To establish the form of z� we use the invertible bimodule map �0 from (23).
In view of Proposition 3.3 (for F D �1A) we can write the left module map

��1
0

z� W L ! L ˝A �1A as e 7! e ˝ �;

for some � 2 �1A, and thus z� has the required form. The curvature is calculated as

RL.e/ D .d ˝ id � id ^ rL/rL.e/

D .d ˝ id � id ^ rL/.d.ec/ ˝ c0 C e � � � c ˝ c0/
D d.e � � � c/ ˝ c0 � d.ec/ ^ rL.c0/ � e � � � c ^ rL.c0/
D d.e � � � c/ ˝ c0 � d.ec/ ^ d.c0h/ ˝ h0 � d.ec/ ^ c0 � � � h ˝ h0

� e � � � c ^ d.c0h/ ˝ h0 � e � � � c ^ c0 � � � h ˝ h0:

To simplify this, we first observe that in ��A ˝C L,

e � � � c ˝ c0 D e � � � cc0h ˝ h0;
d.e � � � c/ ˝ c0 D d.e � � � c/ � c0h ˝ h0 � e � � � c ^ d.c0h/ ˝ h0;

and on taking this in �2A ˝A L we see that e � � � c ^ d.c0h/ ˝ h0 D 0. Next in
��A ˝C L,

e � � � c ˝ c0 D ehh0 � � � c ˝ c0;
d.e � � � c/ ˝ c0 D d.eh/ ^ h0 � � � c ˝ c0 C eh � d.h0 � � � c/ ˝ c0;

and using these results we can rewrite the curvature as

RL.e/ D eh � d.h0 � � � c/ ˝ c0 � d.ec/ ^ d.c0h/ ˝ h0 � e � � � c ^ c0 � � � h ˝ h0:
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Finally we compute

d.ec/ ^ d.c0h/ ˝ h0 D d.eff 0c/ ^ d.c0h/ ˝ h0

D d.ef / � f 0c ^ d.c0h/ ˝ h0 C ef � d.f 0c/ ^ d.c0h/ ˝ h0

D d.ef / ^ f 0c � d.c0h/ ˝ h0 C ef � d.f 0c/ ^ d.c0h/ ˝ h0

D d.ef / ^ d.f 0cc0h/ ˝ h0 � d.ef / ^ d.f 0c/ � c0h ˝ h0

C ef � d.f 0c/ ^ d.c0h/ ˝ h0

D d.ef / ^ d.f 0h/ ˝ h0 � d.ef / ^ d.f 0c/ ˝ c0hh0

C ef � d.f 0c/ ^ d.c0h/ ˝ h0

D ef � d.f 0c/ ^ d.c0h/ ˝ h0�
In [5] the condition for a left covariant derivative to preserve a Hermitian inner

product is given, under the assumption that the covariant derivative is actually a bi-
module covariant derivative. It turns out that the condition can be stated in a form
which does not make use of this bimodule covariant derivative assumption. The rea-
son is that a left covariant derivative rL on a module E automatically gives a right
covariant derivative Lr on the conjugate module xE, so we can form a covariant deriva-
tive xE ˝A E ! xE ˝A �1A˝A E. This is effectively what we do in Proposition 16.3,
and is the reason why we do not actually require a bimodule covariant derivative.

Proposition 16.3. Suppose that we define a metric using the star operation ? W Bg !
Bg�1 as G. Nb/ D b�. The equation for the covariant derivative in Proposition 16.2 to
preserve the metric is that � C �� D 0.

Proof. We need to solve the equation

0 D .{r ˝ id C id ˝ rL/.G�1 ˝ idL/ coevL.1A/

D .{r ˝ id C id ˝ rL/.Sc� ˝ c0/
D {r.Sc�/ ˝ c0 C Sc� ˝ rL.c0/:

(24)

We use the definition for {r given in [5], Proposition 3.2,

{r. Nb/ D .id ˝ ?�1/‡rL.b/

D .id ˝ ?�1/‡.d.bh/ ˝ h0 C b � � � h ˝ h0/
D xh0 ˝ d.h�b�/ C xh0 ˝ h� � �� � b�:

If we substitute this into (24), we get

0 D xh0 ˝ d.h�c/ ˝ c0 C xh0 ˝ h� � �� � c ˝ c0

C Sc� ˝ d.c0h/ ˝ h0 C Sc� ˝ c0 � � � h ˝ h0:
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Applying ?�1 ˝ id ˝ id and relabeling gives

0 D c0� ˝ d.c�h/ ˝ h0 C c0� ˝ c� � �� � h ˝ h0

C c ˝ d.c0h/ ˝ h0 C c ˝ c0 � � � h ˝ h0:

Next we use the assumption that c ˝ c0 D c0� ˝ c� to write this as

0 D c ˝ .2d.c0h/ C c0 � .� C ��/ � h/ ˝ h0:

Note that there is an isomorphism from Bg�1 ˝A �1A˝A Bg to �1A given by taking
the product of all the factors. The inverse is just 
 2 �1A mapping to c ˝c0 �
 �h˝h0.
Using this isomorphism we can restate our condition as

0 D 2c � d.c0h/ � h0 C � C �� 2 �1A:

Finally,

c � d.c0h/ � h0 D ff 0c � d.c0h/ � h0

D f � d.f 0cc0h/ � h0 � f � d.f 0c/ � c0hh0

D f � d.f 0h/ � h0 � f � d.f 0c/ � c0

D 0:

We can suppose that B has a differential calculus .��B; d; ^/ which contains
.��A; d; ^/ as a sub-differential graded algebra. We shall assume this in the rest of
this section, and it will be true in Example 16.6. In particular we have a useful 1-form
� 2 �1B , defined by

� D c � dc0: (25)

Any a 2 A commutes with � up to an element of �1A, as can be seen from the
formula

c � d.c0ah/ � h0 D � � a � a � � C da:

Corollary 16.4. Using the formula for the covariant derivative in Proposition 16.2,
and supposing that B has a differential calculus containing the differential calcu-
lus for A as a subalgebra, we have the following formulae for � (if it exists, see
Definition 2.4):

�.e ˝ da/ D e � d.a/ � c ˝ c0 C e.a � .� � �/ � .� � �/ � a/c ˝ c0:

Proof. Just using �1A,

rL.ea/ � rL.e/ � a D d.eac/ ˝ c0 � d.ec/ ˝ c0a C ea � � � c ˝ c0 � e � � � c ˝ c0a
D d.ehh0ac/ ˝ c0 � d.ec/ ˝ c0a C e.a � � � � � a/c ˝ c0

D eh � d.h0ac/ ˝ c0 C d.eh/ � h0ac ˝ c0 � d.ec/ ˝ c0a
C e.a � � � � � a/c ˝ c0

D eh � d.h0ac/ ˝ c0 C e.a � � � � � a/c ˝ c0:
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Now we continue using the differential calculus on B ,

rL.ea/ � rL.e/ � a D eh � d.h0/ � ac ˝ c0 C ehh0 � d.a/ � c ˝ c0

C ehh0a � d.c/ ˝ c0 C e.a � � � � � a/c ˝ c0

D eh � d.h0/ � ac ˝ c0 C e � d.a/ � c ˝ c0

C ea � d.c/ � c0h ˝ h0 C e.a � � � � � a/c ˝ c0

D eh � d.h0/ � ac ˝ c0 C e � d.a/ � c ˝ c0

� ea � h � d.h0/ � c ˝ c0 C e.a � � � � � a/c ˝ c0:

Corollary 16.5. Using the formula for the covariant derivative in Proposition 16.2,
and supposing that B has a differential calculus containing the differential calculus
for A as a subalgebra, we have the following formulae for the curvature RL:

RL.e/ D e � .d.� � �/ � .� � �/ ^ .� � �// � c ˝ c0:

Proof. From Proposition 16.2,

RL.e/ D eh � d.h0 � � � c/ ˝ c0 � d.ec/ ^ d.c0h/ ˝ h0 � e � � � c ^ c0 � � � h ˝ h0

D e� ^ � � c ˝ c0 C e � d� � c ˝ c0 � e � � ^ dc ˝ c0

� d.ec/ ^ d.c0h/ ˝ h0 � e � � ^ � � h ˝ h0:

We use

�d.ec/ ^ d.c0h/ ˝ h0 D �de � c ^ dc0 � h ˝ h0 � de � c ^ c0 � dh ˝ h0

� e � dc ^ dc0 � h ˝ h0 � e � dc ^ c0 � dh ˝ h0

D �de ^ c � dc0 � h ˝ h0 � de � ^dh ˝ h0cc0

� e � dc ^ dc0 � h ˝ h0 � e � dc � c0 ^ dh � h0f ˝ f 0

D �e � .d� C � ^ �/ � c ˝ c0:

We define the trace !L 2 �2A of the curvature RL W L ! �2A ˝A L as the
image of 1A under the following composition, where the last map is the product in
�2B ,

A
ev�! Lı ˝A L

id˝RL����! Lı ˝A �2A ˝A L ! �2A:

If we use the curvature in Corollary 16.5 we find !L to be

1A 7! c ˝ c0 7! c ˝ c0 � .d
 � 
 ^ 
/ � h ˝ h0 7! d
 � 
 ^ 
;

where we set 
 D � � �. There is no indication that this is a reasonable Chern class.
However there are several things that we take for granted in ordinary geometry that
have to be separately specified in noncommutative geometry. For example, we expect
that a left covariant derivative will also have reasonable behaviour for right multipli-
cation – this is the bimodule covariant derivative condition (see Definition 2.4). We
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have a particularly simple choice of � , called �0, in (23). Corollary 16.4 shows that
to get � D �0 in general we need a � 
 D 
 � a for all a 2 A. Another thing that we
take for granted is that the curvature RL is a right module map. From Corollary 16.5
this is true when, for all a 2 A, a � .d
 � 
 ^ 
/ D .d
 � 
 ^ 
/ � a. If we assume both
of these conditions, we deduce that a �d
 D d
 �a, and then applying d to a �
 D 
 �a
gives da ^ 
 C 
 ^ da D 0 for all a 2 A.

Subsequently, we deduce that 
 anticommutes with all 1-forms, and in particular
that 
 ^ 
 D 0. The result is that !L D d
, so !L is in the kernel of d. However we
cannot assume that Œd
� D 0 2 H 2

deRham.A/, as in general 
 … �1A. On the other
hand we can see that Œ!L� 2 H 2

deRham.A/ is independent of the choice of covariant
derivative. Remembering that 
 D � ��, where � 2 �1A, the difference of two !L is
d applied to an element of �1A. Of course the assumptions that the curvature is a right
module map, that the connection is a bimodule connection, and (most questionably)
that � D �0 are open to question. However the framework of line modules does
allow calculations to be done in a reasonably sensible manner, and we would hope
that it would be used on more examples to give a better idea of what is going on. We
conclude with a follow up to Example 15.4, in which we can make the assumptions
above and get a sensible answer.

Example 16.6. Following Example 15.4, on CqŒSL2� we take the 3D calculus of
[31]. In our conventions this has a basis

e� D d � db � qb � dd; eC D q�1a � dc � q�2c � da; e0 D d � da � qb � dc

of left-invariant 1-forms, is spanned by these as a left module (according to the above)
while the right module relations and exterior derivative are given in these terms by

e˙
�

a b

c d

�
D

�
qa q�1b

qc q�1d

�
e˙; e0

�
a b

c d

�
D

�
q2a q�2b

q2c q�2d

�
e0;

da D ae0 C qbeC; db D ae� � q�2be0;

dc D ce0 C qdeC; dd D ce� � q�2de0:

For CqŒSL2� the natural extension compatible with the super-Leibniz rule on higher
forms and d2 D 0 is

de0 D q3eC ^ e�; de˙ D 	q˙2Œ2I q�2�e˙ ^ e0; e˙ ^ e˙ D e0 ^ e0 D 0;

q2eC ^ e� C e� ^ eC D 0; e0 ^ e˙ C q˙4e˙ ^ e0 D 0;

where ŒnI q� D .1 � qn/=.1 � q/ denotes a q-integer. This means that there are the
same dimensions as classically, including a unique top form e� ^ eC ^ e0.

We can set

c ˝ c0 D d ˝ a � qb ˝ c; c00 ˝ c000 D a ˝ d � q�1c ˝ b:
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From this we calculate � in (25), using [5],

� D c � dc0 D d � da � qb � dc

D dae0 C qdbeC � qbce0 � q2bdeC

D .da � qbc/e0 C .qdb � q2bd/eC D e0:

Now e0 commutes with all elements of A, so we can set � D 0 to get a metric
preserving bimodule connection with (from Corollary 16.4)

�.e ˝ 
/ D e � 
 � c ˝ c0;

and curvature given by Corollary 16.5, and in the case of our example where � D e0

we get the trace of the curvature being !l D d� D q3eC ^ e�, so the de Rham Chern
class would be q3ŒeC ^ e�� 2 H 2

deRham.A/.
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