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Abstract. We construct explicit polynomial realizations of some combinatorial Hopf algebras
based on various kinds of trees or forests, and some more general classes of graphs, ranging
from the Connes–Kreimer algebra to an algebra of labelled forests isomorphic to the Hopf
algebra of parking functions and to a new noncommutative algebra based on endofunctions
admitting many interesting subalgebras and quotients.
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1. Introduction

One knows many examples of Hopf algebras based on various kinds of trees or
forests [3], [6], [7], [20], [16], [17], [24]. Such algebras are increasingly popular,
mainly because of their applications to renormalization problems in quantum field
theory [19], [3], but some of them occurred earlier in combinatorics [12], [13] or in
numerical analysis [14].

The simplest one, generally known as the Connes–Kreimer algebra [3], is a com-
mutative algebra freely generated by rooted trees, endowed with a coproduct defined
in terms of admissible cuts.

This is a basic example of a combinatorial Hopf algebra, a heuristic notion en-
compassing a large class of graded connected Hopf algebras based on combinatorial
objects, endowed with some extra structure such as distinguished bases, scalar prod-
ucts or degree-preserving products (called internal products). A distinctive feature of
combinatorial Hopf algebras is that products and coproducts in distinguished bases
are given by combinatorial algorithms. However, in many cases, the basis elements
can be realized as polynomials1 (commutative or not) in some auxiliary set of vari-
ables, in such a way that the product of the algebra becomes the usual product of

�Partially supported by a PEPS project of the CNRS.
1By polynomials in infinitely many variables we actually mean elements of an inverse limit of polyno-

mial algebras in the category of graded algebras. That is, a polynomial can have infinitely many monomials,
but must be of bounded degree.
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polynomials, and the coproduct a simple trick of “doubling the variables” (see, e.g.,
[4], [25], [24] for detailed examples).

Such a construction was not known for the Connes–Kreimer algebra, despite the
fact that it is one of the simplest examples. The present paper provides such a con-
struction, which in turn will be obtained by specialization of a new realization of a
Hopf algebra of labelled forests [10], itself isomorphic to the (dual) Hopf algebra
of parking functions [25]. This provides as well realizations of the noncommutative
Connes–Kreimer algebra (isomorphic to the Loday–Ronco algebra of planar binary
trees) [6], [7], [20] and new morphisms between these algebras and other combina-
torial Hopf algebras.

Previously known realizations are defined in terms of an auxiliary alphabet A,
endowed with some ordering. A given combinatorial Hopf algebra is then realized
by interpreting the elements of some basis as the sum of all words over A sharing
some specific property (e.g., descent set, standardization, packing, parkization), the
product being then the ordinary product of polynomials, and the coproduct being the
ordinal sum A C B of two isomorphic copies of the ordered set A.

As we shall see, it is possible to extend this approach to the algebras of the Connes–
Kreimer family, provided that one replaces the order on A by another kind of binary
relation, for which an analog of the ordinal sum can be defined. Actually, this kind of
construction works for a slightly more general class of algebras. Our starting point
is an algebra of ordered forests, where edges are oriented towards the roots and a
loop is added on each root. This amounts to interpreting ordered forests as a special
class of endofunctions (acyclic endofunctions, those for which the graph with edges
i ! j for j D f .i/ has no cycle of length greater than 1). At the opposite extreme,
the graphs representing permutations consist only of cycles. A similar but different
construction can be given for this case, and one obtains in this way a realization of the
dual of the commutative Hopf algebra of permutations of [18]. Finally, on can again
modify the construction so as to obtain a realization of a new Hopf algebra based on
all endofunctions. This last one admits many interesting subalgebras and quotients,
including the previously discussed ones, for which the construction provides different
realizations.

2. Rooted trees and rooted forests

Throughout the paper K will denote a field of characteristic zero.

2.1. Reminders on rooted trees and forests. A rooted tree is a finite tree with a
distinguished vertex called the root. A rooted forest is a finite graph F such that any
connected component of F is a rooted tree. The set of vertices of the rooted forest
F is denoted by V.F /.

Let F be a rooted forest. The edges of F are oriented downwards (from the
leaves to the roots). If v; w 2 V.F /, with v ¤ w, we shall write v ! w if there is
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an edge in F from v to w, and v � w if there is an oriented path from v to w in F .
Let v be a subset of V.F /. We shall say that v is an admissible cut of F , and we

shall write v ˆ V.F / if v is totally disconnected, that is to say that there is no path
from v to w in F for any pair .v; w/ of distinct elements of v. If v ˆ V.F /, we
denote by LeavF the rooted subforest of F obtained by keeping only the vertices
above v, that is to say fw 2 V.F / j there exists v 2 v with w � vg [ v. We denote
by RoovF the rooted subforest obtained by keeping the other vertices.

2.2. The Connes–Kreimer Hopf algebras. Connes and Kreimer proved in [3] that
the vector space H spanned by rooted forests can be turned into a Hopf algebra. Its
product is given by the disjoint union of rooted forests, and the coproduct is defined
for any rooted forest F by

�.F / D P
vˆV.F /

RoovF ˝ LeavF :

For example,

�
�

�_��

� � D �_��

�

˝ 1 C 1 ˝ �_��

�

C �_�� ˝ � C �

� ˝ �

� C �

�

�

˝ � C �

� ˝ � � C � ˝ �

�

� :

This Hopf algebra is commutative and noncocommutative. Its dual is the universal
enveloping algebra of the free pre-Lie algebra on one generator [2].

A similar construction can be done on plane forests. The resulting noncommuta-
tive, noncocommutative Hopf algebra HNCK is called the noncommutative Connes–
Kreimer Hopf algebra [6], [7]. It is isomorphic to the Hopf algebra of planar binary
trees [20].

3. Ordered rooted trees and permutations

We recall here a generalization of the construction of the product and the coproduct
of H to the space spanned by ordered rooted forests introduced in [10].

3.1. Hopf algebra of ordered trees. An ordered (rooted ) forest is a rooted forest
with a total order on the set of its vertices. The set of ordered forests will be denoted
by Fo; for all n � 0, the set of ordered forests with n vertices will be denoted by
Fo.n/. An ordered (rooted) tree is a connected ordered forest. The set of ordered
trees will be denoted by To; for all n � 1, the set of ordered trees with n vertices will
be denoted by To.n/. The K-vector space generated by Fo is denoted by Ho. It is
a graded space, the homogeneous component of degree n being Vect.Fo.n// for all
n 2 N.
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For example,

To.1/ D f �

1 g;
To.2/ D f �

�
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2
1 g;
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Fo.1/ D f �

1 g;
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9=
; :

If F and G are two ordered forests, then the rooted forest F G is seen as the
ordered forest such that, for all v 2 V.F /, w 2 V.G /, v < w. This defines a
noncommutative product on the set of ordered forests. For example, the product of
�

1 and �

�

1
2 gives �

1
�

�

2
3 , whereas the product of �

�

1
2 and �

1 gives �

�

1
2
�

3 D �

3
�

�

1
2 . This product

is linearly extended to Ho, which in this way becomes a graded algebra.
The number of ordered forests with n vertices is .n C 1/n�1, which is also the

number of parking functions of length n. By definition, Ho is free over irreducible
ordered forests (that is to say ordered forests which cannot be written as the product
of two nonempty ordered forests), which are in bijection with connected parking
functions. For example, here are the connected ordered forests with k � 3 vertices:
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1 ; �
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1
2 ; �

�

2
1 ; �

2
�

�

1
3 ; �

2
�
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3
1 ; �_��
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; �
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; �

�
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3
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; �

�

�

3
2
1

:

Hence, as an associative algebra Ho is isomorphic to the Hopf algebra of parking
functions PQSym introduced in [25].

If F is an ordered forest, then any subforest of F is also ordered. In [10], a
coproduct � W Ho 7! Ho ˝ Ho on Ho has been defined in the following way: for all
F 2 Fo,

�.F / D P
vˆV.F /

RoovF ˝ LeavF :

As for the Connes–Kreimer Hopf algebra of rooted trees [3], one can prove that this
coproduct is coassociative, so Ho is a graded Hopf algebra. For example,

�
�
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2
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1 � D �_��
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2
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1

˝ 1 C 1 ˝ �_��

�

2
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1
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1
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�
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�

3
1
�

2 :

Theorem 3.1. As a Hopf algebra, Ho is isomorphic to the graded dual PQSym� of
PQSym.
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Note. Actually, PQSym is self-dual, but as we shall see, Ho admits WQSym as a
natural quotient rather than as a natural subalgebra, which is also the case of PQSym�.

Proof. We shall only give here the main ideas of the proof, see [9] for more details.
Another product, denoted by -, is defined on the augmentation ideal of Ho: if F

and G are two ordered forests, F - G is the ordered forest obtained by grafting G

shifted by the number of vertices of F on the greatest vertex of F . For example,

�

�

1
2 - �

1
�

2 D �_��

�

1
2

43

and �

�

2
1 - �

1
�

2 D �_�� �

2

4
3

1
:

This product is associative, and satisfies a certain compatibility with the product
of Ho. The coproduct of Ho also splits into two parts, separating the admissible
cuts, according to whether the greatest vertex of F is in RoovF or LeavF . These
coproducts make the augmentation ideal of Ho a dendriform coalgebra, and there is
a certain compatibility (called duplicial) between each product and each coproduct
of Ho, making Ho what is called in [9] a Dup-Dend bialgebra. Moreover, the Hopf
algebra PQSym� is a Dup-Dend bialgebra. A rigidity theorem, similar with the
rigidity theorem for bidendriform bialgebra of [8], tells then that a graded, connected
Dup-Dend bialgebra is free. As a consequence, as Ho and PQSym� have the same
Poincaré–Hilbert series, they are isomorphic as graded Dup-Dend bialgebras, hence
also as graded Hopf algebras [9].

3.2. A realization of Ho. The Hopf algebra of ordered rooted forests can be realized
by explicit polynomials in an auxiliary alphabet of bi-indexed variables

A D faij j 1 � i � j g:
On such an alphabet, we consider the relation � defined by

aij � ajk for i � j and j < k:

In particular, for all i � j , aij � aij if and only if i D j , so that this relation is
neither reflexive nor transitive. We call the pair .A; �/ a �-alphabet. This is an analog
of the notion of ordered alphabet used for most other combinatorial Hopf algebras.
If .B; �/ is another �-alphabet, their �-sum A ˚ B is defined as their disjoint union
endowed with the �-relation restricting to the original ones of A and B and such that

aij � bkk for all i � j and all k:

Let F be an ordered forest with n vertices. We attach to the root of each tree of F

a loop, that is to say an edge from the root to itself. For example, we shall consider

�_��

�

1

42

3

as ˚�_��

�

1

42

3

:
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There is then a natural bijection from the set of edges of F (including the edges of
the loops) and the vertices of F , associating with an edge of F its initial vertex. As
the set of vertices of F is totally ordered, the set of edges of F is also totally ordered
by means of the bijection. We shall denote by e1 < � � � < en the set of edges of F .

Let w D w1 : : : wn be a word of length n over A. We say that w is F -compatible
if the following holds: if k; l 2 f1; : : : ; ng are such that the initial vertex of ek is
the terminal vertex of el (or, equivalently, if l ! k in F ), then wk � wl . We write
w ` F . Now define the polynomials

SF .A/ D P
w`F

w:

For example, let

F D �

�

3
2

�_��

�

4

61

5

D ˚�

�

3
2

˚�_��

�

4

61

5

:

Then

SF D P
w3�w2;w3

w4�w1;w4;w6
w6�w5

w1w2w3w4w5w6 D P
i3<i2

i4<i1;i6
i6<i5

ai4i1ai3i2ai3i3ai4i4ai6i5ai4i6 :

Theorem 3.2. The polynomials SF .A/ provide a faithful realization of Ho, that is,

SF SG D SF G :

If we allow A and B to commute and identify P.A/Q.B/ with P ˝ Q, then

SF .A ˚ B/ D P
vˆV.F /

SRoovF .A/SLeavF .B/ D S�.F /:

Proof. Let us first prove the product rule. Let F be an ordered forest with k vertices
and G be an ordered forest with l vertices. In the ordered forest F G , the vertices of
F are the first k vertices, the vertices of G are the last l ones, and there are no edges
between the vertices of F and the vertices of G . Consequently, a word w1 : : : wkCl

is F G -compatible if and only if w1 : : : wk is F -compatible and wkC1 : : : wkCl is
G -compatible. Hence

SF G D P
w0ˆF ;w00ˆG

w0w00 D SF SG :

Let us now prove that the realization is faithful. Let w D ai1;j1
: : : ain;jn

be a
word on the alphabet A. Let J.w/ D fj1; : : : ; jng and j.w/ D card.J.w//. Then
j.w/ defines a degree on KhhAii. If P D P

xww is an element of KhhAii, we denote
by zP the component of P of maximal J.w/, if it exists. In particular, if the degree
of the words appearing in P is bounded, then zP exists.
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Let F be an ordered forest. The degree of the words w appearing in SF .A/ is
the number n of vertices of F , so zSF .A/ exists. As there are F -compatible words
w such that j.w/ D n, j.SF .A// D n. Hence, if w D ai1;j1

: : : ain;jn
appears in

zSF , then necessarily j1; : : : ; jn are all distinct, so we can reconstruct F from w: the
vertex k is a root if and only if ik D jk and there is an edge from the vertex k to
the vertex l in F if and only if ik D jl . As a consequence, the zSF .A/ are linearly
independent. And so are the SF .A/.

Consider now a word w D ci1j1
: : : cinjn

in SF .A ˚ B/. If cikjk
belongs to B ,

and if l ! k in F , then cikjk
� cil jl

, so cil jl
also belongs to B . As a consequence,

there exists a unique admissible cut v such that the vertices of F labelled by those
subscripts k such that cikjk

belongs to B is LeavF and the vertices of F indexed
by those subscripts k such that cikjk

belongs to A is RoovF . Moreover, w is a
word appearing in SRoovF .A/ ˝ SLeavF .B/. Conversely, any word appearing in
SRoovF .A/ ˝ SLeavF .B/ appears in SF .A ˚ B/. Thus,

SF .A ˚ B/ D P
vˆF

SRoovF .A/ ˝ SLeavF .B/ D S�.F /:

Example. Let F D �_��

�

1

32

4

. Then

SF D P
w1�w1;w2;w3

w3�w4

w1w2w3w4

so that

SF .A/ D P
i1<i2

i1<i3<i4

ai1i1ai1i2ai1i3ai3i4

and

SF .A ˚ B/ D P
ai1i1ai1i2ai1i3ai3i4 C P

ai1i1bj2j2
ai1i3ai3i4

C P
ai1i1ai1i2ai1i3bj4j4

C P P
ai1i1bj2j2

ai1i3bj4j4

C P
ai1i1ai1i2bj3j3

bj3j4
C P P

ai1i1bj2j2
bj3j3

bj3j4

C P
bj1j1

bj1j2
bj1j3

bj3j4

D SF .A/ C S
�

�

�

1
2
3

.A/S
�

1 .B/ C S
�_��

1

32

.A/S
�

1 .B/ C S
�

�

1
2

.A/S
�

1
�

2 .B/

C S
�

�

1
2

.A/S
�

�

1
2

.B/ C S
�

1 .A/S
�

1
�

�

2
3

.B/ C SF .B/:

We shall give a second realization of Ho in Section 5.2.

3.3. Epimorphism to WQSym. Let us recall the definition of WQSym, the Hopf
algebra of ord Quasi-Symmetric functions (cf. [15], [24]). This algebra has many
interpretations, e.g., as the Solomon–Tits descent algebra [28], [24], as a centralizer
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algebra for a kind of Schur–Weyl duality [23], and as an algebra of nonlinear difference
operators [22].

The packed word u D pack.w/ associated with a word w 2 A� (over an ordered
alphabet A) is obtained by the following process. If b1 < b2 < � � � < br are the
letters occurring in w, then u is the image of w by the homomorphism bi 7! ai . A
word u is said to be packed if pack.u/ D u. The natural basis of WQSym, which
lifts the quasi-monomial basis of QSym, is labelled by packed words. It is defined
by

Mu D P
pack.w/Du

w:

In this basis, the product is given by

MuMv D P
wDu0v0

pack.u0/Du;pack.v0/Dv

Mv:

Let � be the algebra morphism aij 7! aj from the free associative algebra on the
aij to the free associative algebra over single-indexed letters aj .

Proposition 3.3. WQSym is a quotient Hopf algebra of Ho:

�.Ho/ D WQSym:

Proof. Let F be an ordered forest with n vertices. A packed word m D a1 : : : an is
F -admissible if i ! j in F implies that aj < ai . Then

�.F / D P
m F -admissible

� P
pack.w/Dm w

� D P
m F -admissible

Mm:

So �.F / 2 WQSym.
Let us prove the surjectivity of � . We totally order packed words by the lexico-

graphic order. For any packed word w D a1 : : : an, let us construct an ordered forest
Fw of degree n such that the smallest packed word appearing in �.Fw/ is w. We
proceed by induction on n. If n D 1, then w D .1/, and we take F.1/ D �

1. Let us
assume the result for any packed word with n�1 letters. We separate the construction
of Fw into three cases.

(1) 1 D a1 D a2 � a3 � � � � an. We then take Fw D �

1Fa2:::an
.

(2) 1 D a1 < a2 � a3 � � � � � an. Then a2 D 2. Let a0
2 : : : a0

n D pack.a2 : : : an/,
that is to say a0

i D ai � 1 for all i . We then take Fw D BC.Fa0
2

:::a0
n
/, that is

to say the ordered tree obtained by adding a root to Fa0
2

:::a0
n
, this root being the

smallest element.

(3) The letters a1, …, an are not in order. There exists � 2 Sn such that
a��1.1/ : : : a��1.n/ is nondecreasing. We then take Fw D � � Fa

��1.1/
:::a

��1.n/
,

where � acts by changing the order of the vertices of Fa
��1.1/

:::a
��1.n/

.
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It is not difficult to show that these Fw give the result. So � is surjective.

For example,

�. �

1 / D M.1/;

�. �

1
�

2 / D M.11/ C M.12/ C M.21/;

�. �

�

1
2 / D M.12/;

�. �

�

2
1 / D M.21/;

�. �_��

1

32
/ D M.122/ C M.132/ C M.123/;

�. �_��

3

21
/ D M.221/ C M.321/ C M.231/:

3.4. Embedding of the noncommutative Connes–Kreimer algebra. Let xF be a
plane forest. It can be seen as an ordered forest by totally ordering the vertices of F

“up-left”, that is, by performing a left depth-first traversal of the forest and numbering
each vertex on the first encounter. For example,

�_��

�

�_��

�

7! �_��

�

1

32

4

�_��

�

5

86

7

:

Proposition 3.4. The map xF 7! SF is a Hopf embedding of the noncommutative
Connes–Kreimer algebra HNCK into Ho.

Proof. This is clearly compatible with the product since shifted concatenation pre-
serves the planar structure, and with the coproduct which is given on both sides by
admissible cuts, the labeling having been chosen such that in Ho the coproduct of the
image of a plane forest contains only terms corresponding to plane forests.

Thus, we have also a polynomial realization of HNCK. For example,

�

�

�_��

�

7! S
�

�

1
2

�_��

�

3

54

6

D P
i1<i2
i3<i4

i3<i5<i6

ai1i1ai1i2ai3i3ai3i4ai3i5ai5i6 :

3.5. Embedding of HNCK into WQSym

Theorem 3.5. Let � W Ho ! WQSym be the projection induced by aij 7! aj in the
second realization. Then the restriction of � to HNCK is injective.

Proof. Let BC denote as usual the operation consisting of connecting the trees of a
(plane) forest to a common root labeled 1 and shifting by one the labels of the trees.
Define a (linear) endomorphism b of WQSym by

b.Mu/ D M1�uŒ1�;
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where � is the concatenation and uŒ1� means shifting by 1 the letters of u, e.g.,
b.M2131/ D M13242.

We then have
� B BC D b B �:

An ordered forest F can be regarded as a poset PF (the roots being mini-
mal elements). Identifying a map f from PF to some Œm� with the word wf D
f .1/f .2/ : : : f .n/, we have

�.SF / D P
f 2�.PF /

Mwf
;

where �.PF / is the set of increasing surjections from PF to some Œm�. Now if we
restrict to the F that are the canonical labelings of plane forests, the lexicographically
minimal increasing surjection words wf are all distinct and hence allow to reconstruct
F . So the images of the plane forests are linearly independent.

3.6. The noncommutative Faà di Bruno algebra. Recall that the Faà di Bruno
algebra is the Hopf algebra of polynomial functions on the group of formal diffeo-
morphisms of the real line tangent to the identity [5].

As an algebra, it can be identified with the algebra Sym of symmetric functions.
The n-th coordinate function f .t/ D P

fntnC1 7! fn of the Faà di Bruno algebra
can be identified with the n-th complete symmetric homogeneous function hn.X/,
i.e., the sum of all monomials of degree n. In terms of generating series,

�t ´ P
n

tnhn.X/ D Q
i�1

.1 � txi /
�1:

For a scalar ˛, we define the notation hn.˛X/ by

�t .˛X/ D P
n

tnhn.˛X/ D �t .X/˛:

With this identification, the coproduct of the Faà di Bruno acts on complete homoge-
neous functions hn by

�1hn D
nP

kD0

hk.X/hn�k..k C 1/Y /

or, equivalently,

��1 D P
n�0

hn ˝ �nC1
1 ;

The noncommutative version of [7], [1] can be identified with the algebra Sym of
noncommutative symmetric functions [11], [26], endowed with the coproduct

�1Sn D
nP

kD0

Sk.A/Sn�k..k C 1/B/
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or again
��1 D P

n�0

Sn ˝ �nC1
1 ;

where the Sn.˛A/ are defined by

�t .A/ D P
n

tnSn.A/ D
!Q

i�1

.1 � tai /
�1 and �t .˛A/ D �t .A/˛:

The Faà di Bruno algebra is known to be a Hopf subalgebra of the Connes–Kreimer
algebra, and in the same way its noncommutative version can be embedded in HNCK

[7]. Let
U D P

F

F D 1
1�V

and V D P
T

T D BC.U /

be the sum of all plane forests and the sum of all plane trees in HNCK. It is shown in
[7] that the square Z D U 2 of U has the same coproduct as �1:

�NCKZ D P
n�0

Zn ˝ ZnC1:

Thus, composing the map Sn 7! Zn with the embedding of HNCK into WQSym, we
obtain an embedding of the noncommutative Faà di Bruno algebra.

3.7. Epimorphism to the original Connes–Kreimer algebra. If, in the above real-
ization of HNCK, we map aij 7! xij where the xij are commuting indeterminates, we
then obtain a commutative Hopf algebra which turns out to be the original Connes–
Kreimer algebra. We can even do this at the level of Ho. With both realizations, SF

and SG have the same image if and only if the underlying unordered forests are the
same. Thus the image of Ho is also the Connes–Kreimer algebra.

Proposition 3.6. The map aij 7! xij provides a polynomial realization of the
Connes–Kreimer algebra.

Proof. The fact that SF .X/ depends only on the underlying forests is clear from
the definition. Compatibility with the product and coproduct is also immediate. The
only point which has to be checked is that the map is surjective. This follows from
the same argument as in the proof of Theorem 3.2.

The commutative images of the polynomials SF are special cases of polynomials
known in numerical analysis, as well as their coproduct formula (see, e.g., [14]). More
precisely, the specialization of these polynomials SF to the coefficients of a finite
matrix gives the polynomials associated with each tree by a Runge–Kutta method
(here, with a triangular matrix). The direct construction of the coproduct in terms of
the �-alphabets presented here is new.
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3.8. Analog of the Schur basis. The basis SF is multiplicative in the sense that the
product of two basis elements is again a basis element. In general, combinatorial Hopf
algebras admit several interesting bases, and such multiplicative bases are generally
obtained by summing some other combinatorial basis along intervals on some order.
This is the case here.

There is a natural order on ordered forests with a given number n of vertices,
whose cover relation is F < F 0 if and only if F 0 is obtained from F by deleting
exactly one edge. In other words, considering the egdes of F and F 0 as elements of
f1; : : : ; ng2, F � F 0 if and only if the set of edges of F 0 is included in the set of
edges of F .

Let us set
RF D P

G�F

.�1/jE.F /j�jE.G /jSG :

For example,

R �

�

1
2
�

3
D S

�

�

1
2
�

3 � S
�_��

1

32

� S
�

�

�

1
2
3

� S
�

�

�

3
1
2

:

Let F be a forest with k vertices and let I � f1; : : : ; kg. The restriction FjI is
the subforest of F obtained by taking all the vertices of F which are in I and all the
edges between these vertices. As I is totally ordered (as a part of f1; : : : ; kg), FjI is
an ordered forest. Hence

Theorem 3.7. Let F 0 and F 00 be two ordered forests, with k0 and k00 vertices, re-
spectively. Then

RF 0RF 00 D P
RF ;

where the sum is over all ordered forests F with k0Ck00 vertices such that Fjf1;:::;k0g D
F 0 and Fjfk0C1;:::;k0Ck00g D F 00.

Proof. Let us define another product ? on Ho, given by the formula we want to
prove. Let us then compute SF 0?F 00

for any ordered forests F 0 and F 00. By a
Möbius inversion, for any ordered forest G ,

SG D P
G 0�G

RG 0 ;

so that
SF 0?F 00 D P

G 0�F 0;G 00�F 00

RG 0 ? RG 00 D P
RG ;

where the sum is over all ordered forests G with k0 Ck00 vertices such that Gjf1;:::;k0g �
F 0 and Gjfk0C1;:::;k0Ck00g � F 00. Such an ordered forest G is obtained, first by adding
edges between vertices of F 0 and F 00, then edges between vertices of the two ordered
forests. Equivalently, it can be obtained by adding edges between vertices of F 0F 00
so that

SF 0?F 00 D P
G�F 0F 00

RG D SF 0F 00 D SF 0
SF 00

:

So ? is the product of Ho.
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For example,

R �

1
�

2
R �

1
D R �

1
�

2
�

3
C R �

1
�

�

2
3 C R �

1
�

�

3
2 C R �

2
�

�

1
3 C R �

�

3
1
�

2
C R

�_��

3

21 C R
�

�

�

1
3
2 C R

�

�

�

2
3
1 ;

R �

1
R �

1
�

2
D R �

1
�

2
�

3
C R �

2
�

�

3
1 C R �

�

1
3
�

2
C R �

�

2
1
�

3
C R �

�

1
2
�

3
C R

�_��

1

32 C R
�

�

�

2
1
3 C R

�

�

�

3
1
2 :

3.9. ASchurbasis for theConnes–Kreimer algebra. Let F and F 0 be two ordered
forests with the same underlying rooted forest. There exists a permutation � such
that the ordered forest F � obtained from F by permuting the indices by � is equal
to F 0. Then G � � F 0 for any ordered forest G � F since G is obtained from
F by adding some edges. As a consequence, the commutative images of RF and
RF 0

are equal. For any rooted forest xF , we then denote by R
xF the image of RF in

the Connes–Kreimer algebra, where F is any ordered forest with underlying rooted
forest xF ; this does not depend on the choice of F . These elements form a new basis
of the Connes–Kreimer Hopf algebra.

Examples. In the Connes–Kreimer Hopf algebra,

R
� D � ; R

�

�

D �

�

; R
� � D � � � 2 �

�

;

R
�

�

�

D �

�

�

; R
�_��

D �_��

; R
� �

�

D � �

� � �_�� � 2 �

�

�

; R
� � � D � � � � 6 � �

� C 3 �_�� C 6 �

�

�

;

R
�

�

�

�

D �

�

�

�

;

R
�_��

� D �_��

� ;

R
�_��

�

D �_��

�

;

R
�_�� �

D �_�� �

;

R
�

�

�

�

D �

�

�

� � 2 �_��

�

� 2 �

�

�

�

;

R
�

�

�

� D �

�

�

� � �_��

�

� �_��

� � 2 �

�

�

�

;

R
�_��

� D �_��

� � �_�� � � 2 �_��

�

� �_��

� ;

R
�

�

� � D �

�

� � � 2 �_��

� � 4 �

�

�

� � 2 �

�

�

� C �_�� � C 6 �_��

�

C 3
�_��

� C 6 �

�

�

�

;

R
� � � � D � � � � � 12 �

�

� � C 12 �_��

� C 24 �

�

�

� C 12 �

�

�

� � 4 �_�� �

� 24 �_��

�

� 12
�_��

� � 24 �

�

�

�

:
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4. The cocommutative Hopf algebra on permutations

Besides the self dual Hopf algebra structure (known as FQSym or as the Malvenuto–
Reutenauer algebra [21]) on the linear span of all permutations, there is another one
which is cocommutative and noncommutative. It was first described by Grossman and
Larson [13] in terms of heap ordered trees. Several other (non-obviously equivalent)
constructions can be found in [18].

The starting point of [18] is a commutative algebra, denoted by SQSym, spanned
by the polynomials

M� D P
i1<���<in

xi1i�.1/
: : : xini�.n/

in commuting indeterminates xij satisfying xij xik D xikxjk D 0. The dual Hopf
algebra SSym is free over the set of connected permutations, and the dual basis S�

of M� satisfies
S�S� D S��� ; (1)

where � denotes the shifted concatenation [18], defined by

.a1; : : : ; am/ � .b1; : : : ; bn/ D .a1; : : : ; am; b1 C m; : : : ; bn C m/:

Theorem 4.1. Let A D faij j i; j � 1g endowed with the relation aij � akl if and
only if j D k. Then the polynomials

S� .A/ ´ P
i1;:::;in�1

ai�.1/i1 : : : ai�.n/in (2)

satisfy (1). Moreover, if .B; �/ is another alphabet, their sum A ˚ B is defined as
their disjoint union endowed with the �-relation restricting to the original ones of A

and B and such that
aij � bkl for all i , j , k, l .

Then these polynomials span a Hopf algebra isomorphic to SSym for the coproduct
�F.A/ D F.A ˚ B/.

Proof. The independence of the S� is proved in the same way as for Theorem 3.2:
indeed, in any S� .A/ appears a word such that all subscripts ik are different and such
a word allows one to rebuild � . Moreover, the S� defined by (2) satisfy (1). For the
coproduct, observe that S� .A/ can alternatively be characterized as the sum of all
� -compatible words, defined by the condition

w D ak1l1
: : : aknln

is � -compatible if and only if i D �.j / H) aki li
� akj lj :

Hence, S� .A ˚ B/ is well defined and obtained from S� .A/ by splitting the set of
cycles of � into two parts in all possible ways and replacing a’s by b’s into one of the
parts. This is exactly the coproduct of the basis S� of SSym as described in [18].
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Example. Let us consider � D .24513/. Then

S� .A/ D P
i1;i2;i3;i4�1

ai2i1ai4i2ai5i3ai1i4ai3i5 ;

so that

S� D P
w1�w4�w2�w1

w3�w5�w3

w1w2w3w4w5:

Hence,

S� .A ˚ B/ D P
ai2i1ai4i2ai5i3ai1i4ai3i5 C P

ai2i1ai4i2bi5i3ai1i4bi3i5

C P
bi2i1bi4i2ai5i3bi1i4ai3i5 C P

bi2i1bi4i2bi5i3bi1i4bi3i5

D S� .A/ C S.231/.A/S.12/.B/ C S.12/.A/S.231/.B/ C S� .B/:

5. A Hopf algebra of endofunctions

5.1. Construction. The commutative Hopf algebra of permutations of [18] is actu-
ally a subalgebra and a quotient of a commutative algebra based on endofunctions,
i.e., maps from f1; 2; : : : ; ng to itself. There is a similar construction here.

Let A D faij ji 6D j; i; j � 1g, endowed with the relation aij � akl if and only
if j D k. For a function f W Œn� ! Œn�, let us say that a word w D w1 : : : wn is
f -compatible if and only if i 6D j and i D f .j / imply that wi � wj . Define

Sf .A/ ´ P
w f -compatible

w:

For example, representing a function as the list of its images, if f D .24352/, one
has

Sf D P
w2�w1

w2�w5�w4�w2

w1w2w3w4w5 D P
i¤k;j;n;k¤n;l¤m

aij akialmankain:

Note that, as before, these elements are linearly independent: any monomial in Sf

with as many different subscripts as possible allows one to reconstruct the relations
wi < wj and hence the images of f (fixed points being the missing ones).

Theorem 5.1. The Sf span a subalgebra of KhAi, with

Sf Sg D Sf �g ;

where, again, � denotes the shifted concatenation. Moreover, if .B; �/ is another
alphabet, their sum A ˚ B is defined as their disjoint union endowed with the �-
relation restricting to the original ones of A and B and such that

aij � bkl for all i ¤ j , k ¤ l .
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Then these polynomials span a (non-cocommutative) Hopf algebra for the coproduct
�Sf D Sf .A ˚ B/.

Proof. Similar to the proof of Theorem 4.1.

Let us give a description of the coproduct. Let f W Œn� ! Œn� and let I � Œn�.
Let f I W I ! I be the map satisfying f I .x/ D f .x/ if f .x/ 2 I and f I .x/ D x

otherwise. If I has cardinality k, there exists a unique increasing bijection �I W I !
Œk�. Then Std.f I / ´ �I B f I B ��1

I . We shall say that I is an ideal of f and write
I ˆ f if f �1.I / � I .

One then sees that

�.Sf / D P
Iˆf

SStd.f Œn�nI / ˝ SStd.f I /:

Example. Let us consider f D .23234/. Then

Sf D P
w2�w1;w3
w3�w2;w4

w4�w5

w1w2w3w4w5

so that

Sf .A/ D P
j 6Di;k
l 6Dk;m

aj iakj ajkaklalm

and

Sf .A ˚ B/ D P
aj iakj ajkaklalm C P

bqpakj ajkaklalm C P
aj iakj ajkaklbqp

C P
bqpakj ajkaklbrs C P

aj iakj ajkbpqbqr

C P
bqpakj ajkbrsbst C P

bqpbrqbqrbrsbst

D Sf .A/ C S .2123/.A/S .1/.B/ C S .2323/.A/S .1/.B/

C S .212/.A/S .12/.B/ C S .232/.A/S .11/.B/

C S .21/.A/S .122/.B/ C S .f /.B/:

Hence,

�.Sf / D Sf ˝ 1 C S .2123/ ˝ S .1/ C S .2323/ ˝ S .1/ C S .212/ ˝ S .12/

C S .232/ ˝ S .11/ C S .21/ ˝ S .122/ C 1 ˝ S .f /:

Note that the ideals of f are ;, f1g, f5g, f1; 5g, f4; 5g, f1; 4; 5g, and f1; 2; 3; 4; 5g.

We shall give a graphical representation of endofunctions. If f W Œn� ! Œn�, the
vertices of the graph associated with f are the elements of Œn�, and there is an edge
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from i to j if and only if f .i/ D j for all i ¤ j . For example, the graph associated
with .23234/ is

�������	5 ���������	4

��

�������	1

��
�������	3 ��

�������	2
��

:

The ideals of f are then given by admissible cuts of the graph (note that the edges in
the cycles cannot be cut).

We shall denote this Hopf algebra of endofunctions by EFSym.

5.2. Hopf subalgebras and quotients. algebra of endofunctions, having dimension
nn in degree n, is large enough to admit as subalgebras or quotients many combina-
torial Hopf algebras, old and new. We shall not attempt to be exhaustive, and restrict
ourselves to the description of new polynomial realizations of the previous ones, and
to a short list of new algebras, which will be investigated elsewhere.

5.2.1. Permutations. The S� , where � runs over permutations, span a Hopf sub-
algebra of EFSym isomorphic to SSym. Indeed, if f and g are permutations, then
f � g is also a permutation; if f is a permutation, then its ideals are the disjoint
unions of cycles of f , so one recovers the Hopf algebra structure of SSym described
in [18]. Note that the two realizations are different: in the realization of Section 4,
S .1/ D P

i�1 ai i and S .12/ D P
i;j �1 aij aij ; in the realization as endofunctions,

S .1/ D P
i;j �1 aij and S .12/ D P

i;j �1;i¤j aij aj i .

5.2.2. Ordered forests. The S� , where � runs over acyclic functions, span a Hopf
subalgebra of EFSym isomorphic to our first algebra of labelled forests, hence to
PQSym�. Indeed, if F is a labelled forest, we can define an acyclic function fF in
the following way: if there is an edge from i to j in F , then f .j / D i . If i is a root
of F , then fF .i/ D i . For example,

f �

1
D .1/; f �

1
�

2
D .12/; f �

�

1
2 D .11/; f �

�

2
1 D .22/:

In other words, fF is the endofunction whose graph is F , the orientation being
implicitly from top to bottom. Now, fF G D fF � fG . Moreover, the ideals of fF

are the set of the indices I such that the vertices of F indexed by I are a LeavF ,
where v runs over the set of admissible cuts of F . So

Ho ! EFSym; SF 7! SfF ;

is an injective map of graded Hopf algebras. This gives a second realization of
Ho. These two realizations do not coincide; for example, if F D �

�

2
1 , then SF DP

i�j �1 aj iajj and SfFF D P
j ¤i;k aj iakj .
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5.2.3. Plane forests. We have seen that the noncommutative Connes–Kreimer al-
gebra is a Hopf subalgebra of Ho. Moreover, for any ordered forest F , the acyclic
function fF is a nondecreasing parking function if and only if F is a plane forest. So
the restriction of the embedding SF 7! SfF is an isomorphism from the noncom-
mutative Connes–Kreimer Hopf algebra to the subspace spanned by the S� , where
� runs over nondecreasing parking functions, which is then a Hopf subalgebra of
EFSym. So this gives another realization of the noncommutative Connes–Kreimer
algebra. These realizations are indeed different: for the realization of Section 3.2,

S
�

�

1

2 D P
1�i�j

ai iaij ;

whereas for the realization as endofunctions,

S
�

�

1

2 D P
1�i;j;k

aij ajk :

Let Io be the subspace generated by the Sf , where f runs over the set of end-
ofunctions which are not acyclic. It is clear that Io is an ideal of the Hopf al-
gebra of endofunctions. Moreover, if f is not acyclic, then it contains a cycle
C D i1 7! i2 7! � � � 7! ik 7! i1 of length � 2. Let I be an ideal of f . If
C \I ¤ ;, then by definition of the ideals, C � I , so either Std.f I / or Std.f Œn��I /

is not acyclic: this implies that Io is a Hopf ideal of the Hopf algebra of endofunctions.
So the quotient Ho=Io is isomorphic to the Hopf subalgebra of acyclic endofunctions,
hence to Ho and PQSym�.

5.2.4. Nondecreasing sets. The restriction to nondecreasing functions also gives
rise to a Hopf algebra: if f and g are nondecreasing functions, then f � g is also
nondecreasing, and for any ideal I of f , Std.f I / and Std.f Œn��I / are also nonde-
creasing.

5.2.5. Burnside classes. The restriction to idempotent functions or, more generally,
to Burnside classes (f p D f q) gives, as in the commutative case, Hopf subalgebras:
if f p D f q and gp D gq , then .f � g/p D .f � g/q and Std.f I /p D Std.f I /q

for any part I of the domain of f . Graphically, this corresponds to endofunctions
f such that the graph of f contains only cycles of length dividing jp � qj and trees
of height smaller than jp � qj. In particular, for the idempotent functions, this gives
endofunctions whose graph is a corolla, that is to say a tree of height at most 1.

5.2.6. Commutative images. The commutative images of the S� (aij 7! xij ) span
a commutative Hopf algebra containing the algebra Sym of ordinary symmetric func-
tions (as the image of the subalgebra isomorphic to SSym) and the Connes–Kreimer
Hopf algebra of trees (as the image of the subalgebra isomorphic to Ho).
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5.3. Analog of the Schur basis. We define a partial order on the set of endofunctions
of Œn� for a fixed n, whose cover relation is f < g if there exists an element j of Œn�

with f .j / ¤ j such that g.k/ D f .k/ if k ¤ j and g.j / D j . For example, for
n D 2, the Hasse graph of this partial order is:

.12/

.11/

����������
.22/.

����������

.21/

����������

����������

Note. Let F and G be two ordered forests. It is not difficult to show that fF � fG

if and only if F � G .

For any endofunction f , let us set

Rf D P
g�f

.�1/Fix.f /�Fix.g/Sg ;

where Fix.f / denotes the number of fixed points of f . By a Möbius inversion, for
any endofunction f , we mean

Sf D P
g�f

Rg :

In analogy with Theorem 3.7, one can show

Theorem 5.2. Let f 0 and f 00 be two endofunctions of respectively Œn0� and Œn00�. Then

Rf 0Rf 00 D P
Rf ;

where the sum is over all endofunctions f of Œn0 Cn00� such that Std.f Œn0�/ D f 0 and
Std.f Œn0Cn00�nŒn0�/ D f 00.

For example,

R.12/R.1/ D R.121/ C R.122/ C R.123/ C R.131/ C R.132/ C R.133/;

C R.321/ C R.322/ C R.323/ C R.331/ C R.332/ C R.333/;

R.1/R.12/ D R.111/ C R.113/ C R.121/ C R.123/ C R.211/ C R.213/;

C R.221/ C R.223/ C R.311/ C R.313/ C R.321/ C R.323/:

Indeed, for R.12/R.1/, one gets all functions such that f .1/ is either 1 or 3, and f .2/

is either 2 or 3, the value f .3/ having no constraint at all.
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Let us consider the subspace I 0
o generated by the Rf , where f runs over the set of

endofunctions f which are not acyclic. If f 0 or f 00 is not acyclic and if Rf appears
in Rf 0Rf 00 , then f is not acyclic. So I 0

0 is an ideal. Let us denote by Rf the class
of Rf modulo I 0

0. Note that Rf is nonzero if and only if f is acyclic, that is, there
exists an ordered forest F such that f D fF . Moreover, if F is an ordered forest
with n vertices and I � Œn�, then FjI D G if and only if Std.f I

F
/ D fG . So the

map RF 7! xRfF
is an algebra isomorphism from the algebra Ho to the algebra of

endofunctions quotiented by I 0
o.

Remark. The ideals Io and I 0
o are different: in degree 2, Io is spanned by S21,

whereas I 0
0 is generated by R21 D S .21/ � S .11/ � S .22/ C S .12/.

6. Conclusion

Polynomial realizations of combinatorial Hopf algebras are important for at least two
reasons. First, a realization usually leads to important simplifications in the theory.
Next, this may lead to the definition of new families of special functions, analogous
to the Schur, Hall–Littlewood or Macdonald functions of the classical theory of
symmetric functions. We have made a small step in this direction by introducing
Schur-like bases in algebras of the Connes–Kreimer family and in those derived from
the graphical representations of endofunctions. The main novelty in this paper is the
idea that the A C B trick for the coproduct can be implemented with �-relations on
alphabets which are not order relations as in all the previously known examples.

Here is a short table summarizing the �-relations introduced in this paper.

Algebra Alphabet Relation � Sum of alphabets words

Ho aij , 1 � i � j aij � ajk aij � bkk l ! k

noncommutative H) wk � wl

HCK xij , 1 � i � j xij � xjk xij � xkk l ! k

commutative H) wk � wl

SSym aij , 1 � i; j , i ¤ j aij � ajk aij � bkl l ! k

noncommutative H) wk � wl

EFSym aij , 1 � i; j , i ¤ j aij � ajk aij � bkl l ! k

noncommutative H) wk � wl
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