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Abstract. We classify the cosemisimple Hopf algebras whose corepresentation semi-ring is
isomorphic to that of GL.2/. This leads us to define a new family of Hopf algebras which
generalize the quantum similitude group of a non-degenerate bilinear form. A detailed study
of these Hopf algebras gives us an isomorphic classification and the description of their corep-
resentation categories.
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1. Introduction and main results

There are many approaches to the classification problem for quantum groups, de-
pending on what group theory aspect one wants to emulate. Our approach is based
on Tannaka–Krein reconstruction theory, which shows deep links between a Hopf
algebra and its corepresentation category. Keeping that in mind, we investigate the
problem of classifying Hopf algebras according to their corepresentation semi-ring,
a problem already considered by several authors [Wor91], [WZ94], [KP97], [Ban96],
[Ban98], [Ohn99], [Ohn00], [Hai00], [Bic03]. In the present paper, we consider the
GL.2/-case, and we classify (in characteristic zero) the cosemisimple Hopf algebras
having a corepresentation semi-ring isomorphic to the one of GL.2/.

Let k be an algebraically closed field, let n 2 N, n � 2, and let A;B 2 GLn.k/.
We consider the following algebra G .A;B/: it is the universal algebra with generators
.xij /1�i;j �n; d; d

�1 satisfying the relations

xtAx D Ad; xBxt D Bd; dd�1 D 1 D d�1d;

where x is the matrix .xij /1�i;j �n. This algebra has a natural Hopf algebra structure
and might be seen as a generalization of the Hopf algebra corresponding to the quan-
tum similitude group of a non-degenerate bilinear form. The Hopf algebras G .A;B/

can be constructed as localizations of FRT-bialgebras [FRT88] associated to Yang–
Baxter operators constructed by Gurevich [Gur90]. When n D 2 and for particular
matrices A, B , these were considered in [EOW91] and were used by Ohn ([Ohn00])
in order to classify quantum GL2.C/’s. Let q 2 k�. For a well-chosen matrix
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Aq 2 GL2.k/, we have G .Aq; Aq/ D O.GLq.2//, the function algebra on the quan-
tum group GLq.2/. Our first result describes the monoidal category of comodules
over G .A;B/ for some matrices A;B 2 GLn.k/.

Theorem 1.1. Let A;B 2 GLn.k/ (n � 2) such that B tAtBA D �In for some
� 2 k� and let q 2 k� such that q2 � p

��1 tr.AB t /q C 1 D 0. Then there is a
k-linear equivalence of monoidal categories

Comod.G .A;B// '˝ Comod.O.GLq.2///

between the comodule categories of G .A;B/ and O.GLq.2// respectively.

This result is inspired by the paper of Bichon [Bic03], which gives similar results
for the quantum group of a non-degenerate bilinear form. As in [Bic03], the result
is proved by constructing some appropriate Hopf bi-Galois objects and by using a
theorem of Schauenburg [Sch96]. The Hopf bi-Galois objects we construct are part
of a connected cogroupoid [Bic10]. The technical difficulty in this approach is to
study the connectedness of this cogroupoid.

We use Theorem 1.1 to classify, in characteristic zero, all the cosemisimple Hopf
algebras whose corepresentation semi-ring is isomorphic to that of GL2.k/. Recall
that q 2 k� is said to be generic if q is not a root of unity or if q 2 f˙1g.

Theorem 1.2. Assume that char.k/ D 0. The Hopf algebras whose corepresentation
semi-ring is isomorphic to that of GL2.k/ are exactly the

G .A;B/

with A;B 2 GLn.k/ (n � 2) satisfying B tAtBA D �In for some � 2 k� and such
that any solution of the equation X2 � p

��1 tr.AB t /X C 1 D 0 is generic.

A particular case of the theorem was already known if one requires the fundamen-
tal comodule ofH to be of dimension 2 ([Ohn00]). A similar classification (without
dimension constraint) was obtained by Bichon ([Bic03]) in the SL.2/ case (the com-
pact SU.2/ case had been done by Banica [Ban96]). The SL.3/ case with dimension
constraints has been studied by Ohn ([Ohn99]). Other related results have been given
in the SU.N / and SL.N / case by Banica ([Ban98]) and Phung Ho Hai ([Hai00]), in
terms of Hecke symmetries. It is worth to note that in principle Theorem 1.2 could
be deduced by the combination of Phung Ho Hai’s work [Hai00] and Gurevich’s
classification of Hecke symmetries of rank two [Gur90]. We believe that the present
approach, using directly pairs of invertible matrices, is more explicit and simpler.

We also give a version of Theorem 1.2 in the compact case.
Finally the following theorem will complete the classification of GL.2/-deforma-

tions.
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Theorem 1.3. Assume that char.k/ D 0. Let A;B 2 GLn.k/ and let C;D 2
GLm.k/ such that B tAtBA D �1In and DtC tDC D �2Im for �1; �2 2 k�. The
Hopf algebras G .A;B/ and G .C;D/ are isomorphic if and only if n D m and there
exists P 2 GLn.k/ such that either

.C;D/ D .P tAP;P�1BP�1t / or .C;D/ D .P tB�1P;P�1A�1P�1t /:

We will also provide the classification of the Hopf algebra G .A;B/ up to monoidal
equivalence (Corollary 4.2).

The paper is organized as follows: in Section 2 we introduce the Hopf algebras
G .A;B/ and discuss some basic properties; in Section 3, we build a cogroupoid
linking the Hopf algebra G .A;B/ and study its connectedness: this will prove Theo-
rem 1.1; in Section 4 we prove Theorem 1.2 and Theorem 1.3; in Section 5, we classify
G .A;B/-Galois objects up to isomorphisms, its group of bi-Galois objects and its
lazy cohomology group; finally, Section 6 is devoted to study the GL.2/-deformations
in the compact case.

Throughout the paper k is an algebraically closed field. We assume that the
reader is familiar with Hopf algebras and their monoidal categories of comodules
(corepresentations), and with Hopf–Galois objects. See [Mon93], [Sch04].

2. The Hopf algebra G .A; B/

Let n � 2 and A;B 2 GLn.k/. The algebra G .A;B/ has been defined in the
introduction. In this section, we briefly discuss its Hopf algebra structure, its universal
property and some of its basic properties.

The following result will be generalized at the cogroupoid level in the next section,
where the proof is given.

Proposition 2.1. The algebra G .A;B/ admits a Hopf algebra structure, with comul-
tiplication � defined by

�.xij / D
nP

kD1

xik ˝ xkj ; 1 � i; j � n; �.d˙1/ D d˙1 ˝ d˙1;

with counit " defined by

".xij / D ıij ; 1 � i; j � n; ".d1˙/ D 1;

and with antipode S defined by

S.x/ D d�1A�1xtA; S.d1˙/ D d1�:

We now give (and sketch the proof of) the universal property of the Hopf algebra
G .A;B/:
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Proposition 2.2. LetH be a Hopf algebra with a group-like element d 2 Gr.H/ and
let V be a finite-dimensionalH -comodule of dimension n. Let a W V ˝ V ! D and
b W D ! V ˝V be twoH -comodule morphisms (whereD denotes theH -comodule
induced by d ) such that the underlying bilinear forms are non-degenerate. Then there
exist A;B 2 GLn.k/ such that

(1) V andD haveaG .A;B/-comodule structure anda andb areG .A;B/-comodule
morphisms,

(2) there exists a unique Hopf algebra morphism  W G .A;B/ ! H such that
.idD ˝  / B ˛D D ˛0

D and .idV ˝  / B ˛V D ˛0
V (where ˛ and ˛0 denote the

coactions of G .A;B/ andH respectively).

Proof. Let .vi /1�i�n be a basis of V and x D .xij /1�i;j �n be the associated matrix
of coefficients. Let A D .aij /1�i;j �n, B D .bij /1�i;j �n be the matrices such that
a.vi ˝ vj / D aijd and b.d/ D P

ij bij vi ˝ vj . It is straightforward to check that
a and b are H -colinear if and only if xtAx D Ad and xBxt D Bd . Finally, since
Gr.H/ is a group, there exists d�1 2 H such that dd�1 D 1 D d�1d . The universal
property of G .A;B/ gives us the result.

The following lemma will limit our choice of matricesA;B 2 GLn.k/. The proof
comes directly from Schur’s lemma.

Lemma 2.3. LetH be as in the previous proposition andassume that theH -comodule
V is irreducible. Then the composition

D ˝ V
b˝id���! V ˝ V ˝ V

id˝a���! V ˝D
id˝b���! V ˝ V ˝ V

a˝id���! D ˝ V

is a multiple of the identity, i.e., there exists � 2 k� such that

.a˝ id/ B .id ˝ b/ B .id ˝ a/ B .b ˝ id/ D �idD˝V :

WhenH D G .A;B/, the relation may be rewritten as

B tAtBA D �In:

The next result is part of the isomorphic classification of the Hopf algebras
G .A;B/.

Proposition 2.4. Let A;B 2 GLn.k/ and let P;Q 2 GLn.k/. The Hopf algebras
G .A;B/, G .P tAP;P�1BP�1t / and G .QtB�1Q;Q�1A�1Q�1t / are isomorphic.

Proof. Considering the first case, we denote by xij , d and d�1, yij , d and d�1

(1 � i; j � n) the respective generators of G .A;B/ and G .P tAP;P�1BP�1t /.
The defining relations

yt .P tAP/y D .P tAP/d and y.P�1BP�1t /yt D .P�1BP�1t /d
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ensure that we have an isomorphism

f W G .A;B/ ! G .P tAP;P�1BP�1t /

satisfying f .x/ D PyP�1, f .d/ D d and f .d�1/ D d�1, with inverse f �1.y/ D
P�1xP , f �1.d/ D d and f �1.d�1/ D d�1.

In the second case, denoting yij (1 � i; j � n), d and d�1 the generators of
G .QtB�1Q;Q�1A�1Q�1t /, the same considerations on the defining relations

yt .QtB�1Q/y D .QtB�1Q/d and y.Q�1A�1Q�1t /yt D .Q�1A�1Q�1t /d

together with the commutation relations in G .A;B/,

.AB/xtd�1 D d�1xt .AB/;

give us an isomorphism

f W G .A;B/ ! G .QtB�1Q;Q�1A�1Q�1t /

satisfying f .x/ D Qyd�1Q�1, f .d/ D d�1 and f .d�1/ D d , with inverse
f �1.y/ D Q�1xd�1Q, f �1.d/ D d�1 and f �1.d�1/ D d .

Let us note that for a good choice of matrices A;B 2 GLn.k/, the Hopf algebra
G .A;B/ coincides with the standard quantization of the function algebra O.GL2.k//:
precisely, a straightforward computation shows that

� for A D �
0 1�q 0

� ´ Aq and B D Ap , for some q; p 2 k�, we get the two-
parameter standard quantum GL2.k/,

G .Aq; Ap/ D O.GLq;p.2//;

� and for A D �
0 1�1 h

�
and B D ��h0 1�1 0

�
with h; h0 2 k, we get the Jordanian

quantum case,
G .A;B/ D OJ

h;h0.GL.2//:

(The defining relations of these two algebras can be found in [Ohn00] .)
Moreover, we can see that we have a surjective Hopf algebra morphism

G .A;A�1/ ! B.A/

where B.A/ is the Hopf algebra representing the quantum automorphism group of
the non-degenerate bilinear form associated to A, introduced by Dubois-Violette and
Launer in [DVL90]. In view of its definition, we can consider G .A;A�1/ as the Hopf
algebra representing the quantum similitude group of this non-degenerate bilinear
form.
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3. The cogroupoid G

To prove Theorem 1.1 by using Schauenburg’s results from [Sch96] , we now proceed
to construct Hopf-bigalois objects linking the Hopf algebras G .A;B/ and in order to
do our computations in a nice context, we put the algebras G .A;B/ in a cogroupoid
framework. We recall some basic definitions and facts about these objects (for more
precise informations, we refer to [Bic10]).

Definition 3.1. A k-cogroupoid C consists of

� a set of objects ob.C /;

� for any X; Y 2 ob.C /, a k-algebra C.X; Y /;

� for any X; Y;Z 2 ob.C /, algebra morphisms

�Z
X;Y W C.X; Y / ! C.X;Z/˝ C.Z; Y / and "X W C.X;X/ ! k

and linear maps
SX;Y W C.X; Y / ! C.Y;X/

satisfying several compatibility diagrams: see [Bic10], the axioms are dual to
the axioms defining a groupoid.

A cogroupoid C is said to be connected if C.X; Y / is a non-zero algebra for any
X; Y 2 ob.C /.

Let n;m 2 N, n;m � 2, and let A;B 2 GLn.k/, C;D 2 GLm.k/. We define
the algebra

G .A;BjC;D/ ´ khd; d�1; xi;j ; 1 � i � n; 1 � j � m j xtAx D Cd;

xDxt D Bd; d�1d D 1 D dd�1i
Of course the generators xij ; d and d�1 in G .A;BjC;D/ should be denoted by

x
AB;CD
i;j , dAB;CD and d�1

AB;CD to express the dependence on .A;B/, .C;D/, but there
will be no confusion and we simply denote them by xij , d and d�1. It is clear that
G .A;BjA;B/ D G .A;B/.

In the following lemma, we construct the structural maps that will put the algebras
G .A;BjC;D/ in a cogroupoid framework.

Lemma 3.2. For any A;B 2 GLn.k/, C;D 2 GLm.k/ and X; Y 2 GLp.k/, there
exist algebra maps

�XY
AB;CD W G .A;BjC;D/ ! G .A;BjX; Y /˝ G .X; Y jC;D/

such that �.xij / D Pp

kD1
xik ˝ xkj (1 � i � n, 1 � j � m), �.d˙1/ D

d˙1 ˝ d˙1, and
"AB W G .A;B/ ! k
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such that "AB.xij / D ıij (1 � i � n, 1 � j � m), ".d˙1/ D 1, and for any
M;N 2 GLr.k/, the following diagrams commute:

G .A; BjC; D/
�XYAB;CD ��

�MNAB;CD

��

G .A; BjX; Y / ˝ G .X; Y jC; D/

�MNAB;XY˝id

��
G .A; BjM; N / ˝ G .M; N jC; D/

id˝�XYMN;CD

�� G .A; BjM; N / ˝ G .M; N jX; Y / ˝ G .X; Y jC; D/,

G .A;BjC;D/
�CD
AB;CD

�� �������������������

G .A;BjC;D/˝ G .C;D/
id˝"CD

�� G .A;BjC;D/,

G .A;BjC;D/
�AB
AB;CD

�� �������������������

G .A;B/˝ G .A;BjC;D/
"AB˝id

�� G .A;BjC;D/.

For any A;B 2 GLn.k/, C;D 2 GLm.k/, there exists an algebra map

SAB;CD W G .A;BjC;D/ ! G .C;DjA;B/op

defined by the formula SAB;CD.x/ D A�1d�1xtC , SAB;CD.d
˙1/ D d�1, such that

the following diagrams commute:

G .A;B/
"AB ��

�CD
AB;AB

��

k
u �� G .A;BjC;D/

G .A;BjC;D/˝ G .C;DjA;B/
id˝SCD;AB

�� G .A;BjC;D/˝ G .A;BjC;D/,
m

��

G .A;B/
"AB ��

�CD
AB;AB

��

k
u �� G .A;BjC;D/

G .A;BjC;D/˝ G .C;DjA;B/
SAB;CD˝id

�� G .C;DjA;B/˝ G .A;BjC;D/.
m

��

Proof. First we have to check that the algebra maps are well defined.
Let A;B 2 GLn.k/, C;D 2 GLm.k/ and X; Y 2 GLp.k/; in order to simplify

the notations, we denote �XY
AB;CD D �, "AB D " and SAB;CD D S . We only give

the computations for the first relation xtAx D Cd , the computations for second one
being similar.
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For � W G .A;BjC;D/ ! G .A;BjX; Y /˝ G .X; Y jC;D/, we compute

�.xtAx/ij D �.
P

kl Aklxkixlj /

D P
kl

Akl.
P

p xkp ˝ xpi /.
P

q xlq ˝ xqj /

D P
pq

P
kl

Aklxkpxlq ˝ xpixqj

D P
pq

.xtAx/pq ˝ xpixqj 2 G .A;BjX; Y /˝ G .X; Y jC;D/

D P
pq

Xpqd ˝ xpixqj D d ˝ .xtXx/ij D Cijd ˝ d;

and the computations for " W G .A;B/ ! k are

"..xtAx/ij / D ".
P

kl Aklxkixlj /

D P
kl

Akl".xki /".xlj /

D P
kl

Aklıkiılj D Aij D Aij ".d/:

Then �XY
AB;CD and "AB are well defined. These maps are algebra maps, so it is

enough to check the commutativity of the diagrams of the first part on the generators
of G .A;BjC;D/, which is obvious.

Recall that if ˆ W A ! Bop is an algebra map, then ˆ.ab/ D .ˆ.b/tˆ.a/t /t for
all matrices a; b 2 Mn.A/.

Then, for S W G .A;BjC;D/ ! G .C;DjA;B/op, we have

S.C�1d�1xtAx/ D .S.x/tAtS.x/d.C�1/t /t

D ..C td�1x.A�1/t /At .d�1A�1xtC/d.C�1/t /t

D .C td�1xd�1A�1xtCd.C�1/t /t

D .C td�1d.C�1/t /t

D 1:

We can check in the same way that S is compatible with the second relation, and
then S D SAB;CD is well defined. The commutativity of the diagrams follows from
the verification on the generators of G .A;B/ and the fact that ��

�;�
, "� and S�;� are

algebra maps.

The lemma allows the following definition.

Definition 3.3. The cogroupoid G is the cogroupoid defined as follows:

(i) ob.G / D f.A;B/ 2 GLm.k/ � GLm.k/ j m � 2g;

(ii) for .A;B/; .C;D/ 2 ob.G /, the algebra G .A;BjC;D/ is the algebra defined
above;
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(iii) the structural maps ��

�;�
, "� and S�;� are defined in the previous lemma.

So we have a cogroupoid linking all the Hopf algebras G .A;B/. The following
result is part of the isomorphic classification of the algebras G .A;BjC;D/, which
will be completed in Theorem 5.4, and this proposition will be used in the appendix.

Proposition 3.4. Let A;B;P 2 GLn.k/, C;D;Q 2 GLm.k/. We have algebra
isomorphisms

G .A;BjC;D/ ' G .P tAP;P�1BP�1t jQtCQ;Q�1DQ�1t /;

G .A;BjC;D/ ' G .B�1; A�1jD�1; C�1/:

Proof. For the first case, let us denote by yij (1 � i � n, 1 � j � m), d; d�1 the
generators of G .P tAP;P�1BP�1t jQtCQ;Q�1DQ�1t / by yij . Then the relations

xt .P tAP/x D .QtCQ/d and x.Q�1DQ�1t /xt D .P�1BP�1t /d

ensure that we have an algebra morphism

 W G .A;BjC;D/ ! G .P tAP;P�1BP�1t jQtCQ;Q�1DQ�1t /

defined by  .d/ D d ,  .d�1/ D d�1 and  .x/ D PyQ�1. The inverse map is
then defined by  �1.d/ D d ,  �1.d�1/ D d�1 and  �1.y/ D P�1xQ.

For the second case, let us denote the generators of G .B�1; A�1jD�1; C�1/ by
yij (1 � i � n, 1 � j � m), d; d�1. Then the relations

ytB�1y D D�1d and yC�1yt D A�1d

ensure that we have an algebra morphism

 W G .A;BjC;D/ ! G .B�1; A�1jD�1; C�1/

given by  .d˙/ D d� and  .x/ D yd�1. This is an isomorphism with inverse
map defined by  �1.d˙/ D d� and  �1.y/ D xd�1.

Now the natural question is to study the connectedness of G , which will ensure that
we indeed get Hopf–Galois objects and hence equivalences of monoidal categories.

Lemma 3.5. Let q 2 k� and let C;D 2 GLm.k/ such that tr.CDt / D 1C q2 and
DtC tDC D q2Im. Then the algebra G .Aq; AqjC;D/ is non-zero.

The (technical) proof of this result is done in the appendix. We get the following
corollary.
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Corollary 3.6. Let �;� 2 k�. Consider the full subcogroupoid G �;� of G with
objects

ob.G �;�/ D f.A;B/ 2 ob.G / j B tAtBA D �In and tr.AB t / D �g:
Then G �;� is a connected cogroupoid.

Proof. Let .A;B/ 2 ob.G �;�/. By the relations defining those algebras, if˛; ˇ 2 k�,
C;D 2 GLm.k/ then

G .A;BjC;D/ D G .˛A; ˇBj˛C; ˇD/:
Choose q 2 k� satisfying q2 � p

��1�q C 1 D 0 and put A0 D p
��1A and

B 0 D qB . We have tr.A0B 0t / D 1C q2 and B 0tA0tB 0A0 D q2Im. By Lemma 3.5,
we have that G .Aq; AqjA0; B 0/ is non-zero and so is G .

p
�Aq; q

�1AqjA;B/. Then
we have foundX 2 ob.G �;�/ such that G .X jA;B/ ¤ .0/ for all .A;B/ 2 ob.G �;�/.
According to [Bic10], Proposition 2.15, the cogroupoid G �;� is connected.

Hence by [Bic10], Proposition 2.8, and Schauenburg’s Theorem 5.5 in [Sch96],
we have the following result.

Theorem 3.7. Let .A;B/; .C;D/ 2 ob.G �;�/. Then we have a k-linear equivalence
of monoidal categories

Comod.G .A;B// '˝ Comod.G .C;D//

between the comodule categories of G .A;B/ and G .C;D/, respectively.

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First, note that we have G .A;B/ D G .˛A; ˇB/ for all ˛; ˇ 2
k�. Let q 2 k� such that q2 �p

��1 tr.AB t /qC1 D 0. Then, by the above theorem,
we have a k-linear equivalence of monoidal categories

Comod.G .A;B// D Comod.G .
p
��1A; qB// '˝ Comod.O.GLq.2///;

and we are done.

4. GL.2/-deformations

In this section k will be an algebraically closed field of characteristic zero. This
paragraph is essentially devoted to the proof of Theorem 1.2. We also complete the
isomorphic and Morita equivalence classifications of the Hopf algebras G .A;B/.

Recall that the corepresentation semi-ring (or fusion semi-ring) of a cosemisimple
Hopf algebra H , denoted by RC.H/, is the set of isomorphism classes of finite-
dimensionalH -comodules. The direct sum of comodules defines the addition, while
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the tensor product of comodules defines the multiplication. The isomorphism classes
of simple H -comodules form a basis of RC.H/. The isomorphism class of a finite-
dimensional H -comodule V is denoted by ŒV �.

LetK be another cosemisimple Hopf algebra, and let f W H ! K a Hopf algebra
morphism. Then f induces a monoidal functor f� W Comodf .H/ ! Comodf .K/

and a semi-ring morphism f� W RC.H/ ! RC.K/. A semi-ring isomorphism
RC.H/ ' RC.K/ induces a bijective correspondence (that preserves tensor prod-
ucts) between the isomorphism classes of simple comodules of H and K.

Let G be a reductive algebraic group. As usual we say that the cosemisimple
Hopf algebra H is a G-deformation if RC.O.G// ' RC.H/. Hence Theorem 1.2
classifies GL.2/-deformations.

We now recall the representation theory of GLq.2/. Our references are Ohn
[Ohn00] for the generic case and the root of unity case can be adapted from the
representation theory of SLq.2/ given by Kondratowicz and Podlès in [KP97].

Let first assume that q 2 k� is generic. Then O.GLq.2// is cosemisimple and
there are two families .Un/n2N and .D˝e/e2Z of non-isomorphic simple comodules
(except for U0 D D˝0 D k) such that (.n; e/; .m; f / 2 N� � Z)

dimk.Un/ D nC 1 and dimk.D/ D 1;

.Un ˝D˝e/˝ .Um ˝D˝f / Š .Um ˝D˝f /˝ .Un ˝D˝e/

Š
min.n;m/L

iD0

UnCm�2i ˝D˝eCf Ci :

Moreover, every simple O.GLq.2//-comodule is isomorphic to one of the comodules
Un ˝D˝e μ U.n;e/.

Now assume that q 2 k� is not generic. Let N � 3 be its order. Put

N0 D
´
N if N is odd;

N=2 if N is even:

Then there exists three families .Vn/n2N, .Um/1�m�N0�1 and .D˝e/e2Z of non-
isomorphic simple comodules (except for V0 D U0 D D˝0 D k) such that (n 2
N; m D 0; 1; : : : ; N0 � 1)

dimk.Vn/ D nC 1; dimk.Um/ D mC 1 and dim.D/ D 1;

Vn ˝ V1 ' V1 ˝ Vn ' VnC1 ˚ .Vn�1 ˝D˝N0/;

Um ˝ U1 ' U1 ˝ Um ' UmC1 ˚ .Um�1 ˝D/:

Furthermore, the comodules Vn ˝ Um ˝ D˝e are simple, and every simple
O.GLq.2//-comodule is isomorphic to one of these.

The comodule UN0�1 ˝ U1 is not semisimple. It has a simple filtration

.0/ � UN0�2 ˝D � Y � UN0�1 ˝ U1
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such that

UN0�1 ˝ U1=Y ' UN0�2 ˝D and Y=UN0�2 ˝D ' V1:

Let A;B 2 GLn.k/. We denote by V AB
n , UAB

m and DAB the simple G .A;B/-
comodules corresponding to the simple O.GLq.2//-comodules Vn, Um and D, and
sometimes we note UAB

.m;e/
D UAB

m ˝D˝e
AB .

The following lemma will be very useful.

Lemma 4.1. Let A;B 2 GLn.k/ and let C;D 2 GLm.k/ such that B tAtBA D
�In, DtC tDC D �Im and tr.AB t / D tr.CDt /. Let � W Comod.G .A;B// !
Comod.G .C;D// be an equivalence of monoidal categories.

If G .A;B/ et G .C;D/ are cosemisimple, we have either, for .n; e/ 2 N � Z,

�.UAB
.0;1// ' UCD

.0;1/ and then �.UAB
.n;e// ' UCD

.n;e/;

or

�.UAB
.0;1// ' UCD

.0;�1/ and then �.UAB
.n;e// ' UCD

.n;�n�e/:

If G .A;B/ et G .C;D/ are not cosemisimple, we have either, for n 2 N, e 2 Z,
m 2 f0; : : : ; N0 � 1g,
�.UAB

.0;1// ' UCD
.0;1/ and then �.V AB

n / ' V CD
n and �.UAB

.m;e// ' UCD
.m;e/

or

�.UAB
.0;1// ' UCD

.0;�1/ and then �.V AB
n / ' V CD

n ˝ UCD
.0;�n/ and

�.UAB
.m;e// ' UCD

.m;�m�e/:

Proof. Assume first that the algebras G .A;B/ and G .C;D/ are cosemisimple. Ac-
cording to the fusion rule, U.0;1/ ˝ U.0;1/ ' U.0;2/, so �.UAB

.0;1/
/ ˝ �.UAB

.0;1/
/ is

simple, i.e., there exists s.�/ 2 Z such that

�.UAB
.0;1// ' UCD

.0;s.�//:

Then we have
�.UAB

.0;e// ' UCD
.0;s.�/e/

for all e 2 Z. Similarly, ifƒ W Comod.G .C;D// ! Comod.G .A;B// is a monoidal
quasi-inverse for �, we have

ƒ.UCD
.0;e// ' UAB

.0;s.ƒ/e/

for all e 2 Z. In particular,

ƒ.UCD
.0;s.�/// ' UAB

.0;s.ƒ/s.�// ' UAB
.0;1/

and so s.�/ 2 f�1; 1g.
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Next, we have U.1;0/ ˝ U.1;0/ ' U.2;0/ ˚ U.0;1/, and, by the fusion rules, the
only simple G .C;D/-comodules W such that W ˝ W is direct sum of two simple
comodules are the .UCD

.1;p/
/p2Z. Hence there exists p 2 Z such that

�.UAB
.1;0// ' UCD

.1;p/

We have U.1;0/ ˝ U.1;0/ ' U.2;0/ ˚ U.0;1/, and since � is monoidal we deduce that

UCD
.1;p/ ˝ UCD

.1;p/ ' �.UAB
.2;0//˚ UCD

.0;s.�//:

On the other hand,

UCD
.1;p/ ˝ UCD

.1;p/ ' UCD
.2;2p/ ˚ UCD

.0;2pC1/:

We deduce from the uniqueness of the decomposition into simple comodules that
UCD

.0;2pC1/
' UCD

.0;s.�//
and so

.p; s.�// 2 f.0; 1/; .�1;�1/g:
By induction, for all .n; e/ 2 N � Z, we get�.UAB

.n;e/
/ ' UCD

.n;e/
if s.�/ D 1 and

�.UAB
.n;e/

/ ' UCD
.n;�n�e/

if s.�/ D �1.
Consider now the non-cosemisimple case: in the same way as above, we get

�.UAB
.0;1// ' UCD

.0;s.�// with s.�/ 2 f�1; 1g:

Also, V AB
1 is simple, so�.V AB

1 / ' V CD
n ˝UCD

.m;p/
withn 2 N,m 2 f0; : : : ; N0�1g,

.n;m/ ¤ .0; 0/, p 2 Z. Similarly we have �.UAB
.1;0/

/ ' V CD
k

˝ UCD
.l;t/

with k 2 N,
l 2 f0; : : : ; N0 � 1g, .k; l/ ¤ .0; 0/, t 2 Z. Then we have

�.V AB
1 ˝ UAB

.1;0// ' V CD
n ˝ UCD

.m;p/ ˝ V CD
k ˝ UCD

.l;t/;

but since V AB
1 ˝ UAB

.1;0/
is still simple, we must have either n D l D 0 or m D k D

0. In the first case, we have �.UAB
.1;0/

/ ' V CD
k

˝ UCD
.0;t/

. But .UAB
.1;0/

/˝N0 is not

semisimple, whereas .V CD
k

/˝N0 ˝ UCD
.0;tCN0/

is. So we have m D k D 0 and

�.V AB
1 / ' V CD

n ˝ UCD
.0;p/:

By the cosemisimple case, we have .p; s.�// 2 f.0; 1/; .�1;�1/g,�.V AB
n / ' V CD

n

or �.V AB
n / ' V CD

n ˝ UCD
.0;�n/

for all n 2 N.

Let Z be a simple G .A;B/-comodule such that �.Z/ ' UCD
.1;0/

. We have Z '
V AB

n ˝ UAB
.m;e/

and then

UCD
.1;0/ ' V CD

n ˝�.UAB
.m;0//˝ UCD

.0;p/ .with p 2 fe;�n � eg/:
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By the fusion rules we get the inequalities

dim.�.UAB
.1;i1/// < dim.�.UAB

.2;i2/// < � � � < dim.�.UAB
.N0�1;iN0�1///;

and then if m > 1, we have dim.�.UAB
.m;e/

// < dim.UCD
.1;j /

/. On the other hand, an-

other glance at the fusion rules shows that theUCD
.1;j /

, j 2 Z, are the simple comodules
(which are not one-dimensional) of the smallest dimension. Hence m D 1 and Z '
UAB

.1;e/
. The same arguments as above show us that .e; s.�// 2 f.0; 1/; .�1;�1/g.

We are now able to complete the proof of Theorem 1.3 and the isomorphic clas-
sification of the Hopf algebras G .A;B/.

Proof of Theorem 1.3. We have already proved that the Hopf algebras G .A;B/,
G .P tAP ,P�1BP�1t / and G .QtB�1Q;Q�1A�1Q�1t / are isomorphic; see Propo-
sition 2.4.

In order to prove the converse, we denote by xij (1 � i; j � n), d˙1 and yij

(1 � i; j � m), d˙1 the respective generators of G .A;B/ and G .C;D/ and by x and
y the corresponding matrices. By construction, the elements .xij / and .yij / are the
matrix coefficients of the comodules UAB

.1;0/
and UCD

.1;0/
, and d , d are those of UAB

.0;1/

and UCD
.0;1/

.
Let f W G .A;B/ ! G .C;D/ be a Hopf algebra isomorphism and denote by

f� W Comod.G .A;B// ! Comod.G .C;D// the induced equivalence of monoidal
categories. According to Lemma 4.1 and its proof, there are two cases:

If f�.UAB
.0;1/

/ ' UCD
.0;1/

(i.e., if f .d/ D d ), then f�.UAB
.1;0/

/ ' UCD
.1;0/

. In this

case, n D m and there exists P 2 GLn.k/ such that f .x/ D PyP�1. Moreover we
must have f .d�1A�1xtAx/ D In and so y�1 D d�1.P tAP/�1yt .P tAP/. But
we already have y�1 D S.y/ D d�1C�1ytC . Since the elements yij are linearly
independent, there exists � 2 k� such that C D �P tAP . Similar computations on
the relation xBxt D Bd , using the relations xd.DC/ D .DC/dx and xtd.CD/ D
.CD/dxt , lead to D D �P�1tBP�1, � 2 k�. Since G .A;B/ D G .˛A; ˇB/ for all
˛; ˇ 2 k�, we can drop � and �.

If f�.UAB
.0;1/

/ ' UCD
.0;�1/

(i.e., if f .d/ D d�1), then f�.UAB
.1;0/

/ ' UCD
.1;�1/

. In

this case, m D n and there exists M 2 GLn.k/ such that f .x/ D Myd�1M�1.
Similar computations lead to C D �P tB�1P and D D �P�1A�1P�1t for some
�;� 2 k�.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. First, for matrices A;B 2 GLn.k/ (n � 2) satisfying the
conditions of the theorem, Theorem 1.1 ensures that the Hopf algebra G .A;B/ is
indeed a GL.2/-deformation.
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Let H be a Hopf algebra whose corepresentation semi-ring is isomorphic to that
of GL2.k/. We denote by UH

.n;e/
, .n; e/ 2 N � Z, the simpleH -comodules (with the

same convention as above). From the morphisms

UH
.1;0/ ˝ UH

.1;0/ ! UH
.0;1/ and UH

.0;1/ ! UH
.1;0/ ˝ UH

.1;0/

we deduce the existence of two matrices A;B 2 GLn.k/ (n D dimUH
.1;0/

) and of a
Hopf algebra morphism

f W G .A;B/ ! H

such that f�.UAB
.0;1/

/ D UH
.0;1/

and f�.UAB
.1;0/

/ D UH
.1;0/

, and by Lemma 2.3 there
exists � 2 k� such that B tAtBA D �In for some � 2 k�. By Theorem 1.1, there is
a k-linear equivalence of monoidal categories

Comod.G .A;B// '˝ Comod.O.GLq.2//

between the comodule categories of G .A;B/ and O.GLq.2// respectively, with q 2
k� such that tr.AB t / D p

�.q C q�1/.
First assume that G .A;B/ is cosemisimple. Using Lemma 4.1, it follows that

f�.UAB
.n;e/

/ D UH
.n;e/

for all .n; e/ 2 N � Z, so f induces a semi-rings isomorphism

RC.G .A;B// ' RC.H/, and then, by the Tannaka–Krein reconstruction theorem
(see e.g. [JS91]), f W G .A;B/ ! H is a Hopf algebra isomorphism.

Now assume that G .A;B/ is not cosemisimple. For .n; e/ 2 f0; : : : ; N0 �1g�Z,
we have f�.UAB

.n;e/
/ D UH

.n;e/
. So we get

f�.UAB
.N0�1;0/ ˝ UAB

.1;0// ' UH
.N0;0/ ˚ UH

.N0�2;1/;

but on the other hand, using the simple filtration, we have

f�.UAB
.N0�1;0/ ˝ UAB

.1;0// ' UH
.N0�2;1/ ˚ f�.V1/˚ UH

.N0�2;1/:

This contradicts the uniqueness of the decomposition of a semisimple comodule into
a direct sum of simple comodules. Thus G .A;B/ is cosemisimple, q is generic and
f is an isomorphism.

Lemma 4.1 and the results of Section 3 gives us a Morita equivalence criterion
which, in the particular case of O.GLp;q.2//, gives Theorem 2.6 in [Tak97], at the
Hopf algebra level.

Corollary 4.2. Let A;B 2 GLn.k/, C;D 2 GLm.k/ such that B tAtBA D �A;BIn

and DtC tDC D �C;DIm. Put �A;B ´ tr.AB t / and �C;D ´ tr.CDt /. The
following assertions are equivalent:

(1) There exists a k-linear equivalence of monoidal categories

Comod.G .A;B// '˝ Comod.G .C;D//

between the comodule categories of G .A;B/ and G .C;D/, respectively.
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(2) We have
��1

A;B�
2
A;B D ��1

C;D�
2
C;D:

Proof. First, put � ´ ��1
A;B�

2
A;B D ��1

C;D�
2
C;D and let q 2 k� such that q2 �p

�qC
1 D 0. Then by Theorem 1.1 and its proof, we have two k-linear equivalences of
monoidal categories

Comod.G .A;B// '˝ Comod.O.GLq.2/// '˝ Comod.G .C;D//:

For the other implication, assume that the k-linear monoidal functor

� W Comod.G .A;B// ! Comod.G .C;D//

satisfies �.DAB/ ' DCD . Let .vAB
i /1�i�n, dAB and .vCD

i /1�i�m, dCD be some
bases of VAB , DAB and VCD , DCD respectively such that the fundamental colinear
maps

a W VAB ˝ VAB ! DAB ; c W VCD ˝ VCD ! DCD;

b W DAB ! VAB ˝ VAB ; d W DCD ! VCD ˝ VCD

satisfy

a.vAB
i ˝ vAB

j / D AijdAB ; b.dAB/ D
nP

i;j D1

Bij v
AB
i ˝ vAB

j

and

c.vCD
i ˝ vCD

j / D CijdCD; d.dCD/ D
nP

i;j D1

Dij v
CD
i ˝ vCD

j :

Since� is monoidal, let c0 and d 0 be the colinear map given by the compositions

c0 W �.VAB/˝�.VAB/
� �� �.VAB ˝ VAB/

�.a/ �� �.DAB/

VCD ˝ VCD
�� VCD ˝ VCD

�� DCD

and

d 0 W �.DAB/
�.b/ �� �.VAB ˝ VAB/

� �� �.VAB/˝�.VAB/

DCD
�� VCD ˝ VCD

�� VCD ˝ VCD .

Then there exists ˛; ˇ 2 k� such that c0 D ˛c and d 0 D ˇd . Since� is k-linear,
we can compute the colinear map given by the compositions

DCD ! VCD ˝ VCD ! DCD
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and

VCD ˝DCD ! V ˝3
CD ! DCD ˝ VCD ! V ˝3

CD ! VCD ˝DCD:

We obtain
�A;B D ˛ˇ�C;D and �A;B D ˛2ˇ2�C;D;

and then we have the expected equality

��1
A;B�

2
A;B D ��1

C;D�
2
C;D:

If the k-linear monoidal functor� W Comod.G .A;B// ! Comod.G .C;D// sat-
isfies �.DAB/ ' D�1

CD , compose it with the functor induced by the isomorphism
G .C;D/ ' G .D�1; C�1/. We get an equivalence of monoidal categories

z� W Comod.G .A;B// ! Comod.G .D�1; C�1//

satisfying �.DAB/ ' DD�1;C �1 , and then

��1
A;B�

2
A;B D ��1

C;D�
2
C;D D ��1

D�1;C �1�
2
D�1;C �1 :

In particular, we obtain another proof of Theorem 2.6 in [Tak97]. Recall that
O.GLp;q.2// D G .Ap; Aq/ with �Ap ;Aq D pq and �Ap ;Aq D 1C pq.

Corollary 4.3. Let p, q and p0, q0 2 k�. The following assertions are equivalent:

(1) The Hopf algebras O.GLp;q.2// and O.GLp0;q0.2// are cocycle deformations
of each other.

(2) We have pq D p0q0 or pq D .p0q0/�1.

Proof. Assume that O.GLp;q.2// is a cocycle deformation of O.GLp0;q0.2//. Then

Comod.O.GLp;q.2/// '˝ Comod.O.GLp0;q0.2///;

and .pq/�1.1C pq/2 D .p0q0/�1.1C p0q0/2 by Corollary 4.2. Then pq and p0q0
are roots of the polynomial P.x/ D X2 � ‚X C 1, where ‚ D .pq/�1 C pq D
.p0q0/�1 C p0q0. It is easy to see that if x is a root of P , then the other root is x�1.
Thus, pq D p0q0 or pq D .p0q0/�1.

Conversely, suppose that pq D p0q0 or pq D .p0q0/�1. Then it follows that
Comod.O.GLp;q.2/// '˝ Comod.O.GLp0;q0.2///, and, moreover, the fibre func-
tor� W Comod.G .Ap; Aq// ! Comod.G .Ap0 ; Aq0/ induced by G .Ap; AqjAp0 ; Aq0/

preserves the dimensions of the underlying vector space. Then, according to Propo-
sition 4.2.2 in [EG01],

G .Ap0 ; Aq0/ ' G .Ap; Aq/ as coalgebras;

and there exists (see Theorem 7.2.2 in [Mon93]) a 2-cocycle � W H ˝H ! k such
that

G .Ap0 ; Aq0/ ' G .Ap; Aq/� as Hopf algebras:
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5. Hopf–Galois objects over G .A; B/

In this section, we use the previous constructions and results to classify the Galois
and bi-Galois objects over G .A;B/.

Let us first recall two results on Galois objects and fibre functors. The first one is
well known, and the second one is due to Schneider (see [Sch90], [Bic10]).

Lemma 5.1. Let H be a Hopf algebra and let F W Comod.H/ ! Vect.k/ be a
monoidal functor. If V is a finite-dimensional H -comodule, then F.V / is a fi-
nite dimensional vector space. Moreover, we have that dim.V / D 1 implies that
dim.F.V // D 1, and if F is a fibre functor, then dim.F.V // D 1 implies that
dim.V / D 1.

Lemma 5.2. Let H be a Hopf algebra and let A;B some H -Galois objects. Any
H -colinear algebra map f W A ! B is an isomorphism.

By work of Ulbrich [Ulb89], to any H -Galois objects A corresponds a fibre
functor�A W Comodf .H/ ! Vectf .k/. The idea of the classification (which follows
[Aub07]) is to study how this fibre functor will transform the fundamental morphisms
of the category of comodules.

Theorem 5.3. Let A;B 2 GLn.k/ (n � 2), such that B tAtBA D �In for � 2 k�,
and let Z be a left G .A;B/-Galois object. Then there exists m 2 N�, m � 2, and
two matrices C;D 2 GLm.k/ satisfyingDtC tDC D �Im and tr.AB t / D tr.CDt /

such that Z ' G .A;BjC;D/ as Galois objects.

Proof. Let

�Z W Comodf .G .A;B// ! Vectf .k/; V 7! V �G .A;B/ Z;

be the monoidal functor associated to Z. Let VAB and D˙1
AB denote the fundamen-

tal comodules of G .A;B/, and let .vi /1�i�n and d˙1
AB be their bases such that the

fundamental colinear maps

a W VAB ˝ VAB ! DAB ; b W DAB ! VAB ˝ VAB ;

satisfy a.vi ˝ vj / D AijdAB and b.dAB/ D Pn
i;j D1Bij vi ˝ vj .

Let .wi /1�i�m and d˙1 be respective basis of �Z.VAB/ and �Z.D
˙1
AB/. By

construction of �Z , there exists .zij /1�i�n;1�j �m and d˙1
Z (see Lemma 5.1) such

that

wi D
nP

kD1

vk ˝ zki ; d˙1 D d˙1
AB ˝ d˙1

Z :

Moreover, by definition of the cotensor product we have

˛.zij / D P
k

aik ˝ zkj ; ˛.d˙1
Z / D d 0˙1

AB ˝ d˙1
Z ;
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where aij and d 0˙1
AB denotes the generators of G .A;B/.

Consider the bilinear map defined by the composition

a0 W �Z.VAB/ ˝ �Z.VAB/
� �� �Z.VAB ˝ VAB/

�Z.a/ �� �Z.DAB/

.VAB �G .A;B/ Z/ ˝ .VAB �G .A;B/ Z/
� �� .VAB ˝ VAB/ �G .A;B/ Z

a˝id �� DAB �G .A;B/ Z,

and let C D .Cij /1�i;j �m such that a0.wi ˝ wj / D Cijd . Then we compute

a0.wi ˝ wj / D a0..
Pn

kD1 vk ˝ zki /˝ .
Pn

lD1 vl ˝ zlj //

D P
k;l

AkldAB ˝ zkizlj

D CijdAB ˝ dZ ;

or in matrix form
ztAz D CdZ :

In the same way, consider the map

b0 W �Z.DAB/
�Z.b/ �� �Z.VAB ˝ VAB/

 �� �Z.VAB/ ˝ �Z.VAB/

DAB �G .A;B/ Z
b˝id �� .VAB ˝ VAB/ �G .A;B/ Z

 �� .VAB �G .A;B/ Z/ ˝ .VAB �G .A;B/ Z/.

Let D D .Dij /1�i;j �m be defined by b0.d/ D P
Dijwi ˝ wj .

Then we have

 �1 B b0.dAB ˝ dZ/ D b ˝ id.dAB ˝ dZ/ D P
i;j

Bij vi ˝ vj ˝ dZ

and
 �1 B b0.d/ D  �1.

P
ij Dij .

P
k vk ˝ zki/˝ .

P
l vl ˝ zlj /

D P
kl

P
ij

vk ˝ vl ˝Dij zkizlj ;

so

zDzt D BdZ :

Hence we have an algebra morphism f W G .A;BjC;D/ ! Z defined by f .x/ D z

and f .d˙1/ D d˙1
Z

We have to check that f is colinear. Since it is an algebra map, it is sufficient to
check on the generators which is trivial by the construction of respective coactions
and by the definition of f . Then by Lemma 5.2, f is an isomorphism.

Finally, Schur’s lemma gives the equality

.a˝ id/ B .id ˝ b/ B .id ˝ a/ B .b ˝ id/ D �idDAB˝VAB .� 2 k�/;
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which may be rewritten in matrix form as

B tAtBA D �In:

Since the functor �Z is k-linear, we have

.a0 ˝ id/ B .id ˝ b0/ B .id ˝ a0/ B .b0 ˝ id/ D �id�Z.DAB /˝�Z.VAB /

and then
DtC tDC D �Im:

Finally, we have a B b D tr.AB t /idDAB , and so, similarly, it follows that tr.AB t / D
tr.CDt /.

Theorem 5.4. Let A;B 2 GLn.k/ such that B tAtBA D �In, and let C1;D1 2
GLm1.k/ and C2;D2 2 GLm2.k/ such that the algebras G .A;BjC1;D1/ and
G .A;BjC2;D2/ are G .A;B/-Galois objects (n;m1 and m2 � 2). Then
G .A;BjC1;D1/ and G .A;BjC2;D2/ are isomorphic (as Galois object) if and only
if m1 D m2 ´ m and there exists an invertible matrix M 2 GLm.k/ such that
.C2;D2/ D .M�1tC1M

�1;MD1M
t /.

Proof. We denote by �i the fibre functor associated to G .A;BjCi ;Di / and let
f W G .A;BjC1;D1/ ! G .A;BjC2;D2/ be a comodule algebra isomorphism: it
induces an isomorphism id ˝ f W �1.UAB/ ! �2.UAB/. Using the same notation
as above, we get two basis .w1

i /1�i�m1 and .w2
i /1�i�m2 of�1.UAB/ and�2.UAB/.

In particular, we have m1 D m2 ´ m. Then there exists M D .Mij / 2 GLm.k/

such that id ˝ f .w1
i / D P

k Mj iw
2
j , and hence

P
k

vk ˝ f .z1
ki
/ D P

k

vk ˝ z2
kj
Mj i ;

which in matrix form gives f .z1/ D z2M .
According to the relations defining G .A;BjC1;D1/ we have

.z1/tAz1 D C1d and z1D1.z
1/t D Bd;

hence
f ..z1/tAz1/ D M t .z2/tAz2M

D M tC2Md D f .C1d/ D C1d 2 G .A;BjC1;D1/;

so M tC2M D C1. The second relation leads to

f .z1D1.z
1/t / D z2MD1M

t .z2/t D f .Bd/ D Bd D z2D2.z
2/t ;

so D2 D MD1M
t .

Conversely, we already have G .A;BjC;D/ ' G .A;BjM�1tCM�1;MDM t /,
see Proposition 2.4.
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According to the work of Schauenburg [Sch96], the set of bi-Galois objects
BiGal.L;H/ is a groupoid with multiplication given by the cotensor product. In
particular, when H D L, the set of isomorphism classes of H -H -bi-Galois objects
inherits a structure of groups. Then we have two group morphisms

AutHopf.H/ ! BiGal.H/; f 7! ŒHf �;

with kernel CoInn.H/ ´ ff 2 AutHopf.H/ j there exists 	 2 Alg.H; k/ with f D
.	 B S/ ? idH ? 	g and we write CoOut.H/ ´ AutHopf.H/=CoInn.H/, and

H 2
` .H/ ! BiGal.H/; � 7! ŒH.�/�;

where H 2
`
.H/ denotes the lazy cohomology group of H ; see [BC06]. From the

monoidal categories viewpoint, it is the subgroup of BiGal.H/ consisting of isomor-
phism classes of linear monoidal auto-equivalences of the category of A-comodules
that are isomorphic, as functors, to the identity functor.

We assume until the end of the section that k has characteristic zero.

Lemma 5.5. The automorphism group AutHopf.G .A;B// is isomorphic to the group

G.A;B/ D fP 2 GLn.k/ j A D P tAP; B D P�1BP�1t or

A D P tB�1P; B D P�1A�1P�1t /g=f˙Ing:
Moreover, we have

CoInn.G .A;B// ' fP 2 GLn.k/ j A D P tAP; B D P�1BP�1tg=f˙Ing
and

CoOut.G .A;B// ' Z=2Z:

Proof. The first isomorphism comes from the proof of Theorem 1.3, and the assertion
about CoInn is easy to verify. Finally, CoOut.G .A;B// ' Z=2Z because for any
f; g 2 AutHopf.G .A;B// n CoInn.G .A;B//, f B g 2 CoInn.G .A;B//.

Theorem 5.6. For any n � 2 and A;B 2 GLn.k/ such that B tAtBA D �In

(� 2 k�),
BiGal.G .A;B// ' Z=2Z:

Proof. Let Z be a G .A;B/-G .A;B/-bi-Galois object. By Theorem 5.3, there exists
m � 2 and C;D 2 GLm.k/ satisfying DtC tDC D �Im and tr.AB t / D tr.CDt /

such that
Z ' G .A;BjC;D/

as a G .A;B/-Galois object. Since G .A;BjC;D/ is also a G .A;B/-G .C;D/-bi-
Galois object, the Hopf algebras G .A;B/ and G .C;D/ are isomorphic (by [Sch96],
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Theorem 3.5). Thus, by Theorem 1.3,m D n and there exists P 2 GLn.k/ such that
.C;D/ 2 f.P tAP;P�1BP�1t /; .P tB�1P;P�1A�1P�1t /g. Then we have either

Z ' G .A;BjC;D/ ' G .A;B/

or

Z ' G .A;BjC;D/ ' G .A;BjB�1; A�1/

as left Galois objects. Moreover, according to [Sch96], Lemma 3.11, CoOut.G .A;B//
acts freely on BiGal.G .A;B// by

f � A D Af ; f 2 CoOut.G .A;B//; A 2 BiGal.G .A;B//:

Then we have to check that

G .A;BjB�1; A�1/ ' G .A;B/f ;

where f 2 CoOut.G .A;B// is non-trivial. To do so, it is easy to verify that

�G .A;BjB�1;A�1/.DAB/ ' D�1
AB ' �G .A;B/f .DAB/;

where�Z denotes the fiber functor induced byZ. Then, by Lemma 4.1, the functors
are isomorphic, and according to Ulbrich’s work [Ulb89] the bi-Galois objects are
isomorphic.

Finally, from the interpretation of bi-Galois objects as functor we get:

Theorem 5.7. For any n � 2 and A;B 2 GLn.k/ such that B tAtBA D �In

(� 2 k�),H 2
`
.G .A;B// is trivial.

In particular, according to [BC06], Theorem 3.8, G .A;B/ has no non-trivial bi-
cleft bi-Galois object.

6. Hopf �-algebras structure on G .A; B/

In this section, k D C. We classify CQG algebras which are GL.2/-deformations
(or rather U.2/-deformations).

Let us recall that a Hopf �-algebra is a Hopf algebraH which is also a �-algebra
and such that the comultiplication is a �-homomorphism. If x D .xij /1�i;j �n 2
Mn.H/ is a matrix with coefficient in H , the matrix .x�

ij /1�i;j �n is denoted by Nx,
while Nxt , the transpose matrix of Nx, is denoted by x�. The matrix x is said to be
unitary if x�x D In D xx�. Recall ([KS97]) that a Hopf �-algebra is said to be
a CQG algebra if for every finite-dimensional H -comodule with associate matrix
x 2 Mn.H/ there existsK 2 GLn.C/ such that the matrixKxK�1 is unitary. CQG
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algebras correspond to Hopf algebras of representative functions on compact quantum
groups.

We begin with a lemma which gives an example of CQG algebra structure on
G .A;B/.

Lemma 6.1. Let E 2 GLn.C/ such that xEtEt xEE D �In for � 2 C. Then
� 2 R�C and the Hopf algebra G .E; xE/ is a CQG algebra for the following �-algebra
structure:

d� D d�1 and Nx D Etd�1xE�1t :

The CQG algebra G .E; xE/ will be denoted by AQo.E/.

Proof. First, notice that because of the relations defining G .E; xE/ and the condition
on E, we also have Nx D xE�1txd�1 xEt . Then we can verify that our structure is well
defined: for the first relation, we compute

E�1xtEx D ..Ex/t .E�1xt /t /t

D .. xEEtd�1xE�1t /t .E�1. xE�1txd�1 xEt /t /t /t

D ..E�1d�1xtE xEt /. xE�1txd�1 xEtE�1t //t D d�1;

and for the second one we get

xE�1x xExt D ..E Nxt /t .E�1 Nx/t /t
D ..E.Etd�1xE�1t /t /t .E�1 xE�1txd�1 xEt /t /t

D ..Etd�1xE�1tEt /. xExtd�1 xE�1E�1t //t D d�1:

Let us show that we have a �-structure and that x is unitary: first

NNx D Etd�1xE�1t D xEt Nxd xE�1t D xEt xE�1txd�1 xEtd xE�1t D x;

and then we have

x� D Nxt D . xE�1txd�1 xEt /t D xExtd�1 xE�1 D .Etd�1xE�1t /t D E�1d�1xtE:

According to the relations defining G .E; xE/ we have x�x D xx� D In, d�d D
dd� D 1 so that G .E; xE/ is CQG by [KS97].

Finally, we have xEtEt xEE D �In D .EtEt�/.EE�/ and so � 2 R�C.

The terminology AQo.E/ follows from the recent paper [BBCC11], where QOn

denotes the subgroup of Un.C/ generated by On.R/ and T � In.
As a special case of the lemma, we get the following result from [HM98]:
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Corollary 6.2. The Hopf algebra O.GLq; Nq.2// is a CQG algebra for the �-structure
given by

D� D D�1 and

�
a� b�
c� d�

�
D

�
dD�1 �qcD�1

�q�1bD�1 aD�1

�
:

In particular, O.GLq.2// is CQG for q 2 R�.

We can state and prove the main theorem of this section:

Theorem 6.3. The CQG algebras whose corepresentation semi-ring is isomorphic
to that of U2.C/ are exactly the

AQo.E/;
where E 2 GLn.C/, n � 2, satisfies xEtEt xEE D �In for � 2 R�C.

Proof. First of all, the algebra AQo.E/ are indeed U.2/-deformations, according to
the previous lemma and to Theorem 1.1.

LetH be a CQG algebra such that RC.H/ ' RC.O.U.2//. Denote by dH , d�1
H

and x D .xij /1�i;j �n (2 � n) the matrix coefficients of U.0;1/, U.0;�1/ and U.1;0/,
respectively. Since H is a CQG algebra, we have d�

H D d�1
H , and we can assume

that the matrix x is unitary. Lemma 4.1 and its proof give us that UH
.1;0/

' UH
.1;�1/

'
UH

.0;�1/
˝ UH

.1;0/
, hence there exist F;G 2 GLn.C/ (n D dimC U

H
.1;0/

) such that

x D F NxdF �1; x D Gd NxG�1 and xx� D In D x�x;

where Nx D .x�
ij /1�i;j �n and x� D Nxt . We have

x D NNx D G�1F �1xF xG;
hence we get

xFG D 
In for some 
 2 C�;
and using the relations xx� D In D x�x we get

xF txt D dF t and xtG�1tx D dG�1t :

We put E D xF t and using the universal property of AQo.E/ D G .E; xE/, we get a
Hopf �-algebra morphism

f W AQo.E/ ! H

such that
f .d/ D dH ; f .d�1/ D d�1

H ; f .x/ D xH :

Since H is cosemisimple, the matrices F and G must satisfy G�1tF tG�1F D �In

with � 2 C�. Then E satisfies xEtEt xEE D �In D .EtEt�/.EE�/ for � 2
R�C. So we know from Theorem 1.1 that the corepresentation semi-ring of AQo.E/ is
isomorphic to that of U.2/, hence f induces an isomorphism of semi-ring between
RC.AQo.E// and RC.H/. We conclude by Tannaka–Krein reconstruction techniques
that f W AQo.E/ ! H is a Hopf �-algebra isomorphism.
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Appendix: Proof of Lemma 3.5

This section is devoted to the proof of Lemma 3.5. The strategy of our proof is to
write a convenient presentation of the algebra G .Aq; AqjC;D/ so that we can apply
the diamond lemma (Bergman, [Ber78]) to get some linearly independent elements.
This will imply that G .Aq; AqjC;D/ is non-zero.

Recall that G .A;BjC;D/ and G .P tAP;P�1BP�1t jQtCQ;Q�1DQ�1t / are
isomorphic by Proposition 3.4. Combining this fact with the following well-known
lemma, we can assume that Dmm D 0.

Lemma 1. Let M 2 GLn.k/, n � 2. Then there exist a matrix P 2 GLn.k/ such
that .P tMP/nn D 0.

Let us now study in detail the algebra M.Aq; AqjC;D/: it is the universal algebra
with generators xij , 1 � i � 2, 1 � j � m and d , and relations

xtAqx D Cd; (A)

xDxt D Aqd: (B)

We can write these relations explicitly:

x2ix1j D q�1.x1ix2j � Cijd/; 1 � i � 2; 1 � j � m; (10)
mP

k;lD1

Dklx1kx2l D d; (20)

mP
k;lD1

Dklx1kx1l D 0; (30)

mP
k;lD1

Dklx2kx2l D 0; (40)

mP
k;lD1

Dklx2kx1l D qd: (50)

Using the fact that
Pm

k;lD1 CklDkl D 1C q2, we see that relations (10) and (20)
imply relation (50). We will also need to get commutation relations between d and
the xij : note that relations (A) and (B) imply that

xtdA2
q D CDdxt ; xdDC D A2

qdx;

which gives us

x1jd D �q
mP

kD1

.C�1D�1/kjdx1k; 1 � j � m;

x2jd D �q�1
mP

kD1

.CD/jkdx2k; 1 � j � m:
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Let us order the set f1; 2g�f1; : : : ; mg lexicographically. Take .u; v/ the maximal
element such that Duv ¤ 0. Since the matrix D is invertible, we have u D m, and
sinceDmm D 0, we have v < m. Now we see that M.Aq; AqjC;D/ is the universal
algebra with generators x1j , 1 � j � m, x2j , 1 � j � m and d , and relations

x2ix1j D q�1.x1ix2j � Cijd/; (1)

x1mx2v D .Dmv/
�1

�
d � P

.kl/<.mv/

Dklx1kx2l

�
; (2)

x1mx1v D �.Dmv/
�1

� P
.kl/<.mv/

Dklx1kx1l

�
; (3)

x2mx2v D �.Dmv/
�1

� P
.kl/<.mv/

Dklx2kx2l

�
; (4)

x1jd D �q
mP

kD1

.C�1D�1/kjdx1k; (5)

x2jd D �q�1
mP

kD1

.CD/jkdx2k : (6)

We now have a nice presentation to use the diamond lemma (Bergman [Ber78]). We
use the simplified exposition in the book Klimyk and Schmüdgen [KS97] and freely
apply the techniques and definitions involved. We endow the set fxij j .i; j / 2
f1; 2g � f1; : : : ; mgg with the order induced by the lexicographic order on the set
f1; 2g � f1; : : : ; mg, we put d < xij and we order the set of monomials according to
their length, and finally two monomials of the same length are ordered lexicographi-
cally. It is clear that the presentation above is compatible with the order. Hence we
have:

Lemma 2. There are no inclusions ambiguities, and we have exactly the following
overlap ambiguities:

.x2ix1m; x1mx1v/; .x2ix1m; x1mx2v/ for all 1 � i � m;

.x1mx2v; x2vx1j /; .x2mx2v; x2vx1j / for all 1 � j � m;

.x2ix1j ; x1jd/ for all 1 � i; j � m;

.x1mx2v; x2vd/; .x2mx2v; x2vd/;

.x1mx1v; x1vd/:

These ambiguities are resolvable.

Proof. Let us first note some identities:

.CD/ij D q2.C�1D�1/j i ;P
.kl/<.mv/

CklDkl D 1C q2 � CmvDmv
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P
.kl/<.mv/

DklCikdxil D
mP

kD1

.CD/ildxil �DmvCimdxiv

for all 1 � i � m;P
.kl/<.mv/

.C�1D�1/jkDkl.CD/li D Dj i � .C�1D�1/jmDmv.CD/vi

for all 1 � i; j � m:

Let us show that the ambiguity .x2ix1m; x1mx1v/ is resolvable (the symbol “!”
means that we perform a reduction).

First we have

q�1.x1ix2mx1v � Cimdx1v/

! q�1.q�1.x1ix1mx2v � Cmvx1id/ � Cimdx1v/

! q�1.q�1..Dmv/
�1.x1id � P

.kl/<.mv/

Dklx1ix1kx2l/ � Cmvx1id/ � Cimdx1v/

D �q�1.Dmv/
�1.q�1..�x1id C P

.kl/<.mv/

Dklx1ix1kx2l/

CDmvCmux1id/CDmvCimdx1v/

D �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1ix1kx2l

� q�1.1 �DmvCmv/x1id/CDmvCimdx1v/

! �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1ix1kx2l

� q�2.1 �DmvCmv/.
mP

kD1

.CD/ikdx1k//CDmvCimdx1v/:

On the other hand:

� .Dmv/
�1.

P
.kl/<.mv/

Dklx2ix1kx1l/

! �q�1.Dmv/
�1.

P
.kl/<.mv/

Dkl.x1ix2k � Cikd/x1l/

D �q�1.Dmv/
�1.

P
.kl/<.mv/

Dklx1ix2kx1l �
mP

kD1

.CD/ildx1l CDmvCimdx1v/

! �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1i .x1kx2l � Ckld/

�
mP

kD1

.CD/ildx1l CDmvCimdx1v/
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D �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1ix1kx2l � q�1
P

.kl/<.mv/

DklCklx1id/

�
mX

lD1

.CD/ildx1l CDmvCimdx1v/

D �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1ix1kx2l � q�1.1C q2 � CmvDmv/x1id/

�
mP

lD1

.CD/ildx1l CDmvCimdx1v/

! �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1ix1kx2l � q�1.1C q2 � CmvDmv/

� .�q
mP

kD1

.C�1D�1/kidx1k/ �
mP

lD1

.CD/ildx1l CDmvCimdx1v/

D �q�1.Dmv/
�1.q�1

P
.kl/<.mu/

Dklx1ix1kx2l � q�2

� .1C q2 � CmvDmv/.
mP

kD1

.CD/ikdx1k/

�
mP

kD1

.CD/ildx1l CDmvCimdx1v/

D �q�1.Dmv/
�1.q�1

P
.kl/<.mv/

Dklx1ix1kx2l

� q�2.1 � CmvDmv/.
mP

kD1

.CD/ikdx1k/CDmvCimdx1v/:

Similar computations show that the ambiguity .x2mx2v; x2vx1j / is resolvable,
using the relations (1), (6) and (2).

Let us show that the ambiguity .x1mx2v; x2vx1j / is resolvable.
On the first hand we have

.Dmv/
�1.dx1j � P

.kl/<.mv/

Dklx1kx2lx1j /

! .Dmv/
�1.dx1j � q�1

P
.kl/<.mv/

Dklx1k.x1lx2j � Cljd//

D .Dmv/
�1.dx1j � q�1.

P
.kl/<.mv/

Dklx1kx1lx2j � P
.kl/<.mv/

Dklx1kCljd//

D .Dmv/
�1.dx1j � q�1.

P
.kl/<.mv/

Dklx1kx1lx2j � P
.kl/<.mv/

DklCljx1kd//

D .Dmv/
�1.dx1j � q�1.

P
.kl/<.mv/

Dklx1kx1lx2j

�
mP

kD1

.DC/kjx1kd �DmvCvjx1md//
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! .Dmv/
�1.dx1j � q�1.

P
.kl/<.mv/

Dklx1kx1lx2j

C q
mP

k;lD1

.DC/kj .C
�1D�1/ljdx1l �DmvCvjx1md//

D .Dmv/
�1.dx1j � q�1.

P
.kl/<.mv/

Dklx1kx1lx2j C qdx1j �DmvCvjx1md//

D �q�1.Dmv/
�1.

P
.kl/<.mv/

Dklx1kx1lx2j CDmvCvjx1md/:

On the other hand we have

q�1.x1mx1vx2j � Cvjx1md/

! �q�1.Dmv/
�1.

P
.kl/<.mv/

Dklx1kx1lx2j CDmvCvjx1md//:

Similar computations shows that the ambiguity .x2ix1m; x1mx2v/ is resolvable,
using the relations (4) and (1) .

Let us show that the ambiguity .x2ix1j ; x1jd/ is resolvable.
On the first hand, we get

q�1.x1ix2jd � Cijd
2/ ! q�1.�q�1

mP
kD1

.CD/jkx1idx2k � Cijd
2/

! q�1.
mP

k;lD1

.CD/jk.C
�1D�1/lidx1lx2k � Cijd

2/

and on the second hand

� q
mP

kD1

.C�1D�1/kjx2idx1k

!
mP

k;lD1

.C�1D�1/kj .CD/ildx2lx1k

! q�1
mP

k;lD1

.C�1D�1/kj .CD/ild.x1lx2k � Clkd/

D q�1.
mP

k;lD1

.C�1D�1/kj .CD/ildx1lx2k �
mP

k;lD1

.CD/ilClk.C
�1D�1/kjd

2/

D q�1.
mP

k;lD1

.C�1D�1/kj .CD/ildx1lx2k � Cijd
2/

D q�1.
mP

k;lD1

.CD/jk.C
�1D�1/lidx1lx2k � Cijd

2/:

Let us show that the ambiguity .x1mx2v; x2vd/ is resolvable.
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First we have

.Dmv/
�1.d2 � P

.kl/<.mv/

Dklx1kx2ld/

! .Dmv/
�1.d2 C q�1

P
.kl/<.mv/

mP
j D1

Dkl.CD/ljx1kdx2j /

! .Dmv/
�1.d2 � P

.kl/<.mv/

Pm
i;j D1.C

�1D�1/ikDkl.CD/ljdx1ix2j /

D .Dmv/
�1.d2 �

mP
i;j D1

Dijdx1ix2j /C
mP

i;j D1

.C�1D�1/im.CD/vjdx1ix2j

!
mP

i;j D1

.C�1D�1/im.CD/vjdx1ix2j

because

.Dmv/
�1.d2 �

mP
i;j D1

Dijdx1ix2j /

D .Dmv/
�1.d2 � P

.ij /<.mv/

Dijdx1ix2j CDmvdx1mx2v/ ! 0:

Secondly,

�q�1
mP

j D1

.CD/vjx1mdx2j !
mP

i;j D1

.CD/vj .C
�1D�1/imdx1ix2j :

Let us show that the ambiguity .x2mx2v; x2vd/ is resolvable.

First we have

� .Dmv/
�1.

P
.kl/<.mv/

Dklx2kx2ld/

! q�2.Dmv/
�1.

P
.kl/<.mv/

mP
i;j D1

.CD/kiDkl.CD/ljdx2ix2j /

D .Dmv/
�1.

P
.kl/<.mv/

mP
i;j D1

.C�1D�1/ikDkl.CD/ljdx2ix2j /

D .Dmv/
�1.

mP
i;j D1

Dijdx2ix2j / �
mP

i;j D1

.C�1D�1/im.CD/vjdx2ix2j

! �
mP

i;j D1

.C�1D�1/im.CD/vjdx2ix2j :
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Secondly,

�q�1
mP

j D1

.CD/vjx2mdx2j ! �q�2
mP

i;j D1

.CD/vj .CD/midx2ix2m

D �
mP

i;j D1

.C�1D�1/im.CD/vjdx2ix2j :

Let us show that the ambiguity .x1mx1v; x1vd/ is resolvable.
First we get

� .Dmv/
�1.

P
.kl/<.mv/

Dklx1kx1ld/

! q.Dmv/
�1.

P
.kl/<.mv/

Dkl.
mP

j D1

.C�1D�1/jlx1kdx1j //

! �q2.Dmv/
�1.

P
.kl/<.mv/

Dkl.
mP

j D1

.C�1D�1/jl.
mP

iD1

.C�1D�1/kidx1ix1j ///

D �q2.Dmv/
�1.

P
.kl/<.mv/

mP
i;j D1

.C�1D�1/ikDkl.C
�1D�1/jldx1ix1j /

D �.Dmv/
�1.

P
.kl/<.mv/

mP
i;j D1

.C�1D�1/ikDkl.CD/ljdx1ix1j /

D �.Dmv/
�1

mP
i;j D1

Dijdx1ix1j C
mP

i;j D1

.C�1D�1/im.CD/vjdx1ix1j

! q2
mP

i;j D1

.C�1D�1/im.C
�1D�1/jvdx1ix1j

because
mP

i;j D1

Dijdx1ix1j D P
.ij /<.mv/

Dijdx1ix1j CDmvdx1mx1v:

Secondly,

�q
mX

j D1

.C�1D�1/jvx1mdx1j ! q2
mP

i;j D1

.C�1D�1/jv.C
�1D�1/imdx1idx1j

D q2
mP

i;j D1

.C�1D�1/im.C
�1D�1/jvdx1idx1j :

Using this result, we can apply the diamond lemma and state:

Corollary 1. The set of reduced monomials is a basis of M.Aq; AqjC;D/. In par-
ticular, the elements xij are linearly independent, and the algebra M.Aq; AqjC;D/
is non-zero.
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In order to complete the proof of Lemma 3.5, we would like to add an inverse to d ,
and a good way to do this would be to localize M.Aq; AqjC;D/ by the multiplicative
set S D fdn j n 2 Ng. By the presentation, we already have M.Aq; AqjC;D/S D
SM.Aq; AqjC;D/, and we need to know that d is not a zero divisor (see [Dix96]).

Lemma 3. d 2 M.Aq; AqjC;D/ is not a zero divisor.

Proof. According the above lemma, the set of reduced monomials (denoted by ˆ)
form a basis of M.Aq; AqjC;D/. A glance at the presentation show us that a reduced
monomial is of the form

d ix; i 2 N; x is a “good” product of xij :

The important thing to note is that if M is a reduced monomial, so is dM . Finally,
let x D P

M2ˆ ˛MM be an element of M.Aq; AqjC;D/ such that dx D 0. Then if

dx D P
M2ˆ

˛MdM D 0

implies that

˛M D 0

for all M reduced monomial, it follows that x D 0.

Corollary 2. G .Aq; AqjC;D/ D M.Aq; AqjC;D/=S is non-zero.
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