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Group quasi-representations and almost flat bundles

Marius Dadarlat*

Abstract. We study the existence of quasi-representations of discrete groups G into unitary
groups U(n) that induce prescribed partial maps Ko(C*(G)) — Z on the K-theory of the
group C*-algebra of G. We give conditions for a discrete group G under which the K-theory
group of the classifying space BG consists entirely of almost flat classes.
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1. Introduction

The notions of almost flat bundle and group quasi-representation were introduced
by Connes, Moscovici and Gromov [4] as tools for proving the Novikov conjecture
for large classes of groups. The first example of a topologically nontrivial quasi-
representation is due to Voiculescu for G = Z2, [27]. In this paper we use known
results on the Novikov and the Baum—Connes conjectures to derive the existence of
topologically nontrivial quasi-representations of certain discrete groups G, as well
as the existence of nontrivial almost flat bundles on the classifying space BG, by
employing the concept of quasidiagonality.

A discrete completely positive asymptotic representation of a C*-algebra A con-
sists of a sequence {7, : A — M) (C)}, of unital completely positive maps such
that limy, o || 774 (aa’) — m,(a@)m,(a’)|| = O for all @,a’ € A. The sequence {m,},
induces a unital x-homomorphism

A = [IMim)(C)/ 3" M) (C)

and hence a group homomorphism K¢(A4) — [[, Z/ >, Z. This gives a canonical
way to push forward an element x € K(A) to a sequence of integers (7,4(x)), which
is well-defined up to tail equivalence; two sequences are tail equivalent, (y,) = (z,),
if there is m such that x, = y, forall n > m.
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In the first part of the paper we study the existence of discrete asymptotic rep-
resentations of group C*-algebras that interpolate on K-theory a given group homo-
morphism /: Ko(C*(G)) — Z. We rely heavily on results of Kasparov, Higson,
Yu, Skandalis and Tu [15], [12], [29], [24], [16], [26]. For illustration, we have the
following:

Theorem 1.1. Let G be a countable, discrete, torsion-free group with the Haagerup
property. Suppose that C*(G) is residually finite dimensional. Then, for any group
homomorphism h: Ko(C*(G)) — Z, there is a discrete completely positive asymp-
totic representation {1, : C*(G) = M) (C)}, such that wpy(x) = h(x) for all
x € Ko(1(G)).

Here 1(G) is the kernel of the trivial representation ¢: C*(G) — C. By contrast,
any finite dimensional unitary representation of G induces the zero map on Ko (/(G)).
The groups with the Haagerup property are characterized by the requirement that there
exists a sequence of normalized continuous positive-definite functions which vanish
at infinity on G and converge to 1 uniformly on finite subsets of G. The conclusion
of Theorem 1.1 also holds if G is an increasing union of residually finite amenable
groups, see Theorem 3.4. The class of groups considered in Theorem 1.1 contains
all countable, torsion-free, amenable, residually finite groups (also the maximally
periodic groups) and the surface groups [17]. Moreover, this class is closed under
free products (see [10], [3]). If we impose a weaker condition, namely that C*(G) is
quasidiagonal, then in general we need two asymptotic representations in order to in-
terpolate /4, see Theorem 3.3. Theorem 1.1 remains true if we replace the assumption
that G has the Haagerup property by the requirements that G is uniformly embed-
dable in a Hilbert space and that the assembly map u: RKo(BG) — Ko(C*(G)) is
surjective. Let us recall that Hilbert space uniform embeddability of G implies that
M 1s split injective, as proven by Yu [29] if the classifying space BG is finite and by
Skandalis, Yu and Tu [24] in the general case. We will also use a strengthening of
this result by Tu [26] who showed that G has a gamma element. In conjunction with
a theorem of Kasparov [15] this guarantees the surjectivity of the dual assembly map
v: K%(C*(G)) - RK°(BG) for countable, discrete, torsion-free groups which are
uniformly embeddable in a Hilbert space.

The notion of almost flat K-theory class was introduced in [4] as a tool for proving
the Novikov conjecture. In the second part of the paper we pursue a reverse direction.
Namely, we use known results on the Baum—Connes and the Novikov conjectures
to derive the existence of almost flat K-theory classes by employing the concept of
quasidiagonality.

Theorem 1.2. Let G be a countable, discrete, torsion-free group which is uniformly
embeddable in a Hilbert space. Suppose that the classifying space BG is a finite
simplicial complex and that the full group C*-algebra C *(G) is quasidiagonal. Then
all the elements of K°(BG) are almost flat.
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The class of groups considered in Theorem 1.2 is closed under free products,
by [1] and [2]. If G can be written as a union of amenable residually finite groups
(as is the case if G is a linear amenable group), then C*(G) is quasidiagonal. Tt
is an outstanding open question if all discrete amenable groups have quasidiagonal
C*-algebras [28].

Voiculescu has asked in [28] if there are invariants of a topological nature which
can be used to describe the obstruction that a C*-algebra be quasidiagonal. One can
view Theorem 1.2 as further evidence towards a topological nature of quasidiagonal-
ity, since it shows that the existence of non-almost flat classes in K°(BG) represents
an obstruction for the quasidiagonality of C*(G).

The fundamental connection between deformations of C*-algebras and K-theory
was discovered by Connes and Higson [5]. They introduced the concept of asymptotic
homomorphism of C*-algebras which formalizes the intuitive idea of deformations
of C*-algebras. An asymptotic homomorphism is a family of maps ¢;: A — B,
t € [0, 00), such that for each a € A the map t — ¢,(a) is continuous and bounded
and the family (¢;);e[0,00) Satisfies asymptotically the axioms of *-homomorphisms.
There is a natural notion of homotopy for asymptotic homomorphisms. E-theory is
defined as homotopy classes of asymptotic homomorphisms from the suspension of
A to the stable suspension of B, E(A, B) = [Co(R) ® A, Cy(R) ® B ® K]|. The
introduction of the suspension and of the compact operators X yields an abelian group
structure on £ (A, B). Connes and Higson showed that E-theory defines the universal
half-exact C*-stable homotopy functor on separable C*-algebras. In particular the
KK-theory of Kasparov factors through E-theory. A similar construction based on
completely positive asymptotic homomorphisms gives a realization of KK-theory
itself as shown by Larsen and Thomsen [13].

While E-theory gives in general maps of suspensions of C*-algebras it is often
desirable to have interesting deformations of unsuspended C*-algebras. In joint
work with Loring [8], [6], we proved a suspension theorem for commutative C*-
algebras A = Co(X \ x¢), where X is a compact connected space and xo € X is a
base point. Specifically, we showed that the reduced K-homology group Ko(X) =
Ko(X, xo) is isomorphic to the homotopy classes of asymptotic homomorphisms
[Co(X \ xo), K. One can replace the compact operators KX by ;= ; M,(C) and
conclude that the reduced K-homology of X classifies the deformations of Coy(X)
into matrices. The case of X = T2 played an important role in the history of
the subject. Indeed, Voiculescu [27] exhibited pairs of almost commuting unitaries
u,v € U(n) whose properties reflect the non-triviality of H?(T?2,Z). One can view
such a pair as associated to a quasi-representation of C*(Z?) =~ C(T?). If the
commutator ||uv — vu|| is sufficiently small, then there is an induced pushforward of
the Bott class that represents the obstruction for perturbing u, v to a pair of commuting
unitaries, [27], [9]. It is therefore quite natural to investigate deformations of C*-
algebras associated to non-commutative groups. In view of Theorem 1.1 we propose
the following:
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Conjecture. If G is adiscrete, countable, torsion-free, amenable group, then the nat-
ural map [1(G), K] — KK(I(G), K) = K°(I(G)) is an isomorphism of groups.

This is verified if G is commutative. Indeed, /(G) = CO(@ \ xo) and G is
connected since G is torsion-free, so that we can apply the suspension result of [6].

Manuilov, Mishchenko and their co-authors have studied various aspects and ap-
plications of quasi-representations and asymptotic representations of discrete groups.
The paper [18] is a very interesting survey of their contributions. The notion of quasi-
representation of a group is used in the literature in several non-equivalent contexts,
to mean several different things, see [22].

2. Quasi-representations and K-theory

Definition 2.1. Let 4 and B be unital C*-algebras. Let FF C A be a finite set
and let ¢ > 0. A unital completely positive map ¢: A — B is called an (F, ¢)-
homomorphism if ||@(aa’) — ¢(a)p(a’)| < & for all a,a’ € F.If B is the C*-
algebra of bounded linear operators on a Hilbert space, then we say that ¢ is an
(F, e)-representation of A. We will use the term quasi-representation to refer to an
(F, e)-representation where F and ¢ are not necessarily specified.

An important method for turning K-theoretical invariants of A into numerical
invariants is to use quasi-representations to pushforward projections in matrices over
A to scalar projections. Consider a finite set of projections # C M,,(A4). We say that
(P, F,¢) is a Ky-triple if for any (F, ¢)-homomorphism ¢: A — B and p € &, the
element b = (id,, ® ¢)(p) satisfies ||b?> — b|| < 1/4 and hence the spectrum sp(b)
of b is contained in [0, 1/2) U (1/2, 1]. We denote by ¢ the projection y(b), where
x is the characteristic function of the interval (1/2, 1]. It is not hard to show that for
any finite set of projections J there exist a finite set /' C A and ¢ > 0 such that
(P, F,¢e) is a Ko-triple. If (P, F, ¢) is a Ko-triple, then any (F, £)-homomorphism
¢: A — B induces a map ¢y:  — Ko(B) defined by ¢4(p) = [¢]. Let Proj(A)
denote the set of all projections in matrices over A. It is convenient to extend ¢y to
Proj(A) by setting g(p) = 0if b = (id, ® ¢)(p) does not satisfy ||b? —b| < 1/4.
If ¢ were a x-homomorphism, then ¢ would induce a map ¢.: Ko(A) — Ko(B).
Intuitively, one may think of ¢y as a substitute for ¢x.

Two sequences (a,) and (b,) are called tail-equivalent if there is no such that
a, = by, for n > ny. Tail-equivalence is denoted by (a,) = (b,) or even a, = b,,
abusing the notation.

We will also work with discrete completely positive asymptotic morphisms (¢y, ).
They consists of a sequence of contractive completely positive maps ¢, : A — By
with limy,— oo ||@n(aa’) — @n(a)g,(@’)|| = 0 for all a,a’ € A. If in addition each
By, is a matricial algebra B, = Mg,)(C), then we call (¢,), a discrete asymptotic
representation of A. A discrete completely positive asymptotic morphism (¢, ),
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induces a sequence of maps ¢,y : Proj(4) — Ko(B,). Note that if p,q € Proj(A)
have the same class in Ko(A), then ,4(p) = @ay(q).

For any x € K((A), we fix projections p,q € Proj(A) such that x = [p] — [¢]
and set @u4(x) = @uy(p) — @ny(q) € Ko(By). The sequence (¢,4(x)) depends on
the particular projections that we use to represent x but only up to tail-equivalence.
While in general the maps ¢,4: Ko(A) — Ko(B,) are not group homomorphisms,
the sequence (@,4(x)) does satisfy (@u4(x + ¥)) = (@ng(x) + @py(y)) forall x, y €
Ko(A).

A subset B C L(H) is called quasidiagonal if there is an increasing sequence
(pn) of finite rank projections in L(H) which converges strongly to 1z and such
that limy,— ||[b, pn]|| = O forall b € B. B is block-diagonal if there is a sequence
(pn) as above such that [b, p,] = Oforall b € B andn > 1. Let A be a separable
C*-algebra. Let us recall that the elements of KK (A4, C) can be represented by Cuntz
pairs, i.e., by pair of *-representations ¢, ¥ : A — L(H) such that p(a) — ¥ (a) €
K(H)foralla € A.

Definition 2.2. Let A be a separable C*-algebra. An element « € KK(4,C) is
called quasidiagonal if it can be represented by a Cuntz pair (¢, V): A — L(H)
with the property that the set ¥ (4) C L(H) is quasidiagonal. In this case let us
note that the set ¢(4) C L(H) must be also quasidiagonal. Similarly, we say
that « is residually finite dimensional if it can be represented by a Cuntz pair with
the property that the set ¥ (A) is block-diagonal. We denote by KKy(A4, C) the
subset of KK(A, C) consisting of quasidiagonal classes and by KKs(A, C) the
subset of KK (A4, C) consisting of residually finite dimensional classes. Itis clear that
KKa(A4,C) C KKqa(4, C), that KKgq(A4, C) is a subgroup of KK(A4, C) and that
KK, (A4, C) is a subsemigroup.

We say that A is K-quasidiagonal if KKyq(4,C) = KK(A4,C) and that A4 is
K-residually finite dimensional if KK,(A4, C) = KK(4, C).

Remark 2.3. Let A be a separable C*-algebra. It was pointed out by Skandalis [23]
that for any given faithful *-representationw: A — L(H)suchthat 7(A)NK(H) =
{0}, one can represent all the elements of KK (A4, C) by Cuntz pairs where the second
map is fixed and equal to . It follows that a separable quasidiagonal C*-algebra
is K-quasidiagonal and a separable residually finite dimensional C*-algebra is K-
residually finite dimensional. More generally, if A is homotopically dominated by
B and B is K-quasidiagonal or K-residually finite dimensional then so is A. Let
us note that the Cuntz algebra O, is K-residually finite dimensional while it is not
quasidiagonal.

The following lemma and proposition are borrowed from [7]. For the sake of
completeness, we review briefly some of the arguments from their proofs. Let B
be a unital C*-algebra and let E be a right Hilbert B-module. If e, f € Lp(FE) are
projections such thate — f € Kp(FE), we denote by [e, f] the corresponding element
of KK(C, B) = Ky(B).
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Lemma 2.4. Let B be a unital C*-algebra and let E be a right Hilbert B-module.
Lete, f € Lp(E) and h € Kg(E) be projections such that e — f € Kg(E) and
lleh —hell < 1/9, || fh—hf| < 1/9 [[(1 —h)(e — f)(1 = h)|| < 1/9. Then

sp(heh) Usp(hfh) C [0,1/2) U (1/2,1],
e, /1= [x(heh), x(hfh)] € KK(C, B) = Ko(B).

Proof. One shows thatif e/, f’ € Lg(F) are projections such thate’ — f’ € Kg(F)
and |le—¢€'|| < 1/2,||f — f'Il < 1/2,then e, f] = [¢/, f']. This is proved using the
homotopy (x(e;), x(fr)) wheree, = (1—t)e+te', fy = (1—t)f +tf',0<t < 1.
Then one applies this observation to conclude that

le, f1=x()+x"). x(M)+xON] = [+ x (). x D+ x (D] = [x(x). x ()]
where x = heh,x' = (1 —h)e(1—h),y = hfh,y' = A —=h)f(1 —h). O

Let A, B be separable C*-algebras. An element @ € KK(A4, C) induces a group
homomorphism a.: Ko(A ® B) — Ko(B) via the cup product

KK(C,4A® B) xKK(4,C) - KK(C, B), (x,a)—>xo(x® lp).
Here we work with the maximal tensor product.

Proposition 2.5. Let A be a separable unital C*-algebra and a € KKgq(A4, C).
There exist two discrete asymptotic representations (¢n), and (Uy), consisting of
unital completely positive maps ¢p: A — M) (C) and Y0 A — My ) (C) such
that for any separable unital C*-algebra B, the map a«: Ko(A ® B) — Ko(B) has
the property that

o« (x) = (pn ®idp)g(x) — (Vn ® idp)y(x)

forall x € Ko(AQ® B). If @ € KKya(A, C), then all ¥, can be chosen to be
*-representations.

Proof. Represent o by a Cuntz pair ¢, ¥ : A — L(H) with ¢(a) — ¥ (a) € K(H),
for all @ € A, and such that the set {(A) is quasidiagonal. Therefore there is
an increasing approximate unit (p,), of K(H) consisting of projections such that
(pn)n commutes asymptotically with both ¢(A4) and ¥ (A). Let us define contrac-
tive completely positive maps ¢, ¥, : A — L(py,H) by ¢,(a) := pne(a)p, and
Yu(a) := pu¥(a)p,. Without any loss of generality we may assume that x is the
class of a projection e € A ® B. It follows from the definition of the Kasparov
product that

ax(x) = [(p ®idp)(e), (¥ ®idp)(e)] € KK(C, B).
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On the other hand, the sequence of projections p, ® 13 € K(H) ® B commutes
asymptotically with both projections (¢ ® idg)(e) and (¥ ® idp)(e) and moreover

lim || py ® 15 (¢ ® idp)(e) — (¥ ® idp)(e)) pu ® 15 =0,

since the sequence (p, ® 1p), forms an approximative unit of K(H) ® B. Now it
follows from Lemma 2.4 that

[(p ®idp)(e), (¥ ®idp)(e)] = (¢ ®idp)y(e) — (¥ ® idp)y(e)

for all sufficiently large n. It is standard to perturb ¢, and v, to completely positive
maps such that ¢, (1) and ¥, (1) are projections. Finally, let us note that v, is a
*-homomorphism if p,, commutes with . O

3. Asymptotic representations of group C*-algebras

We use the following notation for the Kasparov product:
KK(A4, B) x KK(B,C) - KK(4,C), (y,x)+ youx.

In the case of the pairing K; (B) x K'(B) — Z we will also write (y, x) for y o x.
We are mostly interested in the map

K'(C*(G)) — Hom(K;(C*(G)). Z). (1)

induced by the pairing above for B = C*(G). If G has the Haagerup property, then it
was shown in [25] that C *(G) is KK-equivalent with a commutative C*-algebra and
hence the map (1) is surjective. Assuming that G is a countable, discrete, torsion-free
group that is uniformly embeddable in a Hilbert space, we are going to verify that the
map (1) is split surjective whenever the assembly map u: RK; (BG) — K;(C*(G))
is surjective.
Following Kasparov [15], for a locally compact, o-compact, Hausdorff space
X and Cy(X)-algebras A and B we consider the representable K-homology groups
RK;(X), the representable K-theory groups RK'(X) and the bivariant theory
RKK;(X; A, B). If Y is compact, then RK;(Y) = KK; (C(Y),C) and RK*(Y) =
KK;(C, C(Y)). Suppose now that X is locally compact, o-compact and Hausdorff.
Then
RK;(X) = lim RK;(Y) = lim KK;(C(Y),C),
(X) Ly ) puy (C(Y).C)

where Y runs over the compact subsets of X. Kasparov [15], Prop. 2.20, has shown
that

RK!(X) = RKK; (X; Co(X),Co(X)).
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Moreover, if ¥ C X is a compact set, then the restriction map RK’(X) — RK!(Y)
corresponds to the map

RKK; (X Co(X), Co(X)) = RKK; (Y:C(Y),C(Y)) = KK;(C,C(Y)).
It is useful to introduce the group
i 1 i
LK'(X) = 1(31 RK'(Y),
Ycx

where Y runs over the compact subsets of X. If X is written as the union of an
increasing sequence (Y,), of compact subspaces, then, as explained in the proof of
Lemma 3.4 from [16], there is a Milnor 1<i£11 exact sequence:

| i+1 i : i
0—>l(in RK (Yn)—>RK(X)—>h(_mRK(Yn)—>0.

The morphism RK'(X) — Hom(RK;(X),Z) induced by the pairing RK; (X) x
RK'(X) — Z factors through the morphism
lim RK!(Y,) = LK*(X) - Hom(RK; (X),Z) = Hom(lim RK; (Y,). Z)
=~ 1(31 Hom(RK;(Y3), Z)
given by the projective limit of the morphisms RK' (Y,,) — Hom(RK;(Y;), Z).

If X is alocally finite separable CW-complex, then there is a Universal Coefficient
Theorem [16], Lemma 3.4:

0 — Ext(RK;41(X),Z) — RK/(X) — Hom(RK; (X), Z) — 0. )

In particular, it follows that the map LK’ (X) — Hom(RK;(X), Z) is surjective.

Let us recall the construction of the assembly map u: RK; (BG) — K;(C*(G))
and of the dual map v: K'(C*(G)) — RK'(BG) as given in [15]. Kasparov con-
siders a natural element

Bo € RKK(BG; Co(BG), Co(BG) ® C*(G))

(which we denote here by £ as it corresponds to Mischenko’s “line bundle” on BG).
If G is a discrete countable group then it is known [15], §6, that EG and BG can
be realized as locally finite separable CW-complexes. Write BG as the union of an
increasing sequence (Y;), of finite CW-subcomplexes. Let £, be the image of £ in

RKK (Yn: C(Yn), C(Yn) ® C*(G)) = KK(C,C(Y,) ® C*(G))

under the restriction map induced by the inclusion Y,, C BG.
The map u, : RK;(Y,) — K;(C*(G)) is defined as the cap product by £,,:

KK(C,C(Yn) ® C*(G)) x KK;(C(Y»), C) — KK;(C, C*(G)),
(n,2) = pn(z) =Lno(z®1).
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The assembly map p: RK;(BG) — K;(C*(G)) is the inductive limit homomor-
phism p = h_)m in. The homomorphism v: K*(C*(G)) — RK*(BG) is defined as
the cap product by £:

RKK(BG; Cy(BG), Co(BG) ® C*(G)) x KK; (C*(G),C)
— gﬂKKi (BG; C()(BG), C()(BG)),
€, x) > vx)=2Lo(l ®x).

Let v,: K'(C*(G)) — RK'(Y,) be obtained by composing v with the restriction
map RK? (BG) — RK'(Y,,). Noting that v, is also given by the cap product by £,,,
Kasparov has shown that

Vn(x) oz = pn(z) o x
for all x € K*(C*(G)) and z € RK;(Y,), [15], Lemma 6.2. The assembly map
induces a homomorphism p*: Hom(K; (C*(G)),Z) — Hom(RK;(BG), Z). Since

Hom(RK;(BG), Z) =~ Hom(l_ig; RK;(Y,),Z) = l<i_n_1Hom(RK,~(Yn), Z)

and since the equalities v, (x) o z = x o i, (z) are compatible with the maps induced
by the inclusions Y,, C Y}, 41, we obtain that the following diagram is commutative:

K'(C*(G)) — Hom(K;(C*(G)).Z)

-

RK!(BG) — Hom(RK; (BG), Z),

where the horizontal arrows correspond to natural pairings of K-theory with K-
homology. The map RK! (BG) — Hom(RK; (BG), Z) is surjective by (2).

In view of the previous discussion, by combining results of Kasparov [15] and Tu
[26], one derives the following.

Theorem 3.1. Let G be a countable, discrete, torsion-free group. Suppose that G
is uniformly embeddable in a Hilbert space. Then for any group homomorphism
h: K;(C*(G)) — Z thereis x € K*(C*(G)) such that h(u(z)) = (u(z), x) for all
z € RK; (BG).

Proof. For adiscrete group G which admits a uniform embedding into a Hilbert space
it was shown in [26], Thm. 3.3, that G has a y-element. Since G is torsion-free, we
can take BG = BG. If G has a y-element, it follows by Theorem 6.5 and Lemma. 6.2
of [15] that the dual map v: KK;(C*(G),C) — RK(BG) is split surjective. There-
fore, in the diagram above, the composite map K’ (C*(G)) — Hom(RK; (BG), Z),
x = (v(x), -) is surjective. This shows that if h: K;(C*(G)) — Z is a group
homomorphism, then u*(h) = h o u = (v(x), - ) for some x € K'(C*(G)). Since
the diagram above is commutative, we obtain that 7 o u = (v(x), -) = (u(-), x).

O
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The following proposition is more or less known; for example, it is implicitly
contained in [11]. Let ¢ be the trivial representation of G, ((s) = 1 forall s € G.

Proposition 3.2. Let ;1: RKo(BG) — Ko(C*(G)) be the assembly map. Then
T © [L = M - Ly © 4 for any unital finite dimensional representation w: C*(G) —
M,, (C).

Proof. Write BG as the union of an increasing sequence (Y,), of finite CW-sub-
complexes. Let z € RK((Y,) for some n > 1 and let x = [n] € K°(C*(G)).
The equality v,(x) o z = u,(z) o x becomes (v, (x),z) = m«(n(z)). The Chern
character makes the following commutative:

RK°(Y;,) x RKo(Y,) Z

ch* X chx l

Heven(Yn’ Q) X HCVCII(YIH @) —Q.

Thus (ch*(v,(x)),ch«(z)) = m«(un(2)). Since x is the class of a unital finite
dimensional representation 7 : C*(G) — M, (C), it follows that v, (x) is simply the
class of the flat complex vector bundle [V'] = m4(£,) over Y. On the other hand, if V
is a flat vector bundle, then ch*(V) = rank(V) = m = dim(m) by [14]. Therefore,
for any unital m-dimensional representation 7, w«(u,(z)) = m - (1,chx(z)). By
applying the same formula for the trivial representation (: C*(G) — C, we get
t«(n(2)) = (1,chy(2)). It follows that . (i1, (2)) = m - 14 (n (2)). O

Recall that we denote by 7(G) the kernel of the trivial representationt: C*(G) —
C. Since the extension 0 — I(G) — C*(G) — C — 0is split, Ko(C*(G)) =~
Ko(I(G)) ®Z.

Theorem 3.3. Let G be a countable, discrete, torsion-free group that is uniformly
embeddable in a Hilbert space. Let h: Ko(C*(G)) — Z be a group homomorphism.

(1) If C*(G) is K-quasidiagonal, then there exist two discrete completely pos-
itive asymptotic representations {m,: C*(G) = Myu)(C)}, and {y,: C*(G) —
M; (1) (C) }n such that wuy(x) — ypg(x) = h(x) for all x € p(RKo(BG)).

(i) If C*(G) is K-residually finite dimensional, then there is a discrete completely
positive asymptotic representation {1, : C*(G) = Myu)(C)}, such that mw,y(x) =
h(x) forall x € Ko(1(G)) N w(Ko(BG)).

Proof. Part (i) follows from Theorem 3.1 and Proposition 2.5 for A = C*(G) and
B = C. For part (ii) we observe that if y, is a x-representation, then y, = 0 on
Ko (1(G)) by Proposition 3.2. O

Theorem 3.4. Let G be a countable, discrete, torsion-free group. Suppose that G
satisfies either one of the conditions (a) or (b) below.
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(@) G has the Haagerup property and C*(G) is K-residually finite dimensional.
(b) G is an increasing union of residually finite, amenable groups.

Then for any group homomorphism h: Ko(C*(G)) — Z there is a discrete com-
pletely positive asymptotic representation {mw,: C*(G) — Myu)(C)}, such that
Ty (x) = h(x) forall x € Ko(1(G)).

Proof. Recall that the assembly map is an isomorphism for groups with the Haagerup
property by a result of Higson and Kasparov [12], and that these groups are also em-
beddable in a Hilbert space. Thus, if G satisfies (a), then the conclusion follows from
Theorem 3.3(ii). Suppose now that G satisfies (b). Thus G = | J; G; where G; are
residually finite, amenable groups and G; C G; . Then C*(G) = |J; C*(G;) and
Ko(C*(G)) =~ h_r)nKo(C*(Gi)). Similarly, I(G) = |, 1(G;) and Ko(I(G)) =
l_ilz)lKo(I(Gi)). Let 0;: Ko(C*(G;)) — Ko(C*(G)) be the map induced by the
inclusion C*(G;) C C*(G). Let h be given as in the statement of the theorem.
By the first part of the theorem, for each 7, there is a discrete completely posi-
tive asymptotic representation (n,gi))n of C*(Gj;) such that n}i? (x) = h(6;(x)) for
all x € Ko(I(G;)). By Arveson’s extension theorem, each n,(,i) extends to a uni-
tal completely positive map J_T,(,i) on C*(G). Since C*(G) is separable, Ko(1(G))
is countable and Ko(/(G)) = h_r)n Ko(1(Gjy)), it follows that there is a sequence

of natural numbers (1) < r(2) < --- such that (J_Tr(i(?)),- is a discrete completely

positive asymptotic representation of C*(G) such that ﬁ'fi(z) ﬁ(x) = h(x) for all
x € Ko(1(G)). O

4. Almost flat K-theory classes

In this section we use the dual assembly to derive the existence of almost flat K-theory
classes on the classifying space BG if the group C*-algebra of G is quasidiagonal. It
is convenient to work with an adaptation of the notion of almost flatness to simplicial
complexes, see [19].

Definition 4.1. Let Y be a compact Hausdorff space and let (U;); ey be a fixed finite
open cover of Y. A complex vector bundle £ € Vect,,(Y) is called e-flat if is
represented by a cocycle v;; : U; N U; — U(m) such that [|v;; (y) — v ()| < € for
all y,y e UiNU;and all i, j € I. A K-theory class « € K°(Y) is called almost
flat if for any ¢ > O there are e-flat vector bundles E, F such that « = [E] — [F].
This property does not depend on the cover (U;)er.

Remark 4.2. The set of all almost flat elements of K°(Y) form a subring denoted
by K%(Y). If f: Z — Y is a continuous map, then f*(K%(Y)) C K%(Z).
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The following proposition gives a method for producing e-flat vector bundles.
Let Y be a finite simplicial complex with universal cover ¥ and fundamental group
G. Consider the flat line bundle £ with fiber C*(G), ¥ xg C*(G) — Y, where
G C C*(G) acts diagonally, and let P be the corresponding projection in M,,,(C) ®
C(Y) ® C*(G). Consider a discrete asymptotic representation {¢,: C*(G) —
Mi)(C)}, and set F, = (idy ® idey)y ® ¢n)(P). Since |FZ — Fu|| — 0 as
n — oo, E, := y(Fy) is a projection in M,,x(»)(C(Y)) such that || E, — F,|| — 0
asn — oQ.

Proposition 4.3. For any ¢ > 0 there is ng > 0 such that for any n > ng there is
an e-flat vector bundle on Y which is isomorphic to the vector bundle given by the
idempotent E,,.

Proof. We rely on a construction and results of Phillips and Stone from [20], [21],
see also [18]. A simplicial complex is locally ordered by giving a partial ordering
o of its vertices in which the vertices of each simplex are totally ordered. The first
barycentric subdivision of any simplicial complex has a natural local ordering [21],
§1.4. Thus we may assume that ¥ is endowed with a fixed local ordering 0. Let
Y have vertices I = {1,2,...,m}. We denote by Y* the set of k-simplices of ¥ .
Given r > 1, a U(r)-valued lattice gauge field u on the simplicial complex Y is a
function that assigns to each 1-simplex (7, j) of ¥ an element u;; € U(r) subject to
the condition that u;; = ui_jl, see [21], Def. 3.2. Consider the cover of Y by dual
cells (V)ier [21], A.1.
Phillips and Stone show that for a fixed locally ordered finite simplicial complex
Y as above there is a function /1 : [0, +00) — [0, 1] with lim;_,o /#(¢) = 0 and which
has the following property. Let u be a U(r)-valued lattice gauge field on Y for some
r > 1. Suppose that
luijuje —uigll <8 3)

for all 2-simplices (i, j, k) (with vertices so o-ordered). Then there is a cocycle
vij: ViNV; — U(r), (i, j) € Y, such that

sup v (x) —u;j || < h(3).

xeV;NV;

The functions v;; (x) are constructed by an iterative process, based on the skeleton
of Y. At each stage of the construction one takes affine combinations of functions
defined at a previous stage, starting with the constant matrices u;;. It follows that
for each i € I there exists a fixed small open tubular neighborhood U; of V; which
is affinely homotopic to V;, such that the cover (U;);es has the following property.
For any U(r)-valued lattice gauge field u on Y that satisfies (3), there is a cocycle
vij: Ui NU; — U(r), (i, j) € Y, such that

sup  [Jvij (x) — ujjl| < 2h(9).
xelU;NU;
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We are going to use the asymptotic representation (¢ ), as follows. Using triv-
ializations of £ to U; one obtains group elements s;; € G for (i, j) € Y! giving a
constant cocycle on U; N U; that represents £, so that si;l = sj; and sj; - S;x = Sik
whenever (i, j, k) € Y2,

If (xi)ier are positive continuous functions with y; supported in U; and such that
Yier )(iz = 1, then £ is represented by an idempotent

P= 3 e;®)ixj®si;; e Mp(C)®C(Y)®C*G).
i,jel

Here m = |I| and (e;;) is the canonical matrix unit of M,, (C). It follows that for all
n sufficiently large, (id, ® idc(y) ® ¢n)y(P) is given by the class of a projection E,,
with ||E, — Fp|| < 1/2, where F,, = (id,, ® idc(y) ® ¢)(P). We have

F, = ZI eij @ Xixji @ ¢n(sij) € Mp(C) ® C(Y) ® Mi(n)(C).
i,j€

For v € GL(C) we denote by w(v) the unitary v(v*v)~"/2. Fix n sufficiently
large so that ¢, (sij) € GLg@)(C). For each ordered edge (i, j) € Y' we set
uij = w(ep(sij)) and u;; = u;l This will define a U(k(n))-valued lattice gauge
field on the ordered simplicial complex Y. Fix & > 0 such that 4m?s < 1/2 and
choose § > 0 such that 4(§) < ¢/2. Since (¢,), is an asymptotic representation,

there is ng > 0 such that if n > ng, then
llon (sij) —uijll < &/2 4

forall (i, j) € Y'' and |ujjux —u;x|| < 8 for all 2-simplices (i, j, k). By the result
of Phillips and Stone quoted above, there exists a cocycle v;; : U; N U; — U(k(n))
such that

[[vij (x) —uijll < h(8) < e/2 o)

for all x € U; N Uj. It follows that ||v;j(x) — v;j (x")|| < € for all x,x" € U; N Uj
and all 7, j € I and hence the idempotent

en(x) = Y. €ij ® yi(x)xj(X)vij(x), x €Y,
i,jel
gives an e-flat vector bundle on Y. From (4) and (5) we have
[lvij (x) — @n(sij)|| <& (6)

forallx € U; NUj and (i, j) € Y. Using (6) we see that |le, — F, | < 2m?e < 1/2
and hence |le, — E,|| < llen — Full + | En — Fu|| < 1. It follows that E,, = we,w™!
for some invertible element w. This shows that the isomorphism class of the vector
bundle given the idempotent E,, is represented by an e-flat vector bundle since we
have seen that e, has that property. O
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Let Y be a finite simplicial complex with universal cover Y and fundamental
group G and let £ be the corresponding flat line bundle with fiber C *(G). Recall that
the Kasparov product Ko(C(Y) ® C*(G)) x KK(C*(G),C) — K°(Y) induces a
map v: KK(C*(G),C) = K°(Y),v(a) = [{] o (@ ® 1).

Corollary 4.4. v(KKy(C*(G),C)) C K%4(Y).
Proof. This follows from Propositions 2.5 and 4.3. O

Theorem 4.5. Let G be a countable, discrete, torsion-free group which is uniformly
embeddable in a Hilbert space. Suppose that the classifying space BG is a finite
simplicial complex and that the full group C*-algebra C*(G) is K-quasidiagonal.
Then all the elements of K°(BG) are almost flat.

Proof. We have seen in the proof of Theorem 3.1 that under the present assumptions on
G the dual assembly map v: KK(C*(G),C) — K°(BG) is surjective. Since C*(G)
is K-quasidiagonal by hypothesis (this holds for instance if C *(G) is quasidiagonal as
observed in Remark 2.3), we have KK(C*(G), C) = KK(C*(G), C). The result
follows now from Corollary 4.4. O

From Theorem 4.5 one can derive potential obstructions to quasidiagonality of
group C*-algebras.

Remark 4.6. Let G be a countable, discrete, torsion-free group which is uniformly
embeddable in a Hilbert space and such that the classifying space BG is a finite
simplicial complex. If not all elements of K°(BG) are almost flat, then C *(G) is not
quasidiagonal.
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