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Group quasi-representations and almost flat bundles

Marius Dadarlat�

Abstract. We study the existence of quasi-representations of discrete groups G into unitary
groups U.n/ that induce prescribed partial maps K0.C

�.G// ! Z on the K-theory of the
group C*-algebra of G. We give conditions for a discrete group G under which the K-theory
group of the classifying space BG consists entirely of almost flat classes.
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1. Introduction

The notions of almost flat bundle and group quasi-representation were introduced
by Connes, Moscovici and Gromov [4] as tools for proving the Novikov conjecture
for large classes of groups. The first example of a topologically nontrivial quasi-
representation is due to Voiculescu for G D Z2, [27]. In this paper we use known
results on the Novikov and the Baum–Connes conjectures to derive the existence of
topologically nontrivial quasi-representations of certain discrete groups G, as well
as the existence of nontrivial almost flat bundles on the classifying space BG, by
employing the concept of quasidiagonality.

A discrete completely positive asymptotic representation of a C*-algebra A con-
sists of a sequence f�n W A ! Mk.n/.C/gn of unital completely positive maps such
that limn!1 k�n.aa

0/ � �n.a/�n.a
0/k D 0 for all a; a0 2 A. The sequence f�ngn

induces a unital �-homomorphism

A!Q

n

Mk.n/.C/=
P

n

Mk.n/.C/

and hence a group homomorphism K0.A/! Q
n Z=

P
n Z. This gives a canonical

way to push forward an element x 2 K0.A/ to a sequence of integers .�n].x//, which
is well-defined up to tail equivalence; two sequences are tail equivalent, .yn/ � .zn/,
if there is m such that xn D yn for all n � m.

�The author was partially supported by NSF grant #DMS–1101 305.
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In the first part of the paper we study the existence of discrete asymptotic rep-
resentations of group C*-algebras that interpolate on K-theory a given group homo-
morphism h W K0.C

�.G// ! Z. We rely heavily on results of Kasparov, Higson,
Yu, Skandalis and Tu [15], [12], [29], [24], [16], [26]. For illustration, we have the
following:

Theorem 1.1. Let G be a countable, discrete, torsion-free group with the Haagerup
property. Suppose that C �.G/ is residually finite dimensional. Then, for any group
homomorphism h W K0.C

�.G//! Z, there is a discrete completely positive asymp-
totic representation f�n W C �.G/ ! Mk.n/.C/gn such that �n].x/ � h.x/ for all
x 2 K0.I.G//.

Here I.G/ is the kernel of the trivial representation � W C �.G/! C. By contrast,
any finite dimensional unitary representation ofG induces the zero map onK0.I.G//.
The groups with the Haagerup property are characterized by the requirement that there
exists a sequence of normalized continuous positive-definite functions which vanish
at infinity on G and converge to 1 uniformly on finite subsets of G. The conclusion
of Theorem 1.1 also holds if G is an increasing union of residually finite amenable
groups, see Theorem 3.4. The class of groups considered in Theorem 1.1 contains
all countable, torsion-free, amenable, residually finite groups (also the maximally
periodic groups) and the surface groups [17]. Moreover, this class is closed under
free products (see [10], [3]). If we impose a weaker condition, namely that C �.G/ is
quasidiagonal, then in general we need two asymptotic representations in order to in-
terpolate h, see Theorem 3.3. Theorem 1.1 remains true if we replace the assumption
that G has the Haagerup property by the requirements that G is uniformly embed-
dable in a Hilbert space and that the assembly map � W RK0.BG/! K0.C

�.G// is
surjective. Let us recall that Hilbert space uniform embeddability of G implies that
� is split injective, as proven by Yu [29] if the classifying space BG is finite and by
Skandalis, Yu and Tu [24] in the general case. We will also use a strengthening of
this result by Tu [26] who showed that G has a gamma element. In conjunction with
a theorem of Kasparov [15] this guarantees the surjectivity of the dual assembly map
� W K0.C �.G//! RK0.BG/ for countable, discrete, torsion-free groups which are
uniformly embeddable in a Hilbert space.

The notion of almost flat K-theory class was introduced in [4] as a tool for proving
the Novikov conjecture. In the second part of the paper we pursue a reverse direction.
Namely, we use known results on the Baum–Connes and the Novikov conjectures
to derive the existence of almost flat K-theory classes by employing the concept of
quasidiagonality.

Theorem 1.2. Let G be a countable, discrete, torsion-free group which is uniformly
embeddable in a Hilbert space. Suppose that the classifying space BG is a finite
simplicial complex and that the full group C*-algebraC �.G/ is quasidiagonal. Then
all the elements of K0.BG/ are almost flat.
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The class of groups considered in Theorem 1.2 is closed under free products,
by [1] and [2]. If G can be written as a union of amenable residually finite groups
(as is the case if G is a linear amenable group), then C �.G/ is quasidiagonal. It
is an outstanding open question if all discrete amenable groups have quasidiagonal
C*-algebras [28].

Voiculescu has asked in [28] if there are invariants of a topological nature which
can be used to describe the obstruction that a C*-algebra be quasidiagonal. One can
view Theorem 1.2 as further evidence towards a topological nature of quasidiagonal-
ity, since it shows that the existence of non-almost flat classes inK0.BG/ represents
an obstruction for the quasidiagonality of C �.G/.

The fundamental connection between deformations of C*-algebras and K-theory
was discovered by Connes and Higson [5]. They introduced the concept of asymptotic
homomorphism of C*-algebras which formalizes the intuitive idea of deformations
of C*-algebras. An asymptotic homomorphism is a family of maps 't W A ! B ,
t 2 Œ0;1/, such that for each a 2 A the map t ! 't .a/ is continuous and bounded
and the family .'t /t2Œ0;1/ satisfies asymptotically the axioms of �-homomorphisms.
There is a natural notion of homotopy for asymptotic homomorphisms. E-theory is
defined as homotopy classes of asymptotic homomorphisms from the suspension of
A to the stable suspension of B , E.A;B/ D ŒŒC0.R/˝ A;C0.R/˝ B ˝K��. The
introduction of the suspension and of the compact operators K yields an abelian group
structure onE.A;B/. Connes and Higson showed that E-theory defines the universal
half-exact C*-stable homotopy functor on separable C*-algebras. In particular the
KK-theory of Kasparov factors through E-theory. A similar construction based on
completely positive asymptotic homomorphisms gives a realization of KK-theory
itself as shown by Larsen and Thomsen [13].

While E-theory gives in general maps of suspensions of C*-algebras it is often
desirable to have interesting deformations of unsuspended C*-algebras. In joint
work with Loring [8], [6], we proved a suspension theorem for commutative C*-
algebras A D C0.X n x0/, where X is a compact connected space and x0 2 X is a
base point. Specifically, we showed that the reduced K-homology group zK0.X/ D
K0.X; x0/ is isomorphic to the homotopy classes of asymptotic homomorphisms
ŒŒC0.X n x0/;K��. One can replace the compact operators K by

S1
nD1 Mn.C/ and

conclude that the reduced K-homology of X classifies the deformations of C0.X/

into matrices. The case of X D T 2 played an important role in the history of
the subject. Indeed, Voiculescu [27] exhibited pairs of almost commuting unitaries
u; v 2 U.n/ whose properties reflect the non-triviality ofH 2.T 2;Z/. One can view
such a pair as associated to a quasi-representation of C �.Z2/ Š C.T 2/. If the
commutator kuv� vuk is sufficiently small, then there is an induced pushforward of
the Bott class that represents the obstruction for perturbingu; v to a pair of commuting
unitaries, [27], [9]. It is therefore quite natural to investigate deformations of C*-
algebras associated to non-commutative groups. In view of Theorem 1.1 we propose
the following:
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Conjecture. If G is a discrete, countable, torsion-free, amenable group, then the nat-
ural map ŒŒI.G/;K��! KK.I.G/;K/ Š K0.I.G// is an isomorphism of groups.

This is verified if G is commutative. Indeed, I.G/ Š C0. yG n x0/ and yG is
connected since G is torsion-free, so that we can apply the suspension result of [6].

Manuilov, Mishchenko and their co-authors have studied various aspects and ap-
plications of quasi-representations and asymptotic representations of discrete groups.
The paper [18] is a very interesting survey of their contributions. The notion of quasi-
representation of a group is used in the literature in several non-equivalent contexts,
to mean several different things, see [22].

2. Quasi-representations and K-theory

Definition 2.1. Let A and B be unital C*-algebras. Let F � A be a finite set
and let " > 0. A unital completely positive map ' W A ! B is called an .F; "/-
homomorphism if k'.aa0/ � '.a/'.a0/k < " for all a; a0 2 F: If B is the C*-
algebra of bounded linear operators on a Hilbert space, then we say that ' is an
.F; "/-representation of A. We will use the term quasi-representation to refer to an
.F; "/-representation where F and " are not necessarily specified.

An important method for turning K-theoretical invariants of A into numerical
invariants is to use quasi-representations to pushforward projections in matrices over
A to scalar projections. Consider a finite set of projections P � Mm.A/. We say that
.P ; F; "/ is a K0-triple if for any .F; "/-homomorphism ' W A! B and p 2 P , the
element b D .idm ˝ '/.p/ satisfies kb2 � bk < 1=4 and hence the spectrum sp.b/
of b is contained in Œ0; 1=2/ [ .1=2; 1�. We denote by q the projection �.b/, where
� is the characteristic function of the interval .1=2; 1�. It is not hard to show that for
any finite set of projections P there exist a finite set F � A and " > 0 such that
.P ; F; "/ is a K0-triple. If .P ; F; "/ is a K0-triple, then any .F; "/-homomorphism
' W A ! B induces a map '] W P ! K0.B/ defined by '].p/ D Œq�: Let Proj.A/
denote the set of all projections in matrices over A. It is convenient to extend '] to
Proj.A/ by setting '].p/ D 0 if b D .idm˝ '/.p/ does not satisfy kb2 � bk < 1=4.
If ' were a �-homomorphism, then ' would induce a map '� W K0.A/ ! K0.B/.
Intuitively, one may think of '] as a substitute for '�.

Two sequences .an/ and .bn/ are called tail-equivalent if there is n0 such that
an D bn for n � n0. Tail-equivalence is denoted by .an/ � .bn/ or even an � bn,
abusing the notation.

We will also work with discrete completely positive asymptotic morphisms .'n/n.
They consists of a sequence of contractive completely positive maps 'n W A ! Bn

with limn!1 k'n.aa
0/ � 'n.a/'n.a

0/k D 0 for all a; a0 2 A. If in addition each
Bn is a matricial algebra Bn D Mk.n/.C/, then we call .'n/n a discrete asymptotic
representation of A. A discrete completely positive asymptotic morphism .'n/n
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induces a sequence of maps 'n] W Proj.A/ ! K0.Bn/. Note that if p; q 2 Proj.A/
have the same class in K0.A/, then 'n].p/ � 'n].q/.

For any x 2 K0.A/, we fix projections p; q 2 Proj.A/ such that x D Œp� � Œq�
and set 'n].x/ D 'n].p/ � 'n].q/ 2 K0.Bn/. The sequence .'n].x// depends on
the particular projections that we use to represent x but only up to tail-equivalence.
While in general the maps 'n] W K0.A/ ! K0.Bn/ are not group homomorphisms,
the sequence .'n].x// does satisfy .'n].xC y// � .'n].x/C 'n].y// for all x; y 2
K0.A/.

A subset B � L.H/ is called quasidiagonal if there is an increasing sequence
.pn/ of finite rank projections in L.H/ which converges strongly to 1H and such
that limn!1 kŒb; pn�k D 0 for all b 2 B . B is block-diagonal if there is a sequence
.pn/ as above such that Œb; pn� D 0 for all b 2 B and n � 1. Let A be a separable
C*-algebra. Let us recall that the elements of KK.A;C/ can be represented by Cuntz
pairs, i.e., by pair of �-representations '; W A ! L.H/ such that '.a/ �  .a/ 2
K.H/ for all a 2 A.

Definition 2.2. Let A be a separable C*-algebra. An element ˛ 2 KK.A;C/ is
called quasidiagonal if it can be represented by a Cuntz pair .';  / W A ! L.H/

with the property that the set  .A/ � L.H/ is quasidiagonal. In this case let us
note that the set '.A/ � L.H/ must be also quasidiagonal. Similarly, we say
that ˛ is residually finite dimensional if it can be represented by a Cuntz pair with
the property that the set  .A/ is block-diagonal. We denote by KKqd.A;C/ the
subset of KK.A;C/ consisting of quasidiagonal classes and by KKrfd.A;C/ the
subset of KK.A;C/ consisting of residually finite dimensional classes. It is clear that
KKrfd.A;C/ � KKqd.A;C/, that KKqd.A;C/ is a subgroup of KK.A;C/ and that
KKrfd.A;C/ is a subsemigroup.

We say that A is K-quasidiagonal if KKqd.A;C/ D KK.A;C/ and that A is
K-residually finite dimensional if KKrfd.A;C/ D KK.A;C/.

Remark 2.3. Let A be a separable C*-algebra. It was pointed out by Skandalis [23]
that for any given faithful �-representation� W A! L.H/ such that�.A/\K.H/ D
f0g, one can represent all the elements of KK.A;C/ by Cuntz pairs where the second
map is fixed and equal to � . It follows that a separable quasidiagonal C*-algebra
is K-quasidiagonal and a separable residually finite dimensional C*-algebra is K-
residually finite dimensional. More generally, if A is homotopically dominated by
B and B is K-quasidiagonal or K-residually finite dimensional then so is A. Let
us note that the Cuntz algebra O2 is K-residually finite dimensional while it is not
quasidiagonal.

The following lemma and proposition are borrowed from [7]. For the sake of
completeness, we review briefly some of the arguments from their proofs. Let B
be a unital C*-algebra and let E be a right Hilbert B-module. If e; f 2 LB.E/ are
projections such that e�f 2 KB.E/, we denote by Œe; f � the corresponding element
of KK.C; B/ Š K0.B/.
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Lemma 2.4. Let B be a unital C*-algebra and let E be a right Hilbert B-module.
Let e; f 2 LB.E/ and h 2 KB.E/ be projections such that e � f 2 KB.E/ and
keh � hek � 1=9, kf h � hf k � 1=9, k.1 � h/.e � f /.1 � h/k � 1=9. Then

sp.heh/ [ sp.hf h/ � Œ0; 1=2/ [ .1=2; 1�;
Œe; f � D Œ�.heh/; �.hf h/� 2 KK.C; B/ Š K0.B/:

Proof. One shows that if e0; f 0 2 LB.E/ are projections such that e0�f 0 2 KB.E/

and ke�e0k < 1=2, kf �f 0k < 1=2, then Œe; f � D Œe0; f 0�. This is proved using the
homotopy .�.et /; �.ft //where et D .1� t /eC te0, ft D .1� t /f C tf 0, 0 � t � 1.
Then one applies this observation to conclude that

Œe; f �D Œ�.x/C�.x0/; �.y/C�.y0/�D Œ�.x/C�.x0/; �.y/C�.x0/�D Œ�.x/; �.y/�;
where x D heh, x0 D .1 � h/e.1 � h/, y D hf h, y0 D .1 � h/f .1 � h/.

Let A, B be separable C*-algebras. An element ˛ 2 KK.A;C/ induces a group
homomorphism ˛� W K0.A˝ B/! K0.B/ via the cup product

KK.C; A˝ B/ � KK.A;C/! KK.C; B/; .x; ˛/ 7! x B .˛ ˝ 1B/:

Here we work with the maximal tensor product.

Proposition 2.5. Let A be a separable unital C*-algebra and ˛ 2 KKqd.A;C/.
There exist two discrete asymptotic representations .'n/n and . n/n consisting of
unital completely positive maps 'n W A ! Mk.n/.C/ and  n W A ! Mr.n/.C/ such
that for any separable unital C*-algebra B , the map ˛� W K0.A˝B/! K0.B/ has
the property that

˛�.x/ � .'n ˝ idB/].x/ � . n ˝ idB/].x/

for all x 2 K0.A ˝ B/. If ˛ 2 KKrfd.A;C/, then all  n can be chosen to be
�-representations.

Proof. Represent ˛ by a Cuntz pair '; W A! L.H/ with '.a/ �  .a/ 2 K.H/,
for all a 2 A, and such that the set  .A/ is quasidiagonal. Therefore there is
an increasing approximate unit .pn/n of K.H/ consisting of projections such that
.pn/n commutes asymptotically with both '.A/ and  .A/. Let us define contrac-
tive completely positive maps 'n;  n W A ! L.pnH/ by 'n.a/ ´ pn'.a/pn and
 n.a/ ´ pn .a/pn. Without any loss of generality we may assume that x is the
class of a projection e 2 A ˝ B . It follows from the definition of the Kasparov
product that

˛�.x/ D Œ.' ˝ idB/.e/; . ˝ idB/.e/� 2 KK.C; B/:
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On the other hand, the sequence of projections pn ˝ 1B 2 K.H/ ˝ B commutes
asymptotically with both projections .' ˝ idB/.e/ and . ˝ idB/.e/ and moreover

lim
n!1 kpn ˝ 1B

�
.' ˝ idB/.e/ � . ˝ idB/.e/

�
pn ˝ 1Bk D 0;

since the sequence .pn ˝ 1B/n forms an approximative unit of K.H/˝ B . Now it
follows from Lemma 2.4 that

Œ.' ˝ idB/.e/; . ˝ idB/.e/� D .'n ˝ idB/].e/ � . n ˝ idB/].e/

for all sufficiently large n. It is standard to perturb 'n and  n to completely positive
maps such that 'n.1/ and  n.1/ are projections. Finally, let us note that  n is a
�-homomorphism if pn commutes with  .

3. Asymptotic representations of group C*-algebras

We use the following notation for the Kasparov product:

KK.A;B/ � KK.B; C /! KK.A; C /; .y; x/ 7! y B x:
In the case of the pairing Ki .B/ �Ki .B/! Z we will also write hy; xi for y B x.
We are mostly interested in the map

Ki .C �.G//! Hom.Ki .C
�.G//;Z/; (1)

induced by the pairing above forB D C �.G/. IfG has the Haagerup property, then it
was shown in [25] that C �.G/ is KK-equivalent with a commutative C*-algebra and
hence the map (1) is surjective. Assuming thatG is a countable, discrete, torsion-free
group that is uniformly embeddable in a Hilbert space, we are going to verify that the
map (1) is split surjective whenever the assembly map � W RKi .BG/! Ki .C

�.G//
is surjective.

Following Kasparov [15], for a locally compact, � -compact, Hausdorff space
X and C0.X/-algebras A and B we consider the representable K-homology groups
RKi .X/, the representable K-theory groups RKi .X/ and the bivariant theory
RKKi .X IA;B/. If Y is compact, then RKi .Y / D KKi .C.Y /;C/ and RKi .Y / D
KKi .C; C.Y //. Suppose now that X is locally compact, � -compact and Hausdorff.
Then

RKi .X/ Š lim�!
Y �X

RKi .Y / D lim�!
Y �X

KKi .C.Y /;C/;

where Y runs over the compact subsets of X . Kasparov [15], Prop. 2.20, has shown
that

RKi .X/ Š RKKi .X IC0.X/; C0.X//:
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Moreover, if Y � X is a compact set, then the restriction map RKi .X/! RKi .Y /

corresponds to the map

RKKi .X IC0.X/; C0.X//! RKKi .Y IC.Y /; C.Y // Š KKi .C; C.Y //:

It is useful to introduce the group

LKi .X/ D lim �
Y �X

RKi .Y /;

where Y runs over the compact subsets of X . If X is written as the union of an
increasing sequence .Yn/n of compact subspaces, then, as explained in the proof of
Lemma 3.4 from [16], there is a Milnor lim �

1 exact sequence:

0! lim �
1 RKiC1.Yn/! RKi .X/! lim �RKi .Yn/! 0:

The morphism RKi .X/ ! Hom.RKi .X/;Z/ induced by the pairing RKi .X/ �
RKi .X/! Z factors through the morphism

lim �RKi .Yn/ D LKi .X/! Hom.RKi .X/;Z/ D Hom.lim�!RKi .Yn/;Z/

Š lim �Hom.RKi .Yn/;Z/

given by the projective limit of the morphisms RKi .Yn/! Hom.RKi .Yn/;Z/.
IfX is a locally finite separable CW-complex, then there is a Universal Coefficient

Theorem [16], Lemma 3.4:

0! Ext.RKiC1.X/;Z/! RKi .X/! Hom.RKi .X/;Z/! 0: (2)

In particular, it follows that the map LKi .X/! Hom.RKi .X/;Z/ is surjective.
Let us recall the construction of the assembly map � W RKi .BG/! Ki .C

�.G//
and of the dual map � W Ki .C �.G// ! RKi .BG/ as given in [15]. Kasparov con-
siders a natural element

ˇG 2 RKK.BGIC0.BG/; C0.BG/˝ C �.G//

(which we denote here by ` as it corresponds to Mischenko’s “line bundle” on BG).
If G is a discrete countable group then it is known [15], §6, that EG and BG can
be realized as locally finite separable CW-complexes. Write BG as the union of an
increasing sequence .Yn/n of finite CW-subcomplexes. Let `n be the image of ` in

RKK.YnIC.Yn/; C.Yn/˝ C �.G// Š KK.C; C.Yn/˝ C �.G//

under the restriction map induced by the inclusion Yn � BG.
The map �n W RKi .Yn/! Ki .C

�.G// is defined as the cap product by `n:

KK.C; C.Yn/˝ C �.G// � KKi .C.Yn/;C/! KKi .C; C
�.G//;

.`n; z/ 7! �n.z/ D `n B .z ˝ 1/:
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The assembly map � W RKi .BG/ ! Ki .C
�.G// is the inductive limit homomor-

phism �´ lim�!�n. The homomorphism � W Ki .C �.G//! RKi .BG/ is defined as
the cap product by `:

RKK.BGIC0.BG/; C0.BG/˝ C �.G// � KKi .C
�.G/;C/

�! RKKi .BGIC0.BG/; C0.BG//;

.`; x/ 7! �.x/ D ` B .1˝ x/:
Let �n W Ki .C �.G// ! RKi .Yn/ be obtained by composing � with the restriction
map RKi .BG/ ! RKi .Yn/. Noting that �n is also given by the cap product by `n,
Kasparov has shown that

�n.x/ B z D �n.z/ B x
for all x 2 Ki .C �.G// and z 2 RKi .Yn/, [15], Lemma 6.2. The assembly map
induces a homomorphism�� W Hom.Ki .C

�.G//;Z/! Hom.RKi .BG/;Z/. Since

Hom.RKi .BG/;Z/ Š Hom.lim�!RKi .Yn/;Z/ Š lim �Hom.RKi .Yn/;Z/

and since the equalities �n.x/ B z D x B�n.z/ are compatible with the maps induced
by the inclusions Yn � YnC1, we obtain that the following diagram is commutative:

Ki .C �.G//

�

��

�� Hom.Ki .C
�.G//;Z/

��

��
RKi .BG/ �� �� Hom.RKi .BG/;Z/,

where the horizontal arrows correspond to natural pairings of K-theory with K-
homology. The map RKi .BG/! Hom.RKi .BG/;Z/ is surjective by (2).

In view of the previous discussion, by combining results of Kasparov [15] and Tu
[26], one derives the following.

Theorem 3.1. Let G be a countable, discrete, torsion-free group. Suppose that G
is uniformly embeddable in a Hilbert space. Then for any group homomorphism
h W Ki .C

�.G//! Z there is x 2 Ki .C �.G// such that h.�.z// D h�.z/; xi for all
z 2 RKi .BG/.

Proof. For a discrete groupG which admits a uniform embedding into a Hilbert space
it was shown in [26], Thm. 3.3, that G has a 	 -element. Since G is torsion-free, we
can take BG D BG. IfG has a 	 -element, it follows by Theorem 6.5 and Lemma. 6.2
of [15] that the dual map � W KKi .C

�.G/;C/! RKi .BG/ is split surjective. There-
fore, in the diagram above, the composite map Ki .C �.G//! Hom.RKi .BG/;Z/,
x 7! h�.x/; 	 i is surjective. This shows that if h W Ki .C

�.G// ! Z is a group
homomorphism, then ��.h/ D h B � D h�.x/; 	 i for some x 2 Ki .C �.G//. Since
the diagram above is commutative, we obtain that h B � D h�.x/; 	 i D h�. 	 /; xi.
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The following proposition is more or less known; for example, it is implicitly
contained in [11]. Let � be the trivial representation of G, �.s/ D 1 for all s 2 G.

Proposition 3.2. Let � W RK0.BG/ ! K0.C
�.G// be the assembly map. Then

�� B � D m 	 �� B � for any unital finite dimensional representation � W C �.G/ !
Mm.C/.

Proof. Write BG as the union of an increasing sequence .Yn/n of finite CW-sub-
complexes. Let z 2 RK0.Yn/ for some n � 1 and let x D Œ�� 2 K0.C �.G//.
The equality �n.x/ B z D �n.z/ B x becomes h�n.x/; zi D ��.�n.z//. The Chern
character makes the following commutative:

RK0.Yn/ � RK0.Yn/

ch� � ch�

��

�� Z� �

��
H even.Yn;Q/ �Heven.Yn;Q/ �� Q.

Thus hch�.�n.x//; ch�.z/i D ��.�n.z//. Since x is the class of a unital finite
dimensional representation � W C �.G/! Mn.C/, it follows that �n.x/ is simply the
class of the flat complex vector bundle ŒV � D ��.`n/ over Yn. On the other hand, if V
is a flat vector bundle, then ch�.V / D rank.V / D m D dim.�/ by [14]. Therefore,
for any unital m-dimensional representation � , ��.�n.z// D m 	 h1; ch�.z/i. By
applying the same formula for the trivial representation � W C �.G/ ! C, we get
��.�n.z// D h1; ch�.z/i. It follows that ��.�n.z// D m 	 ��.�n.z//.

Recall that we denote by I.G/ the kernel of the trivial representation � W C �.G/!
C. Since the extension 0 ! I.G/ ! C �.G/ ! C ! 0 is split, K0.C

�.G// Š
K0.I.G//˚Z.

Theorem 3.3. Let G be a countable, discrete, torsion-free group that is uniformly
embeddable in a Hilbert space. Let h W K0.C

�.G//! Z be a group homomorphism.

(i) If C �.G/ is K-quasidiagonal, then there exist two discrete completely pos-
itive asymptotic representations f�n W C �.G/ ! Mk.n/.C/gn and f	n W C �.G/ !
Mr.n/.C/gn such that �n].x/ � 	n].x/ � h.x/ for all x 2 �.RK0.BG//.

(ii) If C �.G/ is K-residually finite dimensional, then there is a discrete completely
positive asymptotic representation f�n W C �.G/! Mk.n/.C/gn such that �n].x/ �
h.x/ for all x 2 K0.I.G// \ �.K0.BG//.

Proof. Part (i) follows from Theorem 3.1 and Proposition 2.5 for A D C �.G/ and
B D C. For part (ii) we observe that if 	n is a �-representation, then 	� D 0 on
K0.I.G// by Proposition 3.2.

Theorem 3.4. Let G be a countable, discrete, torsion-free group. Suppose that G
satisfies either one of the conditions (a) or (b) below.
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(a) G has the Haagerup property and C �.G/ is K-residually finite dimensional.

(b) G is an increasing union of residually finite, amenable groups.

Then for any group homomorphism h W K0.C
�.G// ! Z there is a discrete com-

pletely positive asymptotic representation f�n W C �.G/ ! Mk.n/.C/gn such that
�n].x/ � h.x/ for all x 2 K0.I.G//.

Proof. Recall that the assembly map is an isomorphism for groups with the Haagerup
property by a result of Higson and Kasparov [12], and that these groups are also em-
beddable in a Hilbert space. Thus, ifG satisfies (a), then the conclusion follows from
Theorem 3.3(ii). Suppose now that G satisfies (b). Thus G D S

i Gi where Gi are
residually finite, amenable groups andGi � GiC1. Then C �.G/ D S

i C
�.Gi / and

K0.C
�.G// Š lim�!K0.C

�.Gi //. Similarly, I.G/ D S
i I.Gi / and K0.I.G// D

lim�!K0.I.Gi //. Let 
i W K0.C
�.Gi // ! K0.C

�.G// be the map induced by the
inclusion C �.Gi / � C �.G/. Let h be given as in the statement of the theorem.
By the first part of the theorem, for each i , there is a discrete completely posi-
tive asymptotic representation .�.i/

n /n of C �.Gi / such that �.i/

n]
.x/ � h.
i .x// for

all x 2 K0.I.Gi //. By Arveson’s extension theorem, each �.i/
n extends to a uni-

tal completely positive map N�.i/
n on C �.G/. Since C �.G/ is separable, K0.I.G//

is countable and K0.I.G// D lim�!K0.I.Gi //, it follows that there is a sequence

of natural numbers r.1/ < r.2/ < 	 	 	 such that . N�.i/

r.i/
/i is a discrete completely

positive asymptotic representation of C �.G/ such that N�.i/

r.i/;]
.x/ � h.x/ for all

x 2 K0.I.G//.

4. Almost flat K-theory classes

In this section we use the dual assembly to derive the existence of almost flat K-theory
classes on the classifying space BG if the group C*-algebra ofG is quasidiagonal. It
is convenient to work with an adaptation of the notion of almost flatness to simplicial
complexes, see [19].

Definition 4.1. Let Y be a compact Hausdorff space and let .Ui /i2I be a fixed finite
open cover of Y . A complex vector bundle E 2 Vectm.Y / is called "-flat if is
represented by a cocycle vij W Ui \Uj ! U.m/ such that kvij .y/� vij .y

0/k < " for
all y; y0 2 Ui \ Uj and all i; j 2 I . A K-theory class ˛ 2 K0.Y / is called almost
flat if for any " > 0 there are "-flat vector bundles E, F such that ˛ D ŒE� � ŒF �.
This property does not depend on the cover .Ui /i2I .

Remark 4.2. The set of all almost flat elements of K0.Y / form a subring denoted
by K0

af.Y /. If f W Z ! Y is a continuous map, then f �.K0
af.Y // � K0

af.Z/.
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The following proposition gives a method for producing "-flat vector bundles.
Let Y be a finite simplicial complex with universal cover zY and fundamental group
G. Consider the flat line bundle ` with fiber C �.G/, zY �G C �.G/ ! Y , where
G � C �.G/ acts diagonally, and let P be the corresponding projection in Mm.C/˝
C.Y / ˝ C �.G/. Consider a discrete asymptotic representation f'n W C �.G/ !
Mk.n/.C/gn and set Fn D .idm ˝ idC.Y / ˝ 'n/.P /. Since kF 2

n � Fnk ! 0 as
n ! 1, En ´ �.Fn/ is a projection in Mmk.n/.C.Y // such that kEn � Fnk ! 0

as n!1.

Proposition 4.3. For any " > 0 there is n0 > 0 such that for any n � n0 there is
an "-flat vector bundle on Y which is isomorphic to the vector bundle given by the
idempotent En.

Proof. We rely on a construction and results of Phillips and Stone from [20], [21],
see also [18]. A simplicial complex is locally ordered by giving a partial ordering
o of its vertices in which the vertices of each simplex are totally ordered. The first
barycentric subdivision of any simplicial complex has a natural local ordering [21],
§1.4. Thus we may assume that Y is endowed with a fixed local ordering o. Let
Y have vertices I D f1; 2; : : : ; mg. We denote by Y k the set of k-simplices of Y .
Given r � 1, a U.r/-valued lattice gauge field u on the simplicial complex Y is a
function that assigns to each 1-simplex hi; j i of Y an element uij 2 U.r/ subject to
the condition that uj i D u�1

ij , see [21], Def. 3.2. Consider the cover of Y by dual
cells .Vi /i2I [21], A.1.

Phillips and Stone show that for a fixed locally ordered finite simplicial complex
Y as above there is a function h W Œ0;C1/! Œ0; 1�with limt!1 h.t/ D 0 and which
has the following property. Let u be a U.r/-valued lattice gauge field on Y for some
r � 1. Suppose that

kuijujk � uikk � ı (3)

for all 2-simplices hi; j; ki (with vertices so o-ordered). Then there is a cocycle
vij W Vi \ Vj ! U.r/, hi; j i 2 Y 1, such that

sup
x2Vi \Vj

kvij .x/ � uij k < h.ı/:

The functions vij .x/ are constructed by an iterative process, based on the skeleton
of Y . At each stage of the construction one takes affine combinations of functions
defined at a previous stage, starting with the constant matrices uij . It follows that
for each i 2 I there exists a fixed small open tubular neighborhood Ui of Vi which
is affinely homotopic to Vi , such that the cover .Ui /i2I has the following property.
For any U.r/-valued lattice gauge field u on Y that satisfies (3), there is a cocycle
vij W Ui \ Uj ! U.r/, hi; j i 2 Y 1, such that

sup
x2Ui \Uj

kvij .x/ � uij k < 2h.ı/:
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We are going to use the asymptotic representation .'n/n as follows. Using triv-
ializations of ` to Ui one obtains group elements sij 2 G for hi; j i 2 Y 1 giving a
constant cocycle on Ui \ Uj that represents `, so that s�1

ij D sj i and sij 	 sjk D sik

whenever hi; j; ki 2 Y 2.
If .�i /i2I are positive continuous functions with �i supported in Ui and such thatP

i2I �
2
i D 1, then ` is represented by an idempotent

P D P

i;j 2I

eij ˝ �i�j ˝ sij 2 Mm.C/˝ C.Y /˝ C �.G/:

Herem D jI j and .eij / is the canonical matrix unit of Mm.C/. It follows that for all
n sufficiently large, .idm˝ idC.Y /˝'n/].P / is given by the class of a projectionEn

with kEn � Fnk < 1=2, where Fn D .idm ˝ idC.Y / ˝ 'n/.P /. We have

Fn D P

i;j 2I

eij ˝ �i�j ˝ 'n.sij / 2 Mm.C/˝ C.Y /˝Mk.n/.C/:

For v 2 GLk.C/ we denote by w.v/ the unitary v.v�v/�1=2. Fix n sufficiently
large so that 'n.sij / 2 GLk.n/.C/. For each ordered edge hi; j i 2 Y 1 we set
uij D w.'n.sij // and uj i D u�1

ij . This will define a U.k.n//-valued lattice gauge
field on the ordered simplicial complex Y . Fix " > 0 such that 4m2" < 1=2 and
choose ı > 0 such that h.ı/ < "=2. Since .'n/n is an asymptotic representation,
there is n0 > 0 such that if n � n0, then

k'n.sij / � uij k < "=2 (4)

for all hi; j i 2 Y 1 and kuijujk � uikk � ı for all 2-simplices hi; j; ki. By the result
of Phillips and Stone quoted above, there exists a cocycle vij W Ui \ Uj ! U.k.n//

such that
kvij .x/ � uij k < h.ı/ < "=2 (5)

for all x 2 Ui \ Uj . It follows that kvij .x/ � vij .x
0/k < " for all x; x0 2 Ui \ Uj

and all i; j 2 I and hence the idempotent

en.x/ D P

i;j 2I

eij ˝ �i .x/�j .x/vij .x/; x 2 Y;

gives an "-flat vector bundle on Y . From (4) and (5) we have

kvij .x/ � 'n.sij /k < " (6)

for all x 2 Ui \Uj and hi; j i 2 Y 1 . Using (6) we see that ken�Fnk � 2m2" < 1=2

and hence ken�Enk � ken�FnkCkEn�Fnk < 1. It follows thatEn D wenw
�1

for some invertible element w. This shows that the isomorphism class of the vector
bundle given the idempotent En is represented by an "-flat vector bundle since we
have seen that en has that property.
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Let Y be a finite simplicial complex with universal cover zY and fundamental
groupG and let ` be the corresponding flat line bundle with fiber C �.G/. Recall that
the Kasparov product K0.C.Y /˝ C �.G// � KK.C �.G/;C/ ! K0.Y / induces a
map � W KK.C �.G/;C/! K0.Y /, �.˛/ D Œ`� B .˛ ˝ 1/.

Corollary 4.4. �.KKqd.C
�.G/;C// � K0

af.Y /.

Proof. This follows from Propositions 2.5 and 4.3.

Theorem 4.5. Let G be a countable, discrete, torsion-free group which is uniformly
embeddable in a Hilbert space. Suppose that the classifying space BG is a finite
simplicial complex and that the full group C*-algebra C �.G/ is K-quasidiagonal.
Then all the elements of K0.BG/ are almost flat.

Proof. We have seen in the proof ofTheorem 3.1 that under the present assumptions on
G the dual assembly map � W KK.C �.G/;C/! K0.BG/ is surjective. SinceC �.G/
is K-quasidiagonal by hypothesis (this holds for instance ifC �.G/ is quasidiagonal as
observed in Remark 2.3), we have KK.C �.G/;C/ D KKqd.C

�.G/;C/. The result
follows now from Corollary 4.4.

From Theorem 4.5 one can derive potential obstructions to quasidiagonality of
group C*-algebras.

Remark 4.6. Let G be a countable, discrete, torsion-free group which is uniformly
embeddable in a Hilbert space and such that the classifying space BG is a finite
simplicial complex. If not all elements ofK0.BG/ are almost flat, then C �.G/ is not
quasidiagonal.
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