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Noncommutative residue of projections in
Boutet de Monvel’s calculus

Anders Gaarde

Abstract. Employing results by Melo, Nest, Schick and Schrohe on the K-theory of Boutet
de Monvel’s calculus of boundary value problems, we show that the noncommutative residue
introduced by Fedosov, Golse, Leichtnam and Schrohe vanishes on projections in the calculus.

This partially answers a question raised in a recent collaboration with Grubb, namely
whether the residue is zero on sectorial projections for boundary value problems: This is
confirmed to be true when the sectorial projection is in the calculus.
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1. Introduction

Boutet de Monvel [2] constructed a calculus, often called the Boutet de Monvel
calculus (or algebra), of pseudodifferential boundary operators on a manifold with
boundary. It includes the classical differential boundary value problems as well as
the parametrices of the elliptic elements:

Let X be a compact n-dimensional manifold with boundary @X ; we consider X
as an embedded submanifold of a closed n-dimensional manifold zX . Denote by Xı
the interior of X . Let E and F be smooth complex vector bundles over X and @X ,
respectively, with E the restriction to X of a bundle zE over zX .

An operator in Boutet de Monvel’s calculus – a (polyhomogeneous) Green oper-
ator – is a map A acting on sections of E and F , given by a matrix

A D
�
PC CG K

T S

�
W C1.X;E/˚ C1.@X; F / ! C1.X;E/˚ C1.@X; F /;

(1.1)
where P is a pseudodifferential operator ( do) on zX with the transmission property
and PC is its truncation to X :

PC D rCPeC; rC restricts from zX to Xı, eC extends by 0:
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G is a singular Green operator, T a trace operator, K a Poisson operator, and S a
 do on the closed manifold @X . See [2], Grubb [6], or Schrohe [15] for details.

Fedosov, Golse, Leichtnam and Schrohe [4] extended the notion of noncommu-
tative residue known from closed manifolds (cf. Wodzicki [17], [18] and Guillemin
[9]) to the algebra of Green operators. The noncommutative residue of A from (1.1)
is defined to be

resX .A/ D
Z

X

Z
S�

x X

trE p�n.x; �/μS.�/dx

C
Z

@X

Z
S�

x0
@X

ŒtrE .trn g/1�n.x
0; � 0/C trF s1�n.x

0; � 0/�μS.� 0/dx0:

Here trE and trF are traces in Hom.E/ and Hom.F /, respectively; μS.�/ (resp.
μS.� 0/) denotes the surface measure on the unit sphere of the cotangent bundle,
divided by .2�/n (resp. .2�/n�1); trn g is the symbol of trnG (the normal trace of
G), a  do on @X ; and the subscripts �n and 1 � n indicate that we consider only
the homogeneous terms of degree �n resp. 1 � n. Also, a sign error in [4] has been
corrected, cf. Grubb and Schrohe [8], (1.5).

It is well known [17] that on a closed manifold, the noncommutative residue of a
classical  do projection vanishes. In the present paper we show that the same holds
in the case of Green operators:

Theorem 1.1. The noncommutative residue of a projection in the Boutet de Monvel
calculus is zero.

In the proof, we use K-theoretic arguments (in a C�-algebra setting) to reduce the
problem to the known case of closed manifolds. We rely on results on the K-theory
of Boutet de Monvel’s algebra by Melo, Nest and Schrohe [10] and Melo, Schick and
Schrohe [11].

In our recent collaboration with Grubb [5] we studied certain spectral projections:
For the realizationB D .PCG/T of an elliptic boundary value problem fPCCG; T g
of order m > 0 with two spectral cuts at angles � and ', one can define the sectorial
projection …�;'.B/. It is a (not necessarily self-adjoint) projection whose range
contains the generalized eigenspace of B for the sector ƒ�;' D frei! j r > 0; � <

! < 'g and whose nullspace contains the generalized eigenspace for ƒ';�C2� . It
was considered earlier by Burak [3], and in the boundaryless case by Wodzicki [17]
and Ponge [13].

In general this operator is not in Boutet de Monvel’s calculus, but we showed that
it has a residue in a slightly more general sense. The question was posed whether this
residue vanishes.

The question of the noncommutative residue of projections is particularly inter-
esting in the context of zeta-invariants as discussed by Grubb [7] and in [5]: The basic
zeta value C0;� .B/ for the realization B of a boundary value problem is defined via
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a choice of spectral cut in the complex plane; the difference in the basic zeta value
based on two spectral cut angles � and ' is then given as the noncommutative residue
of the corresponding sectorial projection:

C0;� .B/ � C0;'.B/ D 2�i

m
resX .…�;'.B//:

Our results here show that the dependence of C0;� .B/ upon � is trivial whenever the
projection …�;'.B/ lies in Boutet de Monvel’s calculus.

It should be noted that the literature in functional analysis and PDE-theory often
uses “projection” as a synonym for idempotent, while C�-algebraists furthermore
require that projections are self-adjoint. We choose here the former terminology; that
is, in this text projection and idempotent are synonymous.

2. Preliminaries and notation

We employ Blackadar’s [1] approach to K-theory: A pre-C�-algebraB is called local
if it, as a subalgebra of its C�-completion xB , is closed under holomorphic function
calculus. (Blackadar also requires that all matrix algebras Mn.B/ are closed under
holomorphic function calculus, but this follows automatically, cf. Schweitzer [16].)
Let M1.B/ denote the direct limit of the matrix algebras Mm.B/, m 2 N. Define
�P 1.B/ D Idem.M1.B// to be the set of all idempotent matrices with entries
from B . Likewise, �P m.B/ D Idem.Mm.B// is the set of all m �m idempotents.
Define the relation � on �P 1.B/ by

x � y if there exist a; b 2 M1.B/ such that x D ab and y D ba:

If B has a unit, we define K0.B/ to be the Grothendieck group of the semigroup
V.B/ D �P 1.B/=�. If B has no unit, we consider the scalar map from the
unitization – indicated with a tilde as in zB or B� – of B to the complex numbers
s W zB ! C defined by s.b C �1 zB/ D �, and then define K0.B/ as the kernel of the
induced map s� W K0. zB/ ! K0.C/.

A fact that we shall use several times is that if B is local, then, cf. [1], p. 28,

V.B/ Š V. xB/ and hence K0.B/ Š K0. xB/: (2.1)

Combined with the standard picture of K0 this implies that

K0. xB/ D f Œx�0 � Œy�0 j x; y 2 �P m.B/; m 2 Ng (2.2)

in the case where B is unital, and

K0. xB/ D f Œx�0�Œy�0 j x; y 2 �P m. zB/ with x � y mod Mm.B/; m 2 N g (2.3)

in the non-unital case [1].
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Let A denote the set of Green operators as in (1.1) of order and class zero; it
is equipped with a Fréchet topology which makes it a Fréchet �-algebra (Schrohe
[14]). Moreover, A is a �-subalgebra of the bounded operators on the Hilbert space
H D L2.X;E/˚H�1=2.@X; F /; we will denote by A its C�-closure in B.H /. A

is local [14], soK0.A/ Š K0.A/. Note that the definitions ofK0.A/ are equivalent:
whether we consider A as a Fréchet algebra or as a �-subalgebra of A, cf. Phillips
[12].

We follow here the definition of order and class from [6], as opposed to the
convention used in [11] where the operators are bounded on the Hilbert space H 0 D
L2.X;E/ ˚ L2.@X; F /. It is explained in [10], 1.1, how the two approaches are
equivalent for our purposes.

Furthermore, the K-theory of A is independent of the specific bundles [10], 1.5, so
for simplicity we assume in this paper the simple caseE D X �C and F D @X �C.

K denotes the subalgebra of smoothing operators, K its C�-closure (the ideal of
compact operators). We let I denote the set of elements in A of the form�

'P CG K

T S

�
(2.4)

with '; 2 C1
c .Xı/, P a  do on zX of order zero, and G, K, T and S of negative

order and class zero. I will be the C�-closure of I in A.
The noncommutative residue defined in [4] is a trace – a linear functional that

vanishes on commutators – res W A ! C. It is continuous with respect to the Fréchet
topology in A, and induces a group homomorphism res� W K0.A/ ! C such that

res�.ŒA�0/ D resX .A/ (2.5)

for any idempotentA 2 A. Our goal is to prove the vanishing of res�, which obviously
implies that resX .A/ D 0 for all idempotent A.

The quotient map q W A ! A=K induces an isomorphismq� WK0.A/!K0.A=K/
[10], Prop. 13. The isomorphisms K0.A/ Š K0.A/ Š K0.A=K/ allow us to
extend the noncommutative residue: For each ŒA C K�0 in K0.A=K/ there is an
A 2 �P 1.A/ such that q�ŒA�0 D ŒA C K�0. We define

fres�ŒA C K�0 D res�ŒA�0 D resX .A/: (2.6)

So fres� is just res� q�1� and a group homomorphism K0.A=K/ ! C.

3. K-theory and the residue

We employ results from Melo, Schick and Schrohe [11]: Theorem 1 there proves an
isomorphism

K0.A=K/ Š K0.C.X//˚K1.C0.T
�Xı//:
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The intuitive interpretation of this isomorphism is that each K0-class in A=K is the
sum of (the K0-class of) a continuous function and (the K0-class of) something
vanishing on the boundary @X .

More precisely, we will use their observation

K0.A=K/ D q�m�K0.C.X//C i�K0.I=K/: (3.1)

Herem W C.X/ ! A sendsf to the multiplication operator
�

f 0
0 0

�
and i is the inclusion

I=K ! A=K; m� and i� are then the corresponding induced maps in K0. We will
in general suppress i and i� to simplify notation.

We show that fres� vanishes on both terms on the right-hand side of (3.1). The
following lemma treats the first of these terms:

Lemma 3.1. fres� vanishes on q�m�K0.C.X//.

Proof. Recall that multiplication with a smooth function is a Green operator of order
zero, whose noncommutative residue is clearly zero since it has no homogeneous
term of order �n.

Let f 2 �P m.C
1.X//; m.f / acts by multiplication with a smooth (matrix)

function and therefore lies in �P m.A/. Then q�m�Œf �0 D q�Œm.f /�0 D Œm.f /C
K�0, and according to (2.6)

fres�.q�m�Œf �0/ D res�Œm.f /�0 D resX .m.f // D 0:

SinceC1.X/ is local inC.X/ [1, 3.1.1-2], any element ofK0.C.X// can be written
as Œf �0 � Œg�0 for some f; g 2 �P m.C

1.X//, cf. (2.2). The lemma follows from
this.

We now turn to the second term of (3.1); our strategy is to show that the elements
of K0.I=K/ correspond to  dos with symbols supported in the interior of X . This
allows us to construct certain projections for which the noncommutative residue is
given as the residue of a projection on the closed manifold zX .

The principal symbol induces an isomorphism I=K Š C0.S
�Xı/ [10], Theo-

rem 1. We denote the induced isomorphism in K0 by ��, i.e.,

�� W K0.I=K/ ��!Š K0.C0.S
�Xı//: (3.2)

Like in Lemma 3.1 we wish to consider smooth functions instead of merely
continuous functions; the following shows that instead of C0.S

�Xı/, it suffices to
look at smooth functions (symbols) compactly supported in the interior:

The algebra C1
c .S�Xı/, equipped with the sup-norm, is a local C�-algebra

[1], 3.1.1-2, with completion C0.S
�Xı/. It follows from (2.1) that the injection

C1
c .S�Xı/ ! C0.S

�Xı/ induces an isomorphism

K0.C
1
c .S�Xı// Š K0.C0.S

�Xı//: (3.3)
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We now show that each compactly supported symbol in K0.C
1
c .S�Xı// gives

rise to a do projection…C onX , which is in fact the truncation of a do projection
on zX . This will allow us to calculate the residue of…C from the residue of a projection
on the closed manifold zX .

Lemma 3.2. Let p.x; �/ 2 �P m.C
1
c .S�Xı/�/. There is a zero-order  do projec-

tion… acting on C1. zX;Cm/, such that its symbol is constant on a neighborhood of
zX nXı, its truncation…C is an idempotent in Mm.I

�/, and

��q�.Œ…C�0/ D Œp�0: (3.4)

Proof. By definition of the unitization of C1
c .S�Xı/, we can write p as a sum

p.x; �/ D ˛.x; �/C ˇ;

with ˛ 2 Mm.C
1
c .S�Xı// and ˇ 2 Mm.C/. Note that ˇ itself is idempotent, since

p D ˇ outside the support of ˛.
We extend ˛ by zero to obtain a smooth function Q̨ .x; �/ on the closed manifold

S� zX . We get a  do symbol (also denoted Q̨ ) of order zero on zX by requiring Q̨ to
be homogeneous of degree zero in �. Let Qp.x; �/ D Q̨ .x; �/C ˇ.

We now have an idempotent  do-symbol Qp on zX ; we then construct a  do
projection on zX that has Qp as its principal symbol.

In [7], Chapter 3, Grubb constructed an operator that, for a suitable choice of
atlas on the manifold, carries over to the Euclidean Laplacian in each chart, modulo
smoothing operators. Hence, choose that particular atlas on zX and let D denote this
particular operator, i.e., with scalar symbol d.x; �/ D j�j2. Define the auxiliary sec-
ond order  do C D OP.c.x; �//, with symbol c.x; �/ given in the local coordinates
of the specified charts as

c.x; �/ D .2 Qp.x; �/ � I /d.x; �/:
Since Qp is idempotent, the eigenvalues of 2 Qp� I are ˙1, cf. (A.2), so C is an elliptic
second order operator and c.x; �/�� is parameter-elliptic for � on each ray in CnR.

Then we can define the sectorial projection, cf. [13], [5], … D …�;'.C / with
angles � D ��

2
, ' D �

2
,

… D i

2�

Z
��;'

��1C.C � �/�1 d�:

… is a  do projection [13] on zX with symbol � given in local coordinates by

�.x; �/ D i

2�

Z
C.x;�/

q.x; �; �/ d�;

where q.x; �; �/ is the symbol with parameter for a parametrix of c.x; �/ � �, and
C.x; �/ is a closed curve encircling the eigenvalues of c2.x; �/ – the principal symbol
of C – in the fRe z > 0g half-plane.
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The eigenvalues of c2.x; �/ D .2 Qp.x; �/ � I /j�j2 are ˙j�j2, so we can choose
C.x; �/ as the boundary of a small ball B.j�j2; r/ around Cj�j2.

Then the principal symbol of �.x; �/ is

�0.x; �/ D i

2�

Z
C.x;�/

q�2.x; �; �/ d�

D i

2�

Z
@B.j�j2;r/

Œ.2 Qp.x; �/ � I /j�j2 � ���1 d� D Qp.x; �/

according to Lemma A.1. So … is a  do projection with principal symbol Qp.x; �/,
as desired.

Observe that for x outside the support of Q̨ we have c.x; �/ D .2ˇ � I /j�j2 and
q.x; �; �/ D q�2.x; �; �/ D ..2ˇ � I /j�j2 � �/�1, so �.x; �/ D �0.x; �/ D ˇ

there. (We cannot be sure that the full symbol of � equals Qp inside the support,
since coordinate-dependence will in general influence the lower order terms of the
parametrix.) In particular, �.x; �/ is constantly equal to ˇ for x outside Q̨ ’s support,
i.e., in a neighborhood of zX nXı.

Now consider the truncation …C. We have

.…C/2 D .…2/C � L.…;…/ D …C � L.…;…/;
where the singular Green operatorL.P;Q/ is defined as .PQ/C�PCQC for dosP
andQ. Since �.x; �/ equals the constant matrix ˇ in a neighborhood of the boundary
@X , it follows, cf. [6], Theorem 2.7.5, that L.…;…/ D 0, so .…C/2 D …C.

The symbol of …� ˇ is compactly supported within Xı, so we can write …C D
'P C ˇ for some ',  , P , as in (2.4); hence …C is in Mm.I

�/. Technically,
…C lies in the algebra where the boundary bundle F is the zero-bundle, but inserting
zeros into …C’s matrix form will clearly allow us to augment it to the present case
with F D @X � C.

Finally we take a look at (3.4): Since…C is an idempotent in Mm.I
�/, it defines

a K0-class Œ…C�0 in K0.I
�/. Then q�Œ…C�0 defines a class in K0.I=K

�/, a class
defined by its principal symbol. Since the principal symbol is exactly the idempotent
p.x; �/, we obtain (3.4) by definition.

We now have all the tools to prove our main theorem:

Proof of Theorem 1.1. An idempotent Green operator necessarily has order and class
zero, and thus lies in A. So we need to show that resX .A/ is zero for any idempotent
A 2 A. By (2.5) it suffices to show that res� vanishes onK0.A/. In turn, according to
equation (3.1) and Lemma 3.1, we only need to show that fres� vanishes onK0.I=K/.

So let ! 2 K0.I=K/. Employing (2.3), (3.2), and (3.3) we can find p, p0 in
�P m.C

1
c .S�Xı/�/ such that

��! D Œp�0 � Œp0�0: (3.5)
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Now, for p, p0 we use Lemma 3.2 to find corresponding  dos …, …0 with the
specific properties mentioned there. By (3.4) and (3.5) we see that

q�Œ…C�0 � q�Œ…0C�0 D ��1� .Œp�0 � Œp0�0/ D !:

Using equation (2.6) then gives us

fres� ! D resX .…C/ � resX .…
0C/:

Here

resX .…C/ D
Z

X

Z
S�

x X

tr ��n.x; �/μS.�/dx:

By construction, �.x; �/ is constant equal to ˇ outside X ; in particular ��n.x; �/ is
zero for x 2 zX nX and thereforeZ

X

Z
S�

x X

tr ��n.x; �/μS.�/dx D
Z

zX

Z
S�

x
zX

tr ��n.x; �/μS.�/dx:

In other words,
resX .…C/ D res zX .…/;

where the latter is the noncommutative residue of a  do projection on a closed
manifold. It is well known [17], [18] that this always vanishes, so resX .…C/ D 0.
Likewise we obtain resX .…

0C/ D 0 and finally

fres� ! D 0;

as desired.

In [5], it was an open question whether the residue is zero on the sectorial projection
for a boundary value problem. This theorem answers that question in the positive for
the cases where the projection lies in A.

It is not, at this time, clear for which boundary value problems this is true; however,
we showed in [5] that there certainly are boundary value problems where the sectorial
projection is not in A.

Appendix

Lemma A.1. Let M 2 �P m.C/. Let d > 0 and let @B.d; r/ denote the closed
curve in the complex plane along the boundary of the ball with center d and radius
0 < r < d . Then

i

2�

Z
@B.d;r/

Œ.2M � I /d � ���1d� D M: (A.1)
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Proof. A direct computation shows that, for � ¤ ˙d ,

Œ.2M � I /d � ���1 D M

d � � � I �M
d C �

: (A.2)

The result in (A.1) then follows from the residue theorem.
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