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The resolvent cocycle in twisted cyclic cohomology and a local
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Abstract. We continue the investigation of twisted homology theories in the context of dimen-
sion drop phenomena. This work unifies previous equivariant index calculations in twisted
cyclic cohomology. We do this by proving the existence of the resolvent cocycle, a finitely
summable analogue of the JLO cocycle, under weaker smoothness hypotheses and in the more
general setting of ‘modular’ spectral triples. As an application we show that using our twisted
resolvent cocycle, we can obtain a local index formula for the Podleś sphere. The resulting
twisted cyclic cocycle has non-vanishing Hochschild class which is in dimension 2.
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1. Introduction

This paper proves a residue index formula in noncommutative geometry for ‘modular
spectral triples’, which are analogues of spectral triples with twisted traces. This
is the appropriate setting for examples arising from q-deformations which typically
experience ‘dimension drop’ in homology, [H], [HK], [NT], [SW], [W]. The main
results are as follows.

1) We show that for finitely summable modular spectral triples the resolvent cocy-
cle exists, is continuous and is an index cocycle under weaker smoothness conditions
than have previously been used. In particular we do not need the pseudodifferential
calculus to establish these facts, so that we are free to replace the usual pseudodiffer-
ential calculus by other schemes later, in order to obtain local index formulae.

2) We show that modular spectral triples have a well-defined pairing with equiv-
ariant K-theory. In the finitely summable and weakly smooth case we show that this
pairing can be computed using the resolvent cocycle, which defines a twisted cyclic
cocycle.

3) We apply the results of 1) and 2) to prove a local index formula for the Podleś
sphere in twisted cyclic cohomology. This index formula puts the results of sev-
eral authors into a common framework, [H], [KW], [W]. In particular, the twisted
Hochschild class of our residue cocycle is an explicit constant multiple of the funda-
mental Hochschild cocycle for the Podleś sphere, [H], [KW], and our explicit index
pairings can be compared to those in [W].

The computations in 3) are similar to what was done in [NT], however they used
the twisting by the modular automorphism, rather than the inverse of the modular au-
tomorphism. While the summability is the same in both cases, the twisted Hochschild
homology for the modular automorphism is trivial in dimension 2, while the inverse
of the modular automorphism avoids the dimension drop. Thus the cocycle obtained
in [NT] is cohomologous to a 0-cocycle, while ours is not. We also note that in [NT]
the starting point was the JLO cocycle in entire cyclic cohomology rather than the
resolvent cocycle.

The exposition is as follows. In Section 2 we introduce the basic definitions for
modular spectral triples, including smoothness and summability. We then show that
a modular spectral triple defines an equivariant KK-class, and so gives us a well-
posed K-theory valued index problem. The remainder of Section 2 demonstrates that
together with a representative of an equivariant K-theory class, we obtain a well-posed
numerical index problem. The aim of Section 3 is then to show that these notions are
compatible.

We address the existence, continuity and index properties of the resolvent cocycle
in Section 3. We begin by looking at our weak smoothness condition, and proving
some basic results that follow from this assumption. Then we prove the existence
and continuity of the resolvent cocycle, which originated in [CPRS2], and show that
it computes the numerical index. Finally we show, using results from [KNR], that
this numerical index is compatible with the K-theory valued index in a precise way.
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In Section 4 we show that the spectral triple introduced by [DS] defines a 2-
dimensional modular spectral triple, which is weakly smooth in our sense. Numerous
results of [KW], [NT], [SW], [W] are incorporated into this statement. We employ
Neshveyev and Tuset’s modification of the pseudodifferential calculus to obtain a
version of the local index formula for the Podleś sphere. Thus we see that with a
suitable pseudodifferential calculus, our resolvent index formula can be extended to
a full local index formula as in [CPRS2], [CM], [Hig]. We conclude by computing
some explicit index pairings, and as a corollary see that the degree two term in the
residue index cocycle is not a coboundary.

Acknowledgements. It is a pleasure to acknowledge the assistance of our colleagues
Alan Carey, Ulrich Krähmer and Joe Várilly. We would also like to thank the referee
for numerous comments which have improved the exposition. Both authors were
supported by the Australian Research Council.

2. Modular spectral triples and equivariant K-theory

We begin this section by defining modular spectral triples, a generalisation of semi-
finite spectral triples, [BeF], [CP2], [CPRS2], allowing for twisted traces (weights)
in place of traces. We then consider the index pairings defined by modular spectral
triples.

The strategy to study index pairings is almost the same as in [CPRS2], [CPRS3].
Given a representative of an equivariant K-theory class for an algebra A, we show that
a modular spectral triple over A allows us to formulate a well-defined (semi-finite)
index problem. By following the strategy of [CPRS2], [CPRS3], we find that the
index can be computed by pairing a cocycle with the Chern character of the K-theory
class.

2.1. Modular spectral triples. Let N be a semi-finite von Neumann algebra acting
on a Hilbert space H , and fix a faithful normal semi-finite weight �. We denote the
modular automorphism group of � by �

�
t . Then as � is �

�
t invariant, we see that for

all T 2 dom � � N and t 2 R,

�.T / D �.�
�
t .T //:

Suppose further that the modular group �
�
t , which is inner since N is semi-finite, is

periodic, and let ˛ be the (least) period of �
�
t . Then

�.T / D 1

˛

Z ˛

0

�.�
�
t .T //dt D �

�
1

˛

Z ˛

0

�
�
t .T /dt

�
μ .� B ‰/.T /;

where ‰ W N ! M ´ N ��
is the expectation onto the fixed point algebra M

defined by the integral. Then the restriction of � to M is a faithful normal trace.
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The restriction of � to M is also semi-finite if and only if � is strictly semi-finite,
meaning that � is the sum of normal positive linear functionals whose supports are
mutually orthogonal, [T], p. 105. In everything that follows, we suppose that � is
strictly semi-finite.

Given a faithful normal semi-finite trace � on a von Neumann algebra N , we
define the ideal of � -compact operators K.N ; �/ to be the norm closure of the ideal
generated by the projections p with finite trace, �.p/ < 1.

Definition 2.1. Let N be a semi-finite von Neumann algebra acting on a Hilbert
space H , and fix a faithful normal strictly semi-finite weight �. Suppose further that
the modular group �

�
t is periodic. Then we say that .A; H ; D/ is a unital modular

spectral triple with respect to .N ; �/ if

(1) A is a separable unital �-subalgebra of N with norm closure A;

(2) A is invariant under �� , A consists of analytic vectors for �� , and �� jA is a
strongly continuous action;

(3) D is a self-adjoint operator affiliated to the fixed point algebra M ´ N ��
;

(4) ŒD ; a� extends to a bounded operator in N for all a 2 A;

(5) .1 C D2/� 1
2 2 K.M; �jM/.

The triple is even if there exists � D �� 2 M with �2 D 1, �a D a� for all a 2 A

and �D C D� D 0. Otherwise the triple is odd.
We say that the triple is finitely summable with spectral dimension p � 1 if p is

the least number such that

�..1 C D2/� s
2 / < 1 for all Re.s/ > p:

Just as for ordinary spectral triples, there is a notion of smoothness and pseudod-
ifferential operators for QC 1 modular spectral triples, just as in [CPRS2], [CM],
which we recall here.

Definition 2.2. A modular spectral triple .A; H ; D/ relative to .N ; �/ is QC k for
k � 1 (Q for quantum) if for all a 2 A the operators a and ŒD ; a� are in the domain
of ık

1 , where ı1.T / D Œ.1 C D2/
1
2 ; T � is the partial derivation on N defined by

.1 C D2/
1
2 . We say that .A; H ; D/ is QC 1 if it is QC k for all k � 1. Equivalently,

[CPRS2], Proposition 6.5, and [CM], Lemma B.2, .A; H ; D/ is QC 1 if for all
a 2 A we have a; ŒD ; a� 2 Tk;l�0 dom Lk

1 B Rl
1, where L, R are defined by

L.T / D .1 C D2/� 1
2 ŒD2; T � μ .1 C D2/� 1

2 T .1/

and

R.T / D ŒD2; T �.1 C D2/� 1
2 μ T .1/.1 C D2/� 1

2 :

Here we have introduced the notation T .1/ ´ ŒD2; T �, and for n > 1 we recursively
set T .n/ ´ ŒD2; T .n�1/�.
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Definition 2.3. Let .A; H ; D/ be a modular spectral triple relative to .N ; �/. For
r 2 R put

OPr D .1 C D2/
r
2 .
T

n�0 dom ın
1 /:

If T 2 OPr we say that T is a pseudodifferential operator and that the order of T is
(at most) r . The definition is actually symmetric, since for r an integer (at least) we
have by [CPRS2], Lemma 6.2,

OPr D .1 C D2/
r
2 .
T

dom ın
1 /

D .1 C D2/
r
2 .
T

dom ın
1 /.1 C D2/� r

2 .1 C D2/
r
2

� .
T

dom ın
1 /.1 C D2/

r
2 :

From this we easily see that OPr � OPs � OPrCs . Finally, we note that if b 2 OPr

for r � 0, then since b D .1 C D2/
r
2 a for some a 2 OP0, we get Œ.1 C D2/

1
2 ; b� D

.1 C D2/
r
2 Œ.1 C D2/

1
2 ; a� D .1 C D2/

r
2 ı1.a/; so Œ.1 C D2/

1
2 ; b� 2 OPr .

Remarks. 1) An operator T 2 OPr if and only if .1 C D2/� r
2 T 2 T

n�0 dom ın
1 .

Observe that operators of order at most zero are bounded.
2) We will need a weaker notion of smoothness, introduced in Section 3, for

modular spectral triples, as Definition 2.2 is not satisfied for our main example, the
Podleś sphere.

Example. A semi-finite spectral triple is a modular spectral triple with � a semi-finite
normal trace (and so M D N ).

Example. Given a circle action on a unital C�-algebra A, every state on A which
is KMS for this circle action gives rise to a modular spectral triple of dimension 1.
Explicit examples are the Cuntz algebra with its usual gauge action, [CPR2], and
the quantum group SUq.2/ with its Haar state, [CRT]. All these examples are QC 1
(or regular or smooth) when we use the algebra of analytic vectors A � A for the
circle action. More examples arising from a topological version of the group-measure
space construction are presented in [CPPR]. In all these examples the von Neumann
algebra is a proper subalgebra of B.H /, where H is the Hilbert space of the modular
spectral triple.

Example. The only other unital example (known to the authors) is the Podleś sphere,
which provides an example of a modular spectral triple of dimension 2. This was first
presented in [DS], and has been studied in numerous subsequent works by various
authors. The paper [W] provides a good summary. This example is not QC 1, but a
replacement for the pseudodifferential calculus was developed in [NT]. This example
is our main motivation for weakening the QC 1 condition, and this example will be
presented in detail in Section 4.
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Nonunital examples. We have chosen to work in the unital case for simplicity, but
there are nonunital examples, [CNNR], [CMR]. However, to simplify the discussion
of the local index formula, we will restrict to the unital case. To handle the nonunital
case in general, we would need to modify the definition of modular spectral triple in
order to utilise (analogues of) the results of [CGRS2], where the local index formula
is proved in the nonunital case.

2.2. Equivariant KK-theory and modular spectral triples. An odd modular spec-
tral triple .A; H ; D/ with respect to .N ; �/ defines an equivariant Kasparov module,
and so a class ŒD � 2 KK1;T .A; KN /, where we recall that A D xA. The construction
of the Kasparov module associated to a modular spectral triple begins with the defi-
nition of a suitable ideal. We will deal explicitly with the odd case here, just stating
the analogous results in the even case.

Definition 2.4. Given a modular spectral triple .A; H ; D ; N ; �/, let

J� ´ fSkT j S; T 2 N ; k 2 K.M; �jM/g
denote the norm closed two-sided ideal in N generated by K.M; �jM/.

The ideal J� is a right Hilbert module over itself, and A acts on the left of J� by

multiplication. The axioms of a modular spectral triple imply that .1CD2/� 1
2 2 J� .

With a little effort we can show, as in [KNR], Theorem 4.1, that the pair .J� ; D.1 C
D2/� 1

2 / is a Kasparov module, except that the module J� may not be countably
generated.

To deal with this problem, we recall the following construction from [KNR],
Theorem 5.3.

Definition 2.5. Let .A; H ; D ; N ; �/ be a modular spectral triple, where we recall
that A is separable. Write FD ´ D.1 C D2/� 1

2 and let B� be the smallest C�-
algebra in N containing the elements

FD ŒFD ; a�; bŒFD ; a�; FDbŒFD ; a�; a'.D/

for all a; b 2 A and ' 2 C0.R/. Then B� is separable, and so � -unital, and contained
in J� .

Proposition 2.6. A modular spectral triple .A; H ; D ; N ; �/ defines an equivariant
KK-theory class ŒD � D ŒB� ; FD � 2 KK1;T .A; B�/, where FD ´ D.1 C D2/� 1

2 .

Proof. A modular spectral triple is automatically a von Neumann spectral triple with
respect to J� in the sense of [KNR]. Then [KNR], Theorem 5.3, shows that B� is a
countably generated right C� B�-module, and that the pair .B� ; FD/ is a Kasparov
module. The equivariance is immediate.
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Having obtained an equivariant Kasparov module, and so a KK-class, the Kas-
parov product defines a KT

0 .B�/-valued index pairing between a modular spectral
triple and equivariant K-theory. That is,

KT
1 .A/ � KK1;T .A; B�/ ! KT

0 .B�/:

See [B], Theorem 18.4.4, for example. We now seek an analytic formula to compute
this index, and in Section 3 we obtain such a formula, the resolvent index formula.
The first step is the construction of a semi-finite spectral triple which encodes the
index pairing between a modular spectral triple and an equivariant K-theory class.
This is necessary to obtain a well-defined numerical index problem. We now describe
this procedure.

Given a modular spectral triple .A; H ; D ; N ; �/ and a class Œu� 2 KT
1 .A/, there is

a unitary u 2 Mn.A/ and a representation V W T ! Mn.C/ such that u is �� ˝Ad V

invariant, [B], [CNNR]. In particular, if n D 1 then u is �� invariant.
We can diagonalise the representation Vt D Ln

j D1 �it
j , �j 2 Œ1; 1/, and in this

basis it is clear that

(1) uij transforms under Ad Vt by �it
i ��it

j ;

(2) uij transforms under �
�
t by ��it

i �it
j ;

(3) Vt extends to an action of C which is not a �-action but satisfies V �
z D V�Nz .

We define a positive functional G W Mn.C/ ! C by setting

G.T / D Tr.V�iT /; T 2 Mn.C/:

Then G is a KMS1 functional on Mn.C/, [BR], for the action Ad V , but is not a state
as it is not normalised.

Now consider the fixed point algebra Mn D .Mn.N //��˝Ad V , which is the
centralizer of the weight � ˝ G, [T], Proposition 4.3. Then � ˝ G restricts to a
faithful normal semi-finite trace on M and moreover u 2 Mn. The latter statement
follows from the definition of u. The former follows since the strict semi-finiteness
of � implies the strict semi-finiteness of � ˝ G.

Lemma 2.7. Let .A; H ; D ; N ; �/ be a modular spectral triple which is finitely
summable and u 2 Mn.A/ a �� equivariant unitary, with associated representation
V W T ! Mn.C/. Then

.C 1.u/; H ˝ Cn; D ˝ Idn; Mn; � ˝ G/

is a finitely summable semi-finite spectral triple. Here C 1.u/ is the algebra of
all f .u/ 2 C �.u/ with f a C 1 function on the spectrum of u. Let B�˝G �
K.Mn; � ˝ G/ be defined as in Definition 2.5. Then this semi-finite spectral triple
defines a Kasparov class in KK1;T .C �.u/; B�˝G/.
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Proof. The statement that we obtain a semi-finite spectral triple follows from the
construction, and that we get a Kasparov module follows from Proposition 2.6.

Thus given Œu; V � 2 KT
1 .A/, we apply [KNR], Theorem 6.9, to compute the

spectral flow, [Ph]. Let i W B�˝G ,! K.Mn; � ˝ G/ be the inclusion, and let
i� W K0.B�˝G/ ! K0.K.Mn; � ˝ G//. Then [KNR], Theorem 6.9, allows us to
compute the spectral flow as

sf�˝G.D ˝ Idn; u.D ˝ Idn/u�/ D .� ˝ G/�.i�.Œu� ˝C �.u/ ŒD ˝ Idn�//: (2.1)

At this point, we have obtained an index problem which a priori depends on the
representative u of the equivariant K-theory class (through the use of C �.u/). To
show that we do indeed have a well-defined pairing with KT

1 .A/, we will show, via
the resolvent index formula, that the index can be computed in terms of the Chern
character of u, which is independent of the chosen representative of the class Œu�.
Finally, we show that the original index pairing between a modular spectral triple and
equivariant K-theory can be described by the spectral flow above.

3. The resolvent index formula in twisted cyclic cohomology

In this section we express the spectral flow from eq. (2.1) in terms of the pairing
between a twisted cyclic cocycle dependent only on the modular spectral triple and the
Chern character of the equivariant unitary. In order to achieve this without invoking
the QC 1 property, we make a technical improvement on the work of [CPRS2] by
using a weaker smoothness condition. This is necessary for our application, as the
Podleś sphere modular spectral triple is not QC 1.

3.1. Weakly QC 1 modular spectral triples. We weaken the QC 1 condition with
the aim of justifying a resolvent expansion, used in the proof of our index formulae,
without recourse to the pseudodifferential calculus. There are two basic reasons for
doing this.

The first is that the example of the Podleś sphere shows that we do not always
have the QC 1 property for modular spectral triples.

The second reason is that, conceptually, the use of the pseudodifferential calculus
to prove existence and continuity of the resolvent cocycle is overkill, requiring us to
invoke much more smoothness than is necessary for the statement of existence and
continuity.

Definition 3.1. Let .A; H ; D/ be a modular spectral triple relative to .N ; �/. For
T 2 N mapping the domain of D2 to itself, define

WL.T / ´ .1 C D2/�1ŒD2; T � D .1 C D2/�1T .1 C D2/ � T;

WR.T / ´ ŒD2; T �.1 C D2/�1 D .1 C D2/T .1 C D2/�1 � T:
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We say that .A; H ; D/ is weakly QC 1 if

A � OP0 � N and ŒD ; A� � w-OP0 ´ T
k;l�0

dom.WL/k.WR/l � N :

The analogous definition of weak QC k is awkward, since in Definition 2.2, QC k

is defined in terms of commutators with jD j or .1CD2/
1
2 . We will leave aside these

questions and just work with weak QC 1. Also, QC 1 implies weak QC 1 by the
boundedness of .1 C D2/� 1

2 .
While we do not have a pseudodifferential calculus for a weakly QC 1 modular

spectral triple .A; H ; D/, we may consider the weak pseudodifferential operators of
order s 2 R given by

w-OPs ´ .1 C D2/
s
2 .
T

k;l dom WLk B WRl/:

This definition is symmetric, in the sense that

w-OPs D .
T

k;l dom WLk B WRl/.1 C D2/
s
2 ;

since for all s 2 R, w-OPs is preserved by T 7! .1 C D2/˙sT .1 C D2/�s , by
Lemma 3.2 below. Observe also that we have OPs � w-OPs .

It follows from the definitions that if .A; H ; D/ is a weakly QC 1 modular
spectral triple and u 2 Mn.A/ is an equivariant unitary, then the associated semi-
finite spectral triple .C 1.u/; H ˝ Cn; D ˝ Idn; Mn; � ˝ G/ is also weakly QC 1.

The next few lemmas record some basic properties of the maps WL and WR.

Lemma 3.2. Let D W domD � H ! H be an unbounded self-adjoint operator.
Then T 2 B.H / belongs to

T
k;l�0

dom.WL/k.WR/l

if and only if .1 C D2/
s
2 T .1 C D2/� s

2 extends to a bounded operator for all s 2 R.

Proof. It follows from Definition 3.1 that T 2 Tk;l�0 dom.WL/k.WR/l if and only if
.1CD2/kT .1CD2/�k is a bounded operator for all k 2 Z. It is also immediate that if
.1CD2/

s
2 T .1CD2/� s

2 is bounded for all s 2 R, then T 2 Tk;l�0 dom.WL/k.WR/l .
So let 0 < s < 1, and recall that

.1 C D2/�s D sin.s�/

�

Z 1

0

��s.1 C � C D2/�1d�:
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Then for T 2 Tk;l�0 dom.WL/k.WR/l we have

.1 C D2/sT .1 C D2/�s

D .1 C D2/sT
sin.s�/

�

Z 1

0

��s.1 C � C D2/�1d�

D .1 C D2/s sin.s�/

�

Z 1

0

��s..1 C � C D2/�1T

C .1 C � C D2/�1ŒD2; T �.1 C � C D2/�1/d�

D .1 C D2/s sin.s�/

�

Z 1

0

��s.1 C � C D2/�1

� .T C ŒD2; T �.1 C D2/�1.1 C D2/.1 C � C D2/�1/d�

D T C .1 C D2/s sin.s�/

�

Z 1

0

��s.1 C � C D2/�1ŒD2; T �.1 C D2/�1

� .1 C D2/.1 C � C D2/�1d�:

An application of the functional calculus now shows that the integral is norm con-
vergent, but in order to show that .1 C D2/s times the integral is bounded, we must
work a little harder. We write

.1 C D2/.1 C � C D2/�1 D 1 � �.1 C � C D2/�1

so that the integral can be written, with B D ŒD2; T �.1 C D2/�1, asZ 1

0

��s.1 C � C D2/�1ŒD2; T �.1 C D2/�1.1 C D2/.1 C � C D2/�1d�

D
Z 1

0

��s.1 C � C D2/�1Bd�

�
Z 1

0

��s�.1 C � C D2/�1B.1 C � C D2/�1d�:

The first integral on the right hand side converges in norm to �
sin.s�/

.1 C D2/�sB .
For the second integral on the right hand side, we suppose first that B is self-adjoint.
Then

�.1C�CD2/�1B.1C�CD2/�1 	 kBk �.1C�CD2/�2 	 kBk .1C�CD2/�1:

Thus for B self-adjoint, the second integral converges in norm to an operator which
is bounded above by �

sin.s�/
.1 C D2/�skBk. By decomposing B into its real and

imaginary parts, this is true for any bounded B . Thus .1 C D2/sT .1 C D2/�s is
bounded for 0 < s < 1, and a similar argument shows that .1 C D2/�sT .1 C D2/s

is bounded.
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In all the following, we define Rs.�/ ´ .� � .1 C s2 C D2//�1 for s � 0 and �

in the vertical line
l ´ fa C iv j �1 < v < 1g

for some fixed 0 < a < 1=2.

Lemma 3.3. Let .A; H ; D/ be a weakly QC 1 modular spectral triple relative to
.N ; �/. Then Rs.�/ŒD2; T � is uniformly bounded on the line l independent of s, � for
all T 2 A [ ŒD ; A�. For all T 2 A [ ŒD ; A�, the function � 7! Rs.�/TRs.�/�1 is
uniformly bounded and differentiable on the line l with derivative �Rs.�/2ŒD2; T �,
which vanishes as � ! a ˙ i1.

Proof. First Rs.�/ŒD2; T � D Rs.�/.1CD2/.1CD2/�1ŒD2; T � and Rs.�/.1CD2/

is uniformly bounded. Then Rs.�/TRs.�/�1 D Rs.�/ŒD2; T � C T is uniformly
bounded on l . For the differentiability, we form the difference quotients

Rs.� C "/TRs.� C "/�1 � Rs.�/TRs.�/�1

D .Rs.� C "/ � Rs.�//TRs.� C "/�1 C Rs.�/T .Rs.� C "/ � Rs.�/�1/

D �"Rs.� C "/Rs.�/TRs.� C "/�1 C "Rs.�/T;

where " is chosen so that � C " lies in a small ball centred on � D a C iv. Now the
uniform boundedness of Rs.�/TRs.�/�1 and the boundedness of Rs.�/T show that
after dividing by ", the norm limit as " ! 0 exists and is given by

Rs.�/T � Rs.�/2TRs.�/�1 D �Rs.�/2ŒD2; T �:

This is not only bounded but goes to zero as j�j ! 1 along the line l D a C iv.

We recall the notation T .n/ D ŒD2; T .n�1/� for n � 1 and T .0/ ´ T for T

mapping H1 to itself.

Lemma 3.4. With .A; H ; D/ as above and T 2 A [ ŒD ; A�, we have the formula

Rs.�/nTRs.�/�n D T C
nP

j D1

.n � j C 1/Rs.�/j T .j /:

Proof. Induction and the formula Rs.�/TRs.�/�1 D T C Rs.�/ŒD2; T �.

Corollary 3.5. The function � 7! Rs.�/nTRs.�/�n is norm differentiable for all
T 2 A [ ŒD ; A�. The derivative goes to zero in norm as � ! a ˙ i1 and is given
by

d
d�

Rs.�/nTRs.�/�n D �Rs.�/
nP

j D1

j.n � j C 1/Rs.�/j T .j /: (3.1)
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We now prove the main technical result we require, which weakens the smoothness
hypotheses of [CPRS2], Lemma 7.2.

Lemma 3.6. Let .A; H ; D ; N ; �/ be a weakly QC 1 modular spectral triple of
dimension p � 1. Let m be a non-negative integer and j D 0; : : : ; m.

(1) Let Aj 2 w-OPkj , kj � 0, with the product A0A1 : : : Am being �
�
t -invariant

and affiliated to M D N ��
. Then the map

r 7! Br.s/ D 1

2�i

Z
l

�� p
2 �rA0Rs.�/A1Rs.�/A2 : : : Rs.�/AmRs.�/d�;

is an analytic function with values in dom.�/ for r 2 fz 2 C j Re.z/ > jkj
2

� m; z …
N� p

2
g, where jkj D k0Ck1C� � �Ckm. For ˛ > 0, the function s 7! s˛ ��.jBr.s/j/

is integrable on Œ0; 1/ when in addition we have 1 C ˛ C jkj � 2m < 2Re.r/.
(2) Define yRs.�/ D .� � .1 C s2 C D2 C sK//�1 for an operator K D K� with

kKk1 	 p
2. For aj 2 A with a0a1 : : : am 2 M and r 2 C with Re.r/ > 0 the

operator

zBr.s/ D 1

2�i

Z
l

�� p
2 �ra0Rs.�/ŒD ; a1�Rs.�/ŒD ; a2� : : : Rs.�/ŒD ; am� yRs.�/d�

is in dom.�/, and the function s 7! sm � �.j zBr.s/j/ is integrable on Œ0; 1/ when
p < 1 C m and 1 < m C 2Re.r/.

Proof. The restriction of � to the fixed point algebra M ´ N ��
is a semi-finite

trace. By assumption, we have .1 C D2/� 1
2 2 M, so Rs.�/ 2 M, and A0A1 : : : Am

is affiliated to M. Hence, the estimates in this proof will be done in the von Neumann
algebra M, and we denote the trace norm, with respect to � on M, by k � k1.

To prove statement (1), the strategy is to use the fundamental theorem of calculus,
at first just doing norm convergence of integrals and norm differentiability. We
abbreviate R ´ Rs.�/, fix k0; : : : ; km as in the statement, and with Re.r/ > 0

sufficiently large, we have, for any integer M > m,

1

2�i

Z
l

�� p
2 �rA0RA1R : : : RAmRd�

D 1

2�i

Z
l

�� p
2 �rA0RA1R�1R2A2R�2 : : : RmAmR�mRmC1d�

D .�1/M�m

2�i.p
2

C r � 1/.p
2

C r � 2/ : : : .p
2

C r � .M � m//

�
Z

l

d M�m

d�M�m
.�� p

2 �rC.M�m//A0RA1R�1R2A2R�2 : : :

: : : RmAmR�mRmC1d�
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D 	.p
2

C r � .M � m//

2�i 	.p
2

C r/

Z
l

�� p
2 �rC.M�m/

M�mX
j D0

�
M � m

j

�

� d j

d�j
.A0RA1R�1R2A2R�2 : : : RmAmR�m/

d M�m�j

d�M�m�j
.RmC1/d�:

(3.2)

Iterating the derivative d
d�

.RmC1/ D �.m C 1/RmC2 yields

d M�m�j

d�M�m�j
.RmC1/ D .�1/M�m�j

�MC1�jY
nDmC1

n

�
RMC1�j : (3.3)

Now we consider

d j

d�j
.A0RA1R�1R2A2R�2 : : : RmAmR�m/:

We would like to apply Lemma 3.3 to this term, however recall that each Aj 2 w-OPkj

and not w-OP0. So we rewrite

A0RA1R�1R2A2R�2 : : : RmAmR�m

D A0.1 C D2/�k0=2.R.1 C D2/k0=2A1.1 C D2/�.k0Ck1/=2R�1/

� .R2.1 C D2/.k0Ck1/=2A2.1 C D2/�.k0Ck1Ck2/=2R�2/ : : :

: : : .Rm.1 C D2/.jkj�km/=2Am.1 C D2/� jkj
2 R�m/.1 C D2/

jkj
2 :

By definition we have Aj .1 C D2/�kj =2 2 w-OP0, so using Lemma 3.2, we now
find that .1 C D2/sAj .1 C D2/�s�kj =2 2 w-OP0 for all s 2 R. Hence, we define

A0
j ´ .1 C D2/

1
2

Pj �1
nD0

knAj .1 C D2/� 1
2

Pj
nD0

kn 2 w-OP0;

so that

A0RA1R�1R2A2R�2 : : : RmAmR�m

D A0
0RA0

1R�1R2A0
2R�2 : : : RmA0

mR�m.1 C D2/
jkj
2 :

The purpose of introducing A0
j is to move all the w-OPkj behaviour into the factor

.1 C D2/
jkj
2 on the right.

We now invoke Corollary 3.5 and find that each factor Rj A0
j R�j is norm differ-

entiable with respect to �. Indeed, by eq. (3.1) we have

d n

d�n
Rj A0

j R�j D RnB.s; �/ (3.4)
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for n � 0, and some operator B.s; �/ uniformly bounded in s, �. So we apply the
chain rule to

d j

d�j
.A0

0RA0
1R�1R2A0

2R�2 : : : RmA0
mR�m/.1 C D2/

jkj
2

D d j

d�j
.A0RA1R�1R2A2R�2 : : : RmAmR�m/

and use eq. (3.4) to compute the derivatives. Then Lemma 3.4 allows us to move
each resolvent Rn arising from eq. (3.4) to the left, which gives

d j

d�j
.A0RA1R�1R2A2R�2 : : : RmAmR�m/ D Rj Bj .A0

0; : : : ; A0
m/.1 C D2/

jkj
2 ;

where Bj .A0
0; : : : ; A0

m/ 2 w-OP0 is uniformly bounded in s, �.
Now we absorb the constants .�1/M�m�j

�QMC1�j
nDmC1 n

�
from eq. (3.3) into

Bj .A0
0; : : : ; A0

m/ and apply the derivative computations to eq. (3.2), which yields

1

2�i

Z
l

�� p
2 �rA0RA1R : : : RAmRd�

D 	.p
2

C r � .M � m//

2�i	.p
2

C r/

Z
l

�� p
2 �rC.M�m/

M�mX
j D0

�
�

M � m

j

�
Rj Bj .A0

0; : : : ; A0
m/.1 C D2/

jkj
2 RMC1�j d�

D 	.p
2

C r � .M � m//

2�i	.p
2

C r/

Z
l

�� p
2 �rC.M�m/

M�mX
j D0

�
�

M � m

j

�
Rj Bj .A0

0; : : : ; A0
m/R�j .1 C D2/

jkj
2 R

jkj
2 RMC1� jkj

2 d�;

where the square roots use the principal branch of log.
For each j , the operator Rj Bj .A0

0; : : : ; A0
m/R�j is uniformly bounded in s; � by

Lemma 3.4 and the uniform boundedness of Bj .A0
0; : : : ; A0

m/. Also, the operator

.1 C D2/
jkj
2 R

jkj
2 is uniformly bounded in s, �, so we are left with estimating

RM C1� jkj
2 . The trace estimate for the resolvent in [CPRS2], Lemma 5.3, states

that for M large enough and all " > 0, there is a constant C" > 0 such that

kRM C1� jkj
2 k1 	 C"..1=2 C s2 � a/2 C v2/�.MC1� jkj

2 /=2C.p=4C"/: (3.5)

This estimate and the uniform boundedness of each Rj Bj .A0
0; : : : ; A0

m/R�j , implies
that

1

2�i

Z
l

�� p
2 �rA0RA1R : : : RAmRd� 2 dom.�/
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for jkj � 2m C " < 2Re.r/, for all " > 0. We may apply this estimate only when
r ¤ .M � j / � p

2
as the prefactor

	.p
2

C r � .M � m//

2�i 	.p
2

C r/
D 1

2�i.p
2

C r � 1/.p
2

C r � 2/ : : : .p
2

C r � .M � m//

has a pole at these points. So now we estimateZ 1

0

s˛�

�
1

2�i

Z
l

�� p
2 �rA0RA1R : : : RAmRd�

�
ds

in trace norm (recall that we regard � as a trace on the fixed point algebra M). The
calculations above show that the trace norm is bounded by

j	.p
2

C r � .M � m//j
2�j	.p

2
C r/j

Z 1

0

s˛

Z 1

�1

p
a2 C v2

� p
2 �Re.r/C.M�m/

�
M �mX
j D0

�
M � m

j

�
kRj Bj .A0

0; A0
1; : : : ; A0

m/R�j k1 kRMC1� jkj
2 k1dvds

	
M�mX
j D0

�
M � m

j

� j	.p
2

C r � .M � m//j
2�j	.p

2
C r/j C 0

"

Z 1

0

s˛

�
Z 1

�1

p
a2 C v2

.M�m/� p
2 �Re.r/p

.1=2 C s2 � a/2 C v2
jkj
2 �M�1C.pC"/=2

dvds;

where the constant C 0
" incorporates the constant from the estimate in eq. (3.5) and

the constant coming from kRj Bj .A0
0; A0

1; : : : ; A0
m/R�j k1 	 C . Now by [CPRS2],

Lemma 5.4, the double integral converges for

.˛ C jkj � M/ C .p C " � M/ < 1 and .˛ C jkj/ � 2m C " � 2Re.r/ < �1:

The first constraint can always be satisfied by taking M sufficiently large. The second
holds precisely when ˛ C jkj C 1 � 2m < 2Re.r/, by choosing " small enough.

Statement (2) of the lemma is proved just as above, with the extra yRs.�/ just
estimated in operator norm, using [CPRS2], Lemma 5.1,

k yRs.�/k1 	 .v2 C .1 C s2 � a � skKk1/2/� 1
2 ;

and the general integral estimate [CPRS2], Lemma 5.4.

3.2. Existence of the resolvent cocycle for weakly QC 1 modular spectral triples.
First we explicitly define the resolvent cocycle associated to a modular spectral triple,
again just working in the odd case. The definitions in the even case can be deduced
from [CPRS3].
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Definition 3.7. Let .A; H ; D ; N ; �/ be a weakly QC 1 odd modular spectral triple
of dimension p � 1. Let N D Œp

2
� C 1 be the least integer strictly greater than p

2
.

Let m be an odd integer, 1 	 m 	 2N � 1, and let Aj 2 w-OPkj , j D 0; : : : ; m,
be operators whose product A0A1 : : : Am is �

�
t -invariant and affiliated to M. For

2Re.r/ > .k0 C � � � C km/ C 1 � m, r … N � p
2

, define

hA0; : : : ; Amim;s;r ´ 1

2�i
�

�Z
l

�� p
2 �rA0Rs.�/A1 : : : AmRs.�/d�

�
:

The resolvent cocycle .ˆr
m/mD1;3;:::;2N �1 is defined to be

ˆr
m.a0; a1; : : : ; am/ ´ �2

p
2�i

	..m C 1/=2/

Z 1

0

smha0; ŒD ; a1�; : : : ; ŒD ; am�im;s;rds

for ai 2 A satisfying a0a1 : : : am 2 M. For brevity we introduce the notation
da ´ ŒD ; a� for a 2 A.

We observe that ˆr
m is finite for Re.r/ > .1 � m/=2, by Lemma 3.6. In this sub-

section we show that for weakly smooth modular spectral triples, .ˆr
m/mD1;:::;2N �1

defines a twisted b, B cocycle modulo functions holomorphic in the half-plane
r > .1 � p/=2.

We start by presenting the s- and �-tricks, which are the main tools needed to prove
continuity of the resolvent cocycle. These tricks appeared in [CPRS2], [CPRS3],
[CPRS4] without appropriate justification for the convergence of the derivatives in
trace norm. In [CGRS2] the justification was given with the aid of the pseudod-
ifferential calculus. Here we present a different proof using only the weak QC 1
hypothesis.

Lemma 3.8 (s-trick). Let .A; H ; D/ be a weakly QC 1 odd modular spectral triple
relative to .N ; �/ of dimension p � 1. For any integers m � 0; k � 1 and operators
A0; : : : ; Am with Aj 2 w-OPkj , and 2Re.r/ > k C 2

P
kj � 2m, r … N � p

2
, we

may choose r with Re.r/ sufficiently large such that

k

Z 1

0

sk�1hA0; : : : ; Amim;s;rds

D �2

mX
j D0

Z 1

0

skC1hA0; : : : ; Aj ; 1; Aj C1; : : : ; AmimC1;s;rds:

Proof. The only thing that needs justification is the trace norm derivative formula

d

ds
hA0; : : : ; Amim;s;r D 2s

mX
kD0

hA0; : : : ; Ak; 1; AkC1; : : : ; AmimC1;s;r
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for suitable m; s; r and weak pseudodifferential operators Aj . So start with the
difference quotient leading to one of the terms on the right hand side.

1

2�i

Z
l

�� p
2 �rA0R : : : RAk

�
RsC"�Rs

"

�
AkC1R : : : RAmRd�

D .2s C "/
1

2�i

Z
l

�� p
2 �rA0R : : : RAkRsC"RsAkC1R : : : RAmRd�:

Now repeat the trick of Lemma 3.6, giving

D .2s C "/
1

2�i.p
2

C r � 1/.p
2

C r � 2/ : : : .p
2

C r � .2M � 1 � m//

�
Z

l

�� p
2 �rC.2M�1�m/

2M�1�mX
j D0

�
2M � 1 � m

j

�
d j

d�j
.A0RA1R�1R2A2R�2 : : :

: : : RkAkR�kRsC"R
kC1AkC1R�k�1 : : : RmAmR�m/

d 2M�1�m�j

d�2M�1�m�j
.RmC1/d�:

Performing the derivatives yields a formula similar to that in the proof of Lemma 3.6,
but in place of the uniformly bounded Bj ’s, we have uniformly bounded operators
and one extra resolvent. Thus the same trace norm estimates apply and we see that
the difference quotients converge in trace norm. Thus hA0; : : : ; Amim;s;r is trace
norm differentiable in s, and the derivative goes to zero as � ! a ˙ i1. The proof
is completed by applying the fundamental theorem of calculus to

d

ds
.skhA0; : : : ; Amim;s;r/:

A completely analogous argument using the fundamental theorem of calculus for
the parameter � proves the following ‘�-trick’with our weak smoothness hypotheses.

Lemma 3.9 (�-trick). Let .A; H ; D/ be a weakly QC 1 odd modular spectral triple
relative to .N ; �/ of dimension p � 1. For any integer m � 0, operators Aj 2
w-OPkj , j D 0; : : : ; m, and r such that 2Re.r/ > 2

P
kj �2m, r … N� p

2
, we have

�.p
2

C r/hA0; : : : ; Amim;s;rC1 D
mP

kD0

hA0; : : : ; Ak; 1; AkC1; : : : ; AmimC1;s;r :

Proposition 3.10. Let .A; H ; D/ be a weakly QC 1 odd modular spectral triple
relative to .N ; �/ of dimension p � 1. Let m D 1; 3; : : : ; 2N � 1. Let A ˝
A˝m have the projective tensor product topology coming from the seminorms a 7!
k WRk B WLl.a/k1 C k WRk B WLl.ŒD ; a�/k1 on A, and restrict this topology to
the subspace .A ˝ A˝m/��

of �� invariant tensors. (This can be called the weak
QC 1-topology). Then the maps

.A ˝ A˝m/�� 3 a0 ˝ � � � ˝ am 7! Œr 7! ˆr
m.a0; : : : ; am/�
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are continuous multilinear maps from .A˝A˝m/��
to the functions holomorphic in

fz 2 C j Re.z/ > .1�m/=2; z … N� p
2

g, with the topology of uniform convergence
on compacta.

Proof. Let us first fix r 2 C with Re.r/ > .1 � m/=2, and set M D 2N � 1.
Lemma 3.6 ensures that our functionals are finite for these values of r , and it is an
exercise (see [CPRS2], Lemma 7.4) to show that these functionals are holomorphic
there. Thus all that we need to do is to improve the estimates to prove continuity. We
do this, following [CPRS4], Proposition 5.18, using the s- and �-tricks. We recall
that we have defined M D 2N � 1. By applying successively the s- and �-tricks
(which commute) .M � m/=2 times each, we obtain

ˆr
m.a0; : : : ; am/

D 2.M �m/=2.M � m/Š

.M�m/=2Y
l1D1

1
p
2

C r � l1

.M�m/=2Y
l2D1

1

m C l2

�
X

jkjDM�m

Z 1

0

sM ha0; 1k0 ; da1; 1k1 ; : : : ; dam; 1kmiM;s;r�.M�m/=2ds;

where 1ki D 1; 1; : : : ; 1 with ki entries. Since M 	 p C 1, the poles associated to
the prefactors are outside the region fz 2 C j Re.z/ > .1 � m/=2g. Ignoring the
prefactors, setting ni D ki C 1 and R ´ Rs;t .�/, we need to deal with the integralsZ 1

0

sM �

�Z
l

�� p
2 �r�.M�m/=2a0Rn0da1Rn1 : : : damRnmd�

�
ds; jnj D M C 1;

where l is the vertical line l D fa C iv j v 2 Rg with a D 1=2.
To estimate the trace norm (using the trace given by restricting � to the invariant

subalgebra N ��
) we first write

a0Rn0da1Rn1 : : : damRnm D a0.Rn0da1R�n0/.Rn0Cn1da2R�.n0Cn1// : : :

: : : .Rn0C���Cnm�1damR�.n0C���Cnm�1//Rn0C���Cnm :

Then, using [CPRS2], Lemma 5.2, and the fact that jnj D M C 1, for each " > 0 we
obtain C" > 0 such that

ka0Rn0da1Rn1 : : : damRnmk1

	 ka0.Rn0da1R�n0/.Rn0Cn1da2R�.n0Cn1// : : :

: : : .Rn0C���Cnm�1damR�.n0C���Cnm�1//k1 kRMC1k1

	 ka0Rn0da1Rn1 : : : damRnmR�.MC1/k1
� C" ..s2 C a2/ C v2/�.MC1/=2C.pC"/=4:
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The operator norm of the product yields a constant C.a0; a1; : : : ; am/ depend-
ing on a0; a1; : : : ; am, which varies continuously as the aj vary in a weak QC 1
continuous way. Integrating now shows that

jˆr
m.a0; : : : ; am/j 	 jf .r/j C";M;mC.a0; a1; : : : ; am/

for a function f continuous for Re.r/ > .1 � m/=2, r … N � p
2

(coming from the
prefactor and the integral) and some constant C";M;m.

Proposition 3.11. Let .A; H ; D/ be a weakly QC 1 odd modular spectral triple
relative to .N ; �/ of dimension p � 1, and let N D Œp

2
� C 1. The collection of

functionals ˆr D fˆr
mg2N �1

mD1 , m odd, is such that

.B�ˆr
mC2 C b�ˆr

m/.a0; : : : ; amC1/ D 0; m D 1; 3; : : : ; 2N � 3;

.B�ˆr
1/.a0/ D 0;

where the ai 2 A, � D �
�
i and b� ; B� are the twisted coboundary operators of cyclic

cohomology. Moreover, there is a ı0, 0 < ı0 < 1, such that b�ˆr
2N �1.a0; : : : ; a2N /

is a holomorphic function of r for Re.r/ > �p
2

C ı0

2
.

Proof. The proof is just as in [CPRS2], Proposition 7.10, using the formulae for the
twisted coboundaries b� , B� ,

.b�ˆr
m/.a0; a1; : : : ; an; amC1/ D

nP
kD0

.�1/kˆr
m.a0; : : : ; akakC1; : : : ; amC1/

C .�1/mC1ˆr
m.�.amC1/a0; a1; : : : ; an/;

.B�ˆr
m/.a0; a1; : : : ; am�1/ D

m�1P
j D0

.�1/.m�1/j ˆr
m.1; �.aj /; �.aj C1/; : : :

: : : ; �.am�1/; a0; : : : ; aj �1/;

and the twisted tracial property of �. This yields B�ˆr
mC2 C b�ˆr

m D 0 for m D
1; 3; : : : ; 2N � 3.

In particular, computing the Hochschild coboundary uses

� hA0; : : : ; ŒD2; Aj �; : : : ; Amim;s;r

D hA0; : : : ; Aj �1Aj ; : : : ; Amim�1;s;r � hA0; : : : ; Aj Aj C1; : : : ; Amim�1;s;r ;

and, for k � 1,Z 1

0

skhDA0; A1; : : : ; Amim;s;rds D
Z 1

0

skhA0; A1; : : : ; AmDim;s;rds:

The first identity follows from observing that

�ŒD2; Aj � D Rs.�/�1Aj � Aj Rs.�/�1
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and cancelling neighbouring Rs.�/’s. The second follows by applying the twisted
cyclicity of the expectation (see [CPRS2], Lemma 7.7, for the tracial version).

Employing these computations for the top degree term ˆr
2N �1 yields

.b�ˆr
2N �1/.a0; : : : ; a2N /

D �2
p

2�i

	.N /

2NX
j D1

.�1/j

Z 1

0

smha0; ŒD ; a1�; : : : ; ŒD2; aj �; : : : ; ŒD ; a2N �i2N;s;rds:

Since A � OP0 we have ŒD2; A� � OP1, and then the holomorphicity of b�ˆr
2N �1

follows just as in [CPRS2], Proposition 7.10.

We now specialise to the semi-finite case so that we may relate the resolvent
cocycle to the index problem (that is, to compute spectral flow). Proposition 3.11
establishes that the resolvent cocycle is almost a cocycle, so we have the following
theorem, proven just as in [CPRS2].

Theorem 3.12. Let .A; H ; D/ be a weakly QC 1 odd semi-finite spectral triple
relative to .N ; �/ of dimension p � 1. Let N D Œp

2
� C 1 be the least positive integer

strictly greater than p
2

and let u 2 A be unitary. Then

sf� .D ; u�Du/ D 1p
2�i

ResrD.1�p/=2

� 2N �1X
mD1; odd

ˆr
m.Chm.u//

�
;

where Chm.u/ is defined to be

Chm.u/ D .�1/.m�1/=2 ..m � 1/=2/Š u� ˝ u ˝ � � � ˝ u� ˝ u; .m C 1/ entries:

Proof. This ‘resolvent index formula’ is proved as in [CPRS2], where the differences
for the weak QC 1 assumption are detailed above.

Remark. In the even case we have a similar statement with N D Œ.p C1/=2� and the
sum runs over even integers from m D 0 to 2N ; see [CPRS3] for the QC 1 case and
[S] for the weakly QC 1 case. We provide a more precise statement for the general
modular case in Theorem 3.14 below.

3.3. The resolvent index formula for modular spectral triples. Let .A; H ; D/

be a modular spectral triple relative to .N ; �/ with modular group �� , of spectral
dimension p � 1, and weakly QC 1 so that

A � OP0; ŒD ; A� � w-OP0:

Let u 2 Mn.A/ be unitary, V W T ! Mn.C/ a representation and suppose that u is
�� ˝ Ad V invariant.
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Lemma 2.7 constructs a semi-finite spectral triple from .A; H ; D/ and u. The
semi-finite resolvent index formula, Theorem 3.12, then shows that the resolvent
cocycle defined using the trace � ˝ G is ‘almost’ a b; B cocycle, and computes the
spectral flow from D to uDu�.

With N D Œp
2

� C 1, we have

sf�˝G.D ˝ Idn; u.D ˝ Idn/u�/ D 1p
2�i

Res
rD 1�p

2

2N �1X
mD1; odd

.ˆG/r
m.Chm.u//;

(3.6)
where .ˆG/r

m is the resolvent cocycle defined using the trace � ˝G. In particular the
sum on the right hand side of (3.6) analytically continues to a deleted neighbourhood
of r D .1 � p/=2 with at worst a simple pole at r D .1 � p/=2.

We will compute the G part of the trace, leaving us with a functional defined in
terms of �.

The Chern character of u is defined to be the (infinite) sum
L

j Ch2j C1.u/ 2
HE2j C1.MN .A//, the entire cyclic homology, with

Ch2j C1.u/ D .�1/j j Š u� ˝ u ˝ � � � ˝ u� ˝ u .2j C 2/ entries:

Now in [W], Lemma 4.1, Wagner has shown, in a slightly different context, that the
map

G� W L
j

HE2j C1.MN .A/�˝Ad V / ! L
j

HE�
2j C1.A/

to � -twisted cyclic homology given on chains by

G�.T0 ˝ � � � ˝ T2j C1/

D P
i0;i1;:::;i2j C2

.V�i /i2j C2;i0.T0/i0;i1 ˝ .T1/i1;i2 ˝ � � � ˝ .T2j C1/i2j C1;i2j C2

is an isomorphism. Here V�i is the extension of the representation of T to �i , as
discussed in Section 2.2.

Now each equivariant unitary with class Œu� 2 KT
1 .A/ is equivariant for its own

representation of the circle. So it makes sense to regard the representation V as part
of the data, so Œu� D Œu; V �. We define Ch2j C1.Œu; V �/ 2 HE�

2j C1.A/ by

Ch2j C1.Œu; V �/

D .�1/j j Š
P
I

.V�i /i2j C2;i0.u�/i0;i1 ˝ .u/i1;i2 ˝ � � � ˝ .u2j C1/i2j C1;i2j C2
:

Then it is straightforward to check that this does indeed define an entire twisted cyclic
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cycle. Moreover it is immediate from the definitions that

sf�˝G.D ˝ Idn; u.D ˝ Idn/u�/ D 1p
2�i

Res
rD 1�p

2

2N �1X
mD1; odd

.ˆG/r
m.Chm.u//;

D 1p
2�i

Res
rD 1�p

2

2N �1X
mD1; odd

ˆr
m.Chm.Œu; V �//:

Here ˆr
m is the resolvent cocycle given by the modular spectral triple.

We now collect these observations into a statement describing the resolvent index
formula for weakly smooth modular spectral triples.

Theorem 3.13. For a weakly QC 1 odd modular spectral triple .A; H ; D/ relative
to .N ; �/ of spectral dimension p � 1, and with N D Œp

2
� C 1, the function valued

cochain .ˆr
m/mD1;:::;2N �1 is a twisted cyclic cocycle modulo cochains with values in

functions holomorphic in a half-plane containing .1 � p/=2. Moreover, for Œu; V � 2
KT

1 .A/ with representative u 2 Mn.A/ we have

sf�˝G.D ˝ Idn; u�.D ˝ Idn/u/ D 1p
2�i

Res
rD 1�p

2

� 2N �1X
mD1; odd

ˆr
m.Chm.Œu; V �//

�
:

In particular, there is a well-defined map

KT
1 .A/ 7! R; Œu; V � 7! sf�˝G.D ˝ Idn; u�.D ˝ Idn/u/:

Though we have not proved it here, a similar result is true in the even case; see [S].

Theorem 3.14. For a weakly QC 1 even modular spectral triple .A; H ; D ; �/ rela-
tive to .N ; �/ of spectral dimension p � 1, and with M D Œ.p C 1/=2�, the function
valued cochain .ˆr

m/mD0;:::;2M is a twisted cyclic cocycle modulo cochains with val-
ues in functions holomorphic in a half-plane containing .1 � p/=2. Moreover, for
ŒP; V � 2 KT

0 .A/ with representative P 2 Mn.A/ and DC D 1
4
.1 � �/D.1 C �/

we have

Index�˝G.P.DC ˝ Idn/P / D 1p
2�i

ResrD.1�p/=2

� 2MX
mD0; even

ˆr
m.Chm.ŒP; V �//

�
:

In particular, there is a well-defined map

KT
0 .A/ 7! R; ŒP; V � 7! Index�˝G.P.DC ˝ Idn/P /:

Remark. The Chern character of an equivariant projection is

Ch0.ŒP; V �/ D Tr.V�iP /;

Ch2k.ŒP; V �/ D .�1/k .2k/Š

kŠ

X
.V�i .P � 1

2
//i0i1 ˝ Pi1i2 ˝ � � � ˝ Pi2k i0 :

(3.7)
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Finally, the next two results relate the even index given by the resolvent index for-
mula above back to the K-theory valued index pairing between the KK-class defined
by the modular spectral triple and equivariant K-theory.

Lemma 3.15. Let .A; H ; D/ be a modular spectral triple relative to .N ; �/. Let
J� � N be the ideal fromDefinition 2.4 andJ �

� its unitisation. LetE 2 Mk.J �
� /be a

�� ˝Ad W -invariant projection for the associated representation W W T ! Mk.C/

so that ŒE; W � 2 KT
0 .J �

� /. Define

��.ŒE; W �/ ´ .� ˝ GW /.E/ 2 Œ0; 1�;

where GW .T / D Tr.W�iT / for T 2 Mk.C/. Then �� is a well-defined map on the
semigroup of Murray–von Neumann equivalence classes of equivariant projections
in J �

� ˝ K , where K is the compact operators. The Grothendieck group of the sub-

semigroup for which �� takes finite values is (isomorphic to) a subgroup of KT
0 .J�/,

and we call this the domain of ��.

Proof. Let W1 W T ! Mn.C/ and W2 W T ! Mm.C/ be representations. Let E1 2
Mn.J�/ denote a � ˝ Ad W1 projection, and let E2 2 Mm.J�/ denote a �� ˝
Ad W2 projection. Suppose that ŒE1; W1� and ŒE2; W2� are equivariantly Murray–von
Neumann equivalent ([W], Definition 3.1), meaning there exists some S 2 Mm�n.J�/

such that

S�S D E1; SS� D E2 and W2;zS D SW1;z for all z 2 T :

Then we compute

��.ŒE1; W1�/ D .� ˝ GW1
/.E1/

D �.Trn.W1;�iE1//

D �.Trn.W1;�iS
�S//

D �.Trn.SW1;�iS
�//:

Now, by analytically continuing, SW1;�i D W2;�iS , so

��.ŒE1; W1�/ D �.Trm.W2;�iSS�// D �.Trm.W2;�iE2// D ��.ŒE2; W2�/:

Using the universal property of the Grothendieck group, we see that the Grothendieck
group of equivalence classes for which �� takes finite values may be regarded as a
subgroup of KT

0 .J�/. On this subgroup, �� is well defined.

Theorem 3.16. Let .A; H ; D ; �/ be a weakly QC 1 even modular spectral triple
relative to .N ; �/ of spectral dimension p � 1, and ŒP; V � 2 KT

0 .A/. Let B� � J�

be as in Definition 2.5, and let i W B� ! J� be the inclusion. Then i�.ŒP; V � ˝A

Œ.B� ; FD/�/ 2 KT
0 .J�/ is in the domain of ��. Furthermore,

��.i�.ŒP; V � ˝A Œ.B� ; FD/�// D ResrD.1�p/=2

� 2NP
mD0; even

ˆr
m.Chm.ŒP; V �//

�
:
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Proof. Given the modular spectral triple .A; H ; D ; �; N ; �/, we define Œ.B� ; FD/� 2
KK0;T .A; B�/. Also, let V W T ! Mn.C/ be a representation and P 2 Mn.A/ a
projection which is �� ˝ Ad V invariant, so that we obtain a class ŒP; V � 2 KT

0 .A/.
Define the projections

N˙ ´ ker.P.D ˝ Idn/˙P /

so that

Ind�˝G.P.D ˝ Idn/CP / D .� ˝ G/.NC/ � .� ˝ G/.N�/:

By the construction of the semi-finite spectral triple .C 1.P /; H ˝Cn; D ˝Idn; Mn;

� ˝ G/, we have N˙ 2 K..Mn.N //��˝Ad V ; � ˝ G/, since the N˙ are kernel
projections and

N˙ 	 .P C .P.D ˝ Idn/P /2/�1: (3.8)

Also, the �� ˝ Ad V -invariance of P implies the same invariance for N˙.
We now want to show that we also have N˙ 2 Mn.B�/ so that they define classes

in KT
0 .B�/. We do this by proving that the operator .P C .P.D ˝ Idn/P /2/�1 2

Mn.B�/, then applying eq. (3.8) again to see that N˙ 2 Mn.B�/.
Let Dn ´ Idn ˝ D . Consider the operator .P C .P DnP /2/�1 W P.Cn ˝

B�/ ! P.Cn ˝ B�/. The inverse exists because P acts as the identity on P.Cn ˝
B�/ and .P DnP /2 � 0. The adjointable endomorphisms on P.Cn ˝ B�/ are
PMn.M.B�//P , where M.B�/ is the multiplier algebra, while the compact operators
are PMn.B�/P . A priori, we know only that .P C .P DnP /2/�1 is bounded on
P.Cn ˝ B�/.

To show the compactness of .P C .P DnP /2/�1, we compute

.P C .P DnP /2/�1 D .P C P ŒDn; P �DnP C P D2
nP /�1

D .P C P D2
nP /�1 C Œ.P C P ŒDn; P �ŒDn; P �P

C P D2
nP /�1 � .P C P D2

nP /�1�;

where the last line follows from the observation

P ŒDn; P �P D P ŒDn; P 2�P D P.P ŒDn; P �C ŒDn; P �P /P D 2P ŒDn; P �P D 0;

so that P ŒDn; P �ŒDn; P �P D P ŒDn; P �DnP . The algebraic result ˛�1 � ˇ�1 D
ˇ�1.ˇ � ˛/˛�1 yields

.P C P ŒDn; P �ŒDn; P �P C P D2
nP /�1 � .P C P D2

nP /�1

D �.P C P D2
nP /�1.P ŒDn; P �ŒDn; P �P /

� .P C P ŒDn; P �ŒDn; P �P C P D2
nP /�1:

Hence
.P C .P DnP /2/�1 D .P C P D2

nP /�1B.P /;
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where B.P / is a bounded operator given by

B.P / D 1 � .P ŒDn; P �ŒDn; P �P /.P C P ŒDn; P �ŒDn; P �P C P D2
nP /�1:

Now consider .1 C Dn/�1 W Cn ˝ B� ! Cn ˝ B� . Then we have

.P C P D2
nP /P.1 C Dn/�1P D P C P ŒD2

n ; P �.1 C D2
n/�1P

D P C P C.P /.1 C D2
n/� 1

2 P:
(3.9)

Here C.P / is bounded since P 2 Mn.A/ � OP0 (where OP0 is defined using Dn).
Now .1 C D2/� 1

2 2 B� by definition, so .1 C D2
n/� 1

2 2 Mn.B�/. Hence

P ŒD2
n ; P �.1 C D2

n/�1P 2 PMn.B�/P;

so eq. (3.9) now implies that

.P C P D2
nP /�1 2 PMn.B�/P:

We know B� is an ideal in the endomorphisms, so eq. (3.8) now implies that
N˙ 2 Mn.B�/. By the �� ˝ Ad V -invariance of N˙, we have ŒN˙; V � 2 KT

0 .B�/.
Then

.� ˝ G/.NC/ � .� ˝ G/.N�/ D ��.i�.ŒNC; V � � ŒN�; V �//: (3.10)

In order to compare eq. (3.10) to the Kasparov product ŒP; V � ˝A Œ.B� ; FD/�, we
rewrite the classes ŒN˙; V � as Kasparov modules. We have

ŒNC; V � � ŒN�; V � D �
.NC.Cn ˝ B�/ ˚ N�.Cn ˝ B�/; 0;

�
NC 0

0 �N�

�
; V ˚ V /

	
;

where NC.Cn˝B�/˚N�.Cn˝B�/ is the right Hilbert B�-module, 0 is the operator,�NC 0

0 �N�

�
is the grading and V ˚ V is the T -action giving the equivariance.

Now the operator P.Idn˝FD/CP gives an isomorphism from .1�NC/.Cn˝B�/

to .1�N�/.Cn˝B�/. Hence, the Kasparov module constructed from .1�N˙/.Cn˝
B�/ and P.Idn ˝ FD/CP has trivial class. Consequently,

Œ.NC.Cn ˝ B�/ ˚ N�.Cn ˝ B�/; 0;
�

NC 0

0 �N�

�
; V ˚ V /�

D Œ.Cn ˝ B� ; P.Idn ˝ FD/P; Idn ˝ �; V /�:

Finally, observe that, see [B] for example, we have an explicit representative of
the Kasparov product

ŒP; V � ˝A Œ.B� ; FD/� D Œ.Cn ˝ B� ; P.Idn ˝ FD/P; Idn ˝ �; V /�:

Reiterating the above results, we have proved that

Ind�˝G.P.D ˝ Idn/CP / D .� ˝ G/.NC/ � .� ˝ G/.N�/

D ��.i�.ŒNC; V � � ŒN�; V �//

D ��.i�.Œ.Cn ˝ B� ; P.Idn ˝ FD/P; Idn ˝ 	; V /�//

D ��.i�.ŒP; V � ˝A Œ.B� ; FD/�//:
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4. The local index formula for the Podleś sphere

In this section we will explicitly compute a twisted b; B cocycle for the (modular)
spectral triple over the Podleś sphere first investigated in [DS]. We do this by applying
the modified pseudodifferential calculus of [NT] to the twisted resolvent cocycle of
the previous section. Having done this, we construct some equivariant projections
for a circle action arising from the Haar state and compute the index pairing via a
residue formula, yielding a local index formula.

4.1. The modular spectral triple for the Podleś sphere. We first recall (see [KS])
that the quantum algebra A D O.SUq.2// for q 2 Œ0; 1� is generated by elements a,
b, c, d modulo the relations

ab D qba; ac D qca; bd D qdb; cd D qdc; bc D cb

ad D 1 C qbc; da D 1 C q�1bc

a� D d; b� D �qc; c� D �q�1b; d � D a:

The Podleś sphere, which we denote by B, is (isomorphic to) the unital �-
subalgebra of O.SUq.2// generated by q�1ab, �cd and �q�1bc.

Recall that for each l 2 1
2
N0, there is a unique (up to unitary equivalence)

irreducible corepresentation Vl of the coalgebra A of dimension 2l C1, and that A is
cosemisimple. That is, if we fix a vector space basis in each of the Vl and denote by
t l
r;s 2 A the corresponding matrix coefficients, then we have the following analogue

of the Peter–Weyl theorem.

Theorem 4.1 ([KS], Theorem 4.13). Let Il ´ f�l; �l C 1; : : : ; l � 1; lg. Then the
set ft l

r;s j l 2 1
2
N0; r; s 2 Ilg is a vector space basis of A.

This will be referred to as the Peter–Weyl basis. With a suitable choice of basis
in V 1

2
, one has

a D t
1
2

� 1
2 ;� 1

2

; b D t
1
2

� 1
2 ; 1

2

; c D t
1
2
1
2 ;� 1

2

; d D t
1
2
1
2 ; 1

2

:

The expressions for the Peter–Weyl basis elements as linear combinations of the
polynomial basis elements can be found in [KS], Section 4.2.4.

The algebra A has a useful direct sum decomposition. For m; n 2 Z where m�n

is even, define

AŒm; n� ´ spanfa 1
2 .mCn/bkC 1

2 .m�n/ck;

bkC 1
2 .m�n/ckd � 1

2 .mCn/ j k C minf0; 1
2
.m � n/g 2 N0g;

and for m � n odd let AŒm; n� ´ f0g. Then

A D L
m;n2Z

AŒm; n� and AŒm1; n1� � AŒm2; n2� � AŒm1 C m2; n1 C n2�:
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With this notation, we have B D L
m2Z AŒm; 0�.

Let h be the Haar state on the universal C �-completion of the �-algebra A, whose
value on the Peter–Weyl basis is h.t l

r;s/ D ıl;0. Define an automorphism # on A by

#.a/ D q2a; #.b/ D b; #.c/ D c; #.d/ D q�2d:

Then # is the modular automorphism for the Haar state, in the sense that h.˛ˇ/ D
h.#.ˇ/˛/ for all ˛; ˇ 2 A. For all n 2 Z define

Hn ´ L2.spanft l
r; n

2
j l 2 n

2
C N0; r 2 Ilg; h/:

The left action of the dual Hopf algebra to A provides the unbounded operators
@e W Hn ! HnC2 and @f W Hn ! Hn�2 given by

@e.t l
r;s/ D

q
Œl C 1

2
�2q � Œs C 1

2
�2q t l

r;sC1; @f .t l
r;s/ D

q
Œl C 1

2
�2q � Œs � 1

2
�2q t l

r;s�1;

where our definition of the q-number Œa�q is

Œa�q ´ q�a � qa

q�1 � q
D Q.q�a � qa/ for any a 2 C;

and we abbreviated Q ´ .q�1 � q/�1 2 .0; 1/. Finally, we define unbounded
linear operators 
R, @k on A � L

Hn by


R.t l
r;s/ ´ q2r t l

r;s; @k F t l
i;j ´ qj t l

i;j :

The left actions of e and f are twisted derivations in the sense that

@e.˛ˇ/ D @e.˛/@k.ˇ/ C @�1
k .˛/@e.ˇ/;

@f .˛ˇ/ D @f .˛/@k.ˇ/ C @�1
k .˛/@f .ˇ/

for ˛; ˇ 2 A.

Definition 4.2. Define the Hilbert space H ´ H1 ˚ H�1, and represent B on H

by left multiplication. The Hilbert space H is graded by � ´ �
1 0
0 �1

�
. Define the

weight ‰R on B.H / by ‰R.T / ´ Tr.

� 1

2

R T

� 1

2

R /. Finally, on a suitable domain

in H , define the self-adjoint operator D ´ � 0 @e

@f 0

�
.

In fact .B; H ; D ; �/ defines an honest spectral triple, [DS], (i.e., a modular spec-
tral triple with von Neumann algebra B.H / and weight given by the operator trace)
which is "-summable for all " > 0.

Lemma 4.3. The data .B; H ; D ; B.H /; ‰R/ defines a weakly QC 1 even modular
spectral triple, which is finitely summable with spectral dimension 2.
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Proof. We first show that the data produces a modular spectral triple. Certainly B is
a separable �-subalgebra of B.H /, and by construction the modular automorphism
group of ‰R is #�1

t , and B consists of analytic vectors for #�1
t .

Also, the commutators ŒD ; ˇ� extend to bounded operators for all ˇ 2 B, given
by

dˇ ´ ŒD ; ˇ� D
 

0 q� 1
2 @e.ˇ/

q
1
2 @f .ˇ/ 0

!
: (4.1)

We also observe that � D �� and �2 D I , and by construction �D C D� D 0.
Now, for T 2 B.H / set T C D .1C�/T .1C�/=4 and T � D .1��/T .1��/=4.

From the definition of the operator trace, and using the normalised Peter–Weyl basis
�l

r;j ´ t l
r;j =kt l

r;j k, we find for T � 0 that

‰R.T / D P
l;r

q�2r.h�l
r;1=2

; T C�l
r;1=2

i C h�l

r;� 1
2

; T ��l

r;� 1
2

i/:

We first observe from the above formula that the finite rank operators are in the
domain of ‰R, so ‰R is semi-finite. Next, we see that ‰R is a sum of vector states
with orthogonal support, as the Peter–Weyl basis is orthogonal. Hence ‰R is strictly
semi-finite.

The Peter–Weyl basis elements can be used to construct a common eigenbasis for
D and 
R on H , so the spectral projections of D and 
R commute. We conclude
that D is affiliated to the fixed point algebra M ´ B.H /#�1

. All that remains to be
proved is that .1 C D2/� 1

2 2 K.M; ‰RjM/. To establish this, we observe that D2

has the following spectral projections

Pl

 
tk

r; 1
2

0

!
´ ıl;k

 
tk

r; 1
2

0

!
; Pl

 
0

tk

r;� 1
2

!
´ ıl;k

 
0

tk

r;� 1
2

!
;

for l D 1=2; 3=2; : : : , which correspond to the eigenvalues ŒlC 1
2
�2q . Now ‰R.Pl/ DPl

rD�l q�2r D Œ2l C 1�q , and the sum
P

lD 1
2 ; 3

2 ;:::.1 C Œl C 1
2
�2q/� 1

2 < 1 implies
that

.1 C D2/� 1
2 D P

lD 1
2 ; 3

2 ;:::

.1 C Œl C 1
2
�2q/� 1

2 Pl

is norm convergent. It follows that .1 C D2/� 1
2 2 K.M; ‰RjM/ and so

.B; H ; D ; �; B.H /; ‰R/ is a modular spectral triple. The spectral dimension is
shown to be 2 in [KW].

We now prove that B � OP0, ŒD ; B� � w-OP0 so that the modular spectral
triple is weakly QC 1. The first statement is proved in [NT], Proposition 3.2. To
prove the second statement we show that for all ˇ 2 B and z 2 C, the operators
.1 C D2/�zŒD ; ˇ�.1 C D2/z 2 B.H /, as per Lemma 3.2. We begin by observing
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that D2 has eigenbasis given by

D2

 
t l

r; 1
2

0

!
D Œl C 1

2
�2

 
t l

r;
1
2

0

!
; D2

 
0

t l

r;� 1
2

!
D Œl C 1

2
�2

 
0

t l

r;� 1
2

!
:

Now we consider ˇ 2 B to be of the form t
p
r;0 (as finite linear combinations

of these elements span B). Then the commutator ŒD ; t
p
r;0� D

�
0 �1t

p
r;1

�2t
p
r;�1

0

�
for

some coefficients �1; �2. We expand the product t
p
r;0t l

s; 1
2

using the Clebsch–Gordan

coefficients (see [DLSSV], [KS]), giving

.1 C D2/�zt
p
r;0.1 C D2/z

 
t l

s; 1
2

0

!

D .1 C Œl C 1
2
�2q/z

lCpX
kDjl�pj

.1 C Œk C 1
2
�2q/�zcp;l;k

s;r

 
tk

sCr; 1
2

0

!
;

where c
p;l;k
s;r is some product of Clebsch–Gordan coefficients that will be subsumed

later.
The norm of .1 C D2/�zt

p
r;0.1 C D2/z

�
t l

s; 1
2

0

�
can be computed using the orthog-

onality of the Peter–Weyl basis, so




.1 C D2/�zt
p
r;0.1 C D2/z

 
t l

s; 1
2

0

!





2

D
lCpX

kDjl�pj

 
1 C Œl C 1

2
�2

1 C Œk C 1
2
�2

!2Re.z/

jcp;l;k
s;r j2







 

tk

sCr; 1
2

0

!





2

:

Let Ml;p ´ maxjl�pj	k	lCpf..1 C Œl C 1
2
�2/=.1 C Œk C 1

2
�2//2Re.z/g. Then




.1 C D2/�zt

p
r;0.1 C D2/z

 
t l

s; 1
2

0

!





2

	 Ml;p

lCpX
kDjl�pj

jcp;l;k
s;r j2







 

tk

sCr; 1
2

0

!





2

D Ml;p






t
p
r;0

 
t l

s; 1
2

0

!





2

:

It remains to show that there exist finite Mp such that Ml;p 	 Mp for all l � 0.
Let "k D Q.1 � q2k/ so that Œk�q D q�k"k . Then for all l � p C 1

2
: if

1 C Œl C 1
2
�2

1 C Œjl � pj C 1
2
�2

D
"2

lC 1
2

C q2lC1

q2p"2

l�pC 1
2

C q2lC1
;
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then

"2
1

1 C q2pQ2
	 1 C Œl C 1

2
�2

1 C Œjl � pj C 1
2
�2

	 Q2 C 1

q2p"2
1

:

It follows that the operator .1 C D2/�1t
p
r;0.1 C D2/ is bounded on the set of

vectors of the form
�

t l

s; 1
2

0

�
. The same calculation can be performed for the vectors� 0

t l

s;� 1
2

�
, and again for the operators

�
0 t

p
r;1

0 0

�
and

�
0 0

t
p
r;�1

0

�
, completing the proof.

4.2. The residue cocycle for the Podleś sphere. Lemma 4.3 shows that the modular
spectral triple .B; H ; D/ satisfies the hypotheses of Theorem 3.14. Hence we can
employ the resolvent cocycle to compute index pairings with equivariant K-theory,
or at least those classes which can be represented as projections over B. As 
R

implements the modular automorphism # , then it follows that the weight ‰R is #�1-
twisted. The resolvent cocycle, which we denote by .�r

m/mD0;2, therefore lives in
#�1-twisted cohomology.

To simplify the computation of the resolvent cocycle, we would like to have a
version of the pseudodifferential calculus. A simple replacement for the pseudodif-
ferential calculus for this example was presented in [NT].

Lemma 4.4 ([NT], Corollary 3.3). Define 
 ´
�

q�1 0
0 q

�
on H1 ˚ H�1. For any

ˇ 2 B there exists an analytic function z 7! M.z/ 2 w-OP0 � B.H / with at most
linear growth on vertical strips such that

jDj�zdˇ D dˇ
zjDj�z C M.z/jDj�z�1 D 
�zdˇjDj�z C M.z/jDj�z�1:

We can now use this pseudodifferential calculus to simplify the computation of the
resolvent cocycle, .�r

0 ; �r
2/, and arrive at a twisted version of the local index formula.

The first simplification we make is to discard the 1 from the resolvent, replacing
Rs.�/ D .� � .1 C s2 C D2//�1 with Rs.�/ D .� � .s2 C D2//�1. This is
possible because D is invertible in this example, so we can employ the method of
[CPRS4], Section 5.3, in particular [CPRS4], Proposition 5.20. (The transgression
cochain defined there is well defined for weakly QC 1 modular spectral triples since
D 2 OP1, by essentially the same arguments as we employed for the resolvent
cocycle). Removing the 1 from the resolvents modifies the resolvent cocycle by
coboundaries and cochains holomorphic at r D �1

2
.

Before proceeding, we recall the detailed summability properties of the spectral
triple .B; H ; D/ computed in [KW].

Lemma 4.5 ([KW], Proposition 1). The function r 7! Tr.
�1
R

1
2
.1 ˙ �/jD j�3�2r/

has a meromorphic continuation to the complex plane which is holomorphic for
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Re.r/ > �1
2

and has a simple pole at r D �1
2
. Furthermore, for all ˇ 2 B we have

the equality

ResrD� 1
2

Tr.
�1
R

1
2
.1 ˙ �/ˇjD j�3�2r/ D .q�1 � q/

2 ln q�1
".ˇ/;

where " is the counit of A restricted to B satisfying ".t l
i;0/ D ıi;0.

The degree zero component �r
0 of the resolvent cocycle is computed from the

definition using the Cauchy formula and [CPRS3]. This yields the formula, for
a0 2 B,

�r
0.a0/ D 2

Z 1

0

Tr
�


�1
R �

1

2�i

Z
l

��1�ra0Rs.�/d�

�
ds

D 	.1
2
/	.r C 1

2
/

	.r C 1/
Tr.
�1

R �a0jD j�2r�1/:

Since Tr.
�1
R � jD j�2r�1/ D 0 for all sufficiently large r 2 R, then taking the

trivial continuation to the whole real line gives �r
0.I / D 0 for all r 2 R. This is the

only evaluation of �r
0 needed to compute the index pairing later on.

We can compute ResrD� 1
2

�r
0 explicitly, but as the calculation is quite lengthy

and we do not require this full computation for computing the index pairing, we just
quote the result; see [S] for full details.

The functional �0 ´ ResrD� 1
2

�r
0 is supported on the span of the powers .bc/k ,

k D 0; 1; 2 : : : . We have seen that �0.I / D 0. For the remaining values we have

ResrD� 1
2

�r
0.bc/ D 1

2

�
1 � �

ln q�1

�
� qQ;

where � is Euler’s constant. For k D 0; 1; 2; : : : and with h the Haar state, we have

ResrD� 1
2

�r
0..bc/kC2/ D .�1/kC1qkC1

1 � q2kC2
D .�1/kC1

q�k�1 � qkC1
D �h..bc/k/

q�1 � q
:

We now compute the degree two term �r
2 of the resolvent cocycle starting with

the definition,

�r
2.a0; a1; a2/

D 4

Z 1

0

s2 Tr
�


�1
R �

1

2�i

Z
l

��1�ra0Rs.�/da1Rs.�/da2Rs.�/d�

�
ds:

We proceed by employing the pseudodifferential calculus described in Lemma 4.4
in order to rewrite the expression a0Rs.�/da1Rs.�/da2Rs.�/ by moving all the
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resolvents to the right. From Lemma 4.4, for each ˇ 2 B there exist bounded
operators M1, M2 such that

.� � s2 � D2/dˇ D dˇ.x� � s2 � 
�2D2/ C M1jD j;
.� � s2 � 
�2D2/dˇ D dˇ.� � s2 � D2/ C M2jD j:

This gives the formulae

Rs.�/dˇ D dˇ.� � s2 � 
�2D2/�1 � Rs.�/M1jD j.� � s2 � 
�2D2/�1;

dˇRs.�/ D .� � s2 � 
�2D2/�1dˇ C .� � s2 � 
�2D2/�1M2jD jRs.�/:
(4.2)

Observe that the operators Rs.�/M1jD j.� � s2 � 
�2D2/�1 and .� � s2 �

�2D2/�1M2jD jRs.�/ are in w-OP�3 by Lemma 4.4. Using this observation,
and eq. (4.2), we can move all the resolvents to the right, and in doing so we only
introduce errors which are functions holomorphic at r D �1

2
. More precisely, for

any a0; a1; a2 2 B, we obtain the formula

�r
2.a0; a1; a2/ D 4

Z 1

0

s2 Tr
�


�1
R �a0da1da2

1

2�i

Z
l

��1�rRs.�/.� � s2

� 
�2D2/�1Rs.�/d�

�
ds

D 4

Z 1

0

s2 Tr
�


�1
R �a0da1da2

1

2�i

Z
l

��1�r.� � s2

� 
�2D2/�1Rs.�/2d�

�
ds

modulo functions holomorphic at r D �1
2

. The integralZ
l

��1�r.� � s2 � 
�2D2/�1Rs.�/2d� (4.3)

is evaluated on the spectra of the operators .��s2 �
�2D2/�1 and Rs.�/2. We want
to use the Cauchy integral formula, however because there are two poles to consider,
� D s2 C D2 and � D s2 C 
�2D2, we outline the process.

First note that 
 and D2 are commuting operators with discrete spectra, and they
can be simultaneously diagonalised with respect to the direct sum H D H1 ˚ H�1.
Indeed, the integrand in eq. (4.3) has the eigenbasis

n�
t l

i; 1
2

0

�
;
� 0

t l

i;� 1
2

�
j l � 1

2
2 N0; i 2 f�l; �l C 1; : : : ; lg

o
; (4.4)

on which 
�2 simply acts via multiplication by the scalar q˙2 ¤ 1. We specialise
to the eigenbasis in H1, where 
�2 acts via multiplication by q2. The argument we
now present can be applied analogously to the remaining eigenbasis elements.
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On each eigenvector, the integral in eq. (4.3) reduces to a scalar integral over �,
where we may apply the usual Cauchy integral formula. The integrand of this scalar
integral has two poles; on the eigenbasis elements in H1 described in eq. (4.4) these
poles are �1 D s2 C q2Œl C 1

2
�2q and �2 D s2 C Œl C 1

2
�2q , with �1 < �2. The contour

of integration l is a vertical line to the left of the spectrum for all s � 0.

�

�

N

N

J

I

� �a

l

�1 �2

In order to apply the Cauchy integral formula, we modify the contour l by adding
a vertical line l 0 D fa0 C iv j �1 < a0 < �2; v 2 Rg between the poles �1 and �2.
We integrate along this line in both directions, allowing us to split the integral into
two parts.

We denote by 	1 the contour obtained by going up along l and down along l 0, and
denote by 	2 the remaining integration along l 0. Lemma 3.6 shows that the horizontal
dashed integrals go to zero.

�

�

N

N

N

N

H

H

J

I

J

I

� �a

l l 0

�1 �2

	1 	2

Define

f1.�/ ´ ��1�rRs.�/Rs.�/; f2.�/ ´ ��1�r.� � s2 � 
�2D2/�1:

By construction, the function f1 is holomorphic on the domain defined by the contour
	1, while f2 is holomorphic on the domain defined by 	2. Therefore, we may apply
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the (scalar) Cauchy integral formula for each contour 	1 and 	2, so we writeZ
l

��1�r.� � s2 � 
�2D2/�1Rs.�/2d�

D
Z

�1

f1.�/

.� � s2 � 
�2D2/
d� C

Z
�2

f2.�/

.� � s2 � D2/2
d�

This yields

1

2�i

Z
l

��1�r.� � s2 � 
�2D2/�1Rs.�/2d�

D f1.s2 C 
�2D2/ C f 0
2.s2 C D2/

D .s2 C 
�2D2/�1�r.
�2 � 1/�2D�4 � .1 C r/.s2 C D2/�2�r

� .1 � 
�2/�1D�2 � .s2 C D2/�1�r.1 � 
�2/�2D�4:

Inserting the result of the Cauchy integral into our previous formula for �r
2 and

evaluating the s-integrals (see for example [CPRS3], Lemma 5.9) yields

�r
2.a0; a1; a2/

D
p

�	.r � 1
2
/

	.r C 1/
Tr.
�1

R �a0da1da2
2r�1jD j�2rC1.
�2 � 1/�2D�4/

�
p

�	.r C 1
2
/

	.r C 1/
Tr.
�1

R �a0da1da2jD j�2r�1.1 � 
�2/�1D�2/

�
p

�	.r � 1
2
/

	.r C 1/
Tr.
�1

R �a0da1da2jD j�2rC1.1 � 
�2/�2D�4/;

modulo functions holomorphic at r D �1
2

. Writing 	.r C 1
2
/ D .r � 1

2
/	.r � 1

2
/

and collecting terms, �r
2.a0; a1; a2/ is given by

p
�	.r � 1

2
/

	.r C 1/
Tr.
�1

R �a0da1da2jD j�2r�3.1 � 
�2/�2

� .
2r�1 � .r � 1
2
/.1 � 
�2/ � 1//:

Observe that

	.r � 1
2
/.
2r�1 � .r � 1

2
/.1 � 
�2/ � 1/

D 	.r � 1
2
/.
�2.
2rC1 � 1/ � .r C 1

2
/.1 � 
�2//

D .r C 1
2
/	.r � 1

2
/.
�2.1 C ln 
2/ � 1/ C 	.r � 1

2
/
�2

1X
nD2

.ln 
2/n

nŠ
.r C 1

2
/n:

(4.5)
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Now 	.r � 1
2
/ has a simple pole at r D �1

2
, so the function in eq. (4.5) is holomorphic

at r D �1
2

with constant term 1 � 
�2.1 C ln 
2/. Therefore

�2.a0; a1; a2/ ´ ResrD� 1
2

�r
2.a0; a1; a2/

D ResrD� 1
2

Tr.
�1
R �a0da1da2jD j�2r�3C /;

where C D .1 � 
�2.1 C ln 
2//.1 � 
�2/�2 D .
2 � 1 � ln 
2/.
 � 
�1/�2 is a
constant diagonal matrix. Finally, eq. (4.1) yields

a0da1da2 D
�

a0@e.a1/@f .a2/ 0

0 a0@f .a1/@e.a2/

�
;

and so invoking Lemma 4.5 gives the formula

�2.a0; a1; a2/ D 1

2.q�1 � q/ ln q�1
..q�2 � 1 � ln q�2/".a0@e.a1/@f .a2//

� .q2 � 1 � ln q2/".a0@f .a1/@e.a2///:

(4.6)

4.3. Some equivariant projections and their Chern characters. Our aim is to
construct representatives in the equivariant K-theory KT

0 .B/ for the action of the
modular automorphism group ‰R, which is given by �

‰R
t D #�1

t . These representa-
tives will take the form of projections p 2 MN �N .B/ together with a representation
V W T ! MN �N .C/ such that p is #�1 ˝ Ad.V /-invariant. See [W] for similar
constructions.

For n 2 1
2
Z, define

T l
n ´

0
BBB@

t l
l;n

t l
l�1;n

:::

t l
�l;n

1
CCCA and Pn ´ T jnj

n T jnj�
n :

More explicitly,

Pn D

0
BBBBB@

t
jnj
jnj;nt

jnj�
jnj;n t

jnj
jnj;nt

jnj�
jnj�1;n

: : : t
jnj
jnj;nt

jnj�
�jnj;n

t
jnj
jnj�1;n

t
jnj�
jnj;n

: : :
: : :

:::
:::

: : :
: : :

:::

t
jnj
�jnj;nt

jnj�
jnj;n : : : : : : t

jnj
�jnj;nt

jnj�
�jnj;n

1
CCCCCA ;

.Pn/r;s D t
jnj
jnj�rC1;n

t
jnj�
jnj�sC1;n

:

By construction, P �
n D Pn and Pn 2 M.2jnjC1/�.2jnjC1/.B/. Furthermore,

T l�
n T l

n D
lP

pD�l

t l�
p;n t l

p;n D Idn
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and hence P 2
n D Pn, so Pn is a projection. Now define �j D q�2j C2 2 Œ1; 1/ for

j 2 f1; 2; : : : ; 2jnj C 1g and define Vn W T ! M2jnjC1.C/ by

Vn;t ´

0
BBBB@

�it
1 0 : : : 0

0 �it
2

: : :
:::

:::
: : :

: : : 0

0 : : : 0 �it
2jnjC1

1
CCCCA :

While we have defined Vn to be a real action on M.2jnjC1/�.2jnjC1/.C/, the action
is periodic and so induces a circle action. Observe that

�t ..Pn/r;s/ D q�2it.jnj�rC1�.jnj�sC1//t
jnj
jnj�rC1;n

t
jnj�
jnj�sC1;n

D q2it.r�s/.Pn/r;s

and

Ad.Vn;t /.Pn/r;s D .Vn;tPnV �1
n;t /r;s D �it

r .Pn/r;s.�it
s /�1 D q2it.s�r/.Pn/r;s:

So Pn is #�1˝Ad.Vn/-invariant. We define the weight G W M.2jnjC1/�.2jnjC1/.C/ !
C by

G.X/ ´ Tr.Vn;�iX/

for X 2 M.2jnjC1/�.2jnjC1/.C/ and .Vn;�i /k;m D ık;mq�2kC2.
We have demonstrated that Pn is an equivariant projection for the circle action

represented by Vn, and therefore defines a class in KT
0 .B/. We now write down the

Chern character of this representative, eq. (3.7).

Lemma 4.6. The Chern character of ŒPn; Vn� is

Ch0.ŒPn; Vn�/ D q2.n�jnj/I;

Ch2.ŒPn; Vn�/ D �2
2jnjP

k0;k1;k2D0

q�2k0.t
jnj
jnj�k0;n

t
jnj�
jnj�k1;n

� 1
2
ık0;k1

/

˝ t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

˝ t
jnj
jnj�k2;n

t
jnj�
jnj�k0;n

:

Proof. Using eq. (3.7) we have

Ch0.ŒPn; Vn�/ D
2jnjC1P

k0;k1D1

.Vn;�i /k1;k0
.Pn/k0;k1

D
2jnjC1P

k0;k1D1

ık1;k0
q�2k0C2t

jnj
jnj�k0C1;n

t
jnj�
jnj�k1C1;n

:

Next we apply the formulae for adjoints, .t l
i;j /� D .�q/j �i t l�i;�j and t l

i;j D
.�q/j �i .t l�i;�j /�, along with the unitary relations for the Peter–Weyl basis elements,
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[KS], Proposition 16, Chapter 4, to obtain

Ch0.ŒPn; Vn�/ D
2jnjP
kD0

q�2kq2.n�jnjCk/t
jnj�
k�jnj;�n

t
jnj
k�jnj;�n

D q2.n�jnj/I:

Finally,

Ch2.ŒPn; Vn�/

D �2Š
1Š

2jnjC1P
k0;k1;k2;k3D1

.Vn;�i /k3;k0
.Pn � 1

2
/k0;k1

˝ .Pn/k1;k2
˝ .Pn/k2;k3

D �2
2jnjC1P

k0;k1;k2D1

.Vn;�i /k0;k0
.Pn � 1

2
/k0;k1

˝ .Pn/k1;k2
˝ .Pn/k2;k0

D �2
2jnjP

k0;k1;k2D0

q�2k0.t
jnj
jnj�k0;n

t
jnj�
jnj�k1;n

� 1
2
ık0;k1

/

˝ t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

˝ t
jnj
jnj�k2;n

t
jnj�
jnj�k0;n

:

4.4. The index pairing. The resolvent index formula established in Section 3.3
demonstrates that the index pairing defined by the modular spectral triple
.B; H ; D ; B.H /; ‰R/ and the equivariant K-theory class defined by the projection
Pn is given by the formula

Ind‰R˝G.Pn.D ˝ Id2jnjC1/CPn/ D �2.Ch2.ŒPn; Vn�// C �0.Ch0.ŒPn; Vn�//:

Now that we have explicit formulae for the cocycle .�0; �2/ and the cycle
Ch�.ŒPn; Vn�/, the computation is straightforward.

Proposition 4.7. The evaluation of �2 on Ch2.ŒPn; Vn�/ is

�2.Ch2.ŒPn; Vn�// D q�2jnjŒ2n�q:

Proof. Recalling the formula for �2 from eq. (4.6) and from Lemma 4.6 the expression
for Ch2.ŒPn; Vn�/, we compute

"..t
jnj
jnj�k0;n

t
jnj�
jnj�k1;n

� 1
2
ık0;k1

/@e.t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

/@f .t
jnj
jnj�k2;n

t
jnj�
jnj�k0;n

//

D .ıjnj�k0;nıjnj�k1;n � 1
2
ık0;k1

/".@e.t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

//".@f .t
jnj
jnj�k2;n

t
jnj�
jnj�k0;n

//

D ık0;k1
.ık0;jnj�n � 1

2
/".@e.t

jnj
jnj�k1;n

t
jnj�
jnj�k2;n

//".@f .t
jnj
jnj�k2;n

t
jnj�
jnj�k1;n

//:

We observe that this expression is zero for the case n D 0, because @e.I / D
@f .I / D 0. So for the remainder we consider only nonzero n. Observe that

t
jnj
jnj�k2;n

t
jnj�
jnj�k1;n

D .t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

/�. Now we use the property that .g F ˛/� D
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S.g/� F ˛� for all g 2 Uq.su2/ and ˛ 2 A, so that ".@e.˛�// D �q".@f .˛/�/ and
".@f .˛�// D �q�1".@e.˛/�/. Then

"..t
jnj
jnj�k0;n

t
jnj�
jnj�k1;n

� 1
2
ık0;k1

/@e.t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

/@f .t
jnj
jnj�k2;n

t
jnj�
jnj�k0;n

//

D �q�1ık0;k1
.ık0;jnj�n � 1

2
/".@e.t

jnj
jnj�k1;n

t
jnj�
jnj�k2;n

//2;

and similarly

"..t
jnj
jnj�k0;n

t
jnj�
jnj�k1;n

� 1
2
ık0;k1

/@f .t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

/@e.t
jnj
jnj�k2;n

t
jnj�
jnj�k0;n

//

D �q�1ık0;k1
.ık0;jnj�n � 1

2
/".@e.t

jnj
jnj�k2;n

t
jnj�
jnj�k1;n

//2:

Using the twisted derivation property of @e on A, we find, for r; s 2 f0; : : : ; 2jnjg,

".@e.t
jnj
jnj�r;n

t
jnj�
jnj�s;n

//2

D ".@e.t
jnj
jnj�r;n

/@k.t
jnj�
jnj�s;n

/ C @�1
k .t

jnj
jnj�r;n

/@e.t
jnj�
jnj�s;n

//2

D q�2n.".@e.t
jnj
jnj�r;n

//ıs;jnj�n C ır;jnj�n".@e.t
jnj�
jnj�s;n

///2

D q�2n.".@e.t
jnj
jnj�r;n

//ıs;jnj�n � qır;jnj�n".@f .t
jnj
jnj�s;n

///2

D q�2n.".�
jnj
nC1t

jnj
jnj�r;nC1

/ıs;jnj�n � qır;jnj�n".�jnj
n t

jnj
jnj�s;n�1

//2

D q�2n.�
jnj
nC1ır;jnj�n�1ıs;jnj�n � q�jnj

n ır;jnj�nıs;jnj�nC1/2

D q�2n..�
jnj
nC1/2ır;jnj�n�1ıs;jnj�n C q2.�jnj

n /2ır;jnj�nıs;jnj�nC1/;

where �l
j D .Œl C j �qŒl � j C 1�q/

1
2 . Combining these results with the formula for

ResrD� 1
2

�r
2 and the expression for Ch2.ŒPn; V �/ gives

�2.Ch2.ŒPn; Vn�//

D �2

2.q�1 � q/ ln q�1

2jnjX
k0;k1;k2D0

q�2k0.�q�1ık0;k1
.ık0;jnj�n � 1

2
//

� ..q�2 � 1 � ln q�2/".@e.t
jnj
jnj�k1;n

t
jnj�
jnj�k2;n

//2

� .q2 � 1 � ln q2/".@e.t
jnj
jnj�k2;n

t
jnj�
jnj�k1;n

//2/

D q�1

.q�1 � q/ ln q�1

2jnjX
k1;k2D0

q�2k1.ık1;jnj�n � 1
2
/q�2n

� ..q�2 � 1 � ln q�2/..�
jnj
nC1/2ık1;jnj�n�1ık2;jnj�n

C q2.�jnj
n /2ık1;jnj�nık2;jnj�nC1/

� .q2 � 1 � ln q2/..�
jnj
nC1/2ık2;jnj�n�1ık1;jnj�n

C q2.�jnj
n /2ık2;jnj�nık1;jnj�nC1//:
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Using .ık1;jnj�n � 1
2
/ık1;jnj�n D 1

2
ık1;jnj�n and .ık1;jnj�n � 1

2
/ık1;jnj�n˙1 D

�1
2
ık1;jnj�n˙1 yields

ResrD� 1
2

�r
2.Ch2.ŒPn; Vn�//

D q�1

.q�1 � q/ ln q�1

2jnjX
k1;k2D0

1
2
q�2k1�2n..q�2 � 1 � ln q�2/.�.�

jnj
nC1/2

� ık1;jnj�n�1ık2;jnj�n C q2.�jnj
n /2ık1;jnj�nık2;jnj�nC1/

� .q2 � 1 � ln q2/..�
jnj
nC1/2ık1;jnj�nık2;jnj�n�1

� q2.�jnj
n /2ık1;jnj�nC1ık2;jnj�n//:

We can reduce the different summations over k1 and k2 down to two distinct sums,
either

2jnjX
kD0

ık;jnj�n�1 D ın;�jnj or
2jnjX
kD0

ık;jnj�nC1 D ın;jnj:

Hence

�2.Ch2.ŒPn; Vn�//

D q�1

2.q�1 � q/ ln q�1
..q�2 � 1 � ln q�2/.�.�

jnj
nC1/2ın;�jnjq�2.jnj�n�1/�2n

C q2.�jnj
n /2ın;jnjq�2.jnj�n/�2n/ � .q2 � 1 � ln q2/..�

jnj
nC1/2ın;�jnj

� q�2.jnj�n/�2n � q2.�jnj
n /2ın;jnjq�2.jnj�nC1/�2n//

D q�1

2.q�1 � q/ ln q�1
..q�2 � 1 � ln q�2/.�.�

jnj
1�jnj/

2ın;�jnjq�2jnjC2

C q2.�
jnj
jnj/

2ın;jnjq�2jnj/ � .q2 � 1 � ln q2/..�
jnj
1�jnj/

2ın;�jnjq�2jnj

� q2.�
jnj
jnj/

2ın;jnjq�2jnj�2//:

Observe that .�
jnj
1�jnj/

2 D .�
jnj
jnj/

2 D Œ2jnj�q as Œ1�q D 1, and so

�2.Ch2.ŒPn; Vn�//

D q�1

2.q�1 � q/ ln q�1
Œ2jnj�qq�2jnj

� ..q�2 � 1 � ln q�2/q2.ın;jnj � ın;�jnj/ � .q2 � 1 � ln q2/.ın;�jnj � ın;jnj//

D q�2jnj�1Œ2jnj�q
2.q�1 � q/ ln q�1

.ın;jnj � ın;�jnj/..q�2 � 1 � ln q�2/q2 C .q2 � 1 � ln q2//

D q�2jnj�1Œ2jnj�q
2.q�1 � q/ ln q�1

.ın;jnj � ın;�jnj/.�q2 ln q�2 � ln q2/
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D q�2jnj�1Œ2jnj�q
2.q�1 � q/ ln q�1

.ın;jnj � ın;�jnj/.1 � q2/ ln q�2

D q�2jnjŒ2jnj�q.ın;jnj � ın;�jnj/:

Considering n ¤ 0, then .ın;jnj � ın;�jnj/ D sgn.n/ and sgn.n/Œ2jnj�q D Œ2n�q .
As Œ0�q D 0, then for all n 2 1

2
Z we have

�2.Ch2.ŒPn; Vn�// D q�2jnjŒ2n�q:

We can now write down the index pairing and compute the classical limit as
q ! 1.

Theorem 4.8. For N 2 Z, the index pairing of the modular spectral triple
.B; H ; D ; B.H /; ‰R/ with the equivariant projections PN=2 is

Ind.PN=2.D ˝ IdjN jC1/CPN=2/ D q�jN jŒN �q:

The classical limit of the index as q ! 1 is

lim
q!1

Ind.PN=2.D ˝ IdjN jC1/CPN=2/ D N:

Proof. First, the degree zero contribution is �0.Ch0.ŒPN=2; VN=2�// D 0. This fol-
lows from �0.I / D 0, and from Lemma 4.6, which gives Ch0.ŒPN=2; VN=2�/ D
q.N �jN j/I . Thus the index pairing is computed just with the degree 2 part, which
comes from Proposition 4.7. To compute the classical limit of the index we recall
that limq!1ŒN �q D N (see for example [KS]).

We conclude with some comments on how the index depends on the representation
in the equivariant K-theory class. For any T -algebra A, the group KT� .A/ is a module
over the group ring ZŒT �. This allows us to hold the projection or unitary constant,
but vary the representation. This does change the equivariant K-theory class, and this
can be detected by the index pairing.

In particular, if the Vn used here is rescaled by q2jnjit to obtain a new representation
V 0

n, then the index is likewise rescaled by q2jnj, and we obtain an index of Œ2n�q . This
observation helps in comparing our results with other authors’ results, particularly
Wagner’s, [W]. We thank the referee for pointing this out to us.
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