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The groupoid C*-algebra of a rational map
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Abstract. This paper contains a quite detailed description of the C*-algebra arising from the
transformation groupoid of a rational map of degree at least two on the Riemann sphere. The
algebra is decomposed stepwise via extensions of familiar C*-algebras whose nature depend
on the structure of the Julia set and the stable regions in the Fatou set, as well as on the behaviour
of the critical points.
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1. Introduction and presentation of results

In noncommutative geometry it is a basic principle, referred to as Connes’ dictum
in [Kh], that a quotient space should be replaced with a noncommutative algebra,
preferably a C*-algebra, in the cases where the topology of the quotient is ill-behaved.
Following this dictum the procedure should go via an intermediate step which first
produces a groupoid, and the noncommutative algebra should then arise as the convo-
lution algebra of the groupoid. The structure of the resulting noncommutative algebra
offers to compensate for the poor topology which the quotient very often is equipped
with, and at the same time it encodes the equivalence relation defining the quotient
space which is otherwise lost.

A standard example of the construction is the classical crossed product arising
from a group acting on a locally compact Hausdorff space which in this picture is
a noncommutative substitute for the quotient of the space under the orbit equiva-
lence relation given by the action. There are several other examples of this type of
construction arising from dynamical systems. The C*-algebras introduced by D. Ru-
elle in [Ru] are noncommutative algebras representing the quotient space under the
homoclinic equivalence relation arising from a hyperbolic homeomorphism, while
the extension of Ruelles approach by I. Putnam ([Pu]) also allows to consider the
quotient by the heteroclinic equivalence relations of the same type of dynamics. The
full orbit equivalence relation arising from a non-invertible continuous self map can
also serve as input when the map is locally injective. For local homeomorphisms
the construction was developed in stages by J. Renault ([Re]), V. Deaconu ([De]) and
C. Anantharaman-Delaroche ([An]), while the extension to locally injective maps was
carried out in [Th1]. In all cases, including the work of Ruelle and Putnam, a major
problem is to equip the natural groupoid with a sufficiently nice topology which al-
lows the construction of the convolution C*-algebra. The best one can hope for is to
turn the groupoid into a locally compact Hausdorff groupoid in such a way that the
range map becomes a local homeomorphism. In this case the groupoid is said to be
étale. These crucial properties come relatively cheap for the transformation groupoid
of Renault, Deaconu and Anantharaman-Delaroche, while it is harder to obtain them
for the groupoids in Putnam’s construction ([PS]). In a recent work ([Th2]) it was
shown that it is possible to formulate the definition of the transformation groupoid of
a homeomorphism or a local homeomorphism in such a way that it not only makes
sense for a larger class of continuous maps, but also retains the structure of a locally
compact second countable Hausdorff groupoid with the important étale property.
This class of continuous maps includes the non-constant holomorphic self-maps of
a Riemann surface and for such maps it was shown in [Th2] that the convolution
C*-algebra of the transformation groupoid obtained in this way is equipped with a
one-parameter group of automorphisms for which the KMS-states correspond to the
conformal measures introduced in complex dynamics by D. Sullivan. Applied to a
particular class of quadratic maps the result was systems for which the KMS states
exhibit phase transition with spontaneous symmetry breaking in the sense of Bost and
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Connes. This illustrates one application of Connes’ dictum, obtaining new models in
quantum statistical mechanics. In [Th2] the focus was on the one-parameter action
with its KMS states, and the structure of the C*-algebras carrying the action was not
investigated. It is the purpose of the present paper to present a relatively detailed
description of these C*-algebras C*(R) when they arise from a rational map R of
degree at least two acting on the Riemann sphere C. It is well known that the dynam-
ics of such a map is highly complicated, exhibiting features that are both beautiful
and fascinating. As we try to show here, the structure of the associated C*-algebra
is no less fascinating, although the appreciation of it may require a somewhat more
specialized background of the observer than what is needed to admire the colorful
pictures used to depict the dynamics of the maps.

The dynamics of a rational map is partitioned by two totally invariant subsets;
the Julia set on which the map behaves chaotically under iteration and the Fatou
set on which its iterates form an equicontinuous family. As one would expect from
familiarity with crossed products, this division gives rise to a decomposition of C,* (R)
as an extension where the Fatou set, as the open subset, gives rise to an ideal C*(Fg)
and the Julia set, as the closed subset, represents the corresponding quotient C*(Jg).
Thus the first decomposition of C,*(R) is given by an extension

0— C*(Fr)—> C*(R) - C*(Jr) > 0

which reflects the partitioning of the C by the Julia and Fatou sets. The two C*-
algebras C*(Jg) and C;"(Fr) in this extension are of very different nature. The
C*-algebra C*(Jg) of the Julia set is always purely infinite, nuclear and satisfies
the universal coefficient theorem (UCT) of Rosenberg and Schochet ([RS]), and it
is often, but not always simple. Ideals in C,*(Jr) arise from the possible presence
of finite subsets of the Julia set invariant under the equivalence relation represented
by the transformation groupoid which produces the C*-algebra C*(R); we call this
relation ‘restricted orbit equivalence’ and it is a relation which is slightly stronger than
orbit equivalence. The finite subsets of the Julia set invariant under restricted orbit
equivalence comprise the finite subsets considered by Makarov and Smirnov in their
work on phase transition in the thermodynamic formalism associated to the dynamics
(IMS1], [MS2]), and they are closely related to, but not identical with the subsets
introduced in [GPRR] in connection with work on exceptional rational maps. The
possible presence of such subsets of the Julia set implies that in general the structure
of C*(Jr) must be decoded from an extension of the form

0 — C*(JR\Er) - C*(Jgr) —> B — 0,

where C.*(Jr\ER) is purely infinite and simple, while B is a finite direct sum of
algebras of the form M, (C) for some n < 3 or C(T) ® M, (C) for some n < 4.

In contrast to C.*(Jg) the C*-algebra C*(Fg) of the Fatou set is finite, and its
ideal structure is typically much more complex than that of C;*(Jg). This is partly
due to the fact that the Fatou set is partitioned into classes of connected components,
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the so-called stable regions which are termed super-attracting, attracting, parabolic,
Siegel and Herman regions according to the asymptotic behaviour of their elements
under iteration. This division of Fg results in a direct sum decomposition of the ideal
C(Fr) where each direct summand is further decomposed as an extension where
the structure of the ideal depends on the type of the stable region and where the nature
of the quotient is governed by the presence or absence of critical and periodic points
in the region. Specifically,

N
CX(Fr) = 6@ CX(),
i=1
where C*(2;) is the C*-algebra obtained by restricting attention to the stable region
Q; C Fpg. It turns out that the nature of the algebra C,*(£2;) varies with the type of
the stable region: If €2; is super-attractive, there is an extension

0—>K®MT; - C*(Q;) > B —0,

where B is a finite direct sum of algebras stably isomorphic to either C or the con-
tinuous functions on the Cantor set. The algebra MT,; is the mapping torus of an
endomorphism on a Bunce-Deddens algebra of type d *® where d is the product of
the valencies of the elements in the critical orbit.

If Q; is attractive, there is a an extension

0—K®C(T? - C*X(Q;) - B —0,

where B is a finite direct sum of algebras stably isomorphic to either C or the con-
tinuous functions on the circle T.
If ©; is parabolic, there is a an extension

0—>K®C(T)® Co(R) > C*(22;) > B — 0,

where B is a finite direct sum of algebras stably isomorphic to C.
If ©; is of Siegel type, there is a an extension

0> K®Co(R) ® A9 — C(Q2i) > B — 0, (1)

where B is a finite direct sum of algebras stably isomorphic to either C or the contin-
uous functions on the circle T, and Ay is the irrational rotation algebra corresponding
to the angle of rotation in the Siegel domain inside €2;.

Finally, if €2; is of Herman type, there is a an extension quite similar to (1). The
only difference is that while the quotient algebra B must contain a summand stably
isomorphic to C(T) in the Siegel case, in the Herman case all summands are stably
isomorphic to C.

It almost goes without saying that the entire structure in the decomposition of
C*(R) described above reflects easily identified structures of the dynamics of R. For
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example, the difference between the structure of the summands in C*(Fgr) coming
from a Siegel and Herman region is due to the periodic point in a Siegel domain which
is absent in a Herman ring.

From the point of view of operator algebra theory a study of a non-simple C*-
algebra often begins with a description of the primitive ideals and the corresponding
irreducible quotients. In [CT] T. Carlsen and the author identified the primitive and
maximal ideals of the C*-algebras arising from the transformation groupoid of a
locally injective surjection on a finite dimensional compact metric space. In the final
section of the present paper the method from [CT] is carried over to the groupoid
C*-algebras of rational maps and we obtain in this way a description of the primitive
ideals and primitive quotients. In particular, it is shown that the primitive ideal space
of C*(R) is only Hausdorff in the hull-kernel topology when it has to be, i.e., when
C(R) is simple. This occurs only whenJg = C and there are no finite sets invariant
under restricted orbit equivalence. In all other cases the primitive ideal space is not
even Ty.

While there is often a rich variety of primitive quotients, there are always very
few types of simple quotients. The finite invariant subsets under restricted orbit
equivalence give rise to maximal ideals, but the corresponding simple quotients are
matrix algebras of size no more than 4. In most cases C*(Jg) is also a simple
quotient, but only when there are no finite subsets of Jr invariant under restricted
orbit equivalence. There are no other simple quotients. In particular, when there
are finite subsets of Jr invariant under restricted orbit equivalence the only simple
quotients of C*(R) are matrix algebras of size not exceeding 4.

There are other ways to associate a C*-algebra to a rational map, and we refer
to [DM] and [KW] for these. It would be interesting to find the precise relationship
between the algebras investigated here and those of Kajiwara and Watatani. Presently
it is only clear that they are generally very different.

Acknowledgement. This work was completed during a visit to the Institut Henri
Poincaré as part of the Research in Paris program, and I take the opportunity to thank
the IHP for support and for the exceptional working conditions.

2. Etale groupoids and C*-algebras from dynamical systems

Let G be an étale second countable locally compact Hausdorft groupoid with unit
space GO, Letr: G — G© and s: G — G© be the range and source maps,
respectively. For x € G© put G¥ = r~'(x), Gx = s '(x) and Is, = s~ (x) N
r~1(x). Note that Isy is a group, the isotropy group at x. The space C.(G) of
continuous compactly supported functions is a x-algebra if the product is defined by

(fifde) = X filh)fa(h7'g)

heGr(8)
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and the involution by f*(g) = f(g1). Let x € G©®. There is a representation 7,
of C.(G) on the Hilbert space /% (G,) of square-summable functions on G given by

(V@) = X fyh ).

heGr(®)

The reduced groupoid C*-algebra G (G) is the completion of C.(G) with respect
to the norm

I ="sup [lze()].

xeGO®

2.0.1. Stability of C*(G). We shall need the following sufficient condition for
stability of C*(G). Recall that a C*-algebra A is stable if A ® K >~ A, where K
denotes the C*-algebra of compact operators on an infinite dimensional separable
Hilbert space. Recall also that a bi-section in G is an open subset U € G such that
r:U—G®ands: U — GO both are injective.

Lemma 2.1. Let G be a locally compact second countable étale groupoid. Assume
that for every compact subset K C GO there is a finite collection {Ui}lj-v=1 of bi-
sections in G such that

@) K <UL, sy,
i) r(U) N r(U)) = 0if i # j, and
i) KUY, r(U) = 0.
It follows that C*(G) is a stable C*-algebra.

Proof. By Theorem 2.1 and (b) of Proposition 2.2 in [HR] it suffices to consider
a positive element a € C*(G) and an ¢ > 0 and show that there is an element
v € C*(G) such that [[v*v —a| < e and v? = 0. Write @ = ajao for some
ag € C*(G). By approximating ao with an element 7 € C.(G) and taking b = h*h
we obtain an element » € C.(G) which is positive in C*(G) and satisfies that
la — b|| < e. Let suppbd be the support of b in G and set K = r(suppb). By
assumption there is a finite collection {U; }ZN=1 of bi-sections such that (i)—(iii) hold.
Let {h;} € C.(G®) be a partition of unity on K subordinate to {s(Ui)}lN: .- For
each i let f; € C.(G) be supported in U; and satisfy f; = 1 on s~ (supp k;) N U;.
Setw = YN, fiv/hi € C.(G) and note that w*wh = ¥, h;b = b while bw = 0.
Setv = w\/g. O

2.0.2. G -orbits and reductions. If W is a subset of G, we set

Gw =1{geG|r(g),s(g e W},

which is a subgroupoid of G called a reduction of G. If W is an open subset of G,
the reduction Gy will be an étale groupoid in the relative topology inherited from
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G and there is an embedding C;*(Gw) < C*(G), cf., e.g., Proposition 1.9 in [Ph].
In fact, C*(Gw) is a hereditary C*-subalgebra of C*(G). If x € G©, the set
Gx = {r(g) | g € G} will be called the G-orbit of x. We say that W € G is G-
invariant if x € W implies Gx € W. If W is G-invariant and locally compact in the
topology inherited from G©, the reduction Gy is an étale locally compact groupoid
in the topology inherited from G. If W is both open and G-invariant C*(Gw ) is an
ideal in C*(G). Similarly, if F is a closed subset of G© which is also G-invariant,
then C*(GF) is a quotient of C,*(G). It is known that under a suitable amenability
condition the kernel of the quotient map

nr: CF(G) = CX(GF)

is C*(Ggw\ ). We shall avoid the amenability issue here and prove this equality
directly in the cases we are interested in. See Section 3.

We shall need the following fact which follows straightforwardly from the defi-
nitions.

Lemma 2.2. Assume that there is a finite partition G© = |_|!_, W; such that each
W; is open and G-invariant. It follows that

CHG) ~ é Cr(Gw,).

i=1
The following result was obtained by Muhly, Renault and Williams in [MRW].

Theorem 2.3. Let G be an étale second countable locally compact Hausdorff grou-
poid and W € G© an open subset such that Gx N\ W # @ forall x € GO. It
follows that C*(G) is stably isomorphic to C*(Gw).

Proof. Theset| ), ey Gxisa (G, Gw)-equivalence in the sense of [MRW] and hence
Theorem 2.8 of [MRW] applies. O

2.0.3. Pure infiniteness of C*(G). Following [An] we say that an étale groupoid
G is essentially free when the points x of the unit space G® for which the isotropy
group Is, is trivial (i.e., only consists of {x}) is dense in G(©). In the same vein we say
that G is locally contracting if every open non-empty subset of G contains an open
subset V with the property that there is an open bisection S in G such that V' C s(S)
and ocgl (V) S V when ag: r(S) — s(S) is the homeomorphism defined such that
as(x) = s(g), where g € S is the unique element with r(g) = x, cf. Definition 2.1
of [An] (but note that the source map is denoted by d in [An]).

We say that a C*-algebra is purely infinite if every non-zero hereditary C*-
subalgebra of A contains an infinite projection. Proposition 2.4 of [An] then says
the following.



224 K. Thomsen

Theorem 2.4. Suppose that G be an étale second countable locally compact Haus-
dorff groupoid. Assume that G is essentially free and locally contracting. Then
CX(G) is purely infinite.

2.1. The transformation groupoid of a local homeomorphism. In this section we
describe the construction of an étale second countable locally compact Hausdorff
groupoid from a local homeomorphism of a locally compact Hausdorff space which
was introduced in increasing generality by J. Renault [Re], V. Deaconu [De] and
C. Anantharaman-Delaroche [An].

Let X be a second countable locally compact Hausdorff space and p: X — X a
local homeomorphism. Thus we assume that ¢ is open and locally injective, but not
necessarily surjective. Set

Gy ={(x,k,y) e XxZxX| dInmeN, k=n—m, ¢"(x) =¢"(y)}
This is a groupoid with the set of composable pairs being
GP ={((x.k.y).(x'.k'.¥) € Gy x Gy | y = x'}.
The multiplication and inversion are given by
(e k) kY = Gk KLy and (ko y)TH = (9, -k, x).

Note that the unit space of G, can be identified with X via the map x — (x,0, x).
Under this identification the range map r: G, — X is the projection r(x, k, y) = x
and the source map the projection s(x, k, y) = y.

To turn G, into a locally compact topological groupoid, fix k € Z. For each
n € N such thatn + k > 0, set

Golk.n) ={(x.1.y) e X xZ x X || =k, ¢*T"(x) = ¢"(y)}.

This is a closed subset of the topological product X x Z x X and hence a locally com-
pact Hausdorff space in the relative topology. Since ¢ is locally injective, G (k,n)
is an open subset of G, (k,n + 1) and hence the union

Gy(k)y = U Gylk,n)

n>—k

is a locally compact Hausdorff space in the inductive limit topology. The disjoint
union
Gy = U Gy(k)
kezZ
is then a locally compact Hausdorff space in the topology where each G, (k) is an
open and closed set. In fact, as is easily verified, G, is an étale groupoid, i.e., the
range and source maps are local homeomorphisms. The groupoid G, will be called
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the transformation groupoid of ¢. To simplify notation we denote in the following
the corresponding C*-algebra by C*(¢); i.e., we set

Cr(Gy) = C(9).
Note that the G,-orbit G,x of a point x € X is the orbit of x under ¢, i.e.,

Gox= U ¢ (¢" ().

n,meN

by some authors called the full or grand orbit to distinguish it from {¢" (x) | n € N},
which we will call the forward orbit.

If the local homeomorphism ¢ is proper in the sense that inverse images of compact
sets are compact, the C*-algebra C,* (¢) can be realised as the crossed product by an
endomorphism, cf. [De],[An], in the following way: The subset

Ry =Gyp(0) ~{(x,y) € X x X | ¢"(x) = ¢"(y) for some n € N}

is an open subgroupoid of G, and an étale groupoid in itself. The reduced groupoid
C*-algebra C*(R,) is a C*-subalgebra of C*(¢). If ¢ is proper, there is an endo-
morphism ¢: C*(R,) — C.*(R,) defined such that

G(f)(x.y) = o (e()He ()2 f((x). 0(»))

when f € C.(Ry). We will refer to this endomorphism as the Deaconu endomor-
phism. As shown in [An], there is an isomorphism

Cl(p) = C(Ry) xg N,

where the crossed product is a crossed product by an endomorphism both in the sense
of Paschke ([P]) and the sense of Stacey ([St]).

2.2. The transformation groupoid of a rational map. In this section we describe
an étale groupoid coming from a non-constant holomorphic map on a Riemann surface
by a construction introduced in [Th2]. But since we shall focus on the Riemann sphere
in this paper we restrict the presentation accordingly.

Let C be the Riemann sphere and R: C — C a rational map of degree at least 2.
Consider a subset X C C which is locally compact in the topology inherited from
C, without isolated points and ftotally R-invariant in the sense that R™1(X) = X.
Let & be the pseudo-group on X of local homeomorphisms £: U — V between
open subsets of X with the property that there are open subsets Uy, V; in C and a
bi-holomorphic map &;: Uy — Vysuchthat Uy N X =U,ViNX =V and & =&
on U. For each k € Z we denote by 7 (X) the elements n: U — V of & with the
property that there are natural numbers n, m such that k = n — m and

R*(z) = R™(n(z)) forallz € U.
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The elements of T = | J, ¢z Tk (X) will be called local transfers for R|x. We denote
by [n]x the germ at a point x € X of an element n € 7. Set

Gx ={(x,k.,n,y) €EXXZXxP xX|neTh(X) nx)=y}.

We define an equivalence relation ~ in Gy such that (x,k,n, y) ~ (x', k', 7', y") if
x=x',y =y, k =k and [n]x = [7]x. Let [x,k,n, y] denote the equivalence
class of (x,k,n,y) € §x.! The quotient space Gx = Fx /~ is a groupoid where two
elements [x, k,n, y] and [x', k', n/, y'] are composable if y = x’ and their product is

[xyk’ r]yy][y7k/’ r]’ay,] = [x9k +k,7 7”/0 r]’y,]‘

The inversion in Gy is defined such that [x,k,n, y]™' = [y, —k,n~ !, x]. The unit
space of Gy can be identified with X via the map x — [x,0,id, x], where id is the
identity map on X. If n € 7z (X) and U is an open subset of the domain of 7, we set

U =lz.k.n.n(2)] |z € U}. 2)

It is straightforward to verify that by varying k,  and U the sets (2) constitute a base
for a topology on Gx. A crucial point is that the topology is also Hausdorff since
the local transfers are holomorphic. It follows that Gy is an étale second countable
locally compact Hausdorff groupoid, cf. [Th2].

It is the possible presence of critical points of R in X which prevents us from
using the procedure of Section 2.1 to get an étale groupoid. The additional feature,
the local transfers, which is introduced to obtain a well-behaved étale groupoid is
therefore not necessary when there are no critical points in X, and it is therefore
reassuring that the two constructions coincide in the absence of critical points in X .

Proposition 2.5. Assume that Y C X is an open subset of X which does not contain
any critical point of R and is R-invariant in the sense that R(Y) C Y. Then the
reduction (Gx)y is isomorphic, as a topological groupoid, to the transformation
groupoid of the local homeomorphism R|y: Y — Y.

Proof. Define ju: (Gx)y — Gg), such that u[x,k,n, y] = (x.k,y).

w is surjective: If (x,k,y) € Gpgy, there are n,m € N suchthatk =n —m
and R"(x) = R™(y). Note that (R")'(x) # 0 and (R™)'(y) # 0 since Y does not
contain critical points. It follows that there are open neighbourhoods U and V' of x and
y in C, respectively, such that R” : U — R"(U)and R™: V — R™ (V) are univalent
holomorphic maps. Let R™™: R™(V) — V be the inverse of R": V — R™(V).

!Since R is holomorphic and not globally periodic, the number k is actually determined by the germ
[n]x and could therefore be suppressed in the notation. For several purposes, such as the comparison
with the transformation groupoid of a local homeomorphism which is performed in Proposition 2.5 and
the definition of the gauge action which will be a crucial tool in several places, it seems best to make the
number visible.
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Thenng = R”™o R": RT"(R™(V))NU — R™™(R™(U)) NV is bi-holomorphic.
Set n = nolx and note that [x, k,n, y] € (Gx)y.

W is injective: Assume that u[x,k,n, y] = u[x’,k’,n’',y’]. Then (x,k,y) =
(x’,k’, y"). Since (R™)'(y) # 0, it follows that R™ is injective in a neighborhood of
y. Since R™(n(z)) = R"(z) = R™(n'(z)) for all z close to x, it follows that n = 7’
in a neighborhood of x, i.e., [x,k,n, y] = [x", k', 7', y'].

W is continuous: Let u[x, k, n, y] = (x, k, ¥) and consider an open neighborhood
Q of (x,k,y) in Ggy, . There is then an m € N and a local transfer n € T3 (X) such
thatk +m > 0, n(x) = y and R¥*™(z) = R™(n(z)) for all z in a neighborhood of x.
By definition of the topology of G|, , the set 2 N Ggy, (k,m) is openin Gg), (k,m)
when this set has the relative topology inherited from X x Z x X. From this fact
it follows that there is an open neighborhood W of x in the domain of 5 such that
(z,k,n(z)) € N Gg), (k,m) forall z € W. Since Y is open in X, we can shrink
W to ensure that W C Y and n(W) C Y. Then {[z,k,n,n(z)] | z € W} is an open
neighborhood of [x, k, 1, y] in (Gx)y such that u({[z,k,n,n(z)] | z € W}) C Q.

i is open: Let n € T (X) be a local transfer. Let U be an open subset of the
domain of n such that U C Y and n(U) C Y. It suffices to show that

n({lz.k,n,n(2)] |z € U})

is open in Gpgy, . To this end note that there is an m € N such that k +m > 0 and
R¥*™(z) = R™(y(z))forallz € U. Considerapoint (z1, k, z2) € n({[z, k. n, n(2)] |
z € U}). Then (z1,k, z2) € Ggyy (k,m). Let W be an open neighborhood of z, in
X such that W € n(U) and R™ is injective on W. If (2, k, z5) € (n™" (W) x {k} x
W) N Ggyy (k,m), we have R™(z}) = R¥*™(z}) = R™(n(z})), which implies that
z, = n(z}). This shows that

(™' (W) x {k} x W) N Ggyy (k,m) S n({[z,k,n,1(2)] | z € U}). 0

When we take the set X in the construction of Gy to be the whole Riemann sphere
C we obtain the groupoid Gg and the corresponding C*-algebra C;*(Gg). There is
no good reason to emphasize C, so we will denote the groupoid Gg by Gp instead
and C*(Gg) by C;*(R). We call Gy the transformation groupoid of R. It follows
from Lemma 4.1 in [Th2] that two elements x,y € C are in the same G g-orbit
if and only if there are natural numbers n,m € N such that R”(x) = R™(y) and
val(R", x) = val(R™, y), where val(R", x) is the valency of R" at the point x. In
particular, the G g-orbit of x, which we will denote by RO(x) in the following, is a
subset of the orbit of x conditioned by an equality of valencies. Specifically,

RO(x) = {y € C | R"(y) = R™(x) and

val(R", y) = val(R™, x) for some n,m € N}.

We call RO(x) the restricted orbit of x. In the following a subset ¥ of C will be
called restricted orbit invariant, or RO-invariant if y € Y implies RO(y) € Y. Note
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that a totally R-invariant subset is RO-invariant, but the converse can fail when there
are isolated points in Y.

We shall work with many different reductions of Gg. Recall that for any subset
Y C C the reduction of Gg to Y is the set

GY = {[x’kvn9y] € GR |.X,y € Y}

This is always a subgroupoid of Ggr. If X is both locally compact in the topology
inherited from C and RO-invariant, Gx will be a locally compact Hausdorff étale
groupoid in the topology inherited from Gg. If X is also totally R-invariant and has
no isolated points, the reduction is equal to the groupoid Gy described above, showing
that our notation is consistent. Furthermore, when X is open in the relative topology of
asubset Y C C which is RO-invariant and locally compact in the topology inherited
from C, the reduction Gy is again a locally compact Hausdorff étale groupoid in
the topology inherited from G g. The reduction Gy of Gr by such a set is the most
general type of reduction we shall need in this paper. To simplify notation we set

G (X) = C(Gyx).

3. The Julia—Fatou extension

Let X be an RO-invariant subset of C which is locally compact in the relative topology,
or at least an open subset of such a set. The C*-algebra C*(X) carries a natural action
B by the circle group T defined such that

Bu(Nlx k. n, y] = 1 fx, k., y] 3)
when f € C.(Gx) and u € T. To identify the fixed point algebra of 8, set

Since Gg is an open subgroupoid of Gy, there is an inclusion CC(G)(}) C C.(Gyx)
which extends to an embedding C;*(G{) € C.*(X) of C*-algebras.

Lemma 3.1. C*(GY) is the fixed point algebra C;* (X Y8 of the gauge action.

Proof. Leta € C*(X)P. For any ¢ > 0 there is a function f € C.(Gx) such that
la — f|l < e We can then write f as a finite sum f = ) ;.7 fi, where fi is
supported in

tx.l.n.yl € Gx | | = k}.

Since [ Bu(fi) diw = [ 1 fi dju = O when k # Oand fla — [ Bu(f) dpt]l <.
we deduce that |la — fo|| < e. This shows that C*(X)# < C*(GY); the reversed
inclusion is trivial. O
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Just as for local homeomorphisms, [An], [De], there is an inductive limit decom-
position of C* (G)‘}) which throws some light on its structure. Let n € N. Set

Gy(n) = {[x,0,n,y] € Gx | R"(z) = R"(1(z)) in a neighbourhood of x}.

Each Gg(n) is an open subgroupoid of G, G)(}(n) - Gg (n + 1) for all n and
Gy =, Gy (n). It follows that C,* (G (1)) € CX(GY(n + 1)) € C*(GY) for all
n, and

CX(Gy) = UCHGY(n)). 4

Assume now that X is an RO-invariant subset of C which is locally compact in
the relative topology, and not just an open subset of such a set. Let Y be a closed
RO-invariant subset of X. Then X\Y is open in X and RO-invariant. Since Y
and X\Y are locally compact in the topology inherited from C, we can consider
the reduced groupoid C*-algebras C*(Y') and C,*(X\Y). Furthermore, we have a
surjective x-homomorphism

ny: CH(X) — CF(Y)
because Y is closed and RO-invariant in X .

Lemma 3.2. Let X be a RO-invariant subset of C which is locally compact in the
relative topology. Let Y be a closed RO-invariant subset of X. The sequence

0— C*X\Y) > C*X) L C*Y) =0
s exact.

Proof. 1Tt is clear that C*(X\Y) C kerwy. To establish the reverse inclusion, let
a € ker ry and let ¢ > 0. Note first that the formula (3) also defines an action by
T on C*(Y) which makes wy equivariant. It follows that ker 7y is left globally
invariant by the gauge action, and there is therefore an approximate unit in ker 7y
consisting of elements fixed by the gauge action. It follows then from Lemma 3.1
that there is an element u € C*(Gy) N ker 7y such that |jua — a|| < e. It follows
from (4) that

CX(GY) Nkery = |JCX(GY(n)) Nker 7y,
n

and there is therefore an n € N and an element v € C* (G)(} (n)) N ker wy such that
|ua — val| < e. Note now that #R~"(x) < (deg R)" for all x € C if deg R is the
degree of R. By definition of the norm on C/* (G)(} (n)) this gives us the estimate

I/ = (deg )" sup [f(y)] @)

y€GL(n)
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for all /' € Co(GR(n)). Set § = &((2(degR)" + 1)(|la]l + 1))~" and choose
g € Cc(G(n)) such that ||g — v|| < 8. Then ||y (g)|| < & and so

sup lgy)| =4
yEGg)( m)Ns—1(Y)

by Proposition 4.2 of [Re], p. 99. We can therefore write g = g1 + g» where
g1 € Cc(GY(n)) has support in s~ (X\Y) and SUP,, GO (ny 182(¥)| = 28. Tt follows

then from (5) that ||g1a — va| < §|la| + ||g2a|| < ¢ and so ||g1a — a|| < 3e. Since
gia € CF(X\Y), it follows thata € C*(X\Y). O

Since the Fatou set Fg and the Julia set Jg are totally R-invariant and hence also
RO-invariant, we get the following.

Corollary 3.3. The sequence
* * TIR *
0— C*(Fr) = C(R) — C7(Jr) — 0.

is exact.

4. The structure of C.* (Jr)
4.1. Pure infiniteness of C*(Jg)

Proposition 4.1. Gy, is essentially free and locally contractive, and C* (JR) is purely
infinite.

For the proof of Proposition 4.1 we need a couple of lemmas.
Lemma 4.2. Assume that (R")'(x) # 0. Then R"(x) € RO(x).

Proof. 1f x is not critical for R", there is an open neighbourhood U of x such that
R": U — R"(U) is alocal transfer and [x,n, R"|y, R"(x)] € Gk. O

In the following proof and in the rest of the paper Crit will denote the set of critical
points of R.

Lemma 4.3. Let Y be a closed RO-invariant subset of C. If Y does not contain an
isolated point which is periodic or critical, it follows that the elements of Y that are
neither pre-periodic nor pre-critical are dense in Y .

Proof. Assume that there is a non-empty open subset U C Y consisting entirely of
pre-critical and pre-periodic point. Let Per, R denote the set of n-periodic points of
R. Since

U C | J R/ (Per, R U Crit)

n,j
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by assumption, it follows from the Baire category theorem that there are n, j € N
and a non-empty open subset W of Y such that

W C U N R/ (Per, R U Crit).

Since R is neither periodic nor constant, it follows that R~/ (Per,, R U Ccrit) is finite.
Hence W must contain a point zg which is isolated in Y. If zy ¢ Crit we conclude
from Lemma 4.2 that R(zg) € Y since Y is RO-invariant. By repeating this argument
we either reach an [ < j such that R’ (z¢) € Crit N'Y or conclude that R/ (z9) € Y.
In the first case R’ is a local transfer in an open neighbourhood of zq and in the second
R’ is. Hence R’ (zo) is isolated in Y in the first case, and R/ (z¢) in the second. In
any case we conclude that Y contains an isolated point which is either critical or
periodic. This contradicts our assumption on Y. O

We can then give the proof of Proposition 4.1:

Proof. By Proposition 4.4 of [Th2] the elements of Jg with trivial isotropy group
in Gy, are the points that are neither pre-periodic nor pre-critical. It is well known
that Jg is closed, totally R-invariant and without isolated points. It follows therefore
from Lemma 4.3 that Gy, is essentially free.

To prove that Gy, is also locally contracting we use that the repelling periodic
points are dense in J g by ii) of Theorem 14.1 in [Mi]. The argument is then essentially
the same used in the proof of Lemma 4.2 in [Th3]: Let U C Jg be an open non-empty
set. There is a repelling periodic point zo € U N C, and there isann € N, a positive
number ¥ > 1 and an open neighbourhood W C U N C of z¢ such that R"(zg) = zo,
R" is injective on W and

[R"(y) — 2ol = k|y — 2o (6)
forall y € W. Let §p > 0 be so small that
{y €Clly—2z0l <80} S R*"(W)NW. 7)

Because zg is not isolated in Jg, there is an element z; € Jg N C such that
0 < |z1 — zg| < 8p. Choose § strictly between |z; — zg| and §¢ such that

K|zy — zo| > 6. (®)
SetV ={yeJrNC||y—zo| <6} Then
VS R'(V). ©)

Indeed, if |y — z¢| < 6, then (7) implies that there is a y’ € W such that R"(y') = y,
and (6) implies that |y’ — z9| < 8. Since y’ € Jg because R~ (Jg) = J, it follows
that V' € R™(V). On the other hand, it follows from (8) and (6) that R"(z;) ¢ V..
This shows that (9) holds. Then

S={z,n.R"|y,R"(2)] € Gy, |z €V}
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is an open bisection in Gy, such that V C s(S) and
Ag—1 (17) g V,

where ag—1: s(S) — r(S) is the homeomorphism defined by S, cf. Section 2.0.3.
This shows that Gy, is locally contracting, and it then follows from Theorem 2.4 that
C*(JR) is purely infinite. O

4.2. Exposed points and finite quotients of C.* (Jr)

Lemma 4.4. Let X be a totally R-invariant set which is locally compact in the
topology inherited from C. Let Y C X be a closed RO-invariant subset of X and let
Yo be the subset of Y obtained by deleting the isolated points of Y. Then Y is totally
R-invariant, i.e., R™1(Yy) = Y.

Proof. Lety € Yy. Let n,m € N and consider a point x € X a such that R"(x) =
R™(y). We must show that x € Y. Since R™"(R"(x)) is a finite set, there is an
open neighborhood Uy of x such that

RT(R™(y)) N Uo = {x}. (10)

Because R" and R™ are both open maps, we can also arrange that there is an open
neighborhood Vj of y suchthat R” (Uy) = R™(Vp). SetU = UpNX andV = VoNX
and note that R"(U) = R™(V). Since | Jj_, R™/(Crit) and R~ ({J}_¢ R’ (Crit))
are both finite sets and y is not isolated in Y, there is a sequence {y;} of mutually
distinct elements in

Y N VAR (U= R/ (Crit)) U ULy R/ (Crit))

converging to y. Since #R7™(z) < (deg R)™ for all z, we can prune the sequence
{yi} to arrange that k # [ implies that R (yx) # R™(y;). Let {xx} < U be
points such that R” (xz) = R™(yy) forall k. Then x; € U\ U?:o R~/ (Crit) for all
k. Passing to a subsequence we can arrange that {x;} converges in X, necessarily
to x because of (10). Note that val(R™, yx) = val(R",x;) = 1 for all k since
xx & Uj—o R/ (Crit) and yi ¢ Jj_y R/ (Crit). It follows therefore, either from
Proposition 4.1 in [Th2] or from Lemma 4.2 above, that x; € RO(yr). Hence
Xr € Y because yr € Y and Y is RO-invariant. It follows that x € Y because Y is
closed. Furthermore, since the xj’s are distinct, x € Y. This shows that Yy is totally
R-invariant. (|

Lemma 4.5. Let L be a closed RO-invariant subset of Jr. Then L is either finite or
equal to JR.

Proof. Ttfollows from Lemma 4.4 that we can write L = LyU L, where L is closed
and totally R-invariant while L is discrete. If Ly # 0, it follows from Corollary 4.13
of [Mi] that Ly = Jgr = L. If Ly = 0, the compactness of L implies that it is finite.

O
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4.2.1. Exposed points. The preceding lemma forces us to look for points in Jg, or
more generally in C, whose restricted orbits are finite. In the following we say that a
point x € C is exposed if the restricted orbit RO(x) of x is finite. A non-empty subset
ACCis exposed if it is finite and RO-invariant. Clearly the so-called exceptional
points, those with finite orbit, are exposed. There are at most two of them, and they
are always elements of the Fatou set. See e.g. §4.1 in [B]. In contrast exposed points
can occur in the Julia set as well.

Lemma 4.6. Let A C C be a finite subset with the property that
R™Y(A)\Crit C A. (11)
Then A contains at most 4 elements, and at most 3 if it contains a critical point.

Proof. The proof is a repetition of the proof of Lemma 1 in [GPRR]. Set d = deg R
and let val(R, x) denote the valency of R at x. Then

d#A)= > val(R,x) (since ), cp-1(y) val(R,x) = d forall y)
x€R~1(A4)
=#R'(A)+ Y (val(R,x)—1)
xeR~1(A4)
<#A+#Crit+ )Y  (val(R,x)—1) (by(11))
x€R™1(A)
= #A 4+ #Crit + 2d — 2 (by Theorem 2.7.1 of [B])
<#A+4(d — 1) (by Corollary 2.7.2 of [B]).

It follows that #4 < 4. If A contains a critical point the first inequality above is strict
and hence #4 < 3. O

It follows from Lemma 4.2 that an exposed subset satisfies (11). This gives us the
following.

Corollary 4.7. An exposed subset does not contain more than 4 elements. If it
contains a critical point, it contains at most 3 elements.

The upper bound on the number of elements in an exposed set can be improved
if R is a polynomial since the number of critical points for a polynomial is at most
deg R, and oo is always one of them. Specifically, applied to a polynomial the proof
of Lemma 4.6 yields the following.

Lemma 4.8. Assume that R is a polynomial of degree at least 2 and A is an exposed
subset of C. Then #A < 2, and #A < 1 if A contains a critical point.

We say that an exposed subset is of zype 1 if it does not contain a critical point,
of type 2 if it contains a pre-periodic critical point and fype 3 if it contains a critical
point but no pre-periodic critical point.
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Lemma 4.9. Let A be a finite subset of C. Then A is an exposed subset of type 1 if

and only if
R™Y(A)\Crit = A. (12)

Proof. Assume first that 4 is an exposed subset of type 1. Since A does not contain
a critical point, it follows from Lemma 4.2 that R(A) C A4, i.e., A € R7!'(A4)\Crit.
Combined with (11) this shows that (12) holds.

Conversely, it follows from (12) that R(4) € A and that A N Crit = . Hence
val(R",x) = 1forall x € Aand alln € N. Thusif x € 4 and y € RO(x), we have
boththat R (y) = R"(x) € Aforsomen,m and thatval(R™, y) = val(R",x) = 1.
But then R/ (y) ¢ Crit forall 0 < j < m — 1, and repeated use of (12) shows that
y € A, i.e., Ais RO-invariant. ]

Finite subsets of the Julia set satisfying (12) were considered by Makarov and
Smirnov in [MS1], and their work can be used to find examples of polynomials
with exposed subsets of type 1 in the Julia set. In [MS2] a rational map with an
exposed subset of type 1 was called exceptional. This notion was extended in [GPRR],
where a rational map was called exceptional when the Julia set contains a finite
forward invariant subset satisfying (11). There are exceptional rational maps, in
the sense of [GPRR], without any exposed subsets, and conversely, there are non-
exceptional rational maps with exposed subsets in the Julia set. Thus although there
is of course a relationship between exposed subsets and the subsets used to define the
exceptional maps in [GPRR], the two notions are not the same. Note that it follows
from Corollary 4.7 that the total number of exposed points is at most 4.

4.2.2. Finite quotients of C,* (Jg). Let Eg denote the union of the exposed subsets
in C, a set with at most 4 elements. If Eg N Jg # @, the purely infinite C*-algebra
C*(Jg) will have C*(Er N JR) as a quotient. The corresponding ideal, however, is
simple.

Proposition 4.10. C*(Jr\ER) is simple.

Proof. Itfollows from Lemma 4.3 that there are many points in J g\ E g whose isotropy
group in Gy ,\g, is trivial. By Corollary 2.18 of [Th1] it suffices therefore to show that
there are no non-trivial (relatively) closed RO-invariant subsets in Jg\Eg. Assume
that L is a non-empty RO-invariant subset of Jg\Eg, which is closed in Jg\Eg. It
follows first that L U (Eg N Jg) is closed and RO-invariant in Jg and then from
Lemma 4.5 that L = Jgr\Eg, which is the desired conclusion. O

In order to obtain a description of the quotient
C/(JrNER) >~ C7(Jr)/C(JR\ER).

we consider a more general situation because the result can then be used to examine
G (Fr).
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Lemma 4.11. Let x € C and assume that the restricted orbit RO(x) of x is discrete
in C. There is an isomorphism

C(RO(x)) = C*(Isx) ® K(I*(RO(x))),

where K(I?(RO(x))) denotes the C*-algebra of compact operators on [?(RO(x))
and Isy the isotropy group Isy = {g € Gr | s(g) = r(g) = x}.

Proof. Note that the reduction Gro(y) is discrete in G g and that C*(RO(x)) is gen-
erated by 1, z € Gro(yx), if 1, denotes the characteristic function of the set {z}. For
every y € RO(x) choose an element 77, € r~1(y) N s~ (x). For every g € Isy set

Ug RO 1nyg77y t

The sum converges in the strict topology and defines a unitary in the multiplier
algebra of C*(RO(x)). Note that uguy = ugy so that u is a unitary representation
of Isyx as multipliers of C*(RO(x)). The elements Ly et U,V € RO(x) constitute
a system of matrix units generating a copy of K(/2(RO(x))) inside C*(RO(x)).
Since each u, commutes with 177u il for all u, v, we obtain a x-homomorphism
C*(Isy) ® K(/2(RO(x))) — C*(RO(x)) sending 1, ® 1, -1 tougl 1. Itis
easy to see that this is an isomorphism.

NuNy

Lemma 4.12. Let A be a finite RO-orbit in Jg. Set n = #A.
(a) Assume that A is of type 1. Then n < 4 and

Cr(A) ~ C(T) ® M, (C).
(b) Assume that A is of type 2. Thenn < 3 and
C(4) ~ M,(C) ® C(T) ® €7,

where d = limg_, o val(R¥, x) for any critical point x € A.
(c) Assume that A is of type 3. Then n < 3 and

C*(A) ~ M,(C) ® C4,
where d = limg_, o val(R¥, x) for any critical point x € A.

Proof. (a) It follows from Corollary 4.7 that n < 4. It follows from Lemma 4.9 that
A = RO(x) for some point x € Jg which is periodic and whose forward orbit is
contained in A. Since A contains no critical points, Proposition 4.4 b) in [Th2] tells
us that Is,, >~ Z. Then the conclusion follows from Lemma 4.11.

(b) If A contains a critical point, the last assertion in Corollary 4.7 says that#A4 < 3.
If x is a pre-periodic critical point in 4, we can determine the isotropy group Is, from
Proposition 4.4 in [Th2]. Since Jg does not contain any periodic critical orbit, we are
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in situation d2) of that proposition and therefore obtain the stated conclusion from
Lemma4.11.

(c) follows in the same way as (b). The only difference is that Is, is determined
by use of ¢) in Proposition 4.4 of [Th2]. J

Givenapointz € C we call the limit limy _, o, val(R¥, z) occurringin Lemma4.12
the asymptotic valency of z. It can be infinite, but only if z is pre-periodic to a critical
periodic orbit.

Theorem 4.13. There is an extension

0= C*(JR\ER) — C*(Jr) —% @ C*(4) - 0, (13)
A

where the direct sum @ 4 is over the (possibly empty) collection of finite RO-orbits
A inJR. Furthermore, C*(JR\ER) is separable, purely infinite, nuclear, simple and
satisfies the universal coefficient theorem of Rosenberg and Schochet, [RS]. If non-
zero, the quotient @ 4 C*(A) is isomorphic to a finite direct sum of matrix algebras
M, (C) with n < 3 and circle algebras C(T) ® M,,(C) withn < 4.

Proof. The extension (13) is a special case of the extension from Lemma 3.2. The
direct sum decomposition of the quotient follows from Lemma 2.2 and its description
from Lemma 4.12. The pure infiniteness of the ideal follows from Proposition 4.1
because pure infiniteness is inherited by ideals. It is simple by Proposition 4.10. That
CX(Jr\ER) is nuclear and satisfies the UCT will be shown in Section 4.3 below by
making a connection to the work of Katsura, [Ka]. Ll

In view of Theorem 4.13 it seems appropriate to point out that the Julia set can
contain exposed orbits of all three types. For an example of type 1 observe that for
the Chebyshev polynomial R(z) = z2 — 2 the set Ex N Jg consists of the points
{—2,2} which is a finite RO-orbit of type 1 in the Julia set [-2, 2]. Hence

D C(4) = C(T) @ Mz(C).
A
No other polynomial in the quadratic family z2 + ¢ has an exposed point in the Julia

set.
For an example of a finite RO-orbit of type 2 consider the rational map

The Julia set is the entire sphere in this case, cf. §11.9 in [B], and the maximal exposed
subset consists of the points {0, co, 1}, which is the union of the finite RO-orbit {1, co}
of type 1 and the finite RO-orbit {0}, which is of type 2. The asymptotic valency
lim, o val(R", 0) is 2 and hence

? CF(4) =~ C(T) & C(T) & (C(T) ® M2(C)).
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To give examples of finite RO-orbits of type 3 in the Julia set we use the work of
M. Rees. She shows in Theorem 2 of [R] that for ‘many’ A € C\{0} the rational map

R(z)=A(1-2)

has a dense critical forward orbit. In particular, the Julia set Jg is the entire sphere.
The critical points are 0 and 2, and R~!(0) = {2}. Since the forward orbit of 0 is
dense, it follows that {0} is a finite RO-orbit of type 2. There are no other exposed
points, i.e., Eg = {0}. Hence

BCrA)~CaC
A
in this case because the asymptotic valency of 0 is 2.

4.3. Amenability and the UCT. Set

Jr = JR\(Er U Uj—o R/ (Crit))
and consider
I'=A{lx.k.nyleGy [k=1}

which is an open subset of GJ;{. Let Xt be the closure of C.(T") in C*(Jg). Since

X} Xr € CX(GY,), we can consider X as a Hilbert C,*(GY, )-module with the
R R

‘inner product’ (a, b) = a*b. Furthermore, since

Cr(Gy,)Xr S Xr.

we can consider any a € C* (Gg, ) as an adjointable operator ¢(a) on Xt. Then
R

the pair (¢, Xr) is a C*-correspondence in the sense of Katsura, [Ka], and we aim to
show that the C*-algebra Oy . introduced in [Ka] is a copy of C*(Jg).

Lemma 4.14. ¢ is injective.

Proof. Assume that p(a) = 0. To show that @ = 0, consider the continuous function
j(a) on G%, defined by a, cf. Proposition 4.2 on p. 99 in [Re]. Consider an element
R

y eG T such that s(y) ¢ R™*(Crit). It follows from Lemma 4.2 that there is
a function f € C.(I') supported in {[z, 1, R|y, R(z)] | z € U} for some open
neighborhood U of s(y) such that ff* € C.(Jg) and ff*(s(y)) = 1. Since
aff* =0, it follows that j(a)(y) = 0, i.e., j(a) = 0 on the set

{y € Gy, 1s(y) ¢ R™*(Crin)}.

Since this set is dense in G T it follows first that j(a) = 0 and then that a = 0
because j is injective. O
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Note that we can consider the inclusions C,* (Gok) C CX(Jg)and Xr € C*(Jg)

as an injective representation of the C*-correspondence (¢, XT). It follows that there
is an injective *-homomorphism v; : K (Xr) — C(J) such that

V(@) = ab™,

cf. Definition 2.3 and Lemma 2.4 in [Ka]. Note that the range of 1/ is the ideal

Xr Xt = Span{ab™ | a,b € Xt}

in C*(GY, ). We are here and in the following lemma borrowing notation from [Kal].
R

Lemma 4.15. The ideal {a € C*(GY,) | p(a) € K(Xr)} is equal to Xr X, and
R
a =vYi(p(a)) foralla € Jx.

Proof. The inclusion

XrXf < {a€C(GY,) | vl@) € K(Xr))

is trivial, so we focus on the inverse. Let therefore @ € C*(GY, ) be an element such
R
that p(a) € K (Xr). There is then a sequence

N
Z G“?sb?’ n=12,3,...,
i=1

where al', b!' € Xr for all i, n, which converges to ¢(a) in K (Xr). In particular,

Nﬂ Nll
= i n pn = i n n*
af = Jim i; Ogr pn [ = limp o0 i; arbl” f (14)
forall f € Xr. By continuity of v, it follows that the sequence v/, (vaz”l Ogn pn) =

ZzN=nl al’b™* converges in Xt X{ to Y, (¢(a)). It follows from (14) that af =
Y(p(a)) f forall f € Xr, and as in the proof of Lemma 4.14 we deduce first that
jla — v (p(a))) = 0and then that a = Y, (p(a)). O

It follows from Lemma 4.15 that the representation of the C*-correspondence

Xr given by the inclusions C*(GY,) € C*(J}) and Xpr € C*(J}) is covariant
R

in the sense of Katsura, [Ka]. Combined with the presence of the gauge action on

C*(GY,) this allows us now to use Theorem 6.4 from [Ka] to conclude that the

C*-algebra Ox,. defined from the C*-correspondence X is isomorphic to the C*-
subalgebra of C*(Jy) generated by C/* (Gg, ) and Xr. It remains to show that this
R

is all of C*(Jp).

Lemma 4.16. For all x € J, there is an element y € T such that s(y) = x.
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Proof. For any z € Jg\Eg and n > 1, set

Dy(z) ={y € R™"(2) | . R(y), ..., R""'(y) ¢ Crit}.

Let x € Jp. If R7'(x) & Crit, choose y € R™(x)\Crit. It follows then from
Lemma 4.2 that [y, 1,n,x] € T for some local transfer n. Assume therefore that
R™!(x) C Crit. Then R(x) # x since otherwise RO(x) = {x}, contradicting x ¢
ERr. If D2(R(x)) # @, choose an element y € D (R(x)) and note that [y, 1,7, x] €
I for some local transfer n. Thus assume now that D, (R(x)) = R~ !(x)\Crit =
@. Then R?*(x) ¢ {x,R(x)} since otherwise RO(x) C {x, R(x)} U D{(R(x)),
contradicting x ¢ Eg. If D3(R?(x)) # @, choose y € D3(R?(x)) and note that
[v,1,17,x] € T for some local transfer . Assume therefore that D3(R?(x)) =
D>(R(x)) = R™'(x)\Crit = 0. Then R3(x) ¢ {x, R(x), R?(x)} since otherwise
RO(x) C {x, R(x), R?>(x)} U D{(R(x)) U D{(R?*(x)) U D5(R?(x)), contradicting
x ¢ Eg. We claim that D4(R3(x)) cannot be empty. Indeed, if it is empty we have
either R*(x) € {x, R(x), R?(x), R3>(x)} and then

RO(x) € {x, R(x), R*(x), R*(x)} U D1(R(x)) U D1 (R*(x))

U D(R*(x)) U D1 (R*(x)) U D2(R*(x)) U D3(R*(x)).
which is impossible since x € Eg, or R*(x) ¢ {x, R(x), R*(x), R*(x)}, in which
case

A = {x, R(x), R*(x), R*(x), R*(x)} U D1(R(x)) U D1(R*(x))
U D2(R*(x)) U D1 (R*(x)) U D2(R*(x)) U D3(R*(x))
is a set with more than 4 elements for which (11) holds, contradicting Lemma 4.6.

Thus D4(R3(x)) is not empty. We choose y € D4(R3(x)) and note that [y, 1,7, x] €
I' for some local transfer 7. O

Proposition 4.17. Ox. ~ C*(J), and C*(JR\ER) is stably isomorphic to Ox..

Proof. By the remarks preceding Lemma 4.16, to establish the isomorphism Oy =~
C*(Jg) itsuffices to show that C* (/) is generated by C,* (Gg/ )and Xr. Letk > 0.
R

Consider a bisection in G, of the form
S={lz.k.n.n@)] |z e U}

for some local transfer 7 and an open subset U C Jp in the domain of 7 such that
n(U) € Jg. By varying k, n and U, functions f € CC(GJ;Q) with support in a set
of the form § generate C;*(J) as a C*-algebra. It suffices therefore to show that
such functions are elements of the *-algebra generated by C*(GY, ) and Xr. We will
prove this by induction in k, starting with the observation that thg assertion is trivial
if Kk = 0 and k = 1. Assume that the assertion is established for kK — 1 and consider
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f eC(G J;?) supported in S. Let x € U. It follows from Lemma 4.16 that we can
find y € I' such that s(y) = n(x). This means that there is a bisection in I" of the
form {[z,1,£,£(z)] | z € V'} such that §(y) = n(x) for some y € V. Then

[z.k.nn@)] = [z.k = 1€ on 67 E)IE™ (1(2)). 1.£.1(2)]

for all z in a neighborhood U, C U of x. It follows that there are functions 4, g €
C.(G J;e) supported in

{[Z7k - I’E_l ° nvs_l(n(z))] | zZ € Ux} and {[5_1(77(2))’ 17§v T](Z)] | zZ e Ux}v

respectively, such that f = hg in a neighborhood of [x, k, 1, (x)]. Note that % is
then in the *-algebra generated by C*(GY, ) and X1 by induction hypothesis and
R

that g € Xt. We choose functions ; € C.(J%) forming a finite partition of unity

{;} on r(supp f) such that
f=2Vihigi.

where g; € Xr and h; is in the *-algebra generated by C*(GY, ) and Xr. Since
R
Vi € CF (GY, ) for each i, this completes the induction step and hence the proof of
R
the isomorphism Ox. ~ C*(J).
Since G A is the reduction to the open subset J of Jg\ERg, the algebra C*(J)
is a hereditary C *-subalgebra of C*(Jr\ERg). The latter algebra is simple by Propo-

sition 4.10, and it follows therefore from [Br] that the two algebras are stably isomor-
phic. O

Corollary 4.18. C(JR\ER) is a nuclear C*-algebra which satisfies the universal
coefficient theorem of Rosenberg and Schochet, [RS].

Proof. Due to Proposition 4.17 and Lemma 4.15 the assertions follow from Corol-
lary 7.4 and Proposition 8.8 in [Ka] provided we show that both C*(GY, ) and the
R

ideal X1 X[ are nuclear and satisfy the UCT. To this end we use the inductive limit
decomposition

Cr(Gy) = UGGy, (), (15)

cf. (4). We claim that C*(GY, (n)) is liminary for each n. In fact we will show that
R
every irreducible representation of C.* (Gg, (n)) is finite dimensional for each n. By
R
Theorem 6.2.3 in [Pe] this will show that C*(GY, (n)) is a type I C*-algebra, and it
R

follows from (15) that C* (GY,) is nuclear and satisfies the UCT. Furthermore, since
R

we also have the inductive limit decomposition

XrXp = UGGy, (m) N XrXF, (16)
n
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and since we know that every irreducible representation of C*(GY, (n)) N Xr X Lis
R
finite dimensional if this holds for C*(GY, (n)), we can at the same time conclude
R

that also Xt X l’f is nuclear and satisfies the UCT.
To show that C.* (Gg, (n)) is liminary, consider an irreducible representation 7 of
R

C*(GY, (n)). Every function f € C(C) defines a multiplier ¥ ( /') of C*(GY, (n))
such thgt :

Y (f)glx,0,n,y] = f(R*(x))g[x.0.7. y]
if g e CC(GO;2 (n)). Note that ¥ (f) is central in the multiplier algebra and that

¥ is a x-homomorphism. Since 7 is irreducible, there is a point z € C such that
(W (f)g) = f(z)n(g) forall f € C(C)and all g € C*(GY, (n)). Consequently,
R

7(g) = 0 forevery g € C.(GY, (n)) whose support does not contain elements from
R
F = r~Y(R™(z)). Since all the isotropy groups in G2, (n) are finite by Lemma 4.2
R

in [Th2], it follows that F is a finite set. Therefore 7(C.(G%, (n))) must be finite
R
dimensional and the same is then necessarily true for 7. O

Note that the C *-correspondance Xt represents an element
[Xr] € KK(Xr X[, C (G, ).
This element defines a homomorphism
[Xrle: Ke(XrX7) = Ki(C (G, ),
which fits into the following six-term exact sequence, cf. Theorem 8.6 in [Ka].

Corollary 4.19. There is an exact sequence

Ko(XrXf) — 0 Ko(C1(GY, ) “ > Ko(C*(Jr\ER))
* v K(CH(GY, ) < T (xpx
Ki(CF(JR\ER)) (& (G 1(XT X7),

where 1: C*(GY,) — CX*(JR\ER) is the inclusion C;*(GY,) € C*(J) followed
R R
by the stable isomorphism C}(Jg) ~ C*(JR\ER).

It may seem possible to calculate the K-theory of C*(Jg\Eg) from Corollary 4.19
and the inductive limit decompositions (15) and (16). In practice, however, the task
is very difficult, not only because the six-term exact sequence of Corollary 4.19 is
less helpful than the one which is available for local homeomorphisms, [DM], [Th3],
and which can be applied here if there are no critical points in the Julia set, but also
because the topology of Jg is poorly understood in general.
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S. The structure of C*(Fg)

It is well known and not difficult to see that R takes a connected component W of
Fg onto another connected component R(W) of Fg. It follows that we can define
an equivalence relation ~ in Fg such that x ~ y if and only if there are n,m € N
such that R"(x) and R™(y) are contained in the same connected component of Fg.
By Sullivan’s no-wandering-domain theorem, Theorem 16.4 in [Mi], and a result of
Shishikura, [Sh], the set of equivalence classes Fg/~ is finite, and in fact cannot have
more that 2 deg R — 2 elements. We can therefore write

N
Fr = ] S,
i=1
with N < 2deg R—2, such thateach Q; is open, R™1(;) = €; and Q; N Q; =0gif
i # j. The Q;’s will be called the stable regions of R. Since they are RO-invariant,
it follows from Lemma 2.2 that

N
C(Fr) = @ C ().
i=1
The stable regions are divided into different types reflecting the fate of their
elements under iteration.

Definition 5.1. Let U be an open subset of Fg and p € N.

(a) U is called a super-attracting domain of period pif RP(U) € U, R*(U)NU =
@,1 <i < p—1,and there are a natural number d > 2, an r €]0, 1] and a conformal
conjugacy ¥ : U — D, = {z € C | |z| < r} such that

U L U
1 J/"’
d
D, Z>z D,

commutes.

(b) U is called an attracting domain of period p if RP(U) C U, R(U)NU = @,
1 <i<p-—1,andtherearea A € C, |A| < 1, anr > 0 and a conformal conjugacy
Y:U — D, ={z €C||z| <r} such that

v—=2 .y
v lw
D Z>Az D

r r

commutes.
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(c) U is called a parabolic domain of period p if RP(U) C U, R*(U)NU = @,
1 <i < p—1, andthereisaconformal conjugacya: U - H = {z € C | Re z > 0}

such that
U
|
H
commutes. .
(d) U is called a Siegel disk of period p if RP(U) = U, R*(U)NU = 0,

1 <i < p—1,andthereare at € R\Q and a conformal conjugacy : U — Dy =
{z € C | |z|] < 1} such that

R?

U

ia

H

z—=>z+1

v—="—vU
g |
D, zr>e27il g Dy

commutes.

(e) U is called a Herman ring of period p if RP?(U) = U, R{(U)NU = @,
1 <i < p—1,andthere are at € R\Q and a conformal conjugacy v : U — A =
{ze C |1 < |z| <2} such that

v—= v
‘) |
A zr>e27il g A

commutes.

It follows from the classification of the periodic Fatou components, [Mi], that
a stable region €2 contains a domain U of one of the types described in (a)—(e) of
Definition 5.1 with the property that

o0
Q= R™U). a7
n=0
We will say that €2 is a super-attractive, attractive, parabolic, Siegel or Herman region
in accordance with the nature of the domain U which we will refer to as a core of 2.

Lemma 5.2. Let x € Fg be periodic. Then RO(x) is closed and discrete in Fpg.

Proof. Let W be a connected component of Fg and K € W a compact subset. We
must show that K N RO(x) is finite. Assume therefore that W N RO(x) # 0. Let Q
be the stable region containing W and U a core for 2. It follows from (17) and the
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compactness of K that there is an / € N such that R/(K) € U. If y € K N RO(x)
there is a k > [ such that R¥(y) = x. Thus R/(y) is a pre-periodic element of
U. By inspecting the possible types of U we see that U contains at most one point
pre-periodic under R. Thus R!(y) = x, proving that K N RO(x) € R~!(x), which
is a finite set. O

Lemma 5.3. |J,.cc RO(c) = r—y R (Crit).

Proof. Assume that x € | J,¢c RO(c). There is a critical point ¢ € Critand n,m €
N such that R"(x) = R™(c) and val(R", x) = val(R™,c). Since val(R™,c) > 2,
this implies that val(R", x) = val(R, R~ (x)) val(R, R"72(x))...val(R,x) > 2
and hence that x € U;-’;(l) R~/ (Crit). Conversely, if x €  Jo—, R™"(Crit), let j € N
be the least natural number such that R/ (x) € Crit. It follows from Lemma 4.2 that
x € RO(RY (x)) € U, e RO(C). O

Lemma 5.4. Suppose that x is a critical point in Fg. Then RO(x) is closed and
discrete in Fp.

Proof. As in the proof of Lemma 5.2 we take a connected component W of Fg and
show that K N RO(x) is finite for any compact subset K € W. Let Q be the stable
region containing W and U a core for 2 of period p. There is an/ € N such that
R! (K) C U. By inspecting the possible types of U we see that there is at most one
element of U which is pre-critical under R, and that element is already critical for R?
if it exists. It follows therefore from Lemma 5.3 that K NRO(x) € Uif;{’) R (Crit)
which is a finite set. O

Since there are only finitely many periodic and critical points in Fg, the union
of their restricted orbits, which we will denote by Z, is closed and discrete in Fg by
Lemma 5.2 and Lemma 5.4. It follows therefore from Lemma 3.2 that for each stable
region €2 in Fg there is an extension

0— C*Q\I) > C*Q) 5 QN I)—o. (18)

To study the ideal C.*(2\I) we need the following lemma, which seems to be
folklore for mathematicians working with rational maps. We sketch a proof for the
benefit of the operator algebraists.

Lemma 5.5. Let U C C be an open simply connected subset such that

U N |J R"(Crit) = 0.

n=1

Let d = deg R be the degree of R. For eachn € N there are d" open connected sub-
sets W', W}, ..., W;,, and d" holomorphic maps x?: U — W i =1,2,...,d",
such that
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i) R"((z) =z z€U,

() YrU)y=wri=1.2,..,d",
(i) W' n WJ” =0,i # j,and
(iv) R™(U) = Ui, W

Proof. First observe that R" is a d"-fold covering of U by R™(U) because
UnN U;'l:l R/(Crit) = @. Let Wi, i = 1,2, ..., N, be the connected compo-
nents of R7"(U). We claim that R*(W;) = U. To see this let x € W; and let
y € U. Since R": R™"(U) — U has the path-lifting property, we can lift a path
in U connecting R"(x) to y in U to a path starting in x. This path must end in a
point in W; which maps to y under R", proving the claim. Then R": W; — U is
also a covering and since U is simply connected, it must be a homeomorphism. Let
X7 U — W, be its inverse and note that 7 is holomorphic since R" is. It follows
also that N = d" since #R™"(y) = d" for all y € U. The proof is complete. [

Lemma 5.6. Let Q be a stable region for R and U C Q a core for Q2. Then
CrQ\I)~CrX(U\I) ® K.

Proof. Letx € Q\I. It follows from (17) that thereisak € N such that R¥(x) € U.
Since x ¢ I, it follows from Lemma 5.3 and Lemma 4.2 that R*(x) € RO(x). This
shows that RO(x) N (U\ I) # 9, and it then follows from Theorem 2.3 that C* (2\ I)
is stably isomorphic to C*(U\I). It suffices therefore now to show that C.*(2\ 1)
is stable. To this end we use Lemma 2.1 and consider therefore a compact subset K
of Q\I. The construction of the required bi-sections will be performed differently
for the different core domains.

Assume firstthat U is a Siegel disk or a Herman ring. It follows from Theorem 16.1
in [Mi] that U is a connected component of Fg in these cases. There isan/ € N
such that R*(K) € U. Note that if U is a Siegel disk, the periodic point at the
center of U is not in R'(K). For each z € Crit N €, let y(z) be the first element
from U in the forward orbit of z, i.e., y(z) € U is the element determined by the
condition that R™(z) = y(z), while Ri(z) ¢ U,i = 0,1,2,...,m — 1. Then
x(Crit) is a finite (possibly empty) set. Since the rotation in the core is irrational and
KN U;io R~/ (Crit) = @, there is for each point x in K an open neighbourhood
V, of x such that R? is injective on Vy for all i € N and an n, € N with the
property that R*x+(V,) N y(Crit) = @. We can also arrange that R™*T/ (V) is
simply connected (e.g. a small disc). By compactness of K there is a finite collection
Ve i = 1,2,...,N, such that K € UN., Vi,. Let U_y, U_y, U_3, ... be a
sequence of Fatou components such that U_; ¢ {U, R(U), R*>(U),...,R?P~Y(U)}
and R(U—;) = U_; 41,1 > 2. Such a sequence exists since R~?(U) € U. Note that
U_;,NU_; =0ifi # j. Since K is compact, there is an m € N such that

KﬂU_j=@, j = m.
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Leti € {1,2,...,N}. By using Lemma 5.5, we can choose a connected subset
V! C U_i—m such that R"*™ is a homeomorphism from V; onto R”Xi+l(in), Let
R™i=m . Rt (Vx;) — V/ denote its inverse. Then

Si={(R"oR™i T (2).i +m—ny —1(RT™oR™H |y )7\ 2) | z € Vi,

i =1,2,...,N,isacollection of open bi-sections in Gq\ r meeting the requirements
in Lemma 2.1.

Assume instead that U is attracting or parabolic. We choose first L such that
RL(K ) C U, and then a finite open and relatively compact cover Vi, V, ..., Vy of
K in Q\ I such that RL: V; — RL(V;) C U is injective for each i. Subsequently
we choose 711, 11, ...,ny € Nsuchthat R" (RL(V;)))N R™ (RL(Vj)) =0Qifi # j
and

R W)yNnK =0

for all i. Then
Si = {(R"*E(2), —n; — L, (R E|y)7Y 2) | z € Vi),

i =1,2,...,N,isacollection of open bi-sections in G\ r meeting the requirements
in Lemma 2.1.

Finally, in the super-attractive case choose L such that RE(K) € U and K N
RI(K) =0,i > L. Let Uy be an open subset of U such that RL(K) € Uy and U,
is a compact subset of U \{x}, where x is the critical point in U. Set

Y = RE(USS, R (Crit) N K

and note that Y is a finite set. For every z € Y choose a small neighbourhood V, of
z and a natural number 7, such that R*> L is injective on V,, R** L (V,) C U\{x}
and

RV )nK =0

for all z, and R"*+L(V,) N R">+L(V,)) = @if z # z/. This is possible because
KN I=9,cf Lemma53. Then RE(K\ U,cy Vz) N U, R"(Crit) = . We
can therefore cover K\ | J,cy V- by a finite collection W;,i = 1,2,..., N, of open
sets such that RE (W) is an open simply connected subset of Up\ | 5=, R"(Crit). It
follows then from Lemma 5.5 that for any collection n;,7 = 1,2,..., N, of natural
numbers we can find univalent holomorphic maps y; : RL(W;) — R (Uy) such
that R" o y;(z) = z for all z € RE(W;). Set Uy = Uy U J,cy R™*TE(V;) and
note that U; is a relatively compact subset of U\{x}. There is therefore an N; € N
such that R/ (U;) N Uy = @, i > Ny. Thus, if we arrange that Ny + L < n; and
ni >nj—1 + Ni,i =2,3,..., N, it follows that the sets

yio RE(W)), i=1.2... N,
are mutually disjoint and are also disjoint from K U U;. For each z € Y the set

T, = {R"“*E(z), =n, — L, (R" ) o) |z e Vy)
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is an open bi-section in Gq\ 7. The same is true for
Si = {(ti o R* (). ni = L. (i o R w) ™" 2) | z € Wi},

i =1,2,...,N. Taken together we have a collection of bi-sections in GQ\ 7 with
the properties required in Lemma 2.1. O

5.1. Super-attractive stable regions. In this section we are concerned with the
C*-algebra C*(€2\ 1) in the case where Q2 is a super-attractive stable region. Let U
be a core domain for 2. Then I N U consists only of the super-attracting periodic
point x at the center of U. It follows from Lemma 5.6 and Proposition 2.5 that
Cr(Q\I) ~ C*(¥) ® K, where y: D,\{0} — D,\{0} for some r €]0, 1[ is the
local homeomorphism ¥ (z) = z%. Note that d = val(R?, x) > 2, where p is the
period of x. Let D = {z € C | 0 < |z| < 1}. Define «: D — D such that
a(z) = z%. Since D = U; o7 (D;\{0}), it follows from Theorem 2.3 that C* (v/)
is stably isomorphic to C*(cr). Thus, C*(2\1) >~ C(a) ® K since C;*(2\ 1) is
stable by Lemma 5.6, and in this section we identify the stable isomorphism class of
Cr ().
First identify D with |0, 1[xT via that map (¢, A) > tA. In this picture

a(t, ) = (4, 19).
Map |0, 1[xT to R x T using the map

log(—logt) k)

¢4 ( logd

This gives us a conjugacy between (D, «) and (R x T, t x §), where (¢) = + 1
and B(A) = A4. It follows that C*(a) =~ CX*(r x B). Let S! be the one-point
compactification of R and let 7™ be the continuous extension of 7 to S'. To simplify
notation set ¢ = t+ x B. It follows from Proposition 4.6 in [CT] that there is an
extension

0—>Cr(xxp)—>Cr(p) > Cr(B) — 0. (19)

In the notation of Section 2, observe that R, = S! x R and that this decomposition
gives rise to an isomorphism

CX(Ry) ~ C(S') ® CF(Rp). (20)

Under this identification the Deaconu endomorphism ¢ of C*(R,) becomes the

tensor product T ® ,3 , where /§ : CF(Rg) — CX(Rp) is the Deaconu endomorphism
of C*(B) and t: C(S!) — C(S1) is given by

() = f(rT(x)).
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Let Bg be the inductive limit of the sequence

CrRp) B (Rp) B ¢ (Rp) B (Rp) B - 21

and let ﬁoo be the automorphism of Bg induced by letting ,3 act on all copies of
C*(Rp) in the sequence (21). Similarly, we can consider the inductive limit B, of
the sequence

CHRy) S CF(R) S C*(R) S Cr (R S - .

Using (20) and the tensor product decomposition ¢ = T ® B it follows that B, =~

C(S') ® Bg under an isomorphism which turns @oo into 7 ® ,300. It follows in this
way from Theorem 4.8 in [Th1] that there are embeddings of C*(t x ) and C*(f)
into full corners of (C(S') ® Bg) X foo Z and Bg » foo Z, respectively. Together
with the extension (19) this gives us a commuting diagram

0——=Cr (% f) Crt % B) C(B) —0

| | |

0— (CO([R) [39] Bﬂ) Nf@ﬁoo /A (C(Sl) ® Bﬂ) Xf’@Boo 7 —~ B,B XBOO Z —(

with exact rows. Consequently the range of the embedding
Cr*(r X ,3) — (Co([R) (%) Bﬂ) ><l%®/§C>o /A

is a full corner, and we conclude therefore from [Br] that C*(z x f) is stably isomor-
phic to (Co(R) ® Bg) X @ hos Z.

Recall that the mapping torus MT,, of an endomorphism y: B — B of a C*-
algebra B is the C*-algebra

MT, = {f € C[0,1]® B | y(f(0)) = f(D}.

We need the following lemma.

Lemma 5.7. Let A be a C*-algebra and a: A — A an automorphism. It follows
that the crossed product (Co(R) ® A) X3gq Z is isomorphic to the mapping torus
MTiqy @« of the automorphismidy @ o: K@ 4 - K® A.

Proof. For f € Co(R)andn € Z,let f,, € C[0, 1] be the function f,(¢t) = f(n+1).
Let e;;, i, j € Z, be the standard matrix units in K = K(/2(Z)). Define a *-
homomorphism 77 : Co(R) ® A — C[0, 1] ® K ® A such that

n(f®a)= ) fu®ewm @a " (a).
nezZ
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Let S be the two-sided shift on /2(K) such that Se,,S* = e,—1,—1. Then 7
maps into the mapping torus of (AdS) ® o and 7 o (T ® @) = AdT o 7, where
T = 1c[o,11® S ® 14. It follows from the universal property of the crossed product
that we get a x-homomorphism

®: (Co(R) ® A) X34 Z — C[0.1] @ K ® A,

which is injective since its restriction to Co(R) ® A clearly is. Its range is generated
by elements in C[0, 1] ® K ® A of the form T (f ® a) and is therefore contained
in the mapping torus of (Ad S) ® a. To see that

B = ®((Co(R) ® A) X:@a Z)

actually is equal to this mapping torus, letev;: C[0,1] ® K® A — K ® A denote
evaluation at# € [0, 1]. Then ev,(B) is generated by elements of the forme,—; , ® a
forsomen € Z andsomea € A, and itis easy to see that this is all of K& A. Consider
then a continuous function g: [0, 1] — K ® A which is an element of MT (A4 5)gq-
i.e., has the property that

(AdS) ® a(g(0)) = g(1).

Lete > 0. Foreach? € [0, 1], there is then an element f; € B suchthat g(¢) = f; ().
We can therefore choose intervals I; = [ﬁ, jMi] and elements f; € B such that

lg(t) — fi(@)|| <e,t el forall j, and such that

(Ad S) ca(fo(0) = fu-1(D).

Choose a partition of unity #; € C[0,1], j =0, 1,2, ..., M — 1, such that 4¢(0) =
hym—-1(1) = 1 and supph; C I; forall j. Then f = ZjMzT)l h; fi € B because B
is a module over { f € C[0,1] | f(0) = f(1)}. Since || f — g| < &, this shows
that B is equal to the entire mapping torus of (Ad S) ® «. This mapping torus is
isomorphic to that of idx ® o because the automorphism group of K is connected,
cf. Proposition 10.5.1 in [BI]. Ll

It follows from Lemma 5.7 and the preceding considerations that C*(«) is stably
isomorphic to the mapping torus of Bm : Bg — Bg.

It is known that C.*(Rg) is isomorphic to the Bunce-Deddens algebra BD(d *°)
of type d®°, cf. Example 3 in [De]. Thus BD(d *°) is the unique simple unital AT-
algebra with a unique trace state such that K;(BD(d*°)) >~ Z and K¢(BD(d*)) is
isomorphic, as a partially ordered group with order unit, to the group Z[1/d] of d -adic
rationals if the latter has the order inherited from R and the order unit 1. As shown
in Example 3 of [De], the map f+«: K1 (BD(d*°)) — K;(BD(d®)) is the identity,
while ,3*: Ko(BD(d®®)) — Ko(BD(d®°)) is multiplication by % on Z[1/d]. To
emphasise the number ¢, which is the determining input for the construction, we will
denote the mapping torus of ,3 by MT, in the following.
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Lemma 5.8. The mapping torus MT P of /300 is stably isomorphic to

MT, = {f € C[0,1]® C(B) | B(f(0) = f(D)},
the mapping torus of the Deaconu endomorphism of C*(Rg).

Proof. Note that the mapping torus of ,300 is isomorphic to the inductive limit

id ®B id ®8 idcro. 1198
M 4 dcio,11] MTd dcilo,1] MTd dcio,1] e (22)

Let poo,1: Cr(Rg) — Bpg be the canonical homomorphism out of the first copy
of C*(Rp) in the sequence (21). As observed in [An], the isometry V' € C.*(B)
which implements the Deaconu endomorphism, in the sense that ;§ (a) = VaV*,
has the property that V*C*(Rg)V < CX(Rg). It follows that ,BA(Cr*(R,g)) =
VV*CX(Rg)VV* and that

Poo,1(C(Rp)) = qBgq

where ¢ = poo,1(1). It follows from the commuting diagram

MTy MT,

|

C[0.1] ® C*(Rp) C[0.1] ® By

| |

Cr* (Rﬂ ) Poo, 1 Bﬂ

idc10.11®00.1
—_—

that the image in the mapping torus MT oo of the first copy of MT; from the sequence
(22) is equal to

{f €Cl0,11® Bg | Boo(£(0) = f(1), qf (1) = f(t)g = f(1) forall 1}, (23)

which is visibly a hereditary C *-subalgebra of the mapping cone of ,éoo. Since Bg
is simple (because BD(d ) is), it follows that an ideal in MT which contains the
set (23) must have full fiber over every ¢ € [0, 1]. Then a standard partition of unity
argument shows, much as in the proof of Lemma 5.7, that such an ideal must be all
of MT foo , 1.e., (23) is both hereditary and full in MT . The desired conclusion
follows from Corollary 2.6 of [Br]. ]

We can now summarise with the following.

Proposition 5.9. Let Q be a super-attractive stable region. Then C}(Q2\1) is iso-
morphic to KQMT;, where MT ; is the mapping torus of the Deaconu endomorphism
on BD(d ).
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To describe the quotient C,* (2 N I) in (18), we need to determine the restricted
orbits in I and find the isotropy groups of their elements. Note that every periodic
point in 2 is RO-equivalent to a critical point in the critical periodic orbit. Hence
every RO-equivalence class in € N I is represented by a critical point z in Q. If z
is eventually periodic, it follows from Proposition 4.4 of [Th2] that Is, is an infinite
subgroup of Q/Z and hence C*(Is;) ~ C (I/s;) ~ C(K), where K is the Cantor set.
If z is not pre-periodic, it follows from Proposition 4.4 of [Th2] that Is, = Z,,, where
v is the asymptotic valency of z. By using Lemma 2.2 and Lemma 4.11 we get in
this way a complete description of C.*(€2 N I'), and we can then put the information
we have obtained into (18). To summarise our findings, we introduce the notation
K, for the C*-algebra of compact operators on the Hilbert space /2(RO(x)). Thus

_ K if x is not exposed, and
T IM, (C), wheren = #RO(x) < 4 when Xx is exposed.
Theorem 5.10. Let Q2 be a super-attractive stable region and ¢y, C3, ..., Cn4m critical
points in Q such that Q N I = |_|7:1m RO(¢;), and ¢y, ¢, ..., ¢, are pre-periodic,
while ¢, 41, Chy2, ..., Cn+m are not. Let v; be the asymptotic valency of cij, n + 1 <
i <n + m. There is an extension

0—K®MT; — CHQ) — (@I, C(K) @ K.,) & (@!L), C% @ K,,) — 0,

where K is the Cantor set and MT; is the mapping torus of the Deaconu endomor-
phism on the Bunce—Deddens algebra of type d*°.

5.2. Attractive stable regions. Letnow €2 be an attractive stable region. Let g be an
element of the periodic orbit in . The number A = (R?)'(q), where p is the period
of ¢, is the multiplier of ¢. It agrees with the number A from (b) of Definition 5.1.
Let now « be the local homeomorphism of D; defined such that &(z) = Az. By the
method used in the previous section, we find that C*(2\ 1) ~ K ® C;*(«). Write
A = |A|e?™? where 6 € [0, 1], so that & can be realised as the map on ]0, 1[x T
given by
(t. ) > (1A, pe®0).

log ) we see that o is conjugate to the map (7, ) +—>

log [A]”
(t+1, ne?*%) on Ry x T. The transformation groupoid of the last map is a reduction
of the transformation groupoid of the homeomorphism (¢, 1) — (¢ + 1, 1e27:%) on
R x T. Hence C*(w) is stably isomorphic to the corresponding crossed product
Co(R x T') x Z by Theorem 2.3. It follows from Lemma 5.7 that the latter crossed
product is isomorphic to K ® C(T?). In this way we obtain the following.

Via the map (¢, 1) — (

Proposition 5.11. Let Q2 be an attractive stable region. Then

CHQ\I) ~ K® C(T?).
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Itis also straightforward to adopt the methods from the preceding section to obtain
a description of C*(€2 N I). The periodic points lie in the same restricted orbit and
the isotropy group of any of its members is a copy of Z by Proposition 4.4 of [Th2].
The restricted orbits of the critical points are divided according to whether or not
they are pre-periodic. Since the periodic orbit is not critical, the isotropy group of
a critical pre-periodic point is now Z & Z4, where d is the asymptotic valency by
Proposition 4.4 of [Th2]. This leads to the following description of C*(£2).

Theorem 5.12. Let Q2 be an attractive stable region and q a periodic point in 2. Let
C1, C2, ..., Cn4m be critical points in Q2 such that
n+m
QN I=RO(g)U || RO(c),
i=1
and cq, ¢y, ..., ¢y are pre-periodic while c;, i > n + 1, are not. Let v; be the
asymptotic valency of c;. There is an extension

0—-K®C(T? - CHRQ) - A0,
where
A=(C(MRK) B D', C% @C(T)®K,,) & (PIL", C% @ Ke,).

5.3. Parabolic stable regions. The remaining cases corresponding to stable regions
of parabolic, Siegel or Herman type can be handled by similar methods. Since the
considerations are simpler than those involved in the attractive cases, we merely state
the results.

Theorem 5.13. Let Q be parabolic stable region. Let ¢ij, i = 1, 2, ..., N, be
representatives for the restricted orbits of the critical points in Q and let v; be the
asymptotic valency of ¢;. There is an extension

0— K® C(T) ® Co(R) — C*(Q) — DL, C¥ ® K, — 0.

5.4. Stable regions of Siegel type. Let 6 € [0, 1]\Q. The corresponding irrational
rotation algebrais the universal C*-algebra generated by two unitaries U, V satisfying
the relation UV = 279V U. See [EE] for more on its structure.

Theorem 5.14. Let 2 be a stable region of Siegel type. Let q be a periodic point in
Q. Let ¢y, ¢3, ..., Cnym be critical points in Q such that
n+m
QN I=RO(g)U || RO(c),
i=1

and cy, ¢z, ..., ¢y are pre-periodic, while c;, i > n + 1, are not. Let v; be the
asymptotic valency of ¢;. There is an extension

0> K®Co(R)® Ag — C*(Q2) - B — 0,
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where Ag is the irrational rotation algebra corresponding to the rotation by the angle
270 in the core domain and

B =(C(T) @Ky & (P}, C" ® C(T) ® Ke,) ® (D2}, C” @ Key)
5.5. Stable regions of Herman type

Theorem 5.15. Let Q2 be a stable region of Herman type. Let ci, i = 1, 2, ..., N,
be representatives for the restricted orbits of the critical points in Q2 and let v; be the
asymptotic valency of ¢;. There is an extension

0= K® Co(R) ® g — C*(Q) - DN, CY @ K; — 0,

where Ag is the irrational rotation algebra corresponding to the rotation by the angle
270 in the core domain.

5.6. A square of six extensions. It is possible to combine the extensions from the
last sections into an exact square of 6 extensions in the following way. Let I, be the
union of the RO-orbits containing a non-critical periodic orbitin Fg and I, = I\,

its complement in I. Several applications of Lemma 3.2 gives us the following
commuting diagram with exact rows and columns.

0 0 0
0 —— C*(Fr\D) ——=C*(Fr\Ic) —=C* (L)) —0
0—=C (Fr\Lp)) —C*(R) ——=C*(JrU L) —=0 (24

0——=C*(I,)) ——=Cr*JrUI) —— Cr*(JR) —0

0 0 0

The algebras in the corners C*(Fr\ 1), C*(I,), C;*(I;) and C(Jg) can all be
identified from the preceding sections. Specifically, C*(Jg) is either nuclear, simple
and purely infinite, or an extension of such an algebra by a finite direct sum of circle
and matrix algebras, cf. Theorem 4.13. C*(Fg\ 1) is a finite direct sum of algebras,
each of which is the stabilization of MTy, C(T?), C(T) ® Co(R) or Co(R) ® Ag.
Which of the four types are present, depends on the nature of the stable regions in Fg.
The algebra C.*(I,) is a finite direct sum of algebras stably isomorphic to C(T),
while C* () is a finite direct sum of algebras stably isomorphic to C, C(T) or
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C(K). Which summands occur, depends on the behaviour under iteration of the
critical points in Fg.

It should be noted that the decomposition of C.*(R) depicted in (24) is not the only
possible. In fact there is a commuting square of the form (24) for any RO-invariant
partitioning of .T, not just for the partition I = I, U I, chosen above.

6. Primitive ideals and primitive quotients

In the following an ideal in a C*-algebra is a closed two-sided and properideal. Recall
that an ideal 7 is primitive if it is the kernel of an irreducible non-zero representation,
and prime if it has the property that /11, € I implies that I; € [ or I, € I when
I; and I, are also ideals. Since we shall only deal with separable C*-algebras, the
primitive ideals will be the same as the prime ideals, cf. e.g. [RW].

6.1. The primitive ideals. If / is an ideal in C.*(R), we set
p(I)={xeC| f(x) =0forall f € C(C)NI}.
We call p(1) the co-support of I.
Lemma 6.1. p(I) is a closed non-empty RO-invariant subset of C.
Proof. See Lemma 4.5 in [CT]. O

Lemma 6.2. Let I be an ideal in C;*(R) and let A be a closed RO-invariant subset
of C. If p(I) C A, thenkermyq C I.

Proof. See Lemma 4.8 in [CT]. O

If I € C*(R)isanideal, weletg;: C*(R) — C.*(R)/I denote the correspond-
ing quotient map. Note that it follows from Lemma 6.2 that ¢; factorises through
C*(p(I)), i.e., there is a *-homomorphism C,*(p(/)) — C*(R)/I such that

C(R) o CH(R)/1

m—~— 25)
Tol)

Cr(p(I))

commutes. 3
A non-empty closed RO-invariant subset A C C is prime if the implication

ACBUC = ACBorACC

holds for all closed RO-invariant subsets B and C of C.
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Lemma 6.3. Assume that I is a primitive ideal in C}(R). It follows that p(I) is
prime.

Proof. See Proposition 4.10 in [CT]. O

Lemma 6.4. Let Y be a prime subset of C. Assume that x € Y is isolated in Y.
Then all elements of RO(x) are isolated in Y and Y = RO(x).

Proof. 1t is clear that all elements of RO(x) are isolated in Y since x is. Set

B={zeY |z ¢RO(X)}.

Since Y € RO(x) U B, the primeness of Y implies Y € RO(x) or Y C B. Note
that x ¢ B since x is isolated in Y. It follows that ¥ € RO(x). O

In the following we denote by Orb(x) the (full) orbit of x, i.e.,
Orb(x) = {y € C | R"(x) = R™(y) for some n,m € N}.

Lemma6.5. Let Y be aprime subset of (I_: Assume Y has no isolated points. It follows
that there is a point x € Y'\ U;'io R7J (Crit) such that Y = RO(x) = Orb(x).

Proof. The proof is largely the same as the proof of Proposition 4.9 in [CT], but with
a few crucial modifications. It follows from Lemma 4.4 that Y is totally R-invariant
and hence in particular that RO(x) € Orb(x) C Y forall x € Y. Itsuffices therefore
to find an x € Y'\ U;’;O R~/ (Crit) such that Y € RO(x). Let {Uy }re, be a basis
for the topology of Y. We will by induction construct compact sets {Cy }p2, and
{C; 172, with non-empty interiors in ¥ and positive integers (nx)32, and (1)),
such that

(i) Cx C Uk,
(ii) C; € R™~1(Cg—1) N R"-1(C;_,)ifk > 1,and

(i) €} N (U”°+’“+ -1 Ri(Crit) U UMy RI(Crit) = Bif k = 1.

Let Cy = C; be any compact subset of ¥ with non-empty interior in ¥'. Assume that
k >1and that Ci,....C, Cy, .. Ck, no, ..., Nx—1 and ng, .. nk_l satisfying the
conditions above have been chosen. Choose non-empty open subsets Vi € Cg and
Vk/ - C,é. Then

o0
U RT(R™(Vy) and U R (R™(V))
I,m=0 1,m=0
are non-empty open and totally R-invariant subsets of ¥, and hence

Y\ U RUR"V) and Y\ U RUR™V) (26)

l,m=0 l,m=0
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are closed and totally R-invariant subsets of Y. Since Y is prime and not contained
in either of the sets from (26), it is also not contained in their union. That is,

(Ul=o R R (V) N (Ufon=o RTH(R™(V))) # 0.

It follows that there are positive integers n and n)_such that R"* (V) N R" (V) is
non-empty. We can therefore choose a non-empty compact set Cg 4+; with non-empty
interior such that Cx | € Ug4 1, and a non-empty compact set C;. 41 With non-empty

interior such that C] . € R" (Vj) N R" (V{). Since

k+1
ny+n) +etnj _ ng _
U RI(CrityU | J RY(Crit)
j=0 =0

is a finite set and Y contains no isolated points, we can arrange that

’ 7 /7
notnytetng

Ci1 N (U, R/ (Crit) U U7, R/ (Crit)) = .

This completes the induction step.
It follows from (ii) that

C} = R'OPT (€N RT"0(C)) N -+~ N R0~ m1(CL))
for all k and hence
CyNRTO(C) N NRTOTT(CLL ),k =0,1,...,

is a decreasing sequence of non-empty compact sets. Let

0 / ’
X € k(jo R0 (Cy ) N Gy

By construction there is for each k an element u; € Uy such that RMottn (x) =
R"™% (uy) and
val(R”6+"'+”;<,x) = val(R" ,uy) = 1.

Since this implies that ux € RO(x), we have that RO(x) is dense in Y. Furthermore,
it also implies that val(R, R/ (x)) = 1 for all j, i.e., x ¢ U;io R~/ (Crit). O

Corollary 6.6. Ler Y € C be a closed RO-invariant subset. Then Y is prime if and
only if there is a point x € C such that Y = RO(x).

Proof. 1f Y is prime, it follows from Lemma 6.4 and Lemma 6.5 that there is an
element x € C such that Y = RO(x). This proves the necessity of the condition.
Sufficiency follows immediately from the definitions. O
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Let M be the set of prime subsets of C. Let My denote the collection of elements
Y € M with the property that Y contains an isolated point which is either periodic
or critical.

Lemma 6.7. Let Y € M\ M. It follows that ker y is the only ideal I in C*(R)
with p(1) =Y, and ker my is a primitive ideal in C*(R).

Proof. Let I be anideal in C*(R) with p(/) = Y. Thenker ry C I by Lemma 6.2.
To conclude that / = ker my it suffices therefore to show that 7y (/) = {0}in C* ().
To this end note first that 7y (1) N C(Y) = {0}. Indeed, if h € 7y () N C(Y), let
g € C(C) be a function such that g|ly = 4 and let a € I be an element such that
wy(a) = h. Then ny(a — g) = 0 and hence ¢ — g € kermy C [I. It follows
that g =a—(a—g) € INC(C)andso g(y) = O0forall y € p(/) = Y. Thus
h = 0, proving that 7y (/) N C(Y) = {0}. To conclude from this that 7y (/) = 0,
note first that the elements of Y with non-trivial isotropy in Gy are dense in Y. This
follows from Lemma 4.3 because a point y € Y with non-trivial isotropy in Gy must
be pre-periodic or pre-critical for R by Proposition 4.4 a) in [Th2]. It then follows
from Lemma 2.15 of [Th1] that P(zy (1)) = {0} if P: C,*(Y) — C(Y) denotes the
conditional expectation. Since P is faithful, this shows that 7y (/) = 0 and hence
that I = ker ry.

To show that ker 7y is primitive we may as well show that C.*(Y') is a prime C*-
algebra. Consider therefore two ideals /; € C;*(Y), j = 1,2, such that /11, = {0}.
Then

{yveY | f(y)=0forall f €I, NC(Y)}
U{yeY| f(y)y=0forall fel,NC(Y)} =Y.

By Corollary 6.6, there is an element x € Y such that Y = RO(x). Then x must be
in{yeY | f(y) =0forall f € I; NCy(Y)} foreither j = 1or j = 2. Assume
without loss of generality that x € {y € Y | f(y) = O0forall f € I; N C(Y)}. The
latter set is both closed and RO-invariant, so we conclude that

Y=ROKx)={yeY| f(y)y=0forall f € [{ NC(Y)},

ie., I N C(Y) = {0}. As above we conclude that /; = {0} due to Lemma 2.15 of
[Th1]. O

Let Y € M and let y € Y be an isolated point which is either periodic or
critical. By Proposition 4.4 of [Th2], the isotropy group Is,, is abelian and in fact
either Z, a non-zero subgroup of Q/Z or isomorphic to Z & Z4 for some d € N.
Let I/s; be its Pontryagin dual group. Since y is isolated in Y, every element £ € Is,
is isolated in Gy and hence the characteristic function 1¢ of the set {£} is an element

of C.(Gy) € C*(Y). Foreach w € I/s; set

I(y.0) = 7y (Io(y. ).
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where /o(y, w) is the ideal in C;*(Y') generated by the elements

By adopting the proof of Proposition 4.15 from [CT] in a straightforward way we
obtain the following.

Lemma 6.8. Let Y € M and let y € Y be an isolated point. Then the map

I/s; > w +— I(y,w) is a bijection from I/s; onto the collection of primitive ideals I in
CX(R)ywithp(l) =Y.

In particular, it follows from Lemma 6.8 and Lemma 6.7 that every prime subset
of C is the co-support of a primitive ideal in C*(R). By combining Lemma 6.8 with
Lemma 6.7 we get the following.

Lemma 6.9. For each A € M choose an isolated point y4 in A which is either
periodic or critical. Then the set of primitive ideals in C*(R) is the disjoint union

{kermp | B € M\Mo}U U {1(va.0) | @ €5y, }.
A€My

Lemma 6.10. Let A € M. There is either an exposed point x € Eg such that
A = RO(x), ora critical or a periodic point x € FR\ERg such that A = RO(x)U JF.

Proof. Let x be periodic or critical point such that x is isolated in A and 4 =
RO(x). If x € Jg, it follows from Lemma 4.5 that RO(x) is finite since Jg has no
isolated points, i.e., x is exposed. Assume x € Fg. It follows from Lemma 5.2 and
Lemma 5.4 that RO(x)\ RO(x) C Jg. Since RO(x)\ RO(x) is closed, RO-invariant
and has no isolated points, it follows from Lemma 4.5 that RO(x)\ RO(x) = @ or
RO(x)\RO(x) = Jgr. In the first case x is exposed and in the second we have
A=RO(x)U JF. O

Lemma 6.11. Let A € M\Mcy. Then either A = Jg or A = RO(x) for some
x € FR\I. In the last case, Jp C A.

Proof. Let x € A such that RO(x) = A. If x € ], it follows from Lemma 4.5 that
A = Jg or A is finite. In the last case A = RO(x) is an exposed RO-orbit which
must contain either a periodic point or a critical point, cf. Section 4.2. Since this is
impossible when A ¢ M., we must have A = Jg.

Assume that x € Fr. If 4 contains an isolated point y, it follows form Lemma 6.4
that A = RO(y). Note that y € Fg because y € RO(x) and Fp, is totally R-invariant.
It follows that y ¢ I since A ¢ M. To prove thatJg € A note that R"(y) € RO(y)
forall n € N since y ¢ |Ji2, R™(Crit). Thus y cannot be pre-periodic since this
would contradict that A ¢ M. Now an argument from the proof of Lemma 7.3 in
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[Th2] shows that there is an n € IN such that the backward orbit of R"(y) contains
no critical points. Then the backward orbit of R"(y) is contained in RO(y), and
since R"(y) is not exceptional, it follows therefore from Theorem 4.2.5 in [B] that
Jr € RO(x).

If A has no isolated points, it follows from Lemma 6.5 that there is a point
y € A\ U;‘”;o R~/ (Crit) such that A = RO(y). Note that y cannot be pre-periodic
because A ¢ M. Since the asymptotic valency of y is 1, it follows that y ¢ T, i.e.,
y € Fr\I. As above it follows that there is an n € N such that the backward orbit
of R"(y) is in RO(y) and again Jg C A. O

We can now show that the primitive ideal space of C,*(R) is not Hausdorft, or
even Ty, in the hull-kernel topology unless Jg = C and there are no exposed points.
Indeed, if Jg # C it follows from Lemma 4.3 that Fg contains a point y which is
neither pre-critical nor pre-periodic or exposed. Then Lemma 6.10 combined with
Lemma 5.4 and Lemma 5.2 shows that A = RO(y) € M\ M. Furthermore,Jg C A
by Lemma 6.11. If Jp = C and there is an exposed point, its restricted orbit will
be an element B € M such that B € Jg. In the first case it follows from Lemma
6.2 that ker 4 < ker 7y, so that ker iy, is in the closure of {ker 4} with respect
to the hull-kernel topology. In the second case {0} = ker wry, < kerrp C I(yp.w)

for any yp € B and any w € Ig};, and then /(yp,w) is a primitive ideal in the
closure of {ker Ty p } In both cases we conclude that the primitive ideal spectrum is
not Ty. Note that if Jg = C and there are no exposed points, CX(R) is simple by
Proposition 4.10 and the primitive ideal spectrum reduces to one point.

6.2. The primitive quotients. It follows from Lemma 6.10 and Lemma 6.11 that
we can divide the primitive ideals / of C*(R) into four types, according to the nature
of their co-supports:

@) o(I) = IR,

(i) p(I) = RO(x) for some exposed point x,
(iii) p(/) = RO(x) U Jg for some x € I NFr\Eg, and
(iv) p(I) = RO(x) for some x € Fg\I.

If p(I) = Jg, the quotient C;*(R) /1 is C.* (Jg), whose structure was elucidated in
Section4. If p(1) = RO(x) for some exposed point, it follows from (25), Lemma4.11
and Corollary 4.7 that C*(R) /1 ~ M,,(C) for some n < 4. In the case (iii) it follows
first from Lemma 3.2 and Lemma 4.11 that there is an extension

0—C*(Isx) @ K— C*(p(1)) »> C*(Jr) — 0
and from (25) and Lemma 6.8 that there is an extension

0—>K—CX(R)/I - CX(Jgr) — 0.
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It remains to describe the primitive quotient C*(R)/I in case (iv). The result
depends very much on which stable region the point x € Fg\ I that generates p(/)
comes from. We consider the different possibilities in the following subsections.

6.2.1. The super-attractive and attractive stable regions. Assume x is contained
in a super-attracting stable region 2. It follows from Lemma 6.7 that C*(R)/I =~
CX(p(1)). Since I N C*(2\ 1) is a primitive ideal in C*(£2\ ), it follows that

CHp() NQ\D) = CH@\D)/I

is a primitive quotient of C*(€2\.I) and hence isomorphic to the stabilised Bunce—
Deddens algebra K ® BD(d*°) by Proposition 5.9. When we apply the method
from Section 5.6 to C*(p(I)) rather than to C*(R), we thus obtain the following
commuting diagram with exact rows and columns because there are no periodic non-
critical orbits.

BD(d*®) ® K =———BD(d®) ® K

0—=C*(p(/) NFR) ——— C*(R)/] ————C(Jrp) —=0

T

0 A CrJrU (L Np1))) —=CF(JrR) —>0

Here
A=CX(I.Np(D) = (B, C(K) ®K;) & (B C¥% @ Ke,),

where ¢1, €2, ..., Cn+m are critical points in € such that p(1) N I, = |_[!27" RO(c;),
and cy, ..., ¢, are pre-periodic, while ¢;+1, ..., Ch+m are not. As usual v; is the
asymptotic valency of ¢; and K is the Cantor set.

If Q2 is attractive with periodic point p, we get by the same reasoning the following
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diagram.

0 K CrYRO(p)) ———— = C(MK, ——=0

T

0 —> C*(p(I) NFR\RO(p)) ——— > C*(R)/I] ———— > C*(Jr URO(p)) —= 0

0 A CrArUT:Np)) — C*Jr) —>0

Here
A=CHI.Np() =@@P-, C(MCY ®K,,) & (DI, C ®Ke,)
where ¢, €3, ..., Cp1m are critical points in € such that p(/) N I, = |_|7;L{" RO(c;),

and ¢y, ..., ¢, are pre-periodic, while ¢, 41, ..., Ch+m are not.

6.2.2. Parabolic stable regions. Assume now that x is contained in a parabolic
stable region €2. In this case there is no periodic point in €2 and we get the following
diagram.

0——=CX(p()NFR) ———C*(R)/] ———— = C*(Jrp) —0

T

00— @Y, Cc% g K, — C0r U L N p(I)) — C(r) —>0
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Herec;,i = 1,2, ..., N, are critical points in Q such that I, N p(I) = |_|lN=1 RO(¢;).

6.2.3. Stable regions of Siegel or Herman type. Assume now that x is contained
in a stable region Q2 of Siegel type. In this case there is a periodic point in 2 with
a non-critical orbit, but since x ¢ I, this orbit is not in p(/). Therefore the picture
is the same as in the case of a Herman type stable region and we get in both cases
a diagram similar to the parabolic case. The only difference is that the algebra K
in the last diagram is exchanged with the stabilised irrational rotation algebra Ag
corresponding to the rotation by the angle 2776 in the core of 2.

This completes the list of primitive quotients of C*(R). Note that only very few
of the primitive quotients are simple. In fact, the simple quotients of C*(R) are all
matrix algebras M, (C) with n < 4, together with C*(Jg) if there are no exposed
points in Jg.
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