J. Noncommut. Geom. 8 (2014), 303-320 Journal of Noncommutative Geometry
DOI 10.4171/INCG/157 © European Mathematical Society

On an extension of Knuth’s rotation correspondence
to reduced planar trees
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Abstract. We present a bijection from planar reduced trees to planar rooted hypertrees, which
extends Knuth’s rotation correspondence between planar binary trees and planar rooted trees.
The operadic counterpart of the new bijection is explained. Related to this, the space of planar
reduced forests is endowed with a combinatorial Hopf algebra structure. The corresponding
structure on the space of planar rooted hyperforests is also described.
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1. Introduction

Rooted trees have been extensively used in many branches of pure and applied math-
ematics. Especially in the latter case they gained particular prominence due to the
pioneering work on numerical integration methods by John Butcher in the 1960s [4],
[15], [22]. He discovered a group structure in the context of Runge—Kutta integration
methods. This group structure encodes the composition of so-called B-series. The
latter are a generalization of Taylor series, in which rooted trees naturally appear, as
Arthur Cayley noticed in his classical 1857 paper [7]. See [5], [23] for details. Since
then, algebraic structures have become an important aspect in the study of numerical
methods and related fields, see e.g. [2], [8], [24], [28], [37].

Somewhat after Butcher’s seminal work, Gian-Carlo Rota and Saj-Nicole Joni
observed in a seminal paper [29], that various combinatorial objects naturally possess
compatible product and coproduct structures. With the work by William Schmitt
[38] this ultimately converged into the notion of combinatorial Hopf algebra, i.e.,
as Marcelo Aguiar puts it, a connected graded vector space where the homogeneous
components are spanned by finite sets of combinatorial objects, and the algebraic
structures are given by particular constructions on those objects. Rooted trees provide
a genuine example for such combinatorial objects, and several Hopf algebra structures
have been described using them. In [21], [25], [26], [27], [41] the reader finds more
details. In particular, Arne Diir, and later Christian Brouder [3] showed that the
Butcher group identifies with the group of characters on the dual of a commutative
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graded Hopf algebra of rooted trees described by Alain Connes and Dirk Kreimer
[14]. In [6] a combinatorial Hopf algebra structure on rooted trees was described
that corresponds to the substitution law of B-series introduced in [12], see also [13].
In [36] a Hopf algebra on planar rooted trees was introduced in the context of Lie—
Butcher series on Lie groups.

Combinatorial Hopf algebras on rooted trees are generally related to the fact
that free pre-Lie algebras are naturally described in terms of rooted trees [11], [16],
[39]. In the case of Hans Munthe-Kaas and William Wright’s noncocommutative
Hopf algebra for Lie—Butcher series [36], this has been generalized to so-called D-
algebras. Frédéric Chapoton observed in [9] that an operadic approach may provide
an adequate perspective on the link between pre-Lie structures, the group of characters
and combinatorial Hopf algebras.

The theory of correspondences between combinatorial objects is one of the main
topics in combinatorics. As an example we mention Robinson’s and Schensted’s
bijection between permutations and standard tableaux. Another example is Donald
Knuth’s rotation correspondence [30] for planar binary trees, which maps a planar
binary tree with n — 1 internal vertices into a planar rooted tree with n vertices. A
couple of years ago in a meeting in Lyon, J.-L. Loday suggested that it should be
possible to extend this correspondence from planar binary trees (in which any vertex
has two incoming edges and one outgoing edge) to planar reduced trees (in which
any vertex has two incoming edges or more).

In this paper we solve this problem by generalizing Knuth’s correspondence to a
bijection between planar reduced trees and planar rooted hypertrees. This bijection
is used to transfer a combinatorial Hopf algebra structure on planar reduced trees to
planar rooted hypertrees. It turns out that the coproduct of the latter is very similar
to the one in Munthe-Kaas and Wright’s Hopf algebra. In a forthcoming article we
will describe in more detail the underlying reason for this.

This paper is organized as follows. In Section 2 we introduce the notions of planar
binary trees and planar rooted trees. The Butcher product on trees is presented. We
recall Knuth’s rotation correspondence between planar binary trees and planar rooted
trees, which we then extend to a bijection from planar reduced trees to so-called
planar rooted hypertrees. In Section 3 we briefly recall some notions from the theory
of connected graded bialgebras, and then define a Hopf algebra on planar reduced
trees respectively planar rooted hypertrees.

2. Planar rooted trees and hypertrees

Recall that a tree is an undirected connected graph made out of vertices and edges.
It is without cycles, that is, any two vertices can be connected by exactly one simple
path. We denote the set of vertices and edges of atree ¢ by V(¢) and E (¢), respectively.
In this section we introduce the objects of this work, which are particular classes of
trees, i.e., planar binary (reduced) trees and planar rooted (hyper)trees.
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2.1. Planar trees. We start with the notion of a planar binary tree, which is a finite
oriented tree given an embedding in the plane, such that all vertices have exactly
two incoming edges and one outgoing edge. An edge can be internal (connecting
two vertices) or external (with one loose end). The external incoming edges are the
leaves. The root is the unique edge not ending in a vertex.

LYY VYV

The single edge | is the unique planar binary tree without internal vertices. We
denote by Tj" (resp. 7,0™") the set (resp. the linear span) of planar binary trees. A
simple grading for such trees is given in terms of the number of internal vertices.
Alternatively, one can use the number of leaves. Observe that for any pair of planar
binary trees ¢, f; we can build up a new planar binary tree via the grafting operation,
13 =11 V 1, i.e., by considering the Y -shaped tree Y (the unique planar binary tree

with two leaves) and replacing the left branch (resp. the right branch) by #; (resp. ).

Ivi=y yvi=X/ Ivy= )y vy =) v/ =

7-bin

Seen as a product on T
commutative, 1 V t, # t» V t;. In fact, (’J;‘fi“, V) is the free magmatic algebra
generated by the tree |. Notice that this product is of degree one with respect to
the grading in terms of internal vertices, i.e., for two trees t1, ¢, of degrees ny, ns,
respectively, the product #; V 7, is of degree n; + n, + 1. However, with respect to
the leave number grading this product is of degree zero.

A planar rooted tree is a finite oriented rooted tree given an embedding in the
plane, such that all vertices, except one, have arbitrarily many incoming edges and
one outgoing edge. The root is the one vertex without an outgoing edge.

.Ivfib\r*}’i’

the grafting operation V is neither associative nor

The single vertex e is the unique rooted tree without edges. Note that we put the
root at the bottom of the tree. The set (resp. the linear span) of planar non-empty
rooted trees will be denoted by T}, (resp. 7). A natural grading for such trees is given
in terms of the number of edges. Another one is given by the number of vertices.
Observe that any rooted tree of degree bigger than zero can be written in a unique
way:

t = By(t1-tn),

where B, associates to the forest 71 - - - ¢, the planar tree obtained by grafting all the
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lanar trees ¢t;, j = 1,...,n, on a common root.
7

B.(e) = I Bi(ee) =% B+(I') = I\J B+(°I) = .\}

Recall that sometimes, one finds the notation ¢t = [t; - - - £,] in the literature [3], [4].
Note that the order in which the branch trees are displayed has to be taken into account.

Further below we will recall the classical correspondence between these two types
of trees, due to Knuth [30].

2.2. The Butcher product. Motivated by the use of (non-)planar rooted trees in the
theory of numerical integration methods [4], [5], [21], [22], we introduce a planar
version of the classical Butcher product. The (left) Butcher product of two planar
rooted trees ¢, u is defined by connecting the root of ¢ via a new edge to the root of u
such that ¢ becomes the leftmost branch tree, that is, for two trees t = By (t1---ty)
andu = By (U -+~ up):

to—u:= By(tuy---up). (1)

Observe that it is neither associative nor commutative, and, again contrarily to the
non-planar case, it is also not NAP (Non-Associative Permutative) [31], i.e., it does
not satisfy the identity t o— (¥ o= v) = u o— (¢t o— v).

2.3. Knuth’s correspondence between planar binary and planar rooted trees.
Knuth describes in [30] a natural relation between planar rooted trees and planar
binary trees, known as rotation correspondence. We only give a recursive definition
of this bijection, and refrain from providing more details. The interested reader is
referred to Marckert’s paper [34] for a nice description of the rotational aspect.
Recall that by the single edge | we denote the unique planar binary tree without
internal vertices. Now we recursively define a map &: prli“ — Tp by ®(]) :=eand

(1) V1) = D(t1) o—> D(2,).

This map is clearly well defined and bijective,! with its inverse recursively given by

O (1)

oLy
OBt ty) = \

't appears also in [20] in slightly different form.
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Here are the first few terms:

=+ Gop=1 GON=V @)=

d>(W)=i @((/)JJ Q)= ¥ ‘D(W):&; ‘D(W):Y'

Note that this simple bijection implies that (7, o—) is the free magmatic algebra
generated by the one-vertex tree e.

2.4. Reduced planar rooted trees and planar rooted hypertrees. A planar tree
is called reduced if any inner vertex has at least two incoming edges. We denote by
Tprled (resp. ’Tp{ed) the set (resp. the linear span) of reduced planar trees. Any reduced
planar tree can be described forn > 1ast = \/(#1,...,1,), i.e., it can be obtained
by considering the unique tree with one internal vertex and n incoming edges, and
replacing the i branch by #;. There is a partial order on Tprfd defined as follows:
11 < tp if #; can be obtained from 7, by glueing some inner vertices together. In
particular, two comparable trees must have the same number of leaves. The minimal
elements are the trees with only one inner vertex, and the maximal elements are the
planar binary trees.

We would like to propose a way to extend the bijection &, originally defined on
planar binary trees, to reduced planar trees, thus answering the question raised by
J.-L. Loday. The image of Tprled will be the space H T}, of planar rooted hypertrees,
which we introduce now.

Following C. Berge [1] (see also [10]), a hypergraph on a finite set I of vertices
is a nonempty set of parts of / of cardinality at least 2, which will be called the edges
of the hypergraph. A path in a hypergraph is a sequence iy, ..., i of vertices such
that any pair {i;, {41} is included in an edge. A hypergraph is connected if any two
vertices can be joined by a path. A hypertree [35], [10] is a connected hypergraph
without cycles except those which are included in a single edge. Two different edges
in a hypertree then meet at one single vertex or have empty intersection.

A rooted hypertree is a hypertree with a distinguished vertex. This defines a partial
order on the set of edges as follows: e < e’ if for any vertex j in e and any vertex
j' in ¢’ there is a path from the root to j’ through j. This in turn defines a preorder
on the vertices in an obvious way. For any edge ¢’ not containing the root, there is a
unique edge e such that e < ¢’ and e N e’ # @. The unique vertex in this intersection
will be called the root of the edge ¢’. Define a planar rooted hypertree as a rooted
hypertree together with an embedding into the plane such that any edge is embedded
in the boundary of a small topological disk. This defines a partial order on the vertices
compatible with the preorder defined above, i.e., it determines a total order on each
edge with the edge’s root as minimal element, by running counterclockwise along
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the boundary of the disk. The following planar rooted hypertree

2)

has seven edges altogether, three with 2 vertices, three with 3 vertices and one with 4
vertices. Each edge of cardinality bigger than 2 is represented by a blob. The vertices
are drawn on the circle delimiting the blob, and are ordered counterclockwise starting
from the edge’s root.

There is a partial order on the set of all rooted planar hypertrees on a given set /
of vertices with root r € [ fixed: #; < ¢, if and only if any edge of #, is contained in
an edge of #;. The minimal element is the hypertree with only one edge equal to the
whole 7, and the maximal elements are planar rooted trees on I with root r.

We are now ready to extend Knuth’s rotation correspondence:

Theorem 1. The rotation correspondence from Tpl}i“ to Ty extends to a bijection

(O Tprf’d — HT,, which, for any positive integer p, sends any planar reduced tree
with p leaves to a planar rooted hypertree with p vertices.

Proof. For any ordered collection (¢4, ...,?,) of planar rooted hypertrees with re-
spective roots r; we define B(1, . . . t,) by collecting the roots r; into a common edge,
in which the vertices are put in the reversed order. In particular, it implies that r, is
the root of this new edge, hence the root of the new built hypertree. This certainly
extends the Butcher product of two trees (1). We then extend © by setting recursively:

O\ (1. ... tn)) = B(R(11), ... D(tn)). 3)

Any planar rooted hypertree can be written in a unique way as B(sy, ..., s,), where
n is the cardinality of the leftmost edge containing the root. The inverse ®~! is then
recursively defined as follows:

O (Bt v 50) = V(@7 (s1), o, @71 (50)). “4)

O
Considering the example (2) above, we have
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Recall that the reduced planar trees with n leaves are in bijection with the cells of
the n — 2-associahedron. In particular, reduced planar trees with four leaves can be
displayed on the pentagon like this:

Under transformation @ the picture transforms like this:

TR

o @

v

It is easy to show that ® respects the partial orders defined above, which are two
manifestations of the reverse incidence order of the associahedron.

2.5. Adding decorations. A planar binary tree decorated by aset / is a planar binary
tree together with a map § form the set of its internal vertices to /. There are grafting
operations V;, i € I, defined as in the undecorated case, except that the new internal
vertex is decorated by i. This decoration procedure generalizes to planar reduced
trees as follows: given a partitioned set I = I, LI /3 LI ---, a planar reduced tree
decorated by I is a planar reduced tree together with a map § from the set of its
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internal vertices to .I, which sends the internal vertices which have n incoming edges
into [,. Any such decorated planar reduced rooted tree can be uniquely written in
the form

t=\V;t1,....ty)

with i € [, for some n > 2, i.e., it can be obtained by considering the unique tree
with one internal vertex decorated by i and n incoming edges, and replacing the n™"
branch by 7.

Equations (3) and (4) also recursively define a bijection w; between the internal
vertices of a reduced planar tree ¢ and the edges of the planar rooted hypertree ®(¢),
which associates to any internal vertex of ¢ with n incoming edges an edge of ®(r)
with n vertices. The vertex of t = \/(t1, ..., ;) closest to the root (with n incoming
edges) is sent to the leftmost edge of ®(¢) containing the root. The bijection ® hence
gives rise to a bijection ® 7 from I-decorated reduced planar trees to rooted planar
hypertrees with edges decorated by I (i.e., the edges with n vertices are decorated
by I,,, n > 2). The bijection ® 1 is defined as follows:

D1(t.8) = (D(1).8 o, V).

Any such 7-decorated rooted planar hypertree can be uniquely written as:

§ = ﬁi(sla .. ',Sn)
with i € I, for some n > 2, i.e., it can be obtained by collecting the roots of s;,
j = 1,...,n, this making the leftmost bottom edge, and decorating this new edge

byi.

2.6. Operadic structure. Equation (4) recursively defines a bijection between the
vertices of a planar rooted hypertree s and the leaves of the reduced planar tree @~ (s)
(the root corresponding to the rightmost leaf). Any labeling of the vertices of s thus
corresponds to a labeling of the leaves of ®~!(s). On the example above this reads:

131211109 8 7 6 54 3 2 1

Recall that an $-object is a graded vector space V = V; @ V> @ --- together
with an action of the symmetric group S on V; for any k > 1. For any partitioned
set I = I I I3 LI --- we consider the $-object V(1) defined by (Vr); = k and
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(Vi)p = kMl @ k[S,] for n > 2. The vector space 'J‘;ed’l generated by I-decorated
reduced planar trees (see Section 2.5 above) naturally encodes the free operad on
V(I): the partial composition o o; 7 of two I-decorated planar reduced trees with
labeled leaves is obtained by replacing leaf number i of ¢ by t. The operadic structure
of I-decorated reduced planar rooted trees can be transferred to the linear span H 7y,
of planar rooted hypertrees by means of CDEI: the partial composition #; o; t, of two
planar rooted hypertrees with labeled vertices is then obtained by replacing vertex
number i of hypertree #; by the root of the hypertree #,, and putting the hypertree
1, plugged this way on the right of the other edges stemming from vertex number i.
This is easily seen when the vertex is the root of #1, and the other vertices are treated
by induction, by remarking that a vertex of ¢; different from the root is a vertex of
the j " branch tree 71, ; of 7.

The fully transferred operadic structure on the vector space H 'TplI of I-decorated
hypertrees is then the following: y(¢;¢1,...,t,) is given by replacing vertex number
i of t by the root of #;, and by putting the plugged hypertree #; on the right. This class
of operads is known as generic magmatic operads [42].

3. Hopf algebra structures on trees

3.1. Connected filtered bialgebras. In general, k denotes the ground field (of char-
acteristic zero) over which all algebraic structures are defined. Recall the definition
of a bialgebra, which is an algebra and coalgebra structure together with compati-
bility relations [29]. We denote a Hopf algebra by (H,mge, nge, Age, €3, S). Itis
a bialgebra together with a particular k-linear map, i.e., the antipode S: # — ¥,
satisfying the Hopf algebra axioms [40], [33]. In the following we omit subscripts
if there is no danger of confusion. We denote the unit by 1 = ng(1). Let # be a
connected filtered bialgebra, that is,

k:]f(o)C]()(l)C"'Ce%(n)C"‘, U,}((")zjf.

n>0
For any x € # ) we have, using a variant of Sweedler’s notation [40],

AX)=x®1+1®x+ > x'®x",
(x)

where the filtration degrees of x” and x” are strictly smaller than n. Recall that by
definition we call an element x € K primitive if

AX) =AX)—x®1-1®x =0.
The antipode S : # — H is defined in terms of the equations

Sxld=mo(S®Id)ocA=noe=1dx%xS, (5)



312 K. Ebrahimi-Fard and D. Manchon

where the convolution product for two linear maps f, g € £(H#, J) is defined by
f*g;:mo(f@g)oA: H — H,ie.,

(f *&)x) = f(x)g) + f(Deg(x) + % J(xNg(x") e H.

It yields an associative algebra with unit e := € on the vector space £ (#, #). The
antipode always exists for connected filtered bialgebras, hence any connected filtered
bialgebra is a connected filtered Hopf algebra. Equations (5) imply the following
recursive formulas for the antipode starting with S(1) = 1 and for x € kere:

Sx)=—x=>Y_ S =—x->_ x'SK").
(x) (x)

Let # be a graded Hopf algebra. The grading induces a biderivation Y : HO
H™ defined on homogeneous elements by x —> nx.

3.2. The Butcher—-Connes—-Kreimer Hopf algebra of rooted forests. An impor-
tant example of a connected filtered, in fact, graded, Hopf algebra is given by the
Butcher—Connes—Kreimer Hopf algebra Jpck of rooted forests over k, graded by
the number of vertices [4], [14], [15], [33]. It is the free unital commutative algebra
on the linear space 7 spanned by nonempty non-planar rooted trees. We list all rooted
trees up to degree 5:

Cs oty bvuae i¥beluvia

The empty set is denoted 1, and is the unit. A rooted forest is a finite collection
s = (t1,...,ty) of rooted trees, which we simply denote by the (commutative)
product ¢ - - - t,. Recall that the operator B associates to the forest s the tree B (s)
obtained by grafting the connected components #; on a common new root. By (1)
is the unique rooted tree e with only one vertex. The Butcher—Connes—Kreimer
coproduct on a rooted tree ¢ is described in terms of admissible cuts as follows:

Apck (1) =t ®14+1Q®t+ Y. P(t) ® R°(¢1).

ceAdm(z)

Here Adm(z) is understood as the set of admissible cuts of a tree, i.e., the set of
collections of edges such that any path from the root to a leaf contains at most one
edge of the collection.”> We denote by P¢(¢) (resp. R¢(¢)) the pruning (resp. the
trunk) of 7, i.e., the subforest formed by the edges above the cut ¢ € Adm(z) (resp.
the subforest formed by the edges under the cut). Note that the trunk of a tree is a

2In order to make this picture completely correct, we must stress that for any nonempty tree two
admissible cuts must be associated with the empty collection: the empty cut and the total cut.
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tree, but the pruning of a tree may be a forest. An elementary cut is a cut of only one
edge. See [25], [26], [27], [33] for more details on the combinatorics of rooted trees
and Hopf algebras.

3.3. Groups associated with augmented operads. Following [9], we introduce an
augmented operad, which is an operad & such that dim £y = 0 and dim #; = 1,
i.e., such that there is no 0O-ary operation and that the only 1-ary operation is the unit
e. The group G is defined in [9] as the group of invertible elements in the product

l_[ (C(Pn)Sn ’

n>1

which is the completed free J°-algebra with one generator. An element in this product
can be written as a (possibly infinite) sum g = ), g, With g, € ($n)s, . Itis
invertible if and only if its first component g; is nonzero. We will consider a slightly
smaller group:

fogp ={g= anl gn. &1 = e}.

The advantage of this definition is the pro-nilpotency property. The associated Lie
algebra is given by

gef = {x = an2 Xn},
with the Lie bracket given by
[x.0]'==xvny—-yvnx,

where the bilinear operation v~ is defined as follows: for any x,, € ($n)s,, and
Yn € (Pn)s,, With representatives X,, € P, and Y, € P, respectively,

m m
Xm V= Y Xmoi Yu= > y(Xmie,...,e,Yn,e,....e).
i=1 i=1 —

i—1 terms

Here the bars stand for taking the class modulo the right action of Sy,+,. This is well
defined by virtue of the equivariance axioms for an operad. The operation ~ defined
above is right pre-Lie [11], i.e., we have

ny)vnz—xnvn)=xn)ny—xnzny).

Of course, we also could consider the left pre-Lie operation ~, defined by x ~ y :=
Yy ¥ X, subject to the left pre-Lie relation

xayaz-xa(raz)=0ax)ryz—yan (xn~2).

The readerimmediately verifiesthat[x, y] = x » y—y v x =—(x ~ y—y ~ X).
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3.4. A Hopf algebra structure on reduced planar forests. We now define a graded
connected Hopf algebra structure on planar reduced forests, with grading given by
the total number of inner vertices. First, we extend ’J‘p{e‘i to the free noncommutative
algebra of reduced planar rooted forests, denoted by ,}’flgfd, with the one-edge tree | as
unit and the multiplication given by concatenation. We define a coproduct on reduced
planar trees in terms of admissible cuts of a tree t € Tpﬁed, i.e., a (possibly empty)
subset ¢ of edges not connected to a leaf with the rule that along any path from the
root of ¢ to any of its leaves there is at most one edge in c. The edges in ¢ are naturally
ordered from left to right. To any admissible cut ¢ always corresponds then a unique
subforest P¢(t), the pruning, obtained by concatenation of the subtrees obtained by

cutting the edges in c, in the order defined as above. Then we define the coproduct

Ar(t) = 3. P()®R(Q),

c€Adm¢

where R€(t) is the trunk, obtained by replacing each subtree of P¢(¢) with a single
leaf. Note that the trunk of a tree is a tree, but the pruning of a tree may be a forest.
We present a few examples:

A(\) = Y ®[+H®Y
Az(V) V®|+|®v VY ®Y
AZN/) K/®|+|®K/ VeV

mOY) = Yelrley + /ey + yel
B (/) = {)®+|®F) + y®v + y@N/ SAVAVE-AV
AZ(W) = W®|+I®W + V®V + V@N/
By = yelley ey +yey

Az(y) W®|+|®W K/@y + y@V
AZ(W) W®|+|®W+ ey

Two compatible gradings can be chosen: the number of inner vertices, or alternatively
the number of leaves minus the number of trees in the forest. We remark here that sev-
eral Hopf subalgebras are readily identified. First, the binary forests obviously form a
Hopf subalgebra J@f“ of Jf;j’d, which in turn contains two other Hopf subalgebras, i.e.,

the Hopf subalgebra Jt”fjg} C Jfl';li“ (resp. Jflt,’li;f C Jf;’li“) of right- (resp. left)-combed
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binary planar rooted forests, generated by the trees lr(”) (resp. ll(")) recursively defined
by 1D = | = 1" and 1™ := | v 1D (resp. 1 1= 1V v ), n > 1. Also,
observe that the trees with only one inner vertex, let us call them reduced corollas,
are all primitive.

Remark that the two gradings coincide on the Hopf subalgebra J(’l';li“. It is im-
mediate to adapt this construction to the decorated setting described in Section 2.5.

Details are left to the reader.

Remark 2. The definition of this Hopf algebra is very similar to the definition of
L. Foissy’s Hopf algebra # of planar rooted trees [19], and one could believe that
J(’gled is a graded Hopf subalgebra of it: this is not the case. Indeed the dimen-

sion of the degree 2 component of J{’;fd is 3 for the first grading, a basis being

( \>/, \</, \/ \/ ) and 4 for the second grading (add \V to the basis), whereas the

degree 2 component of Jr is 2-dimensional, generated by land ee.

3.5. The associated pre-Lie structure. Let (e}’fl;fd)° be the graded dual of Jf;fd. We
consider the normalized dual basis (8}) of the basis of forests, defined by

(8;1"'%’[1 sty =0(ty) -0 (ty),

where o(;) is the symmetry factor of the tree #;, and (J7,..,, ,

sy = 0ifsisa
forest different from ¢, - - - tx. The correspondence #; - - -t > &} Lty yields a linear
isomorphism &': #1t¢ — (H5)°. If r and u are planar reduced trees, §; and §;, are
infinitesimal characters of the Hopf algebra Jfgfd, hence so is the Lie bracket defined
in terms of the convolution product, [§}, 8,,] = &} x2 §;, — &, *» §;. Recall that an
infinitesimal character maps the one-edge tree | as well as any forest #; ---#, k > 1,
to zero. The definition of the convolution product yields
[8,.8.] =86,

t'%u tRcU—URGL?
where we define, for any reduced planar rooted tree ¢,

t o U = Z %N(r,u,v)v.
veT !

The coefficient N (¢, u, v) is the number of elementary cuts ¢ of the tree v (in the sense
of the previous subsection) such that P¢(v) = ¢ and R°(v) = u. The coefficient

o(t)o(u)
o(v)

is the number of ways to graft ¢ on a leaf of the tree u in order to obtain the tree v.
Hence t ~s u is the sum of all the possible graftings of # on u. The left pre-Lie

M(t,u,v) := N(t,u,v)
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relation holds:

S Yo (IWUM)_(SWJZ)@UMZZWO(SWUM)_(t@US)@ou-

Indeed, both sides are expressed as the sum of all possible ways of grafting s and ¢
on two different leaves of u. This pre-Lie structure, more precisely the associated
right pre-Lie structure g, is a particular example of pre-Lie structures described
in Section 3.3, where the corresponding operad is the free operad generated by one
operation in each arity > 2. The associated Lie algebra structure on Tp{ed is defined
by [t,u] :=t ~v¢ U —U ¢ t, and gives rise to the Lie algebra of the (pro-nilpotent)
group of characters, that is, multiplicative maps on the Hopf algebra %gfd, which
identifies with the group G;;‘EFI),) associated with the free operad ¥ (V) on the $-
object V' = (k[Sn])n>1, but with multiplication reversed.’> Let us remark that the
commutative Hopf algebra, which follows via the Cartier—Milnor—-Moore theorem
from the group G;J(EI{,), is not isomorphic to Jfgf’d, but is just a quotient.

The same construction with planar binary trees yields the group of characters of
the Hopf algebra #5", which identifies with the group GZ* associated with the
free binary operad (with multiplication reversed). The free binary operad is the free
operad ¥ (W) on the $-object W such that W) = k, W, = k[S>] and W,, = {0} for
n > 3. Finally the same construction with I-decorated trees (with the notations of
Section 2.5) yields the group G;"(()II)/I)’ where ¥ (V) is the free operad on the $-object

V7 defined by (V7)1 = k and (V7), = k!l @ k[S,] forn > 2.

3.6. A Hopf algebra structure on planar rooted hyperforests. We extend the
linear isomorphism &: Tp{ed — H Ty to a graded algebra isomorphism still denoted
by &: J(’l;f’d — H J,, where H J; stands for the free noncommutative algebra of
rooted planar hyperforests. The grading is given by the total number of edges. The

Hopf algebra structure on J(’;{’d can be transferred on H J, by ®. The coproduct
A = (®® ®) o Ay o ®! can then be made explicit as follows.

We introduce the concept of right admissible cut in the spirit of Munthe-Kaas and
Wright [36]. For any vertex v € V(¢) we denote by f(v) its fertility, i.e., the number
of edges with root v. Recall that we work with planar hypertrees. Hence, we may
enumerate the incoming edges of each vertex v € V(t) counterclockwise from 1 to
f(v). For any vertex v and for any i € {1,...,f(v)} the i single right vertex-cut

associated to v is the subset cl(,i) C E(t) of the i first edges with root v with respect to

the order above. To each single right vertex-cut cl(,i) we may associate a sub-hypertree
Pcl(j)(t) obtained from ¢ by removing the edges cz()i)(t) from the vertex v in ¢ and
grafting them to a new root resulting in a single planar rooted hypertree. We denote
by R’ (¢) the remaining tree. A right vertex-cut C is a (possibly empty) collection
of single right vertex-cuts. A (right) vertex-cut C is called admissible if any path

3This is due to the fact that the Lie algebra structure comes from a left pre-Lie operation.
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from the root to any vertex of ¢ encounters at most one single right vertex-cut. The
single vertex-cuts in an admissible C are naturally ordered from left to right, thus
giving rise to a planar hyperforest P€ (). We denote by R (¢) the remaining tree.
By RAdm(¢) we denote the set of admissible right vertex-cuts. We define in terms
of admissible (right) vertex-cuts the following coproduct:

Ay= Y PCO®RC®).

C eRAdm(?)

We list a few coproducts below. Observe the conservation of the number of edges.

A@ = e®e, A(l)=({Qe+e®]

A(i) = £®.+.®£+I®I, AW)=VRe+e @+ 11

A(i) = §®-+-®§+I®£+£®I
A(Y)=Y®.+o®Y+I®£+V®I
aAde) = Veereahilelilloltiow

A(‘}) ’}®-+-®‘}+I®V+£®I
A(\If) \?®.+.®\?+I®V+V®I

A(L +I®i+£®£+§®l

A(\{) \{®.+.®\{+I®§+V®£+Y®I
A - Uewoliioditeliiioveinl

A(Xi‘) &®.+.®\£‘+I®W+II®V+I®X;+%J®I
A(i() £r®-+-®£z+z®§+11®£+1£®1+1®%+5®
A(\Q) \<.>®.+.®\Q+Q®:

We note that via the bijection dD we identify the Hopf subalgebras ®(H)") =
Hp C H Hy and CD(Jflbml) = d 1 and <I>(J€b‘;1) = J€°°r C Jp of ladder
trees and corollas, respectlvely Reduced corollas with n leaves are mapped to blobs
with n vertices drawn on the circle delimiting the blob.

Roe+ o0&
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This Hopf algebra structure is related to the pre-Lie structure —> defined on H 7y
by
51> 52 1= B(P 7 (51) Ao DT (52)).

where ~y, is the pre-Lie product defined in Subsection 3.5. The associated Lie
algebra is of course isomorphic to the one defined in same subsection. It is then
another presentation of the opposite Lie algebra of the pro-nilpotent group G;(V)
associated with the free operad on the $-object V' defined in Section 3.5. The same
construction with planar rooted trees gives back the group G § associated with the free
binary operad (modulo reversing the multiplication or, what is the same, changing
the sign of the Lie bracket). The same construction holds for Z-decorated hypertrees,
leading to another presentation of the opposite Lie algebra of the pro-nilpotent group
G;_V(I) associated with the free operad on the $-object V(1): details are left to the

reader.
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