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Abstract. The Witt construction describes a functor from the category of Rings to the category
of characteristic 0 rings. It is uniquely determined by a few associativity constraints which do
not depend on the types of the variables considered, in other words, by integer polynomials.
This universality allowed Alain Connes and Caterina Consani to devise an analogue of the Witt
ring for characteristic one, an attractive endeavour since we know very little about the arithmetic
in this exotic characteristic and its corresponding field with one element. Interestingly, they
found that in characteristic one, theWitt construction depends critically on the Shannon entropy.
In the current work, we examine this surprising occurrence, defining a Witt operad for an
arbitrary information measure and a corresponding algebra we call a thermodynamic semiring.
This object exhibits algebraically many of the familiar properties of information measures,
and we examine in particular the Tsallis and Renyi entropy functions and applications to non-
extensive thermodynamics and multifractals. We find that the arithmetic of the thermodynamic
semiring is exactly that of a certain guessing game played using the given information measure.
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1. Introduction

The past few years have seen several interesting new results focusing on various
aspects of the elusive “geometry over the field with one element”, see for instance [7]
[11] [12] [32] [36], [48], among many others. The idea of F1-geometry has its roots
in an observation of Tits [51] that limits as q ! 1 of counting functions for certain
varieties defined over finite fields Fq exhibit an interesting combinatorial meaning,
suggesting that the resulting combinatorial geometry should be seen as an algebraic
geometry over a non-existent “field with one element” F1. Part of the motivation
for developing a sufficiently refined theory of varieties and schemes over F1 lies in
the idea that being able to cast Spec Z in the role of a curve over a suitably defined
Spec F1 may lead to finding an analog for number fields of the Weil proof [55] of the
Riemann hypothesis for finite fields.

Among the existing approaches aimed at developing various aspects of geometry
over F1, the one that is of direct interest to us in the present paper is a recent construc-
tion by Connes and Consani [10], [11] of semirings of characteristic one (a nilpotent
hypothesis). These are endowed with an additive structure that provides an analog
of the Witt formula for the addition of the multiplicative Teichmüller lifts in strict
p-rings. As observed in [10] and [11], the commutativity, identity, and associativ-
ity conditions for this addition force the function used in defining the Witt sums in
characteristic one to be equal to the Shannon entropy.

The goal of this paper is to explore this occurrence of the Shannon entropy in
the characteristic one Witt construction of [10] and [11]. In particular, we show here
that the construction introduced in those papers can be seen as part of a more general
theory of “thermodynamic semirings”, which encodes various properties of suitable
“entropy functions” in terms of algebraic properties of the corresponding semirings.

After reviewing the case of [10], [11] in §2, we present a general definition and
some basic properties of thermodynamic semirings in §3 and §4, based on the ax-
iomatization of information-theoretic entropy through the Khinchin axioms and other
equivalent formulations. We then give in §5 a physical interpretation of the structure
of thermodynamic semiring in terms of Statistical Mechanics, distinguishing between
the extensive and non-extensive cases and the cases of ergodic and non-ergodic sta-
tistical systems. We see that the lack of associativity of the thermodynamic semiring
has a natural physical interpretation in terms of mixing, chemical potentials, and free
energy. This generalizes the thermodynamic interpretation of certain formulas from
tropical mathematics considered in [43].

We focus then on specific examples of other important information-theoretic en-
tropy functions, such as the Rényi entropy, the Tsallis entropy, or the Kullback–Leibler
divergence, and we analyze in detail the properties of the corresponding thermody-
namic semirings. In §6, we consider the case of the Rényi entropy, which is a
one-parameter generalization of the Shannon entropy that still satisfies the extensiv-
ity property. In §7 we focus instead on the Tsallis entropy, which is a non-extensive
one-parameter generalization of the Shannon entropy, and we show that a simple one-
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parameter deformation of the Witt construction of [10] and [11] identifies the Tsallis
entropy as the unique information measure that satisfies the associativity constraint.

In §8 we consider the case of the Kullback–Leibler divergence or relative en-
tropy (information gain), and we show that thermodynamic semirings based on this
information measure can be associated to univariate and multivariate binary statis-
tical manifolds, in the sense of information geometry, and to multifractal systems,
in such a way that the algebraic properties of the semirings detect the statistical and
multifractal properties of the underlying spaces. We also relate a hyperfield structure
arising from the KL divergence to those considered in [54].

We also show in §9 that the algebraic structure of the thermodynamic semirings
can be encoded in a suitably defined successor function and that the properties of this
function and its iterates as a dynamical system capture both the algebraic structure
of the semiring and the thermodynamical properties of the corresponding entropy
measure. We give explicit examples of these successor functions and their behavior
for the Shannon, Rényi, and Tsallis entropies. In §9.3 we show that this function has
an interpretation as the cumulant generating function for the energy, which reveals
some further thermodynamic details of our construction.

Finally, in §10, we phrase our construction using operads whose composition
trees suggest an interpretation in terms of “guessing games”. Exploring this, we show
that relations in a particular algebra–the thermodynamic semiring–for the guessing
game operad correspond naturally to information-theoretic properties of the entropy
functions, cominiscent of an operadic characterization studied recently by Baez, Fritz
and Leinster, which we review. This allows us to rephrase Connes and Consani’s
original construction in a way that makes clear why the Shannon entropy plays such
a key role and provides a categorification of entropy functions.

In the last section we outline possible further directions, some of which will even-
tually relate back the general theory of thermodynamic semirings to the analogies
between characteristic p and characteristic one geometries. Thus, this point of view
based on thermodynamic semirings may be regarded as yet another possible view-
point on F1-geometry, based on information theory and statistical geometry, a sort of
“cybernetic viewpoint”.

1.1. Witt vectors and their characteristic one analogs. Witt vectors were first
proposed by Ernst Witt in 1936 to describe unramified extensions of the p-adic num-
bers. In particular, Witt developed integral polynomial expressions for the arithmetic
of strict p-rings in terms of their residue rings.

A ring R is a strict p-ring when R is complete and Hausdorff under the p-adic
metric, p is not a zero-divisor in R, and the residue ring K D R=pR is perfect [33],
[44], [47]. The ring R is determined by K up to canonical isomorphism, and there is
a unique multiplicative section � W K ! R of the residue morphism � W R ! K, i.e.,

� B � D idK ; �.xy/ D �.x/�.y/ for all x; y 2 K:
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Every element x of R can be written uniquely as

x D P
�.xn/pn; xn 2 K:

The �.x/ are called Teichmüller representatives.
When K D Fp , R D Zp , but the Teichmüller representatives are not f0; 1; : : : ; p�

1g as they are in the common representation of Zp . Instead they are the roots of xp�x.
We see from this example that the arithmetic in terms of the Teichmüller representation
above is nontrivial. The Witt formula expresses the sum of these representatives as

�.x/ C �.y/ D Q�.
P

˛2Ip
wp.˛; T /x˛y1�˛/;

where Ip D f˛ 2 Q \ Œ0; 1� j pn˛ 2 Z for some ng, Q� W KŒŒT �� ! R is the unique
map such that Q�.xT n/ D �.x/pn, and wp.˛; T / 2 FpŒŒT �� is independent of R. Note
that, since K is perfect, the terms x˛y1�˛ make sense.

The idea of [10], [11] is to generalize this to characteristic one by considering
sums of the form

x ˚w y ´ P
˛2I

w.˛/x˛y1�˛ (1.1)

where now I D Q \ Œ0; 1� over sufficiently nice characteristic one semirings.
According to Definition 2.7 of [11], a semiring is characteristic one when 1C1 D

1, i.e., when it is idempotent. For example, the tropical semifield, T D R [ f�1g,
with addition given by the sup and multiplication given by normal addition, forms
a well studied characteristic one semiring in the context of tropical geometry [24],
[35].

Connes and Consani found in [10], [11] that, over a suitably nice characteristic
one semiring, ˚w is commutative, associative, shares an identity with C, and is
order-preserving if and only if w.˛/ is of the form

w.˛/ D �Sh.˛/;

where � > 1 and Sh.p/ is the well-known Shannon entropy

Sh.p/ D �C.p log p C .1 � p/ log.1 � p//;

where we write log for the natural logarithm, and where C > 0 is an arbitrary constant
factor.

In this paper, we attempt to elucidate this surprising connection between the alge-
braic structure of the semiring and the information-theoretic entropy by developing
a broader theory of thermodynamic semirings.

2. Preliminary notions

We introduce here some basic facts that we will need to use in the rest of the paper.
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We start with a warning about notation. Throughout most of the paper we will
work implicitly with Rmin;C [ f1g or Rmax;�

>0 in mind (note the two are isomorphic
under � log). As such, we will use the notation in one of the two. Which one we
use should hopefully be clear from the context. We do this because the first will
give expressions looking more like statistical physics equations, and the second will
give expressions more similar to the Witt construction in characteristic p. We will
tend to write ˚S;T (perhaps with other relevant subscripts) for the Witt addition,
to indicate that it is a modification of the additive structure of the semiring, and
that it depends on the choice of a binary information measure (or entropy) S and
of a temperature parameter T . This is motivated by tropical geometry, where it is
customary to denote by ˚ the addition in the tropical semiring, i.e., the minimum,
and by ˇ the multiplication, the usual addition C, see [35].

2.1. Frobenius in characteristic one. We recall here, from [10], [11], the behavior
of the Frobenius action in the characteristic one setting.

Let K be a commutative, characteristic one semifield. It is possible to work
in the slightly more general case of multiplicatively cancellative semirings, but for
simplicity we will forsake this generality. Recall that such a semifield is a set with
two associative, commutative binary operations, .x; y/ 7! x C y and .x; y/ 7! xy

such that the second distributes over the first, 0 C x D x, 0x D 0, 1x D x, K

has multiplicative inverses, and, importantly, the characteristic one condition that
1 C 1 D 1.

The first step in developing an analog of the Witt construction is to examine the
Frobenius map in K.

Lemma 2.1 (Frobenius).

.x C y/n D xn C yn for every n 2 N: (2.1)

Proof. The proof is given in Lemma 4.3 of [10], but we recall it here for the conve-
nience of the readers. One sees from the distributive property that, for every m 2 N,
one has .x C y/m D Pm

kD0 xkym�k . This then gives .xn C yn/.x C y/n�1 D
.x C y/2n�1. Since K is multiplicatively cancellative, this implies (2.1).

2.2. Legendre transform. As shown in Lemma 4.2 of [10], K is endowed with a
natural partial ordering 6 defined so that x 6 y () x C y D y. This may seem
strange, but one sees that, over the tropical semifield T , this reads x 6 y ()
max.x; y/ D y. We give K the order topology from 6. Then multiplication and the
Frobenius automorphisms make K a topological R>0-module, since the Frobenius
is continuous and distributes over the multiplicative structure. When K D T , this
topology is the standard one on Œ0; 1/ Š R [ f�1g, with the Frobenius acting by
multiplication so that K has the normal vector space structure.



342 M. Marcolli and R. Thorngren

We say that a function f W X ! K, where X is a convex subset of a topological
R>0-module, is convex if, for every t 2 Œ0; 1�, x1; x2 2 X ,

f .tx1 C .1 � t /x2/ 6 f .x1/tf .x2/1�t ; (2.2)

with concavity being defined as convexity of the multiplicative inverse of f .
Note again that, over T , this is the normal definition of convexity.
We consider also

epi f D f.˛; r/ 2 X � Kjf .˛/ 6 rg;
called the epigraph of f . This has the following property.

Lemma 2.2. A function f is convex iff the epigraph epi f is convex and f is closed
iff epi f is closed.

Proof. The topological R>0-module structure on X � K is given by the product
structure, so the proof follows directly from the definitions.

When X � R>0, we can define the Legendre transform of f by

f �.x/ D
X
˛2X

x˛

f .˛/
:

Note that over T this reads
sup
˛2X

.˛x � f .˛//;

which is the normal definition of the Legendre transform.
When X � K, we can define the Legendre transform of f by

f �.˛/ D
X
x2X

x˛

f .x/
:

Proposition 2.3. The Legendre transform of f is closed and convex.

Proof. Suppose first that X � R>0. Let g˛.x/ D x˛=f .˛/, and g be the Legendre
transform of f . Then g is the point-wise supremum among the g˛ , so epi g DT

˛2X epi g˛ , an intersection of closed half spaces. Thus, epi g is closed and convex,
so g is closed and convex, by the Lemma 2.2. The proof of the opposite case proceeds
in precisely the same manner.

One then has the following result on Legendre transforms.

Theorem 2.4 (Fenchel–Moreau). Let f W X ! K, X � R>0. Then the following
hold.
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(1) f �� is closed and convex and bounded by f .

(2) f �� D f iff f is closed and convex.

Proof. The function f �� is convex and closed by Lemma 2.2. We also see that

x˛=f �.x/ 6 x˛=.x˛=f .˛// D f .˛/;

so taking a supx2X of both sides yields f �� 6 f . To prove the second fact, it
suffices to show that, if f is closed, convex, and finite, then f 6 f ��. Define the
subdifferential @f .˛/ of f at ˛ by

@f .˛/ D fx 2 R j f .ˇ/ > f .˛/xˇ�˛ for all ˇ 2 Xg:
We consider the set-valued map ˛ 7! @f .˛/. To invert this map is to find ˛.x/ D ˛

such that x 2 @f .˛/. We see that f �.x/ D x˛.x/=f .˛.x//. Thus, the subdifferential
is the proper analog in this case for the derivative. When f is closed and convex,
@f .˛/ is nonempty, so let x 2 @f .˛/. Then we have

1=f �.x/ > f .˛/=x˛ H) f .˛/ 6 x˛=f �.x// 6 f ��.˛/

for every ˛, proving the theorem.

This is a simple translation of the well-known Legendre transform machinery into
characteristic one semirings. The idea is that since we can define a real topological
vector space structure on K using the multiplication as addition and the Frobenius
map as scalar multiplication (with negative reals having a well-defined action since
K has multiplicative inverses), we have enough structure to do convex analysis. The
point is that for concave or convex f , the above sums are invertible in K. From now
on, any semifield satisfying the assumptions necessary for this section will be called
“suitably nice”.

2.3. Witt ring construction in characteristic one. We recall here the main prop-
erties of the characteristic one analog of the Witt construction [10], [11], which is the
starting point for our work. We formulate it here in terms of a general information
measure S , whose properties we will find are related to the algebraic properties of
the semiring.

Let w W Œ0; 1� ! K be continuous under the order topology, and consider, for each
x; y 2 K,

x ˚w y D P
˛2I

w.˛/x˛y1�˛:

Connes and Consani considered the above expression for continuous w.˛/ � 1

and found in [10], [11] that ˚w is commutative, associative and has identity 0 if and
only if w.˛/ D �Sh.˛/ for some � 2 K greater than one.
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For simplicity and clarity of intention, we will write � D eT for some T > 0 to
suggest T behaves like a temperature parameter. In all the arguments that follow, one
could replace eT by � again and be fine over the more general semifields.

Correspondingly, we are going to restrict our attention to sums of the form

x ˚S y ´ P
˛2I

eTS.˛/x˛y1�˛

where S will be interpreted as an entropy function. In particular, we assume S is
concave and closed, so that e�TS.˛/ is convex and closed, and we can use the Legendre
transform machinery developed in §2.2.

We can then formulate the result of [11] on the characteristic one Witt construction
in the following way.

Theorem 2.5. Suppose that S W I ! R>0 is concave and closed. The following hold.

(1) x ˚S y D y ˚S x for all x; y 2 K iff S.˛/ D S.1 � ˛/.

(2) 0 ˚S x D x for all x 2 K iff S.0/ D 0.

(3) x ˚S 0 D x for all x 2 K iff S.1/ D 0.

(4) x ˚S .y ˚S z/ D .x ˚S y/ ˚S z for all x; y; z 2 K iff S.˛ˇ/ C .1 �
˛ˇ/S

�
˛.1�ˇ/
1�˛ˇ

� D S.˛/ C ˛S.ˇ/.

Proof. The argument is given in [10] in a more general form applicable to a binary
operation as in (1.1), but we give the explicit proof here to show the machinery.

(1) Since S is concave and closed, e�TS is convex and closed (in the generalized
sense of (2.2)), as is zL.˛/ for any linear function L.˛/ and z 2 K. We also see that
products of convex and closed functions are convex and closed, so y˛�1e�TS.˛/ and
y˛�1e�TS.1�˛/ are each convex and closed. We see that x ˚S y D y ˚S x iff

X
˛2I

x˛

y˛�1e�TS.˛/
D

X
˛2I

x˛

y˛�1e�TS.1�˛/
:

We recognize the Legendre transform of closed convex functions, which is invertible
by the Fenchel–Moreau theorem above. Thus, the summands must be equal, so
S.˛/ D S.1 � ˛/. The converse is obvious.

(2) First note that, when ˛ ¤ 0, for every x, 0˛x1�˛ D 0 and eTS.0/ � 0, so the
supremum occurs at ˛ D 0. Therefore, we have 0 ˚S x D eTS.0/x.

(3) Similarly, this supremum occurs at ˛ D 1, so x ˚S 0 D eTS.1/x.
(4) As in fact 1, we see that x ˚S .y ˚S z/ D .x ˚S y/ ˚S z iff

X
˛;ˇ2I

x˛ˇ

y˛.ˇ�1/z˛�1e�T .S.˛/C˛S.ˇ//
D

X
u;v2I

xu

yv.u�1/z.v�1/.1�u/e�T .S.u/C.1�u/S.v//
:

Identifying powers and inverting the Legendre transform yields the condition. The
converse is immediate.
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We hold off discussing the fact that the Shannon entropy Sh is the only function S

satisfying all of these properties until §3 below, where we develop the information-
theoretic interpretation of these axioms.

3. Axioms for entropy functions

It is well known that the Shannon entropy admits an axiomatic characterization in
terms of the Khinchin axioms [26]. These are usually stated as follows for an infor-
mation measure S.p1; : : : ; pn/:

(1) (Continuity) For any n 2 N, the function S.p1; : : : ; pn/ is continuous with
respect to .p1; : : : ; pn/ in the simplex �n D fpi 2 RC;

P
i pi D 1g;

(2) (Maximality) Given n 2 N and .p1; : : : ; pn/ 2 �n, the function S.p1; : : : ; pn/

has its maximum at the uniform distribution pi D 1=n for all i D 1; : : : ; n,

S.p1; : : : ; pn/ � S
� 1

n
; : : : ;

1

n

�
for all .p1; : : : ; pn/ 2 �nI

(3) (Additivity) If pi D Pmi

j D1 pij with pij � 0, then

S.p11; : : : ; pnmn
/ D S.p1; : : : ; pn/ C

nX
iD1

piS
�pi1

pi

; : : : ;
pimi

pi

�
I

(4) (Expandability) Embedding a simplex �n as a face inside a simplex �nC1 has
no effect on the entropy,

S.p1; : : : ; pn; 0/ D S.p1; : : : ; pn/:

It is shown in [26] that there is a unique information measure S.p1; : : : ; pn/ (up to
a multiplicative constant C > 0) that satisfies these axioms and it is given by the
Shannon entropy

S.p1; : : : ; pn/ D Sh.p1; : : : ; pn/ ´ �C
nP

iD1

pi log pi ;

We focus now on the n D 2 case, which means that we are only looking at
S.p/ WD S.p; 1 � p/ instead of the more general S.p1; : : : ; pn/. In other words,
we are only considering the information theory of binary random variables. In this
case, we describe here an axiomatic formulation for the Shannon entropy based on
properties of binary “decision machines”. We return to discuss the more general
n-ary case in §10 below.



346 M. Marcolli and R. Thorngren

A decision machine is a measurement tool which may only distinguish between
two possible states of a discrete random variable; machines that can only answer
“yes” or “no”. We would like to measure the average change in uncertainty after a
measurement, which is how we define the entropy associated with a random variable.
Let X be a binary random variable, S.X/ the change in entropy after measuring X .
All information is created equal, so S.X/ should only depend on the probability of
measuring a certain value of X and should do so continuously.

(1) (Left identity) S.0/ D 0.

(2) (Right identity) S.1/ D 0.

(3) (Commutativity) S.p/ D S.1 � p/.

(4) (Associativity) S.p1/C.1�p1/S. p2

1�p1
/ D S.p1 Cp2/C.p1 Cp2/S. p1

p1Cp2
/.

The identity axioms claim that trivial measurements give trivial information.
The commutativity axiom claims that questions have the same information as their

negative.
The associativity axiom claims a certain equivalence of guessing strategies, which

will be a key observation in our explanation of the characteristic one Witt construction.
If instead of a binary random variable, we want to measure a ternary random variable X

which may take values X 2 fx1; x2; x3g with corresponding probabilities p1, p2, p3,
we can still determine X by asking yes-or-no questions. We can first ask “is X D x1?”
If the answer is no (which occurs with probability p2Cp3), we then ask “is X D x2?”
This corresponds to an average change in uncertainty S.p1/ C .p2 C p3/S. p2

p2Cp3
/.

However, we could have asked “is X D x1 or x2 ?” followed by “is X D x1?” and
in the end received the same data about X . Associativity asserts these two should be
equal, hence we have the axiom as stated above.

The names of the axioms in the above list are chosen to suggest the corresponding
algebraic properties, as we see in Theorem 4.2 below. In fact, we find that these
algebraically motivated axioms are equivalent to the Khinchin axioms.

Theorem 3.1. There is a unique function (up to a multiplicative constant C > 0)
satisfying all of the axioms above, namely the Shannon entropy

Sh.p/ D �C.p log p C .1 � p/ log.1 � p//:

Proof. The result follows either by checking directly the equivalence of the com-
mutativity, identity and associativity axioms with the Khinchin axioms, or else by
proceeding as in Theorem 5.3 of [10]. We prove it here by showing that one obtains
the Khinchin axioms for entropy.

Suppose that S satisfies all the conditions above. Define Sn W �n�1 ! R>0 by

Sn.p1; : : : ; pn/ D
X

16j 6n�1

�
1 �

X
16i<j

pi

�
S

� pj

1 � P
16i<j pi

�
: (3.1)
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Lemma 3.2. Sn is symmetric.

Proof. Suppose we interchange the terms pk and pkC1, where k < n � 1. This only
affects the k-th terms and .k C 1/-th terms, so we must show that

T D
�
1 �

X
i<k

pi

�
S

� pk

1 � P
i<k pi

�
C

�
1 �

X
i<kC1

pi

�
S

� pkC1

1 � P
i<kC1 pi

�

is symmetric. Write ˇ D 1 � P
i<k pi , a D pk=ˇ, b D pkC1=ˇ. We see that ˇ is

invariant under this permutation, and

T D ˇ.S.a/ C .1 � a/S.b=.1 � a///:

Permuting pk and pkC1 interchanges a and b, and so T is invariant by the associativity
condition. Interchanging pn�1 and pn only affects the last term, and it is easy to see
it affects it like S.˛/ 7! S.1 � ˛/, so invariance follows from commutativity. These
transpositions generate the symmetric group Symn, so Sn is symmetric.

From this lemma and the definition we see that the following holds.

Lemma 3.3. Let .Jk/16k6m be a partition of fp1; : : : ; png and let Sn be defined as
in (3.1). Then we have

Sn.p1; : : : ; pn/ D Sm.q1; : : : ; qm/ C P
16k6m

SjJk j.Jk=qk/;

where qk D P
p2Jk

p, so Jk=qk is a jJkj-ary probability distribution.

These lemmas take care of the third Khinchin axiom, and with the identity property
also take care of the fourth. We assumed at the outset S was continuous, so it follows
from the definition Sn is continuous, which is the first axiom. What remains is the
second axiom, which we write here in terms of information (concave) rather than
entropy (convex).

Lemma 3.4. Sn is concave for all n.

Proof. We proceed by induction on n. We have already assumed S2 D S is concave,
so suppose that Sn is concave for some n � 2. Note that for continuous f , concavity
follows from f .xCy

2
/ � f .x/Cf .y/

2
. Thus we consider, for some .pi /; .qi / 2 �nC1,

SnC1

�p1

2
C q1

2
; : : : ;

pnC1

2
C qnC1

2

�
:

By the previous lemma, this equals

Sn

�p1 C p2

2
C q1 C q2

2
;
p3

2
C q3

2
; : : : ;

pnC1

2
C qnC1

2

�

C p1 C p2 C q1 C q2

2
S

� p1 C q1

p1 C p2 C q1 C q2

�
:
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By the inductive hypothesis we then have

SnC1.: : : / � 1

2
S.p1 C p2; : : : ; pnC1/ C 1

2
S.q1 C q2; : : : ; qnC1/

C p1 C p2 C q1 C q2

2
S

� p1 C q1

p1 C p2 C q1 C q2

�
:

We see that

p1 C q1

p1 C p2 C q1 C q2

D p1 C p2

p1 C p2 C q1 C q2

p1

p1 C p2

C q1 C q2

p1 C p2 C q1 C q2

q1

q1 C q2

and
p1 C p2

p1 C p2 C q1 C q2

C q1 C q2

p1 C p2 C q1 C q2

D 1;

so by the concavity of S we have

SnC1.: : : / � 1

2
S.p1 C p2; : : : ; pnC1/ C 1

2
S.q1 C q2; : : : ; qnC1/

C p1 C p2

2
S

� p1

p1 C p2

/ C q1 C q2

2
S.

q1

q1 C q2

�
;

from which concavity of SnC1 follows by the previous lemma.

Since Sn is concave, it has a unique maximum, and since it is symmetric, this
maximum occurs at Sn. 1

n
; : : : ; 1

n
/, implying the second Khinchin axiom. This then

completes the proof of Theorem 3.1

A reformulation of the Khinchin axioms for Shannon entropy more similar to the
commutativity, identity and associativity axioms considered here was described in
Faddeev’s [17]. For different reformulations of the Khinchin axioms see also [13].

4. Thermodynamic semirings

We now consider more general thermodynamic semirings. The following definition
describes the basic structure.

Definition 4.1. A thermodynamic semiring structure over K, written Rmin;C [ f1g,
is a collection of binary operations ˚S;T W K � K ! K indexed by T 2 R [ f1g
and defined by an information measure S W Œ0; 1� ! R according to

x ˚S;T y D min
p2Œ0;1�\Q

.px C .1 � p/y � TS.p//: (4.1)
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It is often convenient to consider the elements of the semiring as functions of T ,
with the operation ˚S defined pointwise by ˚S;T . We call this ring R, inspired the
p-typical Witt notation. Indeed in [11], [10], R is seen as the Witt ring over K, with
evaluation at T D 0 over giving the residue morphism R ! K. We then see that the
Teichmüller lifts should be the constant functions, and T should play the role of the
exponent of pn in considering field extensions.

We then have the following general properties, as in Theorem 3.1 above (Theo-
rem 5.2 of [10]):

Theorem 4.2. Let x ˚S;T y be a thermodynamic semiring structure on a suitably
nice characteristic one semifield, K, defined as in (4.1). Then the following holds.

(1) x ˚S;T y D y ˚S;T x iff S is commutative.

(2) 0 ˚S;T x D x iff S has the left identity property.

(3) x ˚S;T 0 D x iff S has the right identity property.

(4) x ˚S;T .y ˚S;T z/ D .x ˚S;T y/ ˚S;T z iff S is associative.

Proof. The case of commutativity and of the identity axioms are obvious. For asso-
ciativity we have

x ˚S;T .y ˚S;T z/

D x ˚S;T min
p

.py C .1 � p/z � TS.p//

D min
q

.qx C .1 � q/ min
p

.py C .1 � p/z � TS.p// � TS.q//

D min
p;q

.qx C p.1 � q/y C .1 � q/.1 � p/z � T .S.q/ C .1 � q/S.p///

D min
p1Cp2Cp3D1

.p1x C p2y C p3z � T .S.p1/ C .1 � p1/S. p2

1�p1
///;

while

.x ˚S;T y/ ˚S;T z

D min
p

.px C .1 � p/y � TS.p// ˚S z

D min
p;q

.pqx C q.1 � p/y C .1 � q/z � T .qS.p/ C S.q//

D min
p1Cp2Cp3D1

.p1x C p2y C p3z � T .S.p1 C p2/ C .p1 C p2/S. p1

p1Cp2
//:

We see that the two ways of summing three quantities corresponds to the two ways
of measuring a ternary random variable with decision machines. The equivalence is
now obvious.

Most information measures are commutative, though a non-commutative example
in §8 below. We discuss in §5 some physical reasons why commutativity is more
automatic in this context than associativity.
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One then sees by direct inspection that, in the case of the Shannon entropy one
has the following form of the thermodynamic semiring structure.

Proposition 4.3. When S is the Shannon entropy, Sh, then

x ˚Sh;T y D �T log.e�x=T C e�y=T / (4.2)

over Rmin;C [ f1g, while over Rmax;�
>0 it is

x ˚Sh;T y D .x1=T C y1=T /T : (4.3)

Notice that the semiring Rmax;�
>0 is isomorphic to the semiring Rmin;C [f1g, under

the � log mapping, so that (4.3) is simply obtained from (4.2) in this way.
In this case, the parameter T corresponds to the parameter h of Maslov dequan-

tization (see the comments in §11.2). The semifields obtained in this way are known
as the Gibbs–Maslov semirings and the subtropical algebra (see [34], [31]).

One can extend the notion of thermodynamic semiring to include a class of semir-
ings of functions which we will be considering in the following. Just as in the case
of a ring R and a parameter space X , one can endow the set of functions from „

to R with a ring structure, by pointwise operations, one can proceed similarly with
a semiring. Moreover, in the case of a thermodynamic semiring structure, it is es-
pecially interesting to consider cases where the pointwise operation ˚S;T depends
on the point in the parameter space through a varying entropy function S D S� for
� 2 „.

Definition 4.4. Let „ be a compact Hausdorff space and let S D .S�/ be a family
of information measures depending continuously on the parameter � 2 „. Let
K D Rmin;C [ f1g. A thermodynamic semiring structure on the space of functions
C.X; R/ is given by the family of pointwise operations

x.�/ ˚S�;T y.�/ D min
p2Œ0;1�\Q

.px.�/ C .1 � p/y.�/ � TS�.p//:

The properties of Theorem 4.2 extend to this case. We will return to this more
general setting in §8 below.

As we discuss in the following sections, more general entropy functions (which
include the special cases of Rényi entropy, Tsallis entropy and Kullback–Leibler
divergence, as well as the more general categorical and operadic setting developed
in §10) give rise to thermodynamic algebraic structures that are neither commutative
nor associative. We will continue to use the terminology “semiring”, although (as the
referee pointed out to us) the term “algebra”, in the sense of the theory of universal
algebra, would be more appropriate.
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5. Statistical mechanics

Before we move on to see explicit examples of thermodynamic semirings besides the
original one based on the Shannon entropy considered already in [10] and [11], we give
in this section a physical interpretation of the algebraic structure of thermodynamic
semirings in terms of statistical mechanics. This interpretation is a generalization of
thermodynamic interpretations of max-plus formulas found in [43].

When K D Rmax;�
>0 , we can write the thermodynamic semiring operations in the

form
x ˚�;S y D max

p
.�S.p/xpy1�p/:

In particular, when we set � D ekB T , this reads

max
p

.ekB TS.p/Cp log xC.1�p/ log y/:

We recognize this as e�Feq D Z, where Feq is the equilibrium value of the free
energy of a system at temperature T , containing a gas of particles with chemical
potentials log x and log y, and Hamiltonian

H D p log x C .1 � p/ log y;

where p is now thought of as a mole fraction, and Z is its partition function.
Indeed, the semirings Rmax;�

>0 and Rmin;C [ f1g are isomorphic by � log, and this
gives

log x ˚S;kB T log y D min
p

.p log x C .1 � p/ log y � kBTS.p//;

which is the equilibrium free energy described above. We note also that the calculated
form of the thermodynamic semiring for Shannon entropy, that is

x ˚Sh y D �T log.e�x=T C e�y=T /:

In it, we recognize precisely the partition sum of a two state system with energies
x and y. We thus consider members of the Witt ring R (see §4) to be temperature
dependent chemical potentials.

In a gas system with a single type of particle, the free energy is precisely the
chemical potential. The mixing of these gases gives a new free energy dependent on
the entropy function. We then replace this mixture with a “particle” whose chemical
potential is the equilibrium free energy per particle of the previous mixture. This
gives a monoid structure on the space of chemical potentials. When we consider
mixing in arbitrary thermodynamics, i.e., with non-Boltzmann counting, we have
the possibility of mixing to be non-associative. With this interpretation, however,
we would not expect the mixing process to ever be non-commutative, so the lack of
associativity has a more direct and natural physical interpretation than the lack of



352 M. Marcolli and R. Thorngren

commutativity for thermodynamic semirings. We imagine multiplication to be a sort
of bonding of gases, where chemical potentials add together.

We see that the dynamics of this mixing process is determined, both physically
and algebraically, by the entropy function and the ambient temperature. At zero
temperature, the mixture is always entirely composed of the particle with the least
chemical potential. This corresponds to Rmin;C and indeed evaluation at zero tem-
perature gives us the residue morphism R ! K. When the entropy function is the
Shannon entropy, we get the normal thermodynamical mixing, see §8.5 of [16]. We
can say, therefore, that the Witt construction is, in a sense, giving thermodynamics to
this system. Note that in (1.1) this construction is seen giving an inverse to Maslov
dequantization, pointing out an interesting link between quantum mechanics and
thermodynamics.

The mixing entropy for chemical systems based on the Boltzmann–Gibbs statis-
tical mechanics and the Shannon entropy function (as in §8.5 of [16] for instance)
works well to describe systems that are ergodic. If a system is nonergodic (that is,
time averages and phase space averages differ), then the counting involved in bring-
ing two initially separated systems into contact will not follow the normal Boltzmann
rules. As a result, Shannon entropy will not behave extensively in these systems. This
typically occurs in physical systems with strong, long-range coupling and in systems
with metastable states or exhibiting power law behavior. In such systems, maximizing
the Shannon entropy functional (subject to the dynamical constraints of the system)
does not produce the correct metaequilibrium distribution, see for instance [53] and
other essays in the collection [21].

A broad field of non-extensive statistical mechanics for such systems has been
developed (see [53] for a brief introduction), where, under suitable conditions, one
can calculate a “correct” entropy functional corresponding to the system at hand.
These entropy functionals are typically characterized by some axiomatic properties
that describe their behavior. For instance, if we have two initially independent systems
A; B and bring them together to form a combined system denoted by A?B , one may
require that S.A?B/ D S.A/CS.B/ (extensive). This leads to forms of entropy such
as the Rényi entropy [45], generalizing the original Shannon case, while maintaining
the extensivity over independent systems. One may also have explicit q-deformations
of the extensivity condition, for example Sq.A ? B/ D Sq.A/ C Sq.B/ C .1 �
q/Sq.A/Sq.B/ for independent systems. This leads to forms of entropy such as the
Tsallis entropy [52].

When we consider different kinds of entropy functions in this way, we can look at
the algebraic properties of the corresponding thermodynamic semirings. These will
encode the information about the amount of nonextensivity and nonergodicity of the
system giving rise to the corresponding entropy function S . We can imagine non-
associativity of mixing as a toy model of meta-equilibrium states where we known
the entropy beforehand. We can also use thermodynamic semirings to encode relative
entropies and analyze its behavior over a space of parameters through the algebraic
properties of the semiring.
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Relations between idempotent semifields and statistical mechanics were also con-
sidered in [23], [25], [43].

6. The Rényi entropy

We now look at other important examples of entropy functions and we investigate
how the corresponding algebraic properties of the associated thermodynamic semiring
detect the properties of the entropy function as an information measure.

A first well-known case of an entropy function which is a natural generalization
of the Shannon entropy: the Rényi entropy, [45]. This is a one-parameter family Ry˛

of information measures defined by

Ry˛.p1; : : : ; pn/ ´ 1

1 � ˛
log

� X
i

p˛
i

�
;

so that the limit
lim
˛!1

Ry˛.p1; : : : ; pn/ D Sh.p1; : : : ; pn/

recovers the Shannon entropy. The Rényi entropy has a broad range of applications,
especially in the analysis of multifractal systems [6], while a statistical mechanics
based on the Rényi entropy is described in [29].

The Rényi entropy also has an axiomatic characterization, where one weakens the
Khinchin additivity axioms to a form that only requires additivity of the information
entropy for independent subsystems, while keeping the other three axioms unchanged,
[46]. For our version of the axioms, formulated in terms of decision machines, this
means that the associativity axiom no longer holds.

Lemma 6.1. The lack of associativity of x ˚S y, when S D Ry˛ is the Renyi entropy

Ry˛.p/ D 1

1 � ˛
log.p˛ C .1 � p/˛/;

is measured by the transformation .p1; p2; p3/ 7! .p3; p2; p1/.

Proof. We have

Ry˛.p1/ C .1 � p1/ Ry˛

� p2

1 � p1

�

D 1

1 � ˛
.log.p˛

1 C .1 � p1/˛/ C .1 � p1/ log
�� p2

1 � p1

�˛ C
�1 � p1 � p2

1 � p1

�˛��

D 1

1 � ˛
log

�
.p˛

1 C .1 � p1/˛/

�
p2

1�p1

�˛ C �
p3

1�p1

�˛

��
p2

1�p1

�˛ C �
p3

1�p1

�˛�p1

�

D 1

1 � ˛
log

�� p1p2

1 � p1

�˛ C
� p1p3

1 � p1

�˛ C p˛
2 C p˛

3

�
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� p1

1 � ˛
log

�� p2

1 � p1

�˛ C
� p3

1 � p1

�˛�

1

1 � ˛
log

� .p˛
2 C p˛

3 /.p˛
1 C .1 � p1/˛/

.1 � p1/˛

�
� p1

1 � ˛
log

� .p˛
2 C p˛

3 /

.1 � p1/˛

�

D 1

1 � ˛
..1 � p1/ log.p˛

2 C p˛
3 /

C log.p˛
1 C .1 � p1/˛/ � ˛.1 � p1/ log.1 � p1//:

On the other hand, we have

Ry˛.p1 C p2/ C .p1 C p2/ Ry˛

� p1

p1 C p2

�

D Ry˛.1 � p3/ C .1 � p3/ Ry˛

� p1

1 � p3

�

D Ry˛.p3/ C .1 � p3/ Ry˛

� p1

1 � p3

�

D 1

1 � ˛
log

�� p1p3

1 � p3

�˛ C
� p2p3

1 � p3

�˛ C p˛
1 C p˛

2

�

� p3

1 � ˛
log

�� p1

1 � p3

/˛ C
� p2

1 � p3

�˛�

D 1

1 � ˛
..1 � p3/ log.p˛

2 C p˛
1 / C log.p˛

3 C .1 � p3/˛/

� ˛.1 � p3/ log.1 � p3//:

So the failure of associativity is corrected by mapping .p1; p2; p3/ 7! .p3; p2; p1/.
In fact, this holds for any commutative S .

In a commutative non-associative semiring K, the lack of associativity is corrected
by the morphism

K ˝ K ˝ K
A ��

˚w˝1

��

K ˝ K ˝ K

1˝˚w

��
K ˝ K

˚w �� K K ˝ K,
˚w��

which makes the diagram commutative and which is simply given by A.x ˝y ˝z/ D
z ˝ y ˝ x. This is exactly the transformation .p1; p2; p3/ 7! .p3; p2; p1/, as these
correspond to p1 D sr , p2 D s.1 � r/ and p3 D 1 � .p1 C p2/ in the associativity
constraints. Thus, the transformation .p1; p2; p3/ 7! .p3; p2; p1/ is exactly the one
that identifies w.s/w.r/s with w.sr/w.s.1 � r/=1 � sr/1�sr .

We will show in §9 below that one can introduce a more refined notion of successor
function for thermodynamic semirings, which encodes useful information on the
algebraic structure of the semiring, including the lack of associativity, and on the
thermodynamical properties of the entropy function.
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7. The Tsallis entropy

The Tsallis entropy [52] is a well-studied generalization of Shannon entropy, currently
finding application in the statistical mechanics of nonergodic systems, [21]. It is
defined by

Ts˛.p/ D 1

˛ � 1
.1 � p˛ � .1 � p/˛/: (7.1)

(A slightly more general form will be analyzed in §7.1 below, see (7.2).)
The basic characterizing feature of the Tsallis entropy is the fact that the extensive

property (additivity on independent subsystems) typical of the Shannon and Rényi
entropies is replaced by a non-extensive behavior. This corresponds, algebraically, to
replacing an exponential function (or a logarithm) with an ˛-deformed exponential
(or logarithm), see §2.1 of [53], so that the usual Boltzmann principle S D k log W

of statistical mechanics is replaced by its deformed version S˛ D k log˛ W , where
log˛.x/ D .x1�˛ � 1/.1 � ˛/. Thus, instead of additivity S.A ? B/ D S.A/ C S.B/

on the combination of independence systems, one obtains S˛.A ? B/ D S˛.A/ C
S˛.B/ C .1 � ˛/S˛.A/S˛.B/. An axiomatic characterization of the Tsallis entropy
is described in [20], [49], and [53].

We consider the thermodynamic semiring as in Definition 4.1 with the information
measure S given by the Tsallis entropy S D Ts˛ .

In this case the failure of the associativity condition for the semiring with the
˚S;T operation is measured by comparing the expressions

Ts˛.p1/ C .1 � p1/ Ts˛

� p2

1 � p1

/

D 1

˛ � 1
.1 � p˛

1 � .1 � p1/˛ C p˛
2

.1 � p1/˛�1
C .1 � p1 � p2/˛

.1 � p1/˛�1

�

and

Ts˛.p1 C p2/ C .p1 C p2/ Ts˛

� p1

p1 C p2

�

D 1

˛ � 1

�
1 � .p1 C p2/˛ � .1 � p1 � p2/˛ C p˛

1

.p1 C p2/˛�1
C p˛

2

.p1 C p2/˛�1

�
:

However, an interesting feature of the Tsallis entropy is that the associativity
of the thermodynamic semiring can be restored by a deformation of the operation
˚S;T , depending on the deformation parameter ˛ which makes sense in the previous
thermodynamic context, so that the Tsallis entropy becomes the unique function that
makes the resulting ˚S;T;˛ both commutative and associative.

7.1. A Witt construction for Tsallis entropy. We show here how to deform the
thermodynamic semiring structure in a one-parameter family ˚S;T;˛ for which S D
Ts˛ is the only entropy function that satisfies the associativity constraint, along with
the commutativity and unity axioms.
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We consider here a slightly more general form of the Tsallis entropy, as the non-
associative information measure the Tsallis entropy [21], defined by

Ts˛.p/ D 1

�.˛/
.p˛ C .1 � p/˛ � 1/; (7.2)

where ˛ 2 R is a parameter and � is a continuous function such that �.˛/.1�˛/ > 0,
whenever ˛ ¤ 1, with

lim
˛!1

�.˛/ D 0;

and such that there exists 0 6 a < 1 < b with the property that � is differentiable on
.a; 1/ [ .1; b/, and

lim
˛!1

d�.˛/

d˛
< 0:

Note that this implies that the Tsallis entropy reproduces the Shannon entropy in
the ˛ ! 1 limit. A typical choice for the normalization is �.˛/ D 1 � ˛, which
reproduces the form (7.1).

Here we work with the more general form (7.2), as we will be able to ensure
uniqueness only up to a general � satisfying the above requirements.

We find that the Tsallis entropy fits nicely into the context of Witt rings with the
following two results.

Theorem 7.1. The Tsallis entropy in the form (7.2) is the unique entropy function that
is commutative, has the identity property, and satisfies the ˛-associativity condition

S.p1/ C .1 � p1/˛S
� p2

1 � p1

�
D S.p1 C p2/ C .p1 C p2/˛S

� p1

p1 C p2

�
: (7.3)

Proof. We assume a priori that �S is concave and continuous. Therefore, �S has a
unique maximum, which is positive when S is non-trivial, since S.0/ D 0. Moreover,
S is symmetric, so this maximum must occur at p D 1=2. S also has the identity
property and the ˛-associativity, so by Suyari [49] and Furuichi [20], this implies
S D Ts˛ , for some �.˛/ satisfying the above properties. The converse follows from
direct application of the arguments given in [20] and [49] and is easily verified.

The ˛-associativity condition as one of the characterizing properties for the Tsallis
entropy was also discussed in [14].

We can interpret this ˛-associativity as an associativity of an ˛-deformed Witt
operation as follows. Fix some ˛ and consider

x ˚S;T;˛ y D P
s2I

eTS.s/xs˛
y.1�s/˛

:

We then have the following characterization of associativity.

Theorem 7.2. For ˛ ¤ 0, the operation ˚S;T;˛ is associative if and only if S is
˛-associative, as in (7.3).
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Proof. We find that this operation is associative if and only if

P
s;r2I

eT .S.sr/C.1�sr/˛S. s.1�r/
1�sr //x.sr/˛

y.s.1�r//˛
z.1�r/˛

D P
s;r2I

eT .S.s/Cs˛S.r//x.sr/˛
y.s.1�r//˛

z.1�r/˛
:

We make the same substitution as earlier, setting p1 D sr , p2 D s.1 � r/,
p3 D 1 � r . Then the above condition becomes

P
p1Cp2Cp3D1

e
T .S.p1/C.1�p1/˛S.

p2
1�p1

//
xp˛

1 yp˛
2 zp˛

3

D P
p1Cp2Cp3D1

e
T .S.p1Cp2/C.p1Cp2/˛S.

p1
p1Cp2

//
xp˛

1 yp˛
2 zp˛

3 :

When ˛ ¤ 0, the map a 7! a˛ is invertible and convex/concave, and the above
is a composition of this map with several Legendre transformations, so we can invert
this composition to obtain

S.p1/ C .1 � p1/˛S
� p2

1 � p1

�
D S.p1 C p2/ C .p1 C p2/˛S

� p1

p1 C p2

�
;

which is exactly the ˛-associativity condition.

It is worth pointing out at this point that in the above deformed Witt construction,
we have replaced the energy functional

U D P
piEi with U˛ D P

p
q
i Ei ;

according to our interpretation in 5. In the setting of non-extensive statistical me-
chanics built upon the Tsallis entropy, this latter expression is exactly the energy
functional used. Therefore, the deformed Witt addition is again naturally interpreted
as a free energy, now in the more general q-deformed thermodynamics.

8. The Kullback–Leibler divergence

We now discuss another class of thermodynamic semirings in which both the asso-
ciativity and the commutativity properties fail, but in which we can encode entropy
functions varying over some underlying space or manifold. In particular, we will
connect the thermodynamic semirings we consider in this section to the general point
of view of information geometry, as developed in [3], [22].

The Kullback–Liebler divergence [27], [28] is a measure of relative entropy, mea-
sured by the average logarithmic difference between two probability distributions p

and q. Since the averaging is done with respect to one of the probability distributions,
the KL divergence is not a symmetric function of p and q.
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More precisely, the KL divergence of two binary probability distributions p and
q is defined by

KL.pI q/ D p log
p

q
C .1 � p/ log

1 � p

1 � q
:

The negative of the Kullback–Liebler divergence reduces to the Shannon entropy
(up to a constant) in the case where q is a uniform distribution. It is also called the
information gain, in the sense that it measures the probability law p relative to a given
input or reference probability q.

We are especially interested here in considering the case where the probability
distribution q depends on an underlying space of parameter, continuously or smoothly.
Mostly, we will be considering the following two cases.

Definition 8.1. A smooth univariate binary statistical n-manifold Q is a set of binary
probability distributions Q D .q.�// smoothly parametrized by � 2 Rn.

A topological univariate binary statistical n-space Q is a set of binary probability
distributions Q D .q.�// continuously parameterized by � 2 „, with „ a compact
Hausdorff topological space.

The first case leads to the setting of information geometry [3], [22], while the
second case is more suitable for treating multifractal systems [6].

We then consider thermodynamic semiring in the more general form of Defini-
tion 4.4. Let X be either a compact subset of Rn in the case of a smooth univariate
binary statistical manifold or a closed subset of a compact Hausdorff space „ in the
topological case of Definition 8.1. We consider the space of continuous functions
R D C.X; R/, where the semiring K is either Rmin;C [ f1g or Rmax;�

�0 , or in the
smooth case we take R D C 1.X; K/.

Given q D q.�/ in Q, we can endow the space R of functions with a thermody-
namic semiring structure as in Definition 4.4, where the deformed addition operation
is given by

x.�/ ˚KL�;� y.�/ D P
p2Q\Œ0;1�

�� KL.pIq.�//x.�/py.�/1�p; (8.1)

where � is the parameter of the deformation. Note we use the negative of the KL
divergence because we are interested in it as a measure of relative entropy, rather
than relative information, concepts often conceptually distinct but always related by
a minus sign.

In the case when q.�/ � 1=2 is uniform for all �, we get back the original case
with the Shannon entropy up to a shift factor

x ˚KL�;� yjq.�/�1=2 D max
p

.��.p log p
1=2

C .1 � p/ log 1�p
1=2

/ C px C .1 � p/y/

D max
p

.� Sh.p/ C px C .1 � p/y/ C � log 2:

(8.2)
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We note that we can calculate this operation explicitly over Rmin;C [ f1g and
Rmax;�

�0 . We obtain the following result by arguing as in Proposition 4.3.

Proposition 8.2. We have the following expression over Rmin;C [ f1g
x ˚KL y D �T log.e� x

qT C e� y
.1�q/T /

and the following expression over Rmax;�
�0 .

x ˚KL y D
��x

q

�1=T C
� y

1 � q

�1=T �T

The first observation then is that the additive structures (8.1) are in general not
commutative.

Proposition 8.3. The thermodynamic semiring structure

x ˚KL y D P
p2Q\Œ0;1�

�� KL.pIq/xpy1�p (8.3)

is commutative if and only if q D 1=2. The lack of commutativity is measured by the
transformation q 7! 1 � q.

Proof. This is immediate from the previous calculation, but we perform the proof
over general K. We find that

KL.1 � pI q/ D .1 � p/ log
1 � p

q
C p log

p

1 � q
:

This is related to KL.pI q/ by the transformation q 7! 1 � q. Thus, KL.pI q/ D
KL.1 � pI q/ when log 1�q

q
D 0, that is, when q D 1=2. This is exactly when the

Shannon entropy case is reproduced, so the only case when the addition (8.3) based on
the Kullback–Liebler divergence is commutative is when it agrees with the Shannon
entropy up to a shift factor.

For the associativity condition we find the following result.

Proposition 8.4. The lack of associativity of the thermodynamic semiring (8.3) is
measured by the transformation .p1; p2; p3I q/ 7! .p3; p2; p1I 1 � q/.

Proof. Again we proceed over general K. We have

KL.p1I q/ C .1 � p1/ KL.
p2

1 � p1

I q/

D p1 log
p1

q
C .1 � p1/ log

1 � p1

1 � q
C p2 log

p2

.1 � p1/q

C .1 � p1 � p2/ log
1 � p1 � p2

.1 � p1/.1 � q/
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D p1 log
p1

q
C .1 � p1/ log

1 � p1

1 � q
C p3 log

p3

1 � q

C p2 log
p2

q
� .1 � p1/ log.1 � p1/;

while

KL.p1 C p2I q/ C .p1 C p2/ KL.
p1

p1 C p2

I q/

D .p1 C p2/ log
p

1
C p2

q
C .1 � p1 � p2/ log

1 � p1 � p2

1 � q

C .p1 C p2/
p1

p1 C p2

log
p1

.p1 C p2/q

C .p1 C p2/
p2

p1 C p2

log
p2

.p1 C p2/.1 � q/

D .p1 C p2/ log
p1 C p2

q
C .1 � p1 � p2/ log

1 � p1 � p2

1 � q
C p1 log

p1

q

C p2 log
p2

1 � q
� .p1 C p2/ log.p1 C p2/

D p3 log
p3

1 � q
C .1 � p3/ log

1 � p3

q
C p1 log

p1

q

C p2 log
p2

1 � q
� .1 � p3/ log.1 � p3/:

These are related by the transformation .p1; p2; p3I q/ 7! .p3; p2; p1I 1 � q/.

Notice that, because of the presence of the shift in (8.2) with respect to the Shannon
entropy, in the case q D 1=2 we find

KL
�
p1I 1

2

�
C .1 � p1/ KL

� p2

1 � p1

I 1

2

�

D p1 log p1 C p2 log p2 C p3 log p3 C log 2 C .1 � p1/ log 2

while

KL
�
p1 C p2I 1

2

�
C .p1 C p2/ KL

� p1

p1 C p2

I 1

2

�

D p1 log p1 C p2 log p2 C p3 log p3 C log 2 C .1 � p3/ log 2:

Thus, associativity is not automatically obtained in the uniform distribution case,
but instead we have associativity up to a shift.

By Proposition 8.4 we see that, in the case of a thermodynamic semiring R D
C.X; K/ or R D C 1.X; K/, for a topological or smooth univariate binary statistical
space, if one can find an involution ˛ W X ! X of the parameter space such that
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q.˛.�// D 1 � q.�/, then one can consider the transformation x.�/ 7! x.˛.�// and
one finds that

x.�/ ˚KLq.�/
y.�/ D y.˛.�// ˚KLq.˛.�//

x.˛.�//:

Moreover, the morphism

A W .x.�/; y.�/; z.�// 7! .z.˛.�//; y.˛.�//; x.˛.�///

measures the lack of associativity by making the diagram

R ˝ R ˝ R
A ��

˚KL˝1

��

R ˝ R ˝ R

1˝˚KL

��
R ˝ R

˚KL �� R R ˝ R
˚KL��

commute.

8.1. Applications to multifractal systems. Consider the case of a Cantor set X

identified, through its symbolic dynamics interpretation, as the one sided full shift
space †C

2 on the alphabet f0; 1g, see §1.3 of [42].
For � 2 X, let an.�/ denote the number of 1’s that appear in the first n digits

�1; : : : ; �n of �. We set

q.�/ D lim
n!1

an.�/

n
(8.4)

if this limit exists. We denote by Y � X the set of points for which the limit (8.4)
exists.

The limit (8.4) determines several important dynamical properties related to the
fractal geometry of X. For example, suppose that X is a uniform Cantor set obtained
from a contraction map f with contraction ratio 	, endowed with a Bernoulli measure

p for a given 0 < p < 1, defined by assigning measure


p.X.w1; : : : ; wn// D pan.w/.1 � p/n�an.w/

to the cylinder sets

X.w1; : : : ; wn/ D f� 2 X j �i D wi ; i D 1; : : : ; ng:
Then the local dimension of X at a point � 2 Y is given by (§4.17 of [42])

d�p
.�/ D q.�/ log p C .1 � q.�// log.1 � p/

log 	

while the local entropy of the map f is given by (§4.18 of [42])

h�p ;f .�/ D q.�/ log p C .1 � q.�// log.1 � p/:
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For a non-uniform Cantor set X with two contraction ratios 	1 and 	2 on the two
intervals, the Lyapunov exponent of f is given by (§4.20 of [42])

	f .�/ D q.�/ log 	1 C .1 � q.�// log 	2:

One knows that, given a Bernoulli measure 
p on the Cantor set X, there is a set
Z � X of full measure 
p.Z/ D 1, for which q.�/ D p (Proposition 4.5 of [42]).
The choice of the uniform measure 
1=2 yields a full measure subset Z1=2 on which
the limit q.�/ D 1=2 is the uniform distribution (the fair coin case). In general one
can stratify the set Y � X into level sets of q.�/. This provides a decomposition of
the Cantor set as a multifractal.

Looking at this setting from the point of view of thermodynamic semirings sug-
gests considering the set of functions C.Y; K/ endowed with the pointwise operation
˚KLq.�/;T , with the Kullback–Leibler divergence KL.pI q.�//, for q.�/ defined as
in (8.4). Then we see that, without the need to choose a measure on X, the alge-
braic properties of the thermodynamic semiring automatically select the “fair coin
subfractal” Z1=2.

Proposition 8.5. For Z � Y, the semiring C.Z; K/, with the operation ˚KLq.�/;T ,
for q.�/ as in (8.4), is commutative if and only if Z � Z1=2 is a “fair coin” subset.

Proof. This follows immediately from Proposition 8.3.

Moreover, we can see geometrically the involution that measures the lack of
commutativity as in Proposition 8.3 and the lack of associativity as in Proposition 8.4.

Proposition 8.6. The homeomorphism � W X ! X given by the involution that
exchanges 0 $ 1 in the digits of � in the shift space †C

2 implements the involution
q.�/ 7! 1 � q.�/ that measures the lack of commutativity and that, together with the
involution .p1; p2; p3/ 7! .p3; p2; p1/ also measures the lack of associativity. Thus,
the morphism x.�/ 7! x.�.�// restores commutativity in the sense that

x.�/ ˚KLq.�/
y.�/ D y.�.�// ˚KLq.�.�/

x.�.�//;

while A W R ˝ R ˝ R ! R ˝ R ˝ R given by

A.x.�/; y.�/; z.�// D .z.�.�//; y.�.�//; x.�.�///

restores associativity, making the diagram commute

R ˝ R ˝ R
A ��

˚KL˝1

��

R ˝ R ˝ R

1˝˚KL

��
R ˝ R

˚KL �� R R ˝ R.
˚KL��

Proof. This follows immediately from Proposition 8.3 and Proposition 8.4, by ob-
serving that the q.�/ defined as in (8.4) satisfies q.�.�// D 1�q.�/ since an.�.�// D
n � an.�/ for all � 2 X.
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8.2. Multivariate binary statistical manifolds. We see that in the univariate case,
the extremal p value is the unique probability distribution minimizing the KL-
divergence to q subject to the soft constraint coming from the energy functional
px C .1 � p/y, see §5. This is important because minimizing the KL divergence
is maximizing likelihood, and this plays an important role in marginal estimation,
belief propagation, mutual information calculation, see [22] and [3].

A more interesting case is that of multivariate statistical manifolds. To maintain
the same features as in the univariate case, we will find that a hyperring structure is
most natural. See [54], [11] for an introduction and relevant facts of hyperstructures.
We first note the following fact.

Proposition 8.7. If p and q are two distributions, we denote by pi and qi their i -th
marginal distribution. Then KL.pI q/ D P

i KL.pi I qi /.

Proof. We have

KL.pI q/ D p1 : : : pn log
p1 : : : pn

q1 : : : qn

C.1 � p1/p2 : : : pn log
.1 � p1/p2 : : : pn

.1 � q1/q2 : : : qn

C	 	 	

	 	 	 C .1 � p1/ : : : .1 � pn/ log
.1 � p1/ : : : .1 � pn/

.1 � q1/ : : : .1 � qn/

D p1 : : : pn

�
log

p1

q1

C 	 	 	 C log
pn

qn

�
C 	 	 	 C .1 � p1/ : : :

: : : .1 � pn/
�

log
1 � p1

1 � q1

C 	 	 	 C log
1 � pn

1 � qn

�

D p1 log
p1

q1

.p2 : : : pn C .1 � p2/ : : : pn C 	 	 	 /

C .1 � p1/ log
1 � p1

1 � q1

.p2 : : : pn C 	 	 	 / C 	 	 	

D p1 log
p1

q1

..1 C p2 � p2/.p3 : : : pn C : : : // C 	 	 	

D p1 log
p1

q1

C .1 � p1/ log
1 � p1

1 � q1

C 	 	 	 C .1 � pn/ log
1 � pn

1 � qn

D
X

i

KL.pi I qi /:

Thus, if we can ensure that the sum of the KL divergences of the marginal distri-
butions is minimized, then the total KL divergence will be minimized.

8.3. Product of semirings and hyperfield structure. We proceed by taking the
semiring

R D C.f1; : : : ; ng; K/ D K˝n:
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It is tempting to define the operations on R coordinate-wise, however, since we want
to consider an n-ary probability distribution and not n binary probability distributions,
there should be some dependence between coordinates that takes advantage of the
previous proposition. In short, we would like to put an ordering on R that ensures
the trace

.x1; : : : ; xn/ ! x1 C 	 	 	 C xn 2 K

is maximized. This ordering does not uniquely determine a maximum between
two tuples. We thus for sake well-definedness of the addition on K and define
.x1; : : : ; xn/ C .y1; : : : ; yn/ to be the set of tuples .z1; : : : ; zn/ with zi D xi or yi

that maximize z1 C	 	 	Czn in the ordering on K. This, together with coordinate-wise
multiplication defines a characteristic one hyperfield structure on R. We then define
the Witt operation for some information measures S1; : : : ; Sn over K D Rmin;C[f1g
by

x ˚S1;:::;Sn
y

D min
p1;:::;pn

.p1x1 C .1 � p1/y1 � TS1.p1/; : : : ; pnxn C .1 � pn/yn � TSn.pn//;

where x D .x1; : : : ; xn/; y D .y1; : : : ; yn/, now we consider the pi as marginal
probabilities, and the min operation is the multivalued hyperring addition. When
each Si is the KL-divergence from some qi , by the previous proposition, the results
of this operation are exactly the distributions with marginal probabilities .p1; : : : ; pn/

minimizing the KL-divergence to the marginal probabilities .q1; : : : ; qn/ subject to
the soft constraint coming from the energy functional

U D P
pixi C .1 � pi /yi :

The lack of well-definedness of this addition can be interpreted in the thermodynamic
context as the non-uniqueness of equilibria, via the existence of meta-equilibrium
states. Indeed, when the qi describe a uniform distribution, we find that this addition
is in fact well defined.

Note that these hyperfields are slightly different from those considered in [54].
However, just as taking T ! 0 for the Shannon entropy semiring reproduces the
“dequantized” tropical semiring, we can take T ! 0 for the KL divergence semiring
to get a “dequantized” tropical hyperfield. This reproduces the undeformed addition
defined on K above. Note that this is not the same as Oleg Viro’s tropical hyperfield
discussed in [54].

We can encode more information about a space in the ring deformation by re-
stricting the marginal probabilities we sum over, in particular we can restrict the
minimizing process to certain submanifolds of our probability manifold such as the
e-flat or m-flat manifolds typically considered in [3], since the KL-divergence is re-
lated to the Fisher information matrix defining the Riemannian structure. See also
the comments in §11.1 below.
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9. The successor in thermodynamic semirings

Given a thermodynamic semiring in the sense of Definition 4.1, we let

	.x; T / D x ˚S 0 � min
p

.px � TS.p//:

Then 	 W K � R ! K is the Legendre transform of TS W Œ0; 1� ! R. If we assume
that S has a unique maximum, then we can invert the Legendre transform, so that

TS.p/ D min
x

.px � 	.x; T //:

Therefore, when S is concave/convex, we can recover it from the semiring. We call
	 the successor function since 0 is the multiplicative identity, and over general K we
can write 	.x; T / D x ˚S 1. When multiplication distributes over addition, we can
write

x ˚S y D 	.x � y; T / C y:

We will tend to suppress the T dependence of 	. Each of the algebraic properties of
S and K translate into the language of 	.

Proposition 9.1. The entropy function S has the following properties.

(1) It satisfies the commutativity axiom S.p/ D S.1 � p/ (hence ˚S;T is commu-
tative) if and only if

	.x/ � 	.�x/ D x:

(2) It satisfies the left identity axiom S.0/ D 0 (hence ˚S has left identity 1) if
and only if 	.x/ 6 0 and limx!1 	.x/ D 0.

(3) It satisfies the right identity axiom S.1/ D 0 (hence ˚S has left identity 1) if
and only if 	.x/ 6 x and 	.x/ 
 x, as x ! �1.

(4) It satisfies the associativity constraint making ˚S associative iff

	.x � 	.y// C 	.y/ D 	.	.x � y/ C y/:

Proof. Facts (1) and (4) are immediate from the definition. The properties (2) and (3)
arise from the fact that 	 should be continuous at 1 and �1. We then read 1 ˚S x

and x ˚S 1 as limy!1 y ˚S x and limy!1 x ˚S y, respectively. Each of these
should equal x, and in terms of 	 we see that limy!1 y˚S x D limy!1 	.y�x/Cx

and limy!1 x ˚S;T y D limy!1 	.x � y/ C y, thus proving (2) and (3).

In the case of the Shannon entropy S D Sh and KL-divergence S D � KL.pI q/,
we have the following forms for the successor function.

Proposition 9.2. For Shannon entropy,

	Sh.x; T / D �T log.1 C e�x=T /



366 M. Marcolli and R. Thorngren

over Rmin;C [ f1g, and
	Sh.x; T / D .1 C x1=T /T

over Rmax;C
>0 . For the KL-divergence,

	KL.x; T / D �T log.1 C e�x=qT /

over Rmin;C [ f1g, and

	KL.x; T / D .1=.1 � q/1=T C .x=q/1=T /T

over Rmax;C
>0 .

Proof. This follows directly from the definition of 	.x; T / D x ˚S 0, and the iso-
morphism � log relating the semirings Rmax;�

�0 and Rmin;C [ f1g.

Figures 1, 2 and 3 show examples of a plot of 	Sh plotted versus x, for different
values of T .

� 10 � 5 5 10

� 10

� 8

� 6

� 4

� 2

Figure 1. The successor function 	Sh for T D 0:5.

� 10 � 5 5 10

� 10

� 8

� 6

� 4

� 2

Figure 2. The successor function 	Sh for T D 1.
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� 10 � 5 5 10

� 10

� 8

� 6

� 4

� 2

Figure 3. The successor function 	Sh for T D 2.

9.1. Successor function for Tsallis entropy. Consider now the case of the Tsallis
entropy

Ts˛.p/ D 1

1 � ˛
.p˛ C .1 � p/˛ � 1/:

Proposition 9.3. The successor function 	Ts˛ .x; T / for the Tsallis entropy is given
by

	Ts˛ .x; T / D

8̂<
:̂

0 j ˛
1�˛

j < x=T;

g.x/ �j ˛T
1�˛

j < x=T < j ˛
1�˛

j;
x x=T < �j ˛T

1�˛
j;

(9.1)

where g.x/ is given by applying Ts to the inverse of its derivative.

Proof. We have
@ Ts

@p
D ˛

1 � ˛
.p˛�1 � .1 � p/˛�1/:

We see the derivative of Ts˛ has range Œ�j ˛
1�˛

j; j ˛
1�˛

j�, so that we obtain (9.1).

Figure 4 shows an example of a plot of 	Ts˛ plotted versus x. In the limit ˛ ! 1,
one has Ts˛ D �.0;1�, so indeed 	Ts1.x/ D x�Œ�1;0/.x/ for finite temperature.
When ˛ < 0, Ts˛ is convex, so 	 becomes concave in this region, as expected.

9.2. Successor function for Rényi entropy. We now consider again the Réyni en-
tropy given by

Ry˛.p/ D 1

1 � ˛
log.p˛ C .1 � p/˛/:

We have
@ Ry

@p
D ˛

1 � ˛
.p˛�1 C .1 � p/˛�1/=.p˛ C .1 � p/˛/:

This time, however, the derivative has range R, so that we have both 	Ry˛ .x/ < x

and 	Ry˛ .x/ < 0.
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� 10 � 5 5 10
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� 4
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Figure 4. The successor function 	Ts
˛ for ˛ D 0:5 and T D 1.

Figures 5 and 6 show examples of a plot of 	Ry˛ plotted versus x, for different
values of ˛.

� 10 � 5 5 10

� 10

� 8

� 6

� 4

� 2

Figure 5. The successor function 	Ry˛ for ˛ D 0:1 and T D 1.

� 10 � 5 5 10

� 10

� 8

� 6

� 4

� 2

Figure 6. The successor function 	Ry˛ for ˛ D 0:9 and T D 1.

One can see, by comparing these various graphs for the different entropy func-
tions that increasing T has the effect of smoothing the transition, while increasing ˛

sharpens it.
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9.3. Cumulants generating function. In this section we give a thermodynamical
interpretation of the successor function.

Recall that, for a random variable X , if MX .t/ denotes the generating function
for the momenta of X ,

MX .t/ D hexp.tX/i D
1X

mD0


m

tm

mŠ
;

then the cumulants fng of X are defined as the coefficients of the power series
expansion of the function log MX .t/,

log MX .t/ D
1X

nD0

n

tn

nŠ
:

The information contained in cumulants or momenta is equivalent, though cumulants
have the advantage that they behave additively over independent variables.

We then have the following result. We consider the case of an analytic 	, which
is reasonable when attempting to gain a thermodynamic understanding, as the micro-
scopic dynamics are usually assumed to be analytic.

Proposition 9.4. Let 	.x; T / be the successor function of a thermodynamic semiring
K. Assume that 	.x; T / is analytic. Then the function �	.x; T /=T is the cumulant
generating function of the probability distribution for the energy E, in the variable
�1=T D �ˇ. Namely, if we write the n-th cumulant as n D hEnic , we have

.�1/nC1 @n

@ˇn
.ˇ	.x; T // D hEnic : (9.2)

Proof. In thermodynamics, Z.ˇ/ D hexp.�ˇE/i is the partition function, where
ˇ D 1=T is the inverse temperature and E is the energy. The Helmholtz free energy
is then given by

F D �T loghexp.�E=T /i:
Up to a factor of �1=T , the Helmholtz free energy is in fact the cumulant generating
function for the random variable given by the energy E. As observed already in §5,
the Helmholtz free energy is the Legendre transform of the entropy, and can therefore
we identified, again up to a factor of �1=T , with the function 	.x; T /.

We can of course perform this proof without reference to the thermodynamics.
That is to say: the Legendre transform structure of the whole ordeal is independent
of the information measure we select as long as we select one which is concave and
analytic.

In particular, from (9.2) we have

	.x; T / � T
@

@T
	.T; x/ D hEi D peqx;
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where peq D pT .x/ is equilibrium value of the mole fraction. We know that
	.x; T / D minp.px � TS.p// D pT .x/ � TS.pT .x//. We see that pT .x/ sat-
isfies

x=T D d

dp
S.pT .x//;

so we can write pT .x/ D p.x=T / and 	.T; x/ D 	.x=T /. Notice that this explains
the effect that changing the temperature has on ˚S;T .

From the definition, we calculate

@

@T
	.x=T / D x

@

@T
p.x=T / � S.p.x=T // � T

@

@T
p.x=T /

d

dp
S.p.x=T //;

which, by the above property, is just �S.p.x=T //, proving the above relation. Note
this holds for arbitrary smooth, concave entropy functions. Similarly, we calculate

@

@x
	.x=T / D xp.x=T /;

so that

	.x=T / D x
@

@x
	.x=T / C T

@

@T
	.x=T /:

This is a well-known property of the Legendre transform of smooth functions.

10. Entropy operad

A categorical and operadic point of view on convex spaces and entropy functions
was recently proposed in [4], [5], [18], [19]. Here we will use a similar viewpoint to
describe generalized associativity conditions on thermodynamic semirings.

More precisely, we consider here the more general question of how binary (or
more complicated) information measures can be built up to ones for n-ary random
variables for any n > 2. This will give us some interesting correspondences between
the combinatorics of such “guessing games” and generalized associativity conditions
in an operad with n-ary operations defined over K like x1 ˚S 	 	 	 ˚S xn with some
choice of parenthesizing. In this section, we will assume for simplicity that K is
Rmin;C [ f1g, although, once again, this is only a notational convention chosen to
elucidate certain expressions. All the statements made here could be translated into
the greater generality for real characteristic one semifields.

Operads were first introduced in [38] in the theory of iterated loop spaces and
have since seen a broad range of applications in algebra, topology, and geometry. We
recall briefly some basic facts about operads that we will need later, see [39].

An operad is a collection of objects from a symmetric monoidal category � with
product ˝ and unit object . In particular, for each j 2 N, we have an object C.j /,
thought of as parameter objects for j -ary operations, with actions by the symmetric
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group Symj , thought of as permuting inputs. We also have a unit map � W  ! C.1/

and composition maps

� W C.k/ ˝ C.j1/ ˝ 	 	 	 ˝ C.jk/ ! C.j1 C 	 	 	 C jk/

which are suitably associative, unital, and equivariant under the action of Symk such
that if � 2 Symk , then

�.ck ˝ c�.j1/ ˝ 	 	 	 ˝ c�.jk// D �.�.ck/ ˝ cj1
˝ 	 	 	 ˝ cjk

/:

A C -algebra A is an object together with Symj -equivariant maps

C.j / ˝ Aj ! A;

thought of as actions, which are suitably associative and unital. Here Aj represents
A˝j and A0 D. An A-module M is an object together with Symj�1-equivariant maps

C.j / ˝ Aj �1 ˝ M ! M

which are also suitably associative and unital. Note that we are taking our objects
all from symmetric monoidal categories, so we do not need to distinguish where the
operad lives from where the algebras live, but we have not eliminated the possibility
of doing so. When we consider the entropy operad, the n-ary operations of the operad
will be parametrized by rooted trees, while we will take algebras from the category
of topological categories.

10.1. Operads and entropy. We first recall the recent construction of J. Baez,
T. Fritz, and T. Leinster, [4], [5] of an operadic formalism for entropy, which is
especially relevant to our setting and nicely displays the basic machinery.

Adopting the set theorists’ convention, let us define natural numbers n by
n D f0; : : : ; n�1g. An ordered n-tuple will be denoted by .ai /i2n D .a0; : : : ; an�1/.
Consider as our symmetric monoidal category the category of topological categories,
denoted by Cat.Top/, with ˝ as the Cartesian product, and  as the one-point space.
One can construct an operad, P , out of probability distributions on finite sets. For
each j , we define P .j / as the set of j -ary probability distributions, thought of as the
.j � 1/-simplex, �j �1 � Rj , and given the subspace topology. If .pi /i2j 2 C.j /,
and for i 2 f1; : : : ; j g, .qil/l2ki

2 P .ki /, we let

�..pi /i2j ˝ .q1l/l2k0
˝ 	 	 	 ˝ .qjl/l2kj �1

/ D .piqil/l2ki ;i2j 2 C.k0 C 	 	 	 C kj �1/:

Basically, this says that, given a binary variable X 2 .xi /i2j with probability distri-
bution .pi /i2j , we refine the possible values of X , splitting up each xi .

As a heuristic description of this procedure, imagine we are measuring physical
systems and have suddenly discovered how to measure spin or some other quantity
that we were ignorant of before. Now there are more distinguishable states that
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we can measure. We know the probability distribution of these new states given an
old state xi : it is .qil/l2ki

, corresponding to new distinguishable states .xil/l2ki
.

Now X 2 .xil/l2ki ;i2j may take any of k0 C 	 	 	 C kj �1 values and must have the
probability distribution .piqil/l2ki ;i2j . We see that the unit in this operad is the
unique probability distribution .1/ 2 P .1/.

An important P -algebra in Cat.Top/ is given by the additive monoid R>0. As a
category, R>0 is regarded as the one object category. the operad P acts trivially on
objects since there is only one object. On maps, that is, on real numbers, we have

.pi /i2j 	 .xi /i2j D P
i

pixi :

Since P -algebras A are also categories, we can define an internal P -algebra in A

as a lax map 1 ! A of P -algebras where 1 is the terminal P -algebra in Cat (see [4],
[5]) for details). This basically is an object a 2 A and, for each p 2 P .j /, a map

p̨ W p.a; : : : ; a/ ! a such that

p̨B.q1;:::;qn/ D p̨ B p.˛q1
; : : : ; ˛qn

/ for every p 2 P .n/ and qi 2 P .mi /;

˛�p D p̨ for every p 2 P .n/ and � 2 Symn;

˛1 D �:

For R>0, there is only one object, so a D R>0, and ˛ is a map taking probability
distributions to positive real numbers satisfying the following four axioms:

(1) for every p 2 P .n/ and qi 2 P .mi /,

˛.p B .q1; : : : ; qn// D ˛.p/ C P
i

pi˛.qi /I

(2) ˛..1// D 0;

(3) for every p 2 P .n/ and � 2 Symn,

˛.�p/ D ˛.p/

(4) ˛ W P .n/ ! R>0 is continuous for all n.

Note that, in the first of these, composition of maps in the one object category
R>0 is addition of real numbers. We require the last one since we are looking for
functoriality in Cat.Top/. As it turns out (see [4], [5]), by Faddeev’s theorem [17], the
only function satisfying these axioms, up to positive scalar multiples, is the Shannon
entropy, Sh.

10.2. Binary guessing trees. Consider now a general binary information measure,
S W Œ0; 1� ! R>0. We will assume that S satisfies the identity axioms, so that we can
keep our approach finite rather than full of infinite amounts of trivial flotsam. We
can build an information measure on ternary variables in several ways. For example,
if we are trying to guess at the value of X , which we know must be in fx1; x2; x3g,
using only yes-or-no questions, we could employ one of the following two strategies:
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(1) Is X D x1? If not, is X D x2?

(2) Is X D x1 or x2? If yes, is X D x1?

Indeed, we see that any strategy that avoids asking trivial or irrelevant questions
arises as one of these strategies with a permutation of f1; 2; 3g. This gives us 2	3Š D 12

possible ternary information measures. There is a useful way of parametrizing these
guessing strategies with rooted trees.

Proposition 10.1. Let S be a binary information measure with identity. For each
n > 2, there is a one-to-one correspondence between rooted full binary trees with n

leaves with labels in f1; : : : ; ng and n-ary information measures arising from S .

Proof. Let T be a tree as above. We call such a tree an .n; 2/-tree. What it means to be
full is that every vertex is either a leaf or has two children. We will see that eliminating
the single-child nodes is equivalent to eliminating trivial and irrelevant questions
from our set of possible questions, making it finite. To see what is the set of possible
questions, consider that, if at a certain time we are certain that X 2 fx1; : : : ; xng,
the yes-or-no questions available to us are exactly those of the form “is X 2 A?”,
where A is a subset of fx1; : : : ; xng. We label the leaves of T with the possible values
of X according to their original labels (i 7! xi ). The vertices which are not leaves
are uniquely labeled with the list of xi which label the leaves of their subtree. The
vertices will represent states of our knowledge of X in that the labels will denote the
possible values of X given what we have already measured. Naturally, we begin at
the root vertex, sure only that X is one of the xi . At any vertex which is not a leaf,
there are two child subtrees: a left one, L, and a right one, D. Let L be the set of
leaf labels of L, D those of D. The true value of X must lie in either L or D. Our
question then is “is X 2 L?”. If the answer is yes, we move to the left child. If the
answer is no, we move to the right child. At a leaf, we have ruled out all the possible
values of X except the one labeling our current vertex.

As an example, consider the rooted full binary tree in Figure 7:

x1; x3; x4 x5; x6

x1; x2; x3; x4; x5; x6

x1; x3; x4; x5; x6

x1

x3x4

x5 x6

x3; x4

x2

Figure 7. A rooted full binary tree.
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We see that X lies in fx1; : : : ; x6g. Our strategy goes like this:

1. Our first question is “is X D x2?”.

1.1. If yes, we are done; X D x2.

1.2. If no, we ask “is X 2 fx1; x3; x4g?”.

1.2.1. If yes, we ask “is X D x1?”.

1.2.1.1. If yes, we are done; X D x1.

1.2.1.2. If no, we ask “is X D x4?”.

1.2.1.2.1. If yes, we are done; X D x4.

1.2.1.2.2. If no, we are also done; X D x3.

1.2.2. If no, we ask “is X D x5?”.

1.2.2.1. If yes, we are done; X D x5.

1.2.2.2. If no, we are also done; X D x6.

Suppose these possible values occur with probabilities p1; : : : ; p6. We see that
the information measure corresponding to the above tree is

S.p2/ C .1 � p2/S
�p1 C p4 C p3

1 � p2

�
C .p1 C p4 C p3/S

� p1

p1 C p4 C p3

�

C .p4 C p3/S
� p4

p4 C p3

�
C .p5 C p6/S

� p5

p5 C p6

�
:

Note that permuting the labels of the leaves permutes the pi .

Conversely, since any question is of the form “is X 2 A?” for some subsets A,
we can build our tree inductively identifying A with L at a given vertex, and labeling
with the possible values of X as we go, beginning with the root. Any guessing
strategy must exhaust the possibilities for X , so any tree constructed in this way will
be a well-defined .n; 2/-tree. Clearly this is the inverse process to the one described
above. As an example, suppose we want to guess at an X 2 fx1; x2; x3; x4; x5g.
First we might ask if X 2 fx1; x2; x4g. If yes, we could ask if X D x1. If not, if
X D x2. Backtracking, if X … fx1; x2; x4g, we could ask whether X D x5. This
strategy exhausts the possibilities for X . It is represented by the tree in Figure 8:
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x1; x2; x4

x2; x4

x1; x2; x3; x4; x5

x1

x2

x3

x4

x5

x3; x5

Figure 8. A guessing strategy.

Given an .n; 2/-tree T , there is a canonical way of arranging and parenthesizing
an expression of the form x1 ˚S 	 	 	 ˚S xn so that it may be evaluated. This is
the same one given in the Catalan number identity [15]. We consider the tree T 0
which is labeled 1; : : : ; n from left to right. Let �T 2 Symn be the permutation
that sends the left-to-right labeling to the original one on T . We define .x1 ˚S

	 	 	 ˚S xn/T D .x�T .1/ ˚S 	 	 	 ˚S x�T .n//T 0 . Thus, it suffices to consider the case
when T is labeled left-to-right. In this case, there is a 1 6 r < n such that for
1 6 j 6 r , xj is a label of a leaf of the left subtree L, i.e., xj 2 L, and for all
r < j < n, xj 2 D, where D is the right subtree of T . Then we define inductively
.x1 ˚S 	 	 	 ˚S xn/T D .x1 ˚S 	 	 	 ˚S xr/L C .xrC1 ˚S 	 	 	 ˚S xn/D , with a tree
with two children T2 giving .x1 ˚S x2/T2

D x1 ˚S x2.

Theorem 10.2. Given an .n; 2/-tree, T , and a binary information measure S with
identity, the following holds:

.x1 ˚S 	 	 	 ˚S xn/T D minP
pi D1

� P
pixi � TST .p1; : : : ; pn/

�
:

Proof. Before we begin the proof in ernest, we illustrate the argument with an ex-
plicit example. We see the tree in Figure 7, which we denote T , corresponds to the
arrangement of parentheses x1 ˚S ..x2 ˚S .x3 ˚S x4// ˚S .x5 ˚S x6// and the
permutation � D .12/.34/ 2 Sym6. We calculate

x1 ˚S ..x2 ˚S .x3 ˚S x4// ˚S .x5 ˚S x6//

D min
p1

.p1x1 C .1 � p1/..x2 ˚S .x3 ˚S x4// ˚S .x5 ˚S x6// � TS.p1//

D min
p1

.p1x1 C .1 � p1/ min
p2

.p2.x2 ˚S .x3 ˚S x4// C .1 � p2/.x5 ˚S x6/

� TS.p2// � TS.p1//
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D min
p1;p2

.p1x1 C .1 � p1/p2 min
p3

.p3x2 C .1 � p3/.x3 ˚S x4/ � TS.p3//

C .1 � p1/.1 � p2/ min
p4

.p4x5 C .1 � p4/x6 � TS.p4//

� T .S.p1/ C .1 � p1/S.p2///

D min
p1;p2;p3;p4;p5

.p1x1 C .1 � p1/p2p3x2 C .1 � p1/p2.1 � p3/p5x3

C .1 � p1/p2.1 � p3/.1 � p5/x4 C .1 � p1/.1 � p2/p4x5

C .1 � p1/.1 � p2/.1 � p4/x6 � T .S.p1/ C .1 � p1/S.p2/

C .1 � p1/p2S.p3/ C .1 � p1/.1 � p2/S.p4/

C .1 � p1/p2.1 � p3/S.p5///:

Now we make the substitution

q1 D p1;

q2 D .1 � p1/p2p3;

q3 D .1 � p1/p2.1 � p3/p5;

q4 D .1 � p1/p2.1 � p3/.1 � p5/;

q5 D .1 � p1/.1 � p2/p4;

q6 D .1 � p1/.1 � p2/.1 � p4/:

We notice q1 C 	 	 	 C q6 D 1, and

p1 D q1;

p2 D .q2 C q3 C q4/=.1 � q1/;

p3 D q2=.q2 C q3 C q4/;

p4 D q5=.q5 C q6/;

p5 D q3=.q3 C q4/:

Notice that these look like relative probabilities. This is no coincidence. Making
this substitution above yields

x1 ˚S ..x2 ˚S .x3 ˚S x4// ˚S .x5 ˚S x6//

D minP
qi D1

� X
qixi � T .S.q1/ C .1 � q1/S

�q2 C q3 C q4

1 � q1

�

C .q2 C q3 C q4/S
� q2

q2 C q3 C q4

�
C .q3 C q4/S

� q3

q3 C q4

�

C .q5 C q6/S
� q5

q5 C q6

��
:

Applying � we obtain

.x1 ˚S x2 ˚S x3 ˚S x4 ˚S x5 ˚S x6/T D minP
pi D1

� P
pixi � TST .p1; : : : ; p6/

�
;
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as the theorem claims.
Now we are ready to prove the theorem in general.

Lemma 10.3. Suppose that, at the root, the tree T has left subtree L with l leaves,
and right subtree D with d leaves, and the leaves of T are labeled left to right. Then

ST .p1; : : : ; pl ; plC1; : : : ; plCd /

D S.p1 C 	 	 	 C pl/ C .p1 C 	 	 	 C pl/SL

� p1

p1 C 	 	 	 C pl

; : : : ;
pl

p1 C 	 	 	 C pl

�

C .plC1 C 	 	 	 C plCd /SD

� plC1

plC1 C 	 	 	 C plCd

; : : : ;
plCd

plC1 C 	 	 	 C plCd

�
:

Lemma 10.4. Suppose that, at the root, T has left subtree L with l leaves and right
subtree D with d leaves, and the leaves of T are labeled left to right. Then

.x1 ˚S 	 	 	 ˚S xl ˚S xlC1 ˚S 	 	 	 ˚S xlCd /T

D min
p

.p.x1 ˚S 	 	 	 ˚S xl/L C .1 � p/.xlC1 ˚S 	 	 	 ˚S xlCd /D � TS.p//:

The proof of both of these statements is immediate from the definitions.
Now, clearly the theorem holds when T has two leaves, and since our trees are

full, we can use this as the base case in an induction.
Suppose the theorem holds for all trees with less than n leaves. Let T be an

.n; 2/-tree with leaves labeled from left to right. At the root, since T is full, T has
nonempty left and right subtrees, L and D, with l > 0 and d > 0 leaves, respectively,
such that l C d D n, so l; d < n. By the inductive hypothesis and the second lemma
above,

.x1 ˚S 	 	 	 ˚S xn/T

D min
p

.p min
p1C���Cpl D1

� P
pixi � TSL.p1; : : : ; pl/

�
C .1 � p/ min

plC1C���CplCd D1

� P
pixi � TSD.plC1; : : : ; plCd /

� � TS.p//:

Make the substitution qi D ppi , for each i 2 f1; : : : ; lg, and qi D .1 � p/pi , for
each i 2 flC1; : : : ; lCdg. Note that q1C	 	 	Cql D p and qlC1C	 	 	CqlCd D 1�p.
This yields

.x1 ˚S 	 	 	 ˚S xn/T

D minP
qi D1

� X
qixi � T

�
.q1 C 	 	 	 C ql/SL

� q1

q1 C 	 	 	 C ql

; : : : ;
ql

q1 C 	 	 	 C ql

�

C .qlC1 C 	 	 	 C qlCd /SD

� qlC1

qlC1 C 	 	 	 C qlCd

; : : : ;
qlCd

qlC1 C 	 	 	 C qlCd

�

C S.q1 C 	 	 	 C ql/
��

;
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which by the first lemma is

minP
qi D1

� P
qixi � TST .q1; : : : ; qn//

�
:

We need now show that this holds for arbitrary labelings of the leaves of T . If �

is a permutation of f1; : : : ; ng, then

.x�.1/ ˚S 	 	 	 ˚S x�.n//T D minP
qi D1

� P
qix�.i/ � TST .q1; : : : qn/

�

D minP
pi D1

� P
pixi � TST .p�.1/; : : : ; p�.n//

�
;

where we have substituted pi D q��1.i/. This proves the theorem.

The connection between these guessing games and the thermodynamics of mixing
discussed in §5 can be intuited in the following way. The entropy of a system arises
from considering the “correct counting” of states. In more words, some states are
indistinguishable from others, and this affects their multiplicity in the partition sum.
The entropy function tells us what the overall degree of distinguishability is. We
can see this point of view in Boltzmann’s famous equation asserting S D kB log �,
where � is the number of microstates which degenerate to a given macrostate. When
we perform mixtures in a certain order, we are giving an order to this distinguishing
process, as we are when we decide on an order to ask questions in a guessing game,
distinguishing possible values from impossible values of the unknown variable.

10.3. General guessing trees. Now suppose that for each n 2 V � fm 2 N j
m > 2g we have an n-ary information measure Sn. We want to impose the following
condition.

(1) (Coherence) Suppose that n > m and, for all but 1 < i1 < 	 	 	 < im < n,
pj D 0. Then

Sn.p1; : : : ; pn/ D Sm.pi1 ; : : : ; pim/:

We can always write

Sn�1.p1; : : : ; pn�1/ D Sn.p1; : : : ; pn�1; 0/;

so that we can take V as an initial segment of N>2. This way, we can instead think
about v D sup V . Many definitions of entropies have v D 1. Examples include the
Shannon, Renyi, and Tsallis entropies. These are generally defined by functions f ,
g such that

Sn.p1; : : : ; pn/ D f
� P

16i6n

g.pi /
�
:

Any entropy of this form trivially satisfies the coherence axiom.
In this more general setting, we can ask any question with up to v possible answers.

This potentially gives us many new ways to play guessing games, or equivalently,
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to build more general information measures. For example, if v > 5, then we can
measure a 12-ary random variable X 2 fx1; : : : ; x12g by asking first whether X 2
fx1; : : : ; x5g. If yes, we simply measure the value of X . Otherwise, ask which
of fx6; x7; x8g, fx9; x12g, or fx10; x11g contains X , and then simply measure the
value of X (note that order may matter: Sn may not be symmetric). This gives us
information

S2.p1 C 	 	 	 C p5; p6 C 	 	 	 C p12/

C .p1 C 	 	 	 C p5/S5

� p1

p1 C 	 	 	 C p5

; : : : ;
p5

p1 C 	 	 	 C p5

�

C .p6 C 	 	 	 C p12/S3

� p6 C p7 C p8

p6 C 	 	 	 C p12

;
p9 C p12

p6 C 	 	 	 C p12

;
p10 C p11

p6 C 	 	 	 C p12

�

C .p6 C p7 C p8/S3

� p6

p6 C p7 C p8

;
p7

p6 C p7 C p8

;
p8

p6 C p7 C p8

�

C .p9 C p12/S2

� p9

p9 C p12

;
p12

p9 C p12

�

C .p10 C p11/S2

� p10

p10 C p11

;
p11

p10 C p11

�
;

where now we write S2 as a two-variable function for consistency. We see something
extremely similar to the binary case is happening here.

Proposition 10.5. Let n; v > 2, and suppose that for each 2 6 j < v C 1 we have
a j -ary information measure Sj , and these together satisfy the coherence axiom.
Guessing strategies of n-ary random variables where we allow questions of up to v

possible answers are in bijective correspondence with the set of .n; v/-trees, rooted
trees with labeled leaves such that every vertex is either a leaf or has between 2 and
v children.

Proof. Every relevant question that can be asked is of the form “which of A1; : : : ; Am

contains X?” for certain disjoint subsets A1; : : : ; Am. We identify these subsets with
the leaves of the m subtrees extending from the current vertex, once again identifying
the vertices with states of our knowledge of X .

For example, from the previous algorithm we have the tree in Figure 9.
Conversely, to go from an .n; v/-tree to a guessing strategy one must only follow

the tree to its leaves.
Now we have some basic n-ary functions for more than just n D 2. Namely, we

can define

x1 ˚S 	 	 	 ˚S xn ´ minP
pi D1

� P
16i6n

pixi � TSn.p1; : : : ; pn/
�
:

This has a thermodynamic interpretation of a simultaneous mixing of n gas species.
We have the following result.
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1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12

1 , 2 , 3 , 4 , 5

1 2 3 4 5

6 , 7 , 8 , 9 , 10 , 11 , 12

6 , 7 , 8 9 , 12 10 , 11

6 7 8 9 12 10 11

Figure 9. An .n; v/-tree.

Proposition 10.6. Let n > 2. The following hold.

(1) For every j ,

x1 ˚S 	 	 	 ˚S xj ˚S 1 ˚S xj C2 ˚S 	 	 	 ˚S xn

D x1 ˚S 	 	 	 ˚S xj ˚S xj C2 ˚S 	 	 	 ˚S xn

if and only if the Sn share the coherence property. For n D 2 this is the identity
property.

(2) x1 ˚S 	 	 	 ˚S xn is symmetric if and only if Sn is symmetric. For n D 2 this is
commutativity.

The proof of this fact is immediate.
We can generalize the parentheses correspondence to .n; v/-trees: to any .n; v/-

tree T we can associate a unique n-ary function .x1˚S 	 	 	˚S xn/T given by arranging
parentheses according to T and xi according to the labels on the leaves.

For example, to the tree above we associate

.x1˚S x2˚S x3˚S x4˚S x5/˚S ..x6˚S x7˚S x8/˚S .x9˚S x12/˚S .x10˚S x11//:

We have then the analog for .n; v/-trees of Lemmas 10.3 and 10.4.

Lemma 10.7. Suppose that the root of an .n; v/-tree T has sub-.lj ; v/-trees (resp.
from left to right) A1; : : : ; Am, and the leaves of T are labeled left to right. Let
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Lj D l1 C 	 	 	 C lj and L0 D 0. Then the following holds.

ST .p1; : : : ; pn/ D
X

16j 6m

.pLj �1C1 C 	 	 	 C pLj
/

SAj

� pLj �1C1

pLj �1C1 C 	 	 	 C pLj

; : : : ;
pLj

pLj �1C1 C 	 	 	 C pLj

�

C Sm.pL0C1 C 	 	 	 C pL1
; : : : ; pLm�1C1 C 	 	 	 C pLm

/

Lemma 10.8. Suppose the root of an .n; v/-tree T has sub-.lj ; v/-trees (resp. from
left to right) A1; : : : ; Am, and the leaves of T are labeled left to right. Let Lj D
l1 C 	 	 	 C lj ; L0 D 0. Then the following holds:

.x1 ˚S 	 	 	 ˚S xn/T D minP
qi D1

.q1.x1 ˚S 	 	 	 ˚S xl1
/ C 	 	 	

	 	 	 C qm.xl1C���Clm�1C1 ˚S 	 	 	 ˚S xl1C���Clm
/

� TSm.q1; : : : ; qm//:

As before, both of these are immediate from the definitions. Finally, we have the
theorem:

Theorem 10.9. Given an .n; v/-tree T , and for each 2 6 j 6 n an information
measure Sj such that together they satisfy the coherence axioms, the following holds:

.x1 ˚S 	 	 	 ˚S xn/T D minP
pi D1

� P
pixi � TST .p1; : : : ; pn/

�
:

Proof. Once again we proceed by strong induction on the number of leaves. We
know the theorem holds for n D 2. Suppose the theorem holds for every .m; v/-tree
with m < n. Let T be an .n; v/-tree with leaves labeled from left to right. T has
k > 2 sub-.li ; v/-trees starting at the root (resp. from left to right) A1; : : : ; Ak with
li > 0. We must have l1 C 	 	 	 C lk D n, so li < n. By the inductive hypothesis and
the second lemma above, we obtain

.x1 ˚S 	 	 	 ˚S xn/T

D minP
qi D1

.q1 min
p1C���Cpl1

D1
.p1x1 C 	 	 	 C pl1

xl1
� TSA1

.p1; : : : ; pl1
/ C 	 	 	

	 	 	 C qk min
pl1C���Clk�1C1C���Cpl1C���Clk

D1

� Pl1C���Clk

j Dl1C���Clk�1C1
pj xj

� TSAk
.pl1C���Clk�1C1; : : : ; pl1C���Clk

/
�

� TSk.p1 C 	 	 	 C pl1
; : : : ; pl1C���Clk�1C1 C 	 	 	 C pn//:

For each i 2 f1; : : : ; kg, and each j 2 fl1 C 	 	 	 C li�1 C 1; : : : ; l1 C 	 	 	 C
lig, where we define l0 D 0, we make the substitution Qqj D qipj . That way,
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Pl1C���Cli

j Dl1C���Cli�1C Qqj D qi ; so we have

.x1 ˚S 	 	 	 ˚S xn/T

D minP Qqj D1

� P Qqj xj � T .. Qq1 C 	 	 	 C Qql1
/SA1

� Qq1Qq1C���CQql1

; : : :
�

C 	 	 	

C . Qql1C���Clk�1C1 C 	 	 	 C Qqn/SAk

� Qql1C���Clk�1C1

Qql1C���Clk�1C1 C 	 	 	 C Qqn

; : : :
��

:

By Lemma 10.7, this equals

minP Qqj D1

� P Qqj xj � TST . Qq1; : : : ; Qqn/
�
:

Now let � be any permutation of f1; : : : ; ng. We see that

.x�.1/ ˚S 	 	 	 ˚S x�.n//T D minP
qi D1

� P
qix�.i/ � TST .q1; : : : qn/

�

D minP
pi D1

� P
pixi � TST .p�.1/; : : : ; p�.n//

�
;

where we have substituted pi D q��1.i/. This proves the theorem.

10.4. Information algebra. We define Tv.n/ to be the class of .n; v/-trees such
that Tv.0/ contains only the empty graph and Tv.1/ contains only the unique one-
leavèd .n; v/-tree. We put an operad structure on the union of these collections, T

with composition given by leaf-to-root composition of trees, which is clearly unital,
associative, and Sym-equivariant. Our underlying category is the cartesian monoidal
category of sets of graphs, with  D Tv.1/. Note that this unital operad structure, if
also given a free group structure, forms the well-known A1-operad.

Consider the one-object topological category, R, and a coherent set

fSj W I j ! R>0 j 2 6 j < v C 1g
of information measures. For each n > 2, and each T 2 T .n/, we define

T .x1; : : : ; xn/ D minP
pi D1

� P
pixi � TST .p1; : : : ; pn/

�
:

With the definition of ST , as in the previous section. For T .1/, we define .x/T D x,
for Tv.0/ D , we define ./T D 1.

By Theorem 10.9 above, this is the same as .x1 ˚S 	 	 	 ˚S xn/T , which clearly
behaves well under composition of trees and the action of Symn, so this makes R

a T -algebra, which we call the information algebra .R; S/. This characterizes the
complete algebraic structure of the Witt semiring R over K arising from S . The next
proposition is written in the original convention for semifields and summarizes some
characteristics of this action, each of which are immediate from the definitions.
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Proposition 10.10. Let T 2 T .n/, x1; : : : ; xn; y 2 K; ˛ 2 R>0. Then the following
hold.

(1) The T -algebra structure on R is additive: for all 1 6 j 6 n,

T .x1; : : : ; xj �1; xj C y; xj C1; : : : ; xn/

D T .x1; : : : ; xj ; : : : ; xn/ C T .x1; : : : ; y; : : : ; xn/:

(2) Multiplication distributes over the T -algebra structure:

y.x1 ˚S 	 	 	 ˚S xn/T D .yx1 ˚S 	 	 	 ˚S yxn/T :

(3) The T -algebra structure also satisfies

.x1 ˚S 	 	 	 ˚S xn/˛
T .T / D .x˛

1 ˚S 	 	 	 ˚S x˛
n /T .˛T /:

The relations which are most natural to consider are of the form

T1.x1; : : : ; xn/ D T2.x1; : : : ; xn/ for all xi 2 R;

where T1 and T2 are .n; v/-trees acting on the information algebra .R; S/. The
reason is that we can interpret this as an equivalence of guessing strategies, so these
are exactly the kind of relations that would define an information measure. Note it
is not just T1 and T2 which are affected by this relation. Because composition of
trees gives the composition of their actions on R, whenever some tree can be written
A B T1 B .A1; : : : ; An/, this is equivalent to A B T2 B .A1; : : : ; An/. The equivalence
classes of these trees for some fixed set of relations R, defines a quotient operad
T =R which is the set of possible guessing strategies up to equivalence under the
information measure. The terminal object in this construction is the one with exactly
one .m; v/-tree for each m, which is precisely the quotient operad arising from the
Shannon entropy.

However, one quickly finds that these simple relations are inadequate for describ-
ing the full range of information measures. If we have an equivalence of trees, we
can always prune corresponding leaves by inserting the identity, 1 in the current
notation, in the place of that variable. For binary information measures, one has the
following fact.

Proposition 10.11. Suppose that S is a commutative binary information measure,
and T1; T2 are .n; 2/-trees. Either T1 D T2 is implied by commutativity or implies
associativity, hence forces S to be the Shannon entropy.

Proof. We proceed by induction on n. When n D 3, one checks the above is true by
simply checking each case. Suppose the theorem holds for all m < n. By pruning
a leaf, we see that either the relation implies associativity or the pruned subtrees are
equal. In the case of the latter, prune a different leaf and we see the theorem holds.
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Thus, one may wish to pass into a setting where we may consider linear combi-
nations of trees, i.e., we can put a free vector space structure on our original operad.
This gives us an A1 operad, with the action on the information algebra R extending
uniquely under the Frobenius action.

Let us now consider what an internal T -algebra in R is. For each n, this is a
continuous map ˛n W T .n/ ! R such that the following hold:

(1) for all T 2 T .n/ and A1 2 T .m1/; : : : ; An 2 T .mn/,

˛m1C���Cmn
T B .A1; : : : ; An/ D ˛n.T / C T .˛m1

.A1/; : : : ; ˛mn
.An//I

(2) for all T 2 T .n/ and � 2 Symn,

˛n.�T / D ˛n.T /I
(3) the following condition also holds:

˛1.T .1// D 0: (10.1)

To simplify notation, we will suppress the subscripts on ˛ and just consider
˛ W T ! R>0. The second condition above just says that ˛.T / does not depend
on the labels of T .

For each 2 6 n < v C 1 we define hn 2 R>0 as the unique value ˛ takes on the
.n; v/-trees with n C 1 vertices, that is, those corresponding to Sn.

Every tree in T is built from these basic trees, and by the first condition above, so
is ˛.T /.

If at the root T has subtrees A1; : : : ; An from left to right, then

˛.T / D hn C ˛.A1/ ˚S 	 	 	 ˚S ˛.An/:

For the tree in Figure 9, this gives

h2 C h5 ˚S .h3 C h3 ˚S h2 ˚S h2/:

We see that C goes down the tree, and ˚S goes across the tree.
It is easy to see that h3 > h3 ˚S h2 ˚S h2, and h2 > h5 ˚S .h3 ˚S h2 ˚S h2/,

so this can be simplified to

h5 ˚S .h3 ˚S h2 ˚S h2/;

which we see can be obtained through a different recursion strategy. Instead of
picking off the subtrees at the root, we could pick off the basic subtrees just above
the leaves. This is just another way of writing T as a composition of trees, and puts
the recursion into the second term rather than the first in (10.1).

Because of this recursion, every internal T -algebra of R>0 is determined by the
sequence .hj /26j <vC1 (by the third condition above, implicity h1 D 0).

When R D Rmax;�
>0 ; and we use S D Sh, the Shannon entropy, then x ˚S y D

.x1=T C y1=T /T , so the above becomes

˛.T / D max.hn; .˛.A1/1=T C 	 	 	 C ˛.An/1=T /T /:
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11. Further perspectives and directions

We sketch here some possible further directions where the notion of thermodynamic
semirings may prove useful.

11.1. Information geometry. Information geometry was developed [2], [3], [22]
as a way to encode, using methods based on Riemannian geometry, statistical infor-
mation, such as how to infer unobserved variables on the basis of observed ones by
reducing conditional joint probabilities to marginal distributions.

We consider a smooth univariate binary statistical n-manifold Q as in Defini-
tion 8.1 parameterized by � 2 X � Rn. One may deal with the multivariate case
similarly.

The Fisher information metric (see [3]) on information manifolds is given by

gij .�/ D
Z

@ ln p.xI �/

@�i

@ ln p.xI �/

@�j

dx;

and it defines a Riemannian metric on a statistical manifold Q.
Another important notion in information geometry is that of e-flat and m-flat

submanifolds, which we recall here.
A submanifold � � Q is e-flat if, for all t 2 Œ0; 1� and all p.�/ and q.�/ in � , the

mixture log r.�; t/ D t log p.�/ C .1 � t / log q.�/ C c.t/, with c.t/ a normalization
factor, is also in � .

A submanifold � � Q is m-flat if, for all t 2 Œ0; 1� and all p.�/ and q.�/ in � ,
the mixture r.�; t/ D tp.�/ C .1 � t /q.�/ is also in � .

One-dimensional e-flat or m-flat manifolds are called e-geodesics and m-geo-
desics, respectively. In information geometry, maximum posterior marginal opti-
mization is achieved by finding the point on an e-flat submanifold � that minimizes
the KL divergence, see [3], [22]. It turns out that the point on an e-flat submanifold
� that minimizes the KL divergence also minimizes the Riemannian metric given by
the Fisher information metric.

More precisely, when considering the KL divergences KL.pI q.�//, where q.�/

varies in an e-flat submanifold � of the given information manifold Q, there is a
unique point q.�/ in � that minimizes KL.pI q.�// and it is given by the point where
the m-geodesic from p meets � orthogonally with respect to the Fisher information
metric (see Theorem 1 of [22]).

Thus, from the point of view of information geometry, it seems especially inter-
esting to look at cases of the thermodynamic semiring structures

x.�/ ˚KLq.�/
y.�/ D P

p

�� KL.pIq.�//x.�/py.�/1�p

for distributions q.�/ that vary along e-flat submanifolds of information manifolds
and recast some Riemannian aspects of information geometry in terms of algebraic
properties of the thermodynamic semirings.
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11.2. Tropical geometry. Most of our results have a very natural thermodynamic
interpretation when written explicitly in the case of the tropical semifield (seen as
a prototype example of characteristic one semiring as in [10], [11]). Thus, besides
the original motivation arising in the context of F1 geometry, it is possible that the
theory of thermodynamic semirings we developed here may have some interesting
applications in the setting of tropical geometry [24].

The use of tropical geometry in the context of probabilistic inference in statistical
models was recently advocated in [41]. In that approach one considers polynomial
maps from a space of parameters to the space of joint probability distributions on a set
of random variables. These give statistical models described by algebraic varieties.
The tropicalization of the resulting algebraic variety is then used as a model for para-
metric inference, for instance, by interpreting marginal probabilities as coordinates
of points on the variety.

It would therefore seem interesting to extend the encoding of thermodynamic
and information-theoretic properties into the additive structure of the semiring to the
broader context of tropical varieties. In particular one can consider the patchworking
process, where operations are performed on the “quantized” varieties, and then the
limit in the Maslov dequantization, corresponding to the residue morphism T ! 0,
is performed, obtaining the new tropical variety.

Observe, for instance, that in the usual setting of tropical geometry, in passing
from an algebraic variety to its tropicalization, starting with a polynomial f defining
a hypersurface V in .C�/n, one can proceed by first considering an associated Maslov
dequantization, given by a one-parameter family fh, whose zero set one denotes by
Vh. One then considers the amoeba obtained by mapping Vh to Rn under the map
Logh.z1; : : : ; zn/ D .h log jz1j; : : : ; h log jznj/. One obtains in this way the amoeba
Ah D Logh.Vh/. As we send the parameter h ! 0, the subsets Ah � Rn converge
in the Hausdorff metric to the tropical variety Tro.V /, see [30]. For example, for a
polynomial of the form f .x/ D P

k akxk , one obtains fh.x/ by passing to ak D ebk

and xk D ekt , so that one can then replace v D log.
P

k ektCbk / by the deformed
vh D h log.

P
k e.ktCbk/=h/, which in turn defines the dequantized family fh.x/.

By comparing with Proposition 4.3, one can see that the Maslov dequantization
can be expressed in terms of the operation ˚Sh;T , where the dequantization parameter
h plays the role of the temperature T , as also observed in [10]. Therefore, one can
introduce variants of the Maslov dequantization procedure, based on other operations
˚S;T , for other choice of information measures. In particular, one can consider
dequantizations based on various n-ary information measures of the form

.x1 ˚S;T 	 	 	 ˚S;T xn/T D minP
i pi D1

� P
i pixi � TST .p1; : : : ; pn/

�
;

with the data labeled by trees T , as we described in §10 above.
While one can expect that the tropical limit itself will be independent of the use of

different information measures in the dequantization procedure, operations performed
at the level of the amoebas Ah will likely have variants with different properties when
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the Shannon entropy is replaced by other information measures of the kind considered
in this paper.

11.3. The thermodynamics of Run. In the characteristic p case, the functoriality
of the Witt construction provides a way to construct extensions of the field of p-adic
numbers Qp D Frac.Zp/ using the fact that Zp D Wp.Fp/, and applying the same
Witt functor to extensions Fq . This gives Wp.Fq/ D ZpŒ�q�1�, which is the valuation
ring of an unramified extension Qp.�q�1/ of Qp , see [33].

It was observed in §7 of [10] that, in the case of the characteristic one version of
the Witt construction, when one considers the ˚Sh;T simultaneously for all possible
temperatures T , one can describe a candidate analog of “unramified extension” Run

in terms of analogs of Teichmüller characters given in the form �T .f / D f .T /1=T

and an analog of the residue morphism of the form �.f / D limT !0 �T .f /.T /T .
We can formulate this in the general case. We find, first of all that the Frobenius

lifts do not depend on the information measure.

Proposition 11.1. If R is a thermodynamic semiring over a suitably nice semifield
K defined by the information measure S , then the Frobenius lifts from K to R in such
a way that

Fr.x.T // D x.T=r/r :

Proof. We see that this is a result of the general form of the temperature dependence
in the current context. In symbols, we are looking for

Fr.x.T / ˚S y.T // D P
erf .T /S.˛/x.f .T //r˛y.f .T //r.1�˛/

D P
ef .T /S.˛/x.f .T //r˛y.f .T //r.1�˛/

D Fr.x.T // ˚S Fr.y.T //;

where the residue morphism forces Fr.x.T // D x.f .T //r for some invertible f ,
depending on r . We see from the above that f .T / D T=r , proving the claim.

This forces the characters to have the same form as in the Shannon entropy case,
i.e., �T .f /.T / D f .T /1=T . However, these characters are additive only if .x.T /˚S

y.T //1=T D x1=T C y1=T , which means S must produce the same thermodynamic
structure as the Shannon entropy, hence, by a theorem above, S is the Shannon entropy.
Note that this analysis holds also in the q-deformed Witt construction leading to the
Tsallis entropy discussed in §7.1.

If we pass to the field of fractions of these characters, and consider further infi-
nite sums of these characters, the resulting expressions begin to resemble partition
functions in the Euclidean path integral formulation, see §7 in [10]. Indeed, if one
uses instead Rmin;C [ f1g, these are equal to equilibrium free energies of the type
observed in §4. The failure of the additivity of the characters in Run can thus be
interpreted in terms of nonextensivity. This suggests that, as this candidate for Run
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is investigated, new algebraic interpretations of nonextensivity will arise. It would
also be interesting to see if a notion of character which is additive on the q-deformed
Witt construction could give rise to a one-parameter family of Run’s.

11.4. Thermodynamics in positive characteristics. The main motivation for the
Witt construction in characteristic one given in [10] and [11], which provides the
prototype example of a thermodynamic semiring built on the Shannon entropy, is
to provide an analog in characteristic one of the formulae for the summation of
Teichmüller representatives in the case of multiplicative lifts to Zp of the characteristic
p elements in Fp .

One can then reverse the point of view and start from the more general ther-
modynamic semirings associated to other forms of entropy, such as Rényi, Tsallis,
Kullback–Leibler, with their axiomatic characterizations, and look for characteristic
p analogs of non-extensive thermodynamics and other such variants of statistical
physics.

For instance, we saw in §7 above that there is a one-parameter deformation of the
Witt construction in characteristic one, which yields a characterization of the Tsallis
entropy Ts˛ as the unique binary information measure that satisfies the associativity,
commutativity and unity constraints for this deformed ˚S;T;˛ operation.

One thinks of the original ˚Sh;T with the Shannon entropy as in [10] and [11], as
being the correct analog in characteristic one of the p-adic Witt construction

x ˚w y D P
s2Ip

wp.s/xsy1�s;

with Ip the set of rational numbers in Œ0; 1� with denominator a power of p and

wp.s/ D P
a=pnDs

w.pn; a/T n 2 Fp..T //;

where the w.pn; k/ 2 Z=pZ, for 0 < k < pn are determined by the addition of
Teichmüller representatives

�.x/ C �.y/ D �.x C y/ C
1P

nD1

�
�P

w.pn; k/xk=pn
y1�k=pn�

pn:

Thus, one can equivalently think of the universal sequence of the w.pn; k/ as being
the characteristic p analog of the Shannon information. Adopting this viewpoint, one
would then expect that the one-parameter deformation of the Witt construction in
characteristic one described in §7, which leads naturally from the Shannon entropy
to the non-extensive Tsallis entropy, may correspond to an analogous deformation of
the original p-adic Witt construction that leads to a notion of non-extensive entropy
and non-ergodic thermodynamics in characteristic p.

It should be mentioned that there are in fact interesting known q-deformations of
the Witt constructions, see for instance [40]. These can naturally be described within
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the setting of ƒ-rings (see [40]). This seems especially useful, in view of the whole
approach to F1 geometry based on ƒ-rings, developed by James Borger in [7] and [8],
[9] (see also [36], [37] for other related viewpoints). However, a reader familiar with
the positive characteristic Witt construction will notice that Connes and Consani’s
construction generalize the p-Witt ring from a rather unconventional expression for
its addition. This is difficult to translate into the ƒ-ring approach to the Witt ring. A
definition of ƒ-rings in characteristic one which reproduces the Witt rings considered
in this paper would likely be interesting both geometrically and physically.

This also suggests that identifying suitable analogs of other entropy functions
(Tsallis, Rényi, Kullback–Leibler) in characteristic p, via deformations of the ring
of Witt vectors, may also further our understanding of F1-geometry in the ƒ-ring
approach.
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