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Abstract. We define a new class of singular positive traces on the ideal M; oo of B(H)
generated by exponentiation invariant generalized limits. We prove that this new class is
strictly contained in the class of all Dixmier traces. We also prove a Lidskii-type formula for
this class of traces.
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1. Introduction and preliminaries

In the framework of noncommutative geometry the Dixmier traces, originally in-
troduced by J. Dixmier in [7], have become an indispensable tool. These traces
are defined via dilation invariant generalized limits @ on L (0, 00). Depending on
a specific problem, various additional conditions on w are imposed [1]-[7], [13],
[16]-[19].

For instance, important formulae of noncommutative geometry, involving heat
kernel asymptotics and generalised {-functions (see e.g. [3], [2]) were established for
Dixmier traces Tr,,, provided that @ was additionally chosen to be exponentiation
invariant. Indeed, in [3] these formulae were proven for Dixmier traces, generated by
Cesaro and exponentiation invariant generalized limits . In [2] these assumptions
were relaxed to dilation and exponentiation invariance (see the definition below).

We thank the referee for very careful reading of the manuscript and suggesting a
number of improvements. In particular, the statement of Theorem 16 is due to the
referee.

1.1. Generalized limits. Let Lo, = L(0,00) be the space of all real-valued
bounded Lebesgue measurable functions on (0, co) equipped with the norm

% Zoo == esssup [x(2)].
>0
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A normalized positive linear functional on L., which equals the ordinary limit
on convergent (at infinity) sequences is called a generalized limit.
Define the following linear transformations on L:

1. Translations
(Tix)(@) =x@t+1), [ >0, x € L.

2. Dilations
(O%X)(Z) =x(Bt), B>0, x € L.

3. Exponentiations
(P2x)(t) = x(@%), a>0, x€ L.
A generalized limit w on L is said to be dilation invariant if
w(osx) = w(x) forevery x € Lo and every s > 0.

Similarly we define translation and exponentiation invariant generalized limits.

Translation and dilation invariant generalized limits on L, were studied in [14],
[16], [18] in terms of Banach-type sublinear functionals.

It was proven in [18], Theorem 13 (see also [14], [16]) that for every translation
invariant generalized limit @ on L, and any uniformly continuous function x € L
we have

1 t
o(x) < pr(x):= lim sup —/ x(s + h)ds. @)
t—>4o00 h>0 t Jo
It should be pointed out that the condition that x is uniformly continuous is essential
(see e.g. [14], Remark 5.6 (1)).

Remark 1. Forevery translation invariant generalized limit y on L, the composition
y o exp defines dilation invariant generalized limit (see [18], Remark 16, for details).
Similarly, y o exp o exp defines an exponentiation invariant generalized limit.

Conversely, if @ is an exponentiation invariant generalized limit, then w o log and
w o logolog are dilation and translation invariant generalized limits, respectively.

Using Remark 1 the result similar to (1) was proven for dilation invariant gener-
alized limit and any function x € L such that x o exp is uniformly continuous [18],
Theorem 17.

1.2. Dixmier traces. Let B(H) be an algebra of all bounded linear operators on a
separable Hilbert space H equipped with the uniform norm and let Tr be the standard
trace.

For every operator T € B(H) a generalized singular value function u(7) is
defined by the formula

w(t, T) =inf{||Tp| | p is a projection in B(H ) with Tr(1 — p) <1t}.
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For a compact operator 7', it can be proven that w(k — 1, T) is the k-th largest
eigenvalue of an operator |T'| = (T*T)Y/2, k € N.
Recall that for any T € B(H) the distribution function of 7T is defined (see [8])
by setting
dr (1) :=Tr(X(¢,00)(IT]), >0.

Here x(:,00)(|T']) is the spectral projection of | T'| corresponding to the interval (¢, 00).
By [8], Proposition 2.2, we have

(s, T) =inf{t >0 | dr(t) < s},

so we infer that for any operator 7', the distribution function dr coincides with the
(classical) distribution function of (-, T).

Since B(H) is an atomic von Neumann algebra and traces of all atoms are equal
to 1, it follows that ;(7') is a step function and

o0
w(T) =3 pn@m,T))pmn+ry foreveryT € B(H).

n=0

The classical Dixmier ideal (see e.g. [5], [11], [13]) is defined by

1 t
M = {T T = su —/ s, T ds<oo}.
1,00 | || ||=/%l,oo t>g log(l + [) o /’L( )

A definition of (Dixmier) traces given in [7] can be restated as follows

1 t
Trw(T) = w(m[) ,LL(S, T) dS), 0<TEe Ml’oo, (2)

where  is an arbitrary dilation invariant generalized limit on L,. We denote the set
of all Dixmier traces by D.

1.3. Measurability. The following natural way to generate dilation invariant gen-
eralized limits was suggested in [6], Section IV, 2. A. Connes observed that for any
generalised limit y on L a functional w := y o M is a dilation invariant gener-
alized limit on L. Here, the operator M : Lo, — Lo is the Cesaro mean of the
multiplicative group R, given by the formula

tyg
(Mx)(t) := @[l x(s)Ts.

The subclass € C D of all Dixmier traces Tr, defined by such w’s was termed
Connes—Dixmier traces in [13]. It was proven in [19] that € & D.

As it was mentioned above, various important formulae of noncommutative ge-
ometry were established for dilation and exponentiation invariant generalized limits
. The former assumption was needed in order that the formula (2) defines a Dixmier
trace.
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In the present paper we prove that for every exponentiation invariant generalized
limit w on Ly the formula (2) defines a Dixmier trace (see Proposition 5 below).
Denote by Dp the set of all Dixmier traces generated by such w’s.

The following definitions were motivated by A. Connes [6], IV.2.8.Definition 7
(see also [13], Definition 3.2).

Definition 2. An operator 7" € M  is called Dixmier measurable if Tr,, (7') takes
the same value for all Tr,, € D.

A criterion for an operator T € M/, (respectively, a positive operator T €
M1,00) to be Dixmier measurable can be found in [18], Theorem 21 (respectively,
[13]). The crucial point in these proof is played by the fact that the function

1 ¢
t _— ,T)d
- log(1 + €?) /0 s, T) ds

is uniformly continuous.

Definition 3. An operator T € M  is called Dp-measurable if Tr,, (7") takes the
same value for all Tr,, € Dp.

Using Remark 1 we can easily write down the Banach-type sublinear functional
for exponentiation invariant generalized limits. However, we cannot gain any results
about Dp-measurability on this way, since there exist 0 < T € M o such that the
function

ol
1 e
t—> — s, T)ds
log(1 + e®") /0 u(s. 1)

is not uniformly continuous. As an example of such 7 we may take the operator Ty
defined in Theorem 8 below.

We prove (see Theorem 8 below) that the class of £p-measurable operators is
strictly wider then the class of Dixmier measurable operators. In particular, Dp is a
proper subset of D.

1.4. Lidskii formula for Dixmier traces. The classical Lidskii Theorem asserts
that
T(T) =Y A(n,T)
n>0

for any trace class operator 7. Here {A(n, T') }»>0 is the sequence of eigenvalues of T
(counting with algebraic multiplicities), taken in an arbitrary order. This arbitrariness
of the order is due to the absolute convergence of the series ) ., [A(n, T)|. In
particular, we can choose a decreasing order of |A(n, T)|. -

The core difference of this situation with the setting of Dixmier traces living on
the ideal M o is that the series ) ., |A(n, T)| diverges for T € M, (see [17]
for a detailed explanation). -
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The following theorem gives an analogue of the Lidskii formula for Connes—
Dixmier traces.

Theorem 4 ([17], Theorem 2). Let Try, be a Connes—Dixmier trace on Mj . We
have

1
Try(T) = a)(— Z )t), T € Mi,c0, 3)
IOg(l T t) Aea(T):|A|>1/t

where o (T) denotes the spectrum of an operator T.

It was also shown in [17], Theorem 5, that there exists a Dixmier trace Tr,, such
that the formula (3) does not hold.

One of the main results of the present paper (see Theorem 15) asserts that the
formula (3) holds for every Dixmier trace Tr,, € Dp.

2. Dixmier traces generated by exponentiation invariant generalised limits
The following proposition is an analogue of [11], Proposition 10, for exponentiation

invariant generalised limits. It shows that every exponentiation invariant generalised
limit generates a Dixmier trace.

Proposition 5. For every exponentiation invariant generalised limit w on L the
weight

1 t
Tr, (T) = o ———— TYds), 0<T € Moo,
1, (T) w(log(lth)/() (s, T) S) <TeM

extends to a non-normal trace on M .

Proof. By the construction of Tr,, we only need to prove its additivity on the positive
cone of M co.
Let0 < A, B € My,00. By [8], Theorem 4.4 (ii), we have

t/2 t t
/ u(s, A) + u(s, B)ds < / u(s,A+ B)ds < / n(s, A) + u(s, B) ds
0 0 0

for every t > 0.
Thus, using the positivity of w, we obtain

Try(A 4+ B) < Try(A) + Try,(B)

for every generalised limit w.
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On the other hand, we have

Tr,(A) + Tr,(B) = w(lmg(l%t)/o u(s, A) + u(s, B) ds)

< w(m /Oztu(s,A + B)ds).

Since for every & > 0 we have 2¢ < ¢!*¢ (for ¢ large enough) and
log(1 +t'7%) < (1 4+ &) log(1 + 1),

the following estimate holds:

1 2t
Tr,(A Tr,(B) < e — ,A+ B
to(4) + Tro(B) <(»(10g(14_t)j£ (s A+ )ds)
t1+£

§(1+8)a)( /L(S,A-l—B)dS)

1
log(1 + £1+#) /0

1 t
< +€)w(m/o u(s, A —|—B)ds)
= (1 +¢) Try(A + B).

Since & > 0 can be chosen arbitrary small, we conclude that Tr,, (4) + Tr, (B) <
Try(A + B). O

It is obvious from the definition of Tr,, in Proposition 5 that every such functional
is fully symmetric (see e.g. [5], [11]). By the main result of [11] the set of all fully
symmetric functionals on M », coincides with the set of all Dixmier traces, that
is with the set . Thus, singular traces generated by an exponentiation invariant
generalised limit @ are Dixmier traces. Next, we show that the class of Dixmier
measurable operators is strictly wider then the class of p-measurable operators.

First, we state two auxiliary lemmas.

Lemma 6 ([14], Example 5.6 (1)). Let x € L be a locally Riemann integrable
Sfunction. If x is a periodic function and its period is | > 0, then

1 l
yo =1 [ xeds
I Jo
for every translation invariant generalized limit y on L.

The following lemma is an analogue of [19], Lemma 1.2, for exponentiation
invariant generalised limits.
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Lemma 7. Forevery T € M|  and for every exponentiation invariant generalised
limit w, we have
( tu(t,T) )
o|———=) =0
log(1 + ¢)

Proof. Since w is an exponentiation invariant generalised limit, it follows that

oz | ) =i [ we )

tH—s

for every ¢ > 0. For every fixed & > 0 we have —

> t (for ¢ large enough) and
log(1 +t'7¢) < (1 4+ ¢)log(1 +1¢) forallt > 0.

Hence,

w(k)g(l%t) /ot/z ws. T) ds) =1 Jlr & 'w(log(11+ 1) /ot ws. T) ds)'

Since ¢ is arbitrary, it follows that

w(m fom““’ r)ds) = ‘“(m /ot““’ ryds)

Consequently, since (7') is decreasing, it follows that

0 Z‘“(mgﬂ%o /t/tz‘*“’“‘“) = w(%) =0 -

In view of the main result of [13] the set of all positive D-measurable and the set
of all positive €-measurable elements coincide. The following theorem shows that
the sets of all positive p-measurable and all positive €-measurable elements are
distinct, in particular, the classes Dp and € are different.

Theorem 8. There exists a positive Dixmier non-measurable operator Ty € M1,
such that all Tr,, € Dp take the same value on Ty.

Proof. Let Ty be a compact operator on H such that

_ k—ek
M(TO) = 22%6 X[O,I_eekj)'

Consider a function

k—ek
z=supe X{0.ecky-
k>0 ’

It is easy to see that u(7p) — z € L1(0,00) N Loo(0, 00).



328 F. Sukochev, A. Usachev, and D. Zanin

n n+1
For every e¢ <t < e we have

1 t 1
log(1 + ¢) /(; (s, To)ds = log(1 +¢) (/0

k
1 " e’ k ek
= —“d t(t, To o
log(1+l)(;/eekle s+ 100, To) + 0()
1 ett! N tu(t, To) +o(l) @)
= o(1).
e—1logt log(l+1)

n
e(‘

2(s)ds + (t — e (e, To) + 0(1))

Now it is easy to check that

1 ! e?
_ ,To)ds < 1), t>0,
log(l—i—l)/ou(s 0) S_e—1+0()

and therefore Ty € M; . However, the limit

1 t
lim ——— ,To)d
00 log(1 + 1) /0 w(s, To) ds

does not exist since by (4),

1 e” e
lim ———— ,To)ds =
nr00 log(1 + e¢") /0 u(s. To) ds e—1
and
en+l een
. 1 B 11
lim g - u(s, To)ds = + .
n—)oolog(1+e 2+e ) 0 e—1 2

Thus, Ty is not Dixmier measurable (due to Theorem 6.6 of [13]). It remains to
show that T} is Op-measurable.

By Lemma 7 we have
( 1z, To) )
ol ——— | =0
log(1 + ¢)

k

[e.¢]

e e

x(1) = o1 Z @X[eek’eek+l)(t)’ t>0.

k=0

In view of (4) we only need to prove that all exponentiation invariant generalised

limits coincide on x. By Remark 1, it is sufficient to show that all translation invariant
generalised limits coincide on x o exp o exp.

Since forn <t <n + 1,

Let

>k
e e
(x o expoexp) (1) = —— > - Aek+1) (1),
k=0
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we conclude that the function x oexp o exp is a Riemann integrable periodic function.
By Lemma 6, for every translation invariant generalised limit y, we have

e 1ds_ e e—l_1
e—1Jo ¢ e—1 e

y(x o expoexp) =

So, by Remark 1, w(x) = 1 for every exponentiation invariant generalised limit w.

Hence,
1 t
Try(To) = 0| ———— s, T ds)=1
o) =05 [ w1
for every exponentiation invariant generalised limit . O

Corollary 9. The set Dp is a proper subset of the set of all Dixmier traces.

3. Lidskii formula for Dixmier traces generated by exponentiation invariant
generalised limits

In the present section we first prove the Lidskii formula for positive operators 7' €
M1,00- Then, using Ringrose’s representation [15], Theorems 1, 6, 7, of compact
operators, we extend the formula to an arbitrary 7 € M .

Lemma 10. For every positive T € M  and for every exponentiation invariant
generalized limit w the following formula holds

o) = ooz

Proof. Let T be a positive operator from M o, and w be an exponentiation invariant
generalized limit on L. From the proof of [3], Proposition 2.4, we know that

dr(1/1)
(s, T) ds).

t dr(1/1)
/ w(s, T)ds < / u(s, Tyds + 1.
0

0

Dividing both sides by log(1 + ¢) and applying @, we obtain

Tro(T) < w(log(l%t)fo

On the other hand, by [3], Lemma 2.3, there exists a constant C > 0 such that we
eventually have

dr(1/t)
(s, T) ds).

1
dr(7) = C-tlog(l1+1) = 't e>0. (5)
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We have
1 1+e¢ 1+e¢
— < ) (6)
log(1+1¢) log(l+1)*e = log(l + 11+¢)
Hence, by (5) and (6), we obtain

1 dr(1/t) 14+¢ lte
ligarnh  rono) el ), wene)
= (1 4+ &)1 (T)

since w is an exponentiation invariant generalized limit. Since ¢ > 0 is arbitrary, we
obtain the converse inequality. O

Corollary 11. If T = T* € M, o0, then

A€a(T),|A|>1/t

for every exponentiation invariant Dixmier trace Tt .

The following Lemma is an analogue of [18], Lemma 42, for exponentiation
invariant generalized limits.

Lemma 12. For every positive T € M o and for every exponentiation invariant
generalized limit w, we have

1 1
oz @) =*

Proof. Fix 0 < & < 1. By the definition of a distribution function we have

o) -alit) = 2+

1/t<A<1/tl—e®

Dividing both sides by log(1 + ¢) and applying w, we obtain

w(de(;) N w(t log(ll ¥ t)dT(tll—s))

“o(gasn X 4

1/t<A<1/tl—e¢

However, using (5) we have

1
li d
100 tlog(l +1) T(tl_g)

< lim ————— 1790+ —
t—oo tlog(l +t)
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Since w is a generalized limit, it follows that

1 1
a)(tlog(l + t)dT(tl—e)) =0

(igirn = 2

1/t<A<1/tl—e¢

g =) legizn 2 2

Therefore,

(e (7))

IA

A>1/t A>1/t1—¢
1 1—¢
:a)(— Z/\)—w(—l_ Z A),
log(1 + ¢) Py’ log(1 +t179) as1jni—e

where the last equality holds since

(1— &) log(1 + 1)
im =1
t—oo  log(l 4 ¢17¢)

and since w is a generalized limit.
Using exponentiation invariance of @ and Corollary 11, we obtain

a)(de (;)) < Tro(T) — (1 — &) Tro(T) = & - Tryy (T).

Since 0 < ¢ < 1 can be chosen arbitrarily small, we conclude that

I D

We need two auxiliary lemmas.

Lemma 13. For every normal operator T € M  and for every exponentiation
invariant generalized limit w, we have

girn. > )=olmgizs > %)

A€o (T):|A|>1/t A€o (T):IRe(M)|>1/1
or [Im(A)|>1/t

Proof. Consider the difference

> A > > W

Aeo(T):|A|>1/t A€o (T): [Re()[>1/1 Aea(T):1/t<|A|<2/t

or [Im(A)|>1/t
2
< - 1
=7 X
Aea(T):1/1<|A|<2/t

IA
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Hence, by Lemma 12, we have

(s = M ologazs > )

Aeo(T): |A|>1/t A€o (T): IRe(V)[>1/t
or [Im(A)|>1/t¢

<o g (7)) =0 0

Lemma 14. For every normal operator T € My o and for every exponentiation
invariant generalized limit w, we have

(s, 2 F®)=o(gary X re)

Ao (T): Re(h)l>1/1 A€o (T): [Re(A)|>1/1
or [Im(A)|>1/t

and

(marn o m0)=o(ogry X m)

A€o (T): [Re(V)|>1/1 A€o (T): Im()|>1/¢
orIIm()L)e\>l/[ U( ) ‘m( )|> /

Proof. Consider the difference

Y R Y Rz Y [Re)
A€o (T):|Re(A)|>1/t A€o (T): [Re(M)[>1/1 A€o (T): [Re(Q)|<1/t
or [Im(A)|[>1/t and [Im(A)|>1/1

! > 1.

t A€o (T): [Im(A)|>1/t

IA

Since the operator T is normal, it follows that Im(o (7)) = o(Im(7)). Then

1
Z 1 = din(r) (;)

A€o (T): [Im(A)|>1/t

and

! ( 3 Red) 3 R(A)(< L 4 (l)
_— e(d) — e S am@| 7 )
log(1 + 1) Ao (T): Rot> 1/ o 1 tlog(l +1) t

Applying an exponentiation invariant generalized limit w to both sides of the latter
expression and using Lemma 12, we obtain the required equality.
The proof of the second equality is similar and is therefore omitted. O

The following theorem is an analogue of the Lidskii formula for Dixmier traces
generated by exponentiation invariant generalised limits.
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Theorem 15. For every operator T € M « and for every exponentiation invariant
generalized limit w, we have

Tr,(T) = w(@ Z /\).

reo(T): |Al>1/t

Proof. For every compact operator 7 there exist a compact normal operator S and
a compact quasi-nilpotent operator Q such that 7 = S + Q and o(T) = 0(S)
(multiplicities coincide as well) [15], Theorems 1, 6, 7. By the Weil theorem (see
e.g. [9], Theorem 3.1), the sequence |A(T')| is majorized by the sequence (7). So,
for T € Mj 00, Wwe have S, O € My . By [10], we have Tr,(Q) = 0 for every
quasi-nilpotent operator Q and for every Dixmier trace. Hence, it is sufficient to
prove the statement of the theorem for a normal operator 7 € M .

Let T € M;  be normal and let w be an exponentiation invariant generalized
limit. Since T is normal, it follows that Re(c (7)) = o(Re(T")) and

> Re(}) = > A
A€o (T): [Re(V)[>1/1 A€o Re(T)): [A|>1/t
Then by Corollary 11 we obtain
1
log(1 +¢) Z

Tr,(Re(T)) = a)(
A€a(T): |Re(A)|>1/t

Re(k)).
Similarly, for the operator Im(7") we obtain
1
Tr,(Im(T)) = _ Im(A) ).
) =o( s Y Im))
A€o (T):Im(A)|>1/t
The assertion of the theorem follows from Lemma 14 and Lemma 13. ]

We complete this paper with an application to ¢-functions of non-commutative
geometry.
Let w be a generalized limit on L. The functional ¢, defined by the formula

1
to(T) = w(— Tr(T““f)), 0<T €M
r

is called a {-function residue. It is additive on the positive cone of M o and,
therefore, it extends to a fully symmetric functional on M o [20], Theorem 8.

The following theorem generalizes Theorem 15 of [20] by weakening the assump-
tions on a generalized limit w.

Theorem 16. If w is an exponentially invariant generalized limit, then

Try = é‘a)OIOg'



334 F. Sukochev, A. Usachev, and D. Zanin

Proof. 1t is sufficient to prove the equality Tr, = {wolog ON positive operators 7' €
M1 ,00-
Define the function 8: (0, 00) — (0, 00) by

o0
B(t) = / S ddr(s)
o
and let
o0
h(r) = / e dB(1).
0
It follows from spectral theorem that
Te(T' Y7 = h(r)
and by the definition of ¢-function we have

)

r

1
b (T) = (@ o log) (7 TH(T /7)) = (@ o log)

Since w o log is a dilation invariant generalized limit, it follows from the weak*-
Karamata theorem (see e.g. [3], Theorem 2.2) that

(wo log)(h(r)) =(wo log)(@).

’
Hence, we obtain

Cwolog(T) = (w o log)(@)

=(wo log)(; /:C;S ddT(S))

= a)(@ /:js ddT(s))
= Tro(T),

where the last equality is due to Theorem 15. O
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