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Abstract. We discuss generalizations of the notion of i) the group of unitary elements of
a (real or complex) finite-dimensional C�-algebra, ii) gauge transformations and iii) (real)
automorphisms in the framework of compact quantum group theory and spectral triples. The
quantum analogue of these groups are defined as universal (initial) objects in some natural
categories. After proving the existence of the universal objects, we discuss several examples
that are of interest to physics, as they appear in the noncommutative geometry approach to
particle physics: in particular, the C�-algebras Mn.R/, Mn.C/ and Mn.H/, describing the
finite noncommutative space of the Einstein–Yang–Mills systems, and the algebras AF D
C˚H˚M3.C/ and Aev D H˚H˚M4.C/, that appear in Chamseddine–Connes derivation
of the Standard Model of particle physics coupled to gravity. As a byproduct, we identify a
“free” version of the symplectic group Sp.n/ (quaternionic unitary group).
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1. Introduction

In the approach to particle physics from noncommutative geometry [14], [12], the
dynamics of a theory is obtained from the asymptotic expansion of the spectral action
associated to an almost commutative spectral triple .A1;H ;D; J /, i.e., a product
of the canonical spectral triple of a spin manifold and a finite-dimensional one (see
e.g. [18] and references therein). A fundamental role is played by the group U.A1/
of unitary elements of the algebra whose adjoint representation u 7! uJuJ�1 on H

gives the group
G .A1; J / D fuJuJ�1 j u 2 U.A1/g (1.1)

of inner fluctuations of the real spectral triple (cf. Section 10.8 of [18]) also called
“gauge group” of the spectral triple because of its relation with the gauge group of
physics [33]. For example, in the Einstein–Yang–Mills system, the finite-dimensional
spectral triple describing the internal noncommutative space is built from the algebra
AI D Mn.C/, with Hilbert space HI D Mn.C/ carrying the left regular rep-
resentation and real structure JI given by the hermitian conjugation; in this case
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U.AI / D U.n/ and G .AI ; JI / is the classical gauge group SU.n/, modulo a finite
group given by its center. In the more elaborated example of (the Euclidean ver-
sion of) the Standard Model of elementary particles coupled to gravity, the algebra
is AF D C ˚ H ˚ M3.C/ and the group G .AI ; JI / is U.1/ � SU.2/ � SU.3/
modulo Z6.

More generally, consider a spectral triple based on an almost commutative algebra

A1 ´ C1.M/˝ AI ' C1.M ! AI /; dim AI < 1;

with M a closed Riemannian spin manifold. A basic idea is that every physical
interaction comes from a suitable “symmetry” of the above almost commutative space:
particle interactions from local gauge symmetries, and gravitational interactions from
the symmetry under diffeomorphisms. It is natural to think that a first step in the
unification of particle interactions with gravity is the unification of these two types
of symmetries. The key for this unification is the split short exact sequence:

1 ! Inn.A1/ ! Aut.A1/ ! Out.A1/ ! 1:

In the Einstein–Yang–Mills system, Out.AI / is trivial, so Out.A1/ D Out.C1.M//

is isomorphic to Diff.M/, and the automorphism group Aut.A1/ (the group of
symmetries of the full “noncommutative space”) is a semidirect product of the group
of diffeomorphisms of M with the group Inn.A1/ D C1.M ! Inn.AI // of
smooth functions with values in Inn.AI / D U.AI /=ZI , where ZI is the center of
U.AI /. The group Inn.A1/ is what we call the local gauge group of the theory,
while Inn.AI / is the global gauge group, or gauge group ‘tout court’.

On the other hand, the group G .A1; J / in (1.1) is isomorphic to the quotient
U.A1/=U. zAJ /, where zAJ ´ fa 2 A1 j aJ D Ja�g is a �-subalgebra of the
center of A1 (cf. eq. (2.3) of [33]). One has G .A1; J / � Inn.A1/, with equality
iff zAJ is exactly the center of A, and from G .A1; J / one recovers the local gauge
transformations of physics, while G .AI ; JI / gives the global ones.

For the Standard Model of particle physics the situation is slightly more compli-
cated, and explained in Proposition 1.199 of [18].

Given the importance of the group of gauge transformations in physics, it is very
natural, in the framework of noncommutative geometry, to look for compact quantum
group analogues of this notion. In fact, the idea of using quantum group symmetries
to have a better understanding of the noncommutative geometric picture behind the
Standard Model was mentioned in several places by Connes; the problem of finding
a nontrivial quantum group of symmetries of the finite space F is posed on the last
page of [14]. It stimulated the program of Les Houches Summer School in Theo-
retical Physics in 1995, as documented in [17] and motivated the study in [36]. An
approach along this line was made in [8], where the quantum isometry group (in the
sense of [24], [9]) of the finite part of the Standard Model was computed. It was
shown that its coaction, once extended to the whole spectral triple onC1.M/˝AF ,
leaves invariant both the bosonic and fermionic part of the spectral action, thus pro-
viding us with genuine quantum symmetries of the Standard Model. In this article,
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we wish to continue the work in [8] by investigating the notion of quantum gauge
symmetries which might be helpful in having a better understanding of the noncom-
mutative geometry approach to particle physics. Since in many of the applications
to physics, the relevant algebra is the product of a commutative one with a finite
noncommutative one described by a finite-dimensional C�-algebra, we restrict our
attention to finite-dimensional C�-algebras. On the other hand, we need to consider
both complex and real C�-algebras, since in one of the main applications of spectral
triples to physics, the Standard Model of elementary particles, the C�-algebra involved
is real.

It is evident that in order to have a correct quantum analogue of (1.1), we first
need to make sense of a compact quantum group version of the unitary group of a
finite-dimensional (possibly real) C�-algebra, and then use it to define the quantum
gauge group. It is natural to wonder whether the free quantum groups Au.n/ or
their twisted counterparts (denoted by Au.n;R/ in this article), first appearing in
the seminal works of Wang and Van Daele [32], [34], [36], can play the role of
quantum group of unitaries of Mn.C/. The definition of these compact quantum
groups are recalled in Section 2.1. The structure and isomorphism classification of
these quantum groups were studied in [38]. Since then, a considerable amount of
literature has been developed around these quantum groups (see e.g. [3], [4], [10]
for quantum symmetries of finite metric spaces and graphs), which have also made
contact with other branches of mathematics, like combinatorics and free probability
[5], [6]. We believe that the compact quantum group version of the unitary group
is also important from the point of view of compact quantum group theory. Indeed,
we will see that we obtain Au.n;R/ as the quantum unitary group of Mn.C/ whose
adjoint action preserves the state tr.Rt � /, where R is any positive invertible n � n
matrix. The dependence on R appears because unlike the classical case, a compact
quantum group coaction on Mn.C/ does not need to preserve the usual trace. A
byproduct of this construction for real C �-algebras shows that a “free” analogue
of the symplectic group Sp.n/ (quaternionic unitary group) can be realized as the
quantum unitary group of the real C�-algebra Mn.H/.

The plan of the paper is as follows. In Section 2 we recall some necessary
background about compact – and in particular free – quantum groups, spectral triples
and real C�-algebras. In Section 3, inspired by the characterization of the group of
unitaries of a C�-algebra A as the universal object in a certain category of groups
having a trace preserving action on A, we define the quantum analogue by passing to
the category of quantum families (in the spirit of [39], [29]) and relaxing the condition
of traciality of the state, which is necessary in order to accommodate non-Kac type
examples like Au.n;R/. We prove that the universal object – that we call quantum
unitary group – exists and has a compact quantum group structure by explicitly
computing it for any finite-dimensional (complex and real) C�-algebra.

In Section 4, we generalize the construction (1.1) and define the quantum gauge
group of a finite-dimensional spectral triple, and compute it for three examples,
namely the Einstein– Yang–Mills system, the spectral triple over the algebra Aev D
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H ˚ H ˚M4.C/ and for the spectral triple for the finite part of the Standard Model.
Finally, in Section 5, we discuss some aspects of quantum symmetries of finite-
dimensional real C�-algebras which were not dealt with, in [8]. In particular, we
prove the existence of quantum automorphism group for any finite-dimensional real
C�-algebra and prove that for matrix algebras Mn.k/, with k D R, C or H, the
quantum automorphism group coincides with the classical one.

Throughout the paper, by the symbol ˝alg we will always mean the algebraic
tensor product over C, by ˝ minimal tensor product of complex C�-algebras or the
completed tensor product of Hilbert modules over complex C�-algebras. The symbol
˝R will denote the tensor product over the real numbers. Unless otherwise stated,
all algebras are assumed to be unital complex associative involutive algebras. We
denote by M.A/ the multiplier algebra of the complex C�-algebra A, by L.H / the
adjointable operators on the Hilbert module H and by K.H / the compact opera-
tors on the Hilbert space H . With the symbol feig1�i�n we indicate the canonical
orthonormal basis of Cn, with feij g1�i;j �n the standard basis of Mn.C/ (eij is the
matrix with 1 in position .i; j / and zero everywhere else), and with In the n � n

identity matrix.

2. Compact quantum groups and spectral triples

2.1. Some generalities on compact quantum groups. We begin by recalling the
definition of compact quantum groups and their coactions [40], [42].

Definition 2.1. A compact quantum group (to be denoted by CQG from now on) is a
pair .Q;�/ given by a complex unital C�-algebraQ and a unitalC �-homomorphism
� W Q ! Q˝Q such that: i)� is coassociative, i.e., .�˝ id/ B� D .id ˝�/ B�
as equality of maps Q ! Q ˝ Q ˝ Q; ii) Spanf.a ˝ 1Q/�.b/ j a; b 2 Qg and
Spanf.1Q ˝ a/�.b/ j a; b 2 Qg are norm-dense in Q˝Q.

For Q D C.G/, where G is a compact topological group, conditions i) and ii)
correspond to the associativity and the cancellation property of the product in G,
respectively.

Definition 2.2. A unitary corepresentation of a compact quantum group .Q;�/ on a
Hilbert space H is a unitary element U 2 M.K.H /˝Q/ satisfying .id ˝�/U D
U.12/U.13/; where we use the standard leg numbering notation (see e.g. [26]). The
corepresentation U is faithful if there is no proper C �-subalgebra Q0 of Q such that
U 2 M.K.H /˝Q0/.

If Q D C.G/, U corresponds to a strongly continuous unitary representation
of G.
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For any compact quantum groupQ (see [40], [42]), there always exists a canonical
dense �-subalgebraQ0 � Qwhich is spanned by the matrix coefficients of the finite-
dimensional unitary corepresentations of Q and two maps � W Q0 ! C (counit) and
� W Q0 ! Q0 (antipode) which make Q0 a Hopf �-algebra.

Definition 2.3. A Woronowicz C �-ideal of a CQG .Q;�/ is a C �-ideal I ofQ such
that�.I/ � ker.�I ˝�I /, where �I W Q ! Q=I is the quotient map. The quotient
Q=I is a CQG with the induced coproduct.

IfQ D C.G/ are continuous functions on a compact topological groupG, closed
subgroups ofG correspond to the quotients ofQ by its WoronowiczC �-ideals. While
quotients Q=I give “compact quantum subgroups”, C �-subalgebras Q0 � Q such
that �.Q0/ � Q0 ˝Q0 describe “quotient quantum groups”.

Definition 2.4. We say that a CQG .Q;�/ coacts on a unital C�-algebra A if there
is a unital C �-homomorphism (called a coaction) ˛ W A ! A ˝ Q such that: i)
.˛ ˝ id/˛ D .id ˝�/˛; ii) Spanf˛.a/.1A ˝ b/ j a 2 A; b 2 Qg is norm-dense in
A ˝Q.

The coaction is faithful if any quotient quantum group Q0 � Q coacting on A

coincides with Q.

It is well known (cf. [27], [36]) that condition (ii) in Def. 2.4 is equivalent to the
existence of a norm-dense unital �-subalgebra A0 of A such that the map ˛, restricted
to A0, gives a coaction of the Hopf algebraQ0, that is to say: ˛.A0/ � A0 ˝alg Q0

and .id ˝ �/˛ D id on A0.
For later use, let us now recall the concept of certain universal CQGs defined in

[32], [38] and references therein.

Definition 2.5. For a fixed positive invertible .n � n/-matrix R, Au.n;R/ is the
universal C�-algebra generated by fuij j i; j D 1; : : : ; ng such that

uu� D u�u D In; ut .R NuR�1/ D .R NuR�1/ut D In;

where u ´ ..uij //, u� ´ ..u�
j i // and Nu ´ .u�/t . It is equipped with the ‘matrix’

coproduct � given on the generators by

�.uij / D P
k

uik ˝ ukj :

Note that u is a unitary corepresentation of Au.n;R/ on Cn.
The Au.n;R/’s are universal in the sense that every compact matrix quantum

group (i.e., every CQG generated by the matrix entries of a finite-dimensional unitary
corepresentation) is a quantum subgroup ofAu.n;R/ for someR > 0, n > 0 [38]; in
particular, the well-known quantum unitary group SUq.n/ is a quantum subgroup of
some Au.n;R/ (cf. Section 2.2). It may also be noted that Au.n;R/ is the universal
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object in the category of CQGs which admit a unitary corepresentation on Cn such
that the adjoint coaction on the finite-dimensional C�-algebra Mn.C/ preserves the
functional Mn.C/ 3 m 7! Tr.Rtm/ (see [37]).

More generally, for any invertible matrix F; an analogous construction can be
done.

Definition 2.6 ([1], [2]). Let F 2 GLn.C/. A CQG denoted by Au.n; F / is defined
as the universal C�-algebra generated by u D fuij j i; j D 1; : : : ; ng with the
condition that both u and u0 D F NuF �1 are unitary, equipped with the standard
‘matrix’ coproduct. A quantum subgroup of Au.n; F /, denoted by Ao.n; F /, is
defined by the additional relation u D u0.

One immediately realizes that u0u0� D F Nu.F �F /�1utF � D In if and only if
R NuR�1ut D In and u0�u0 D .F �/�1utF �F NuF �1 D In if and only if utR NuR�1 D
In, where R D F �F . Thus Au.n; F / actually depend only on the modulus of F
and is isomorphic to Au.n;R/ for R D F �F . Thus, Ao.n; F / is also a quantum
subgroup of Au.n;R/ for R D F �F .

Since we will need both the quantum groups mentioned above, for clarity, we
will use the symbol Au.n; F / or Ao.n; F / when F need not be a positive matrix
and use R when it is positive. Concerning the notation for free quantum orthogonal
groups, we follow here that of [1], which corresponds toBu.Q/ in [38] forQ D F �.
We refer to [38] for a detailed discussion on the structure and classification of such
quantum groups.

We remark that the CQGsAu.n/ ´ Au.n; In/ andAo.n/ ´ Ao.n; In/ are called
the free quantum unitary group and free quantum orthogonal group, respectively, as
their quotient by the commutator ideal is respectively C.U.n// and C.O.n//.

Remark 2.7. Let n D 2m be even and F D �2 ˝ Im, where

�2 D
�
0 �i
i 0

�
(2.1)

is the second Pauli matrix and we identify M2m.C/ with M2.C/ ˝ Mm.C/. In
this case, the CQG Ao.2m; F / will be denoted Asp.m/ and it is a free version of
the symplectic group Sp.m/ (the group of unitary elements of Mm.H/), that can be
obtained as the quotient of Asp.m/ by the commutator subalgebra (cf. Section 3.2).
We will see in Section 3.2 that Asp.m/ is the quantum unitary group ofMm.H/. The
identification of Asp.m/ with Ao.2m; F / for a special F was pointed out to us by
T. Banica.

A matrix B (with entries in a unital �-algebra B) such that both B and B t are
unitary is called a biunitary [7]. We will also need the following class of CQGs:
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Definition 2.8. For a fixed n, we callA�
u.n/ the universal unital C�-algebra generated

by an n � n biunitary u D ..uij // with relations

ab�c D cb�a for all a; b; c 2 fuij j i; j D 1; : : : ; ng:
A�

u.n/ is a CQG with coproduct given by �.uij / D P
k uik ˝ ukj .

We will callA�
u.n/ theN -dimensional half-liberated unitary group. This is similar

to the half-liberated orthogonal group A�
o.n/, that can be obtained by imposing the

further relation a D a� for all a 2 fuij j i; j D 1; : : : ; ng (cf. [7]).
The analogue of projective unitary groups was introduced in [2] (see also Sec. 3

of [7]). Let us recall the definition.

Definition 2.9. Let Q be a CQG which is generated by the matrix elements of a
unitary corepresentation U . The projective version PQ of Q is the Woronowicz
C �-subalgebra ofQ generated by the entries of U ˝ xU (cf. Section 3 of [7]). In par-
ticular, PAu.n/ is the C �-subalgebra of Au.n/ generated by fuij .ukl/

� j i; j; k; l D
1; : : : ; ng.

In [36], Wang defines the quantum automorphism group of Mn.C/, denoted by
Aaut.Mn.C// to be the universal object in the category of CQGs with a coaction on
Mn.C/ preserving the trace (and with morphisms given by CQGs homomorphisms
intertwining the coactions). The explicit definition is in Theorem 4.1 of [36]. We
conclude this section by the following proposition combining Theorem 1 (iv) from [2]
(cf. also Prop. 3.1 (3) of [7]) and a very special case (namely, q D 1) of Theorem 1.1
from [30].

Proposition 2.10. WehavePAu.n/ ' PAo.n/ ' Aaut.Mn.C//andAaut.M2.C// '
C.SO.3//. Thus, PAu.2/ ' PAo.2/ ' C.SO.3//.

2.2. Relation between free unitary groups andSUq.n/. In this section, we discuss
the relation between the quantum unitary groups Au.n;R/ and the quantum groups
SUq.n/ of [22], [31], [41]. By the universality property, clearly SUq.n/ is a quantum
subgroup ofAu.n

0; R/ for a suitable n0 andR. Our aim is pointing out explicitly how
SUq.n/ “lies” inside the free quantum orthogonal group Au.n;R/.

For 0 < q � 1, we recall the definition of SUq.n/ following the notations of [25],
Section 9.2, except the fact that we will use uij instead of ui

j to denote the matrix
element ofu on the row i and column j . The CQG is generated by the matrix elements
of an n-dimensional corepresentation u D .uij /, i; j D 1; : : : ; n, with commutation
relations

uikujk D qujkuik; ukiukj D qukjuki for all i < j;

Œuil ; ujk� D 0; Œuik; ujl � D .q � q�1/uilujk for all i < j; k < l;
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and with determinant relation

Dq D P
p2Sn

.�q/kpku1;p.1/u2;p.2/ : : : un;p.n/ D 1;

where the sum is over all permutationsp of the set f1; 2; : : : ; ng and kpk is the number
of inversions in p. The �-structure is given by

.uij /
� D .�q/j �i

P
p2Sn�1

.�q/kpkuk1;p.l1/uk2;p.l2/ : : : ukn�1;p.ln�1/

with fk1; : : : ; kn�1g D f1; : : : ; ngXfig, fl1; : : : ; ln�1g D f1; : : : ; ngXfj g (as ordered
sets) and the sum is over all permutations p of the set fl1; : : : ; ln�1g.

From the defining relations, one derives the following ‘orthogonality’ relations
between rows resp. columns of u. For all a; b D 1; : : : ; n we have:P

i

uai .ubi /
� D ıa;b;

P
i

.uia/
�uib D ıa;b; (2.2)

P
i

q2.i�b/uia.uib/
� D ıa;b;

P
i

q2.a�i/.uai /
�ubi D ıa;b: (2.3)

This is simply Prop. 8 of [25], Section 9.2.2, with quantum determinant Dq D 1

for SUq.n/, and cofactor matrix .�q/k�jA
j

k
D Quk

j D S.u
j

k
/, defined on page 313

of [25] related to the real structure of SUq.n/ by the formula u� D S.u/ D Qut

(cf. Section 9.2.4 of [25], case 2).
Now eq. (2.2) in matrix form is simply the unitarity condition uu� D u�u D In.

On the other hand, if we call

R D 1

qn�1Œn�q
diag.1; q2; q4; : : : ; q2.n�1//; Œn�q ´ qn � q�n

q � q�1
; (2.4)

then
.R NuR�1/ij D q2.i�j /.uij /

�

and (2.3) is equivalent to the conditions ut .R NuR�1/ D .R NuR�1/ut D In. This was
first noticed in [35], cf. eq. (9), p. 675, and proves that SUq.n/ is a quantum subgroup
of the free unitary group Au.n;R/ for R as in (2.4). Clearly R is not unique; for
example one can multiply R for a constant, or replace R with R�1 (SUq.n/ and
SUq�1.n/ are isomorphic for any q 2 RC).

For n D 2 the corresponding state 'R.a/ ´ tr.Ra/ is the well-known Powers
state ofM2.C/. This case was already dealt with in [38], cf. p. 578, where it is proved
that SUq.2/ is isomorphic to Ao.2; F / for

F D
 
0 �q 1

2

q� 1
2 0

!
:
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Clearly,Ao.2; F / is a quantum subgroup ofAu.2; R
0/ forR0 D F �F D diag.q�1; q/.

We refer to [37] for a study of the Power’s state in relation to universal quantum groups
and to [30] for its relation with SOq.3/.

Notice that Œn�qR D �.K2�/, whereK2� is the element of the dual Hopf �-algebra
Uq.su.n// implementing the modular automorphism (cf. eq. (3.2) of [19]) and � is
the fundamental representation described in [19], eq. (4.1).

2.3. Generalities on real C�-algebras. We need to recall some basic facts about
real C�-algebras, which we are going to need throughout the article. For more details
on real C�-algebras, we refer the reader to [28] and [23]. The following result
characterizes all finite-dimensional real C�-algebras.

Proposition 2.11. Let A be a finite-dimensional real C�-algebra. Then A Š
Mn1

.D1/ ˚ Mn2
.D2/ ˚ Mn3

.D3/ ˚ � � � ˚ Mnk
.Dk/ (as real C�-algebras) for

some positive integers n1; n2; : : : nk , where for each i D 1; 2; : : : k, Di is either R,
C or H.

For a real C �-algebra A, the �-algebra AC D A ˝R C is a complex C�-algebra,
known as the complexification of A. Moreover, A is the fixed point algebra of the
antilinear automorphism � on AC D A ˝R C, given by �.a ˝R z/ D a ˝R Nz.
Note that � commutes with the involution on AC, given by .a ˝R z/

� D a� ˝R Nz.
Throughout this article, the symbol � will stand for this antilinear automorphism.

The following result recalls the complexifications and the formulas of � for the
finite-dimensional C�-algebras Mn.R/; Mn.C/ and Mn.H/.

Proposition 2.12. Let A ´ Mn.k/ and AC ´ A ˝R C. Then

(1) if k D R, then AC D Mn.C/ and �.m/ D xm;

(2) if k D C, then AC D Mn.C/˚Mn.C/ and �.m1 ˚m2/ D m2 ˚m1;

(3) if k D H, then AC D M2.C/ ˝ Mn.C/ Š M2n.C/ and � is given by
�.m/ D .�2 ˝ 1n/ xm.�2 ˝ 1n/, where �2 is the matrix (2.1).

2.4. Real spectral triples. In noncommutative geometry, compact Riemannian spin
manifolds are replaced by real spectral triples. Recall that a unital spectral triple
.A1;H ;D/ is the datum of: a Hilbert space H , a unital associative involutive alge-
bra A1 with a faithful unital �-representation � W A ! B.H / (the representation
symbol is usually omitted), and a (not necessarily bounded) self-adjoint operator D
on H with compact resolvent, and having bounded commutators with all a 2 A1;
see e.g. [15], [16]. A spectral triple is even if there is a Z2-grading � on H commuting
with A1 and anticommuting with D; we will set � D 1 when the spectral triple is
odd. A spectral triple is real if there is an antilinear isometry J W H ! H , called the
real structure such that

J 2 D �1; JD D �0DJ; J � D �00�J; (2.5)
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and

Œa; J bJ�1� D 0; ŒŒD; a�; J bJ�1� D 0 (2.6)

for all a; b 2 A1 1. Here �, �0 and �00 are signs that determine the KO-dimension of
the space [15].

A canonical commutative example is given by .C1.M/;L2.M;S/;D= /, where
C1.M/ are complex-valued smooth functions on a closed Riemannian spin manifold,
L2.M;S/ is the Hilbert space of square integrable spinors andD= is the Dirac operator.
This spectral triple is even if M is even-dimensional. In fact, from any commutative
real spectral triple it is possible to reconstruct a closed Riemannian spin manifold.
We refer to [16] for the exact statement.

While we always tacitly assume that H is a complex Hilbert space, we allow
the possibility that A1 is a real �-algebra. Note that to any real spectral triple
.A1;H ;D; �; J / over a real �-algebra A1, we can associate a real spectral triple
.B1;H ;D; �; J / over a complex �-algebra B1, as shown in Lemma 3.1 of [8]. We
let B1 be the quotient A1

C =ker�C, where A1
C ' A1 ˝R C is the complexification

of A1, with conjugation defined by .a ˝R z/
� D a� ˝R Nz for a 2 A1 and z 2 C,

and �C W A1
C ! B.H / is the �-representation

�C.a˝R z/ D z�.a/; a 2 A1; z 2 C: (2.7)

It was observed in [8] that ker �C may be nontrivial since the representation �C is
not always faithful. For example, if A1 is itself a complex �-algebra (every complex
�-algebra is also a real �-algebra) and � is complex linear, then for any a 2 A1 the
element a˝R 1C ia˝R i , of A1

C is in the kernel of �C. In fact, if A1 is a complex
algebra, then

B1 ' A1:
We close this section with a remark. While usually A1 is only a pre-C�-algebra

for the operator norm, in the finite-dimensional case it is a C�-algebra, and to make
this fact more evident it will be denoted by A, without the 1 superscript.

3. Quantum unitary group of a finite-dimensional C�-algebra

3.1. The case of complex C�-algebras. Let A be a finite-dimensional complex
C�-algebra, that is,

A D
mL

iD1

Mni
.C/

for some positive integers m and ni . For a D a1 ˚ � � � ˚ am 2 A, we denote by tr
the trace map:

tr.a/ ´
mP

iD1

niP
kD1

.ai /kk :

1In some examples (not in the present case) conditions (2.6) have to be slightly relaxed, see e.g. [20].
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Any faithful state of A is of the form tr.R � / for some positive invertible operator
R ´ L

i Ri 2 A with normalization tr.R/ D 1, called the density matrix of the
state. Since in the following, the normalization of R is irrelevant, in the particular
case when R D 1

tr.I/
I is a scalar multiple of the identity, one can equivalently use

the map tr. � /. Let �R W A ! B.L2.A; tr.R � // be the GNS representation of a
finite-dimensional complex C �-algebra A with respect to the faithful state tr.R � / as
above. We define the functional

'R.�R.a// D tr.Ra/: (3.1)

The above functional is well defined since the GNS representation of a C �-algebra
with respect to a faithful state is faithful. Throughout this article, the symbol 'R will
stand for this functional.

We start by stating the following Lemma, which gives a characterization of the
unitary group of a finite-dimensional complex C�-algebra.

Lemma 3.1. Let A be a finite-dimensional complex C�-algebra, viewed as a subal-
gebra of B.L2.A; tr// via the GNS representation � , and denote by �U D �jU.A/

its restriction to the group U.A/ of unitary elements of A. Then .U.A/; �U / is the
universal ( final) object in the category whose objects are pairs .G; Q�/, withG a com-
pact group and Q� a unitary representation ofG onL2.A; tr/ satisfying Q�.g/ 2 A for
all g 2 G, and whose morphisms are continuous group homomorphisms intertwining
the representations.

Proof. Clearly .U.A/; �U / is an object in the category (as a linear spaceL2.A; tr/ '
A since the normalized trace is a faithful state, and then� is a faithful representation).
Moreover, if .G; Q�/ is any object in the category, since �U is faithful there exists a
unique morphism 	 W G ! U.A/ intertwining the representations, which is defined
by 	.g/ D .�U /

�1 Q�.g/ for all g 2 G. This shows the universality of .U.A/; �U /.

We define a notion of quantum family of unitaries by taking a suitable noncom-
mutative analogue of this characterization. Notice that while U.A/ is a final object
in the category described above, since the functor C is contravariant, the C�-algebra
C.U.A// is a initial object in the dual category.

Definition 3.2. Let A be a finite-dimensional complex C�-algebra,R 2 A a positive
invertible operator, 'R as in (3.1), and let�R W A ! B.L2.A; 'R// be the associated
GNS representation. We denote by Cu.A; R/ the category whose objects are pairs
.Q;U / withQ a unital C�-algebra and U a unitary element in �R.A/˝Q such that

(i) AdU D U. � ˝ 1Q/U
� preserves the state 'R on �R.A/,

(ii) AdU � D U �. � ˝ 1Q/U preserves the state 'R�1 on �R.A/,
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A morphism	 W .Q;U / ! .Q0; U 0/ is aC �-homomorphism with .id˝	/.U / D U 0.
We call Cu.A; R/ the category of quantum families of R-unitaries of A.

Remark 3.3. Notice that condition (i) is equivalent to the condition that U not only
preserves the inner product ha; biR D 'R.a

�b/ of the GNS representation (that
follows from U �U D 1) but also the sesquilinear form .a; b/R D 'R.ab

�/. If we
consider the subcategory whose objects .Q;U / are compact matrix quantum groups,
condition (ii) can be derived from (i) using the properties of the antipode.

To start with, we will prove that the universal (initial) object in the category
Cu.Mn.C/; R/ exists and is in fact Au.n;R

t /. Using this result we will prove that
for any finite-dimensional complex C�-algebra A, Cu.A; R/ has a universal object
which is in fact a CQG. We will call this CQG the quantum R-unitary group of A

and denote it by the symbol Qu.A; R/.

Proposition 3.4. The universal object in the category Cu.Mn.C/; R/ exists and it
is isomorphic to .Au.n;R

t /; Un/, where Un is the faithful unitary corepresentation
defined by

Un D
nP

i;j D1

�R.eij /˝ uij ; (3.2)

�R W Mn.C/ ! B.L2.Mn.C//; 'R// is the GNS representation and uij are the
canonical generators of Au.n;R

t /.

Proof. Since 'R is faithful, the linear space L2.Mn.C/; 'R/ is simply Mn.C/ with
inner product ha; biR D 'R.a

�b/. One can easily check that the map

LR W L2.Mn.C/; 'R/ ! Cn ˝ Cn; LR.eij / D ei ˝ .Rt /
1
2 ej ;

is an isometry. Here, the inner product on Cn is the standard one, and feign
iD1 is the

canonical orthonormal basis of C n. Moreover, we have

LR�R.a/L
�
R D a˝ In

so that a matrix a 2 Mn.C/ acts simply by row-by-column multiplication on the first
factor Cn.

Thus, for any object .Q; V / in Cu.A; R/, V is of the form

V D
nP

i;j D1

�R.eij /˝ vij D .L�
R ˝ id/

� nP
i;j D1

eij ˝ 1˝ vij

�
.LR ˝ id/

with vij 2 Q, and unitarity of V is equivalent to unitarity of the matrix v 2 Mn.Q/.
Since 'R.eij / D Rj i and

AdV .�R.eij // D .L�
R ˝ id/

�P
kl

ekl ˝ 1˝ vkiv
�
lj

�
.LR ˝ id/;
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condition (i) in Def. 3.2 gives

.'R ˝ id/AdV .�R.eij // D P
ijkl

Rlkvkiv
�
lj

D 'R.�R.eij // � 1Q D Rj i � 1Q;

that is, vtRt Nv D Rt . Similarly from (ii) of Def. 3.2 we get Nv.Rt /�1vt D .Rt /�1.
This can be rewritten as

vtRt Nv.Rt /�1 D Rt Nv.Rt /�1vt D In;

which proves that v D .vij / generate a quantum subgroup of Au.n;R
t /. It is clear

from the above discussions that:
1. .Au.n;R

t /; Un/ is an object of Cu.Mn.C/; R/ with Un as in (3.2) (note that
Un is a unitary corepresentation of Au.n;R

t /, and it is clearly faithful);
2. there is a unique C �-homomorphism 	 W Au.n;R

t / ! Q such that .id ˝
	/.Un/ D V . This is uniquely defined by

	.uij / D vij :

This proves the universality of .Au.n;R
t /; Un/.

This is very similar to a result of [36], except that here we consider the category of
quantum families (thus need the extra condition (ii) in Def. 3.2, which is automatically
satisfied when considering the category of CQGs) and work with the GNS representa-
tion of the algebra. We now extend this result to arbitrary finite-dimensional complex
C�-algebra.

Theorem 3.5. Let A D Lm
iD1Mni

.C/, R D L
k Rk 2 A a positive invertible op-

erator, and denote by Unk
the corepresentation of Au.nk; R

t
k
/ on L2.Mnk

.C/; 'Rk
/

as in (3.2). Then the universal object .Qu.A; R/; U / in the category Cu.A; R/ exists
and is given by

Qu.A; R/ D
m©

kD1

Au.nk; R
t
k/; U D

M
k

Unk
; (3.3)

where “
¨m

kD1” is the free product and U is a faithful unitary corepresentation of
Qu.A; R/ on L2.A; 'R/ D L

k L
2.Mnk

.C/; 'Rk
/.

Proof. First we notice that .
¨m

kD1Au.nk; R
t
k
/; U / in (3.3) is an object of Cu.A; R/,

and the corepresentation U is clearly faithful.
Let Hk D L2.Mnk

.C/; 'Rk
/. Then L2.A; 'R/ D L

k Hk . For any object
.Q; V / of the category Cu.A; R/, we have

V 2 �.A/˝Q D
M

k

�k.Mnk
.C//˝Q
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with �k the GNS representation of Mnk
.C/ on Hk . Thus V preserves Hk and

Vk ´ V jHk
is a unitary in B.Hk/ ˝ Q such that Vk 2 �k.A/ ˝ Q. Since AdVk

preserves the state 'Rk
and AdV �

k
preserves the state 'R�1

k
, .Qk; Vk/ is an object

in Cu.Mnk
.C/; Rk/, where Qk is the C�-algebra generated by the matrix entries of

Vk 2 Mnk
.C/˝Q.

By Prop. 3.4, for every k, there is a unique morphism 	k W .Au.nk; R
t
k
/; Unk

/ !
.Qk; Vk/. By universality of the free product, there is a unique morphism

	 W � m̈

kD1

Au.nk; R
t
k
/;
L

k Unk

� ! .Q; V /

that restricted to the k-th factor gives 	k , and this is the unique C �-homomorphism
from

¨m
kD1Au.nk; R

t
k
/ to Q that intertwines the corepresentations U and V . This

proves that the object .
¨m

kD1Au.nk; R
t
k
/; U / in (3.3) is universal in Cu.A; R/.

We end this section by showing that the notion of quantum group of a nondegen-
erate bilinear form introduced in [21] can be accommodated in our picture. For a non
degenerate bilinear form given by an .n�n/-matrixB , letQB be the universal algebra
with generators .qij /1�i;j �n satisfying the relations B�1qtBq D I D qB�1qtB;

where q is the matrix ..qij //ij . Then the authors in [21] showed thatQB has a Hopf
algebra structure. We refer to [21] for the details. In Section 6 of [11], Bichon gave
the necessary and sufficient conditions so that QB is a CQG.

For a nondegenerate .n�n/-matrix T and a complex algebraX we can define aX
valued bilinear form on Cn˝X by hPi ci ˝xi ;

P
j dj ˝yj iT D P

ij T .ci ; dj /xiyj .
Moreover, let V.ei / D P

ej ˝ qij be a comodule coaction of a CQG Q on Cn,
where ei , i D 1; 2; : : : ; n, is a basis of Cn. Then the equation B�1qtBq D I

corresponds to hV.x/; V .y/iB D hx; yiB1, while qB�1qtB D I corresponds to
hV.x/; V .y/iB�1 D hx; yiB�11.

However, since in this article we are concerned with �-algebras, it is more relevant
to consider the bilinear form on Cn ˝Q

hP
i

ci ˝ xi ;
P
j

dj ˝ yj i0
B D P

ij

B. Nci ; dj /x
�
i yj ;

and similarly for B�1. Motivated by the above observations, we slightly modify
the definition of invariance of a bilinear form under a comodule coaction of a Hopf
algebra as in [21] to give the following definition:

Definition 3.6. For a nondegenerate positive definite bilinear form given by an .n�n/-
matrix B , a unital C � algebra Q and an element U 2 Mn.C/˝Q; the pair .Q;U /
is said to preserve the bilinear form B if

(i) U is a unitary,

(ii) hU.v/; U.w/i0
B D hv;wi0

B � 1,

(iii) hU �.v/; U �.w/i0
B�1 D hv;wi0

B�1 � 1, where v;w 2 Cn.
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With this definition at hand, the following proposition follows easily.

Proposition 3.7. The category of a nondegenerate positive definite bilinear form
preserving quantum families, with objects .Q;U / as in Definition 3.6, has a universal
object, which has a CQG structure isomorphic to Au.n; B

�1/. Thus, the universal
object which can be called the compact quantum group of a nondegenerate positive
definite bilinear formB coincideswith the quantumgroup ofB�1 unitaries ofMn.C/.

3.2. The case of real C�-algebras. In this section, we introduce the notion of
quantum families of unitaries of a finite-dimensional real C �-algebra by relating
it to the quantum families of unitaries of its complexification. As before, we start
with an easy characterization of the group of unitaries for a finite-dimensional real
C �-algebra. We identify a real C�-algebra A with the fixed point subalgebra of its
complexification AC for a canonical involutive antilinear automorphism � . This
in particular means that U.A/ D fu 2 U.AC/ j �.u/ D ug. More generally, if
G � U.AC/ is a compact subgroup, we have G � U.A/ if and only if �.u/ D u

for all u 2 G. This can be rephrased in the dual language of corepresentations, using
the following observation.

Proposition 3.8. Let A and � be as above. Let T be an element in AC ˝ C.G/,
where G is a compact group. Then .id ˝ '/T belongs to A for any state ' on C.G/
if and only if T D .� ˝ �/T .

Proof. Since states separates points of a C�-algebra, T D .� ˝ �/T if and only if
.id ˝ '/T D .id ˝ '/.� ˝ �/T D �.id ˝ '/T for all states ', where in the second
equality we used ' B � D � B ', antilinearity of � and identify AC ˝ C with AC.
This is equivalent to .id ˝ 	/T 2 A.

Inspired by this observation, we want to define a category of quantum families
of unitaries of A. A first idea is to define such a category as the subcategory of
Cu.AC; R/ whose objects .Q;U / satisfy the additional condition

.� ˝ �/.U / D U: (3.4)

It turns out that this does not allow to accommodate non-Kac type examples. So we
need to broaden the scope of our definition. The plan of this section is as follows:
in Section 3.2.1, we explain what happens if we take (3.4), illustrate it with some
examples and then in Section 3.2.2, we define the category of quantum family of uni-
taries of a finite-dimensional real C�-algebra and prove the existence of the universal
object. Finally, In Section 3.2.3, we compute the universal object first for matrix
algebras and then, using Prop. 2.11, for any finite-dimensional real C�-algebra.

3.2.1. A preliminary study. We want to explain that if we adopt (3.4), we can get
only Kac type examples as quantum unitary group. As a first observation, we notice
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that (3.4) implies that AdU preserves the usual trace. In fact, a more general statement
is proved in the next lemma.

Here and in the following, we identify AC with the C �-subalgebra AC ˝ 1Q �
AC ˝Q. Moreover, for an element T 2 AC;we write T instead of T ˝1 to simplify
notations.

Lemma 3.9. Let A be a finite-dimensional real C�-algebra, F 2 AC an invertible
element and let � W AC ! B.L2.AC; '�.F �F /// be the GNS representation. For a
(complex) unital C�-algebraQ, let U be a unitary element in �.AC/˝Q such that:

.� ˝ �/.U / D F �1UF; (3.5)

Let R D �.F �F /. Then 'R is preserved by AdU and 'R�1 is preserved by AdU � .
In particular, taking F D 1; we deduce that the usual trace is preserved.

Proof. Let U D P
i U.1/i ˝ U.2/i . Eq. (3.5) implies that

U D
X

i

�.F �1/�.U.1/i /�.F /˝U �
.2/i and U � D

X
j

�.F �/�.U �
.1/j /˝U.2/j :

Using these, we get:

.'R ˝ idQ/AdU .a/

D P
i;j

tr.R�.F �1/�.U.1/i /�.F /a�.F
�//�.U �

.1/j
/�..F �1/�//U �

.2/i
U.2/j

D P
i;j

tr.�..F �1/�/R�.F �1/�.U.1/i /�.F /a�.F
�//�.U �

.1/j
//U �

.2/i
U.2/j

D P
i;j

tr.�.U �
.1/j

/�.U.1/i /�.F /a�.F
�//U �

.2/i
U.2/j

D .tr ˝idQ/.� ˝ �/��P
j

U �
.1/j

˝ U �
.2/j

��P
i

U.1/i ˝ U.2/i

��
.�.F /a�.F �/˝ 1/

D tr.�.F /a�.F �// � 1Q;

where we have used the unitarity ofU . Therefore, 'R is preserved by AdU . Similarly
one shows that 'R�1 is preserved by AdU � .

If a CQG has a unitary corepresentation on Cn such that its adjoint coaction on
Mn.C/ preserves the trace, then it is a quotient ofAu.n/, which is known to be a Kac
algebra (i.e., the square of the antipode is the identity). Therefore, in order to obtain
non-Kac algebras, we need to relax this condition. Notice that the above phenomenon
is a purely quantum phenomenon, since a unitary group action always preserves the
trace. In fact, one can show

Proposition 3.10. Let A be a real C �-algebra such that AC D Lm
iD1Mni

.C/, and
let R D Lm

iD1Ri 2 AC be a positive invertible operator such that each Rk has nk
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distinct eigenvalues. Consider the subcategory of Cu.AC; R/ whose objects .Q;U /
satisfy the additional condition (3.4). Then any CQG in this category with a faithful
corepresentation is a quotient of a free product

¨n
kD1 C.U.1// with n D Pm

iD1 ni .

Proof. Let .Q;U / be an object of Cu.AC; R/ with Q a CQG and a faithful corep-
resentation U satisfying condition (3.4). Further, let Uk D U jHk

, where Hk D
L2.Mnk

.C/; 'Rk
/. By using the proof of Theorem 3.5, we deduce that Q is a quo-

tient of �m
kD1

Au.nk; R
t
k
/ and U D L

k Uk . Moreover, for each k; we have

U t
kR

t
k

SUk D Rt
k :

By Lemma 2.1 of [32], we can assume that each Rk is a diagonal matrix. However,
by Lemma 3.9 and the proof of Proposition 3.4, we have SUkU

t
k

D U t
k

SUk D Ink
for

all k. Using xUU t D In on the previous equation, we get Rt
k

SUk D SUkR
t
k

. Since Rt
k

is diagonal with distinct entries, SUk commutes with Rt
k

if and only if it is diagonal
too. Thus Uk D diag.u1; u2; : : : ; unk

/, where each ui generates a copy of C.U.1//.
Hence Q is a quotient of

¨n
kD1 C.U.1// with n D Pm

kD1 nk .

The previous proposition applies, for example, to R as in (2.4), when q ¤ 1.
Moreover, applying this result to the realC �-algebra A D H withR 2 AC D M2.C/
the density matrix of the Powers state, we have:

Corollary 3.11. Let 0 < q � 1 and R D Œ2��1
q diag.q�1; q/. Consider the subcate-

gory of Cu.M2.C/; R/ whose objects .Q;U / satisfy the additional condition (3.4),
with �.m/ D �2 xm�2 as in Prop. 2.12, with n D 1. Then any CQG in this category
is a quotient of C.U.1//.

The classical group of unitary elements of the real C�-algebra H is SU.2/. Thus,
for the above choice of R, the CQG that we get is neither a deformation of the
classical unitary group nor does it contain a deformation of it. Thus the condition
(3.4) is evidently too restrictive. However, we get a much better result if we change
it slightly.

Proposition 3.12. Write R D Œ2��1
q diag.q�1; q/. Consider the subcategory of

Cu.M2.C/; R/ whose objects .Q;U / satisfy the additional condition

.� ˝ �/.U / D R
1
2UR� 1

2 ; (3.6)

with � as in Prop. 2.12 (with n D 1). The universal object in this category is SUq.2/

for any 0 < q � 1. Taking q D 1, we recover the fact that the classical unitary group
is SU.2/.

Proof. If .Q;U / is an object in the above-mentioned category,U D .uij / 2 M2.Q/,
from (3.4) we get

.� ˝ �/.U / D
�
u�

22 �u�
21

�u�
12 u�

11

�
D R

1
2UR� 1

2 D
�
u11 q�1u12

qu21 u22

�
:
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Hence

U D
�
a �qc�
c a�

�
:

By Theorem 3.5, U satisfies the relations of Au.2; R/. It is an easy computation
to check that these relations are satisfied if and only if a; c satisfy the defining rela-
tions of SUq.2/, in the notations of [25], Section 4.1.4. The remaining conditions
U t .R xUR�1/ D .R xUR�1/U t D I2 are automatically satisfied. It follows from the
above discussion that SUq.2/, with generators denoted a0; c0, is an object in the cat-
egory, and there is a unique C �-homomorphism from SUq.2/ to Q intertwining the
corepresentation given by a0 7! a and c0 7! c. This proves universality.

3.2.2. Definition and existence of quantum unitary group of real C�-algebras.
Based on the observations made in the last section, we modify (3.4) to define the
quantum family of unitaries of a finite-dimensional real C �-algebra. In particular the
condition (3.7) is just (3.5).

Definition 3.13. Let A be a finite-dimensional real C�-algebra,F 2 AC an invertible
element and let � W AC ! B.L2.AC; '�.F �F /// be the GNS representation. We
denote by Cu;R.A; F / the category whose objects .Q;U / are given by a (complex)
unital C�-algebra Q and a unitary element U 2 �.AC/˝Q such that

.� ˝ �/.U / D F �1UF: (3.7)

A morphism 	 W .Q;U / ! .Q0; U 0/ is a C �-homomorphisms such that .id ˝
	/.U / D U 0.

We call Cu;R.A; F / the category of quantum families of F -unitaries of A.

The condition (3.7) is inspired by (3.6) (where F D R� 1
2 ).

As an immediate corollary to Lemma 3.9, we obtain

Lemma 3.14. For any A and F there is a positive invertible elementR 2 AC, given
by R D �.F �F /, such that Cu;R.A; F / is a subcategory of Cu.AC; R/.

The next lemma will be needed later to prove that if the universal object in
Cu;R.A; F / exists, then it is a CQG.

Lemma 3.15. IfQ is any CQG with a corepresentation U 2 AC ˝Q, the ideal IF

generated by the relation (3.7) is a Woronowicz C �-ideal.

Proof. In this proof we write explicitly F ˝ 1 for the element in AC ˝Q (instead of
F , with the usual identification of AC with its image in AC ˝Q) to make the proof
more transparent. Let

T ´ .� ˝ �/.U / � .F �1 ˝ 1/U.F ˝ 1/ 2 AC ˝Q:
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The ideal I is generated by

t' D .' ˝ id/.T /; ' 2 .AC/
�:

Let �I W Q ! Q=I be the quotient map. We need to prove that

.�I ˝ �I /�.t'/ D .' ˝ �I ˝ �I /.id ˝�/.T /

is zero for all '. Hence, it is enough to prove that .id ˝ �I ˝ �I /.id ˝�/.T / D 0.
We have

.id˝�/.�˝�/.U / D .�˝�˝�/U.12/U.13/ D .�˝�˝�/.U.12//�.�˝�˝�/.U.13//:

Moreover, we notice that

.id ˝�/.F �1 ˝ 1/U.F ˝ 1/

D .F �1 ˝ 1˝ 1/.id ˝�/.U /.F ˝ 1˝ 1/

D .F �1 ˝ 1˝ 1/U.12/.F ˝ 1˝ 1/.F �1 ˝ 1˝ 1/U.13/.F ˝ 1˝ 1/

D f.F �1 ˝ 1/U.F ˝ 1/g.12/f.F �1 ˝ 1/U.F ˝ 1/g.13/:

Since id ˝�I ˝�I is a C�-algebra morphism, it is enough to prove that the elements

.� ˝ � ˝ �/.U.12// � f.F �1 ˝ 1/U.F ˝ 1/g.12/

and

.� ˝ � ˝ �/.U.13// � f.F �1 ˝ 1/U.F ˝ 1/g.13/

are in the kernel of id ˝�I ˝�I (if a� b and c�d are in the kernel of a morphism,
then ac � bd D .a � b/c C b.c � d/ is in the kernel too). But this follows easily
from (3.7). Indeed,

.id ˝ �I ˝ �I /.� ˝ � ˝ �/.U.12//

D f.id ˝ �I /.� ˝ �/.U /g.12/

D f.id ˝ �I /.F
�1 ˝ 1/U.F ˝ 1/g.12/

D .id ˝ �I ˝ �I /.F
�1 ˝ 1˝ 1/U.12/.F ˝ 1˝ 1/:

The other equality for .�˝�˝�/.U.13// follows similarly. This concludes the proof.

Theorem 3.16. The universal object of Cu;R.A; F /, denoted byQu;R.A; F /, exists
and is the CQG given byQu.AC; R/=IF , with �.R/ D F �F and IF theWoronowicz
C �-ideal generated by relation (3.7).
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Proof. Clearly Qu.AC; R/=IF is an object in the category Cu;R.A; F /. On the
other hand, by Lemma 3.14, every object in Cu;R.A; F / is an element .Q;U / 2
Cu.AC; R/ satisfying (3.7). SinceQu.AC; R/ is universal in Cu.AC; R/, there is a
unique morphism 	 W Qu.AC; R/ ! Q in the category Cu.AC; R/. Since Q satis-
fies (3.7), there exists a map W Qu.AC; R/ ! Qu.AC; R/=IF ! Q such that	 D
 B�IF

, �IF
being the quotient map fromQu.AC; R/ toQu.AC; R/=IF . Suppose

that there exists another morphism  0 fromQu.AC; R/ toQu.AC; R/=IF ! Q in
the category Cu;R.A; F /. Then 0B�IF

is another morphism fromQu.AC; R/ ! Q

in the category Cu.AC; R/, contradicting the uniqueness of 	. This proves that
Qu.AC; R/=IF is the universal object in Cu;R.A; F /, which is a CQG due to
Lemma 3.15.

3.2.3. Examples. In Prop. 3.12 we proved that when R is the density matrix of
the Powers state, Qu;R.H; R

1
2 / is the quantum group SUq.2/. Let us extend the

computation to Mn.R/, Mn.C/ and Mn.H/.

Proposition 3.17. Suppose that F D K ˚ H xK�1 with H;K 2 GL.n;C/. Then
Qu;R.Mn.C/; F / is the quotient of Au.n;K

�K/ by the relation uH D Hu. In
particular forH D In,Qu;R.Mn.C/; F / ' Au.n;R/, with R D K�K.

Proof. Let .Q;U / be any object of Cu;R.Mn.C/; F /, with U D u1 ˚ u2 and ui 2
Mn.C/˝Q for i D 1; 2. Condition (3.7) is equivalent to

Nu2 ˚ Nu1 D K�1u1K ˚ xKH�1u2H xK�1;

that is, u1 D K Nu2K
�1 and Nu1 D xKH�1u2H xK�1. Conjugating the second equation

we see that u1 D K Nu2K
�1 D KH�1u2HK

�1, which implies H�1u2H D u2.
Thus Q is generated by the matrix entries vij of u2 with the condition that

U D K Nu2K
�1 ˚ u2

and u2 2 Mn.Q/ commutes with H . The operator U is unitary if and only if both
u2 and K Nu2K

�1 are unitary, i.e., by Def. 2.6 the elements vij satisfy the defining
relations of Au.n;R/ with R D K�K.

It is clear from the above discussion that Au.n;R/=IH , where IH is the ideal
generated by the relation uH D Hu and u D .uij / the canonical generators, is
an object in the above category. Moreover, there is a unique C �-homomorphism
Au.n;R/=IH ! Q intertwining the corepresentations, given by uij 7! vij . This
proves that the object Au.n;R/=IH is universal.

Notice that in previous proposition we consider the most general invertible F 2
Mn.C/˚Mn.C/ that, without loss of generality, can be written asF D K˚H xK�1.

Proposition 3.18. Qu;R.Mn.R/; F / is isomorphic toAo.n; F /. Qu;R.Mk.H/; F / is
isomorphic toAo.2k; F.�2˝Ik//. In particular,Qu;R.Mn.R/; I / is the free quantum
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orthogonal group Ao.n/ andQu;R.Mk.H/; I / is the free quantum symplectic group
Asp.k/.

Proof. The involutions � for Mn.R/ and Mk.H/ are given in Prop. 2.12. Mn.R/
and Mk.H/ are respectively the fixed point real subalgebras of Mn.C/ and M2k.C/
for the automorphism � defined by �.a/ D K NaK�, where K D In for Mn.C/ and
K D �2˝Ik forMk.H/. Here, as usual, we identifyM2k.C/withM2.C/˝Mk.C/.
In both the cases, the condition (3.7) becomes xU D .FK/�1U.FK/, using which
the proposition follows easily.

Like the complex case, if we have a direct sum of algebras we get a free product
of CQGs, i.e.,

Qu;R.A1 ˚ A2; R1 ˚R2; F1 ˚ F2/ D Qu;R.A1; R1; F1/ �Qu;R.A2; R2; F2/:

The proof is analogous to the one of Theorem 3.5, and we omit it.
We conclude this section by identifying the quantum group of unitaries of the two

algebras, AF D C ˚ H ˚M3.C/ and Aev D H ˚ H ˚M4.C/, which appear in
the noncommutative geometry formulation of the Standard Model.

Corollary 3.19. The quantumunitary groups of the real C�-algebras C˚H˚M3.C/
and H˚H˚M4.C/ are C.U.1//�C.SU.2//�Au.3/ and C.SU.2//�C.SU.2//�
Au.4/, respectively.

4. Quantum gauge group of a finite-dimensional spectral triple

In this section we will define a quantum analogue of the gauge group (1.1). As
explained in the introduction, for physical reasons, we are interested in the finite part
of an almost commutative spectral triple: in this case (1.1) is the “global” gauge
group of the theory. We will focus, then, on finite-dimensional (real) spectral triples
.A;H ;D; J /. This means that H is a finite-dimensional Hilbert space and A a
finite-dimensional (possibly real) C�-algebra. In the construction, the operator D is
irrelevant and we will assume that, even when A is real, H is a complex Hilbert space
(cf. Section 2.4).

We define the quantum gauge group using only quantumR-unitaries withR / I.
This is the most interesting case, since one gets the classical gauge group as a quantum
subgroup. The construction can be adapted to the general case with minor modifica-
tions.

Definition 4.1 ([18], [33]). The gauge group of a finite-dimensional spectral triple
.A;H ;D; J / is the group

G .A; J / ´ fv ´ uJuJ�1 j u 2 U.A/g;
with U.A/ the unitary group of A.
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Now we propose a definition of the quantum gauge group for a finite-dimensional
spectral triple over a real C�-algebra. The complex case is easier, and follows with
some obvious changes. Throughout this section, we will use (2.5) and (2.6), some-
times without mentioning it.

To any finite-dimensional real spectral triple .A;H ;D; �; J / over a real C�-
algebra A, as explained in Section 2.4, we can associate a finite-dimensional real
spectral triple .B;H ;D; �; J / over the complex C�-algebra B ´ AC= ker �C,
where �C is the �-representation (2.7).

We need some preliminary observations.

Lemma 4.2. (1) Let us identify a 2 A with a˝R 1 in AC. Then

B D �C.AC/ D Spanfza j z 2 C; a 2 �.A/g: (4.1)

(2) For any a 2 �C.AC/ we have

J�C.a/J
�1 2 �C.AC/

0: (4.2)

(3) Let U 2 A ˝ Q be a unitary corepresentation of a CQG Q on the Hilbert
space H , say U D Pr

kD1 ak ˝ qk for some r 	 1, ak 2 A and qk 2 Q, for all
k D 1; : : : ; r . Then

xU D
rP

kD1

Nak ˝ q�
k
;

where “bar” indicates the conjugated of a matrix in any fixed basis of H .

Proof. The eq. (4.1) follows from the definition of �C. For (4.2), we will use
(4.1). Let za and wb two elements of �C.AC/, with z; w 2 C and a; b 2 �.A/.
Now J zaJ�1 D NzJaJ�1, since J.�/J�1 is antilinear. Hence, J zaJ�1wb D
w NzJaJ�1b D w NzbJaJ�1 D wbJzaJ�1, since J zaJ�1 is a linear operator on
B.H /. So wb commutes with J zaJ�1, and this is extended to arbitrary elementsP

i ziai and
P

i wibi of �C.AC/ by bilinearity of the commutator, proving (4.2).
To prove (3), we fix an orthonormal basis feign

iD1 of H , with n D dimC.H /. We
denote by eij 2 B.H / the operator defined by eij ek D ıjkei and define the “bar” of
an operator by eij D eij , extended antilinearly to B.H /. Thus ak D P

i;j c
ij

k
eij for

some cij

k
2 C, and U D P

i;j ei;j ˝P
k c

ij

k
qk . By definition, we have

xU D P
i;j eij ˝ �P

k

c
ij

k
qk

��
D P

i;j eij ˝ �P
k

c
ij

k
q�

k

�
D P

k

P
ij

c
ij

k
eij ˝ q�

k

D P
k Nak ˝ q�

k
:

This completes the proof of the lemma.
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Proposition 4.3. Let .Q;U / 2 Cu;R.A; I/.
(1) U � ´ .�C ˝ id/.U / is a unitary corepresentation ofQ on the Hilbert space

H .
(2) U N� ´ .j ˝ �/.U �/ is a unitary corepresentation ofQ on H , where j.a/ D

JaJ � for all a 2 B.H /.
(3) V D U �U N� is a unitary corepresentation ofQ on the Hilbert space H . Note

that
V D P

i;j

U �
.1/i
JU �

.1/j
J�1 ˝ U �

.2/i
.U �

.2/j
/�: (4.3)

Proof. Unitarity of U � follows from the fact that �C is a unital �-representation and
U is a unitary. Furthermore,

.id ˝�/.U �/ D .id ˝�/.�C ˝ id/.U /

D .�C ˝ id/.id ˝�/.U /

D .�C ˝ id/.U.12/U.13//

D .�C ˝ id/.U.12//.�C ˝ id/.U.13//

D U �
.12/U

�
.13/:

This proves that U � is a corepresentation.
To prove (2), we compute

.id ˝�/.U N�/ D .id ˝�/.| ˝ �/.U �/

D .| ˝ � ˝ �/.id ˝�/.U �/

D .| ˝ � ˝ �/.U �
.12/U

�
.13//

D .| ˝ � ˝ �/.U �
.12//.| ˝ � ˝ �/.U �

.13//

D U N�
.12/U

N�
.13/;

proving that U N� is a corepresentation.
To prove unitarity, let us fix a basis of H and denote by J0 the unitary operator

obtained by composing J with the componentwise conjugation in this basis, and by
Na as usual the “bar” of an a 2 B.H / considered as a matrix in the chosen basis.
Since, J 2 D �1, � D ˙1, so J � D �J and we have

JaJ �.v/ D Ja�J.v/

D �Ja.J0 Nv/
D �J0.a.J0. Nv///
D �J0. NaJ0. Nv// D �J0 Na xJ0v;

where a 2 B.H /, v 2 H , which proves that for a 2 B.H / we have

JaJ�1 D �J0 Na xJ0: (4.4)
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Using this, it is easy to see that U N� D �.J0 ˝ 1/U �. xJ0 ˝ 1/. Since U is a biunitary,
U � is a unitary implies that U � is unitary. Thus, U N� is a product of three unitary
operators and hence is a unitary.

Now we prove (3). V is a product of two unitary operators and hence is a unitary.
Moreover,

.id ˝�/.V / D .id ˝�/.U �/.id ˝�/.U N�/ D U �
.12/U

�
.13/U

N�
.12/U

N�
.13/:

We notice that due to points 2 and 3 of Lemma 4.2, and also eq. (4.4),U �
.13/

commutes

with U N�
.12/

. This proves that V is a corepresentation.

Definition 4.4. The CQG generated by the matrix coefficients of the unitary corep-
resentation (4.3), when .Q;U / D .Qu;R.A/; U0/ is the quantum unitary group of
A, will be called quantum gauge group of the finite spectral triple .A;H ;D; �; J /,
and will be denoted by yG .A; J /.
Remark 4.5. Using (4.4) in (4.3), we can rewrite the latter in the following equivalent
way:

V D � U �.J0 ˝ id/U �. xJ0 ˝ id/

We are going to use this equation in the next three sections, where we compute
the quantum gauge group for the Einstein–Yang–Mills system, the spectral triple on
Aev D H˚H˚M4.C/, and the finite noncommutative space of the Standard Model.
Note that in the three above-mentioned examples we have � D 1.

4.1. The Einstein–Yang–Mills system. In this section we consider the following
five families of real spectral triples:

(i) A D Mn.C/, H D Mn.C/, D D 0, J.a/ D a�;

(ii) A D Mn.R/, H D Mn.C/, D D 0, J.a/ D a�;

(iii) A D Mn.H/, H D M2n.C/, D D 0, J.a/ D a�;

(iv) A D Mn.C/, H D Mn.C/˚Mn.C/, D D 0, J.a˚ b/ D a� ˚ b�;

(v) A D Mn.C/, H D Mn.C/˚Mn.C/, D D 0, J.a˚ b/ D b� ˚ a�.

In the first case H D A and we think of A as a complex algebra, while in the last
four H D AC and we think of Mn.C/ in (iv) and (v) as a real algebra (note that the
representation is not complex linear in these cases). In all five cases the inner product
is the Hilbert-Schmidt inner product ha; biHS ´ tr.a�b/, the representation � is
the restriction to A of the GNS representation of AC (resp. the GNS representation
of A in the first case) associated to the trace. Note that in the cases (iv) and (v) the
representation is

�.a/.b ˚ c/ D ab ˚ Nac for all a; b; c 2 Mn.C/

since we identify A D Mn.C/with the real subalgebra of AC D Mn.C/˚Mn.C/ of
elements of the form a˚ Na. From now on the representation symbol will be omitted.
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Lemma 4.6. In the five cases above, the gauge group is G .A; J / D PU.n/, PO.n/,
PSp..n/, PU.n/, and U.n/=Z2, respectively.

Proof. The classical gauge group G .A; J / is the quotient of U.A/ by the kernel
of the adjoint representation u 7! uJuJ�1 on H . In the cases (i)–(iii): since
uJuJ�1a D uau� for all u 2 U.A/ and a 2 H , uJuJ�1 D 1 if and only if
uau� D a for all a 2 H , that is, ua D au; this implies that u D 
1 with 
 2 C
since Mk.C/ has trivial center. In case (iv),

uJuJ�1.a˚ b/ D uau� ˚ Nubut (4.5)

for all u 2 U.A/ and a ˚ b 2 H , and uJuJ�1 D 1 if and only if uau� D a for
all a 2 Mn.C/ (the condition Nubut D b is equivalent to uau� D a with a D Nb), so
that one reaches the same conclusion. Hence G .A; J / D U.A/=fU.A/ \ U.1/g D
PU.A/ in the cases (i)–(iv).

The case (v) is similar to case (iv), but instead of (4.5) one gets the condition

uJuJ�1.a˚ b/ D uaut ˚ Nubu�

for all a; b 2 Mn.C/ andu 2 U.A/ D U.n/. The kernel of the adjoint representation
is given by elements u 2 U.n/ such that ua D a Nu for all a 2 Mn.C/. For a D In

we get u D Nu, that is, u 2 O.n/. The kernel is then the set of u 2 O.n/ such that
ua D au for alla 2 Mn.C/. Since the center ofMn.C/ is trivial, we findu D 
1with

 2 R. Unitarity gives 
 D ˙1. This proves that in case (v), G .A; J / D U.n/=Z2.

Let us explain the physical interest for the spectral triples above.
The spectral triple in (i) is the finite part of the spectral triple studied for example

in Sec. 11.4 of [18], describing the geometry of a (Euclidean) SU.n/ Yang–Mills
theory minimally coupled to gravity. We remark that in Connes’ approach gauge
fields are connections with coefficients in the Lie algebra g of the gauge group, and
since in (i) the gauge group is PU.n/ D SU.n/=�n, which has the same Lie algebra
as SU.n/, one speaks about SU.n/ gauge theory. Here �n ' Zn is the group of n-th
roots of unity.

Similarly, since PO.n/ has the same Lie algebra of SO.n/ and PSp..n/ has the
same Lie algebra of Sp.n/, with the spectral triples in (ii) and (iii) one can construct
SO.n/ and Sp.n/Yang–Mills theories, respectively, as one can see adapting the proof
of [18], Prop. 1.157.

In the case (iv), H D Mn.C/ ˚ Mn.C/ is doubled with respect to case (i),
and while the first summand transforms according to the representation .u; a/ 7!
uau� of U.n/, the second summand transforms according to the dual representation
.u; b/ 7! Nubut (cf. eq. (4.5)), i.e., like a pair particle-antiparticle. One gets then
a SU.n/ Yang–Mills theory but with a sort of fermion-doubling phenomenon (the
particle-antiparticle distinction is already present in the continuous part of the full
spectral triple).
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Finally, as explained in the proof of [18], Prop. 1.157, it is not possible to get
quantum electrodynamics (a U.1/ gauge theory) from the example (i), because for
n D 1 the adjoint action has the whole groupU.A/ D U.1/ in the kernel. The solution
used in [33] to get aU.1/ gauge theory is to use a two-point space, i.e., to “double” the
spectral triple in (i), for n D 1. The spectral triple .AC;H ;D; J / D .C2;C2; 0; J /

considered in Sec. 3.3 of [33] is the “complexification” – in the sense we discussed
in Section 2.4, cf. eq. (2.7) – of our spectral triple (v) for n D 1. In [33], the authors
use the gauge group of the complexified spectral triple and prove that it is U.1/, but
we remark here that using the real spectral triple (v) one reaches the same result:
G .A; J / D U.1/=Z2 ' U.1/ for n D 1. In general, for arbitrary n, since U.n/=Z2

has the same Lie algebra as U.n/, by applying the spectral action machinery one gets
a U.n/Yang–Mills theory (minimally coupled to gravity).

We now compute the quantum gauge group of the spectral triples above. The
computation is completely analogous to the one of the classical gauge group. We
remark that a real structure similar to that of (v) will be used for the spectral triple on
Aev, discussed in Section 4.2.

Proposition 4.7. In the cases (i)–(iii) the quantumgauge group yG .A; J / is the projec-
tive version of Qu;R.A/; thus yG .A; J / D PAu.n/, PAo.n/, PAsp.n/, respectively.

In case (iv), yG .A; J / is generated by products ulmu
�
kj

and u�
li
ukj , where uij are

the canonical generators of Au.n/. In case (v), yG .A; J / is generated by products
ulmukj . Note that both in case (iv) and (v), PAu.n/ is a C �-subalgebra of yG .A; J /.
Proof. Let us start with case (i): A D Mn.C/, H D Mn.C/ and J.a/ D a�, that
is, J0.a/ D at . Let U D .uij / be the fundamental corepresentation of Au.n/, eij

be the canonical basis of Mn.C/ and � the representation of A. Note that modulo
the identification of �.A/ with A, the corepresentation U � in Prop. 4.3 is U � DP

ij eij ˝ uij . Therefore

V.eij / D U �.J0 ˝ id/U �.J0 ˝ id/.eij ˝ 1/

D U �.J0 ˝ id/U �.ej i ˝ 1/ D U �.J0 ˝ id/
P
kl

eklej i ˝ u�
kl

D U �.J0 ˝ id/
P
k

eki ˝ u�
kj

D U �
P
k

eik ˝ u�
kj

D P
klm

elmeik ˝ ulmu
�
kj

D P
kl

elk ˝ uliu
�
kj
:

From this it follows that yG .A; J / is generated by elements uliu
�
kj

, i.e.,PQu;R.A/ D
PAu.n/.

In the cases (ii) and (iii) the proof is exactly the same, except that one gets
PQu;R.A/ D PAo.n/ and PQu;R.A/ D PAsp.n/, respectively.

As for (iv), if U D .uij / is the fundamental corepresentation ofQu;R.Mn.C// D
Au.n/, from the proof of Prop. 3.17 with F D I we see that U � D U ˚ xU , or
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explicitly,

U �.eij;r ˝ 1/ D
´P

k ekj;r ˝ uki if r D 1;P
k ekj;r ˝ u�

ki
if r D 2;

where eij;r and eij;2 are the canonical bases of the two copies of Mn.C/ in H . A
computation similar to the one for cases (i)–(iii), but with J0.eij;r/ D ej i;r , gives

V.eij;r/ D
´P

kl elk;r ˝ uliu
�
kj

if r D 1;P
kl elk;r ˝ u�

li
ukj ifr D 2:

(4.6)

Thus yG .A; J / is generated by products ulmu
�
kj

and u�
li
ukj .

The case (v) is similar, except for J0.eij;1/ D ej i;2 and J0.eij;2/ D ej i;1. The
formula for U � is the same, but now due to a different real structure, instead of (4.6)
we find:

V.eij;r/ D
´P

kl elk;r ˝ uliukj if r D 1;P
kl elk;r ˝ u�

li
u�

kj
if r D 2:

Thus, yG .A; J / is generated by products uliukj and their adjoints. This concludes
the proof.

4.2. The spectral triple on Aev. The spectral triple discussed in this section can be
found in [13]. The data is the following. The Hilbert space isM4.C/˚M4.C/, with
inner product ha˚b; c˚d i D tr.a�cCb�d/. The real structure is the map a˚b 7!
b� ˚a�, where � is the Hermitian conjugation. The algebra Aev D H˚H˚M4.C/
acts on M4.C/ ˚ M4.C/ by left multiplication. Here we identify H with the real
subalgebra of M2.C/ with elements

q D
�
˛ ˇ

� Ň N̨
�

for ˛; ˇ 2 C, and we identify accordingly H ˚ H with the corresponding real
subalgebra of M2.C/˚M2.C/ � M4.C/.

For computational reasons, it is useful to rewrite the spectral triple as follows.
The map eij ˚ 0 7! ei ˝ ej ˝ e1 and 0 ˚ eij 7! ei ˝ ej ˝ e2 (with ei canonical
orthonormal basis vectors) is an isometry betweenM4.C/˚M4.C/ and the Hilbert
space H ´ C4 ˝ C4 ˝ C2; the corresponding representation � of Aev on H is
given by

�.a; b/ D a˝ I4 ˝ e11 C b ˝ I4 ˝ e22;

where a 2 H ˚ H and b 2 M4.C/.
The complex linear span of �.Aev/ inside B.H / is the complex C�-algebra

M2.C/ ˚ M2.C/ ˚ M4.C/. The real structure becomes the antilinear operator J
given by

J.� ˝  ˝ �/ D � ˝ �� ˝
�
0 1

1 0

�
��;
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where now � is the componentwise conjugation on C4 resp. C2.
Since we are going to need the CQGQu;R.A

ev/ Š C.SU.2//�C.SU.2//�Au.4/;

we fix the notation for its generators. The symbols .aij /i;j D1;2 and .akl/k;lD3;4

denote the canonical generators of the first and second copy of C.SU.2//. That is,
the first resp. the second copy of C.SU.2// is generated by the matrix elements of a
biunitary matrix �

a11 a12

�a�
12 a�

11

�
resp.

�
a33 a34

�a�
34 a�

33

�
;

and a21 D �a�
12, a22 D a�

11, a43 D �a�
34, a44 D a�

33, gives the involution.
For the generators of Au.4/, we use the usual symbols .uij /

4
i;j D1. We will de-

note the canonical basis of HC Š M2.C/ by the symbols Fij ; i; j D 1; 2 while
Eij;k , for i; j D 1; : : : ; 4 and k D 1; 2, will denote the generators of the k-th
copy of M4.C/ in M4.C/C ´ M4.C/ ˚ M4.C/. The unitary corepresentations
of Qu;R.H/ Š C.SU.2// on L2.M2.C/; tr/ and of Qu;R.M4.C// Š Au.4/ on
L2.M4.C/˚M4.C/; tr/, respectively, are given by

WH ´ F11 ˝ a11 C F12 ˝ a12 C F21 ˝ a21 C F22 ˝ a22;

WM4.C/ ´
4P

i;j D1

Eij;1 ˝ uij C
4P

i;j D1

Eij;2 ˝ u�
ij :

Lemma 4.8. We have

�C.Fij / D eij ˝ 1˝ e11; i; j D 1; 2; (4.7)

and

.�C ˝ id/WM4.C/ D
4P

i;j D1

eij ˝ 1˝ e22 ˝ uij ;

.�C ˝ id/WM4.C/ D
4P

i;j D1

eij ˝ 1˝ e22 ˝ u�
ij :

(4.8)

Proof. The isomorphism between the complex C�-algebras M2.C/ and H ˝R C is
determined by m ! m˝R 1 and im ! m˝R i for m 2 H. The eqs. 4.7 can now
be derived easily by observing that

F11 D i

��i 1
2

0

0 i 1
2

�
C
�

1
2

0

0 1
2

�
; F12 D i

�
0 �i 1

2�i 1
2

0

�
C
�
0 1

2�1
2

0

�
;

F21 D i

�
0 �i 1

2�i 1
2

0

�
C
�
0 �1

2
1
2

0

�
; F22 D i

�
i 1

2
0

0 �i 1
2

�
C
�

1
2

0

0 1
2

�
:

Similarly, the isomorphism betweenM4.C/˚M4.C/ andM4.C/˝RC, is determined
by .a˚ Na/ ! a˝R 1 and i.a˚ Na/ ! a˝R i . Under this isomorphism, a˚ 0 and
0˚ Na get mapped to 1

2
.a˝R 1� ia˝R i/ and 1

2
.a˝1C ia˝ i/, respectively. Using

these facts, (4.8) follows easily.
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We now compute the quantum gauge group.

Proposition 4.9. The quantum gauge group yG .Aev; J / of the spectral triple above
is the projective version of C.SU.2// � C.SU.2// � Au.4/.

Proof. Let U1 D P2
i;j D1 eij ˝ 1˝ e11 ˝ aij CP4

i;j D3 eij ˝ 1˝ e11 ˝ aij , U2 DP4
i;j D1 eij ˝ 1 ˝ e22 ˝ uij and V be the unitary corepresentation of C.SU.2// �

C.SU.2// � Au.4/ on L2..Aev/C; tr/. Then, by using (4.7) and (4.8), we have

.�C ˝ id/V D U1 ˚ U2:

In order to calculate .�C ˝ id/V .J0 ˝ id/.�C ˝ id/ xV .J0 ˝ id/, we first observe that
Uk.J0 ˝ id/ SUk.J0 ˝ id/ D 0 for k D 1; 2. Thus the only contributing terms are
U1.J0 ˝ id/SU2.J0 ˝ id/ and U2.J0 ˝ id/SU1.J0 ˝ id/.

A direct computation, using eqs. (4.8) and (4.7), yields

U1.J0 ˝ id/SU2.J0 ˝ id/ D P
k;l2f1;2g

or f3;4g

4P
i;j D1

ekl ˝ eij ˝ e11 ˝ aklu
�
ij ;

U2.J0 ˝ id/SU1.J0 ˝ id/ D P
k;l2f1;2g

or f3;4g

4P
i;j D1

eij ˝ ekl ˝ e22 ˝ uija
�
kl
:

Hence we have

.�C ˝ id/V .J0 ˝ id/.�C ˝ id/ xV .J0 ˝ id/

D P
k;l2f1;2g

or f3;4g

4P
i;j D1

ekl ˝ eij ˝ e11 ˝ aklu
�
ij C P

k;l2f1;2g
or f3;4g

4P
i;j D1

eij ˝ ekl ˝ e22 ˝ uija
�
kl
:

Thus the quantum gauge group of the spectral triple on Aev is generated by the
elements faklu

�
ij j k; l D 1; 2 or 3; 4; i; j D 1; : : : ; 4g.

The proof will be completed if we show that the elements of the form akla
�
ij for

i; j; k; l D 1; 2 or 3; 4 and uiju
�
kl

for i; j; k; l D 1; : : : ; 4 belong to this CQG. This
we show as follows.

We note that
P4

j D1 u
�
ijuij D 1 since .uij /

4
i;j D1 generate Au.4/. Thus we have

aija
�
kl

D P4
mD1 aiju

�
pmupma

�
kl

, which proves that aija
�
kl

belongs to the CQG.
Moreover, since each of the sets fa11; a12g and fa33; a34g is a set of generators

of C.SU.2//, we have a11a
�
11 C a�

12a12 D 1 D a33a
�
33 C a34a

�
34. Hence we have

uiju
�
kl

D .uija11/.a
�
11ukl/ C .uija12/.a

�
12ukl/, which proves that uiju

�
kl

belongs
to the CQG. This shows the result.

4.3. The finite-dimensional spectral triple of the Standard Model. For the spec-
tral triple .AF ;HF ;DF ; �F ; JF / describing the internal space F of the Standard
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Model (cf. [18] and references therein) we will use the notations of [8]. In particular,
the algebra AF and the Hilbert space HF are given by

AF D C ˚ H ˚M3.C/; HF D C2 ˝ C4 ˝ C4 ˝ C3:

The real structure JF is the composition of the componentwise complex conjugation
on HF with the linear operator

.JF /0 ´ 1˝ 1˝

0
BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA˝ 1;

and an element a D .
; q;m/ 2 AF (with 
 2 C, q 2 H and m 2 M3.C/) is
represented by

�F .a/ D q ˝ 1˝ e11 ˝ 1C
�

 0

0 N

�

˝ 1˝ e44 ˝ 1

C 1˝

0
BB@

 0 0 0

0

0 m

0

1
CCA˝ .e22 C e33/˝ 1;

where m is a .3 � 3/-block. We will not need the grading and the Dirac operator.

Proposition 4.10. The quantum gauge group yG .AF ; JF / of the finite geometry of
the Standard Model is the projective version of C.U.1// � C.SU.2// � Au.3/.

Proof. The proof is analogous to the one of Lemma 4.8 and Prop. 4.9.
LetWC,WH andWM3.C/ be the unitary corepresentations ofQu;R.C/ ' C.U.1//,

Qu;R.H/ ' C.SU.2// andQu;R.M3.C// ' Au.3/onL2.C˚C; tr/,L2.M2.C/; tr/
and L2.M3.C/ ˚ M3.C/; tr/, respectively. Proceeding as in the above-mentioned
lemma, we can deduce that

.�F
C ˝ id/WC D fI2 ˝ I4 ˝ e44 ˝ I3 C I2 ˝ e11 ˝ .e22 C e33/˝ I3g ˝ zI

(4.9a)

.�F
C ˝ id/WH D

2P
i;j D1

eij ˝ I4 ˝ e11 ˝ I3 ˝ aij ; (4.9b)

.�F
C ˝ id/WM3.C/ D

4P
i;j D2

I2 ˝ eij ˝ .e22 C e33/˝ I3 ˝ uij ; (4.9c)

where fa11; a12g are the generators of C.SU.2//, as in previous section, z is the
unitary generator of C.U.1// and fuij g4

i;j D2 generate Au.3/ .
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Let V D WC ˚ WH ˚ WM3.C/. Then, using the equations (4.9a), (4.9b) and
(4.9c), we have

.�C ˝ id/.V /..JF /0 ˝ id/.�C ˝ id/. xV /..JF /0 ˝ id/

D fI2 ˝ I4 ˝ e44 ˝ I3 C I2 ˝ e11 ˝ e44 ˝ I3g ˝ z Nz

C
2P

i;j D1

eij ˝ e11 ˝ e33 ˝ I3 ˝ za�
ij C

4P
i;j D2

I2 ˝ eij ˝ e44 ˝ I3 ˝ zu�
ij

C
2P

i;j D1

eij ˝ e11 ˝ e11 ˝ I3 ˝ aij Nz C
4P

i;j D2

2P
k;lD1

ekl ˝ eij ˝ e11 ˝ I3 ˝ aklu
�
ij

C
4P

i;j D2

I2 ˝ eij ˝ e22 ˝ I3 ˝ u�
ij Nz C

4P
i;j D2

2P
k;lD1

ekl ˝ eij ˝ e33 ˝ I3 ˝ uija
�
kl
:

From this equation the result follows by arguing as in Proposition 4.9.

5. Quantum automorphisms of real C�-algebras

The following observations is a simple restatement of Lemma 5.1 and 5.2 of [8].

Lemma 5.1. Let G be the group of automorphism of a real C�-algebra A. Then
C.G/ is the universal object in the category of commutative CQGsQ with a coaction
˛ W AC ! AC ˝Q such that .� ˝ �C.G// B ˛ D ˛ B � .

In Section 5.1, we define the category of quantum automorphisms of a finite-
dimensional real C�-algebra and prove the existence of a universal object. In Sec-
tion 5.2, we compute the universal object for Mn.R/ and Mn.H/. In Section 5.3,
we discuss quantum automorphisms and isometries of Mn.C/, thought of as a real
algebra.

5.1. Definition and existence of the quantum automorphism group. Motivated
by Lemma 5.1, we define quantum automorphisms of a finite-dimensional real
C�-algebra as follows.

Definition 5.2. Let A be a finite-dimensional real C�-algebra. We will denote by
Caut;R.A/ the category whose objects .Q; ˛/ are pairs, withQ a CQG and˛ W AC !
AC ˝Q a coaction on AC preserving the trace and such that

.� ˝ �/ B ˛ D ˛ B �; (5.1)

and morphisms .Q; ˛/ ! .Q0; ˛0/ are CQGs homomorphisms 	 W Q ! Q0 inter-
twining the coactions, i.e., .id ˝	/˛ D ˛0. The universal object in this category, if it
exists, will be denoted by Aaut;R.A/ and is called the quantum automorphism group
of A.
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Notice that the coinvariance of the trace is automatic in the commutative case,
while in general it must be imposed as an additional condition (necessary to prove the
existence of the universal object). Now we prove the existence of the quantum auto-
morphism group for all finite-dimensional real C�-algebras. We need a preliminary
lemma.

Lemma 5.3. Let A be a finite-dimensional real C�-algebra, letQ be a CQG and let
˛ W AC ! AC ˝Q be a coaction. Let I the C �-ideal ofQ generated by elements

.' ˝ id/.˛ B �.a/ � .� ˝ �/ B ˛.a//;
with a 2 AC and ' 2 .AC/

�. Then I is a Woronowicz C �-ideal ofQ.

Proof. Let a 2 AC and

T ´ ˛ B �.a/ � .� ˝ �/ B ˛.a/:
The ideal I is generated by

t' D .' ˝ id/.T /; ' 2 .AC/
�:

Let �I W Q ! Q=I be the quotient map. We need to prove that

.�I ˝ �I /�.t'/ D .' ˝ �I ˝ �I /.id ˝�/.T /

is zero for all '. It is enough to prove that .id ˝�I ˝�I /.id ˝�/.T / D 0. We have

.id ˝�/.T / D .id ˝�/ B ˛ B �.a/ � .� ˝� B �/ B ˛.a/
D .id ˝�/ B ˛ B �.a/ � .� ˝ � ˝ �/ B .id ˝�/ B ˛.a/
D .˛ ˝ id/ B ˛ B �.a/ � .� ˝ � ˝ �/ B .˛ ˝ id/ B ˛.a/;

where we used the fact that � is a �-homomorphism (and ˛ a coaction). Therefore,
since

.id ˝ �I / B ˛ B � D .id ˝ �I / B .� ˝ �/ B ˛;
we get

.id ˝�I ˝�I /.id ˝�/.T / D .id ˝�I ˝ id/.˛˝ id/ B .id ˝�I / B ˛ B �.a/
� .id ˝�I ˝�I /..� ˝ �/˛˝ �/ B ˛.a/

D .id ˝�I ˝ id/.˛˝ id/ B .id ˝�I / B .� ˝ �/ B ˛.a/
� .id ˝�I ˝�I /.˛ B � ˝ �/ B ˛.a/

D .id ˝�I ˝�I /.˛ B � ˝ �/ B ˛.a/
� .id ˝�I ˝�I /.˛ B � ˝ �/ B ˛.a/

D 0:

This concludes the proof.
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If A is a finite-dimensional complex C�-algebra, we denote by Caut.A/ the
category of CQGs with a coaction on A preserving the trace. It was proved in [36]
that this category has a universal object, here denoted by Aaut.A/.

Proposition 5.4. For a finite-dimensional real C � algebra A; the universal object
in the category Caut;R.A/ exists and it is given by Aaut;R.A/ D Aaut.A/=I , where I
is the ideal ofQ D Aaut.A/ defined in Lemma 5.3.

Proof. By Lemma 5.3, Aaut.A/=I is a CQG, and by construction it satisfies (5.1).
Hence it is an object in Caut;R.A/. Any object Q of Caut;R.A/ is an object in
Caut.A/, hence there exists a unique C �-homomorphism 	 W Aaut.A/ ! Q inter-
twining the coactions. SinceQ satisfies (5.1), 	 has I in the kernel and then factorizes
through a map Aaut.A/ ! Aaut.A/=I ! Q, proving that Aaut.A/=I is universal.

Remark 5.5. The simplest example is A D Rn. In this case AC D Cn is generated
by n orthogonal projections ıi with sum 1, and � is the complex conjugation. In
particular �.ıi / D ıi . The CQG Aaut.Cn/ D As.n/ is the quantum permutation
group of [36] (we use the notations of [3]): it is generated by a “magic unitary”
u D .uij /, i.e., a matrix whose entries are projections uij D u�

ij D u2
ij and on

each row and column of u these projections sum up to 1. The coaction on Cn is
ıi 7! Pn

j D1 ıj ˝ uij , and (5.1) is trivially satisfied. Hence, Caut;R.Rn/ D As.n/.

5.2. Quantum automorphisms of Mn.R/ and Mn.H/. We will need the following
lemma for the purpose of the computation of the quantum automorphism group.

Lemma 5.6. Let Q be a C�-algebra which is generated by elements akl
ij satisfying

the eqs. (4.1)–(4.3) of [36] such that bkl
ij D .akl

ij /
� also satisfy (4.1)–(4.3) of [36].

ThenQ is commutative.

Proof. By (4.2) of [36], we have
P

r a
ij

kr
amn

rl
D ıjma

in
kl

, while the eq. (4.1) of [36]
for bkl

ij D alk
j i gives

P
m a

mn
rl
a

pm
qs D ırsa

pn

ql
. Using these two equations, we get

P
m

�P
r

a
ij

kr
amn

rl

�
a

pm
qs D P

m

ıjma
in
kl
a

pm
qs D ain

kl
a

pj
qs ;P

r

a
ij

kr

�P
m

amn
rl
a

pm
qs

� D P
r

a
ij

kr
ırsa

pn

ql
D a

ij

ks
a

pn

ql
:

Hence akl
ij a

rs
mn D aks

ina
rl
mj . A similar computation, but exchanging the roles of akl

ij

and bkl
ij D .akl

ij /
� D alk

j i , gives ars
mna

kl
ij D aks

ina
rl
mj . These two equations together

imply that the generators of Q commute: ars
mna

kl
ij D akl

ij a
rs
mn. This proves that the

C�-algebra Q is commutative.

Proposition 5.7. Aaut;R.Mn.R// is isomorphic to C.PO.n//.
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Proof. We use Prop. 5.4 to determine Aaut;R.Mn.R//. Let fakl
ij gn

i;j;k;lD1
be the gen-

erators of the quantum automorphism group Aaut.Mn.C//, in the notation of Theo-
rem 4.1 of [36], with coaction ˛.eij / D P

kl ekl ˝ akl
ij in the canonical basis eij of

Mn.C/. The additional condition (5.1) gives

akl
ij D .akl

ij /
�:

Thus, both akl
ij and bkl

ij D .akl
ij /

� also satisfy eqs. (4.1)–(4.5) of [36] and so by
Lemma 5.6, Q is commutative. Thus Aaut;R.Mn.R// D C.G/, where G is the
automorphism group of Mn.R/, i.e., G D PO.n/.

Proposition 5.8. Aaut;R.Mn.H// is isomorphic with C.PSp..n//, where Sp.n/ is the
quaternionic unitary group.

Proof. Similarly to Prop. 5.7, let fakl
ij g2n

i;j;k;lD1
be the generators of the quantum auto-

morphism groupAaut.M2n.C//, in the notation of Theorem 4.1 of [36], with coaction
˛.eij / D P

kl ekl ˝akl
ij in the canonical basis eij ofM2n.C/. Aaut;R.Mn.H// is the

quotient of Aaut.M2n.C// by the relation (5.1), where now � is given by Prop. 2.12,
point 3. This gives the relations

a
Qk Ql
Qr Qs D .�1/rCsCkClalk

sr ;

where for m 2 N we set zm ´ m C .�1/mC1. We claim that Aaut;R.Mn.H//
is commutative C�-algebra. The proof of this claim is similar to the proof of
Lemma 5.6. By (4.2) of [36], we have

P
r a

ij

kr
a

mp

rl
D ıjma

ip

kl
, while substituting

alk
sr D .�1/rCsCkCla

Qk Ql
Qr Qs in (4.1) we get

P
m

.�1/2mCkClCpCqCrCsa Qm Qk
Qr Ql a

Qp Qm
QqQs D .�1/kClCpCqıQr Qsa Qp Qk

Qq Ql :

Since the map m 7! Qm is a bijection (m runs from 1 to 2n), summing over m or Qm
makes no difference. Furthermore since .�1/2m D 1, renaming all the labels we
get the relation .�1/rCs

P
m a

mk
rl
a

pm
qs D ırsa

pk

ql
. Now we multiply both sides by

.�1/rCs and get
P

m a
mk
rl
a

pm
qs D .�1/rCsırsa

pk

ql
D ırsa

pk

ql
exactly as in the proof

of Lemma 5.6. Repeating verbatim the proof of Lemma 5.6 one can conclude that
Aaut;R.Mn.H// is commutative, hence isomorphic to C.G/ where G D PSp..n/ is
the well-known classical group of automorphism of Mn.H/.

5.3. Quantum symmetries of Mn.C/. We need a preliminary lemma.

Lemma 5.9. Let � denote the non-trivial generator of Z2, with action of � on PU.n/
induced by the mapu 7! Nu onU.n/. Then the group of real automorphisms ofMn.C/
is the semidirect product PU.n/ Ì Z2.
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Proof. In this proof, we will identify a scalar 
 2 C with the matrix 
In in Mn.C/.
Let ' W Mn.C/ ! Mn.C/ be an automorphism of real algebras. Then '.ia/ D

'.i/'.a/ for any a 2 Mn.C/. '.i/must be central, hence proportional to the identity,
and satisfy '.i/2 D �1. Thus we have only two cases: '.i/ D i (and ' is complex
linear) or '.i/ D �i (and ' is antilinear). Any antilinear automorphism is of the
form a 7! '.Ja/, where Ja D Na is a canonical antilinear automorphism and ' is
complex linear. Any complex linear automorphism ' is inner, hence of the form
'u.a/ D uau� with u 2 U.n/, and J'uJ D ' Nu. This induces an action of Z2 on
PU.n/. The classical group of automorphisms is then PU.n/ Ì Z2.

Proposition 5.10. Aaut;R.Mn.C// is isomorphic to C.PU.n/ Ì Z2/.

Proof. Recall that for A D Mn.C/, AC D Mn.C/˚Mn.C/ and �.a; b/ D . Nb; Na/.
Let fakl

ij;xygn
i;j;k;lD1

; x; y D 1; 2 be the generators of the quantum automorphism
group Q D Aaut.Mn.C/˚Mn.C//, in the notation of Theorem 5.1 of [36]. Notice
that for any fixed r , s, from equations (5.1)–(5.3) of [36] we see that akl

ij;rs satisfy
(4.1)–(4.3) therein.

It follows from Prop. 5.4 that Aaut;R.Mn.C// is the quotient of Q by the relation
(coming from (5.1))

akl
ij;11 D .akl

ij;22/
�; akl

ij;12 D .akl
ij;21/

�:

Since both akl
ij;11 and akl

ij;22 D .akl
ij;11/

� satisfy the equations (4.1)–(4.3) of [36], by

Lemma 5.6, they generate a commutative C �-subalgebra Q1 � Q. Similarly akl
ij;12

generate a commutative C �-subalgebra Q2 � Q.
Note that akl

ij;22 D .akl
ij;11/

� D alk
j i;11 and akl

ij;21 D .akl
ij;12/

� D alk
j i;12, thus akl

ij;11

and akl
ij;12 are a complete set of generators, and Aaut;R.Mn.C// is a quotient of the

free product Q1 �Q2. With akl
ij ´ akl

ij;11 and bkl
ij ´ akl

ij;12, from (5.1) of [36] we
get P

m

akm
ij;11a

ml
pq;12 D P

m

akm
ij bml

pq D 0;
�P

m

akm
pq;21a

ml
ij;22

�� D P
m

aml
ij b

km
pq D 0;

P
m

akm
ij;12a

ml
pq;11 D P

m

bkm
ij aml

pq D 0;
�P

m

akm
pq;22a

ml
ij;21

�� D P
m

bml
ij a

km
pq D 0;

plus the similar ones where one sums over lower indices. Now, with a trick similar
to the proof of Lemma 5.6, we computeP

m

�P
r

a
ij

kr
amn

rl

�
b

pm
qs D P

m

ıjma
in
kl
b

pm
qs D ain

kl
b

pj
qs ;P

r

a
ij

kr

�P
m

amn
rl
b

pm
qs

� D P
r

a
ij

kr
� 0 D 0:

This proves that akl
ij b

rs
pq D 0 for all the values of the labels. Repeating the same,

but exchanging the role of a and b, we get brs
pqa

kl
ij D 0 too. Hence, as a C�-algebra



468 J. Bhowmick, F. D’Andrea, B. Das, and L. Dąbrowski

Q D Q1 ˚ Q2 is commutative. The CQG isomorphism Q ' C.PU.n/ Ì Z2/

follows from Lemma 5.9.

We end this article by identifying some categories of “quantum symmetries” of
Mn.C/, whose universal objects are the half-liberated quantum unitary and orthog-
onal groups and the free quantum orthogonal group.

Proposition 5.11. Consider the category of pairs .Q;U /, where Q has a unitary
corepresentation U on Cn so that the adjoint action extends to a quantum automor-
phism of the real C�-algebraMn.C/. Then the universal object in this category exists
and is isomorphic to A�

u.n/.
Consider the subcategory consistingof pairs .Q;U / such thatU BJ D .J˝�/BU ,

where J is the componentwise conjugation on Cn. Then the universal object in this
category exists and is isomorphic to A�

o.n/.

We omit the proof of this proposition since it is very similar to the proof of Prop. 5.3
of [8].

We recall now briefly the notion of quantum isometry group from [24]. This
generalizes the notion of orientation preserving isometries of a closed Riemannian
spin manifold to the framework of spectral triples and CQGs.

For a finite-dimensional odd spectral triple .A;H ; 0; J /, with Dirac operator
D D 0, the definition is as follows [24]. As usual, we choose an orthonormal basis
for H , and denote by J0 the composition of J with the complex conjugation on the
components of H .

Definition 5.12. A pair .Q;U / is a quantum family of “orientation and real structure
preserving isometries” for .A;H ; 0; J / ifQ is a unital C�-algebra andU is a unitary
element of B.H /˝Q such that

.J0 ˝ 1Q/ xU D U.J0 ˝ 1/; AdU .A/ � A ˝Q:

The category with objects .Q;U / as in Def. 5.12 and morphisms given by unital
�-homomorphisms intertwining the corepresentations, has a universal object denoted
by AQISOC

J .A;H ; 0; J /. It has a structure of a CQG and the associated unitary op-
erator, say U0, is a faithful unitary corepresentation. The quantum isometry group
QISOC

J .A;H ; 0; J / is the Woronowicz C �-subalgebra of AQISOC
J .A;H ; 0; J / gen-

erated by the elements f.' ˝ id/AdU0
.a/ j a 2 A; ' 2 A�g.

Proposition 5.13. Suppose that J is the antilinear map on Cn given by complex
conjugation on the components. Then AQISOC

J .Mn.C/;Cn; 0; J / D Ao.n/ and
QISOC

J .Mn.C/;Cn; 0; J / D PAo.n/.

Proof. Let feign
iD1 be a basis of Cn and U.ei / D P

j ej ˝ aj i , where aj i 2 Q.
Then the relation UJ.ei / D f.J ˝ �/U g.ei / implies that aij D a�

ij for all i; j D
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1; 2; : : : ; n. Thus the matrix u ´ .aj i / is a unitary and satisfies u D Nu implying
that Q is a quantum subgroup of Ao.n/. Since Ao.n/ belongs to the category, this
concludes the proof.
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