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Abstract. In this article we establish an explicit link between the classical theory of de-
formations à la Gerstenhaber (and a fortiori with the Hochschild cohomology) and (weak)
PBW-deformations of homogeneous algebras. Our point of view is of cohomological nature.
As a consequence, we recover a theorem by R. Berger and V. Ginzburg, which gives a precise
condition for a filtered algebra to satisfy the so-called PBWproperty, under certain assumptions.
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Introduction

Given a graded k-algebra A D T V=hRi with R � V ˝N there are two notions
of deformation of A available: PBW-deformations and weak PBW-deformations,
as defined by R. Berger and V. Ginzburg in [1] and classical deformations (after
M. Gerstenhaber). The main goal of this article is to construct explicit equivalences
between these concepts, under suitable hypotheses. Our construction is strongly
related to Hochschild cohomology theory. One of our main motivations is to study
the deformation theory of several examples of (graded)N -Koszul algebras of interest,
and since the Hochschild cohomology of many of these algebras is known, we believe
that it is quite fruitful to have such a direct connection.

We shall briefly explain our results in more detail. We consider a semisimple ring
k containing a field F of characteristic zero, such that ke D k˝F k

op is semisimple.
Let A D T V=hRi be an N -homogeneous k-algebra (i.e., R � V ˝N ). We are
interested in studying filtered algebras U D T V=hP i with P � LN

iD0 V
˝i such

that R D �N .P /, for �N W T V ! V ˝N the canonical projection, which satisfy an
extra property: the surjective morphism of graded algebras p W A ! gr.U / induced
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by the projection T V ! U is an isomorphism. In this case U is called a PBW-
deformation of A. The condition of p being injective is equivalent to an infinite
number of equalities between certain k-bimodules given by intersections of tensor
powers of V and R (see Section 2.1). The filtered algebra U is said to be a weak
PBW-deformation of A if only two of this set of equalities are satisfied (see (2.1) and
(2.2)).

We provide explicit constructions under the hypothesis that TorA
3 .k; k/ is concen-

trated in degree N C 1 as follows: given a graded deformation of A we construct
a weak PBW-deformation of A, and, conversely, given a weak PBW-deformation of
A we construct a graded deformation, such that both constructions are inverse up to
equivalence. They are completely explicit (see Sections 2.3 and 2.4). On the other
hand, it is well known, without the assumption on the torsion group of A, that for
any filtered algebra U satisfying the PBW property one can naturally obtain a graded
deformation At of A by considering the Rees algebra R.U /, and conversely, given
a graded deformation At of A, one obtains a filtered algebra U satisfying the PBW
property taking a generic fiber At=ht � 1i. These two constructions provide quasi-
inverse functors for the respective categories. Finally, under the assumption that
TorA

3 .k; k/ is concentrated in degreeN C 1, we notice that the explicit constructions
we defined in fact coincide with the previous general ones, implying Theorem 1.2
and Theorem 3.4 of [1], which state that the notion of a weak PBW-deformation and
of a PBW-deformation coincide if TorA

3 .k; k/ is concentrated in degree N C 1. We
would like to point out that the procedure exhibited here allows to find the deformed
product of At explicitly from the filtered algebra, even though the computations are
often very hard to perform in general.

We would also like to remark that a similar construction has been already consid-
ered in the (second part of the) proof of Theorem 1.1 of the article [5] of G. Fløystad
and J. E. Vatne. However, the mentioned proof contains a mistake. More precisely,
following the notation of that article, on p. 122, after the identity defining � on line
22, it is stated that � B � vanishes. This is not necessarily true, because there is in
principle no identification of the Koszul resolution K� inside the bar resolution B�,
which is compatible with taking brackets Œ1;��. In fact, this can also be noticed from
the fact that the recursion formulas for the cochains giving the deformed product cor-
responding to a weak PBW-deformation explained in Proposition 2.11 of Section 2.3
are indeed more complicated.

The article is organized as follows. In the first section we recall some generalities
about the theory of N -homogeneous algebras over a (not necessarily commutative)
semisimple ring k containing a fieldF of characteristic zero such that ke D k˝F k

op

is semisimple, and make an intensive study of the (reduced) Hochschild resolution
and a “Koszul-like” projective resolution of bimodules of an N -homogeneous al-
gebra satisfying some vanishing condition on the torsion groups. In Section 2, we
first recall general facts on PBW-deformations and weak PBW-deformations of N -
homogeneous algebras and the classical graded deformation theory à la Gerstenhaber.
Later, in Sections 2.3 and 2.4 we establish a link between these concepts. Finally, in
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Section 3 we prove the main results of this paper, namely Theorems 3.1, 3.3 and 3.5
and we give several examples.

Acknowledgements. We would like to thank Roland Berger for several comments
which helped to improve the article. We would also like to thank the referee for a
careful reading of the manuscript.

1. Generalities

From now on, k will be a (not necessarily commutative) semisimple ring containing
a field F of characteristic zero. We consider ke D k˝F k

op. We assume further that
ke is semisimple. By k-bimodule we will always mean a k-bimodule such that the
action of F is symmetric, i.e., a �m D m � a for all a 2 F , and m in the k-bimodule
M . Note that we do not assume the action of k on the bimodule to be symmetric.
It is clear that this definition of k-bimodule is equivalent to the notion of a (say left)
ke-module. As a matter of notation, all unadorned tensor products ˝ are over k.

A k-algebra denotes a monoid object in the monoidal category of k-bimodules,
i.e., it is a k-bimodule A provided with a morphism � W A˝A ! A of k-bimodules,
which will be denoted �.a ˝ a0/ D a � a0, and an element 1 2 A, such that � is
associative, 1 �a D a �1 D a for all a 2 A, and c �1 D 1 �c for all c 2 k. Equivalently,
a k-algebra is a ring A provided with a unitary ring homomorphism iA W k ! A

where Im.iA/ is not necessarily contained in Z.A/. For n � 2, �.n/ W A˝n ! A

will denote the morphism of k-bimodules defined recursively by �.2/ D � and
�.nC1/ D �.n/ B .� ˝ 1

˝.n�1/
A / for n > 2. A morphism from a k-algebra A to a

k-algebra B is a ring homomorphism f W A ! B such that f B iA D iB .
A graded k-bimodule will be a k-bimodule V together with a decomposition as

a direct sum of k-bimodules V D L
n2Z Vn. A morphism of graded k-bimodules

is just a degree-preserving morphism of k-bimodules. The category of graded k-
bimodules is monoidal in the obvious manner. We will denote the homomorphism
group between two graded k-bimodules M and M 0 by homke.M;M 0/. The shift
functor .�/Œ1�, together with its iterations, is defined in the usual way, and we recall
that the internal group of homomorphisms between two graded k-bimodules M and
M 0 is given by Homke.M;M 0/ D L

i2Z homke.M;M 0Œi �/. Moreover, a graded
k-algebra is a monoid object in the monoidal category of graded k-bimodules, i.e., a
k-algebra provided with a decomposition of k-bimodules of the formA D L

n2ZAn

such that 1 2 A0 and An � Am � AnCm for all n;m 2 Z. In fact, we shall usually
assume that A D L

n2N0
An.

Given a graded k-algebra A, a graded left A-module M is given by a graded
k-bimodule structure onM together with a morphism of graded k-bimodules � W A˝
M ! M , which will be denoted by �.a ˝ m/ D a � m for a 2 A and m 2 M

satisfying the usual mixed associative axiom, i.e., a � .a0 � m/ D .a � a0/ � m for all
a; a0 2 A and m 2 M , and that 1 � m D m for all m 2 M . As usual, a morphism
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of graded left A-modules is just a degree-preserving morphism of A-modules, and
the homomorphism group between two graded left A-modules M and M 0 will be
denoted by homA.M;M

0/. We note that shift functor .�/Œ1� may also be defined
on a graded left A-module M , where the underlying structure of graded k-bimodule
is the same as before, and the obvious action. As in the previous case, the internal
group of homomorphisms between two graded left A-modules M and M 0 is given
by HomA.M;M

0/ D L
i2Z homA.M;M

0Œi �/. The usual definition of graded right
A-module and graded A-bimodule are analogous, and using the obvious structure of
graded k-algebra on Ae D A˝ Aop we also see that the notion graded A-bimodule
and graded (say left) Ae-module coincide.

Let N be a positive integer, N � 2. By complex (resp. N -complex) we mean a
nonnegatively graded module over a k-algebra A, provided with an endomorphism
d of degree �1 such that d2 D 0 (resp. dN D 0).

We note that, since k is semisimple, it is von Neumann regular, so all the consid-
erations in [1], Section 2, in order to properly consider the notion of Koszul algebra
also apply to this case. LetA D T V=hRi be anN -homogeneous algebra, where V is
a k-bimodule (considered to be concentrated in degree 1) and R is a k-subbimodule
of V ˝N . In this situation, we shall identify A=k with the k-subbimodule IC of A
spanned by elements of strictly positive degree. We will make use of the number
function given by

� W N0 ! N0; �.n/ D
´
Nm if n D 2m,

NmC 1 if n D 2mC 1.

For n 2 N0, define Wn the k-subbimodule of V ˝n given by V ˝n if n < N , and by

n�NT
iD0

V ˝i ˝R˝ V ˝.n�i�N /

if n � N . Then Wi D V ˝i for i D 0; : : : ; N � 1, WN D R, and WN C1 D
.R ˝ V / \ .V ˝ R/, which we shall also denote by RN C1. Note that Wn may be
regarded as a graded k-bimodule concentrated in degree n.

We recall the bimodule Koszul complex .K�.A/; d�/ of A, defined in [2] for the
case that k D F is a field. First, we consider the graded A-bimodule given by
.A˝Wn ˝ A/n2N0

. Then, for each n 2 N, there are two A-bimodule maps

dL
n ; d

R
n W A˝Wn ˝ A ! A˝Wn�1 ˝ A

given by

dL
n .a0 ˝ � � � ˝ anC1/ D a0a1 ˝ a2 ˝ � � � ˝ anC1;

dR
n .a0 ˝ � � � ˝ anC1/ D a0 ˝ � � � ˝ an�1 ˝ ananC1:

We note that dL and dR commute. We shall denote an element a ˝ ˛ ˝ b 2
A˝Wn ˝ A, where a; b 2 A and ˛ 2 Wn, in the shorter form aj˛jb.
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If q is a primitive N -th root of unity, we consider the map of A-bimodules

db
n W A˝Wn ˝ A ! A˝Wn�1 ˝ A

given by db
n D dL

n � qn�1dR
n . It is trivially verified that ..A ˝ W� ˝ A/; db

�
/ is

an N -complex. The bimodule Koszul complex .K�.A/; d�/ of A is the .1;N � 1/-
contraction of the previous N -complex, that is Kn.A/ D A ˝ W�.n/ ˝ A with
differential d� given by the corresponding successive composition of the differential
of the previous N -complex. It is easy to see that

dn D

8̂̂̂
<̂
ˆ̂̂̂:

dL
NmC1 � dR

NmC1 if n D 2mC 1,

dL
N.m�1/C2 : : : d

L
Nm C dR

N.m�1/C2 : : : d
R
Nm

C
N �3P
iD0

dL
N.m�1/C2

: : : dL
Nm�i�1d

R
Nm�i : : : d

R
Nm

if n D 2m.

We thus notice that theN -th root of unity is in some sense superfluous, since we may
define the Koszul complex without invoking it. The algebra A is called Koszul if the
bimodule Koszul complex .K�.A/; d�/ is a resolution of A-bimodules of A for the
map d0 D � W K0.A/ D A ˝ A ! A given by the product � of A. We recall that
the category of A-bimodules is equivalent to the category of (say left) modules over
Ae D A˝F A

op (not overAe D A˝kA
op, because we are not considering symmetric

k-bimodules!). Moreover, since HomAe.A˝Wn ˝A;�/ ' Homke.Wn;�/, we see
that the bimodule Koszul resolution consists of projective graded A-bimodules, i.e.,
projective graded left Ae-modules.

For our purposes, we will be interested in a weaker condition than that of be-
ing Koszul: we shall suppose that A is an N -homogeneous algebra satisfying that
TorA

3 .k; k/ is concentrated in degree N C 1. This is equivalent to say that there ex-
ists a projective resolution (of graded A-bimodules) of A that coincides with the one
given by the Koszul bimodule complex for homological degrees less than or equal
to three (see [1], Sec. 2). This assumption comes from the fact that all the computa-
tions we shall perform in this article are restricted to those homological degrees. In
any case, we shall still denote by K�.A/ the former projective resolution (of graded
A-bimodules) of A, and call it minimal.

The (graded) Hochschild complex .C�.A/; b�/ of A is given by Cn.A/ D A ˝
A˝n ˝ A for n 2 N0, with differential

bn.a0 ˝ � � � ˝ anC1/ D
nP

iD0

.�1/ia0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ anC1

for n 2 N. We will also write a0j : : : janC1 instead of a0 ˝ � � � ˝ anC1. This
complex gives a projective resolution C�.A/ ! A of A in the category of (graded)
A-bimodules provided with morphisms of degree zero via b0 D � W A ˝ A ! A,
called the Hochschild resolution. Moreover, we may consider the reduced (graded)
Hochschild resolution . xC�.A/; Nb�/ of A. The underlying graded A-bimodule is given
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by xCn.A/ D A˝ .A=k/˝n ˝ A for n 2 N0, so there exists a canonical projection
pn W Cn.A/ ! xCn.A/, and the differential Nbn is induced by bn for n 2 N such that
p� becomes a morphism of complexes. It gives a projective resolution of A in the
category of (graded)A-bimodules provided with morphisms of degree zero, called the
reduced Hochschild resolution xC�.A/ ! A of A. Using the identification between
A=k and the k-subbimodule of A spanned by the strictly positive elements of A, we
will usually denote an element of xCn.A/ simply by a0 ˝ a1 ˝ � � � ˝ an ˝ anC1,
or a0ja1j : : : janjanC1, where deg.ai / � 1 for i D 1; : : : ; n, instead of the more
correct a0 ˝ Œa1�˝ � � � ˝ Œan�˝ anC1 (or a0jŒa1�j : : : jŒan�janC1), where Œa� 2 A=k
is the class of a 2 A. Furthermore, if by chance there exists i 2 f1; : : : ; ng such that
deg.ai / D 0, we may also consider a0ja1j : : : janjanC1 as the zero element of xCn.A/.
We remark that, under this identification, Nbn is the restriction of bn to A˝ I˝n

C ˝A.
If M is a graded A-bimodule, the graded Hochschild cohomology groups of A

with coefficients in M , which will be also denoted by H �
.A;M/, are given by the

cohomology of the cochain complex

HomAe.C�.A/;M/ D L
j 2Z

homAe.C�.A/;MŒj �/

' Homke.A˝�;M/

D L
j 2Z

homke.A˝�;M Œj �/

with the induced differential, where hom.�;�/ is the set of degree-preserving homo-
morphisms. Again, these cohomology groups can be computed using either the com-
plex HomAe.C�.A/;M/ or HomAe. xC�.A/;M/. If M D A, we shall write HH �

.A/

instead of H �
.A;A/. In this case, we know that H �

.A;M/ ' Ext
�

Ae=ke.A;M/, the
relative derived functors of HomAe.A;�/. We see that H �

.A;M/ has an internal
grading or weight that comes from the gradings of A and M , which we shall denote
by H �

.A;M/�.
Before proceeding further, we shall state some notation. Let us consider a positive

integerp � n and a subset I D fi1 < � � � < img of f1; : : : ; pg. Given a decomposition
n D n1 C � � � C np of n (nj 2 N0) satisfying that nij D 1 for j D 1; : : : ; m, we

define the collection of ke-linear maps q.n1;:::;np/

i homogeneous of degree zero given

by the canonical map q.n1;:::;np/

i W V ˝ni ! A, if i … I , and q.n1;:::;np/

i D 1V , if

i 2 I . Then, consider the map par.n1;:::;np/;I D q
.n1;:::;np/

1 ˝ � � � ˝ q
.n1;:::;np/
p , so it

is a map from V ˝n to

A˝.i1�1/ ˝ V ˝ A˝.i2�i1�1/ ˝ V ˝ � � � ˝ V ˝ A˝.im�im�1�1/ ˝ V ˝ A˝.p�im/:

We now define the maps par0
.n1;:::;np/;I

and Parp;I from V ˝n to A˝ V ˝ A˝ V ˝
� � � ˝ V ˝ A˝ V ˝ A, where the k-bimodule V appears m times in the last tensor
product. The former is given by the composition of

.�.i1�1/ ˝ 1V ˝ �˝.i2�i1�1/ ˝ 1V ˝ � � � ˝ 1V ˝ �.im�im�1�1/ ˝ 1V ˝ �.p�im//
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and par.n1;:::;np/;I . The latter is defined as Parp;I D P
par0

.n1;:::;np/;I
, where the

last sum is indexed over all decompositions .n1; : : : ; np/ of n such that nij D 1 for
j D 1; : : : ; m. In general, we shall write

Parp;I .˛/ D ˛.1/ ˝ N̨.2/ ˝ ˛.3/ ˝ � � � ˝ ˛.2m�1/ ˝ N̨.2m/ ˝ ˛.2mC1/;

where the bars are used for the elements with indices in I . We remark that in the
previous expression a sum over all decompositions of ˛ in p terms such that the ones
with bars belong to V is implicit. For instance, if ˛ D v1 : : : vn 2 V ˝n, we denote

Par3;f2g.˛/ D ˛.1/j N̨.2/j˛.3/ 2 A˝ V ˝ A

the sum over all decompositions of ˛ such that the term with the bar N̨.2/ belongs to
V , i.e., it is given by

1jv1jv2 : : : vn C
n�2P
iD1

v1 : : : vi jviC1jviC2 : : : vn C v1 : : : vn�1jvnj1:

This should be seen as a similar notation to Sweedler’s one for coproducts. We
emphasize that each term ˛.i/ is homogeneous and may be (and shall be) taken equal
to 1 if it has degree 0.

The following remarks are easy consequences of the definitions:

Fact 1.1. If ˛ D v1 : : : vn 2 V ˝n and ˇ D w1 : : : wm 2 V ˝m, then

.˛ˇ/.1/j.˛ˇ/.2/j.˛ˇ/.3/ D ˛.1/j N̨.2/j˛.3/ˇ C ˛ˇ.1/j Ň
.2/jˇ.3/:

Fact 1.2. If ˛ D v1 : : : vn 2 V ˝n, let us consider ˛.1/j N̨.2/j˛.3/ 2 A ˝ V ˝ A �
A˝ A˝ A. Then,

b1.˛.1/j N̨.2/j˛.3// D ˛.1/ N̨.2/j˛.3/ � ˛.1/j N̨.2/˛.3/ D ˛j1 � 1j˛:

We see that

d2.1jr j1/ D r.1/j Nr.2/jr.3/; (1.1)

d3.1jwj1/ D vi jsi j1 � 1jri jui D Nw.1/jw.2/j1 � 1jw.1/j Nw.2/; (1.2)

where r 2 R, and w D P
i2I riui D P

i2I visi 2 .V ˝ R/ \ .R ˝ V / D RN C1

for ui ; vi 2 V , ri ; si 2 R and a finite set I of indices. We have omitted the sum
in (1.2) and we shall do so for the typical elements of RN C1: we shall simply write
w D riui D visi . Moreover, the previous choice of letters will be the usual one to
denote elements of R and RN C1, unless we say the contrary.

Since both the Hochschild and the minimal bimodule resolutions are projective
resolutions of graded A-bimodules of A, there exist unique (up to homotopy) com-
parison morphisms of graded A-bimodules �� W K�.A/ ! C�.A/ and 	� W C�.A/ !
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K�.A/. We define the morphisms of graded A-bimodules given by the extension of
the following expressions

�0 D 1A ˝ 1A; (SIGMA0)

�1 D 1A ˝ incV �A ˝ 1A; (SIGMA1)

�2.1jr j1/ D 1jr.1/j Nr.2/jr.3/; (SIGMA2)

�3.1jwj1/ D 1jvi jsi;.1/jNsi;.2/jsi;.3/ D 1j Nw.1/jw.2/j Nw.3/jw.4/: (SIGMA3)

We define N�� D p� B ��. It is easy to see that �0d1 D b1�1 and �1d2 D b2�2. These
identities immediately imply that N�0d1 D Nb1 N�1 and N�1d2 D Nb2 N�2 hold. We shall
check that �2d3 D b3�3, which also yields N�2d3 D Nb3 N�3. On the one hand, we see
that

b3�3.1jwj1/ D b3.1jvi jsi;.1/jNsi;.2/jsi;.3//

D vi jsi;.1/jNsi;.2/jsi;.3/ � 1jvisi;.1/jNsi;.2/jsi;.3/ C 1jvi jsi;.1/ Nsi;.2/jsi;.3/

� 1jvi jsi;.1/jNsi;.2/si;.3/

D vi jsi;.1/jNsi;.2/jsi;.3/ � 1jvisi;.1/jNsi;.2/jsi;.3/ C 1jvi jsi j1 � 1jvi j1jsi
D vi jsi;.1/jNsi;.2/jsi;.3/ � 1jvisi;.1/jNsi;.2/jsi;.3/;

where we have used Fact 1.2 and that 1jvi jsi j1 D 1jvi j1jsi D 0 since each si vanishes
in A. On the other hand,

�2d3.1jwj1/ D �2.vi jsi j1 � 1jri jui /

D vi jsi;.1/jNsi;.2/jsi;.3/ � 1jri;.1/j Nri;.2/jri;.3/ui :

The equality �2d3 D b3�3 then follows from the simple result:

Fact 1.3. If w D riui D visi 2 RN C1 for ui ; vi 2 V , ri ; si 2 R (summation
understood), then

1jvisi;.1/jNsi;.2/jsi;.3/ D 1jri;.1/j Nri;.2/jri;.3/ui :

Proof. We point out that in the first member of the previous identity we are considering
the decompositions of w in three terms where the first one has degree greater than
or equal to 1 and the second one has degree 1, whereas in the second member we
consider the decompositions of w in three terms where the second one has degree 1
but the third one has degree greater than or equal to 1.

We may decompose the sum 1jvisi;.1/jNsi;.2/jsi;.3/ in two separate cases: when
si;.3/ 2 k (in which case, it is equal to 1) and when si;.3/ has degree greater than or
equal to 1. We may write this as

1jvisi;.1/jNsi;.2/jsi;.3/ D 1jvisi;.1/jNsi;.2/jsi;.3/„ ƒ‚ …
deg.si;.3//>0

C 1jvisi;.1/jNsi;.2/j1:
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The same reasoning applies to 1jri;.1/j Nri;.2/jri;.3/ui , to give

1jri;.1/j Nri;.2/jri;.3/ui D 1jri;.1/j Nri;.2/jri;.3/ui„ ƒ‚ …
deg.ri;.1//>0

C 1j1j Nri;.1/jri;.2/ui :

However, since the terms 1jvisi;.1/jNsi;.2/j1 indicate all the decompositions of w
in two terms such that the second one has degree 1, we see that 1jvisi;.1/jNsi;.2/j1 D
1jri jui j1, which vanishes, since 1jri jui j1 2 C2.A/ and ri D 0 in A. A similar
argument implies that 1j1j Nri;.1/jri;.2/ui D 1j1jvi jsi 2 C2.A/ vanishes.

Hence, we only have to prove that

1jvisi;.1/jNsi;.2/jsi;.3/„ ƒ‚ …
deg.si;.3//>0

D 1jri;.1/j Nri;.2/jri;.3/ui„ ƒ‚ …
deg.ri;.1//>0

:

This identity holds, since both members are built from the decompositions of w in
three terms, where the first and third ones have degree greater than or equal to 1, and
the second one has degree 1.

Definition 1.4. Given an homogeneous element 1ja1j : : : janj1 2 Cn.A/ (resp. a1 ˝
� � �˝an 2 A˝n), we shall say that it isN -normalized if deg.a1/C� � �Cdeg.an/ < N .
Since N is fixed throughout this work, in both cases we will more simply say that it
is normalized.

If
P

i2I 1jai
1j : : : jai

nj1 2 Cn.A/ (resp.
P

i2I a
i
1 ˝ � � � ˝ ai

n 2 A˝n) satisfies that
deg.ai

1/ C � � � C deg.ai
n/ D N , deg.ai

1/; deg.ai
n/ > 0 and

P
i2I a

i
1 : : : a

i
n D 0 in

A (i.e., it belongs to R as an element of the tensor algebra T V ), we shall say thatP
i2I 1jai

1j : : : jai
nj1 (resp.

P
i2I a

i
1 ˝ � � � ˝ ai

n 2 A˝n) is a relation decomposition.
This could be also abbreviated by rel. decomp.

Finally, if
P

i2I 1jai
1jai

2jai
3j1 2 C3.A/ (resp.

P
i2I a

i
1 ˝ ai

2 ˝ ai
3 2 A˝3)

satisfies that deg.ai
1/ C deg.ai

2/ C deg.ai
3/ D N C 1, deg.ai

1/; deg.ai
3/ D 1 andP

i2I a
i
1a

i
2a

i
3 2 RN C1 as an element of the tensor algebra T V , we shall say thatP

i2I 1jai
1jai

2jai
3j1 (resp.

P
i2I a

i
1 ˝ ai

2 ˝ ai
3 2 A˝3) is a double relation decompo-

sition. It will be occasionally abbreviated by double rel. decomp.

Using the identification A=k ' IC, we have the analogous versions of the pre-
vious three definitions for elements of xCn.A/ or .A=k/˝n, which will be called in
the same way. We would like to note that the set of homogeneous elements in Cn.A/

(resp. A˝n, xCn.A/, .A=k/˝n) which are normalized form a k-subbimodule. The
same applies to the set of homogeneous elements which are relation decompositions,
or double relation decompositions.
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We partially define the morphisms of A-bimodules 	� as follows:

	0 D 1A ˝ 1A; (TAU0)

	1.1jaj1/ D a.1/j Na.2/ja.3/ if deg.a/ < N , (TAU1)

	2.1jajbj1/ D 0; if 1jajbj1 is normalized, (TAU2;1)

	2.1jai jbi j1/ D 1jr j1 if r D P
i2I

ai ˝ bi is a rel. decomp., (TAU2;2)

	3.1jajbjcj1/ D 0 if 1jajbjcj1 is normalized, (TAU3;1)

	3.1jai jbi jci j1/ D 0 if r D P
i2I

ai ˝ bi ˝ ci is a rel. decomp., (TAU3;2)

	3.1jai jbi jci j1/ D 1jwj1 if w D P
i2I

ai ˝ bi ˝ ci is a double rel. decomp. (TAU3;3)

We remark that the previous identities induce maps N	� from xC�.A/ toK�.A/ (partially
defined on the image under p� of the domain of definition of 	�). It is trivial to verify
that 	0b1 D d1	1 holds, wherever 	1 is defined. We shall check that 	1b2 D d2	2

and 	2b3 D d3	3 are verified where we have defined them. These identities would
imply that N	0

Nb1 D d1 N	1, N	1
Nb2 D d2 N	2 and N	2

Nb3 D d3 N	3 hold where they are defined.
These maps can be extended to complete morphisms of complexes of Ae-modules
	� W C�.A/ ! K�.A/ and N	� W xC�.A/ ! K�.A/, giving quasi-isomorphisms, by the
semisimplicity assumption on ke.

Let us start with 	1b2 D d2	2.

� If we apply d2	2 to a normalized element of the form 1jajbj1, we see that
d2	2.1jajbj1/ D 0. On the other hand,

	1b2.1jajbj1/ D 	1.ajbj1 � 1jabj1C 1jajb/
D ab.1/j Nb.2/jb.3/ � .ab/.1/j.ab/.2/j.ab/.3/ C a.1/j Na.2/ja.3/b;

which trivially vanishes by Fact 1.1, so 	1b2 D d2	2 for the elements 1jajbj1,
with deg.a/C deg.b/ < N .

� If we apply d2	2 to a relation decomposition of the form 1jai jbi j1 (with r DP
i2I ai ˝ bi ), we see that d2	2.1jai jbi j1/ D d2.1jr j1/ D r.1/j Nr.2/jr.3/. Anal-

ogously,

	1b2.1jai jbi j1/ D 	1.ai jbi j1 � 1jaibi j1C 1jai jbi /

D aibi;.1/j Nbi;.2/jbi;.3/ C ai;.1/j Nai;.2/jai;.3/bi ;

since 1jaibi j1 D 1jr j1 2 C1.A/, which vanishes. Now, using that

r.1/j Nr.2/jr.3/ D aibi;.1/j Nbi;.2/jbi;.3/ C ai;.1/j Nai;.2/jai;.3/bi ;

we conclude that 	1b2 D d2	2 where we have defined it.

Let us now prove that 	2b3 D d3	3.
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� If we apply d3	3 to a normalized element of the form 1jajbjcj1, we see that
d3	3.1jajbjcj1/ D 0. On the other hand,

	2b3.1jajbjcj1/ D 	2.ajbjcj1 � 1jabjcj1C 1jajbcj1 � 1jajbjc/;
which trivially vanishes by (TAU2;1), so 	2b3 D d3	3 for the elements of the
form 1jajbjcj1, with deg.a/C deg.b/C deg.c/ < N .

� If we apply d3	3 to a relation decomposition of the form 1jai jbi jci j1, we see
that d3	3.1jai jbi jci j1/ D 0. Also,

	2b3.1jai jbi jci j1/ D 	2.ai jbi jci j1�1jaibi jci j1C1jai jbici j1�1jai jbi jci / D 0;

where we have used (TAU2;1), since deg.ai /; deg.ci / > 0.

� If we apply d3	3 to a double relation decomposition of the form 1jai jbi jci j1
(with w D P

i2I ai ˝ bi ˝ ci ), we see that d3	3.1jai jbi jci j1/ D d3.1jwj1/ D
ai jbici j1 � 1jaibi jci . We note that, if w D riui D visi , then ai jbici j1 D
vi jsi j1 and 1jaibi jci D 1jri jui , since, for the first identity, each member is
a decomposition of w in two terms such that first one has degree 1, and the
argument for the second identity is analogous. On the other hand,

	2b3.1jai jbi jci j1/ D 	2.ai jbi jci j1 � 1jaibi jci j1C 1jai jbici j1 � 1jai jbi jci /

D ai jbici j1 � 1jaibi jci ;

where we have used that 1jaibi jci j1 D 1jri jui j1 and 1jai jbici j1 D 1jvi jsi j1
vanish in C2.A/, and (TAU2;2) for the other two terms. We conclude that
	2b3 D d3	3, where we have defined it.

Finally, there exist homotopies s� and t� for � 2 N0, which are morphisms of
A-bimodules, on the complexes xC�.A/ and K�.A/, respectively, such that

NbnC1sn C sn�1
Nbn D 1 xCn.A/ � N�n N	n; (1.14)

and
dnC1tn C tn�1dn D 1Kn.A/ � N	n N�n; (1.15)

hold for n 2 N0, respectively. We set

s�1 D 0; (S�1)

s0 D 0; (S0)

s1.1jaj1/ D �1ja.1/j Na.2/ja.3/; if deg.a/ < N , (S1)

s2.1jai jbi j1/ D 1jai jbi;.1/j Nbi;.2/jbi;.3/;

if 1jai jbi j1 is normalized or a relation decomposition,
(S2)

s3.1jai jbi jci j1/ D �1jai jbi jci;.1/j Nci;.2/jci;.3/;

if 1jai jbi jci j1 is normalized, a rel. decomp. or a double rel. decomp.
(S3)
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Note that in fact s3.1jai jbi jci j1/ vanishes if 1jai jbi jci j1 is a double relation decom-
position.

As previously indicated, the semisimplicity hypothesis on ke tells us that these
maps can be extended to complete morphisms ofAe-modules s� W xC�.A/ ! xC�C1.A/

satisfying the identity (1.14). We see clearly that 1 xC0.A/ � N�0 N	0 D Nb1s0 C s�1
Nb0

holds. Moreover, (1.14) for n D 1 is also verified, since, for deg.a/ < N ,

.1 xC1.A/ � N�1 N	1/.1jaj1/ D 1jaj1 � a.1/j Na.2/ja.3/;

and

. Nb2s1 C s0 Nb1/.1jaj1/ D Nb2.�1ja.1/j Na.2/ja.3//

D �a.1/j Na.2/ja.3/ C 1ja.1/ Na.2/ja.3/ � 1ja.1/j Na.2/a.3/

D �a.1/j Na.2/ja.3/ C 1jaj1 D 1jaj1 � a.1/j Na.2/ja.3/;

where we have used Fact 1.2 in the penultimate equality.
We shall now check that (1.14) holds for n D 2 when applied to a normalized

1jajbj1, or to a relation decomposition 1jai jbi j1.
� If we apply (1.14) for n D 2 to a normalized element of the form 1jajbj1, we

see that .1 xC2.A/ � N�2 N	2/.1jajbj1/ D 1jajbj1, since N	2.1jajbj1/ D 0. On the
other hand,

s1 Nb2.1jajbj1/ D s1.ajbj1 � 1jabj1C 1jajb/
D �ajb.1/j Nb.2/jb.3/ C 1j.ab/.1/j.ab/.2/j.ab/.3/

� 1ja.1/j Na.2/ja.3/b

D �ajb.1/j Nb.2/jb.3/ C 1jab.1/j Nb.2/jb.3/;

where we have used Fact 1.1. Besides,

Nb3s2.1jajbj1/ D Nb3.1jajb.1/j Nb.2/jb.3//

D ajb.1/j Nb.2/jb.3/ � 1jab.1/j Nb.2/jb.3/ C 1jajb.1/
Nb.2/jb.3/

� 1jajb.1/j Nb.2/b.3/

D ajb.1/j Nb.2/jb.3/ � 1jab.1/j Nb.2/jb.3/ C 1jajbj1;
where we have used Fact 1.2 in the last equality. By adding the previous
computations, we see that (1.14) holds for n D 2 when applied to 1jajbj1
if deg.a/C deg.b/ < N .

� If we apply (1.14) for n D 2 to a relation decomposition 1jai jbi j1 (with r DP
i2I ai ˝ bi ), we see that

.1 xC2.A/ � N�2 N	2/.1jai jbi j1/ D 1jai jbi j1 � N�2.1jr j1/
D 1jai jbi j1 � 1jaibi;.1/j Nbi;.2/jbi;.3/

� 1jai;.1/j Nai;.2/jai;.3/bi :
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On the other hand,

s1 Nb2.1jai jbi j1/ D s1.ai jbi j1C 1jai jbi /

D �ai jbi;.1/j Nbi;.2/jbi;.3/ � 1jai;.1/j Nai;.2/jai;.3/bi ;

where we have used that the elements 1jaibi j1 D 1jr j1 in xC1.A/ vanish. Also,

Nb3s2.1jai jbi j1/ D Nb3.1jai jbi;.1/j Nbi;.2/jbi;.3//

D ai jbi;.1/j Nbi;.2/jbi;.3/ � 1jaibi;.1/j Nbi;.2/jbi;.3/

C 1jai jbi;.1/
Nbi;.2/jbi;.3/ � 1jai jbi;.1/j Nbi;.2/bi;.3/

D ai jbi;.1/j Nbi;.2/jbi;.3/ � 1jaibi;.1/j Nbi;.2/jbi;.3/ C 1jai jbi j1;
where we have used Fact 1.2 in the last equality. Adding both computations, we
see that (1.14) holds for n D 2 when applied to 1jai jbi j1, with r D P

i2I ai ˝
bi 2 R, deg.ai /, deg.bi / > 0.

We shall now check that (1.14) holds for n D 3 when applied to a normal-
ized 1jajbjcj1, to a relation decomposition or to a double relation decomposition
1jai jbi jci j1.

� If we apply (1.14) for n D 3 to a normalized element or to a relation decom-
position of the form 1jai jbi jci j1, we see that .1 xC3.A/ � N�3 N	3/.1jai jbi jci j1/ D
1jai jbi jci j1, since N	3.1jai jbi jci j1/ D 0. On the other hand,

s2 Nb3.1jai jbi jci j1/ D s2.ai jbi jci j1 � 1jaibi jci j1C 1jai jbici j1 � 1jai jbi jci /

D ai jbi jci;.1/j Nci;.2/jci;.3/ � 1jaibi jci;.1/j Nci;.2/jci;.3/

C 1jai j.bici /.1/j.bici /.2/j.bici /.3/

� 1jai jbi;.1/j Nbi;.2/jbi;.3/ci

D ai jbi jci;.1/j Nci;.2/jci;.3/ � 1jaibi jci;.1/j Nci;.2/jci;.3/

C 1jai jbi;.1/j Nbi;.2/jbi;.3/ci C 1jai jbici;.1/j Nci;.2/jci;.3/

� 1jai jbi;.1/j Nbi;.2/jbi;.3/ci

D ai jbi jci;.1/j Nci;.2/jci;.3/ � 1jaibi jci;.1/j Nci;.2/jci;.3/

C 1jai jbici;.1/j Nci;.2/jci;.3/;

where we have used Fact 1.1. Besides,

Nb4s3.1jai jbi jci j1/ D Nb4.�1jai jbi jci;.1/j Nci;.2/jci;.3//

D �ai jbi jci;.1/j Nci;.2/jci;.3/ C 1jaibi jci;.1/j Nci;.2/jci;.3/

� 1jai jbici;.1/j Nci;.2/jci;.3/ C 1jai jbi jci j1;
where we have used Fact 1.2 in the last equality. The addition of these computa-
tions tells us that (1.14) holds for n D 2 when applied to a normalized element
or a relation decomposition.
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� If we apply (1.14) for n D 3 to a double relation decomposition 1jai jbi jci j1
(with w D P

i2I ai ˝ bi ˝ ci , w D riui D visi ), we see that

.1 xC3.A/ � N�3 N	3/.1jai jbi jci j1/
D 1jai jbi jci j1 � N�3.1jwj1/
D 1jai jbi jci j1 � 1jai j.bici /.1/j.bici /.2/j.bici /.3/

D 1jai jbi jci j1 � 1jai jbi;.1/j Nbi;.2/jbi;.3/ci

� 1jai jbici;.1/j Nci;.2/jci;.3/

D �1jai jbi;.1/j Nbi;.2/jbi;.3/ci ;

where we have used that 1jai jbici;.1/j Nci;.2/jci;.3/ D 1jai jbi jci j1, for the degree
of ci is one. On the other hand,

s2 Nb3.1jai jbi jci j1/ D s2.ai jbi jci j1 � 1jai jbi jci /

D �1jai jbi;.1/j Nbi;.2/jbi;.3/ci ;

where we have used that 1jaibi jci j1 D 1jri jui j1 and 1jai jbici j1 D 1jvi jsi j1
vanish in xC2.A/, and ai jbi jci;.1/j Nci;.2/jci;.3/ vanish in xC3.A/. Also,

Nb4s3.1jai jbi jci j1/ D 0;

using that s3 vanishes on a double relation decomposition. We conclude thus
that (1.14) holds for n D 3 when applied to a double relation decomposition.

The comparison morphism N�� W K�.A/ ! xC�.A/ is an injection for � D 0; : : : ; 3.
Furthermore, the morphisms N�� and N	� satisfy the following result.

Lemma 1.5. According to the previous definition of the comparison morphisms
N�� W K�.A/ ! xC�.A/ and N	� W xC�.A/ ! K�.A/ for � D 0; : : : ; 3, we see that
N	� N�� D 1K�.A/.

Proof. It is clear that N	0 N�0 D 1A ˝ 1A and N	1 N�1 D 1A ˝ 1V ˝ 1A. Moreover,

N	2 N�2.1jr j1/ D N	2.1jr.1/j Nr.2/jr.3//

D N	2.1jr.1/j Nr.2/jr.3/„ ƒ‚ …
deg.r.3//>0

C 1jr.1/j Nr.2/j1/

D 0C N	2.1jr.1/j Nr.2/j1/ D 1jr j1:
Finally,

N	3 N�3.1jwj1/ D N	3.1jvi jsi;.1/jNsi;.2/jsi;.3//

D N	3.1jvi jsi;.1/jNsi;.2/jsi;.3/„ ƒ‚ …
deg.si;.3//>1

C 1jvi jsi;.1/jNsi;.2/jsi;.3/„ ƒ‚ …
deg.si;.3//D1

C 1jvi jsi;.1/jNsi;.2/j1/
D 0C N	3.1j Nri;.1/jri;.2/j Nri;.3/jui /C N	3.1jvi jsi;.1/jNsi;.2/j1/ D 1jwj1;
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where w D visi D riui 2 RN C1 and we have used that 1jvi jsi;.1/jNsi;.2/jNsi;.3/ D
1j Nri;.1/jri;.2/j Nri;.3/jui .

Remark 1.6. The Lemma implies that we may choose t� D 0 for � D �1; : : : ; 2.

We have thus obtained a partial description of both projective resolutions and their
comparison in lower degrees that can be depicted as follows:

: : : �� A ˝ RN C1 ˝ A
d3 ��

N�3

��

t3

�� A ˝ R ˝ A
d2 ��

N�2

��

t2

�� A ˝ V ˝ A
d1 ��

N�1

��

t1

�� A ˝ A
d0 ��

N�0

��

t0

�� A ��
t�1

�� 0

: : : �� A ˝ .A=k/˝3 ˝ A
Nb3 ��

N�3

��

s3

�� A ˝ .A=k/˝2 ˝ A
Nb2 ��

N�2

��

s2

�� A ˝ .A=k/ ˝ A
Nb1 ��

N�1

��

s1

�� A ˝ A
b0 ��

N�0

��

s0

		 A ��
s�1

�� 0

2. PBW-deformations and deformations à la Gerstenhaber of homogeneous
algebras

In this section we shall briefly recall the definitions of PBW-deformations and of the
(graded) deformations à la Gerstenhaber, which we will usually just call deforma-
tions. We shall also establish a link between both concepts.

2.1. PBW-deformations of homogeneous algebras. We start recalling the defini-
tion of a PBW-deformation, and we mainly follow [1]. We first recall that a filtered
k-algebra B is a k-algebra provided with an increasing sequence fF �

Bg�2N0
of

k-subbimodules of B such that FmB:F nB � FmCnB , for all m; n 2 N0, and
1B 2 F 0B . As usual, such filtrations may also be seen to be indexed over Z, where
the negatively indexed terms vanish. Given a k-bimodule V , the tensor algebra T V
has a filtration fF �g�2N0

defined by F i D Li
j D0 V

˝j . Now, given P � FN , we
shall consider the algebra U D T V=hP i, with the filtration fF �

U g�2N0
induced by

the filtration of the tensor algebra, i.e., F �
U D �.F

�
/, where � denotes the canoni-

cal projection from T V to U . Of course, � is a morphism of filtered algebras. The
filtration can be described more concretely as follows: if hP ii D F i \ hP i, then
F iU D F i=hP ii for i 2 N0. If �i W T V ! V ˝i is the canonical projection, let us
denote R D �N .P / and define the N -homogeneous algebra A D T V=hRi.

Remark 2.1. We recall here the standard fact that, even though the ideal hP i coin-
cides with

P
i;j �0 V

˝iPV ˝j , hP in may be strictly bigger than the sumP
iCj �n�N V

˝iPV ˝j , which in particular vanishes if n < N . As we shall see
below, the PBW property will be the exact condition in order to avoid this phe-
nomenon.
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We shall now consider the associated graded algebra gr.U / to the previous filtra-
tion. First, we state the following direct results.

Lemma 2.2. If S D L
i2N0

Si is an N0-graded k-algebra and F �
S is the filtration

induced by the grading of S , i.e., F iS D Li
j D0 Sj , then there exists a canoni-

cal isomorphism 
 W S ! gr.S/ of N0-graded k-algebras, such that the restriction

jSi

W Si ! F iS=F i�1S is the canonical ke-linear isomorphism.

Proof. Easy.

Since � W T V ! U is a morphism of filtered algebras, it induces a morphism of
graded algebras gr.�/ W gr.T V / ! gr.U /. Moreover, the filtration of U is induced
by the filtration of T V , so gr.�/ is surjective. On the other hand, since the filtration of
T V comes from a grading on the tensor algebra, we see that there exists a canonical
isomorphism 
 W T V ' gr.T V /, by Lemma 2.2. So we may consider the surjective
morphism of graded k-algebras given by the composition gr.�/ B 
 W T V ! gr.U /,
which we shall call …. It is easy to see that ….R/ D 0, since 
.R/ D P=FN �1.
Hence … induces a surjective morphism of graded k-algebras p W A ! gr.U /. We
say that U satisfies the PBW property or that U is a PBW-deformation of A if p is an
isomorphism.

Remark 2.3. If k D F is a field and V is a finite dimensional vector space over k,
p is an isomorphism if and only if there exists an isomorphism of graded k-algebras
A ' gr.U /. This is proved as follows. One direction is obvious. Let us assume
that there exists an isomorphism of graded k-algebras A ' gr.U /. Since V is finite
dimensional,A (and a fortiori gr.U /) is evidently locally finite dimensional, i.e., each
homogeneous component is finite dimensional. Hence, since p is surjective, each
restriction of p to a homogeneous component is surjective, so bijective. Therefore,
p is an isomorphism.

The morphism p can be more concretely described as follows. We just need to
consider its restriction to Ai (i 2 N0). First, we see that

gr.U /i D F iU=F i�1U D .F i=.F i \ hP i//
.F i�1=.F i�1 \ hP i// ' F i=..F i \ hP i/C F i�1/;

where we have used that F i�1 \ hP i D .F i \ hP i/ \ F i�1 and the Second and
Third Isomorphism Theorems. Then, pjAi

is induced by the ke-linear morphism
V ˝i ! F i=..F i \hP i/CF i�1/ ' gr.U /i given by the composition of the canonical
injection V ˝i ! F i and the canonical projection F i ! F i=..F i \ hP i/C F i�1/.
So it is easy to see that U satisfies the PBW property if and only if

.hP i \ F n/C F n�1 D .hRi \ F n/C F n�1;
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for all n 2 N0, which is equivalent to

hP i \ F n � .hRi \ F n/C F n�1;

for all n 2 N0.
As noticed by R. Berger and V. Ginzburg (see [1], Prop. 3.2), the filtered algebra

U satisfies the PBW property if and only if hP in D P
iCj �n�N V

˝iPV ˝j for all
n 2 N0 (in fact, it is sufficient to prove the equality for n � N � 1). Moreover, if
we denote Jn D P

iCj �n�N V
˝iPV ˝j for n 2 N0, Prop. 3.3. in [1] states that U

satisfies the PBW property if and only if Jn \ F n�1 D Jn�1 for all n 2 N0 (or just
n � N ). The identity JN \ FN �1 D JN �1 is simply

P \ FN �1 D 0; (2.1)

whereas JN C1 \ FN D JN is easily seen to be equivalent to

.V ˝ P C P ˝ V / \ FN � P: (2.2)

From now on we shall suppose that identity (2.1) holds, which implies that the
map �N W FN ! V ˝N gives an isomorphism between P and R D �N .P /. Then
there exists a ke-linear map ' W R ! FN �1 such that id � ' is the inverse of �N jP ,
i.e.,P D fr�'.r/ W r 2 Rg. We further write, ' D PN �1

j D0 'j , where'j W R ! V ˝j

is the composition of ' with the canonical morphism FN �1 ! V ˝j . Then it is easy
to see that identity (2.2) is equivalent to (see [1], Prop. 3.5)

.' ˝ 1V � 1V ˝ '/.RN C1/ � P;

or equivalently (see [1], Prop. 3.6)

.'N �1 ˝ 1V � 1V ˝ 'N �1/.RN C1/ � R; (2.3)

'0 B .'N �1 ˝ 1V � 1V ˝ 'N �1/.RN C1/ D 0; (2.4)

.'j B .'N �1 ˝ 1V � 1V ˝ 'N �1/C .'j �1 ˝ 1V � 1V ˝ 'j �1//.RN C1/ D 0;

(2.5)

for 0 < j < N .

Definition 2.4. Given a filtered algebra U D T V=hP i, where P � FN , such
that (2.1), (2.3), (2.5) and (2.4) hold, we say that U is a weak PBW-deformation of
A D T V=hRi, where R D �N .P /. We remark that each weak PBW-deformation
U of A is provided with a surjective morphism of graded algebras p W A ! gr.U /.
Given two weak deformations U and U 0 of A (with induced morphisms p and p0,
respectively), they are called equivalent if there exists an isomorphism of filtered
algebras g W U ! U 0 such that gr.g/ B p D p0.

It is immediate to see that a PBW-deformation is a weak PBW-deformation. Using
considerations of deformation theory à la Gerstenhaber we shall provide another
proof of the converse as a consequence of Theorem 3.1 whenA is anN -homogeneous
algebra satisfying that TorA

3 .k; k/ is concentrated in degreeN C1 (cf. [1], Thm. 3.4).
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2.2. Graded deformations in the sense of Gerstenhaber. Let us now briefly recall
the definition of a graded deformation and some results that we shall use in the sequel.
Most of what we will present is implicit in the work of M. Gerstenhaber (see [6],
Sec. 1.2-1.5), and it is explained in more detail by A. Braverman and D. Gaitsgory in
[3]. We would like to remark, however, that we are working over a not necessarily
commutative ring k and this situation needs more sophisticated tools (cf. [7], Sec. 2,
where the author is dealing with the case k D CŒG� or more generally k a separable
C-algebra, in order to assure that the Hochschild cohomology over k coincides with
that over C).

In what follows, we consider kŒt � as an N0-graded k-algebra such that deg.t/ D 1

and t is central. Given a k-bimodule V , we shall denote by V Œt � the kŒt �-bimodule
with elements

P
i2I vi t

i for vi 2 V and finite subsets I � N0, provided with the
action ctm.

P
i2I vi t

i /c0tn D P
i2I c:vi :c

0t iCmCn for c; c0 2 k.
If A denotes an N0-graded associative k-algebra and i 2 N, an i -th level graded

deformation of A means a graded kŒt �=.t iC1/-algebra structure on the kŒt �=.t iC1/-
bimoduleAi D AŒt�=.t iC1/ such that the identityAi=t:Ai ' A is an isomorphism of
graded algebras. By a (polynomial) graded deformation ofAwe mean a graded kŒt �-
algebra structure on the kŒt �-bimoduleAt D AŒt� such that the identityAt=t:At ' A

is an isomorphism of graded algebras. In the previous definitions, we are always using
the obvious graded ke-linear map A ! Ai D AŒt�=.t iC1/ (resp., A ! At D AŒt�)
given by a 7! a. We will usually denote the product ofAi (resp.At ) by 	i (resp. 	),
which can be written as

a 	i b D ab C
iP

hD1

 h.a; b/t
h (a 	 b D ab C P

h2N

 h.a; b/t
h):

Since  h has degree �h, we must note that the sum for 	 is finite for any pair of
homogeneous elements a and b in A. We remark that  h may be considered as an
element of HomAe.C2.A/; A/, and that the associativity of 	 is equivalent to

d 1 D 0; (2.6)

�d j C1.a; b; c/ D
jP

iD1

. i .a;  j C1�i .b; c// �  i . j C1�i .a; b/; c//; for j 2 N.

(2.7)

The right member of the last equation is usually denoted by sq. 1; : : : ;  j /.a; b; c/.
We note that there exists a trivial polynomial deformation of A given by the trivial
product on AŒt�, i.e., such that .atm/ 	0 .a

0tn/ D .a:a0/tmCn for a; a0 2 A and
m; n 2 N0.

Given a filtered algebra B with filtration fF �
Bg�2N0

, we recall that the Rees
algebra associated to it is the graded kŒt �-algebra

R.B/ D ˚ P
i2I

bi t
i W I is finite and bi 2 F iB

�
;
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which is considered as a subalgebra of BŒt� provided with the trivial product 	0 (in
this case B is concentrated in degree zero). We remark that the underlying graded
algebra structure of R.B/ is

L
�2N0

F
�
B with the product induced by that of B . It

is easy to see that R.B/=ht � �i ' B for � 2 k� \ Z.k/ such that its action on B
is central (i.e., �b D b� for all b 2 B) and R.B/=hti ' gr.B/ (cf. [4], Cor. 2.3.8,
whose proof can be applied also to this case). Moreover,R.�/ defines a functor from
the category of filtered k-algebras to the category of graded kŒt �-algebras.

We would like to make some remarks about the algebra At=ht � 1i (or about
the algebra At=ht � �i, with � 2 k� \ Z.k/ such that its action on A is central,
to which the following arguments also apply). There exists a ke-linear map A !
At=ht � 1i given by the composition of the canonical injection A ! At and the
projection At ! At=ht � 1i. We consider the filtration on At=ht � 1i induced by
the filtration ofA under the previous map. We remark that the filtration ofAt=ht � 1i
induced by the filtration of At that comes from the grading is trivial. We shall
see that the associated graded algebra of At=ht � 1i is isomorphic to A as graded
algebras. This is proved as follows. We consider the ke-linear map �0 W At ! A

(not an algebra map) given by
Pm

j D0 aj t
j 7! Pm

j D0 aj . It is trivially verified that
�0 respects the filtrations coming from the gradings, and that �0..t � 1/b/ D 0 for
any b 2 At , so it induces a morphism of filtered k-bimodules �� W At=ht � 1i ! A,
which is obviously surjective and injective. Its inverse is just the aforementioned
map A ! At=ht � 1i. Hence it induces an isomorphism of graded k-bimodules
� W gr.At=ht � 1i/ ! gr.A/ ' A (the last isomorphism by Lemma 2.2). Now, if we
denote the product of At=ht � 1i by 	1 and taking into account that the product of
two elements a; b 2 A in At=ht � 1i is given by

a 	1 b D a:b C P
j 2N

 j .a; b/;

and the degree of  j is �j , we see that � is an algebra morphism, so an isomorphism
of graded algebras. This further implies that, if A is generated by the image of the
ke-linear map V ! A, thenAt=ht � 1i is generated by the image of the composition
of V ! A and the ke-linear map A ! At=ht � 1i.

The importance of the algebra At=ht � 1i is explained in the following proposi-
tion.

Proposition 2.5. Let A be a graded algebra and let At be a graded deforma-
tion of A. Then, there exists a canonical isomorphism of graded kŒt �-algebras
R.At=ht � 1i/ ! At , such that the induced morphism A ' R.At=ht � 1i/=hti !
At=hti ' A is the identity, where A ' R.At=ht � 1i/=hti is given by the com-
position of the inverse of � and the canonical isomorphism of graded algebras
gr.At=ht � 1i/ ' R.At=ht � 1i/=hti.

Proof. We first remark that we are going to identify At=ht � 1i with A as ke-
bimodules under the previous filtered ke-linear isomorphism A ! At=ht � 1i, so
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we will denote the elements of this last algebra by elements a ofA. We will continue
denoting the product of At=ht � 1i by 	1 and we remark that, if a; b 2 A are of
degree i and j respectively, then

a 	1 b D ab C
iCjP
hD1

 h.a; b/;

since  h has degree �h. Under this identification, the homogeneous i -th component
of R.At=ht � 1i/ is just

Li
j D0Aj . So the elements of R.At=ht � 1i/ are sums of

elements of the form ai t
j for j � i � 0, with ai 2 Ai .

We recall that the elements ofAt are sums of elements of the formai t
j for i; j � 0

for ai 2 Ai .
We now define the map com W R.At=ht � 1i/ ! At given by the linear extension

of
ai t

j 7! ai t
j �i :

It is trivially verified that com is an isomorphism of graded kŒt �-bimodules. In order
to prove that it is a morphism of algebras, we only need to show that

com..ai t
j / 	1 .bl t

m// D com.ai t
j / 	 com.bl t

m/;

for ai ; bl 2 A of degree i and l respectively, and i � j and l � m. The left member
is given by

com..ai t
j / 	1 .bl t

m// D com..ai 	1 bl/t
j Cm/

D com..aibl C
iClP
hD1

 h.ai ; bl//t
j Cm/

D com.aibl t
j Cm/C

iClP
hD1

com. h.ai ; bl/t
j Cm/

D aibl t
j Cm�i�l C

iClP
hD1

 h.ai ; bl/t
j CmCh�i�l ;

where we have used that  h has degree �h. On the other hand, the right member is
given by

com.ai t
j / 	 com.bl t

m/ D .ai t
j �i / 	 .bl t

m�l/

D .ai 	 bl/t
j Cm�i�l

D ..aibl C
iClP
hD1

 h.ai ; bl/t
h/tj Cm�i�l

D aibl t
j Cm�i�l C

iClP
hD1

 h.ai ; bl/t
j CmCh�i�l ;
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where we have again used that  h has degree �h. Hence, com is an isomorphism
of graded kŒt �-algebras. It is clear that the induced map A ' R.At=ht � 1i/=hti !
At=hti ' A is the identity.

Let E.A/ denote the groupoid of all graded deformations of A where the mor-
phisms are by definition isomorphisms of graded kŒt �-algebras, such that the in-
duced morphism of A ' At=t:At is the identity. Analogously, let Ei .A/ denote the
groupoid of all i -th level graded deformations of A. Given i 2 N, we denote by Fi

the functor fromE.A/ toEi .A/ given by reduction modulo t iC1, i.e., ifAt is a graded
deformation of A, then Fi .At / D At=t

iC1At and the definition on morphisms is the
obvious one. Moreover, given i < j natural numbers, we denote by Fi<j the functor
from Ej .A/ to Ei .A/ given by reduction modulo t iC1, so if Aj denotes a j -th level
deformation, Fi<j .Aj / D Aj =t

iC1Aj and for the morphisms it is obvious.
The following lemma is trivial (cf. [3], Lemma 1.3).

Lemma2.6. The collection of functorsFi define an equivalence between the category
E.A/ and the inverse limit of the categoriesEi .A/ with respect to the functors Fi<j .

Given an i -th level deformationAi ofA, a continuation to an .iC1/-th level defor-
mation ofAi is an .iC1/-th level deformationAiC1 ofA such that Fi<iC1.AiC1/ D
Ai . Given two continuations AiC1 and A0

iC1 of Ai to an .i C 1/-th level defor-
mation, a morphism f from AiC1 to A0

iC1 is a morphism in EiC1.A/ such that
Fi<iC1.f / D 1Ai

. The following proposition is also immediate (cf. [3], Prop. 1.5,
or [7], 2.6).

Proposition 2.7. (a) The set of isomorphism classes of objects of E1.A/ can be
canonically identified withHH 2.A/�1.

(b) Let Ai be an object of Ei .A/. Then the obstruction for its continuation to an
.i C 1/-th level deformation lies inHH 3.A/�i�1.

(c) Let Ai be as in (b). Then the set of isomorphism classes of continuations of
Ai to an .i C 1/-th level deformation has a natural structure of an HH 2.A/�i�1-
homogeneous space.

Finally we state the following proposition, which is analogous to Prop. 3.7 of [3].

Proposition 2.8. Let A be an N -homogeneous algebra that is Koszul. Then,

(i) the functors Fi�1<i W Ei .A/ ! Ei�1.A/ are injective on isomorphism classes
of objects for i > N ,

(ii) the functors Fi�1<i are surjective on isomorphism classes of objects for i >
N C 1.

Proof. It is easy to see from the bimodule Koszul complex that HH 2�i .A/ vanishes
for i > N . Hence Proposition 2.7 (c) implies (i). Analogously, HH 3�i .A/ vanishes
for i > N C 1, so Proposition 2.7 (b) implies (ii).
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In what follows, we shall only consider graded deformations such that the unit of
the original k-algebra is also a unit of the deformed algebra. This is equivalent to ask
that the 2-cochains  j actually belong to HomAe. xC�.A/; A/. We shall say that such
graded deformations preserve the unit. Since any graded deformation is equivalent
to another one preserving the unit (because the complexes HomAe. xC�.A/; A/ and
HomAe.C�.A/; A/ are quasi-isomorphic, and the equations (2.6) and (2.7) for both
complexes are preserved under the corresponding quasi-isomorphism), there would
be no loss of generality in restricting to such a situation.

2.3. From deformations to weak PBW-deformations. After having recalled the
basic definitions and results we shall provide a link between both concepts. From
now on, we stress the fact that we assume that the graded k-algebra A is of the form
T V=hRi, where V is considered to be concentrated in degree 1 and R � V ˝N for
N � 2 satisfying the assumption that TorA

3 .k; k/ is concentrated in degree N C 1,
so we may use the results of Section 1. First, we set some notation: if  W W ! A

denotes a ke-linear map, we shall denote 	 W A˝W ˝A ! A, its uniqueAe-linear
extension. A ke-linear map  W .A=k/˝2 ! A is called normalized if it vanishes
on normalized elements, i.e., if  .a ˝ b/ D 0, whenever a; b 2 IC ' A=k are
homogeneous elements satisfying that deg.a/C deg.b/ < N . Further, we say that  
is extranormalized if it is normalized and if it vanishes on relation decompositions.
We shall also say in this case that  	 is normalized or extranormalized.

Let us now consider a graded deformation of A given by

a 	 b D a:b C P
i�1

 i .a; b/t
i ;

where  i W .A=k/˝2 ! A are normalized ke-linear maps (see Lemma 2.12). We
remark that  i is a morphism of degree �i , and we have that the associativity of 	
is equivalent to (2.6) and (2.7).

We set '	
N �j D  	

j B N�2 for j D 1; : : : ; N . We point out that the grading implies
that  	

j B N�2 vanishes for j > N . We shall see that, once we assume that (2.6)

and (2.7) hold, the induced morphisms 'N �j W R ! FN �1 satisfy the weak PBW
property expressed in (2.3), (2.5) and (2.4).

Let us first prove (2.3). We shall state a simple fact that we shall use in the sequel.

Fact 2.9. Given ' W R ! A a ke-linear map, then d' W RN C1 ! A satisfies that

d' D .1V ˝ ' � ' ˝ 1V /;

where we remark that the map .1V ˝ ' � ' ˝ 1V / is defined from RN C1 to A.

Proof. If w D riui D visi 2 RN C1, then

d'.w/ D d'	.1jwj1/ D .'	 B d3/.1jwj1/ D '	.vi jri j1 � 1jsi jui /

D vi'.ri / � '.si /ui D .1V ˝ ' � ' ˝ 1V /.w/:
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We note that (2.6) implies the equality

d'	
N �1 D d. 	

1 B N�2/ D  	
1 B N�2 B d3 D  	

1 B Nb3 B N�3 D d 	
1 B N�3 D 0:

Hence, Fact 2.9 implies that .1V ˝ 'N �1 � 'N �1 ˝ 1V /.w/ D 0. So, when we
consider .1V ˝ 'N �1 � 'N �1 ˝ 1V / as a map from RN C1 to V ˝N , we get (2.3).
More precisely, we see that equation (2.6) composed with N�3 is equivalent to equation
(2.3).

Let us now prove (2.5) and (2.4). We shall need the following simple fact.

Fact 2.10. If  W .A=k/˝2 ! A is a normalized cocycle and � 2 V ˝N , then
it holds that  . N�.1/; �.2// D  .�.1/; N�.2//. More generally, let us suppose that
 1; : : : ;  j W .A=k/˝2 ! A are normalized ke-linear maps such that �d j D
sq. 1; : : : ;  j �1/. Hence, if � 2 V ˝N , we see that  j . N�.1/; �.2// D  j .�.1/; N�.2//.

Proof. It is obvious that the second statement generalizes the first one, but we give a
detailed proof of both. In the first case we note that, since  is a cocycle,

0 D d . N�.1/; �.2/; N�.3//

D N�.1/ .�.2/; N�.3// �  . N�.1/�.2/; N�.3//

C  . N�.1/; �.2/ N�.3// �  . N�.1/; �.2// N�.3/

D � .�.1/; N�.2//C  . N�.1/; �.2//;

where we have used the normalization of  in the third equality.
Now we prove the second statement. On the one hand, just as before we have that

d j . N�.1/; �.2/; N�.3// D N�.1/ j .�.2/; N�.3// �  j . N�.1/�.2/; N�.3//

C  j . N�.1/; �.2/ N�.3// �  j . N�.1/; �.2// N�.3/

D � j .�.1/; N�.2//C  j . N�.1/; �.2//;

where we have used the normalization of  j . On the other hand,

sq. 1; : : : ;  j �1/. N�.1/; �.2/; N�.3//

D
j �1P
iD1

. i . N�.1/;  j �i .�.2/; N�.3/// �  i . j �i . N�.1/; �.2//; N�.3/// D 0;

since  1; : : : ;  j �1 are normalized. Hence our statement follows.

Using Fact 2.9 for 'N �j (0 < j < N ) we see that

.d 	
j C1 B N�3/.1jwj1/ D .1V ˝ 'N �j �1 � 'N �j �1 ˝ 1V /.w/: (2.8)
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Besides, .sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ is equal to

sq. 1; : : : ;  j /
	.1jvi jsi;.1/jNsi;.2/jsi;.3//

D
jP

iD1

. i .vi ;  j C1�i .si;.1/; Nsi;.2/// �  i . j C1�i .vi ; si;.1//; Nsi;.2///si;.3/

D
jP

iD1

. i .vi ;  j C1�i .si;.1/; Nsi;.2/// �  i . j C1�i .vi ; si;.1//; Nsi;.2///

D
jP

iD1

. i .vi ;  j C1�i .si;.1/; Nsi;.2/// �  i . j C1�i . Nri;.1/; ri;.2//; ui //

D  j .vi ;  1.si;.1/; Nsi;.2/// �  j . 1. Nri;.1/; ri;.2//; ui /;

where we have used in the third equality the normalization of  1; : : : ;  j . In the
last equality we have used the following simple fact:  j C1�i has degree �.j C 1 �
i/ D i � j � 1, so  j C1�i applied to an element of degree N gives an element of
degree N C i � j � 1. In consequence, the elements vi ˝  j C1�i .si;.1/; Nsi;.2// and
 j C1�i . Nri;.1/; ri;.2//˝ ui have degree N C j � i � N (for i � j ) and the degree is
exactly N if and only if i D j . The normalization of  j forces only to consider the
terms with degree N and the last equality follows.

Now, using Fact 2.10 we see that  1. Nri;.1/; ri;.2// D  1.ri;.1/; Nri;.2//. Further-
more, by its very definition, 'N �1.r/ D  1.r.1/; Nr.2// for any r 2 R. Therefore,

.sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ D  j .vi ; 'N �1.si // �  j .'N �1.ri /; ui /:

We need to compare the previous expression with'N �j B.1V B'N �1�'N �1˝1V /.w/,
as we shall proceed to do. We first note that 'N �j B .1V ˝ 'N �1 � 'N �1 ˝ 1V /.w/

is given by

'N �j .vi ˝ 'N �1.si // � 'N �j .'N �1.ri /˝ ui /

D . 	
j B N�2/.1j.

2R‚ …„ ƒ
vi ˝ 'N �1.si /„ ƒ‚ …

˛i

�'N �1.ri /„ ƒ‚ …
ˇi

˝ui /j1/

D  	
j .1jvi˛i;.1/j N̨ i;.2/j˛i;.3/ � 1jˇi;.1/j Ň

i;.2/jˇi;.3/ui � 1jˇi jui j1/
D  j .vi˛i;.1/; N̨ i;.2//˛i;.3/ �  j .ˇi;.1/; Ň

i;.2//ˇi;.3/ui �  j .ˇi ; ui /

D  j .vi˛i;.1/; N̨ i;.2// �  j .ˇi ; ui / D  j .vi ; ˛i / �  j .ˇi ; ui /

D  j .vi ; 'N �1.si // �  j .'N �1.ri /; ui /;

where we have considered in the third member that vi ˝ 'N �1.si /� 'N �1.ri /˝ ui

is an element of R, we have used the normalization of  j in the fourth equality, and
Fact 2.10 in the first term of the penultimate member. This implies that

.sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ D 'N �j B .1V ˝ 'N �1 � 'N �1 ˝ 1V /.w/: (2.9)
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Now, from equations (2.8) and (2.9) we see that equation (2.7) composed with N�3

(for j D 1; : : : ; N � 1) is exactly (2.5). The case of identity (2.7) for j D N leads
exactly to equation (2.4), since d 	

N C1 B N�3 D 0 by degree reasons.
We have thus proved the following result.

Proposition 2.11. Let 	 be a graded deformation of A given by

a 	 b D a:b C P
i�1

 i .a; b/t
i ;

where  i W .A=k/˝2 ! A (resp.  	
i W xC2.A/ ! A) are normalized ke-linear maps

(resp. Ae-linear maps). We define '	
N �j D  	

j B N�2 for j D 1; : : : ; N . Then, the

induced morphisms 'N �j W R ! FN �1 satisfy the weak PBW property expressed in
(2.3), (2.5) and (2.4).

Even though we have considered graded deformations given by normalized maps
in the sense of Definition 1.4, the following lemma shows that the assumption is in
fact unnecessary.

Lemma 2.12. Let A be an N -homogeneous algebra such that TorA
3 .k; k/ is con-

centrated in degree N C 1. Then, any graded deformation of A is equivalent to a
deformation preserving the unit given by normalized maps.

Proof. Let At be a graded deformation of A given by a collection of maps

f j W .A=k/˝2 ! Agj 2N

(each of degree �j ) which define a product 	. We only need to show that there exists
another graded deformationA0

t given by maps f 0
j W .A=k/˝2 ! Agj 2N such that the

first N maps  0
1; : : : ;  

0
N are normalized, for the f 0

j gj >N are always automatically
normalized by degree reasons.

Using the main property (1.14) of the homotopy s�, we see that 	
1 � 	

1 B N�2B N	2 D
d. 	

1 Bs1/. It is clear that 	
1 B N�2B N	2 is normalized. Let us define˛1 W NA ! A the map

induced by  	
1 B s1. So we see that exp.t˛1/ gives an equivalence from the algebra

.At ;	/ to another deformation .A1
t ;	1/ ofA given by the maps f 1

�
W A˝2 ! Ag�2N

such that . 1
1 /

	 D  	
1 B N�2 B N	2 is normalized.

We proceed now by (finite) induction. Let i � N and let us suppose that At

is equivalent to a deformation Ai
t given by a collection of maps f i

�
W .A=k/˝2 !

Ag�2N such that  i
�

are normalized for � � i . Using again (1.14), we conclude that

. i
iC1/

	 � .. i
iC1/

	 B N�2 B N	2 � sq. i
1; : : : ;  

i
i /

	 B s2/ D d.. i
iC1/

	 B s1/:
Also, it is clear that . i

iC1/
	 B N�2 B N	2 � sq. i

1; : : : ;  
i
i /

	 B s2 is normalized (each
summand is obviously so). Let us define˛iC1 W NA ! A the map induced by . i

iC1/
	B

s1. This tells us that exp.t iC1˛iC1/ gives an equivalence from the algebra .Ai
t ;	i /
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to another deformation .AiC1
t ;	iC1/ of A given by the maps f iC1

�
W .A=k/˝2 !

Ag�2N such that  iC1
j D  i

j for j � i and the map . iC1
iC1 /

	 D . i
iC1/

	 B N�2 B N	2 �
sq. i

1; : : : ;  
i
i /

	 B s2 is normalized.

2.4. From weak PBW-deformations to deformations. Now, we shall give an in-
verse construction, which is a little more complicated. Let us suppose that ' DPN �1

j D0 'j , 'j W R ! V ˝j , gives a weak PBW-deformation of anN -homogeneous al-

gebraA satisfying that TorA
3 .k; k/ is concentrated in degreeNC1. We shall construct

a (possible infinite) sequence of normalized maps f j gj 2N, where  j W .A=k/˝2 !
A, such that

a 	 b D a:b C P
i�1

 i .a; b/t
i

is a graded deformation of A.
First, we define . 0

j /
	 D '	

N �j B N	2 for j D 1; : : : ; N , and zero otherwise. We
note that 0

j is a normalized homogeneous morphism of degree �j for j D 1; : : : ; N .
We note that  0

1 is a cocycle since

d. 0
1/

	 D . 0
1/

	 B Nb3 D '	
N �1 B N	2 B Nb3 D '	

N �1 B d3 B N	3 D d'	
N �1 B N	3;

and Fact 2.9 tells us that the evaluation of the last expression at 1jwj1, forw 2 RN C1,
is equal to the element of A given by .1V ˝ 'N �1 � 'N �1 ˝ 1V /.w/. The identity
(2.3) says that this element vanishes, so d. 0

1/
	 D 0. We define  1 D  0

1.
We will proceed recursively on j 2 N. Let us suppose that we have defined

 1; : : : ;  j such that  	
i � . 0

i /
	 is an extranormalized ke-linear map of degree �i

for all i D 1; : : : ; j , and that

�d iC1 D sq. 1; : : : ;  i /

holds for all i D 0; : : : ; j � 1. We will denote �	
i D  	

i � . 0
i /

	.
We shall now prove that

� d. 0
j C1/

	 B N�3 D sq. 1; : : : ;  j /
	 B N�3: (2.10)

Let us as usual consider w D riui D visi 2 RN C1. On the one side, .d. 0
j C1/

	 B
N�3/.1jwj1/ is equal to

d. 0
j C1/

	.1jvi jsi;.1/jNsi;.2/jsi;.3//

D . 0
j C1/

	.vi jsi;.1/jNsi;.2/jsi;.3//

� . 0
j C1/

	.1jvisi;.1/jNsi;.2/jsi;.3//C . 0
j C1/

	.1jvi jsi j1/
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D vi 
0
j C1.si;.1/; Nsi;.2//si;.3/ �  0

j C1.visi;.1/; Nsi;.2//si;.3/

D vi 
0
j C1.si;.1/; Nsi;.2// �  0

j C1.visi;.1/; Nsi;.2//si;.3/

D vi 
0
j C1.si;.1/; Nsi;.2// �  0

j C1.visi;.1/; Nsi;.2//„ ƒ‚ …
deg.si;.3//D0

�  0
j C1.visi;.1/; Nsi;.2//si;.3/„ ƒ‚ …

deg.si;.3//>0

D vi 
0
j C1.si;.1/; Nsi;.2// �  0

j C1.visi;.1/; Nsi;.2//„ ƒ‚ …
deg.si;.3//D0

�  0
j C1.visi;.1/; Nsi;.2//si;.3/„ ƒ‚ …

deg.si;.3//D1

;

where we have used Fact 1.2 in the second equality, that si vanishes in A in the third
equality, and that  0

j C1 is normalized in the fourth and sixth ones. Moreover, since
visi;.1/ ˝ Nsi;.2/ D ri ˝ ui , we see that

 0
j C1.visi;.1/; Nsi;.2// D  0

j C1.ri ; ui / D 0:

Also, taking into account that if deg.si;.3// D 1, then

visi;.1/ ˝ Nsi;.2/ ˝ si;.3/ D ri;.1/ ˝ Nri;.2/ ˝ ui ;

we obtain that  0
j C1.visi;.1/; Nsi;.2//si;.3/ D  0

j C1.ri;.1/; Nri;.2//ui , so

.d. 0
j C1/

	 B N�3/.1jwj1/ D vi 
0
j C1.si;.1/; Nsi;.2// �  0

j C1.ri;.1/; Nri;.2//ui :

By its very definition,  0
j .r.1/; Nr.2// D 'N �j .r/ for all r 2 R, j D 1; : : : ; N .

Therefore,

.d. 0
j C1/

	 B N�3/.1jwj1/ D vi'N �j �1.si / � 'N �j �1.ri /ui

D .1V ˝ 'N �j �1 � 'N �j �1 ˝ 1V /.w/:
(2.11)

On the other side, .sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ is equal to

sq. 1; : : : ;  j /
	.1jvi jsi;.1/jNsi;.2/jsi;.3//

D
jP

iD1

. i .vi ;  j C1�i .si;.1/; Nsi;.2/// �  i . j C1�i .vi ; si;.1//; Nsi;.2///si;.3/

D
jP

iD1

. i .vi ;  j C1�i .si;.1/; Nsi;.2/// �  i . j C1�i .vi ; si;.1//; Nsi;.2///

D
jP

iD1

. i .vi ;  j C1�i .si;.1/; Nsi;.2/// �  i . j C1�i . Nri;.1/; ri;.2//; ui //

D  j .vi ;  1.si;.1/; Nsi;.2/// �  j . 1. Nri;.1/; ri;.2//; ui /;

where we have used in the third equality that i is normalized. In the last one we have
used the following simple fact which we have already explained:  j C1�i has degree
�.jC1�i/ D i�j�1, so j C1�i applied to an element of degreeN gives an element
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of degreeN C i �j �1. In consequence, the elements vi ˝ j C1�i .si;.1/; Nsi;.2// and
 j C1�i . Nri;.1/; ri;.2//˝ ui have degree N C j � i � N (for i � j ) and the degree is
exactly N if and only if i D j . The normalization of  j forces only to consider the
terms with degree N and the last equality follows.

By its very definition,  1.r.1/; Nr.2// D  0
1.r.1/; Nr.2// D 'N �1.r/ for r 2 R, so

.sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ D  j .vi ; 'N �1.si // �  j .'N �1.ri /; ui /:

Thus, .sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ is given by

 j .vi ˝ 'N �1.si / � 'N �1.ri /˝ ui /

D .'	
N �j B N	2 C �	

j /.1jvi ˝ 'N �1.si / � 'N �1.ri /˝ ui„ ƒ‚ …
2R

j1/

D .'	
N �j B N	2/.1jvi ˝ 'N �1.si / � 'N �1.ri /˝ ui„ ƒ‚ …

2A˝2

j1/

D .'	
N �j .1jvi ˝ 'N �1.si / � 'N �1.ri /˝ ui„ ƒ‚ …

2R

j1/

D 'N �j B .1V ˝ 'N �1 � 'N �1 ˝ 1V /.w/;

where we have used that, by identity (2.3), vi ˝ 'N �1.si / � 'N �1.ri /˝ ui can be
seen as a relation decomposition of an element r ofR in the second equality, and that
�	

j vanishes over it in the third equality. Finally, in the penultimate equality we have
used that

N	2.1jvi ˝ 'N �1.si / � 'N �1.ri /˝ ui j1/ D 1j.vi ˝ 'N �1.si / � 'N �1.ri /˝ ui /j1;

where in the first member vi ˝ 'N �1.si / � 'N �1.ri /˝ ui is seen as an element of
A˝2, whereas in the second one it is regarded as an element of R. This thus implies
that

.sq. 1; : : : ;  j /
	 B N�3/.1jwj1/ D 'N �j B .1V B 'N �1 � 'N �1 ˝ 1V /.w/: (2.12)

Now, since (2.3), (2.5) and (2.4) hold, and putting together (2.11) and (2.12), we
see that equation (2.10) holds. The standard identity (1.14) for the homotopy s� tells
us that

d. 0
j C1/

	 B .1 xC3.A/ � N�3 B N	3/ D d. 0
j C1/

	 B . Nb4 B s3 C s2 B Nb3/

D d. 0
j C1/

	 B s2 B Nb3 D d.d. 0
j C1/

	 B s2/;

so

d. 0
j C1/

	 B N�3 B N	3 D d. 0
j C1/

	 � d.d. 0
j C1/

	 B s2/:
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Also, we see that

sq. 1; : : : ;  j /
	 B .1 xC3.A/ � N�3 B N	3/ D sq. 1; : : : ;  j /

	 B . Nb4 B s3 C s2 B Nb3/

D sq. 1; : : : ;  j /
	 B s2 B Nb3

D d.sq. 1; : : : ;  j /
	 B s2/;

i.e.,

sq. 1; : : : ;  j /
	 B N�3 B N	3 D sq. 1; : : : ;  j /

	 � d.sq. 1; : : : ;  j /
	 B s2/:

Now, equation (2.10) yields that

�d.. 0
j C1/

	 � .d. 0
j C1/

	 B s2 C sq. 1; : : : ;  j /
	 B s2// D sq. 1; : : : ;  j /

	:

We define �	
j C1 D d. 0

j C1/
	 B s2 C sq. 1; : : : ;  j /

	 B s2 and  	
j C1 D . 0

j C1/
	 �

�	
j C1. It is easy to see that �	

j C1 has degree �j � 1. We just need to prove that
it is extranormalized in order to end this recursive process, since  	

j C1 defines a
continuation of the j -th level deformation defined by  	

1 ; : : : ;  
	
j .

Let us prove that �	
j C1 is extranormalized. For this, consider 1jai jbi j1 2 xC2.A/

to be normalized or a relation decomposition. Then, .d. 0
j C1/

	 B s2/.1jai jbi j1/ is
equal to

d. 0
j C1/

	.1jai jbi;.1/j Nbi;.2/jbi;.3//

D . 0
j C1/

	.ai jbi;.1/j Nbi;.2/jbi;.3/ � 1jaibi;.1/j Nbi;.2/jbi;.3/ C 1jai jbi j1/
D ai 

0
j C1.bi;.1/; Nbi;.2//bi;.3/ �  0

j C1.aibi;.1/; Nbi;.2//bi;.3/ C  0
j C1.ai ; bi /

D � 0
j C1.aibi;.1/; Nbi;.2//C  0

j C1.ai ; bi /

D �'N �j �1. N	2.1jaibi;.1/j Nbi;.2/j1/ � N	2.1jai jbi j1//;
where we have used Fact 1.2 in the first equality and the normalization of 0

j C1 on the

fourth equality. By definition, we see that N	2.1jaibi;.1/j Nbi;.2/j1/ D N	2.1jai jbi j1/ D 0

if 1jai jbi j1 is normalized and that N	2.1jaibi;.1/j Nbi;.2/j1/ D N	2.1jai jbi j1/ if 1jai jbi j1
is a relation decomposition. In any case, we conclude that d. 0

j C1/
	 B s2.1jai jbi j1/

vanishes.
On the other hand, we get

.sq. 1; : : : ;  j /
	 B s2/.1jai jbi j1/

D sq. 1; : : : ;  j /
	.1jai jbi;.1/j Nbi;.2/jbi;.3//

D
jP

iD1

�
. i .ai ;  j C1�i .bi;.1/; Nbi;.2/// �  i . j C1�i .ai ; bi;.1//; Nbi;.2///bi;.3/

�
;

which vanishes by the normalization of  j C1�i . Hence, �	
j C1 is extranormalized.

We may summarize the previous results as follows.
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Proposition 2.13. Let U D T V=hP i be a filtered algebra, with P � FN , and let
A D T V=hRi, with R D �N .P / � V ˝N , be the corresponding N -homogeneous
algebra, which we assume to satisfy that TorA

3 .k; k/ is concentrated in degreeN C1.
We assume that U is a weak PBW-deformation ofA, i.e., that (2.1) holds and that the
ke-linear maps 'j W R ! V ˝j (for j D 0; : : : ; N � 1) which describe P out from
R satisfy (2.3), (2.5) and (2.4). Set . 0

j /
	 D 'N �j B N	2 for j D 1; : : : ; N and zero

otherwise. We define  	
j W xC2.A/ ! A for j 2 N recursively. First,  	

1 D . 0
1/

	.
For j 2 N, after having defined  1; : : : ;  j , we set �	

j C1 D d. 0
j C1/

	 B s2 C
sq. 1; : : : ;  j /

	 B s2 and  	
j C1 D . 0

j C1/
	 � �	

j C1. Then the  � are normalized
morphisms that define a graded deformation of A.

3. Main theorems

The following theorems provide a description of the previous constructions at the
level of algebras, which contains the one given in Sec. 4.6 in [3], where the authors
explored only one direction under the assumption of k D F a field. Moreover, we
also prove that conditions (2.1) and (2.2) are equivalent to the fact that U satisfies the
PBW property (cf. Thm. 4.1 of [3] and Thm. 3.4 of [1]) .

Theorem 3.1. Let A be an N -homogeneous algebra satisfying that TorA
3 .k; k/ is

concentrated in degree N C 1. Let us consider a graded deformation At of a A,
which we suppose to be given by normalized maps f j W .A=k/˝2 ! Agj 2N. We
apply Proposition 2.11 to produce maps f'j W R ! V ˝j g0�j <N , and to obtain thus
a filtered algebra U D T V=hP i, with P D fr � PN �1

j D0 'j .r/ W r 2 Rg. Then, there
exists an isomorphism of filtered k-algebras U ! At=ht � 1i.

Conversely, let us consider a filtered algebra U D T V=hP i, with P � FN and
letA D T V=hRi, withR D �N .P / � V ˝N , be the correspondingN -homogeneous
algebra, which we assume to satisfy that TorA

3 .k; k/ is concentrated in degreeN C1.
We assume that U is a weak PBW-deformation of A, and define a deformation At

of A following Proposition 2.13. We again see that there exists an isomorphism of
filtered k-algebras U ! At=ht � 1i.

In both cases, U is a PBW-deformation of A and the induced morphism

A
p! gr.U / ! gr.At=ht � 1i/ �! A

is the identity.

Proof. Since the proof is similar for both implications, except for some minor changes,
we shall only treat each case separately when necessary.

We consider the ke-linear map inc W V ! At=ht � 1i, given by the composition
of the inclusion V ! A, the canonical map A ! At and the projection At !
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At=ht � 1i. This induces a morphism of k-algebras q0 W T V ! At=ht � 1i. It is
clear that q0 respects the filtrations (where we recall that T V is filtered by F �).

We shall see that q0.P / D 0. In order to prove this statement, take r 2 R and let
r � PN �1

iD0 'i .r/ 2 P be a generic element. We will show that q0 vanishes over it,
using that the associated maps  � are normalized.

First, we remark the fact that, if ˛ 2 V ˝j , with j < N , then q0.˛/ D ˛, which
can be proved as follows. It suffices to treat the case˛ D v1 : : : vj for v1; : : : ; vj 2 V .
By definition q0 acts as the identity for j D 0; 1. Let us thus assume that j � 2

and prove the statement by induction on j . We assume that q0 acts as the identity
on F j �1 and we shall prove that it does the same on F j (j < N ). The inductive
hypothesis implies that q0.v1 : : : vj �1/ D v1 	 � � � 	 vj �1 D v1 : : : vj �1. Hence,

q0.v1 : : : vj / D v1 	 � � � 	 vj

D .v1 	 � � � 	 vj �1/ 	 vj

D .v1 : : : vj �1/ 	 vj

D v1 : : : vj �1vj C P
l�1

 l.v1 : : : vj �1; vj /

D v1 : : : vj �1vj ;

since the maps  � are normalized.
Now, take r D v1;i : : : vN;i 2 R (summation understood). Then,

q0.r/ D v1;i 	 � � � 	 vN;i

D .v1;i 	 � � � 	 vN �1;i / 	 vN;i

D .v1;i : : : vN �1;i / 	 vN;i

D v1;i : : : vN �1;ivN;i C P
l2N

 l.v1;i : : : vN �1;i ; vN;i /:

If we are considering the first statement, using that, by definition, 'N �l.r/ D
 l.r1; Nr2/ for l D 1; : : : ; N , and by degree reasons  l.r1; Nr2/ D 0 for l > N ,
then q0.r/ D r C PN

lD1 'N �l.r/ D PN �1
lD0 'l.r/, since r vanishes in A and t D 1

in At=ht � 1i. For the second statement, since v1;i : : : vN �1;i ˝ vN;i 2 A˝2 is a
relation decomposition we see that �j .v1;i : : : vN �1;i ; vN;i / vanishes, because it is
extranormalized, and N	2.1jv1;i : : : vN �1;i jvN;i j1/ D 1jr j1. Hence,

 l.v1;i : : : vN �1;i ; vN;i / D  0
l.v1;i : : : vN �1;i ; vN;i /

D
´
'N �l.r/ if l D 1; : : : ; N ,

0 else.

As a consequence, we again have that q0.r/ D r C PN
lD1 'N �l.r/ D PN �1

lD0 'l.r/,
since r vanishes in A and t D 1 in At=ht � 1i. Therefore, q0.r � PN �1

iD0 'i .r// D 0

and q0 thus induces a morphism of filtered algebras q W U ! At=ht � 1i.
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We will now prove that q is an isomorphism. Since

A
p! gr.U /

gr.q/���! gr.At=ht � 1i/ �! A

is the identity, � is an isomorphism and p is surjective, we conclude that p is an
isomorphism and gr.q/ is also an isomorphism. Hence, q is an isomorphism and U
is a PBW-deformation of A.

Remark 3.2. The preceding theorem implies thatAt=ht � 1i may be seen as a PBW-
deformation of A equivalent to U , where the morphism A ! gr.At=ht � 1i/ is the
inverse of �. Furthermore, by Lemma 2.12 we see that the procedure in Section 2.3
may be defined in the set of equivalence classes of deformations and it sends equivalent
deformations to equivalent PBW-deformations. So it defines a map

gp W feq. classes of deformations of Ag ! feq. classes of PBW-deformations of Ag:

Theorem 3.3. Let A be an N -homogeneous algebra satisfying that TorA
3 .k; k/ is

concentrated in degree N C 1. Let us consider a graded deformation At of a A by
normalized maps f j W .A=k/˝2 ! Agj 2N. We apply the construction of Propo-
sition 2.11 to produce maps f'j W R ! V ˝j g0�j <N , and to obtain thus a filtered
algebra U D T V=hP i, with P D fr � PN

j D0 'j .r/ W r 2 Rg. Then, there exists an
isomorphism of graded kŒt �-algebras R.U / ! At such that the induced morphism
A ' R.U /=hti ! At=hti ' A is the identity, where A ' R.U /=hti is the map
described in Section 2.2.

Conversely, let us consider a filtered algebra U D T V=hP i for P � FN and
let A D T V=hRi for R D �N .P / � V ˝N , be the corresponding N -homogeneous
algebra, which we assume to satisfy that TorA

3 .k; k/ is concentrated in degreeN C1.
We suppose thatU is a weak PBW-deformation ofA, and define a deformationAt ofA
following Proposition 2.13. We again see that there exists an isomorphism of graded
kŒt �-algebras R.U / ! At such that the induced morphism A ' R.U /=hti !
At=hti ' A is the identity, whereA ' R.U /=hti is the map described in Section 2.2.

Proof. From Proposition 2.5, we see that, given any graded deformation At of A,
there exists an isomorphism of graded kŒt �-algebras com W R.At=ht � 1i/ ! At .
Since q W U ! At=ht � 1i is an isomorphism of filtered algebras, R.q/ W R.U / !
R.At=ht � 1i/ is an isomorphism of graded kŒt �-algebras. The composition com B
R.q/ gives the desired isomorphism. Using the canonical isomorphism R.�/=hti '
gr.�/, we see that A ' R.U /=hti ! R.At=ht � 1i/ ' A identifies with

A
p! gr.U /

gr.q/���! gr.At=ht � 1i/ �! A;

which we have already seen to be the identity.
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Remark 3.4. The preceding theorem implies thatR.U /may be seen as a deformation
of A equivalent to At . Moreover, it also says that the procedure in Section 2.4 sends
equivalence classes of PBW-deformations to equivalent deformations, i.e., it defines
a map

pg W feq. classes of PBW-deformations of Ag ! feq. classes of deformations of Ag:
Theorem 3.5. By the previous theorems we see that the procedure performed in
Section 2.3 consists in At 7! At=ht � 1i whereas the one done in Section 2.4 is
just U ! R.U /, both up to equivalence. Thus Proposition 2.5, Theorem 3.1 and
Theorem 3.3 imply that pg and gp are mutually inverse.

We finish by exhibiting two examples.

Example 3.6. Let k D F be a field, V D spankhx; yi a k-vector space of dimension
2, and A D T V=hŒx; y�i a quadratic algebra, so R � V ˝2 has a basis formed by a
unique element r D Œx; y�. We note that R3 D 0.

We can provide in this case the maps N	� for � D 1; 2, in their complete domain of
definition:

N	1.1jynxmj1/ D P
˛1C˛2Dn�1

y˛1 jyjy˛2xm C P
ˇ1Cˇ2Dm�1

ynxˇ1 jxjxˇ2 ;

N	2.1jyn1xm1 jyn2xm2 j1/ D P
˛1C˛2Dn2�1

P
ˇ1Cˇ2Dm1�1

yn1C˛1xˇ1 jr jy˛2xm2Cˇ2 :

Furthermore, the homotopies s� for � D 1; 2, are given as follows. The image of
1jynxmj1 under s1 is the class in xC2.A/ of

� P
˛C˛2Dn�1

1jy˛1 jyjy˛2xm � P
ˇ1Cˇ2Dm�1 1jynxˇ1 jxjxˇ2 ;

and the image of 1jyn1xm1 jyn2xm2 j1 under s2 is the class in xC3.A/ ofP
˛1 C ˛2 D n2 � 1
ˇ1 C ˇ2 D m1 � 1

�
1jyn1C˛1xˇ1 jyjxjy˛2xm2Cˇ2 � 1jyn1C˛1xˇ1 jxjyjy˛2xm2Cˇ2

�

C P
˛1C˛2Dn2�1

1jyn1xm1 jy˛1 jyjy˛2xm2 C P
ˇ1Cˇ2Dm2�1

1jyn1xm1 jyn2xˇ1 jxjxˇ2 :

Suppose thatU D T V=hŒx; y� � yi. Note that the maps defining the filtration are
'0 D 0 and '1.r/ D y, which obviously satisfy the weak PBW-property. A simple
inductive argument then implies that the cochains defining the deformed product are

 l.y
n1xm1 ; yn2xm2/ D

�
m1

l

�
nl

2y
n1Cn2xm1Cm2�l :

On the other hand, if U D T V=hŒx; y� � 1i, the so-called Weyl algebra, the
maps defining the filtration are '0.r/ D 1 and '1 D 0, which also satisfy the weak
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PBW-property. It is direct to prove in this case that the cochains giving the deformed
product are of the form

 l.y
n1xm1 ; yn2xm2/ D

´
i Š

�
m1

i

� �
n2

i

�
yn1Cn2�ixm1Cm2�i if l D 2i , i 2 N,

0 else.

Example 3.7. Let k D F be a field, V D spankhxi a k-vector space of dimension
1, and A D T V=hxN i an N -homogeneous algebra, so R � V ˝N has a basis given
by r D xN . Notice that R3 D spankhxN C1i.

In this case, the comparison map N	1 is actually given in (TAU1) in its complete
domain of definition xC1.A/. As for N	2, its full expression may be given by (see also
[8]):

N	2.1jxm1 jxm2 j1/ D
´
1jxN jxm2Cm1�N if m1 Cm2 � N;

0 else;

where we consider 1 � m1; m2 � N � 1. Furthermore, the homotopy s1 is also
given in (S1) in its complete domain of definition. On the other hand, the homotopy
s2 is given by the obvious extension

s2.1jxm1 jxm2 j1/ D
m2�i�1P

iD1

1jxm1 jxi jxjxm2�i�1;

where 1 � m1; m2 � N � 1, and, as previously stated, we suppose that the right
member lies in xC3.A/.

Let f D PN �1
iD0 aix

i 2 kŒx� be a polynomial of degree less than or equal to
N � 1, and suppose that U D T V=hxN � f i. As usual we assume that ai D 0,
if i … f0; : : : ; N � 1g. Note that the maps defining the filtration are 'i .r/ D aix

i

for i D 0; : : : ; N � 1, which obviously satisfy the weak PBW-property. A simple
inductive argument then implies that the cochains defining the deformed product are

 l.x
m1 ; xm2/ D

´
aN �lx

m1Cm2�l if m1 Cm2 � N ,

0 if m1 Cm2 < N ,

as one could have expected.
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