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PBW-deformations and deformations a la Gerstenhaber of
N -Koszul algebras

Estanislao Herscovich, Andrea Solotar, and Mariano Sudrez-Alvarez*

Abstract. In this article we establish an explicit link between the classical theory of de-
formations a la Gerstenhaber (and a fortiori with the Hochschild cohomology) and (weak)
PBW-deformations of homogeneous algebras. Our point of view is of cohomological nature.
As a consequence, we recover a theorem by R. Berger and V. Ginzburg, which gives a precise
condition for a filtered algebra to satisfy the so-called PBW property, under certain assumptions.
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Introduction

Given a graded k-algebra A = TV/(R) with R € V®V there are two notions
of deformation of A available: PBW-deformations and weak PBW-deformations,
as defined by R. Berger and V. Ginzburg in [1] and classical deformations (after
M. Gerstenhaber). The main goal of this article is to construct explicit equivalences
between these concepts, under suitable hypotheses. Our construction is strongly
related to Hochschild cohomology theory. One of our main motivations is to study
the deformation theory of several examples of (graded) N -Koszul algebras of interest,
and since the Hochschild cohomology of many of these algebras is known, we believe
that it is quite fruitful to have such a direct connection.

We shall briefly explain our results in more detail. We consider a semisimple ring
k containing a field F of characteristic zero, such that k¢ = k @ g k°P is semisimple.
Let A = TV/(R) be an N-homogeneous k-algebra (ie., R € V®N). We are
interested in studying filtered algebras U = TV/(P) with P C EB?;O V® such
that R = wy (P), for my: TV — VOV the canonical projection, which satisfy an
extra property: the surjective morphism of graded algebras p: A — gr(U) induced
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by the projection TV — U is an isomorphism. In this case U is called a PBW-
deformation of A. The condition of p being injective is equivalent to an infinite
number of equalities between certain k-bimodules given by intersections of tensor
powers of V' and R (see Section 2.1). The filtered algebra U is said to be a weak
PBW-deformation of A if only two of this set of equalities are satisfied (see (2.1) and
(2.2)).

We provide explicit constructions under the hypothesis that Torg1 (k, k) is concen-
trated in degree N + 1 as follows: given a graded deformation of A we construct
a weak PBW-deformation of A, and, conversely, given a weak PBW-deformation of
A we construct a graded deformation, such that both constructions are inverse up to
equivalence. They are completely explicit (see Sections 2.3 and 2.4). On the other
hand, it is well known, without the assumption on the torsion group of A, that for
any filtered algebra U satisfying the PBW property one can naturally obtain a graded
deformation A; of A by considering the Rees algebra R(U), and conversely, given
a graded deformation A; of A, one obtains a filtered algebra U satisfying the PBW
property taking a generic fiber A, /(t — 1). These two constructions provide quasi-
inverse functors for the respective categories. Finally, under the assumption that
Torf,:1 (k, k) is concentrated in degree N + 1, we notice that the explicit constructions
we defined in fact coincide with the previous general ones, implying Theorem 1.2
and Theorem 3.4 of [1], which state that the notion of a weak PBW-deformation and
of a PBW-deformation coincide if Tor‘34 (k, k) is concentrated in degree N + 1. We
would like to point out that the procedure exhibited here allows to find the deformed
product of A; explicitly from the filtered algebra, even though the computations are
often very hard to perform in general.

We would also like to remark that a similar construction has been already consid-
ered in the (second part of the) proof of Theorem 1.1 of the article [5] of G. Flgystad
and J. E. Vatne. However, the mentioned proof contains a mistake. More precisely,
following the notation of that article, on p. 122, after the identity defining y on line
22, it is stated that y o o vanishes. This is not necessarily true, because there is in
principle no identification of the Koszul resolution K, inside the bar resolution B,,
which is compatible with taking brackets [1, —]. In fact, this can also be noticed from
the fact that the recursion formulas for the cochains giving the deformed product cor-
responding to a weak PBW-deformation explained in Proposition 2.11 of Section 2.3
are indeed more complicated.

The article is organized as follows. In the first section we recall some generalities
about the theory of N-homogeneous algebras over a (not necessarily commutative)
semisimple ring k containing a field F of characteristic zero such that k® = k ® g k°P
is semisimple, and make an intensive study of the (reduced) Hochschild resolution
and a “Koszul-like” projective resolution of bimodules of an N-homogeneous al-
gebra satisfying some vanishing condition on the torsion groups. In Section 2, we
first recall general facts on PBW-deformations and weak PBW-deformations of N -
homogeneous algebras and the classical graded deformation theory a la Gerstenhaber.
Later, in Sections 2.3 and 2.4 we establish a link between these concepts. Finally, in
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Section 3 we prove the main results of this paper, namely Theorems 3.1, 3.3 and 3.5
and we give several examples.

Acknowledgements. We would like to thank Roland Berger for several comments
which helped to improve the article. We would also like to thank the referee for a
careful reading of the manuscript.

1. Generalities

From now on, k will be a (not necessarily commutative) semisimple ring containing
a field F of characteristic zero. We consider k¢ = k ® g k°P. We assume further that
k¢ is semisimple. By k-bimodule we will always mean a k-bimodule such that the
action of F is symmetric, i.e.,a-m = m -a for alla € F, and m in the k-bimodule
M . Note that we do not assume the action of k on the bimodule to be symmetric.
It is clear that this definition of k-bimodule is equivalent to the notion of a (say left)
k°-module. As a matter of notation, all unadorned tensor products ® are over k.

A k-algebra denotes a monoid object in the monoidal category of k-bimodules,
i.e., itis a k-bimodule A provided with a morphism pt: A ® A — A of k-bimodules,
which will be denoted u(a ® a’) = a -a’, and an element 1 € A, such that pu is
associative, 1-a = a-1 = aforalla € A,andc-1 = 1-cforall ¢ € k. Equivalently,
a k-algebra is a ring A provided with a unitary ring homomorphism ig: k — A4
where Im(i4) is not necessarily contained in Z(A). Forn > 2, u(: A®" — 4
will denote the morphism of k-bimodules defined recursively by /L(z) = u and
pm ) = o (@ lf("_l)) forn > 2. A morphism from a k-algebra A to a
k-algebra B is a ring homomorphism f: A — B such that f oigy = ip.

A graded k-bimodule will be a k-bimodule V' together with a decomposition as
a direct sum of k-bimodules V = €, cz Vu. A morphism of graded k-bimodules
is just a degree-preserving morphism of k-bimodules. The category of graded k-
bimodules is monoidal in the obvious manner. We will denote the homomorphism
group between two graded k-bimodules M and M’ by homge (M, M’). The shift
Sfunctor (—)[1], together with its iterations, is defined in the usual way, and we recall
that the internal group of homomorphisms between two graded k-bimodules M and
M’ is given by Homyge(M, M') = ;.7 homge(M, M'[i]). Moreover, a graded
k-algebra is a monoid object in the monoidal category of graded k-bimodules, i.e., a
k-algebra provided with a decomposition of k-bimodules of the form A = P, .7 A
such that 1 € Ag and A, - Ay € Aptm forall n,m € Z. In fact, we shall usually
assume that A = P, ¢y, 4n-

Given a graded k-algebra A, a graded left A-module M is given by a graded
k-bimodule structure on M together with a morphism of graded k-bimodules p: A ®
M — M, which will be denoted by p(a @ m) = a-mfora € Aandm € M
satisfying the usual mixed associative axiom, i.e., @ - (@’ - m) = (a - a’) - m for all
a,a’ € Aandm € M, and that 1 -m = m for all m € M. As usual, a morphism



508 E. Herscovich, A. Solotar, and M. Sudrez-Alvarez

of graded left A-modules is just a degree-preserving morphism of A-modules, and
the homomorphism group between two graded left A-modules M and M’ will be
denoted by homy (M, M’). We note that shift functor (—)[1] may also be defined
on a graded left A-module M, where the underlying structure of graded k-bimodule
is the same as before, and the obvious action. As in the previous case, the internal
group of homomorphisms between two graded left A-modules M and M’ is given
by Homy (M, M') = P,z homy (M, M'[i]). The usual definition of graded right
A-module and graded A-bimodule are analogous, and using the obvious structure of
graded k-algebra on A° = A ® A°P we also see that the notion graded A-bimodule
and graded (say left) A°-module coincide.

Let N be a positive integer, N > 2. By complex (resp. N-complex) we mean a
nonnegatively graded module over a k-algebra A, provided with an endomorphism
d of degree —1 such that d? = 0 (resp. dV = 0).

We note that, since k is semisimple, it is von Neumann regular, so all the consid-
erations in [1], Section 2, in order to properly consider the notion of Koszul algebra
also apply to this case. Let A = TV/(R) be an N -homogeneous algebra, where V is
a k-bimodule (considered to be concentrated in degree 1) and R is a k-subbimodule
of VN 1In this situation, we shall identify A/k with the k-subbimodule I, of A
spanned by elements of strictly positive degree. We will make use of the number
function given by

Nm ifn =2m,

: N No, =
¢: Mo~ No,  £ln) {Nm+1 ifn=2m+ 1.

For n € Ny, define W, the k-subbimodule of ¥ ®” given by V®" if n < N, and by

n—N
ﬂ V®i QR® V®(n—i—N)
i=0
ifn > N. Then W; = V® fori = 0,...,N —1, Wy = R, and Wyi1 =
(R® V)N (V ® R), which we shall also denote by Ry1. Note that W, may be
regarded as a graded k-bimodule concentrated in degree n.

We recall the bimodule Koszul complex (K,(A), d.) of A, defined in [2] for the
case that k = F is a field. First, we consider the graded A-bimodule given by
(A ® W, ® A)nen,- Then, for each n € N, there are two A-bimodule maps

AL dR- AW, 4> AQW,_1 ® A

n-’>>"n
given by
dF@o® - ®ant1) = apa1 ®ar ® -+ ® an41,
an(aO ®- - Qapt1) =g Q- Qdp—1 Q Anln1.

We note that d~ and d® commute. We shall denote an element ¢ @ & @ b €
AR W, ® A, where a,b € A and a € W,,, in the shorter form a|x|b.
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If g is a primitive N -th root of unity, we consider the map of A-bimodules
AP AQW, @A — AQW,_1 ® A

given by d,ﬁ’ = dF — ¢g"'dR. Tt is trivially verified that (4 ® W, ® A), dby is
an N -complex. The bimodule Koszul complex (K,(A4),d,) of A is the (1, N — 1)-
contraction of the previous N-complex, that is K,(4) = A ® Wi ® A with
differential d, given by the corresponding successive composition of the differential
of the previous N-complex. It is easy to see that

L R : _
ANmi1 — ANms1 ifn =2m+1,
L L R R
d, = dN(m—l)-‘rZ"‘de +dN(m—1)+2"‘de
N-=3 ifn =2m.
L L R R
+ X%) dN(m—1)+2 T de—i—lde—i ce de
i=

We thus notice that the N -th root of unity is in some sense superfluous, since we may
define the Koszul complex without invoking it. The algebra A is called Koszul if the
bimodule Koszul complex (K,(A), d,) is a resolution of A-bimodules of A for the
map dog = u: Ko(A) = A ® A — A given by the product u of A. We recall that
the category of A-bimodules is equivalent to the category of (say left) modules over
A® = AQF A (notover A° = A®j A°P, because we are not considering symmetric
k-bimodules!). Moreover, since Jfomge(A Q@ W, ® A, —) >~ Homye(W,, —), we see
that the bimodule Koszul resolution consists of projective graded A-bimodules, i.e.,
projective graded left A°-modules.

For our purposes, we will be interested in a weaker condition than that of be-
ing Koszul: we shall suppose that A is an N-homogeneous algebra satisfying that
Torg1 (k, k) is concentrated in degree N + 1. This is equivalent to say that there ex-
ists a projective resolution (of graded A-bimodules) of A that coincides with the one
given by the Koszul bimodule complex for homological degrees less than or equal
to three (see [1], Sec. 2). This assumption comes from the fact that all the computa-
tions we shall perform in this article are restricted to those homological degrees. In
any case, we shall still denote by K,(A) the former projective resolution (of graded
A-bimodules) of A, and call it minimal.

The (graded) Hochschild complex (C,(A), b,) of A is given by C,(A) = A ®
A®" ® A forn € Ny, with differential

n
bp(ag ® -+ ® any1) = .Z%)(—l)’ao Q- ®aidi+1 @+ ® dnt1

1=
for n € N. We will also write ag|...|ay+1 instead of a9 ® -+- ® ay+1. This
complex gives a projective resolution C,(4) — A of A in the category of (graded)
A-bimodules provided with morphisms of degree zero viaby = u: A® A — A,
called the Hochschild resolution. Moreover, we may consider the reduced (graded)
Hochschild resolution (C,(A), b,) of A. The underlying graded A-bimodule is given
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by C,(A) = AQ (A/k)®" @ Aforn € No, so there exists a canonical projection
Pn: Ch(A) —> C, (A), and the differential b, is induced by b,, for n € N such that
p. becomes a morphism of complexes. It gives a projective resolution of A in the
category of (graded) A-bimodules provided with morphisms of degree zero, called the
reduced Hochschild resolution C,(A) — A of A. Using the identification between
A/ k and the k-subbimodule of A spanned by the strictly positive elements of A4, we
will usually denote an element of C, (A) simply by ap ® a1 ® --- ® ap ® an+1,
or aglay]...lan|an+1, where deg(a;) > 1 fori = 1,...,n, instead of the more
correct ap ® [a1] ® -+ ® [an] ® an+1 (or aol[a1]] ... |[an]lan+1), where [a] € A/k
is the class of @ € A. Furthermore, if by chance there exists i € {1,...,n} such that
deg(a;) = 0, we may also consider ag|ai] . ..|an|an+1 as the zero element of Cn(A).
We remark that, under this identification, b,, is the restriction of b, to A ® I f’" ® A.

If M is a graded A-bimodule, the graded Hochschild cohomology groups of A
with coefficients in M, which will be also denoted by H"(A, M), are given by the
cohomology of the cochain complex

Homye (C.(4), M) = GBZhomAe(C.(AL M[j])
J€
~ Homp.(A®®, M)
= D homy.(4%*, M[j])
jezZ
with the induced differential, where hom(—, —) is the set of degree-preserving homo-
morphisms. Again, these cohomology groups can be computed using either the com-
plex Homye(C,(A), M) or Jomye(C,(A), M). If M = A, we shall write HH*(A)
instead of H*(A, A). In this case, we know that H" (A4, M) ~ 8xt'e/ke(A, M), the
relative derived functors of Homge(A, —). We see that H°(A, M) has an internal
grading or weight that comes from the gradings of A and M, which we shall denote
by H*(A, M),.
Before proceeding further, we shall state some notation. Let us consider a positive
integer p <nandasubset! = {i; <--- <ipnjof{l,..., p}. Givenadecomposition
n=mny+--+npofn(n; €No)satisfying thatn;; = 1for j = 1,...,m, we

define the collection of k°¢-linear maps ql.("l""’

by the canonical map q-(nl """ ") yni A if ¢ I, and q-(nl """ ") = 1y, if

1 1
i € I. Then, consider the map par, ., ); = g @ ® q},nl""’n"), so it

is a map from V®” to

n .
») homogeneous of degree zero given

A®(i1—1) ® 174 ® A®(i2—i1—1) ® 174 R ® %4 ® A®(im—im—1_1) ® %4 ® A®(P—im).

We now define the maps p.ar’(nl I and Par, ; from V" 0 AQV ® A®V ®

-V ®AR®YV ® A, where the k-bimodule V' appears m times in the last tensor
product. The former is given by the composition of

(M(il_l) R1ly ® 'u®(i2—i1—1) RQRly -1y ® M(im_im—l_l) R1ly ® M(P_im))
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and parg,, - The latter is defined as Parp; = Zpar’(nl’m’np),l,

last sum is indexed over all decompositions (71, ...,np) of n such that n i; = 1 for
Jj =1,...,m. In general, we shall write

where the

Par, 7 (0) = o) @A) ® ¢3) @ - ® dm—1) ® X2m) ® Xam+1),

where the bars are used for the elements with indices in /. We remark that in the
previous expression a sum over all decompositions of « in p terms such that the ones
with bars belong to V' is implicit. For instance, if @« = vy ...v, € V®" we denote

Par3,{2}(a) = a(1)|&(2)|a(3) CEAQRV R A

the sum over all decompositions of o such that the term with the bar (,) belongs to
V,ie., itis given by
n—2
Hvivz .. .vp + D° V1. i |[Vig1|Viga .. Uy + V1 .. U1 |Ug] 1.

i=1

This should be seen as a similar notation to Sweedler’s one for coproducts. We
emphasize that each term ;) is homogeneous and may be (and shall be) taken equal
to 1 if it has degree O.

The following remarks are easy consequences of the definitions:

Fact1.1. Ifa = v;...v, € V® and B = w; ... w,, € VO™, then
@B) )| (@B) ) |(@B)3) = ayldelam B + aBuyBw)Ba)-

Fact 1.2. If ¢ = vy ...v, € V®" let us consider amlap)laE € ARV ® A C
AR® AQ® A. Then,

bilamlala@) = amae)lae) —amlaeae = ol — 1o

We see that
dy(1|r[1) = ryli)|r3). 1.1)
di(1w|1) = vils;|1 = 1ri|u; = waylweyll — Hwa)|we), (1.2)

wherer € R,and w = ) ;o rivt; = ) ey Visi € (VOR)N(R®V) = Ry
for u;,v; € V, ri,s; € R and a finite set / of indices. We have omitted the sum
in (1.2) and we shall do so for the typical elements of Ry 1: we shall simply write
w = rju; = v;s;. Moreover, the previous choice of letters will be the usual one to
denote elements of R and Ry +1, unless we say the contrary.

Since both the Hochschild and the minimal bimodule resolutions are projective
resolutions of graded A-bimodules of A4, there exist unique (up to homotopy) com-
parison morphisms of graded A-bimodules o,: K,(A) — C.(A) and 7,: C,(A) —



512 E. Herscovich, A. Solotar, and M. Sudrez-Alvarez

K.(A). We define the morphisms of graded A-bimodules given by the extension of
the following expressions

00 =14 ® 14, (SIGMA)
01 =14 ®@incyca ® 1y, (SIGMA;)
o (1|r|1) = 1|rqy|re)lr3). (SIGMA,)
o3(Lw|1) = Tvilsi, ) 5i,2)[51,63) = Hwa)lwe) W) wey. (SIGMA3)

We define 6, = p, o o,. Itis easy to see that 6od; = b101 and 01d> = b303. These
identities immediately imply that 6od; = b161 and 61d> = D302 hold. We shall
check that 0,d3 = b303, which also yields 6,d3 = b363. On the one hand, we see
that

byoz(1{w|1) = bs(1|vilsi,1)|5i,2)5i,3)

Vi lsi, 156, 151,3) — Hvisi,(lSi,@)151,3) + 1vilsi,1)Si,2)151,3)
— Hvilsi,(1)15:,2)5,3)

= Vi[si,) |51, 81,3) — Hvisi,q|5i,2) s1,3) + 1vilsi[1 — 1]vi|1]s;

Vi lsi, (1151, 151,3) — 1|visi, () 56,2)I54,3).

where we have used Fact 1.2 and that 1|v;|s; |1 = 1|v;|1|s; = 0 since each s; vanishes
in A. On the other hand,

ordz(1lw|l) = oo (v;]s; |1 — 1]ri|u;)
= V|8, (1) |51, I51,3) — Uri,)lFi ) |7i,3) Ui -

The equality 0,d3 = b3073 then follows from the simple result:

Fact 1.3. If w = rju; = v;is; € Ry4q for u;,v; € V, rj,s; € R (summation
understood), then

Hvis; (ylSi,2)18,3) = Uri,(yl7i, ) |7i,c)ui-

Proof. We pointout thatin the first member of the previous identity we are considering
the decompositions of w in three terms where the first one has degree greater than
or equal to 1 and the second one has degree 1, whereas in the second member we
consider the decompositions of w in three terms where the second one has degree 1
but the third one has degree greater than or equal to 1.

We may decompose the sum 1|v;s; (1)]5i,(2)|8i,(3) in two separate cases: when
8;,3) € k (in which case, it is equal to 1) and when s; (3) has degree greater than or
equal to 1. We may write this as

Lvis; ()l8i,2)18,3) = Hvisi,()lSi,2)18i,3) + 1visi,q)l8i,2) /1.

ng(Si,(3))>0
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The same reasoning applies to 1|r; 1)|7i,2)|7i,3)%i, to give

+ 117y lri,ui-

deg(ri.(l))>0

However, since the terms 1|v;s; (1)|5;,(2)|1 indicate all the decompositions of w
in two terms such that the second one has degree 1, we see that 1|v;s; 1)[Si,2)|1 =
1|r;i|u; |1, which vanishes, since 1|r;|u;|1 € C2(A) and r; = 0 in A. A similar
argument implies that 1|1|7; (1)|ri,2)u; = 1]1|v;|s; € C2(A) vanishes.

Hence, we only have to prove that

1|v;s;,

deg(s,-_(3))>0 deg(rl—.(l))>0

This identity holds, since both members are built from the decompositions of w in
three terms, where the first and third ones have degree greater than or equal to 1, and
the second one has degree 1. O

Definition 1.4. Given an homogeneous element 1|ay|...|a,|1 € C,(A) (resp. a; ®

--®a, € A®"), we shall say thatitis N -normalized if deg(a,) +---+deg(a,) < N.
Since N is fixed throughout this work, in both cases we will more simply say that it
is normalized.

If> ¢, 1|a'| a1 € Cy(A) (resp. diel ah®---Qal e A®”) satisfies that
deg(@}) + -+ + deg(al) = N, deg(a}), deg(d}, ) >0 and Zlel al...ai, = 0in
A (e, it belongs to R as an element of the tensor algebra T'V'), we shall say that
Yoics Ual]. .. |ab|1 (resp. Y ;c; @) ® -+ ®al, € A®")is a relation decomposition.
This could be also abbreviated by rel. decomp.

Finally, if °;c; 1la}|abla4|1l € C3(A) (resp. Y ey a} ® ah ® ay € A®?)
satisfies that deg(al) + deg(az) + deg(a3) N + 1, deg(al) deg(a3) 1 and
Y ey aiabal € Ryyq as an element of the tensor algebra 7'V, we shall say that
>ies 1|a‘i |abla|1 (resp. Y ;c; @) ®al, ® al € A®3)is a double relation decompo-
sition. It will be occasionally abbreviated by double rel. decomp.

Using the identification A/k >~ I, we have the analogous versions of the pre-
vious three definitions for elements of C,(A) or (A/k)®", which will be called in
the same way. We would like to note that the set of homogeneous elements in C, (A)
(resp. A®", C,(A), (A/k)®") which are normalized form a k-subbimodule. The
same applies to the set of homogeneous elements which are relation decompositions,
or double relation decompositions.
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We partially define the morphisms of A-bimodules 7, as follows:

T0=14® l4, (TAUo)

11(1|a|1) = a(1)|ﬁ(2)|a(3) ifdeg(a) <N, (TAUI)

7 (1]alb|l) =0, if 1|a|b|1 is normalized, (TAU2 1)

o (1a;|bi|1) = 1|r|1 ifr =) a; ® b; is arel. decomp., (TAU; »2)
iel

w3(1|al|b|c|1) =0 if 1lalb|c|1 is normalized, (TAU3, 1)

w3(1|a;|bi|ci|1) =0 ifr=> a; ® b; ® ¢; is arel. decomp., (TAU3 )
iel

3(1]a;|bilci|l) = llw|]l  ifw = Y a; ® b; ® ¢; is a double rel. decomp. (TAU3 3)
iel

We remark that the previous identities induce maps z, from C,(A) to K,(A) (partially
defined on the image under p, of the domain of definition of t,). It is trivial to verify
that Tgb; = d;71 holds, wherever 11 is defined. We shall check that 715, = d>1>
and 12b3 = d313 are verified where we have defined them. These identities would
imply that T7ob; = d1 71, T1b2 = da 7> and T,b3 = d373 hold where they are defined.
These maps can be extended to complete morphisms of complexes of A°-modules
7.: C.(A) - K.(A) and 7,: C.(4) — K.(A), giving quasi-isomorphisms, by the
semisimplicity assumption on k€.

Let us start with 715, = da15.

» If we apply d,7, to a normalized element of the form 1|a|b|l, we see that

dyt2(1|alb|1) = 0. On the other hand,

tby(1]albll) = t1(alb|1 = 1|ab|1 + 1]a|b)
= aby|be)|b@) — (@b)yl(ab) @ |(ab)z) + ayldm)laa)b,

which trivially vanishes by Fact 1.1, so 11h, = d, 1, for the elements 1|a|b|1,
with deg(a) + deg(b) < N.

» If we apply d, 1> to a relation decomposition of the form 1|a;|b;|1 (with r =
D ier @i ® bi), we see that dp 1o (1]a; |bi|1) = da(1|r|1) = r1)|F(2)|7(3). Anal-
ogously,

t1ba(1la;|bi|1) = t1(a;i|b;i|1 — 1|a;b;|1 + 1|a;|b;)
= a;b; (1)|bi,2)bi,3) + ai,(lai,)lai,@)bi,
since 1]a;b;|1 = 1|r|1 € C;(A), which vanishes. Now, using that
roy|F@)lre) = aibiwlbi@)|bie) + aimlaielaiebi,

we conclude that t1by = d» 7, where we have defined it.

Let us now prove that 7,03 = d313.
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If we apply d373 to a normalized element of the form 1|a|b|c|1, we see that
dst3(1|alb|c|1) = 0. On the other hand,

wb3(1|alb|c|l) = ta(alb|c|l — 1|ab|c|l + 1|a|bc|1 — 1]alb]c),
which trivially vanishes by (TAU; 1), so 12b3 = d3t3 for the elements of the
form 1|a|b|c|1, with deg(a) + deg(b) + deg(c) < N.
If we apply d373 to a relation decomposition of the form 1|a; |b;|c;|1, we see
that d3t3(1|a;|bi|ci|1) = 0. Also,
tabs(1a;|bilci|1) = ta(ai|bi|ci[1=1|a;bi|c;[1+1]a;|bici|[1-1]a;|bi|c;) = 0,

where we have used (TAU5 ;), since deg(a; ), deg(c;) > 0.

If we apply d313 to a double relation decomposition of the form 1|a;|b;|c;|1
(withw = )", ai ® bi ® ¢;), we see that dzt3(1|a;|bi|ci|1) = dz(1|w|l) =
aij|bici|l — 1|a;bi|c;. We note that, if w = rju; = v;s;, then q;|b;jc;|l =
v;i|s;|1 and 1|a;b;|c; = 1|ri|u;, since, for the first identity, each member is
a decomposition of w in two terms such that first one has degree 1, and the
argument for the second identity is analogous. On the other hand,

©2b3(1ai|bilei[1) = 2(ai|bilei[1 — aibi|ci|1 4 1a;|bici|l — 1la;|bic;)
= ailbici|l — 1a;bilci,
where we have used that 1|a;b;|c;|1 = 1|r;i|u;|1 and 1|a;|b;ic;|1 = 1|v;|s;|1

vanish in C,(A4), and (TAU, ) for the other two terms. We conclude that
T2b3 = ds3 13, where we have defined it.

Finally, there exist homotopies s, and ¢, for ¢ € Ny, which are morphisms of

A-bimodules, on the complexes C,(A) and K,(A), respectively, such that

bus15n + Sn-1bn = 1, (4) = Onn. (1.14)

and

dn—{—ltn + tn—ldn = 1K,,(A) — TuOn, (1-15)

hold for n € Ny, respectively. We set

s—1 =0, (S-1)
so =0, (So)
s1(1a|l) = =1lagylaz)lae),if deg(a) < N, (S1)
s2(1ailbi|1) = 1lailbi,q)lbi,2)|bi,3). (S»)
if 1|a;|b;|1 is normalized or a relation decomposition,
s3(Lailbilci|1) = —1la;|bilci (1lCi,@)lci,(3)s
(S3)

if 1]a;|bi|c;i|1 is normalized, a rel. decomp. or a double rel. decomp.
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Note that in fact s3(1|a;|b;|c;|1) vanishes if 1]|a;|b;|c;|1 is a double relation decom-
position.

As previously indicated, the semisimplicity hypothesis on k€ tells us that these
maps can be extended to complete morphisms of A°-modules s,: C,(A) — Co11(A)
satisfying the identity (1.14). We see clearly that 1 Co(d) — 00To = b15o + s_1bo
holds. Moreover, (1.14) for n = 1 is also verified, since, for deg(a) < N,

(g, — 01T (1all) = la|l —awlap)las).
and
(b2s1 + sob1)(1]all) = ba(—1lalae)lag)
= —amlaplae) + Hamawlae) — lawlaeans)
= —awlalai) +1la|ll = 1la|l —aq)lap)laes).
where we have used Fact 1.2 in the penultimate equality.

We shall now check that (1.14) holds for n = 2 when applied to a normalized

1]a|b|1, or to a relation decomposition 1|a;|b;|1.

o If we apply (1.14) for n = 2 to a normalized element of the form 1|a|b|1, we
see that (1g,4) — 0272)(1|alb|1) = 1|a|b]1, since 72(1]a|b|1) = 0. On the
other hand,

s1ba(1)alb|1) = s1(alb|1 — 1|ab|1 + 1]alb)
= —albw)|b)|ba) + 1|(ab) )l (ab) @)l (ab) )
— lawlawlaa)b
= —alb)lb@|b@) + ablbe)lbe),
where we have used Fact 1.1. Besides,
basa(1]alb|1) = bs(1]albylbeylbe)

= albylbe)|be) — 1ablbey by + albaybe)lba)
— lalb lbybe)

= albylb)|be) — llabw|ba)lba) + lalb|l.

where we have used Fact 1.2 in the last equality. By adding the previous
computations, we see that (1.14) holds for n = 2 when applied to 1|a|b|1
if deg(a) + deg(b) < N.
 If we apply (1.14) for n = 2 to a relation decomposition 1|a;|b;|1 (with r =
Y icr @i ® b;), we see that
(1g, 4y — 0272)(1ai|bi[1) = 1]a;|bi|1 — o2 (1]r[1)
= Hai|bi|1 — Va;bi 1)|bi,2) bi,c3)
— 1a;,mylai,@lai,3)bi.
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On the other hand,
s1ba(1a;i|bi|1) = s1(a;i|bi|1 + 1]a;|b;)
= —ai|b;,1)|bi,2)|bi3) — Uai,)lai,@lai@bi.
where we have used that the elements 1]|a;b;|1 = 1|r|1 in C; (A) vanish. Also,

bssz(1a;|bi|1) = bs(Uailbi,m) i,z 1bi,3)
= a;|bi, 1) |bi,2) 1bi,3) — Vaibi 1 |bi,2) |bi3)
+ Uai|bi,1ybi ) |bi3) — Uailbi, b 2)bi3)
= a;|bi,(1)|bi,2)|bi,3) — Uaibi,)lbi2)|bi,3) + ailbill,
where we have used Fact 1.2 in the last equality. Adding both computations, we

see that (1.14) holds for n = 2 when applied to 1]a; |b;|1, withr =) ;c;a; ®
b; € R, deg(a;), deg(b;) > 0.

We shall now check that (1.14) holds for n = 3 when applied to a normal-
ized llalb]c|1, to a relation decomposition or to a double relation decomposition
Uai|bilci|1.

e If we apply (1.14) for n = 3 to a normalized element or to a relation decom-
position of the form 1|a;[bi|c;|1, we see that (1¢, 4y — 0373)(1]ai|bilci|1) =
1la;|bi|ci|1, since T3(1|a;|bi|ci|1) = 0. On the other hand,

s2bs(1a;[bi[ci|1) = sp(ailbile; |1 — Vagbile; |1 + 1lailbici|1 — 1]a;|bilc;)
= a;|bilci,(1)|¢i,2)ci,3) — Haibi|ci,)|Ci,@2)lci,3)
+ Hail(bici) 1y | (Bici) )| (bici) 3)
— 1ai|bi, 1)l bi2) bi, 3 ci
= ailbilci,(1)|¢i,@)lci,3) — Haibilci (1)1, @) lci3)
+ i |bi, 1) bi,2) biayei + ailbici,myléiolei o)
— ai|bi,1)|bi ) bi,3yci
= a;|bilci,(1)|¢i,2)|ci,3) — Haibi|ci,)|Ci,@2)lci,3)
+ Uai|bici (1yICi,)lci 3

where we have used Fact 1.1. Besides,

bass(1lailbilci|1) = ba(—1]ailbilei1|Gi@)lci3)
= —ail|bilci,(1)|ci,2)|ci,3) + aibilci, ()|, 2)lci,3)
— Uailbici,(1)|Ci,@)lci,3) + ailbilci|l,
where we have used Fact 1.2 in the last equality. The addition of these computa-

tions tells us that (1.14) holds for n = 2 when applied to a normalized element
or a relation decomposition.



518 E. Herscovich, A. Solotar, and M. Sudrez-Alvarez

e If we apply (1.14) for n = 3 to a double relation decomposition 1|a;|b;|c;|1
(withw = )", .y ai ® bi @ ¢i, w = rju; = vjs;), we see that

(1&,04) — 03T3) (Lai|bilci[1)
= 1la;|bilci|1 —a3(1|w|1)
= 1a;|bilci|1 — ai|(bici) iy (Bici) @) (bici)3)
= a;i|bilei|1 — Vai|bi 1) bi ) |bi,3ci
— Ua;|bici,li,@lci,@)
= —1ailbi, ) lbi, ) 1bi,3)ci

where we have used that 1|a; |b;c; (1)|¢;,2)|ci,3) = 1]|ai|bi|ci|1, for the degree
of ¢; is one. On the other hand,

s2bs(1]a;|bilci|1) = s2(ailbi|ci|1 — 1ag|bi|ci)
= —1a;|bi,1)|bi,2)bi,3)¢i s
where we have used that 1|a;b;[c;[1 = 1|r;i|u;|1 and 1|a;|b;ic;[1 = 1]vi|s;|1
vanish in C»(A), and a; |b;|c; (1)|Ci,(2)|ci,(3) vanish in C3(A). Also,
basa(1]a;|bilei|1) = 0,

using that s3 vanishes on a double relation decomposition. We conclude thus
that (1.14) holds for n = 3 when applied to a double relation decomposition.

The comparison morphism &, : K,(A4) — 6.(A) is an injection fore = 0, ..., 3.
Furthermore, the morphisms g, and 7, satisfy the following result.

Lemma 1.5. According to the previous definition of the comparison morphisms
o.,: K,(A) — C,(A) and 7,: C,(A) — K.(A) for ¢« = 0,...,3, we see that
’an—o = IK.(A)'

Proof. Ttis clear that 709 = 14 ® 14 and 7107 = 14 ® 1y ® 14. Moreover,
T202(1|r|1) = B (1rw)|F@)lra)
= L(l{raylr@)lre) + HrmlFe) D
deg(r(3))>0
=0+ 2(lr@ylFell) = 1r|l.

Finally,
7303(1{w|1) = T3(1vilsi, 1) [5i,2)|51,(3))
= T3(1|vilsi,1)|5i,2)18i,3) + Hvilsi,()l5i,2)[81,(3)
deg(s; (3))>1 deg(s; (3))=1

+ v lsi,)l8i,2)11)
= 0+ w3 (1]7;,1) 75,2 |Ti,3) [ui) + T3(L|vilsi,yl5i,2)11) = 1w]1,
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where w = v;s; = riju; € Ry41 and we have used that 1|v;[s; 1)[5i,2)
U7, ylri @ i) lui-

5i,3) =

Remark 1.6. The Lemma implies that we may choose z, = 0 fore = —1,...,2.

We have thus obtained a partial description of both projective resolutions and their
comparison in lower degrees that can be depicted as follows:

> A®RN41®A—L o AQROA— o ARV A A4 40

-~

~— -~ -~ -
13 15) 1 to [
73 a3 T2 02 T1 o1 To 00
b b b

. ®3 3 ®2 2 1 bo
§A®(A/k) ®A<§A®(A/k) ®A;A®(A/k)®A%A®A€

A—0

2. PBW-deformations and deformations a la Gerstenhaber of homogeneous
algebras

In this section we shall briefly recall the definitions of PBW-deformations and of the
(graded) deformations a la Gerstenhaber, which we will usually just call deforma-
tions. We shall also establish a link between both concepts.

2.1. PBW-deformations of homogeneous algebras. We start recalling the defini-
tion of a PBW-deformation, and we mainly follow [1]. We first recall that a filtered
k-algebra B is a k-algebra provided with an increasing sequence {F°B}een, Of
k-subbimodules of B such that F*B.F*B < F™t"B for all m,n € Ny, and
1g € F°B. As usual, such filtrations may also be seen to be indexed over Z, where
the negatively indexed terms vanish. Given a k-bimodule V/, the tensor algebra 7'V
has a filtration {F"}een, defined by F' = @;‘:o V®/ . Now, given P C FV, we
shall consider the algebra U = TV/(P), with the filtration { F"U }sen, induced by
the filtration of the tensor algebra, i.e., F'U = n(F"), where  denotes the canoni-
cal projection from 7'V to U. Of course, 7 is a morphism of filtered algebras. The
filtration can be described more concretely as follows: if (P)' = F' N (P), then
F'U = F'/(P) fori € No. If 7;: TV — V®! is the canonical projection, let us
denote R = 7 (P) and define the N-homogeneous algebra A = TV/(R).

Remark 2.1. We recall here the standard fact that, even though the ideal (P) coin-
cides with Zi.,jzo V'?’ PV®/ (P)" may be strictly bigger than the sum
Y itj<n—n V® PV® which in particular vanishes if 7 < N. As we shall see
below, the PBW property will be the exact condition in order to avoid this phe-
nomenon.
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We shall now consider the associated graded algebra gr(U) to the previous filtra-
tion. First, we state the following direct results.

Lemma 2.2. If S = D¢y, Si is an No-graded k-algebra and F"S is the filtration

induced by the grading of S, i.e., F'S = @; —o0 S}, then there exists a canoni-
cal isomorphi;m L: .S — gr(S) of No-graded k-algebras, such that the restriction
ts,: Si = F'S/F''S is the canonical k°®-linear isomorphism.

Proof. Easy. O

Since w: TV — U is a morphism of filtered algebras, it induces a morphism of
graded algebras gr(w): gr(TV) — gr(U). Moreover, the filtration of U is induced
by the filtration of 7'V, so gr(sr) is surjective. On the other hand, since the filtration of
TV comes from a grading on the tensor algebra, we see that there exists a canonical
isomorphism ¢ : TV =~ gr(TV), by Lemma 2.2. So we may consider the surjective
morphism of graded k-algebras given by the composition gr(w) ct: TV — gr(U),
which we shall call TI. It is easy to see that IT(R) = 0, since («(R) = P/FN~1.
Hence IT induces a surjective morphism of graded k-algebras p: A — gr(U). We
say that U satisfies the PBW property or that U is a PBW-deformation of A if p is an
isomorphism.

Remark 2.3. If ¥ = F is a field and V is a finite dimensional vector space over k,
p is an isomorphism if and only if there exists an isomorphism of graded k-algebras
A ~ gr(U). This is proved as follows. One direction is obvious. Let us assume
that there exists an isomorphism of graded k-algebras A ~ gr(U). Since V is finite
dimensional, A (and a fortiori gr(U)) is evidently locally finite dimensional, i.e., each
homogeneous component is finite dimensional. Hence, since p is surjective, each
restriction of p to a homogeneous component is surjective, so bijective. Therefore,
p is an isomorphism.

The morphism p can be more concretely described as follows. We just need to
consider its restriction to A; (i € Ng). First, we see that

(F'/(F'n(P)))
(FI=H/(F=h 0 (P)))

(U = FIU/FU = ~ FU(F 0 (P)) + P,

where we have used that Fi=! N (P) = (F' N (P)) N F'~! and the Second and
Third Isomorphism Theorems. Then, pl|y4; is induced by the k°-linear morphism
Ve — Fi/((F'N({P))+F'~1) ~ gr(U); given by the composition of the canonical
injection V'® — F and the canonical projection F! — F'/((F' N (P)) + F'™1).
So it is easy to see that U satisfies the PBW property if and only if

(PYNF"y+ F" ' =(R)yNF")+ F"!,
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for all n € Ng, which is equivalent to
(PYNF" C ((R)NF") 4+ F" 1,

for all n € Ny.
As noticed by R. Berger and V. Ginzburg (see [1], Prop. 3.2), the filtered algebra
U satisfies the PBW property if and only if (P)" = >~ ;_,_n V® PV® forall
n € No (in fact, it is sufficient to prove the equality for n > N — 1). Moreover, if
we denote J, = Zi-}—jgn—N Ve PV®J forn € Ng, Prop. 3.3. in [1] states that U
satisfies the PBW property if and only if J, N F"~! = J,_; forall n € Ny (or just
n > N). The identity Jy N F¥N~1 = Jy_; is simply
PNFN-1 =y, (2.1
whereas Jy+1 N FN = Jy is easily seen to be equivalent to
VeP+PV)NFN c P (2.2)

From now on we shall suppose that identity (2.1) holds, which implies that the
map y : F¥ — VOV gives an isomorphism between P and R = 7y (P). Then
there exists a k¢-linear map ¢: R — F™~! such that id — ¢ is the inverse of 7y |p,
ie., P = {r—¢(r) : r € R}. We further write, ¢ = Z}V;Ol @j,whereg;: R — V®&/
is the composition of ¢ with the canonical morphism F¥~! — V®/ Then it is easy
to see that identity (2.2) is equivalent to (see [1], Prop. 3.5)

(p®1ly —ly ® 9)(Rn+1) C P,
or equivalently (see [1], Prop. 3.6)

(en-1® 1y — 1y ® on—1)(Rn+1) C R, (2.3)
poo(pn—1® 1y — 1y ® on—1)(Ry+1) =0, (2.4)
(pjo(pn-1®@ 1y =1y ® on-1) + (¢j—1 @ ly — 1y @ 9j—1))(Ry+1) =0,
2.5)
forO0 < j < N.

Definition 2.4. Given a filtered algebra U = TV/(P), where P C F¥, such
that (2.1), (2.3), (2.5) and (2.4) hold, we say that U is a weak PBW-deformation of
A = TV/(R), where R = nx(P). We remark that each weak PBW-deformation
U of A is provided with a surjective morphism of graded algebras p: A — gr(U).
Given two weak deformations U and U’ of A (with induced morphisms p and p’,
respectively), they are called equivalent if there exists an isomorphism of filtered
algebras g: U — U’ such that gr(g) o p = p'.

Itis immediate to see that a PBW-deformation is a weak PBW-deformation. Using
considerations of deformation theory a la Gerstenhaber we shall provide another
proof of the converse as a consequence of Theorem 3.1 when A is an N -homogeneous
algebra satisfying that Tor‘34 (k, k) is concentrated in degree N + 1 (cf. [1], Thm. 3.4).



522 E. Herscovich, A. Solotar, and M. Sudrez-Alvarez

2.2. Graded deformations in the sense of Gerstenhaber. Letus now briefly recall
the definition of a graded deformation and some results that we shall use in the sequel.
Most of what we will present is implicit in the work of M. Gerstenhaber (see [6],
Sec. 1.2-1.5), and it is explained in more detail by A. Braverman and D. Gaitsgory in
[3]. We would like to remark, however, that we are working over a not necessarily
commutative ring k and this situation needs more sophisticated tools (cf. [7], Sec. 2,
where the author is dealing with the case k = C[G] or more generally k a separable
C-algebra, in order to assure that the Hochschild cohomology over k coincides with
that over C).

In what follows, we consider k[¢] as an No-graded k-algebra such that deg(¢) = 1
and ¢ is central. Given a k-bimodule V/, we shall denote by V[¢] the k[¢]-bimodule
with elements ), ; v;t! for v; € V and finite subsets I Ny, provided with the
action ct™ (Y vit)c't" =Y i cp cvic'tP T for e, ¢! € k.

If A denotes an No-graded associative k-algebra and i € N, an i-th level graded
deformation of A means a graded k[t]/(¢**1)-algebra structure on the k[t]/(t'T1)-
bimodule A4; = A[¢]/(¢**!) such that the identity 4; /¢.A; ~ A is an isomorphism of
graded algebras. By a (polynomial) graded deformation of A we mean a graded k|¢]-
algebra structure on the k[¢]-bimodule A; = A[t] such that the identity A,/t.A; >~ A
is an isomorphism of graded algebras. In the previous definitions, we are always using
the obvious graded k¢-linear map A — A; = A[t]/(t'T') (resp., A — A, = A[t])
given by a > a. We will usually denote the product of 4; (resp. A;) by x (resp. x),
which can be written as

ax'b=ab+ 3 ypa.b)t" (axb=ab+ Y ypna, b)th).
h=1 heN

Since ¥, has degree —h, we must note that the sum for X is finite for any pair of
homogeneous elements a and b in A. We remark that 1/, may be considered as an
element of Homge(C,(A), A), and that the associativity of X is equivalent to

dy =0, (2.6)

J
_d‘ﬂj+1(a»b’c) = .;(wi(av wj+1—i(bvc)) - ‘/fi(‘ﬂjﬂ—i (a,b),c)), forj € N.
2.7)

The right member of the last equation is usually denoted by sq(V/1,...,v¥;)(a, b, c).
We note that there exists a trivial polynomial deformation of A given by the trivial
product on A[t], i.e., such that (at™) xo (a’t") = (a.a’)t"™*" for a,a’ € A and
m,n € Ny.

Given a filtered algebra B with filtration {F*B}een,, We recall that the Rees
algebra associated to it is the graded k [¢]-algebra

R(B) = { Y bit' : I is finite and b; € F' B},

iel
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which is considered as a subalgebra of B[t] provided with the trivial product X (in
this case B is concentrated in degree zero). We remark that the underlying graded
algebra structure of R(B) is @,GNO F* B with the product induced by that of B. It
is easy to see that R(B)/{t — A) ~ B for A € k* N Z(k) such that its action on B
is central (i.e., Ab = bA forall b € B) and R(B)/(t) ~ gr(B) (cf. [4], Cor. 2.3.8,
whose proof can be applied also to this case). Moreover, R(—) defines a functor from
the category of filtered k-algebras to the category of graded k[¢]-algebras.

We would like to make some remarks about the algebra A,/(t — 1) (or about
the algebra A,/{t — A), with A € k™ N Z(k) such that its action on A is central,
to which the following arguments also apply). There exists a k°-linear map A —
A /{t — 1) given by the composition of the canonical injection A — A; and the
projection A, — A,/{t — 1). We consider the filtration on 4,/{t — 1) induced by
the filtration of A under the previous map. We remark that the filtration of A, /{t — 1)
induced by the filtration of A; that comes from the grading is trivial. We shall
see that the associated graded algebra of A,/(t — 1) is isomorphic to A as graded
algebras. This is proved as follows. We consider the k®-linear map p': A; — A
(not an algebra map) given by >7_ja;t/ > Y7 a;. Itis trivially verified that
o’ respects the filtrations coming from the gradings, and that p’((t — 1)b) = 0 for
any b € Ay, so it induces a morphism of filtered k-bimodules p*: A;/(t — 1) — A,
which is obviously surjective and injective. Its inverse is just the aforementioned
map A — A;/{t —1). Hence it induces an isomorphism of graded k-bimodules
p: gr(A,/{t — 1)) — gr(A) >~ A (the last isomorphism by Lemma 2.2). Now, if we
denote the product of A,/{(t — 1) by x; and taking into account that the product of
two elements a,b € A in A;/{t — 1) is given by

axib=ab+ ) v;a.b),
JjeN

and the degree of ¥/, is —j, we see that p is an algebra morphism, so an isomorphism
of graded algebras. This further implies that, if 4 is generated by the image of the
k¢-linear map V' — A, then A, /(¢ — 1) is generated by the image of the composition
of V' — A and the k®-linear map A — A;/{t — 1).

The importance of the algebra A,/{t — 1) is explained in the following proposi-
tion.

Proposition 2.5. Let A be a graded algebra and let A; be a graded deforma-
tion of A. Then, there exists a canonical isomorphism of graded k[t]-algebras
R(A;/{t — 1)) > Ay, such that the induced morphism A >~ R(A;/{t —1))/{t) —
A¢/(t) ~ A is the identity, where A >~ R(A;/{t —1))/(t) is given by the com-
position of the inverse of p and the canonical isomorphism of graded algebras

gr(A:/{t — 1)) >~ R(A;/(t — 1))/ {¢).

Proof. We first remark that we are going to identify A,/(t — 1) with A as k°-
bimodules under the previous filtered k¢-linear isomorphism A — A;/{t — 1), so
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we will denote the elements of this last algebra by elements a of A. We will continue
denoting the product of A;/{t — 1) by x; and we remark that, if a,b € A are of
degree i and j respectively, then

i+j
axy1b=ab+ Y yu(a,b),
h=1

since ¥, has degree —h. Under this identification, the homogeneous i-th component
of R(A;/{t — 1)) is just @;ZO Aj. So the elements of R(A;/(t — 1)) are sums of
elements of the form a;¢/ for j =i >0,witha; € A;.

We recall that the elements of A, are sums of elements of the form a;z/ for i, j =0
fora; € A;.

We now define the map com: R(A,/(t — 1)) — A, given by the linear extension
of

a,-tj > aitj_i.

It is trivially verified that com is an isomorphism of graded k[¢]-bimodules. In order
to prove that it is a morphism of algebras, we only need to show that

com((a;t?) x1 (b;t™)) = com(a;t’) x com(b;t™),

fora;,b; € A of degree i and [ respectively, andi < j and / < m. The left member
is given by

com((a;t’) x; (bjt™)) = com((a; xq by)t’ ™)

i+l
= com((a;b; + i Yn(a;, b))t/ tm)

h=1

. it ‘
= com(a;bjt’ ™) + > com(Yy(a;, b))t/ T™)
h=1

. . i+l . .
= a;ibit/ T 4 S yy(a, by L
h=1

where we have used that ¥, has degree —/h. On the other hand, the right member is
given by

com(a;t’) x com(byt™) = (a;jt’ ') x (bjt™ )
= (aj x b))t/ +tm=i~!
i+l o
= ((@iby + Y yn(ai, by)ety/tm=i=t
h=1
. . i+l . .
— aibl[j-}—m—t—l + Z Wh(aiabl)tj+m+h_l_l,
h=1
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where we have again used that v, has degree —h. Hence, com is an isomorphism
of graded k|[t]-algebras. It is clear that the induced map A >~ R(A,/{t — 1))/{t) —
As/(t) ~ A is the identity. O

Let E(A) denote the groupoid of all graded deformations of A where the mor-
phisms are by definition isomorphisms of graded k[t]-algebras, such that the in-
duced morphism of A >~ A,/t.A; is the identity. Analogously, let E;(A) denote the
groupoid of all i-th level graded deformations of A. Giveni € N, we denote by F;
the functor from E(A) to E; (A) given by reduction modulo :+1,i.e., if A, is a graded
deformation of A, then F;(A;) = A;/ t'+1 4, and the definition on morphisms is the
obvious one. Moreover, giveni < j natural numbers, we denote by F; - ; the functor
from E;(A) to E;(A) given by reduction modulo ™!, so if A; denotes a j-th level
deformation, F;<;(A4;) = Aj/t'*1A; and for the morphisms it is obvious.

The following lemma is trivial (cf. [3], Lemma 1.3).

Lemma 2.6. The collection of functors F; define an equivalence between the category
E(A) and the inverse limit of the categories E;(A) with respect to the functors F; < ;.

Given an i -th level deformation A; of A, a continuation to an (i +1)-th level defor-
mation of A; is an (i 4 1)-th level deformation A; 1 of A such that Fj.;+1(A4j41) =
A;. Given two continuations A4;1; and A’ 41 of A; to an (i + 1)-th level defor-
mation, a morphism f from A;4; to A;+1 is a morphism in Ej41(A) such that
Fi<i+1(f) = 14;. The following proposition is also immediate (cf. [3], Prop. 1.5,
or [7], 2.6).

Proposition 2.7. (a) The set of isomorphism classes of objects of E1(A) can be
canonically identified with HH?*(A)_,.

(b) Let A; be an object of E;(A). Then the obstruction for its continuation to an
(i + 1)-th level deformation lies in HH3(A)—;_1.

(c) Let A; be as in (b). Then the set of isomorphism classes of continuations of

A; to an (i + 1)-th level deformation has a natural structure of an HH?*(A)_i_-
homogeneous space.

Finally we state the following proposition, which is analogous to Prop. 3.7 of [3].

Proposition 2.8. Let A be an N -homogeneous algebra that is Koszul. Then,
(1) the functors Fi_1<;i: Ei(A) — E;_1(A) are injective on isomorphism classes
of objects fori > N,
(i1) the functors F;_1<; are surjective on isomorphism classes of objects for i >
N + 1

Proof. Tt is easy to see from the bimodule Koszul complex that H H Ei (A) vanishes
for i > N. Hence Proposition 2.7 (c) implies (i). Analogously, H Hfi (A) vanishes
fori > N + 1, so Proposition 2.7 (b) implies (ii). O
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In what follows, we shall only consider graded deformations such that the unit of
the original k-algebra is also a unit of the deformed algebra. This is equivalent to ask
that the 2-cochains v; actually belong to FHomge (C.(A), A). We shall say that such
graded deformations preserve the unit. Since any graded deformation is equivalent
to another one preserving the unit (because the complexes Homye(C,(A), A) and
Homye (C,(A), A) are quasi-isomorphic, and the equations (2.6) and (2.7) for both
complexes are preserved under the corresponding quasi-isomorphism), there would
be no loss of generality in restricting to such a situation.

2.3. From deformations to weak PBW-deformations. After having recalled the
basic definitions and results we shall provide a link between both concepts. From
now on, we stress the fact that we assume that the graded k-algebra A is of the form
TV/(R), where V is considered to be concentrated in degree 1 and R € V®¥ for
N > 2 satisfying the assumption that Tor‘3‘1 (k, k) is concentrated in degree N + 1,
so we may use the results of Section 1. First, we set some notation: if y: W — A
denotes a k°-linear map, we shall denote v~ : AQ W ® A — A, its unique A®-linear
extension. A kS-linear map ¥ : (4/k)®? — A is called normalized if it vanishes
on normalized elements, i.e., if ¥ (¢ ® b) = 0, whenever a,b € I ~ A/k are
homogeneous elements satisfying that deg(a) + deg(b) < N. Further, we say that
is extranormalized if it is normalized and if it vanishes on relation decompositions.
We shall also say in this case that ¥~ is normalized or extranormalized.
Let us now consider a graded deformation of A given by

axb=ab+ > yi(a b,

i>1

where v;: (4/k)®? — A are normalized k°-linear maps (see Lemma 2.12). We
remark that y; is a morphism of degree —i, and we have that the associativity of x
is equivalent to (2.6) and (2.7).

We set ¢y _ ;= wj“ oop for j = 1,..., N. We point out that the grading implies
that i/fjw o 05 vanishes for j > N. We shall see that, once we assume that (2.6)

and (2.7) hold, the induced morphisms ¢y—;: R — F N-1 satisfy the weak PBW
property expressed in (2.3), (2.5) and (2.4).
Let us first prove (2.3). We shall state a simple fact that we shall use in the sequel.

Fact 2.9. Given ¢: R — A a k®-linear map, then dg: Ry41 — A satisfies that
dp=(y ®¢—9¢Qly),

where we remark that the map (1y ® ¢ — ¢ ® 1y) is defined from Ry +; to A.

Proof. If w = rju; = v;s; € Ry+1, then

do(w) = de~ (1w[l) = (¢~ o d3)(1|w|1) = ¢~ (v;|ri|1 — 1]s;|u;)
=vip(ri) —e@siu; = (ly @ ¢ — ¢ ® 1y)(w). 0
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We note that (2.6) implies the equality
doy_y =d(Y] 0G3) =Y 0Gr0d3 =Y obyods =dy] 053 =0.

Hence, Fact 2.9 implies that (1y ® ¢ny—1 — ¢n—1 ® 1y)(w) = 0. So, when we
consider (1y ® ox—1 — ¢on—1 ® 1y) as a map from Ry 41 to VeN  we get (2.3).
More precisely, we see that equation (2.6) composed with 63 is equivalent to equation
(2.3).

Let us now prove (2.5) and (2.4). We shall need the following simple fact.

Fact 2.10. If y: (4/k)®% — A is a normalized cocycle and y € V®V then
it holds that ¥ (Y1), ¥(2)) = ¥ (Ya). V). More generally, let us suppose that
Vi,...,¥;: (A/k)®? — A are normalized k°-linear maps such that —dy; =

sq(¥1,...,¥;—1). Hence, if y € VON  we see that Vi (Y. v2) = Vi (Yay. Y2)-

Proof. It is obvious that the second statement generalizes the first one, but we give a
detailed proof of both. In the first case we note that, since ¥ is a cocycle,

0=4dy(yay, v@:¥@3)
=70¥ (e, ve) — VYo Ye 7e)
+ ¥ (V). Y@ Y3) — ¥ (V) Y@)7Ve)
= =¥ (rw. 7@) + ¥y Y@)-

where we have used the normalization of i in the third equality.
Now we prove the second statement. On the one hand, just as before we have that

dvii (V). v v3) = Y¥i (v 73) — Vi (Y Y@ Y3))
+ ¥ (V). Y@ 73) — Vi (V) Y2) 7 3)
= —vi(Ya). Y@) + Vi (Ya). Y2))

where we have used the normalization of ;. On the other hand,
sq¥1.- . Vi—) (V). Y@ 7(3)
= jg(% Yy Vi-i (V@) ¥3) = Vi (V=i (V). Y@)- ¥(3)) = 0,
since Y1, ..., ¥ are normalized. Hence our statement follows. 0

Using Fact 2.9 for oy (0 < j < N) we see that

@y 003) (1w = (ly @ pn—j—1 —¢N-j-1 @ Iy)(w).  (2.8)
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Besides, (sq(¥1....,¥;)~ o 03)(1|w|l) is equal to
sq(¥1, -+, )" (Hvilsi (18,2 181,3)

Z(l/fz (Vi Yj+1-i (8i,(1), 5i,2)) — ¥i (V) +1-i (vi, 8i,1))5 5i,2)))8i,(3)

i=1

.

Z(% Wi Yj41-i (Si,1)» 8i,2) — ¥i (Y +1—i (vis 8i,1))s Si,2))

~

J
= > Wi Vi, ¥j+1-i (5i,1), 51,2))) — Vi (V41— (Fi ) Ti2)) s i)
i=1
= ¥ (vi, Y1(8i,(1)- 5i,2))) — ¥ (V1 (Fi 1) Ti,2) i)
where we have used in the third equality the normalization of vy, ...,¥;. In the

last equality we have used the following simple fact: v 1_; has degree —(j + 1 —
i) =1—j—1,50vy;1-; applied to an element of degree N gives an element of
degree N + i — j — 1. In consequence, the elements v; ® ¥, +1-i(s; (1), 5i,(2)) and
Vjiv1—i (Fi,(1). 7i,(2)) ® u; have degree N + j —i < N (fori < j) and the degree is
exactly N if and only if i = j. The normalization of y; forces only to consider the
terms with degree N and the last equality follows.

Now, using Fact 2.10 we see that V1 (7; (1), 7i,(2)) = ¥1(ri,(1), 7i,2))- Further-
more, by its very definition, oy —1(r) = ¥1(rq). F(2)) for any r € R. Therefore,

(sq(¥1, .-, ¥) " 0 a3)(Hw[l) = ¥ (vi, on—1(5:)) — Vi (on—1(ri), ui)-

We need to compare the previous expression with gy _jo(lyopny_1—on—1®1y)(w),
as we shall proceed to do. We first note that oy —; o (1y @ opn—1 —n—1 ® 1y )(w)
is given by

oN—j (Vi ® oN—1(5i)) —pN—j (PN-1(ri) ® u;)
€R
= (Y; 0 02)(1(vi ® pn—1(5i) — pN—1(ri) ®u;)[1)
—_— —.——
o Bi
= Y7 (1|vioi, ()|, le,3) — 1Bi,)|Bi.o | Bi.ayui — 1Biluil1)
= ¥ (vici (1), @i,2),3) — Vi (Bi, ), Bi @) Bi,ayui — Vi (Bis ui)
= ¥ (viti (1), @i 2) — Vi (Bisui) = ¥ (vi o) — Y (Bi ui)
= V5 (vi, oN—1(5:)) — Y (on—1(ri), ui),
where we have considered in the third member that v; ® o —1(s;) — oen—1(ri) @ u;

is an element of R, we have used the normalization of v/; in the fourth equality, and
Fact 2.10 in the first term of the penultimate member. This implies that

qWr1, ... ¥;) " 0a3)(A|w[l) = on—j o (Iy @ on—1 —oN—1 ® 1y)(w). (2.9)
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Now, from equations (2.8) and (2.9) we see that equation (2.7) composed with o3
(for j =1,..., N — 1) is exactly (2.5). The case of identity (2.7) for j = N leads
exactly to equation (2.4), since dy/y , ; o 63 = 0 by degree reasons.

We have thus proved the following result.

Proposition 2.11. Let X be a graded deformation of A given by
axb=ab+ Y ¥i(a b)t,

i>1

where ;i (A/k)®* — A (resp. ¥ : C»(A) — A) are normalized k®-linear maps
(resp. A®-linear maps). We define ON_; = ij oapfor j =1,...,N. Then, the

induced morphisms oy _j: R — F N=1 satisfy the weak PBW property expressed in
(2.3), (2.5) and (2.4).

Even though we have considered graded deformations given by normalized maps
in the sense of Definition 1.4, the following lemma shows that the assumption is in
fact unnecessary.

Lemma 2.12. Let A be an N-homogeneous algebra such that Tor§1 (k,k) is con-
centrated in degree N + 1. Then, any graded deformation of A is equivalent to a
deformation preserving the unit given by normalized maps.

Proof. Let A; be a graded deformation of A given by a collection of maps
{Yj: (4/k)®* — A}jen

(each of degree — j ) which define a product x. We only need to show that there exists
another graded deformation A} given by maps {w; : (A/k)®% — A}jen such that the
first N maps ¥1, ..., ¥y are normalized, for the {/}};> n are always automatically
normalized by degree reasons.

Using the main property (1.14) of the homotopy s,, we see that /" — 700507, =
d(Y{ osy). Itisclear that Y[ 00,07, isnormalized. Letus define g : A — Athemap
induced by ¥” o s1. So we see that exp(fa1) gives an equivalence from the algebra
(A, x) to another deformation (A}, x ) of A given by the maps {¥}: A%2 — A}een
such that (¥{)~ = /" o 03 o T, is normalized.

We proceed now by (finite) induction. Let i < N and let us suppose that A;
is equivalent to a deformation A’ given by a collection of maps {!: (4/k)®? —
A}ecn such that ! are normalized for < i. Using again (1.14), we conclude that

Vi)™ = (W)~ 0 G20 T —sq(¥f, ..., ¥)) ™ 052) = (Y] 1)) o 51).

Also, it is clear that (W}H)“ 083 0Ty —sq(¥i,. .., wl?)N o 5 is normalized (each
summand is obviously so). Letus define; +1: A — A the map induced by (wi" 4170
s1. This tells us that exp(t T!a; 1) gives an equivalence from the algebra (A?, x;)
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to another deformation (A’f'Ll, Xi+1) of A given by the maps {w."fl (A k)®? —
Ajeen such that Yt = ylfor j <iandthemap (;f])~ = (Y, ) 0d20%—
sq(¥,....¥;)~ o5, is normalized. ]

2.4. From weak PBW-deformations to deformations. Now, we shall give an in-
verse construction, which is a little more complicated. Let us suppose that ¢ =
Zjvz_ol @i ;. R — V®/ givesaweak PBW-deformation of an N -homogeneous al-
gebra A satisfying that Tor‘; (k, k) is concentrated in degree N + 1. We shall construct
a (possible infinite) sequence of normalized maps {/; };en, where ¥ : (A/k)®? —
A, such that

axb=ab+ ) ¥i(a, b)t

i>1
is a graded deformation of A.
First, we define (wj’-)N = (p;,_j o1y for j =1,..., N, and zero otherwise. We
note that w]’. is anormalized homogeneous morphism of degree —j for j = 1,..., N.

We note that ¥ is a cocycle since

d(wi)"' = (W{)N o 53 = QDIV—I o Ty 053 = (p;_l odzoTz = d(p;_l o 13,

and Fact 2.9 tells us that the evaluation of the last expression at 1|w|1, forw € Ry 41,
is equal to the element of A given by (1y ® on—1 — ¢n—1 ® 1y)(w). The identity
(2.3) says that this element vanishes, so d(/1)~ = 0. We define ¥ = /.

We will proceed recursively on j € N. Let us suppose that we have defined
V1. ..., ¥, such that ¥ — (/)™ is an extranormalized k°-linear map of degree —i
foralli =1,...,J, and that

—dv¥itv1 =sqW1,.... Vi)

holds foralli =0, ..., j —1. We will denote n;” = ¢~ — (%’)7
We shall now prove that

—d(j )" 003 =sq(Y1,...,¥;)" 003. (2.10)

Let us as usual consider w = rju; = v;s; € Ry+1. On the one side, (d(tﬁ]’.+1)~ o
03)(1|w]|1) is equal to

d(lﬁ;+1)~(1|vi si,(1) 51,2 [51,(3))
= (¢j€+l)“(vi|si,(1) 5i,2)181,3))
— ()" (visi, @ Si, Is1,63) + (Y 40) ™ (Lwilsi|1)
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= 0¥} 41 (5i,1)» 50,2))80,3) — V)11 (ViSi 1) 5i,2))Si,(3)
ViV 41 (50,0105 Si.2) — Vi1 (ViSi 1) 5i.2))81,3)

= 0¥} 11 050.01), 50,2) = Vi1 (ViSi. (1), 5i,2) — ¥ 1 (ViSi, (1) 51,2))80.3)

deg(s;,(3))=0 deg(s;,(3))>0

= ViV 11 (50,0100 51,2) = V1 (Visi,(1)» 52,2) — ¥jg1 (Visi 1) 51,2))54,3)-

deg(s;, (3))=0 deg(s; (3))=1

where we have used Fact 1.2 in the second equality, that s; vanishes in A in the third
equality, and that w]’. 41 1s normalized in the fourth and sixth ones. Moreover, since
Vi si (1) @ Si(2) = ri ® u;, we see that

Vi1 (Visi, 1), Si2) = ¥jgq (i ui) = 0.
Also, taking into account that if deg(s; (3)) = 1, then
Visi, (1) ® Si,2) ® Si,(3) = Fi(1) B Ti(2) ® Ui,
we obtain that wj/.ﬂ(vis,-,(l),E,-,(z))s,-,@) = W]{H(Vi,(l), Fi,2))Ui, SO
(AW~ o) (Mwll) = v (Si1): 5i,2) — ¥j 1 (i) Fi )i -

By its very definition, 1//J’.(r(1),f(2)) = on—j(r)forallr e R, j =1,...,N.
Therefore,

(AW}~ oa3)(Hw|l) = vign—j—1(5:) — oN—j—1(ri)u;

2.11)
=y @en—j—1 —¢oN—j—1 ® ly)(w).

On the other side, (sq(¥1, ..., V¥;)~ o 03)(1|w|1) is equal to
sQ(Yis -+, )T (Lvilsi, (1) [5,2) I81,(3))

J
= > (Wi (i Y1 (5i,01): Si,2) — Vi (Wjr1-i (Vs $i,(1))s 5i,2)))S0,3)

i=1
J
= Y (Wi, Y1 (5i,01), 5i,2) — Vi (W1 (Vis 8i,(1))s 5i(2))
i=1
j —_— —_
= > (Wi, ¥jg1-i(5i,1), 5i,2)) — Vi (i1 (Fi, 1) Tiy2)) » Ui)
i=1

= ¥ (vi, Y1(5i,1)» 8i,2) — ¥ (V1 (Fi, 1) Tiy2) Ui,

where we have used in the third equality that v/; is normalized. In the last one we have
used the following simple fact which we have already explained: v/ 1—; has degree
—(j+1-i) =i—j—1,s0v;11—; applied to an element of degree N gives an element
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of degree N +i — j — 1. In consequence, the elements v; ® ¥ +1—; (Si (1), 5i,(2)) and
Vjiv1-i (Fi,(1). 7i,(2)) ® u; have degree N + j —i < N (fori < j) and the degree is
exactly N if and only if i = j. The normalization of y; forces only to consider the
terms with degree N and the last equality follows.

By its very definition, ¥1(r). F2)) = ¥1(ra1). F2)) = ¢n—1(r) forr € R, so
(a1, ... ¥;)" e a3)(A|w|l) = ¥ (vi, on—1(5i)) — ¥ (on—1(ri), ui).
Thus, (sq(¥1,...,V¥;)~ o03)(1|w|l) is given by

Vi (vi @ on—1(si) — on—1(ri) ® u;)
= (pn—j o2+ 0 )(1|vi @ pn—1(si) — pn—1(ri) ® ui|l)

€R
= (pn—; ° ©2)(1|vi ® pn—1(s:) — on—1(ri) ® u;[1)
€A4A®2
= (py—_; (Hvi ® pn-1(si) — pn-1(ri) @ ui|l)
€R

=pon—jo(ly @ on_1 —on—1 ® ly)(w),

where we have used that, by identity (2.3), v; ® nx_1(s;) — @n—1(ri) ® u; can be
seen as a relation decomposition of an element r of R in the second equality, and that
n; vanishes over it in the third equality. Finally, in the penultimate equality we have
used that

T2 (1v; ® on—1(5i) —on—1(ri) @ u;|1) = 1|(v; ® on-1(5i) — on-1(i) @ u;)|1,

where in the first member v; ® gn_1(s;) — ¢n—1(ri) ® u; is seen as an element of
A®2?_ whereas in the second one it is regarded as an element of R. This thus implies
that

(sq(¥1,...,¥;)" ec03)(1|w|l) = on—j o (Iy cpn—1 —oN—1 @ 1y)(w). (2.12)

Now, since (2.3), (2.5) and (2.4) hold, and putting together (2.11) and (2.12), we
see that equation (2.10) holds. The standard identity (1.14) for the homotopy s, tells
us that

d(w]f+1)” ° (153(A) —030173) = d(v/]/'-i—l)w ° (54 o083+ 80 153)

= d(Y]4,) " 0s20b3 = d(d(Y],1)” 0 52),
SO
d(W,’-H)” 003073 = d(w]/'.g_l)N - d(d(wjl+l)~ 083).
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Also, we see that

sq(Y1. .- )" o (lgyay —03°73) =sq(¥1,....¥;) " (bg o 53+ 52 0b3)
= SQ(Wla--ij)NOSzO[;3
=d(sq(¥1,...,¥j)" 052),

1.€.,

sQ(¥1..... ) 0030 T3 =sq(Yn.. ... )T —d(sq(Y1..... ;)" 0 82).
Now, equation (2.10) yields that

—d((Yj )™ = @dWj ) 0s2+sqWn, ... ¥) 7 082)) = sq(Y1..... ¥5)"

We deﬁne. 7),11 = d(‘ﬂ}H)N o852 +sq(¥1,..., %‘)N SR af.ld 1/fjw.;_l = (W,’-+1)~ -
N4 Itis easy to see that N1 has degree —j — 1. We just need to prove that
it is extranormalized in order to end this recursive process, since ¥7 , defines a
continuation of the j-th level deformation defined by ¥, ..., ¢ ™.

Let us prove that 77, is extranormalized. For this, consider 1a;|b;i|1 € C2(A)
to be normalized or a relation decomposition. Then, (d (w]’- 1) 0 s2)(1a;lb;|1) is
equal to

d(} 1)~ (ai|bi,1)lbi2) |bi,3))
= (V4 1) "~ (@ilbi,y|bi,2bi3) — Uaibi,aylbi,|bi3) + 1ailbi|1)
= a; ¥} (bi,y. bi,@)bi3) — V)11 @ibi 1y bi@)biy3) + V)41 (@i, bi)
= —W}+1(aibi,(1),5i,(z)) + Y1 (@i, bi)
= —on—j—1(R2(1laibi 1)lbi,211) — T2(1]ai |bi|1)),
where we have used Fact 1.2 in the first equality and the normalization of W} 41 onthe
fourth equality. By definition, we see that 7 (1 |a£b,-,(1)|b,-,(2) [1) = 72(1]a;|b;i|1) =0
if 1]a;|b;|1 is normalized and that 7> (1|a; b; (1)|bi,2)|1) = T2(1]a;|b;|1) if 1]a;|b;|1
is a relation decomposition. In any case, we conclude that d (1//; 1) osa(1ailbi[1)

vanishes.
On the other hand, we get

(sq(¥1. ..., ¥;) " os2)(1]a;|bi[1)
=sq(¥1,.... V)" (Ua;lbi 1)lbi,2)|bi,3))

J _ _
= > (Wilai, ¥jr1-i (bi,ay. bi,2)) — Vi (W +1-i (@i, bi,1y). bi,2)bi,3))

i=1

which vanishes by the normalization of ¥/ 11—;. Hence, 17, ; is extranormalized.
We may summarize the previous results as follows.
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Proposition 2.13. Let U = TV/(P) be a filtered algebra, with P C FN, and let
A = TV/(R), with R = nn(P) C V&N be the corresponding N -homogeneous
algebra, which we assume to satisfy that Tor‘3‘1 (k, k) is concentrated in degree N + 1.
We assume that U is a weak PBW-deformation of A, i.e., that (2.1) holds and that the
k®-linear maps ¢;: R — V®J (for j =0,..., N — 1) which describe P out from
R satisfy (2.3), (2.5) and (2.4). Set (w]’.)N =@n—_joTaforj =1,...,N and zero
otherwise. We define ™ C»(A) — Afor j € N recursively. First, v = (W)
For j € N, after having defined Yy, ..., Vyj, we set 7, = d(wj’.+1)N o8y +
sq(Y1,....¥;) o s and Y7y = (W;+1)N — 10741- Then the ', are normalized
morphisms that define a graded deformation of A.

3. Main theorems

The following theorems provide a description of the previous constructions at the
level of algebras, which contains the one given in Sec. 4.6 in [3], where the authors
explored only one direction under the assumption of k = F a field. Moreover, we
also prove that conditions (2.1) and (2.2) are equivalent to the fact that U satisfies the
PBW property (cf. Thm. 4.1 of [3] and Thm. 3.4 of [1]) .

Theorem 3.1. Let A be an N-homogeneous algebra satisfying that Tor’34 (k,k) is
concentrated in degree N + 1. Let us consider a graded deformation A; of a A,
which we suppose to be given by normalized maps {yj: (A/k)®* — A}jen. We
apply Proposition 2.11 to produce maps {¢; : R — V'®/ Yo ; <y, and to obtain thus
a filtered algebra U = TV /{P), with P = {r — Zj-\;_ol @j(r) : r € R}. Then, there
exists an isomorphism of filtered k-algebras U — A, /{t — 1).

Conversely, let us consider a filtered algebra U = TV /{P), with P C FN and
let A= TV/(R), with R = nn(P) C V®N, be the corresponding N -homogeneous
algebra, which we assume to satisfy that Tor? (k, k) is concentrated in degree N + 1.
We assume that U is a weak PBW-deformation of A, and define a deformation A;
of A following Proposition 2.13. We again see that there exists an isomorphism of
filtered k-algebras U — A, /{t — 1).

In both cases, U is a PBW-deformation of A and the induced morphism

AL ar(U) - gr(A /(1 — 1) 5 4
is the identity.
Proof. Since the proofis similar for both implications, except for some minor changes,
we shall only treat each case separately when necessary.

We consider the k°-linear map inc: V' — A,/{t — 1), given by the composition
of the inclusion V' — A, the canonical map A — A, and the projection A; —
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A;/(t —1). This induces a morphism of k-algebras ¢’: TV — A,;/{t —1). Itis
clear that ¢’ respects the filtrations (where we recall that 7'V is filtered by F°).

We shall see that ¢’(P) = 0. In order to prove this statement, take » € R and let
r— vaz_ol @i (r) € P be a generic element. We will show that ¢’ vanishes over it,
using that the associated maps v, are normalized.

First, we remark the fact that, if « € V®/, with j < N, then ¢’(«) = «, which
can be proved as follows. It suffices to treatthe case o« = vy ... vjforvy,...,v; € V.
By definition ¢ acts as the identity for j = 0, 1. Let us thus assume that j > 2
and prove the statement by induction on j. We assume that ¢’ acts as the identity
on F/~1 and we shall prove that it does the same on F/ (j < N). The inductive
hypothesis implies that ¢’(vq ...vj—1) = vy X -+ X vj_1 = vy...Vj—1. Hence,

g (v1...vj) = v X-+- XV
(v1 X+ X Vj_1) X Vj
(v1...vj-1) X vj

=V1...0-1Vj5 + Z wl(vl . ..vj_l,vj)
I>1

=UV1...0j1Vj,

since the maps v, are normalized.
Now, take r = v1,; ...Vy,; € R (summation understood). Then,

q/(r) = V1,i X+ X UN,i
= (V1,i X - X UN—1,i) X UN,i
(Ul,i - vN_l,i) X UN,i

=V1i...UN-1LiUN,i + 2 Vi(V1i... UN—1,i. UN,i)-
leN

If we are considering the first statement, using that, by definition, ¢y_;(r) =
Yi(ry1,7p) for I = 1,..., N, and by degree reasons y;(r1,72) = O forl > N,
then ¢'(r) = r + vazl on_1(r) = Z;\I:_ol @;(r), since r vanishes in A and ¢t = 1
in A;/(t —1). For the second statement, since vy ;... vy—1; ® vy; € A®? isa
relation decomposition we see that 7, (vi,; ... Vn—1,i, Un,;) Vanishes, because it is

extranormalized, and 72 (1|vy; ... vn—1,i|vn,i|1) = 1|r|1. Hence,
Vi1 UN-1,i.UN) = Y] (V1,i ... UN—1,i> UN,i)
_ on—i(r) ifl=1,...,N,
0 else.

As a consequence, we again have that ¢'(r) = r + Z;\;l on—i(r) = vaz_ol 1 (r),
since r vanishes in A and ¢t = 1in A;/(t — 1). Therefore, ¢'(r — vaz_ol 0i(r) =0
and ¢’ thus induces a morphism of filtered algebras g: U — A, /(t — 1).
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We will now prove that g is an isomorphism. Since

AL @) ZD o )t —1) B 4

is the identity, p is an isomorphism and p is surjective, we conclude that p is an
isomorphism and gr(g) is also an isomorphism. Hence, ¢ is an isomorphism and U
is a PBW-deformation of A. O

Remark 3.2. The preceding theorem implies that A;/(t — 1) may be seen as a PBW-
deformation of A equivalent to U, where the morphism A — gr(A4;/{t — 1)) is the
inverse of p. Furthermore, by Lemma 2.12 we see that the procedure in Section 2.3
may be defined in the set of equivalence classes of deformations and it sends equivalent
deformations to equivalent PBW-deformations. So it defines a map

gp: {eq. classes of deformations of A} — {eq. classes of PBW-deformations of A}.

Theorem 3.3. Let A be an N -homogeneous algebra satisfying that Torg4 (k,k) is
concentrated in degree N + 1. Let us consider a graded deformation A; of a A by
normalized maps {y;: (A/k)®? — A}jen. We apply the construction of Propo-
sition 2.11 to produce maps {¢;: R — V®/ Yo ;i<n, and to obtain thus a filtered
algebraU = TV/(P), with P = {r — Zj‘v=o @j(r) : r € R}. Then, there exists an
isomorphism of graded k|t]-algebras R(U) — A, such that the induced morphism
A~ RU)/(t) — A:/(t) =~ A is the identity, where A ~ R(U)/(t) is the map
described in Section 2.2.

Conversely, let us consider a filtered algebra U = TV/(P) for P C FN and
let A=TV/(R) for R = nxy(P) C V®N, be the corresponding N -homogeneous
algebra, which we assume to satisfy that Tor‘3‘1 (k, k) is concentrated in degree N + 1.
We suppose that U is a weak PBW-deformation of A, and define a deformation A, of A
following Proposition 2.13. We again see that there exists an isomorphism of graded
k(t]-algebras R(U) — A; such that the induced morphism A ~ R(U)/(t) —
Ay /(t) ~ Aisthe identity, where A >~ R(U)/(t) is the map described in Section 2.2.

Proof. From Proposition 2.5, we see that, given any graded deformation A; of A,
there exists an isomorphism of graded k[t]-algebras com: R(A;/{t — 1)) — A;.
Since ¢g: U — A;/(t — 1) is an isomorphism of filtered algebras, R(q): R(U) —
R(A;/(t — 1)) is an isomorphism of graded k[¢]-algebras. The composition com o
R(q) gives the desired isomorphism. Using the canonical isomorphism R(—)/{t) ~
gr(—), weseethat A ~ R(U)/(t) = R(A;/{t — 1)) ~ A identifies with

AL o) 2D a4, /- 1) S A,

which we have already seen to be the identity. O
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Remark 3.4. The preceding theorem implies that R(U) may be seen as a deformation
of A equivalent to A;. Moreover, it also says that the procedure in Section 2.4 sends
equivalence classes of PBW-deformations to equivalent deformations, i.e., it defines
a map

pg: {eq. classes of PBW-deformations of A} — {eq. classes of deformations of A4}.

Theorem 3.5. By the previous theorems we see that the procedure performed in
Section 2.3 consists in Ay — A,/ {t — 1) whereas the one done in Section 2.4 is
just U — R(U), both up to equivalence. Thus Proposition 2.5, Theorem 3.1 and
Theorem 3.3 imply that pg and gp are mutually inverse.

We finish by exhibiting two examples.

Example 3.6. Letk = F be afield, V = spany (x, y) a k-vector space of dimension
2,and A = TV/([x, y]) a quadratic algebra, so R C V®2 has a basis formed by a
unique element » = [x, y]. We note that R3 = 0.

We can provide in this case the maps 7, for ¢ = 1,2, in their complete domain of
definition:

a(1y"x") = Y y4yhyexm+ Yy ynxPiyx|xfz,
ajt+ax=n—1 B1+B2=m—1
"My ) = % X e yegmath,

artazx=n2—1 Bi+po=m;—1

Furthermore, the homotopies s, for ¢ = 1,2, are given as follows. The image of
1]y"x™|1 under s, is the class in C,(A) of

— X Ay =Yg s pymme Ly XP|x|xP2,

ator=n—1
and the image of 1|y™1x™1|y”2x™2|1 under s5 is the class in C3(A4) of

Z (1|yn1+0tlxﬂ1 |y|x|y¢12xm2+ﬂ2 _ 1|yn1+alxﬁ1 |x|y|y“2xm2+ﬁ2)
a) +ar=ny—1
Bi+B=m—1

+ X qymamyylyexm2 4 3 |ymaxmi|yn2xhix|xfe

o1 tar=nr—1 Bi+Br=m>r—1

Suppose that U = TV/{[x, y] — y). Note that the maps defining the filtration are
¢o = 0 and ¢1(r) = y, which obviously satisfy the weak PBW-property. A simple
inductive argument then implies that the cochains defining the deformed product are

mq -
1pl(yn]xml’ynzxmz) — ( l )nlzyn1+n2xm1+m2 l‘

On the other hand, if U = TV/{[x,y] — 1), the so-called Weyl algebra, the
maps defining the filtration are ¢o(r) = 1 and ¢; = 0, which also satisfy the weak
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PBW-property. It is direct to prove in this case that the cochains giving the deformed
product are of the form

Y (" am, Yyt x"m?) = {i!(n?)(rliz)ynl+n2_ixml+m2_i ifl =2i,ieN,

0 else.

Example 3.7. Let k = F be a field, V' = span (x) a k-vector space of dimension
1,and A = TV/{x") an N-homogeneous algebra, so R C V®" has a basis given
by r = xV. Notice that R3 = span (xV 1),

In this case, the comparison map 7; is actually given in (TAU)) in its complete
domain of definition C1(A). As for 7, its full expression may be given by (see also
[8D):
xN|xm2tm =N ifm, +m, > N,

0 else,

(1x™ X" 1) = {

where we consider 1 < my,m; < N — 1. Furthermore, the homotopy s; is also
given in (S1) in its complete domain of definition. On the other hand, the homotopy
s 1s given by the obvious extension
mpy—i—1
(1™ xm2]1) =5 1 | e xmeic,
i=1

where 1 < mj,mp < N — 1, and, as previously stated, we suppose that the right
member lies in C3(A).

Let f = Z?’:_ol a;x' € k[x] be a polynomial of degree less than or equal to
N — 1, and suppose that U = TV/(x™ — f). As usual we assume that ¢; = 0,
ifi ¢ {0,..., N —1}. Note that the maps defining the filtration are ¢; (r) = a;x’
fori = 0,..., N — 1, which obviously satisfy the weak PBW-property. A simple
inductive argument then implies that the cochains defining the deformed product are

ay_jx™tm=l if 4 m, > N,

XM x"M2) =
WI( ) {0 ifmy +my <N,

as one could have expected.
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