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The space of Penrose tilings and the noncommutative curve with
homogeneous coordinate ring khx; yi=.y2/
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Abstract. It is shown that the noncommutative algebraic curve with homogeneous coordinate
ring Chx; yi=.y2/ is a noncommutative algebraic-geometric analogue of the space of Penrose
tilings of the plane. Individual tilings determine “points” on the noncommutative curve and
the tilings coincide under isometry if and only if the skyscraper sheaves of the corresponding
points are isomorphic. The category of quasi-coherent sheaves on the curve is equivalent to the
category of modules over a von Neumann regular ring that is a direct limit of finite dimensional
semisimple algebras. The norm closure of this von Neumann regular ring is the AF-algebra
that Connes associates to the space of Penrose tilings. There is an algebraic analogue of the
fact that every isometry-invariant subset of tilings is dense in the set of all Penrose tilings.
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1. Introduction

Let k be a field and khx; yi the free algebra on x and y.
Let B ´ khx; yi=.y2/ have the Z-grading deg x D degy D 1.
The Fibonacci sequence .fn/n is defined by f0 D f1 D 1 and fnC1´ fnCfn�1

for n � 1.

1.1. This paper concerns the algebras khx; yi=.yrC1/ for r � 1. For simplicity we
will only discuss the case r D 1 in this introduction, that being the case related to
Penrose tilings. However, all results in this introduction extend to r � 2. When
r � 2 the space of Penrose tilings can be replaced either by (a) the space of (0,1)-
sequences having at most r consecutive 1’s modulo the equivalence relation that two
such sequences are equivalent if they are eventually the same or by (b) an associated
space of aperiodic tilings in Rr . Many papers discuss the connection between (a) and
(b) but [4] is a good reference for those interested in noncommutative algebraic ge-
ometry because it emphasizes the relationship with infinite paths in Bratteli diagrams
and equality between the tails of such paths is related to equivalence of tilings under
isometry and to isomorphisms between the images of point modules in the quotient
category QGrB (this terminology and notation is explained in Sections 1.4 and 1.5).

1.2. Penrose tilings are defined in Appendix A. The appendix gives a precise de-
scription of the relation between Penrose tilings and .0; 1/-sequences.

1.3. The space of Penrose tilings of the plane is an instructive example showing that
noncommutative algebras can capture important features of geometric objects that are
not susceptible to the usual topological, analytic, and differential geometric, tools. A
nice account of this example appears in Connes book [10], Sect. II.3. Using a general
principle that we elaborate on in Section 6, Connes associates to the space of Penrose
tilings the C�-algebra

xS ´ lim�!
n

.Sn; �n/;

the direct limit in the category of C�-algebras of the finite dimensional C�-algebras

Sn´Mfn
.C/˚Mfn�1

.C/

where the maps �n W Sn ! SnC1 in the directed system are

�n.a; b/´
��
a 0

0 b

�
; a

�
:

1.4. The main result. Noncommutative algebraic geometry concerns abelian cate-
gories that behave like categories of quasi-coherent sheaves on algebraic varieties. We
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view B as a homogeneous coordinate ring of a “noncommutative scheme”, ProjncB .
By fiat, the category of “quasi-coherent sheaves” on ProjncB is

QGrB ´ GrB

FdimB
;

the quotient of the category GrB of Z-graded left B-modules modulo the Serre
subcategory of modules that are unions of their finite dimensional submodules.

By definition, the objects in QGrB are the same as those in GrB but there are more
isomorphisms in QGrB . For example, every finite dimensional graded B-module is
isomorphic to the zero object in QGrB .

We write O for B as an object in QGrB . It is the “structure sheaf” for ProjncB .
(If R is the commutative polynomial ring on n variables with its standard grading,
then QGrR is equivalent to Qcoh Pn�1, the category of quasi-coherent sheaves on
projective .n � 1/-space, and R does correspond to the structure sheaf OPn�1 .)

To avoid confusion about which category an object belongs to we introduce no-
tation for the canonical quotient functor, namely

ˇ� W GrB ! QGrB:

Thus O D ˇ�B .
SinceB is a coherent ring (Proposition 3.2), GrB and QGrB are locally coherent

categories. Let grB be the full subcategory of GrB consisting of finitely presented
modules. It is an abelian subcategory and is closed under extensions in GrB . Let
fdimB be the full subcategory of GrB consisting of finite dimensional modules. A
finite dimensional graded module is finitely presented because all its composition
factors are isomorphic to the finitely presented module B=B�1. Thus fdimB D
grB \ FdimB . We write

qgrB ´ grB

fdimB

and note that qgrB is equivalent to the full subcategory of QGrB consisting of
finitely presented, in the categorical sense, objects. We think of qgrB as the category
of “coherent sheaves” on ProjncB .

Theorem 1.1. Let S be the direct limit in the category of C-algebras of the directed
system .Sn; �n/ in Section 1.3. (The C�-algebra xS is the norm closure of S .) Let
ModS be the category of right S -modules and modS its full subcategory of finitely
presented right S -modules. There is an equivalence of categories

QGr

�
Chx; yi
.y2/

�
� ModS

that restricts to an equivalence between qgr.Chx; yi=.y2// and modS . Under the
equivalence O corresponds to S .
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The ring S is a simple von Neumann regular algebra. It is left (and right) coherent
because it is a direct limit of coherent rings and the homomorphisms in the directed
system make each ring flat as a right module over the earlier rings in the directed
system. Thus, independently of the equivalence of categories, one knows that ModS
is a locally coherent category and modS is an abelian category.

The field C is of no importance in proving Theorem 1.1. There is a version of
Theorem 1.1 for every field k. Given Proposition 8.2, it could be argued that k D F2
is the most natural choice when considering the relation between ProjncB and the
space of Penrose tilings.

Corollary 1.2. Every object in qgrB is injective and projective.

The proof is straightforward: all modules over a von Neumann regular ring are flat
[15], Cor. 1.13, so finitely presented S -modules are projective. But modS is equiva-
lent to qgrB so every object in qgrB is projective and every short exact sequence in
qgrB splits.

Because S is a von Neumann regular ring of countable dimension every left ideal
in it is countably generated and therefore projective [15], Cor. 2.15. This implies that
all subobjects of O, not just the finitely presented ones, are projective.

1.5. Point modules, “points” in Projnc B, and Penrose tilings. As in algebraic
geometry, certain simple objects in QGrB are thought of as “skyscraper sheaves” at
“points” of ProjncB .

In [1], a graded B-module M is called a point module if dimkMn D 1 for all
n � 0 and M D BM0. Since B is generated as a k-algebra by B1, every non-zero
submodule of a point module M has finite codimension so M is simple as an object
in QGrB .

A Penrose sequence is a sequence z D z0z1 : : : of 0’s and 1’s having no consec-
utive 1’s. We write P for the set of Penrose sequences. Each z 2 P determines a
Penrose tiling Tz and every tiling is obtained in this way (see Grünbaum and Shepard
[16], 10.5.9, and Appendix A below). Penrose sequences z and z0 are equivalent,
denoted by z � z0, if there is an m such that zn D z0

n for all n � m. We denote this
by z�m D z0�m. Given a Penrose sequence z we define the point module

Mz ´ ke0 ˚ ke1 ˚ � � � ; deg ei D i;
by

x � ei D .1 � zi /eiC1 and y � ei D zieiC1:
Since y2 � ei D ziziC1eiC2 D 0 because ziziC1 ¤ 11, Mz is a graded B-module.
We write Oz for Mz viewed as an object in QGrB; i.e., Oz D ˇ�Mz .

Theorem 1.3. If z is a Penrose sequence, then Oz is a simple object in QGrB and
the following are equivalent:
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(1) Oz Š Oz0 ;

(2) z � z0;
(3) there is an isometry � of R2 such that �.Tz/ D Tz0 .

The equivalence between (1) and (2) is routine: point modules M and M 0 are
isomorphic as objects in QGrB if and only ifM�n ŠM 0�n for somen; but .Mz/�n Š
.Mz0/�n if and only if z�n D z0�n. The equivalence between (2) and (3) can be found
in [16], 10.5.9, for example.

1.5.1. Degree shift and Serre twist. If M is a graded B-module and n 2 Z we
define the graded moduleM.n/ to beM as aB-module but with the gradingM.n/i ´
MnCi . Each .n/ is an automorphism of GrB and descends to an automorphism of
QGrB that we denote by F  F .n/ and call a Serre twist.

There is an automorphism � of P defined by �.z0z1z2 : : : / ´ z1z2 : : : . It is
clear that Mz.1/�0 DM�.z/, whence

Oz.1/ D O�.z/:

The unique Oz such that Oz Š Oz.1/ corresponds to the cart-wheel tiling [16],
10.5.14. This Oz is the structure sheaf of the classical point ProjB=.y/ on ProjncB .

1.6. Topology of P andalgebraic properties of QGr B. We establish a nice parallel
between properties of ProjncB and the topological structure of P and P=�.

The usual topology on P is the subspace topology inherited from its being a subset
of f0; 1gN endowed with the product topology. It is also the topology induced by the
metric

d.z; z0/ D
1P
nD0

2�njzn � z0
nj:

Motivated by Theorems 1.1 and 1.3, and the common view that certain C�-algebras
that are direct limits of semisimple C-algebras are the “function rings” for appropriate
topological spaces of tilings, we prove several results that support the view that
ProjncB is a noncommutative algebraic-geometric version of the space of Penrose
tilings.

1.6.1. Dimension. Since P=� has the coarse topology its topological dimension is
zero. This might be seen as corresponding to the fact that every short exact sequence
in qgrB splits (Corollary 1.2). (A reduced scheme X has this property if and only if
it has dimension 0.)

1.6.2. Density. A striking feature of Penrose tilings is that every finite region in
one tiling appears infinitely often in every tiling. A consequence of this is that
every equivalence class of tilings, more precisely, every equivalence class of Penrose
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sequences, is dense in P . In Section 8.3 we explain why the following result is an
algebraic analogue of this density result.

Proposition 1.4. If z; z0 2 P , then Ext1QGrB.Oz;Oz0/ ¤ 0.
Proposition 1.4 follows from Theorem 1.1 and Herbera’s result that Ext1R.U; V / ¤

0 for all simple modules U and V over a simple non-artinian von Neumann regular
algebra R having countable dimension over its center [17], Prop. 2.7.

1.6.3. Closed subspaces. Because every equivalence class in P is dense in P , the
only closed sets in P=�with respect to the quotient topology are itself and the empty
set.

There is a notion of a closed subspace in noncommutative algebraic geometry [31],
p. 20, [29], Def. 2.4. WhenX is a noetherian scheme having an ample line bundle (for
example, when X is quasi-projective over the spectrum of a field) closed subspaces
of X in the noncommutative sense are the same things as closed subschemes in the
usual sense of algebraic geometry [29], Thm. 4.1. Rosenberg has shown that the
closed subspaces of an affine noncommutative scheme, i.e., one whose category of
quasi-coherent sheaves is equivalent to a module category, say ModR, are in natural
bijection with the two-sided ideals of R. Since the ring S in Theorem 1.1 is simple
the following result holds.

Proposition 1.5. The only closed subspaces of ProjncB are itself and the empty set.

1.7. Projnc B is a “smooth curve”. Although B appears in the classification of
2-generator algebras subject to one quadratic relation it has not been studied much
because it has infinite global homological dimension, is homologically nasty in other
ways, is not noetherian, and has exponential rather than polynomial growth. In short,
it is most unlike the rings that appear in classical algebraic geometry

The “nice” 2-generator algebras subject to one quadratic relation are RJ ´
khx; yi=.xy � yx C y2/ and Rq ´ khx; yi=.qxy � yx/ where q 2 k�. The
categories QGr.RJ / and QGr.Rq/ are equivalent to Qcoh P1.

Because the ring S in Theorem 1.1 is von Neumann regular it has global homo-
logical dimension one, and every subobject of O is projective, both of which suggest
that ProjncB is some kind of “noncommutative smooth curve”.

1.8. The Grothendieck group. We compute K0.qgr.B// as an ordered abelian
group in Section 7. First, we compute it as an abstract group without using the
equivalence with modS (Theorem 7.8). The first step towards doing this is to show
that qgr.B/ is equivalent to qgr.kQ/ where kQ is the path algebra of the quiver

� ��
�� �.��

Using the ideas in [18] and [19] we show there is an injective degree-preserving
algebra homomorphism f W B ! kQ with the property that the functor kQ ˝B �
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induces an equivalence of categories qgr.B/ ��!� qgr.kQ/ and hence an isomorphism
K0.qgr.B// ��!� K0.qgr.kQ//.

The advantage of this is that kQ has finite global dimension (=1) so one can
computeK0.gr.kQ// easily and then use the localization sequenceK0.fdim.kQ//!
K0.gr.kQ//! K0.qgr.kQ//! 0 to compute K0.qgr.kQ//. The result is that

K0.qgrB/ Š ZŒt; t�1�
.1 � t � t2/

with ŒO.n/�$ t�n.
The ring homomorphism K0.qgr.B// ! R given by sending t�1 to the Golden

Ratio, � D 1Cp
5

2
, is an isomorphism from K0.qgrB/ onto Z C Z� . It sends ŒO�

to 1 and ŒO.1/� to � . Theorem 7.10 shows that this isomorphism sends the positive
cone in K0.qgrB/ to RC \ .ZCZ�/.

We use the work of Bratteli [7] and Elliott [12] onAF-algebras and refer to Effros’s
lecture notes [11] for all matters related to AF-algebras.

1.8.1. The Grothendieck group for qgr khx; yi=.yrC1/. The case r > 1 is more
interesting. The Bratteli diagram for the directed system .Sn; �n/ and K0.Sn; �n/ is
constant, or stationary as is usually said (its shape is shown in Proposition 5.1). This
simplifies the computations. The characteristic polynomial of the matrix (7.2) for
this stationary system is t rC1� t r �� � �� t�1. This polynomial has a unique positive
real root of multiplicity one, ˛ say, that is strictly larger than the absolute values
of all other roots. We show that K0.modS/, which is isomorphic to K0.qgrB/,
is isomorphic to ZŒ˛�. Under this isomorphism the positive cone of K0.qgrB/ is
ZŒ˛�\ RC, ŒO�$ 1, ŒO.�n/�$ ˛n, and the twist ŒF � ŒF .�1/� corresponds to
multiplication by ˛.

Acknowledgements. It is a pleasure to thank Ken Goodearl, Doug Lind, and Boris
Solomyak, for many helpful conversations. I am particularly grateful to Gautam
Sisodia for finding a fatal flaw in an earlier “proof” that K0.qgrB/ Š ZŒ˛�; he also
suggested using the results in [18] to repair the proof. Sections 7.2, 7.3, and 7.4, were
prompted by his comments.

I thank the US National Science Foundation for partial support under NSF grant
0602347.

2. Some general results

2.1. Graded-coherent rings. A ring is left coherent if all its finitely generated left
ideals are finitely presented. There is a similar notion on the right.

In this section A and B are arbitrary Z-graded k-algebras. We write GrA for
the category of graded left A-modules. We say that A is left graded-coherent if
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every finitely generated graded left ideal ofA is finitely presented. IfA is left graded-
coherent we write grA for the full subcategory of GrA consisting of finitely presented
modules. The category grA is an abelian subcategory of GrA and is closed under
extensions. If M 2 grA and L is a finitely generated graded submodule of M , then
L 2 grA also.

Proposition 2.1. Let A be a left graded-coherent ring with the property that every
finite dimensional graded left A-module is finitely presented. Write O for the image
of A in QGrA. Then

(1) QGrA is a locally coherent category;

(2) the full subcategory of QGrA consisting of the finitely presented objects is equiv-
alent to qgrA;

(3) O is coherent, i.e., HomQGrA.O;�/ commutes with direct limits;

(4) O is finitely generated in the sense that whenever O DP
i Mi for some directed

family of subobjects Mi , O DMj for some j .

Proof. By definition, a Grothendieck category is locally coherent if its full subcate-
gory of finitely presented objects is abelian and every object is a direct limit of finitely
presented objects.

Lazard [22] proved that every module over every ring is a filtered direct limit of
finitely presented modules (see, e.g., [25], Example E.1.20, or [23]). The proof for
the ungraded case can be adapted to graded modules without difficulty. Thus every
object in GrA is a direct limit of objects in grA.

It follows that every object in QGrA is a direct limit of objects in qgrA.
Every object in FdimA is a direct limit of objects in the Serre subcategory fdimA

of grA so condition (2) of [20], Prop. A.4, p. 112, is satisfied. Therefore Fdim is a
localizing subcategory of GrA of finite type so [20], Prop. A.5, p. 113, completes the
proof.

Remark 2.2. The hypothesis in Proposition 2.1 that finite dimensional graded left
A-modules are finitely presented is satisfied if A is a finitely generated N-graded
algebra such that dimk.A=A�1/ < 1. For example, the hypothesis holds if A is a
graded quotient of a finitely generated free algebra whose generators have positive
degree or, more generally, a graded quotient of a path algebra of a finite quiver in
which every arrow has positive degree. In particular, the graded algebras in this paper
satisfy the hypotheses of Proposition 2.1.

Lemma 2.3. Let A be a locally coherent category and fpA its full subcategory of
finitely presented objects. Let P 2 fpA. If P is projective as an object in fpA, then
it is is projective as an object in A.

Proof. Let g W M ! N be an epimorphism in A and suppose f W P ! N . We
can write M as a filtered direct limit of subobjects Mi that belong to fpA. Let
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Ni D g.Mi /. Then N D P
Ni . It follows that fP D P

.fP \ Ni /. Since P is
finitely generated so is fP ; therefore fP D fP \Nj for some j . But that implies
fP � Nj . Because P is projective in fpA, there is a morphism h W P !M with its
image in Mj such that gh D f . Hence P is projective in A.

It is well-known that a free algebra is left and right coherent. A general result,
Lemma 2.4, then shows that B is left and right coherent.

The next result is probably “folklore”.

Lemma 2.4. LetA � B be compatibly Z-graded k-algebras such thatB is a finitely
presented left A-module. Suppose that A is left graded-coherent. Let M 2 GrB .
ThenM is finitely presented as a B-module if and only if it is finitely presented as an
A-module. In particular, B is left graded-coherent.

Proof. ()) Let 0! K ! L!M ! 0 be an exact sequence of finitely generated
graded left B-modules. Since B is a finitely generated left A-module K and L are
finitely generated A-modules. Hence M is a finitely presented A-module.

(() SinceM is finitely generated as an A-module it is finitely generated as a B-
module. Hence there is an integer n and an exact sequence 0! K ! Bn !M ! 0

of graded leftB-modules. By hypothesis,B , and thereforeBn, is a finitely presented
left A-module. Since A is left graded-coherent, K is a finitely presented A-module.
In particular, K is finitely generated as a B-module. Hence M is finitely presented
as a B-module.

Now we prove the final sentence of the lemma. Let I be a finitely generated
graded left ideal of B . Then I is a finitely generated left A-module and, since B is
in grA, I is also in grA. Therefore I is finitely presented as a B-module. Hence B
is left graded-coherent.

Corollary 2.5. If A and B are as in Lemma 2.4, then the induction functor B ˝A
�W GrA! GrB sends grA to grB and the restriction functor GrB ! GrA sends
grB to grA.

2.2. Graded coherent versus coherent. This section, which plays no role in the
other results in this paper, addresses a question raised by the referee: what is known
about the relation between graded coherence and coherence?

Proposition 2.6. Let S D kŒx; y� be the commutative polynomial ring in two vari-
ables and R D k C xS . Then R is not coherent but is graded coherent with respect
to the grading deg.x/ D 0 and deg.y/ D 1.1

Proof. To prove R is graded coherent we use the following criterion of Piontkovski
[24], Prop. 3.2: An N-graded ring A is right graded coherent if it has a right noethe-
rian quotient ring A=J such that J is a free graded left A-module.

1Tom Marley informed the author that he already knew thatR is not coherent.
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Let kŒt � be the polynomial ring generated by a degree-one indeterminate, t . Let
� W R ! kŒy� be the restriction to R of the homomorphism Q� W S ! kŒy� defined
by Q�.x/ D 1 and Q�.y/ D y. The homogeneous components of S are S0 D kŒx�

and Sn D kŒx�xyn for n � 1. Since � preserves degree ker.�/ is the direct sum
of its homogeneous components: these are ker.�/0 D .x � 1/kŒx� and ker.�/0 D
.x � 1/kŒx�xyn for n � 1. Therefore ker.�/ D .x � 1/R which is a free graded
R-module. The image of � is kŒt � so Piontkovski’s criterion tells us that R is graded
coherent.

We will show that the ideal I D xR C xyR is not finitely presented. The proof
uses the Z 	Z-grading on R that is inherited from that on S given by

deg.x/ D .1; 0/ and deg.y/ D .0; 1/:
Thus Spq D kxpyq .

The ideal I is homogeneous, generated by elements of degree .1; 0/ and .1; 1/.
As usual, R.m; n/ denotes the graded R-module that is R as an R-module with
homogeneous components R.m; n/p;q D RpCm;qCn.

Define the surjective degree-preserving homomorphism

� W F ´ R.�1; 0/˚R.�1;�1/! I; �.a; b/ D ax � bxy:
The kernel, K D ker.�/, is a graded submodule of R.�1; 0/˚R.�1;�1/.

The elements .xp�1yq; 0/ and .0; xp�1yq�1/ are a basis for Fpq if p � 2 and
q � 1. For example, .xy; 0/ and .0; x/ are a basis for F2;1.

We note that .xyj ; xyj�1/ 2 K2;j for all j � 1 and Kp;q D 0 for all p 
 1 and
q 
 0. Since m D R.�1;�0/, it follows that the images in K=mK of the elements

.xyj ; xyj�1/; j � 1;
are linearly independent. Thus, dimk.K=mK/ D 1. It follows that K is not a
finitely generated R-module.

The homogeneous components of R for the grading deg.x/ D 0 and deg.y/ D
1 are not finite dimensional so, in some sense, the example in Proposition 2.6 is
unsatisfying. It would be better to have an example of a non-coherent ring that
is graded coherent with finite dimensional homogeneous components (if such an
example exists!).

2.3. Properties of QGr B. Let A be an abelian category, O an object in A, and .1/
an automorphism of A denoted by F 7! F .1/ on objects. For all n 2 Z, F .n/ has
the obvious meaning.

Lemma 2.7. With the above notation, suppose that

O Š O.�1/˚
pL
iD1

O.�ri /
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for some integers ri > 0, and every F 2 A is a quotient of

qL
iD1

O.mi /

for some integers mi . Then for every F 2 A there is an epimorphism

On� F

for some integer n that depends on F .

Proof. Let

G Š
pL
iD1

O.�ri /:
In this proof the notation M � N means “there is an epimorphism from M to

N ”. By hypothesis, O� O.�1/. An induction argument and repeated application
of .�1/ shows that O � O.�m/ for all m � 0. Hence Op � G .1/. By hypoth-
esis, O.1/ Š O ˚ G .1/ so OpC1 � O.1/. An induction argument and repeated
application of .1/ shows that for all m � 0, Oq � O.m/ for some q depending on
m. Thus for every integerm, O.m/ is a quotient of a finite direct sum of copies of O.
Hence every F 2 A is a quotient of a finite direct sum of copies of O.

We refer the reader to Section 1.4 for definitions and notation concerning QGrB
and qgrB . In particular, ˇ� W GrB ! QGrB denotes the quotient functor and
O D ˇ�B .

Proposition 2.8. Let B be a connected graded k-algebra that is left graded coher-
ent. Suppose that B contains a left ideal of finite codimension that is isomorphic to
B.�1/˚G for some G 2 grB . Then:

(1) Every object in qgrB is a quotient of On for n� 0.

(2) Every object in QGrB is a quotient of a direct sum of copies of O.

(3) O is a generator in QGrB .

Proof. Let G D ˇ�G. Since G is finitely generated, G is a quotient of a finite direct
sum of various O.�i/s. The hypothesis implies that O Š O.�1/˚ G . Lemma 2.7
now implies that every O.j / is a quotient of On for a suitable n.

(1) and (2). Let M 2 GrB and let M D ˇ�M 2 QGrB . Since M is a quotient
of a direct sum of variousB.mi /s, M is a quotient of a direct sum of various O.mi /s.
But each O.mi / is a quotient of a direct sum of copies of O. This completes the proof
of (2). If M is in grB , it is a quotient of a direct sum of finitely many B.mi /s so M

is a quotient of a finite direct sum of copies of O.
(3) Let f W M! N be a non-zero morphism in QGrB . Since M is a quotient of

a direct sum of copies of O the restriction to one of the summands yields a non-zero

composition O !M
f�! N .
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Let B be a connected graded k-algebra. Let

F´ fnon-zero graded left ideals that are free and have finite codimension in Bg:

Proposition 2.9. LetB be a connected graded k-algebra. Suppose that every graded
left ideal of finite codimension in B contains some I belonging to F. Then O is a
projective object in QGrB .

Proof. By [14], Cor. 1, p. 368, every short exact sequence in QGrB is of the form

0 �! ˇ�L
ˇ�f���! ˇ�M

ˇ�g���! ˇ�N ! 0;

where 0 ! L
f�! M

g�! N ! 0 is an exact sequence in GrB . Let � W O ! ˇ�N .
By definition,

� 2 lim�!HomQGrB.B�i ; N=N 0/

where the direct limit is taken over all i and all submodules N 0 � N that are sums
of finite dimensional submodules. The hypothesis implies that

lim�!HomQGrB.B�i ; N=N 0/ D lim�!HomQGrB.I;N=N
0/

where the right-hand direct limit is taken over all I 2 F and all submodules N 0 � N
that are sums of finite dimensional submodules.

Hence � D ˇ�h for some h W I ! N=N 0 where I 2 F. But I is free so h factors
through g. Hence there is a morphism � W O ! ˇ�M such that � D .ˇ�g/ B � .

Let B be any N-graded k-algebra. If f 2 EndGrB.B�n/, then f .B�nC1/ �
B�nC1, so there is a directed system

� � � ! EndGrB.B�n/
�n�! EndGrB.B�nC1/! � � � (2.1)

of k-algebras in which �n.f / D f jB�nC1
.

Theorem 2.10. Suppose that B satisfies the hypotheses in Propositions 2.8 and 2.9.

(1) O is a progenerator in QGrB .

(2) The functor Hom.O;�/ is an equivalence from the category QGrB to the cat-
egory of right modules over the endomorphism ring EndQGrB O.

(3) If every B�n contains a non-zero free right B-module, then EndQGrB O Š
lim�!EndGrB.B�n/, the direct limit of (2.1).

Proof. Part (1) is the content of Propositions 2.8 and 2.9 and part (2) is a standard
consequence of (1).
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(3) By the definition of morphisms in a quotient category,

EndQGrB O D lim�!HomGrB.B
0; B=B 00/ (2.2)

where B 0 runs over all graded left ideals in B such that dimk.B=B
0/ < 1 and B 00

runs over all graded left ideals in B that are sums of finite dimensional left ideals.
Let B 00 be a finite dimensional graded left ideal in B . Then B�nB 00 D 0 for

some n. The hypothesis in (3) implies that B 00 D 0. Since the system of left ideals
B 0 such that dimk.B=B

0/ <1 is cofinal with the system of left ideals B�i ,

EndQGrB O D lim�!
i

HomGrB.B�i ; B/:

But the map HomGrB.B�i ; B�i / ! HomGrB.B�i ; B/ induced by the inclusion
B�i ! B is an isomorphism so

EndQGrB O D lim�!
i

HomGrB.B�i ; B�i /:

This completes the proof.

3. The algebra khx; yi=.yrC1/

In this section r is a positive integer and

B ´ khx; yi
.yrC1/

:

3.1. The subalgebra A. Let A be the subalgebra of B generated by u1; : : : ; urC1
where

uj ´
jP
iD1

yi�1xyj�i ; 1 
 j 
 r C 1:

Thus, u1 D x, u2 D xy C yx, u3 D xy2 C yxy C y2x, and so on.
The Hilbert series of B is HB.t/ DP

i�0 bi t i where

bi D dimk Bi :

Proposition 3.1. Let A and B be as above.

(1) A is the free k-algebra on u1; : : : ; urC1.
(2) B is free as a left, and as a right, A-module with basis f1; y; : : : ; yrg.
(3) The Hilbert series for B is

HB.t/ D 1C t C � � � C t r
1 � t � � � � � t rC1 :
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(4) HA.t/ D .1 � t � � � � � t rC1/�1.
(5) bi D 2i for 0 
 i 
 r , and

bnC1 D bn C bn�1 C � � � C bn�r

for n � r .

Proof. (3) and (6). A basis for Bn, the degree n component of B , is provided by

Wn´ fwords of length n in x and y not containing yrC1 as a subwordg:
We introduce the following notation

Win D fw 2 Wn j w D w0xyi for some w0 2 Wn�i�1g; 0 
 i 
 r;
bin D jWinj:

Since Wn is the disjoint union of the Wins, bn D b0n C � � � C brn.
Since WiC1;nC1 D fwy jw 2 Wing D Winy; we have biC1;nC1 D bin. Since

W0n D fwx jw 2 Wn�1g D Wn�1x; we have b0n D bn�1. Therefore

bnC1 D bn C bn�1 C � � � C bn�r

for all n � r . Also bi D 2i for 0 
 i 
 r . (When r D 1we have b0 D 1, b1 D 2, and
bnC1 D bn C bn�1, so .bn/n�0 is the Fibonacci sequence beginning 1; 2; 3; 5; : : : .
When r D 2, the sequence .bn/n�0 is called the Tribonacci sequence. The limit of
the ratio of successive terms bn=bnC1 of the Tribonacci sequence is a zero of the
polynomial 1� x � x2 � x3. The Tribonacci sequence is related to the Rauzy fractal
[26].) Multiplying both sides by tnC1 and summing over all n � r we obtain

1P
nDrC1

bnt
n D

rP
jD0

tjC1 1P
nDr�j

bnt
n:

In other words,

HB.t/ �
rP
iD0
.2t/i D

rP
jD0

tjC1.HB.t/ �
r�j�1P
iD0

.2t/i /;

so

.1 � t � t2 � � � � � t rC1/HB.t/ D
rP
iD0
.2t/i �

r�1P
jD0

tjC1 r�j�1P
iD0

.2t/i :

By induction on r , the case r D 1 being clear, one can show that the right-hand side
of this equation is equal to 1C t C � � � C t r . Hence the formula for HB.t/ in (3) is
correct.

We now turn to the proof of parts (1), (2), and (4) of the proposition.
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The first step is to show thatM ´ ACAyC� � �CAyr is equal toB by showing
it is a right ideal of B (that contains 1). Clearly, My � M so it remains to show
Mx �M . The key calculation is

uj � uj�1y D
jP
iD1

yi�1xyj�i �
j�1P
iD1

yi�1xyj�1�iy D yj�1x

for 2 
 j 
 r C 1. This implies that Ayj�1x � Auj C Auj�1y; but uj and uj�1
belong to A so

Ayj�1x � AC Ay
if 2 
 j 
 r C 1. Since x 2 A, Ax � A, so we conclude that Mx �M . Hence

AC Ay C � � � C Ayr D B
as claimed. A similar argument shows that AC yAC � � � C yrA D B .

We now consider the free algebra F D khv1; : : : ; vrC1i with grading given by
deg vi D i . Since F is the free coproduct kŒv1��kŒv2�� � � � �kŒvrC1� of polynomial
rings, the Hilbert series formula

HR�S .t/�1 D HR.t/�1 CHS .t/�1 � 1
gives

HF .t/ D .1 � t � � � � � t rC1/�1:

The homomorphism  W F ! A given by  .vi / D ui allows us to view B as a
graded F -module. We have just shown that F C Fy C � � � C Fyr D B so there is a
surjective homomorphism of graded F -modules

‰ W F ˚ F.�1/˚ � � � ˚ F.�r/� B:

However, the Hilbert series of this free F -module is .1C t C � � � C t r/HF .t/ which
is equal to HB.t/ so ‰ must be an isomorphism.

It follows at once that  W F ! A is an isomorphism, thus proving (1) and that B
is a free A-module on the right and on the left with basis f1; y; : : : ; yrg, thus proving
(2). The calculation of HF .t/ and the isomorphism F Š A proves (4).

Proposition 3.2. The algebra B D khx; yi=.yrC1/ is left and right coherent.

Proof. This follows from Lemma 2.4 and Proposition 3.1.

Lemma 3.3. Let B D khx; yi=.yrC1/ and let A be its subalgebra generated by
u1; : : : ; urC1. Then

(1) BA�1 Š B.�1/˚ � � � ˚ B.�r � 1/;
(2) BA�n is a free left B-module for all n � 0;
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(3) dimk.B=BA�n/ <1 for all n � 0;

(4) BA�1 D BxB and B=BA�1 Š kŒy�=.yrC1/.

Proof. (1) Since A is a free algebra every left ideal in A is a free A-module. In
particular,

A�1 D Au1 C � � � C AurC1 Š A.�1/˚ � � � ˚ A.�r � 1/:
Since B is a free right A-module, applying the functor B˝A� to the exact sequence
0! A�1 ! A! A=A�1 ! 0 gives an exact sequence

0!
rC1L
iD1

B.�i/! B ! B=BA�1 ! 0:

This proves (1).
(2) This is proved in the same way as (1). Because A is a free algebra, for every

n � 0, there is a graded vector space V , depending on n, and an exact sequence
0! A˝k V ! A! A=A�n ! 0. After applying B˝A� to this sequence we see
that BA�n Š B ˝k V .

(3) Certainly A=A�n has finite dimension. Since B is a finitely generated right
A-module it follows that B ˝A .A=A�n has finite dimension. But B ˝A .A=A�n Š
B=BA�n.

(4) Set u0 D 0. Then xyj�1 D uj � yuj�1 for all 1 
 j 
 r C 1. Hence

rC1P
jD1

Bxyj�1 �
rC1P
jD1

Buj : (3.1)

On the other hand, Bu1 D Bx and, since uj D xyj�1C yuj�1, Buj � Bxyj�1C
Buj�1 for all 2 
 j 
 r C 1. An induction argument shows that

Bu1 C � � � C Buj � Bx C Bxy C � � � C Bxyj�1

for all 1 
 j 
 r C 1. The case j D r C 1, together with (3.1) shows that

rC1P
jD1

Buj D
rC1P
jD1

Bxyj�1: (3.2)

The right-hand sum is closed under right multiplication by y; it is also closed under
right-multiplication by x because the first term in the sum is Bx; it is therefore a
two-sided ideal of B . The left-hand side of (3.2) is BA�1 because A�1 D Au1 C
� � � C AurC1. Hence BA�1 is a two-sided ideal of B .

Since x 2 A, BxB � BA�1. However, the right-hand side of (3.2) is contained
in BxB so BA�1 D BxB . It is obvious that B=.x/ Š kŒy�=.yrC1/.
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3.2. Remark. It follows from parts (1) and (3) of Lemma 3.3 that

O Š O.�1/˚ � � � ˚O.�r � 1/
in qgrB . This fact, which has no parallel in projective algebraic geometry or noethe-
rian ring theory, tells us ProjncB is a very unusual geometric object when compared
to those that arise in classical algebraic geometry.

3.3. Remark. Michel Van den Bergh pointed out that when r D 1 there are isomor-
phisms

O Š O.�1/˚O.�2/ Š � � � Š O.�n/fn ˚O.�n � 1/fn�1

for all n � 1.

4. Proof of Theorem 1.1

4.1. In this section let B D khx; yi=.yrC1/.

Proposition 4.1. Let B be as above.

(1) O is a progenerator in QGrB .

(2) The functor Hom.O;�/ is an equivalence from QGrB to the category of right
modules over the endomorphism ring EndQGrB O.

(3) EndQGrB O Š lim�!EndGrB.B�n/, the direct limit of (2.1).

Proof. By Lemma 3.3, BA�n has finite codimension in B and is isomorphic to
B.�1/˚ � � � ˚ B.�r � 1/. Hence B satisfies the hypothesis of Proposition 2.8.

If I is a graded left ideal of finite codimension in B , then I contains B�i for
some i . By Lemma 3.3, BA�i is a free B-module contained in B�i and has finite
codimension in B so B satisfies the hypotheses of Proposition 2.9. Thus, (1) and (2)
follow from Theorem 2.10.

SinceB is anti-isomorphic to itself, the fact thatB�n contains a non-zero free left
B-module implies it contains a non-zero free right B-module. Hence B satisfies the
hypothesis in part (3) of Theorem 2.10 and therefore its conclusion which is part (3)
of the present proposition.

Our next task is to give a precise description of the directed system (2.1) and its
direct limit. Lemma 4.2 shows that each term, EndGrB.B�n/, in the directed system
is a block lower triangular matrix algebra that is Morita equivalent to the ring of lower
triangular .r C 1/ 	 .r C 1/ matrices over k. Lemma 4.3 shows that the diagonal,
or semisimple, part of each EndGrB.B�n/ forms a directed system that has the same
direct limit as (2.1). Thus EndQGrB O is the direct limit of a directed system in which
each term is a product of r C 1 matrix algebras.
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Define B in´ yixBn�i�1 for 0 
 i 
 r . Then

Bn D B0n ˚ B1n ˚ � � � ˚ Brn:
Lemma 4.2. The restriction map

ˆn W EndGrB B�n ! Endk Bn; ˆn.f /´ f jBn
;

is an isomorphism from EndGrB B�n onto the lower triangular subalgebra

Tn´

0
BBB@

Homk.B
0
n ; B

0
n/ 0 0 : : : 0

Homk.B
0
n ; B

1
n/ Homk.B

1
n ; B

1
n/ 0 : : : 0

:::
:::

:::
:::

Homk.B
0
n ; B

r
n/ Homk.B

1
n ; B

r
n/ Homk.B

2
n ; B

r
n/ : : : Homk.B

r
n; B

r
n/

1
CCCA

of Endk Bn.

Proof. Because B is generated as an algebra by B1, B�n is generated as a left ideal
by Bn. Hence ˆn is injective.

Let f 2 EndGrB B�n. Since yr�iC1B in D 0, yr�iC1f .B in/ D 0. Therefore

f .B in/ � B in ˚ B iC1n ˚ � � � ˚ Brn:
Hence ˆn.f / belongs to Tn.

Fix i and suppose g 2 Tn is such that g.Bjn / D 0 for all j ¤ i . It is clear that

B�n D BB0n ˚ BB1n ˚ � � � ˚ BBrn:
Let f W B�n ! B�n be the unique linear map that is zero on BBjn for all j ¤ i and
satisfies f .ab/ D ag.b/ if a 2 B and b 2 B in. The fact that g.B in/ � B in˚B iC1n ˚
� � � ˚ Brn ensures that f is a well-defined left B-module homomorphism, and the
condition f .ab/ D ag.b/ ensures that ˆn.f / D g.

Now let g be an arbitrary element of Tn. Then g D g0 C g1 C � � � C gr where
gi is defined to be g on B in and zero on Bjn for all j ¤ i . Let fi W B�n ! B�n be
the unique linear map that vanishes on BBjn for j ¤ i and satisfies fi .ab/ D agi .b/
if a 2 B and b 2 B in. Now f0 C f1 C � � � C fr is in HomGrB.B�n; B�n/ and
ˆn.f0 C f1 C � � � C fr/ D g. This completes the proof that the image of ˆn is Tn.

Let
�n W EndGrB.B�n/! EndGrB.B�nC1/

be the restriction map. Let f 2 HomGrB.B�n; B�n/. The bottom arrow in the
diagram

EndGrB.B�n/

ˆn

��

�n �� EndGrB.B�nC1/

ˆnC1

��
Tn

 n´ˆnC1B�nBˆ�1
n

�� TnC1

(4.1)
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is  n
�
ˆn.f /

� D  n�
f jBn

� D f jBnC1
.

4.2. The algebras Sn. Let Sn be the diagonal subalgebra of Tn, i.e.,

Sn WD

0
BBBBB@

Homk.B
0
n ; B

0
n/ 0 0 0

0 Homk.B
1
n ; B

1
n/ 0 0

:::
:::

: : :
:::

0 0 � � � 0

0 0 � � � Homk.B
r
n; B

r
n/

1
CCCCCA :

Since dimk B
i
n D dimk y

ixBn�i�1 D dimk Bn�i�1 D bn�i�1, Sn is a product of
r C 1 matrix algebras of sizes bn�1; bn�2; : : : ; bn�r�1.

Lemma 4.3. Let .b0; : : : ; br/ 2 B0nC1 	 � � � 	 BrnC1 and

g D .g0; : : : ; gr/ 2 .Endk B
0
n/ 	 � � � 	 .Endk B

r
n/ D Sn:

(1) There are unique elements cj ; dj 2 Bjn such that

.b0; : : : ; br/ D .x
rP

jD0
cj ; yd0; yd1; : : : ; ydr�1/:

(2) There is a well-defined map �n W Sn ! SnC1 defined by

�n.g0; : : : ; gr/.b0; : : : ; br/´ .x
rP

jD0
gj .cj /; yg0.d0/; yg1.d1/; : : : ; ygr�1.dr�1//

where the cj s and dj s are as in (1).

(3) If ˛n W Sn ! Tn is the inclusion, then the diagram

Sn

˛n

��

�n �� SnC1
˛nC1

��
Tn

 n

�� TnC1

commutes.

(4) There is a homomorphism of directed systems ˛� W .Sn; �n/! .Tn;  n/.

Proof. (1) Because b0 2 B0nC1 D xBn D x.B0n ˚ B1n ˚ � � � ˚ Brn/ and x is not a

zero divisor there are unique elements cj 2 Bjn such that b0 D x.c0 C � � � C cr/.
Suppose that 1 
 i 
 r . Then bi 2 B inC1 D yixBn�i D yB i�1n and because left

multiplication by y is a bijective map B i�1n ! B inC1 there is a unique di�1 2 B i�1n

such that bi D ydi�1.
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(2) Since cj ; dj 2 Bjn , gj .cj / and gj .dj / belong to Bjn too. Hence xgj .cj / 2
B0nC1 and ygj .dj / 2 yBjn D B

jC1
nC1 . Hence �n.g0; : : : ; gn/ 2 SnC1 and �n W Sn !

SnC1.
(3) Since TnC1 � Endk BnC1 and BnC1 D B0nC1 ˚ � � � ˚ BrnC1 we must show

that

 n˛n.g0; : : : ; gr/.b0 C � � � C br/ D ˛nC1�n.g0; : : : ; gr/.b0 C � � � C br/
for all .g0; : : : ; gr/ 2 Sn and bi 2 B inC1, 0 
 i 
 r .

Define fi 2 EndGrB.B�n/ to be the unique linear map such that

(a) fi is zero on BBjn for all j ¤ i , and

(b) fi .ab/ D agi .b/ if a 2 B and b 2 B in.

The fact that gi .B in/ � B in ensures that fi is a well-defined left B-module homo-
morphism and (b) ensures that ˆn.fi / D gi . Define f D f0 C � � � C fr . Then
ˆn.f / D diag.g0; : : : ; gr/. Therefore

 n˛n.g0; : : : ; gr/DˆnC1�n.f / D f
ˇ̌
BnC1

and

 n˛n.g0; : : : ; gr/.b0 C � � � C br/D f .b0 C � � � C br/
D f .x

rP
jD0

cj C y.d0 C � � � C dr�1//

D x
rP

jD0
gj .cj /C yg0.d0/C � � � C ygr�1.dr�1/:

On the other hand,

˛nC1�n.g0; : : : ; gr/.b0 C � � � C br/
D diag.�n.g0; : : : ; gr//.b0 C � � � C br/
D

rP
iD0

�n.g0; : : : ; gr/.bi /

D x
rP

jD0
gj .cj /C yg0.d0/C � � � C ygr�1.dr�1/;

where the last equality follows from part (2). This completes the proof that the
diagram in (3) commutes and (4) is an immediate consequence.

Theorem 4.4. The homomorphisms ˛n W .Sn; �n/! .Tn;  n/ in Lemma 4.3 induce
an isomorphism

˛ W lim�!
n

.Sn; �n/ ��!� lim�!
n

.Tn;  n/:
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Proof. WriteS andT for the direct limits of the two systems. Lemma 4.3 showed that
the diagonal inclusions ˛n W Sn ! Tn induce an algebra homomorphism ˛ W S ! T .
Every ˛n is injective, as are the �ns and  ns, so ˛ is injective. It remains to show
that ˛ is surjective.

Let t 2 Tn. Then t D ˆn.f / for some f 2 EndGrB.B�n/ and

 nCr�1 : : :  n.t/ D  nCr�1 : : :  nˆn.f / D ˆnCr�nCr�1 : : : �n.f / D ˆnCr.f 0/

where f 0 is the restriction of f to B�nCr .
Let 0 
 i 
 r � 1. Then nC r � i � 1 � n, so

f .B inCr/ D f .yixBnCr�i�1/ � yixf .BnCr�i�1/ � yixBnCr�i�1 D B inCr :

Also,

f .BrnCr/ D f .yrxBn�1/ D yrf .xBn�1/ � yrBn D yrxBn�1 D BrnCr :

This shows that ˆnCr.f 0/ belongs to SnCr or, more precisely,  nCr�1 : : :  n.t/ is
in the image of ˛nCr . It follows that ˛ is surjective and therefore an isomorphism.

4.3. Definition of S . From now on we will write

S ´ lim�!
n

.Sn; �n/

where the direct limit is taken in the category of k-algebras. Recall that ModS is the
category of right S -modules.

Theorem 4.5. There is an equivalence of categories

QGrB � ModS:

Under the equivalence, O corresponds to SS .

Proof. Because (4.1) commutes the directed system .EndGrB.B�n/; �n/ is isomor-
phic to the directed system .Tn;  n/. By Theorem 2.10, Lemma 4.2, and Theorem 4.4,

QGrB � Mod EndQGrB O � Mod lim�!.Tn;  n/ D Mod lim�!
n

.Sn; �n/:

The equivalence is given by HomQGrB.O;�/, so sends O to SS .

5. Properties of S and consequences for QGr B

We refer the reader to [11] for information about Bratteli diagrams.
We write Sn D S0n 	 � � � 	 S rn where S in is the matrix algebra of size bn�i�1.
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Proposition 5.1. The Bratteli diagram for S is repeated copies of

Sn

�n

��

bn�1

�������� bn�2
���

�

��
�� �������� bn�3

��
��

��
��

�����

������

������

: : : bn�r

��������� bn�r�1�����

���������������

�������

���������������

SnC1 bn bn�1 bn�2 : : : bn�r

where bi is dimk Bi and is given explicitly in Proposition 3.1 (5).

Proof. If we think of Sn abstractly as a product of r C 1 matrix algebras of sizes
bn�1; bn�2; : : : ; bn�r�1, and not concretely as endomorphisms ofB0n	� � �	Brn, then
the map �n W Sn ! SnC1 described in Lemma 4.3 (2) is

�n.g0; : : : ; gr/ D .diag.g0; : : : ; gr/; g0; g1; : : : ; gr�1/:

The result follows.

Proposition 5.2. S is a simple von Neumann regular ring.

Proof. A ring R is von Neumann regular if for each x 2 R the equation xyx D x

has a solution y 2 R. A matrix algebra over a field is von Neumann regular so a
product of matrix algebras is von Neumann regular. It follows from the definition that
a filtered direct limit of von Neumann regular rings is von Neumann regular. Hence
S is von Neumann regular.

The simplicity of S can be read off from the shape of its Bratteli diagram. Let x be
a non-zero element of S . Then x 2 Sn for some n, so can be written as .x0; : : : ; xr/
where xi 2 S in. Some xi is non-zero, so, as can be seen from the Bratteli diagram, the
image of x in SnCr has a non-zero component in SjnCr for all j D 0; : : : ; r . Hence
the ideal of SnCr generated by the image of x is SnCr itself. Hence SxS D S .

Other properties of S can be read off from its description as a filtered direct limit
of products of matrix algebras. For example, S is unit regular [15], Ch. 4, hence
directly finite [15], Ch. 5, and it satisfies the comparability axiom [15], Ch. 8.

Proposition 5.3. The ring S is coherent on both the left and right.

Proof. Since matrix algebras are isomorphic to their opposite rings, S is isomorphic
to its opposite and it therefore suffices to prove the result for just one side. We have
already shown that QGrB , and hence ModS , is a locally coherent category so S is
right coherent.

Alternatively, S has global homological dimension one (see Section 8.2) and every
ring of global dimension one is coherent; to see that let I be a finitely generated left
ideal and P a module such that I ˚ P is isomorphic to a finitely generated free
module, F say; then I Š F=P and P Š F=I so P is finitely generated and I is
therefore finitely presented.
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Translating standard properties of von Neumann regular rings into statements
about QGrB and qgrB shows these categories are very different from the categories
QcohX and cohX that appear in algebraic geometry.

Proposition 5.4. Every subobject of O is projective.

Proof. SinceS is a countable union of matrix algebras it has countable dimension. So
every left ideal ofS is countably generated and therefore projective by [15], Cor. 2.15.

Proposition 5.5. Every object in qgrB is projective in QGrB and every short exact
sequence in qgrB splits.

Proof. Every module over a von Neumann regular ring is flat [15], Cor. 1.13. Hence
all finitely presented S -modules are projective. But the equivalence QGrB � ModS
restricts to an equivalence qgrB � modS so all objects in qgrB are projective in
QGrB .

Proposition 5.6. There are no noetherian objects in qgrB except 0.

Proof. It suffices to show that modS does not contain a simple module. Suppose to
the contrary that L is a finitely presented simple left S -module. There is a surjective
homomorphism S ! L and its kernel, K say, is a finitely generated left ideal of S .
Since S is von Neumann regularK D S.1� e/ for some idempotent e and L Š Se.
SinceL is simple e is a primitive idempotent, but it follows from the Bratteli diagram
that a primitive idempotent in Sn is no longer primitive in SnC2. Hence S has no
primitive idempotents.

6. Multi-matrix algebras associated to partitioned sets

A finite product of finite dimensional matrix algebras over a common field is called
a multi-matrix algebra.

In [10], Sect. II.3, Connes associates to the space of Penrose tilings a C�-algebra
constructed as a direct limit, in the category of C�-algebras, of multi-matrix algebras.
In this section we generalize his construction (the r D 1 case is the algebra Connes
constructs) and show the ring S in Section 4.3 is isomorphic to the ring obtained by
this generalization.

6.1. An algebra homomorphism associated to a map between partitioned sets.
Let X be a finite set endowed with a partition

X D X1 t � � � tXm:
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We write x � x0 if x and x0 belong to the same Xi .
Fix a field k. We associate to X a product of matrix algebras

A.X/ D A1 	 � � � 	 Am;
eachAi being the ring of jXi j 	 jXi jmatrices over k with rows and columns indexed
by the elements of Xi . Equivalently, A.X/ consists of all functions f W X 	X ! k

such that f .x; x0/ D 0 if x 6� x0 with multiplication

.fg/.x; x00/ D P
x02X

f .x; x0/g.x0; x00/:

In more suggestive notation, writing fxx0 for f .x; x0/, the product is

.fg/x;x00 D P
x02X

fx;x0gx0;x00 :

Equivalently, A.X/ is the groupoid algebra associated toX where the objects are the
elements of X and there is a single arrow x ! x0 whenever x � x0.

Proposition 6.1. LetX D X1t � � �tXm and Y D Y1t � � �tYn be finite partitioned
sets. Let � W X ! Y be a function and define

X
j
i ´ Xi \ ��1.Yj /

for all i , j . Suppose that the restriction � W Xji ! Yj is bijective whenever Xji is
non-empty. Then the linear map � W A.Y /! A.X/ defined by

�.f /x;x0 ´
´
f�x;�x0 if x � x0;
0 if x 6� x0;

for all f 2 A.Y / and x; x0 2 X is an algebra homomorphism.

Proof. First, �.f / belongs to A.X/ because �.f /x;x0 D 0 if x 6� x0. If x; z 2 X ,
then

�.fg/xz D P
y2Y

f�x;ygy;�z;

.�.f /�.g//xz D P
w2X

x�w�z

�.f /xw�.g/wz D P
w2X

x�w�z

f�x;�wg�w;�z :

To show � is an algebra homomorphism we must show the two sums on the right are
the same for all x; z 2 X . If x 6� z, then �.fg/xz and

�
�.f /�.g/

�
xz

are zero because
the functions belong to A.X/. We therefore assume that x � z. Both right-hand
sums are zero if �x 6� �z so we can, and do, assume �x � �z. Hence there exist i
and j such that x; z 2 Xi and �x; �z 2 Yj . Thus x; z 2 Xji .
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Comparing the two sums, one is over

fw 2 X j x � w � zg \ fw 2 X j �x � �w � �zg D Xi \ ��1.Yj / D Xji
and the other is over fy 2 Y j �x � y � �zg D Yj . Since Xji is not empty,

� W Xji ! Yj is a bijection so the two sums are the same, whence

�.fg/ D �.f /�.g/:
Finally we check that � sends the identity in A.Y / to the identity in A.X/. The

identity in A.Y / is the function e W Y 	 Y ! k such that eyy D 1 for all y 2 Y and
ey;y0 D 0 if y ¤ y0. Hence

�.e/x;x0 ´
´
e�x;�x0 if x � x0;
0 if x 6� x0;

D
´
1 if x � x0 and �x D �x0;
0 otherwise.

If x D x0, then x � x0 and �x D �x0 so �.e/xx D 1. Suppose that x ¤ x0. If
x 6� x0, then �.e/xx0 D 0. If x � x0, then �x ¤ �x0 because of the injectivity of the
maps � W Xji ! Yj so �.e/xx0 D 0.Hence �.e/ is the identity.

The next result is obvious.

Proposition 6.2. The Bratteli diagram [7] associated to the map � W A.Y /! A.X/

consists of two horizontal rows with n vertices on the top row labelled by the numbers
jY1j; : : : ; jYnj andm vertices on the lower row labelled by the numbers jX1j; : : : ; jXmj
and an edge from the top vertex jYj j to the lower vertex jXi j whenever Xji ¤ ¿.

6.1.1. Example: Penrose sequences. Let X.n/ be the set of Penrose sequences
z0 : : : zn, i.e., length-.nC 1/ sequences of 0’s and 1’s in which the subsequence 11
does not appear. Let � W X.n C 1/ ! X.n/ be the map �.z0 : : : znC1/ D z0 : : : zn.
LetX.n/0 be the set of sequences inX.n/ ending in 0, andX.n/1 the set of sequences
ending in 1. It is easy to verify that � satisfies the condition in Proposition 6.1. Since
jX.nC 1/0j D fnC2 and jX.nC 1/1j D fnC1, the Bratteli diagram is

fnC1

��������
fn

		
		

			
	

fnC2 fnC1

meaning that the associated algebra homomorphism

� W MfnC1
.k/ 	Mfn

.k/!MfnC2
.k/ 	MfnC1

.k/
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is

�n.a; b/ D
��
a 0

0 b

�
; a

�
:

6.1.2. Failure of functoriality. Given partitioned sets and maps X
��! Y

��! Z in
which both � and � have the property in Proposition 6.1, �� W X ! Z need not have
the property in Proposition 6.1. An example of this is

X D X1 D f000; 100; 010; 110g; Y1 D f00; 10g; Y2 D f10; 11g; Z D Z1 D f0; 1g
with � and � both being the map drop the final digit.

6.2. (0,1)-sequences with at most r consecutive 1’s. Fix r � 1. For all n � 0, and
0 
 i; j 
 r we define

X´ fsequences z0z1 : : : of 0’s and 1’s without r C 1 consecutive 1’sgI
X.n/´ fsequences z0z1 : : : zn of 0’s and 1’s without r C 1 consecutive 1’sgI

X.n/i ´ fz0z1 : : : zn 2 X.n/ that end 01ig if 0 
 i 
 nI
X.n/nC1´ f1 : : : 1 D 1nC1gI

� W X.nC 1/! X.n/; �.z0 : : : znC1/´ z0 : : : znI
X.nC 1/ji ´ X.nC 1/i \ ��1.X.n/j /:

Lemma 6.3. The conditions in Proposition 6.1 hold for � W X.nC 1/ ! X.n/ with
respect to the partition

X.n/ D X.n/0 t � � � t X.n/r :

Proof. The set X.nC 1/j0 D fz0 : : : zn�j�101j 0 2 X.nC 1/g is non-empty if and
only if n � j , and in that case � maps it bijectively to X.n/j .

Suppose that i � 1. Then X.nC1/ji is non-empty if and only if i D jC1 
 nC1
and in that case it consists of all words z0 : : : zn�i01i in X.n C 1/ and � maps it
bijectively to X.n/i�1.

It is convenient to make the following definitions:

"´ the empty sequence of 0’s and 1’s;

X.�1/´ f"g;
X.�1/0´ f"g;

X.n/´ ¿ for n 
 �2:

Lemma 6.4. Define cn, n 2 Z, by

ci D 0 for i 
 �2; c�1 D 1; cn D cn�1 C cn�2 C � � � C cn�r�1 for n � 0:



The space of Penrose tilings and khx; yi=.y2/ 567

Thus cn D 2n for 0 
 i 
 r . For all n 2 Z,

jX.n/j D cnC1: (6.1)

Proof. It is clear that (6.1) holds for n 
 �1.
The recurrence relation for cn implies cn D 2n for 0 
 n 
 r . Furthermore, if

�1 
 n 
 r � 1, X.n/ consists of all length-.n C 1/ sequences of 0’s and 1’s so
jX.n/j D 2nC1. Hence jX.n/j D cnC1 for �1 
 n 
 r � 1. It is also clear that
jX.r/j D 2rC1 � 1 D crC1. Hence (6.1) holds for all n 
 r .

We now assume n � r and (6.1) is true for n. We will prove (6.1) holds with
nC 1 in place of n.

The sets X.n/i and X.n/ji are only defined for 0 
 i; j 
 r so the qualifications
j 
 n and i 
 nC 1 in the proof of Lemma 6.3 are satisfied when n � r . Because
n � r , the proof of Lemma 6.3 therefore tells us that

(1) jX.nC 1/j0 j D jX.n/j j for all j ;

(2) jX.nC 1/ji j D ¿ if i � 1 and j ¤ i � 1;

(3) jX.nC 1/i�1i j D jX.n/i�1j if i � 1.

Claim: If n � r and 0 
 i 
 r , then

jX.n/i j D cn�i : (6.2)

Proof. Since X.r/i consists of sequences z D z0 : : : zr�i�101i where z0 : : : zr�i�1
is an arbitrary sequence of length r � i , jX.r/i j D 2r�i D cr�i . Hence (6.2) holds
for n D r and all i D 0; : : : ; r . Now assume that (6.2) holds for some n � r and all
i . We have

jX.nC 1/0j D jX.nC 1/00 t X.nC 1/10 t � � � t X.nC 1/r0j
D jX.nC 1/00j C jX.nC 1/10j C � � � C jX.nC 1/r0j
D jX.n/0j C jX.n/1j C � � � C jX.n/r j
D cn C cn�1 C � � � C cn�r
D cnC1:

If i � 1, then

jX.nC 1/i j D jX.nC 1/i�1i j D jX.n/i�1j D cnC1�i :
Hence (6.2) holds with nC 1 in place of n and for all i D 0; : : : ; r . By induction,
(6.2) holds for all n � r and all i D 0; : : : ; r .

It follows from the claim that

jX.nC 1/j D jX.nC 1/0 t X.nC 1/1 t � � � t X.nC 1/r j
D cnC1 C cn C � � � C cnC1�r
D cnC2;

so (6.1) is true for all n � 0.
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6.3. The algebras A.n/ and their direct limit. For n � 0 we define

A.n/ WD A.X.n � 1//: (6.3)

Thus A.0/ D k.
The inverse limit of the directed system of sets � � � ! X.nC 1/! X.n/! � � � is

X together with the maps 	n W X! X.n/ given by 	n.z0z1 : : : / D z0 : : : zn. Applying
the procedure described in Proposition 6.1 to the inverse system

X D lim �
n

X.n/! � � � ��! X.2/
��! X.1/

��! X.0/
��! X.�1/

produces a directed system of k-algebras and k-algebra homomorphisms

k D A.0/ ��! A.1/
��! A.2/

��! A.3/
��! � � � ! A D lim�!

n

A.n/:

The following picture for r D 3 serves as a mnemonic to understand the construction
of each A.n/ and the maps � that induce the homomorphisms A.n/! A.nC 1/:

A.0/ X.�1/0

A.1/ X.0/0

��

X.0/1

��










A.2/ X.1/0

���
�
�

���
�

�
�

�
X.1/1

��










X.1/2

		���������

A.3/ X.2/0

���
�
�

���
�

�
�

�




X.2/1

��










X.2/2

		���������
X.2/3

		���������

A.4/ X.3/0

���
�
�

���
�

�
�

�





�����������������
X.3/1

��










X.3/2

		���������
X.3/3

		���������

A.5/ X.4/0

���
�
�

���
�

�
�

�





�����������������
X.4/1

��










X.4/2

		���������
X.4/3.

		���������

The meaning of the solid arrows is that �
�
X.n/i

� � X.n� 1/i�1 when i � 1 (in fact
� restricts to a bijection between X.n/i and X.n � 1/i�1). The dashed arrows from
X.n/0 to X.n�1/j mean that �

�
X.n/0

�\X.n�1/j ¤ ¿ for all j D 0; : : : ;minfr; ng.
We now reinterpret this diagram, more precisely its generalization for an arbitrary

r � 1, to obtain a description of the homomorphisms.
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Proposition 6.5. Let cn, n 2 Z, be the numbers defined in Lemma 6.4. The Bratteli
diagram for A is repeated copies of

A.n/

�n

��

cn�1

��
��

��
��

��
��

��
cn�2

��
��

��
�

��
��

��
�

��
��

��
��

��
��

��
cn�3

��
��

��
��

��
��

��
�

���
���

���
���

�

������

: : : cn�r

��
��

��
��

��
��

��
� cn�r�1

�����

����������������

�������

����������������

A.nC 1/ cn cn�1 cn�2 : : : cn�r .

Proof. Suppose that n � r . Then X.n�1/ D X.n�1/0t � � � tX.n�1/r soA.n/ D
A.X.n�1// is a product of rC1matrix algebras of sizes jX.n�1/0j; : : : ; jX.n�1/r j.
Similarly,A.nC1/ is a product of rC1matrix algebras of sizes jX.n/0j; : : : ; jX.n/r j.
By Proposition 6.2, the Bratteli diagram for the map A.n/! A.nC 1/ has an edge
from the top vertex labelled by cn�j D jX.n � 1/j j to the lower vertex labelled
cn�i D jX.n/i j whenever X.n/ji ¤ ¿.

By the proof of Lemma 6.3, X.n/j0 is non-empty for all j so there is an edge from
the top vertex labelled cn�j to the bottom vertex labelled cn for all j .

Suppose that i � 1. The proof of Lemma 6.3 shows that X.n/i�1i is non-empty

and X.n/ji is empty if j ¤ i � 1; i.e., there is an edge from the top vertex labelled
cn�i D jX.n� 1/i�1j to the lower vertex labelled cn�i D jX.n/i j and no other edges
from the top row to the lower vertex labelled cn�i D jX.n/i j.

This completes the proof that the Bratteli diagram is as claimed for n � r .

Now suppose that 0 
 n 
 r�1. ThenA.n/ is a product of nC1matrix algebras
of sizes jX.n � 1/0j D cn�1; : : : ; jX.n � 1/nj D c�1; however, ci D 0 for i 
 �2
so we can, and will, think of A.n/ as a product of r C 1 matrix algebras of sizes
cn�1; : : : ; c�1; c�2; : : : ; cn�r�1. With this convention, and a generalization of the
diagram just prior to the statement of this proposition one sees the Bratteli diagram
is as claimed for 0 
 n 
 r � 1.

Theorem 6.6. The k-algebraS defined in Section 4.3 is isomorphic toA D lim�!A.n/.

Proof. If bn D cn for all n � 0, the Bratteli diagram in Proposition 6.5 for the
directed system of A.n/s is the same as the Bratteli diagram for the directed system
of Sns in Proposition 5.1 and therefore A Š S by Elliott’s Theorem [12].

By Proposition 3.1, the sequence bn D dimk Bn, n � 0, satisfies the same
recurrence relation as the sequence cn, n � 0. Since bi D 2i D ci for 0 
 i 
 r ,
cn D bn for all n � 0.
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The Bratteli diagrams for the cases r D 1, r D 2, and r D 3, are

A.0/ 1

��
��

��
��

0

��
�

��
�

1

��
��

��
��

0

���
�

���
� ��

��
��

��
0

���
�

���
��

����

1

��
��

��
��

0

���
�

���
� ��

��
��

��
0

���
�

���
��

���� ��
��

��
��

0����

����
�

�����

�����
A.1/ 1

��
��

��
��

1

��
�

��
�

1

��
��

��
��

1

���
�

���
� ��

��
��

��
0

���
�

���
��

����

1

��
��

��
��

1

���
�

���
� ��

��
��

��
0

���
�

���
��

���� ��
��

��
��

0����

����
�

�����

�����
A.2/ 2

��
��

��
��

1

��
�

��
�

2

��
��

��
��

1

���
�

���
� ��

��
��

��
1

���
�

���
��

����

2

��
��

��
��

1

���
�

���
� ��

��
��

��
1

���
�

���
��

���� ��
��

��
��

0����

����
�

�����

�����
A.3/ 3

��
��

��
��

2

��
�

��
�

4

��
��

��
��

2

���
�

���
� ��

��
��

��
1

���
�

���
��

����

4

��
��

��
��

2

���
�

���
� ��

��
��

��
1

���
�

���
��

���� ��
��

��
��

1����

����
�

�����

�����
A.4/ 5

��
��

��
��

3

��
�

��
�

7

��
��

��
��

4

���
�

��
� ��

��
��

��
2

���
�

���
��

���
�

8

��
��

��
��

4

���
�

��
� ��

��
��

��
2

���
�

���
��

���
� ��

��
��

��
1����

����
�

�����

����
A.5/ 8

��
��

��
��

4
��

�

��
��

13

��
��

��
��

7
��

�

��
�� ��

��
��

��
4

����

����
�

���
��

15

��
��

��
��

8
��

�

��
�� ��

��
��

��
4

����

����
�

���
�� ��

��
��

��
2����

�����

�����

�����

The Fibonacci sequence appears in the left-most column of the left-most Bratteli
diagram and the Tribonacci sequence occurs in the left-most column of the middle
diagram.

6.4. Infinite paths in the Bratteli diagram. Fix r and consider the corresponding
Bratteli diagram. For example, set r D 3 and consider the right-most of the three
diagrams above. Relabel the vertices by placing 0 in each left-most vertex and label
all other vertices with 1. Replace each edge by a downward pointing arrow. An
infinite path in the Bratteli diagram is a sequence z0z1 : : : in which zi is a vertex at
level i and there is a downward arrow zi ! ziC1 (the 0þ level is the top one). The
set of all infinite paths is the set of all infinite sequences of 0’s and 1’s such that rC 1
consecutive 1’s never occur. The infinite paths in the Bratteli diagram are in natural
bijection with the points in X.

7. The Grothendieck group of qgr B

As before, let B D khx; yi=.yrC1/.

7.1. Let ˛ be the smallest positive real root of the irreducible polynomial t rC1 �
t r � � � � � t � 1 (we say more about ˛ in Section 7.5). We will prove K0.qgr.B// is



The space of Penrose tilings and khx; yi=.y2/ 571

isomorphic to ZŒ˛� as an ordered abelian group with order unit ŒO� corresponding to
1 2 ZŒ˛�, ŒO.�1/� corresponding to ˛, and ŒF .�1/� D ˛ŒF � for all F 2 qgr.kQ/.
We will also describe the structure of K0.qgr.B// as a ZŒt˙1�-module.

The ZŒt˙1�-module structure arises as follows.
Given a group G acting as automorphisms of an abelian category A, K0.A/ be-

comes a ZG-module by g � ŒF �´ Œg �F �. Because B is a Z-graded ring the degree
shift functor M  M.1/ gives K0.grB/ the structure of a ZŒt; t�1�-module with t
acting as .�1/. The Serre twist, F  F .1/, on qgrB givesK0.qgrB/ the structure
of a ZŒt; t�1�-module with t acting as .�1/.

7.2. One might try to compute the Grothendieck group of the category qgr.B/ by
using the localization sequenceK0.fdimB/! K0.grB/! K0.qgrB/! 0. How-
ever, the global dimension ofB is infinite so we cannot conclude that the natural map
K0.P.grB//! K0.grB/ induced by the inclusion of the exact subcategory P.grB/
of projective objects in grB is an isomorphism. It therefore seems a difficult task to
compute K0.grB/.

However, there is an inclusion ofB in the path algebra of a quiverQ, f W B ! kQ,
with the property that kQ ˝B � induces an equivalence of categories qgr.B/ !
qgr.kQ/. Since kQ has finite global dimension we can compute K0.gr.kQ// easily
then use the localization sequence

K0.fdim.kQ//! K0.gr.kQ//! K0.qgr.kQ//! 0

to compute K0.qgr.kQ// and hence K0.qgrB/.
The methods and results in Sections 7.3 and 7.4 parallel those in [18] and [19]. The

results in those papers relate a monomial algebra to the path algebra of its Ufnarovskii
graph but here Q is not the Ufnarovskii graph of B .

7.3. Fix an integer r � 1 and let Q be the quiver

1x1 ��

y1

��
2x2��

y2

��
3x3



y3

��: : : : : :

yr

��
r C 1

xrC1

��

We write kQ for the path algebra of Q. We write Q0 for the set of vertices in Q
and Q1 for the set of arrows. If a is an arrow we write s.a/ for its start and h.a/ for

its head: visually, s.a/
a�! h.a/.

7.3.1. Notation. Let p and q be paths in Q such that p ends where q starts. We
adopt the convention that pq denotes the path traverse p then q. We write ei for the
trivial path, i.e., the primitive idempotent, at vertex i .
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Proposition 7.1. There is an injective algebra homomorphism f W B ! kQ such
that

f .x/ D x1 C � � � C xrC1; f .y/ D y1 C � � � C yr :
Proof. Since .y1 C � � � C yr/rC1 D 0, f is a well-defined algebra homomorphism.

A basis for B is provided by the set

W ´ fwords in x and y not containing yrC1 as a subwordg:
The function  W fpaths in Q that begin at vertex 1g ! W defined by

 .p/´
´

the word obtained by removing the subscripts

from the arrows xi and yj that appear in p

is a bijection.
To show f is injective it suffices to show that ff .w�/ j 
 2 ƒg is linearly

independent whenever fw� j 
 2 ƒg is a finite subset of W . Indeed, it is enough to
show that fe1f .w�/ j 
 2 ƒg is linearly independent. We will prove this by showing
that fe1f .w�/ j 
 2 ƒg consists of different paths.

We will do this by showing that

(a) e1f .w/ is a path (necessarily beginning at vertex 1) and

(b)  .e1f .w// D w for all w 2 W .

(The linear independence of fe1f .w�/ j 
 2 ƒg follows from (b).) We argue by
induction on degw. It is clear that e1f .1/ D 1 and  .e1f .1// D 1 so (a) and (b)
are true when degw D 0.

Suppose that (a) and (b) are true for w 2 W .
Then e1f .wx/ D e1f .w/f .x/ D e1f .w/.x1C� � �CxrC1/; the fact that e1f .w/

is a path implies e1f .w/f .x/ D e1f .w/xj for some j . Hence (a) holds for wx.
Because  .e1f .w// D w,  .e1f .w/xj / D  .e1f .w//x D wx, i.e., (b) holds for
wx.

Now consider e1f .wy/ D e1f .w/.y1 C � � � C yr/. If the path e1f .w/ ends at
a vertex i ¤ r C 1, then e1f .wy/ D e1f .w/yi ¤ 0. The path e1f .w/ begins
at vertex 1 so if it were to end at r C 1 it would equal p0y1 : : : yr for some path
p0 which would imply w D  .e1f .w// D  .p0y1 : : : yr/ D  .p0/yr whence
wy D  .p0/yrC1 D 0, i.e., wy … W . We conclude that e1f .w/f .y/ is non-zero
and therefore equal to e1f .w/yi for some i . Hence (a) holds for wy. So does (b)
because  .e1f .wy// D  .e1f .w/yi / D  .e1f .w//y D wy.

This completes the proof that (a) and (b) hold for allw 2 W . Item (b) implies that
fe1f .w�/ j 
 2 ƒg consists of different paths. The injectivity of f follows.

7.4. We will follow the strategy in [18] and [19] and use the following theorem
of Artin and Zhang to show that the map f W B ! kQ induces an equivalence of
categories QGr.B/! QGr.kQ/ via the functor kQ˝B �.
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Proposition 7.2 ([3], Prop. 2.5). Let B and D be N-graded k-algebras such that
dimk Bi <1 and dimkDi <1 for all i . Let f W B ! D be a homomorphism of
graded k-algebras. If ker f and coker f belong to FdimB , then D ˝B � induces
an equivalence of categories

QGrB ! GrD

TB
(7.1)

where
TB D fM 2 GrD jMB 2 FdimBg:

We now proceed to prove that the hypotheses of Proposition 7.2 hold for the map
f W B ! kQ and that the category TB in (7.1) is equal to Fdim.kQ/.

Lemma 7.3 (Cf. [19], Lemma 2.2). Let f W B ! kQ be the homomorphism in
Proposition 7.1 and write .kQ/Bn for the left ideal of kQ generated by f .Bn/. For
all n � 0,

.kQ/Bn D kQ�n:

Proof. Write D D kQ.
We will prove that D0Bn D Dn for all n � 0. This is certainly true for n D 0.
Since eif .x/ D xi and eif .y/ D yi , D0B1 D D1. We now argue by induction

on n. If D0Bn�1 D Dn�1, then

D0Bn D D0.B1/n D D0.B1/n�1B1
D Dn�1B1 D Dn�1D0B1 D Dn�1D1 D Dn:

This completes the proof that D0Bn D Dn for all n � 0. Hence DBn D D�n.

Lemma 7.4. The cokernel of the homomorphism f W B ! kQ in Proposition 7.1
belongs to FdimB .

Proof. Write D D kQ.
By [18], Lemma 2.2, coker.f / belongs to Fdim.B/ if f .Bm/D0 � f .Bm/ and

f .Bm/D1 � f .BmC1/ for somem 2 N. We will show thatf .BrC1/D0 � f .BrC1/
and f .BrC1/D1 � f .BrC2/.

Claim: If the letter x appears inw 2 W , there is an arrow a such that f .w/ D da
for some d 2 kQ.

Proof. If w D w00xw0 for w0; w00 2 W , then f .w/ D f .w00/.x1 C � � � C
xrC1/f .w0/ D f .w00x/e1f .w0/ because all arrows xi end at vertex 1. However,
e1f .w

0/ is a path by the statement (a) in the proof of Proposition 7.1. In particular
e1f .w

0/ D d 0a for some arrow a and some path d 0. Hence f .w/ D f .w00x/d 0a for
some arrow a.

Suppose that w 2 BrC1. Since yrC1 D 0, at least one x appears in w. Therefore
f .w/ D da for some arrow a and some d 2 kQ.
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Hence f .w/ei D daei is either 0 or da. In either case, f .w/ei 2 f .BrC1/.
Therefore f .BrC1/D0 � f .BrC1/.

Now consider f .w/D1. If a ends at vertex r C 1, then f .w/Q1 D f0; daxrC1g
and daxrC1 D daf .x/ D f .wx/ 2 f .BrC2/. If a ends at vertex i ¤ r C 1, then
f .w/Q1 D f0; daxi ; dayig and daxi D f .wx/ 2 f .BrC2/ and vayi D f .wy/ 2
f .BrC2/. This completes the proof that f .BrC1/D1 � f .BrC2/.

Therefore [18], Lemma 2.2, implies that coker.f / belongs to Fdim.B/

The proof of the next result is essentially identical to that of [19], Prop. 2.3.

Proposition 7.5. TB D Fdim.kQ/.

The next theorem now follows from Propositions 7.1, 7.2, 7.5, and Lemma 7.4.

Theorem 7.6. Let f W B ! kQ be the homomorphism in Proposition 7.1. The
functor kQ˝B � induces an equivalence of categories

F W QGr.B/ ��!� QGr.kQ/:

Furthermore,

(1) F restricts to an equivalence between qgr.B/ and qgr.kQ/;

(2) F.F .1/� Š F.F /.1/ for all F 2 QGr.B/;

(3) if O is used to denote both the image of BB in QGr.B/ and kQkQ in QGr.kQ/,
then F.O/ D O.

7.5. The Pisot number ˛. Let ˛ be an algebraic integer belonging to R. We call ˛
a Pisot number if ˛ > 1 and all its Galois conjugates have modulus < 1. We refer
the reader to [13] for basic information about Pisot numbers.

By [8], the polynomial f .x/ ´ xrC1 � xr � � � � � x � 1 is irreducible for all
r � 1 and

˛´ the unique positive real root of f .x/

is a Pisot number. As remarked in [9], the ˛s are monotonically increasing and
converge to 2 as r increases.

In [9], p. 3, the .r C 1/st multinacci number !rC1 is defined to be the positive
solution of the equation

1 � t � t2 � � � � � t rC1:
Thus, !rC1 D ˛�1.

When r D 1, ˛ ´ 1Cp
5

2
, the Golden Ratio. When r D 2, ˛ is the Tribonacci

constant, the limit of the ratio tn=tn�1 of successive terms in the Tribonacci sequence
defined by tn D tn�1 C tn�2 C tn�3 and t0 D 1, t1 D 2, t2 D 4. Recall, tn is the
dimension of the degree n component of the algebra khx; yi=.y3/.

The following result, which concerns the growth of the coefficients of the power
series expansion of the rational function HB.t/, is probably implicit, if not explicit,
in the literature.
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Proposition 7.7. Let B D khx; yi=.yrC1/. Then

lim
n!1

dimBn

˛n
D ˛rC2

1C 2˛ C 3˛2 C � � � C .r C 1/˛r :

Proof. By Proposition 3.1,

HB.t/ D 1C t C � � � C t r
1 � t � � � � � t rC1 :

The denominator is t rC1f .t�1/, which has a simple zero at ˛�1, so

HB.t/ D c˛

1 � ˛t C
h.t/

g.t/

for some c 2 R, where .1 � ˛t/g.t/ is the denominator of HB.t/ and h.t/ is some
polynomial. It follows that

c˛ D lim
t!˛�1

HB.t/.1 � ˛t/:

SinceHB.t/.1�˛t/ is a ratio of polynomials that vanish at ˛�1, l’Hôpital’s rule tells
us that

c˛ D lim
t!˛�1

HB.t/.1 � ˛t/ D ˛rC2

1C 2˛ C 3˛2 C � � � C .r C 1/˛r :

On the other hand,

HB.t/ D c˛
1P
iD0

˛i t i C
1P
iD0

di t
i ;

where the second term is the formal power series expansion of h.t/=g.t/. However,
since ˛ is a Pisot number all the zeroes of g.t/ lie outside the unit disk and therefore
limi!1 di D 0. But

dimBn

˛n
D c˛ C dn

˛n
;

so the result follows.

7.6. We are now ready to compute the Grothendieck group K0.qgr.B//, first as a
ZŒt˙1�-module then as an ordered abelian group with order unit.

Theorem 7.8. Let Q be the quiver at the beginning of Section 7.3. There is an
isomorphism

K0.qgr.B// Š K0.qgr.kQ// Š ZŒt˙1�
.1 � t � � � � � t rC1/

of ZŒt˙1�-modules under which ŒO� 7! 1 and ŒF .�1/� D t ŒF � for all F 2 qgr.B/.
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Proof. We will use the localization sequence K0.fdim.kQ// ! K0.gr.kQ// !
K0.qgr.kQ//! 0 to compute K0.qgr.kQ//.

Let P be the exact subcategory of projective objects in gr.kQ/. The inclusion
P ! gr.kQ/ induces a group homomorphism K0.P/ ! K0.gr.kQ//. Since kQ
has finite global dimension (=1) this map is an isomorphism. The indecomposable
projectives in gr.kQ/ are the graded modulesPi ´ .kQ/ei , i 2 Q0, and their twists
Pi .n/, n 2 Z. Let pi denote the class ŒPi � in K0.gr.kQ//. Thus K0.gr.kQ// is a
free ZŒt˙1�-module with basis p1; : : : ; prC1.

Let Vi , i 2 Q0, be the 1-dimensional simple graded left kQ-module supported
at i and concentrated in degree 0. The Vi s belong to fdim.kQ/. Every object in
fdim.kQ/ has a composition series whose factors are isomorphic to twists of the Vi s.
By dévissage K0.fdim.kQ// is the free ZŒt˙1�-module with basis the classes ŒVi �,
1 
 i 
 r C 1. Let vi be the image of ŒVi � in K0.gr.kQ// under the natural map
K0.fdim.kQ//! K0.gr.kQ/. The localization sequence tells us thatK0.qgr.kQ//
is isomorphic as a ZŒt˙1�-module to K0.gr.kQ// modulo the submodule generated
by v1; : : : ; vrC1.

The minimal projective resolution of Vi in gr.kQ/ is

0! L
a2h�1.i/

Ps.a/.�1/ .�a/��! Pi ! Vi ! 0

so
vi D ŒPi � � P

a2h�1.i/

ŒPs.a/.�1/� D pi � t
P

a2h�1.i/

ps.a/:

Hence K0.qgr.kQ// is isomorphic to˚rC1
iD1ZŒt˙1�pi modulo the the relations

pi D t P
a2h�1.i/

ps.a/; 1 
 i 
 r C 1:

These relations arep1 D t .p1C� � �CprC1/ andpi D tpi�1 for i D 2; : : : ; rC1. The
relations imply thatpi D t i�1p1 for i D 2; : : : ; rC1 andp1 D t .1CtC� � �Ct r/p1.

HenceK0.qgr.kQ// is isomorphic to the rank one free module ZŒt˙1�p1 modulo
the relation p1 D t .1 C t C � � � C t r/p1. Since kQ D P1 ˚ � � � ˚ PrC1, ŒO� D
.1C t C � � �C t r/p1 D t�1p1 soK0.qgr.kQ// is also generated by ŒO� as a ZŒt˙1�-
module. HenceK0.qgr.kQ// is isomorphic to the rank one free module ZŒt˙1� � ŒO�
modulo the relation ŒO� D t .1C t C � � � C t r/ŒO�. By sending ŒO� to 1 we obtain an
isomorphism

K0.qgr.kQ// Š ZŒt˙1�
.1 � t � � � � � t rC1/

of ZŒt˙1�-modules. It is a tautology that ŒF .�1/� D t ŒF �.
We need a special case of the following result of Frougny and Solomyak.

Theorem 7.9 ([13], Thm. 2). Let f .x/ D xm � a1xm�1 � � � � � am where ai 2 Z
and a1 � a2 � � � � � am > 0. Then
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(1) f .x/ has a unique positive root, ˇ;

(2) ˇ is a Pisot number;

(3)

ZŒˇ�1� \ R�0 D
1S
sD0
fPs

iD�s aiˇi j ai 2 f0; 1; : : : ; Œˇ�gg:

To describe the order structure on K0.qgr.B/ we embed it in .R;C/.

Theorem 7.10. Let ˛ be the unique positive root of xrC1 � xr � � � � � x � 1.
(1) There is an injective group homomorphism K0.qgrB/! R given by ŒO� 7! 1

and ŒO.�n/� 7! ˛n that maps K0.qgrB/ isomorphically to ZŒ˛�.

(2) The image of the positive cone inK0.qgrB/ under the homomorphism in (1) is
RC \ZŒ˛� D ZŒ˛�1� \ RC.

Proof. (1) Since the constant term in the minimal polynomial of ˛ is 1, ZŒ˛� D
ZŒ˛�1�. The minimal polynomial of ˛�1 is 1� t � � � � � t rC1 so there is a Z-algebra
isomorphism

ZŒt˙1�
.1 � t � � � � � t rC1/

! ZŒ˛�; t 7! ˛�1:

Combining this with the description of K0.qgrB/ in Theorem 7.8 gives a ZŒt˙1�-
module isomorphism K0.qgrB/! ZŒ˛� where t acts on ZŒ˛� as multiplication by
˛�1.

(2) If ai 2 N, then ai˛i $ ŒO.�i/˚ai � under the isomorphism in (1) so Theo-
rem 7.9 implies that given � 2 ZŒ˛� \ R�0 there is an object F 2 qgrB such that
the isomorphism in (1) sends ŒF � to � .

It remains to show that if F 2 qgrB , then ŒF � 2 ZŒ˛� \ RC.2 Since qgrB is
equivalent to modS , K0.qgrB/ Š K0.S/ D lim�!K0.Sn/. We will write elements

of ZrC1 as column vectors.
From now on we consider the directed system K0.Sr/ ! K0.SrC1/ ! � � � .

Hence in all that follows n is assumed to be � r .
The algebra Sn is a product of .rC1/matrix algebras of sizes bn; bn�1; : : : ; bn�r

so we make the identification

K0.Sn/ D ZrC1

with K0.Sn/�0 D NrC1 and order unit ŒSn� D .bn; : : : ; bn�r/>.

2At present we are unable to prove this without using the equivalence qgrB � modS but we hope to
find an alternative proof that relies only on arguments involving B and kQ.
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It follows from the Bratteli diagram for the inclusion �n W Sn ! SnC1 in Propo-
sition 5.1 that the induced map K0.Sn/! K0.SnC1/ is left multiplication by

M ´

0
BBBBB@

1 1 1 : : : 1

1 0 0 : : : 0

0 1 0 : : : 0
:::

:::

0 0 0 : : : 1 0

1
CCCCCA : (7.2)

(One can check that M � ŒSn� D M.bn; : : : ; bn�r/> D ŒSnC1� because bnC1 D
bn C � � � C bn�r .) The directed system K0.Sr/ ! K0.SrC1/ ! � � � is therefore
isomorphic to

ZrC1 M�! ZrC1 M�! ZrC1 M�! � � � :
The vector v D .v0; : : : ; vr/ where

vr D ˛r ;
vr�1 D ˛r C ˛r�1;
:::

:::

v1 D ˛r C ˛r�1 C � � � C ˛;
v0 D ˛rC1;

is a left ˛-eigenvector for M . Since vM D ˛v, the diagram

ZrC1

v

��

M �� ZrC1

˛�1v

��

M �� ZrC1

˛�2v

��

M �� : : :

R R R : : :

(7.3)

commutes. Since the entries of v are positive, the vertical maps ˛�nv� send NrC1 to
R�0. HenceK0.S/�0 � R�0. Since the entries of ˛�nv belong to ZŒ˛�, the vertical
maps send NrC1 to ZŒ˛�. Hence K0.S/�0 � R�0 \ZŒ˛�.

7.6.1. Remark. The order unit in K0.S/ D ZŒ˛� is the image of

ŒSr � D .2r ; : : : ; 2; 1/>

under the left-most vertical map in (7.3). One can replace v by a non-zero scalar
multiple of itself in the vertical maps of (7.3) to make the order unit 1.
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7.7. Let M 2 qgrB . There is an exact sequence

0!L
i

O.�i/ci !L
i

O.�i/di !M! 0

for a suitable set of non-negative integers ci and di only finitely many of which are
non-zero. We define

pM.t/´
P
i

.di � ci /t i :

Under the isomorphism K0.qgrB/ ! ZŒ˛�, ŒO� 7! 1, ŒO.�1/� 7! ˛, the image of
ŒM� in ZŒ˛� is pM.˛

�1/.

Corollary 7.11. If M and N belong to qgrB and pM.˛
�1/ 
 pN .˛

�1/, then
N ŠM ˚ F for some F 2 qgrB .

Proof. The hypothesis implies that ŒN � � ŒM� � 0 so Theorem 7.10 implies that
ŒN � � ŒM� D ŒF � for some F 2 qgrB . Hence ŒM ˚ F � D ŒN � and therefore
M˚F ˚G Š N ˚G for some G 2 qgrG by the definition ofK0. But multi-matrix
algebras are unit regular rings so S , being a direct limit of such, is also unit-regular.
By [15], Thm. 4.5, we can cancel G to obtain the claimed result.

8. The perspective of noncommutative algebraic geometry

In the language of noncommutative algebraic geometry, ProjncB , which is defined
implicitly by declaring that Qcoh.ProjncB/ ´ QGrB , is an affine nc-scheme be-
cause its category of “quasi-coherent sheaves” is equivalent to a category of modules
over a ring.

8.1. Skyscraper sheaves associated to elements of X. As in Section 6.2, we write
X for the set of sequences z0z1 : : : of 0’s and 1’s having at most r consecutive 1’s.
Elements z and z0 in X are equivalent, denoted by z � z0, if z�n D z0�n for some n.

Given z 2 X, letMz be the point module defined in Section 1.5 and let Oz beMz

viewed as an object in QGrB; i.e., Oz D ˇ�Mz .

Proposition 8.1. Let z; z0 2 X. Then Oz Š Oz0 if and only if z � z0.

Proof. See Section 1.5.

Proposition 8.2. Suppose that k D F2. IfM is a point module for B , then ˇ�M Š
Oz for some z 2 X.

Proof. Let e0; e1; : : : be a homogeneous basis forM with deg ei D i . Define zi 2 F2
byy �ei D zieiC1. Then z0z1z2 : : : is a sequence of 0’s and 1’s and every 1 is followed
by a 0 because y2 D 0.
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Proposition 8.1, sets up a bijection between the equivalence classes of the Penrose
tilings and certain “points” on ProjncB .

Proposition 8.3. If k 6Š F2 there is a point moduleM such that ˇ�M is not isomor-
phic to any Oz , z 2 P .

Proof. Let a 2 k � f0; 1g. Let 
 D 
0
1
2 : : : be a sequence in which each 
i
belongs to f0; 1; ag with the restriction that if 
i ¤ 0, then 
iC1 D 0. Let M be
the graded vector space with basis e0; e1; : : : and deg ei D i . Make M a graded left
B-module by declaring that

x � ei D eiC1; y � ei ´ 
ieiC1:

If a appears infinitely often in 
, then ˇ�M is not isomorphic to any Oz .

8.2. Projnc B is a “smooth noncommutative curve”. Let X be an irreducible
algebraic variety. Then X is a smooth algebraic curve if and only if Ext2QcohX is
identically zero and Ext1QcohX is not.

Given that fact, the next result suggests that ProjncB might be thought of as a
smooth noncommutative curve, albeit of a strange kind.

Proposition 8.4. Ext2QGrB is identically zero and Ext1QGrB is not.

Proof. Since S is a direct limit of semisimple k-algebras, the main result in [5] tells
us that the global homological dimension of S is at most 1, i.e., Ext2S is identically
zero. Since S is not a semisimple ring it does not have global dimension 0.

8.3. “Dense points” in Projnc B. The space of Penrose tilings modulo isometry is
a coarse topological space, i.e., every point in it is dense.

In Section 1.6 (see Proposition 1.4), we observed that Ext1QGrB.Oz;Oz0/ ¤ 0 for
all z; z0 2 X. We now explain why this can be interpreted as a “density” result.

First, we think of the isomorphism classes of the simple objects in QGrB as
playing the role of “points” on the noncommutative curve ProjncB .

Let P be a finite topological space satisfying the T0 condition. The category of
such topological spaces is equivalent to the category of finite posets. We make P a
poset by declaring that x 
 y if x 2 Sfyg.

Let I.P / be the incidence algebra of P . The isomorphism classes of simple left
I.P /-modules are in bijection with the points of P . If Vx and Vy are simple left
modules associated to distinct points x; y 2 P , then Ext1I.P /.Vx; Vy/ ¤ 0 if and only
if y covers x which means that x < y and if x 
 z 
 y, then z 2 fx; yg. (Ladkani’s
result [21], Lemma 2.7, that the category of sheaves of finite dimensional vector
spaces on P is equivalent to the category of finite dimensional right I.P /-modules
persuades the author that I.P / is a “coordinate ring” of the topological space P .)
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In particular,
Ext1I.P /.Vx; Vy/ ¤ 0 H) x 2 Sfyg:

Conversely, if x 2 Sfyg, there is a sequence of points x D x0 < x1 < � � � < xn D y

such that Ext1I.P /.Vxi
; VxiC1

/ ¤ 0 for all i .
Since Oz depends only on the equivalence class Œz� of z in X=�, this result about

incidence algebras suggests we might interpret the fact that Ext1QGrB.Oz;Oz0/ ¤ 0

for all z; z0 2 X as saying that “every Œz� is in the closure of every fŒz0�g”, i.e., every
point in X=� is dense. As we said, this is indeed the case.

Appendix A: Ratio set

We have used Grünbaum and Shepard’s book [16] as our standard reference for tilings.
We have also found the books by Senechal [28] and Sadun [27] helpful. This appendix
follows [16], Ch. 10, quite closely.

A.1. Tilings of the plane. For our purposes the following definitions suffice. A
tiling T D fT1; T2; : : : g of the plane is a countable family of closed subsets Ti � R2

such that

(1) the union of the Ti s is R2;

(2) each Ti is a polygon, not necessarily convex, and is the closure of its interior;

(3) the interiors of the Ti s are pairwise disjoint;

(4) if Ti \ Tj ¤ ¿, then Ti \ Tj is an edge of Ti and an edge of Tj .

Let T D fT1; T2; : : : g and T 0 D fT 0
1; T

0
2; : : : g be tilings of the plane. We say T and

T 0 are congruent if there is an isometry � of the plane such that f�T1; �T2; : : : g D
fT 0
1; T

0
2; : : : g. We say T and T 0 are equal or the same if there is a positive real number


 such that f
T1; 
T2; : : : g is congruent to T 0.
An isometry � of the plane is called a symmetry of T if

f�T1; �T2; : : : g D fT1; T2; : : : g:

A.2. Prototiles. A set of closed polygons p1; : : : ; pn is called a set of prototiles for
the tiling T D fT1; T2; : : : g if every Ti is congruent, directly or by reflection, to
some pj .

A.3. Kites and darts. Let � D 1Cp
5

2
and � D �

5
. A quadrangle with sides of

length 1; 1; �; � and interior angles 2� , 2� , 2� , 4� is called a kite. A quadrangle with
sides of length 1; 1; �; � and interior angles � , � , 2� , 6� is called a dart. We color the
vertices of the kite and dart as follows: on the kite the vertex at the angle 4� and the
vertex opposite it are colored black and the other two vertices are colored white; on
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the dart the vertex at the angle 6� and the vertex opposite it are colored white and the
other two vertices are colored black. See the picture on [16], p. 539.

A tiling T of the plane is called a Penrose tiling if

(1) the kite and dart form a set of prototiles for T ;

(2) whenever a point is a vertex of more than one tile it is the same color on each of
those tiles.

Condition (2) is called a matching rule.

A.4. A-tiles. Cutting a kite along its axis of symmetry produces two congruent
isoceles triangles that have sides of length 1, � , � and acute interior angles. Cutting
a dart along its axis of symmetry produces two congruent isoceles triangles having
sides of length 1, 1, � and an obtuse interior angle. The area of a triangle coming from
a kite is bigger than that of a triangle coming from a dart. We call the two triangles
A-tiles and label the larger one with the letterA and the smaller with the letter a. The
vertices of the A-tiles are colored by inheriting the colors of the vertices on the kite
and dart.

Given a Penrose tiling T we can cut each kite and dart in it along its axis to
produce a new tiling of the plane by triangles. The triangles A and a form a set of
prototiles for the new tiling. We call the new tiling an A-tiling.

We can reverse this process provided we impose a matching rule for theA-tiles that
involves matching the color of common vertices and matching certain orientations
of the sides of the triangles [16], pp. 538–540. A tiling T 0 for which the two A-tiles
form a set of prototiles is called an A-tiling if the matching rules are satisfied. Such
an A-tiling T 0 can be converted to a Penrose tiling by kites and darts if we delete
all edges that join vertices of the same color or, equivalently, by “amalgamating the
A-tiles in mirror image pairs” [16], p. 540.

A.5. B-tiles. We can form an isoceles triangle with sides of length � , � , 1C � by
placing anA-triangle next to an a-triangle in such a way that coincident vertices have
the same color. We label this new triangle with the letter B . The color of the vertices
of B and the orientation of its sides are inherited from those of A and a.

Given an A-tiling T we can delete certain edges so as to amalgamate adjacent
A- and a-tiles in a unique way to form B-triangles. All the a-tiles disappear in this
process so we obtain a new tiling having B and A as prototiles. We now replace the
label A by the letter b so the new tiling has B and b as prototiles. The triangles B
and b are called B-tiles and we call the new tiling a B-tiling. The area of B is bigger
than that of b.

This process of passing from an A-tiling to a B-tiling is called composition.
A similar composition process may be applied to aB-tiling to produce anA-tiling:

one deletes edges so as to amalgamate adjacent B- and b-tiles, subject to matching
rules, to form a triangle congruent to �A by which we mean a copy of A scaled up
by a factor of � . Every b tile disappears in this process and one now has a tiling with
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prototiles �A and B D �a We shrink the �A-tiling by a factor of � to get a genuine
A-tiling. If we wish to we can then delete all edges that join vertices of the same
color to produce a genuine Penrose tiling by kites and darts.

A.6. Penrose sequences. Following [16], p. 568, we now explain how to assign to
each Penrose tiling a sequence z0z1 : : : of 0’s and 1’s.

Let T be a Penrose tiling and p 2 R2 a point that does not lie on the edge or axis
of symmetry of any kite or dart. Cut each kite and dart along its axis of symmetry
to form an A-tiling. We set z0 D 0 if p is in an A-tile and set z0 D 1 if it is in
an a-tile. We now compose to obtain a B-tiling and set z1 D 0 if p is in a B-tile
and set z1 D 1 if it is in a b-tile. We now apply the composition process to this
B-tiling to get a �A tiling, shrink by a factor of � , and determine z2 in the same way
we determined z0. Notice that z1 D 0 if z0 D 1 because all a-tiles are absorbed
into B-tiles when composing an A-tiling to get a B-tiling. Likewise, z2 D 0 if
z1 D 1 because in composing a B-tiling to get an A-tiling all b-tiles are absorbed
into �A-tiles.

We repeat this ad infinitum to produce a sequence z0z1 : : : in which each 1 is
followed by a 0. Every infinite sequence of 0’s and 1’s without adjacent 1’s is obtained
from some Penrose tiling T and point p [16], Thm. 10.5.9. To prove this one must
construct a Penrose tiling from each such sequence; the procedure is explained at
[16], p. 568. Some sequences lead to a tiling that fills up only a half-plane or a sector
with angle �=5; one then fills the whole plane by reflection(s).

The sequence depends on the choice of p. However, if one picks a different point
p0, then after a certain number of compositions p and p0 end up in the same tile
whence the sequence for .T ; p/ is eventually the same as the sequence for .T ; p0/.
In the vernacular, the sequences have the same tail. Conversely, two sequences that
have the same tail correspond to two points in the same tiling.

If � is a symmetry of T the sequences associated to .T ; p/ and .T ; �p/ are the
same. Conversely, if the sequences for .T ; p/ and .T 0; p0/ are identical, then T and
T 0 are the same and p0 is the image of p under some symmetry of T .

Appendix B: Classification of all point modules for Chx; yi=.y2/

B.1. Point module sequences. A point-module sequence for Chx; yi=.y2/ is a
sequence of points a D a0; a1; : : : on the Riemann sphere with the property that if
ai ¤ 1, then aiC1 D 1. Two such sequences a and b are equivalent if there is an
integer n such that ai D bi for all i � n.

B.2. Point modules. IfM D Ce0˚Ce1˚ : : : is a point module for Chx; yi=.y2/
with deg ei D i we associate toM the point-module sequence a.M/ D .a0; a1; : : : /
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defined by

ai D
´
1 if yei D 0;
xei D aiyei if yei ¤ 0.

Conversely, if b is a point-module sequence there is a unique-up-to-isomorphism
point module M such that a.M/ D b.

Proposition B.5. If M and N are point modules, then ˇ�M Š ˇ�N if and only if
a.M/ is equivalent to a.N /.

B.3. Semi-infinite paths. There is a map‰ from the set of point-module sequences
to the set of semi-infinite paths p D p0p1 : : : in the directed graph

0

C
��1 �� 1

1
��

that begin at the vertex labelled 0. If a D a0a1 : : : is a point-module sequence, define
‰.a/ D p0p1 : : : as follows: if ai ¤ 1, then pi is the arrow labelled C; there is
then a unique way to assign arrows labelled1 to the other aj s so that p0p1 : : : is an
infinite path starting at 0.

The fiber of ‰ over a path p0p1 : : : beginning at 0 is a product of copies of C
and f1g. For example, the fiber that contains11121131 : : : is

f1g 	C 	1	C 	 f1g 	 f1g 	C 	 f1g 	 � � � :
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