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Introduction

In the last twenty years, a lot of research appears on Artin–Schelter regular graded
algebras arising from noncommutative projective algebraic geometry, and on Artin-
Schelter regular Hopf algebras/quantum groups. Brown and Zhang proved that a
noetherian Artin–Schelter regular Hopf algebra is rigid Gorenstein [BZ08], which
is called the twisted Calabi–Yau condition in this paper. Such a class of algebras
is called twisted Calabi–Yau algebra (see Definition 1.1). Van den Bergh duality
[VdB98] holds for any twisted Calabi–Yau algebra. A noetherian Hopf algebra is
Artin–Schelter regular if and only if it is twisted Calabi–Yau. In the noetherian con-
nected graded case, an algebra is Artin–Schelter regular if and only if it is graded
twisted Calabi–Yau. Associated to a twisted Calabi–Yau algebra, there is an auto-
morphism, called the Nakayama automorphism in general, which is unique up to an
inner automorphism. A twisted Calabi–Yau algebra is Calabi–Yau in the sense of
Ginzburg [Gin06] if and only if its Nakayama automorphism is inner. Calabi–Yau
algebra is an algebraic structure arising from the geometry of Calabi–Yau manifolds
and mirror symmetry. It has attracted much interest in recent years.

For any finite-dimensional Lie algebra g, Yekutieli constructed the rigid dual-
izing complex of U.g/ [Yek00]. In the terminology now used, in fact he proved
that U.g/ is Calabi–Yau if and only if tr.ad x/ D 0 for all x 2 g. This result is
generalized to a more general situation – the PBW deformations of Koszul Calabi–
Yau algebras [WZ13]. The quantized enveloping algebra of a complex semisimple
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Lie algebra is always Calabi–Yau [Che04]. In [BZ08], Brown and Zhang also de-
scribed the Nakayama automorphism explicitly by using the homological integral
for any noetherian Artin–Schelter regular Hopf algebra. Recently, some people are
interested in quantum homogeneous spaces, which are right coideal subalgebras of
Hopf algebras satisfying some additional conditions. One question is to study when
quantum homogeneous spaces are Artin–Schelter regular or twisted Calabi–Yau. The
first-named and the third-named authors studied the twisted Calabi–Yau property of
the right coideal subalgebras of a quantized enveloping algebra [LW14]. A class of
right coideal subalgebras of a quantized enveloping algebra can be obtained by iter-
ated Ore extensions. This motivates us to study the Nakayama automorphism and the
twisted Calabi–Yau property of Ore extensions in this paper. Ore extensions are non-
commutative analogues of polynomial extensions. If E D AŒxI �; ı� is a graded Ore
extension with � an automorphism andA is Artin–Schelter regular, then so isE. This
means the twisted Calabi–Yau property of a connected graded algebra is preserved
by (graded) Ore extensions. It is natural to ask whether Ore extensions preserve the
twisted Calabi–Yau property in general situations? The answer is positive when � is
an automorphism.

LetE D AŒxI �; ı� be an Ore extension with � an automorphism. There is a short
exact sequence of Ee-modules (see Lemma 2.1)

0! E ˝A ��1

E
��! E ˝A E ��! E ! 0:

Then an Ee-projective resolution of E can be constructed by using an Ae-projective
resolution ofA. In particular, taking the bar complex ofA, the construction is nothing
but the construction given by Guccione–Guccione [GG97]. Using this construction,
we compute the Hochschild cohomologyH�.E;E˝E/ and obtain a family of short
exact sequences (Theorem 2.7).

Theorem 1. LetA be a projective k-algebra andE D AŒxI �; ı� be an Ore extension
with � an automorphism. Suppose that A admits a finitely generated projective
resolution as an Ae-module. Then for any n 2 N,

0! Hn.A;E ˝E/! Hn.A;E ˝E��1

/! HnC1.E;E ˝E/! 0

is an exact sequence of Ee-modules.

We prove that Ore extensions preserve the twisted Calabi–Yau property and de-
scribe the relation between the Nakayama automorphisms ofA andE (Theorem 3.3).

Theorem 2. LetA be a projective k-algebra andE D AŒxI �; ı� be an Ore extension
with � an automorphism. Suppose that A is �-twisted Calabi–Yau of dimension d .
ThenE is twisted Calabi–Yau of dimension d C1, and the Nakayama automorphism
�0 of E satisfies that �0jA D ��1� and �0.x/ D ux C b for some u, b 2 A with u
invertible.
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As an application, we focus on a class ofArtin–Schelter regular algebras of dimen-
sion 5 which were investigated in detail by the second-named and the third-named
authors [WW12]. These algebras may be constructed by iterated Ore extensions and
their Nakayama automorphisms are given explicitly.

The paper is organized as follows. In Section 1, we recall the definitions of
twisted Calabi–Yau algebras and Ore extensions, and fix some notation. In Section 2,
following [GG97], we study Hochschild cohomology on Ore extensions instead of
Hochschild homology. Some exact sequences are obtained and Theorem 1 is proved.
In Section 3, we prove the main result Theorem 2, that is, Ore extensions preserve
the twisted Calabi–Yau property if � is an automorphism. The relation between their
Nakayama automorphisms is also described. In Section 4, the main result is applied to
multi-parameter quantum affine spaces and a class of Artin–Schelter regular algebras
of dimension 5 which can be constructed by iterated Ore extensions.

1. Preliminaries

1.1. Twisted Calabi–Yau algebras. Throughout, k is a unital commutative ring
and all algebras are k-algebras. Unadorned ˝ means ˝k and Hom means Homk.
Suppose thatA is an algebra. LetAop be the opposite algebra ofA andAe D A˝Aop

be the enveloping algebra of A. The term Ae-modules is used for A-A-bimodules.
For any two k-modulesM ,N , let �M;N W M˝N ! N ˝M be the flip map. The

subscript is often omitted if there is no confusion. For any Ae-module M and any
endomorphisms �, � of A, denote by �M � the Ae-module whose ground k-module
is M and the action is given by a �m � b D �.a/m�.b/ for all a; b 2 A and m 2M .
If one of � and � is the identity map, then it is usually omitted.

Suppose that M and N are both Ae-modules. It is easy to see that there are
two Ae-module structures on M ˝ N , one is called the outer structure defined by
.a˝ b/ * .m˝ n/ D am˝ nb, and the other is called the inner structure defined
by .m˝ n/ ) .a ˝ b/ D ma ˝ bn, for any a, b 2 A, m 2 M , n 2 N . Since Ae

is identified with A˝A as a k-module, A˝A endowed with the outer (resp. inner)
structure is nothing but the left (resp. right) regular Ae-module Ae. Hence we often
say Ae has the outer and inner Ae-module structures. In the following definition,
the outer structure on Ae is used when computing the homology Ext�

Ae.A;Ae/. Thus
Ext�

Ae.A;Ae/ admits an Ae-module structure induced by the inner one on Ae.

Definition 1.1. An algebraA is called �-twisted Calabi–Yau of dimension d for some
automorphism � of A and for some integer d � 0 if

(1) A is homologically smooth, that is, as an Ae-module, A has a finitely generated
projective resolution of finite length;

(2) ExtiAe.A;Ae/ Š
´
0; i ¤ d;
A� ; i D d; as Ae-modules.



590 L.-Y. Liu, S.-Q. Wang, and Q.-S. Wu

Sometimes condition (2) is called the twisted Calabi–Yau condition. In this case,
� is called the Nakayama automorphism of A.

The Nakayama automorphism is unique up to an inner automorphism. A �-twisted
Calabi–Yau algebra A is Calabi–Yau in the sense of Ginzburg [Gin06] if and only if
� is an inner automorphism of A.

Graded twisted Calabi–Yau algebras are defined similarly. Condition (1) is equiv-
alent to that A, when viewed as a complex concentrated in degree 0, is a compact
object in the derived category D.Ae/ [Nee01], i.e., the functor HomD.Ae/.A;�/
commutes with arbitrary coproducts.

1.2. Artin–Schelter regular algebras. In this section, k is a field.

Definition 1.2. Suppose that A is an algebra with an augmentation map " W A! k.
Then A is called left Artin–Schelter regular (for short, AS-regular) if

(1) A has finite left global dimension d ,

(2) dimk ExtdA.Ak;AA/ D 1 and ExtiA.Ak;AA/ D 0 for all i ¤ d .

Right AS-regular algebras are defined similarly, and A is called AS-regular if A
is both left and right AS-regular. A noetherian Hopf algebra is AS-regular if and
only if it is twisted Calabi–Yau. One direction is proved in [BZ08], Lemma 5.2 and
Proposition 4.5, where they used the term rigid Gorenstein for twisted Calabi–Yau.
The other direction follows from next lemma, which we can not locate a reference.

Lemma 1.3. Suppose that A is an algebra with an augmentation map " W A! k. If
A is twisted Calabi–Yau, then A is AS-regular.

Proof. Since

k L˝AA� Œ�d� Š k L˝A RHomAe.A;Ae/

Š RHomAe.A;A˝ k/

Š RHomAe.A;Hom.k; A//

Š RHomA.A˝A k; A/

Š RHomA.k; A/;

it follows that dimk ExtdA.Ak;AA/ D 1 and ExtiA.Ak;AA/ D 0 for all i ¤ d . Simi-
larly we can prove that A is also right AS-regular.

For a connected graded algebra A, A is left AS-regular if and only if it is right
AS-regular. By the same argument as in the above lemma, A is AS-regular if A is
twisted Calabi–Yau. On the other hand, if A is noetherian AS-regular, then A has a
rigid dualizing complex [VdB97], which implies that A is twisted Calabi–Yau.
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1.3. Ore extensions. Let A be a k-algebra, � be an endomorphism of A and ı be a
� -derivation (i.e., ı W A! A is a k-linear map such that ı.ab/ D ı.a/b C �.a/ı.b/
for all a; b 2 A). Then � , ı uniquely determine a ring extension E=A satisfying

(1) E is a free left A-module with basis f1; x; x2; : : :g,
(2) For any a 2 A, xa D �.a/x C ı.a/.

The algebra E is denoted by AŒxI �; ı� and is called the Ore extension of A associ-
ated to � and ı. For graded algebras, graded Ore extensions are defined similarly.
However, the Koszul sign convention does not apply in this context.

If � is the identity map, AŒxI �; ı� is often simply written as AŒxI ı�; and if ı D 0,
as AŒxI ��. The polynomial extension AŒx� is a special Ore extension.

If � is an automorphism, then f1; x; x2; : : :g is also a basis for E as a free right
A-module. In this case, Axk �Pk

iD0 xiA and xlA �Pl
jD0Axj for any k, l 2 N.

Let pni be the k-linear map which is the sum of all the compositions �1�2 : : : �n with
�j being � or ı, and � appearing i times in each composition. Then for any a 2 A
and n � 1,

xna D
nP
iD0

pni .a/x
i : (1.1)

Similarly, let qni be the k-linear map which is the sum of all the compositions
�1�2 : : : �n with �j being ��1 or �ı��1, and ��1 appearing i times in each compo-
sition. Then for any a 2 A and n � 1,

axn D
nP
iD0

xiqni .a/: (1.2)

Many ring-theoretic and homological properties are preserved by Ore extensions
under certain conditions. We list some of them as follows.

� If A is an integral domain and � is injective, then E is an integral domain.

� If A is a prime ring and � is an automorphism, then E is a prime ring.

� If A has finite right global dimension and � is an automorphism, then E has
finite right global dimension, in fact,

r: gl: dimA � r: gl: dimE � r: gl: dimAC 1:
� If k is a noetherian ring, A is (strongly) right noetherian and � is an automor-

phism, then E is (strongly) right noetherian.

For the details and other properties of Ore extensions, we refer to [MR01], [GW04],
[ASZ99], etc.

Here are some examples of iterated Ore extensions: multi-parameter quantum
affine n-spaces Oq.kn/, Weyl algebras An.k/, enveloping algebras U.g/ of finite-
dimensional solvable Lie algebras g, the Borel part of quantized enveloping algebras
Uq.g/ of complex semisimple Lie algebras g, and some classes of AS-regular alge-
bras.
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1.4. Notations. We fix some notation about complexes and graded modules.
Suppose that .P�; d / is a chain complex. The l-shift of P�, denoted by P Œl��,

is defined by P Œl�n D Pn�l and dŒl�n D .�1/ldn�l . If .P 0� ; d 0/ is another chain
complex and f W P� ! P 0� is a morphism of complexes, the mapping cone of f ,
denoted by cone.f /, is defined by cone.f /n D Pn�1˚P 0

n and the differential sending
.p; p0/ 2 cone.f /n to .�dn�1.p/; d 0

n.p
0/�fn�1.p//. Dually, suppose that .Q�; d /,

.Q0�; d 0/ are cochain complexes and g W Q� ! Q0� is a morphism of complexes.
The l-shift of Q�, denoted by QŒl��, is defined by QŒl�n D QnCl and dŒl�n D
.�1/ldnCl . The mapping cone, cone.g/, is defined by cone.g/n D QnC1 ˚ Q0n
and the differential sending .q; q0/ 2 cone.g/n to .�dnC1.q/; d 0n.q0/C gnC1.q//.
If f W P� ! P 0� is a morphism ofA-module complexes andAM is anA-module, then
cone.HomA.f;M// Š HomA.cone.f /;M/Œ1�.

For any graded A-module M , the n-shift M.n/ of M is defined by M.n/i D
MnCi .

We mainly refer to [Lod98] for Hochschild homology and cohomology.

2. Hochschild cohomology on Ore extensions

We investigate the Hochschild cohomology on Ore extensions in this section. From
now on, � is always required to be an automorphism.

Lemma 2.1. Let A be an algebra and E D AŒxI �; ı� be an Ore extension. Then the
sequence of Ee-modules

0! E ˝A ��1

E
��! E ˝A E ��! E ! 0 (2.1)

is exact, where �.e ˝ e0/ D ex ˝ e0 � e ˝ xe0 and � is given by multiplication.

Proof. First of all, � is well defined since

�.1˝ ��1.a// D x ˝ ��1.a/ � 1˝ x��1.a/
D x ˝ ��1.a/ � 1˝ ax � 1˝ ı��1.a/
D x��1.a/˝ 1 � a˝ x � ı��1.a/˝ 1
D ax ˝ 1 � a˝ x
D �.a˝ 1/:

Suppose that
Pn
iD0 xi˝ei 2 Ker �. Then

Pn
iD0 xiC1˝ei�

Pn
iD0 xi˝xei D 0.

Note that xnC1 ˝ en is the unique term containing xnC1 as the first tensor factor. It
follows that en D 0 and so

Pn
iD0 xi ˝ ei D 0. Thus � is injective.
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Now suppose that
Pn
iD0 xi ˝ e0

i 2 Ker� with e0
n ¤ 0. Then

nP
iD0

xi ˝ e0
i D 1˝ e0

0 C
nP
iD1

xi ˝ e0
i

D 1˝ e0
0 C

nP
iD1

xi ˝ e0
i �

nP
iD1

xi�1 ˝ xe0
i C

nP
iD1

xi�1 ˝ xe0
i

D 1˝ e0
0 C �.

nP
iD1

xi�1 ˝ e0
i /C

n�1P
iD0

xi ˝ xe0
iC1

D
n�1P
iD0

xi ˝ e00
i .mod Im �/;

where e00
i 2 E and e00

n�1 ¤ 0. By induction on n, we obtain Ker� D Im �.
Therefore, the sequence (2.1) is exact.

Remark 2.2. The graded version of Lemma 2.1 is also true. If deg.x/ D l , the short
exact sequence (2.1) should be modified by

0! E ˝A ��1

E.�l/ ��! E ˝A E ��! E ! 0:

For anyAe-projective resolutionP� ofAwith an augmentation map ",E˝AP�˝A
��1
E and E ˝A P� ˝A E are Ee-projective resolutions of E ˝A ��1

E and E ˝A E
respectively. By the Comparison lemma, � can be lifted to a morphism ofEe-module
complexes from E ˝A P� ˝A ��1

E to E ˝A P� ˝A E, say  . Then cone. / is an
Ee-projective resolution of E via �.idE ˝"˝ idE /.

Now we start to look at the Hochschild cohomology. Let P� be the bar complex
of A,

0! A˝2 b0

 � A˝3 b0

 � � � � b
0

 � A˝nC1 b0

 � A˝nC2 b0

 � � � �
where b0 W A˝nC2 ! A˝nC1 is the map

b0.a0 ˝ � � � ˝ anC1/ D
nP
iD0
.�1/ia0 ˝ � � � ˝ aiaiC1 � � � ˝ anC1:

A lifting map of � is constructed in [GG97] as follows.
The two complexesE˝AP�˝A��1

E andE˝AP�˝AE are .E˝A˝�˝��1
E; b0

1;�/
and .E ˝ A˝� ˝E; b0

0;�/, respectively, where the differentials are

b0
1;n.a0 ˝ � � � ˝ anC1/ D

n�1P
iD0
.�1/ia0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ anC1

C .�1/na0 ˝ � � � ˝ an�1 ˝ ��1.an/anC1;

b0
0;n.a0 ˝ � � � ˝ anC1/ D

nP
iD0
.�1/ia0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ anC1:
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The lifting map f 0
n W E ˝ A˝n ˝ ��1

E ! E ˝ A˝n ˝Egn2N is defined by

 0
n.1˝ a1 ˝ � � � ˝ an ˝ 1/
D x ˝ ��1.a1/˝ � � � ˝ ��1.an/˝ 1 � 1˝ a1 ˝ � � � ˝ an ˝ x
�

nP
jD1

1˝ a1 ˝ � � � ˝ aj�1 ˝ ı��1.aj /˝ ��1.ajC1/˝ � � � ˝ ��1.an/˝ 1:

By the above argument, we have

Lemma 2.3 ([GG97], Propositions 1.1 and 1.2). Let A be an algebra and E D
AŒxI �; ı� be an Ore extension. Then

E ˝ ��1
E

 0

0

��

E ˝ A˝ ��1
E

 0

1

��

b0

1;1�� E ˝ A˝2 ˝ ��1
E

 0

2

��

b0

1;2�� : : :
b0

1;3��

E ˝E E ˝ A˝Eb0

0;1�� E ˝ A˝2 ˝E
b0

0;2�� : : :
b0

0;3��

(2.2)

is a commutative diagram of Ee-modules, and

cone. 0/
��! E ! 0 (2.3)

is an exact sequence. If further, A is flat (resp. projective) over k, then (2.3) is a flat
(resp. projective) resolution of E as an Ee-module.

In the following statements, we sometimes writef .a1˝� � �˝an/ asf .a1; : : : ; an/
for convenience.

LetM be anEe-module. Applying HomE e.�;M/ to (2.2), we have the commu-
tative diagram

Hom.k;M ��1
/
b1;0

�� Hom.A;M ��1
/
b1;1

�� Hom.A˝2;M ��1
/
b1;2

�� � � �

Hom.k;M/

�0

��

b0;0
�� Hom.A;M/

�1

��

b0;1
�� Hom.A˝2;M/

�2

��

b0;2
�� � � � ,

(2.4)
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where the maps are given by, for any f 2 Hom.A˝n;M/, Qf 2 Hom.A˝n;M ��1
/,

b0;n.f /.a1; : : : ; anC1/

D a1f .a2; : : : ; anC1/C
nP
iD1
.�1/if .a1; : : : ; aiaiC1; : : : ; anC1/

C .�1/nC1f .a1; : : : ; an/anC1;
b1;n. Qf /.a1; : : : ; anC1/

D a1 Qf .a1; : : : ; anC1/C
nP
iD1
.�1/i Qf .a1; : : : ; aiaiC1; : : : ; anC1/

C .�1/nC1 Qf .a1; : : : ; an/��1.anC1/;
�n.f /.a1; : : : ; an/

D xf .��1.a1/; : : : ; ��1.an// � f .a1; : : : ; an/x
�

nP
jD1

f .a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//:

Obviously, when M is viewed as an Ae-module, the two rows in the diagram
(2.4) are the Hochschild complexes C �.A;M ��1

/ and C �.A;M/. In general, for
any Ae-moduleM , the differentials of C �.A;M/ and C �.A;M ��1

/ are denoted by
b and b��1 , respectively, if there is no confusion. On the other hand, by Lemma 2.3,
we can compute Hn.E;M/ by using cone. 0/ or cone.�/.

Lemma 2.4. LetA be a projective k-algebra andE D AŒxI �; ı� be an Ore extension
and letM be an Ee-module. For any n 2 N,Hn.E;M/ Š Hn�1.cone.�//.

Proof. By (2.3) and (2.4),

Hn.E;M/ D Hn.HomE e.cone. 0/;M//

Š Hn.cone.�/Œ�1�/
D Hn�1.cone.�//:

Now let M D E ˝E. By the definition of mapping cones, there is a short exact
sequence of Ee-module complexes

0! C �.A;E ˝E��1

/! cone.�/! C �.A;E ˝E/Œ1�! 0;

where the Ee-module structure on each complex is induced by the inner structure on
E ˝E. It follows that

� � � ! Hn�1.C �.A;E ˝E��1

//! Hn�1.cone.�//! Hn�1.C �.A;E ˝E/Œ1�/
@�! Hn.C �.A;E ˝E��1

//! Hn.cone.�//! Hn.C �.A;E ˝E/Œ1�/! � � �
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is an exact sequence of Ee-modules. By Lemma 2.4, the above sequence becomes

� � � ! Hn�1.A;E ˝E��1

/! Hn.E;E ˝E/! Hn.A;E ˝E/
@�! Hn.A;E ˝E��1

/! HnC1.E;E ˝E/! HnC1.A;E ˝E/! � � � ;
(2.5)

where the connecting homomorphism @ D Hn.�/.
Since, asAe-modules,E˝E Š A˝A˝kŒx�˝2; axl˝xkb 7! a˝b˝xl˝xk ,

and similarly

E ˝E��1 Š A˝ A��1 ˝ kŒx�˝2 Š A˝ �A˝ kŒx�˝2;

there exist two canonical morphisms of k-module complexes

C �.A;A˝ A��1

/˝ kŒx�˝2 ! C �.A;E ˝E��1

/;

C �.A;A˝ A/˝ kŒx�˝2 ! C �.A;E ˝E/:

where the differentials of the left two complexes are b��1 ˝ id˝2, b˝ id˝2, respec-
tively.

We hope to equip the left two complexes with suitable Ee-module structures
such that the above are morphisms of Ee-module complexes. To this end, for any
Qf 2 C n.A;A˝ A��1

/, define

x � . Qf ˝ xl ˝ xk/ D Qf ˝ xl˝ xkC1 for all k; l 2 N;

a � . Qf ˝ xl ˝ xk/ D
kP
iD0

qki .a/ � Qf ˝ xl ˝ xi for all a 2 A;

. Qf ˝ xl ˝ xk/ � x D Qf ˝ xlC1 ˝ xk;

. Qf ˝ xl ˝ xk/ � a D
lP
iD0
Qf � pli .a/˝ xi ˝ xk;

where pli and qki are defined in (1.1) and (1.2) respectively, the actions qki .a/ � Qf and
Qf � pli .a/ are induced from the inner structure on A˝ A��1

.

This makesC �.A;A˝A��1
/˝kŒx�˝2 be a complex ofEe-modules and similarly

for C �.A;A˝ A/˝ kŒx�˝2.

Lemma 2.5. Suppose that A is a flat k-algebra and E D AŒxI �; ı� is an Ore
extension. Then there exists a morphism of Ee-module complexes

	 W C �.A;A˝ A/˝ kŒx�˝2 ! C �.A;A˝ A��1

/˝ kŒx�˝2
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such that the diagram

C �.A;A˝ A��1
/˝ kŒx�˝2 �� C �.A;E ˝E��1

/

C �.A;A˝ A/˝ kŒx�˝2

�

��

�� C �.A;E ˝E/
�

��

(2.6)

is commutative.

Proof. For any y 2 A˝A��1
, we use Sweedler’s notation y DP

y0˝y00. For any
f ˝ xl ˝ xk 2 C n.A;A˝ A/˝ kŒx�˝2, let

Œf; xl ˝ xk� W .a1; : : : ; an/ 7!P
f .a1; : : : ; an/

0xl ˝ xkf .a1; : : : ; an/00
be the corresponding element in C n.A;E ˝E/. Then

�n.Œf; xl ˝ xk�/.a1; : : : ; an/
D x.Œf; xl ˝ xk�.��1.a1/; : : : ; ��1.an/// � .Œf; xl ˝ xk�.a1; : : : ; an//x
�

nP
jD1

Œf; xl ˝ xk�.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//

DP
xf .��1.a1/; : : : ; ��1.an//0xl ˝ xkf .��1.a1/; : : : ; ��1.an//00

�
X

f .a1; : : : ; an/
0xl ˝ xkf .a1; : : : ; an/00x

�
nX

jD1
Œf; xl ˝ xk�.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//

DP
�.f .��1.a1/; : : : ; ��1.an//0/xlC1 ˝ xkf .��1.a1/; : : : ; ��1.an//00

CP
ı.f .��1.a1/; : : : ; ��1.an//0/xl ˝ xkf .��1.a1/; : : : ; ��1.an//00

�P
f .a1; : : : ; an/

0xl ˝ xkC1��1.f .a1; : : : ; an/00/
CP

f .a1; : : : ; an/
0xl ˝ xkı��1.f .a1; : : : ; an/00/

�Pn
jD1Œf; xl ˝ xk�.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//

D Œ.� ˝ id/f .��1/˝n; xlC1 ˝ xk�.a1; : : : ; an/
� Œ.id˝��1/f; xl ˝ xkC1�.a1; : : : ; an/
C Œ.ı ˝ id/f .��1/˝n; xl ˝ xk�.a1; : : : ; an/
C Œ.id˝ı��1/f; xl ˝ xk�.a1; : : : ; an/
�

nP
jD1

Œf .id˝j�1˝ı��1 ˝ .��1/˝n�j /; xl ˝ xk�.a1; : : : ; an/:

Thus 	 can be defined as follows, so that the diagram (2.6) is commutative. For
any n 2 N and f 2 C n.A;A˝ A/,
	n.f ˝ xl ˝ xk/ D f1 ˝ xlC1 ˝ xk � f2 ˝ xl ˝ xkC1 C f3 ˝ xl ˝ xk (2.7)
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with

f1´ .� ˝ id/f .��1/˝n (2.8)

f2´ .id˝��1/f (2.9)

f3´ .ı ˝ id/f .��1/˝n C .id˝ı��1/f �
nP

jD1
f .id˝j�1˝ı��1 ˝ .��1/˝n�j /:

(2.10)

It remains to check that 	n is Ee-linear for all n. In fact, it is obvious that
	n.x � .f ˝ xl ˝ xk/ � x/ D x � 	n.f ˝ xl ˝ xk/ � x. Thus it suffices to show

	n.a � .f ˝ 1˝ 1// D a � 	n.f ˝ 1˝ 1/; (2.11)

	n..f ˝ 1˝ 1/ � a/ D 	n.f ˝ 1˝ 1/ � a: (2.12)

By the definition of 	,

	n.a � .f ˝ 1˝ 1// D 	n.a � f ˝ 1˝ 1/
D .a � f /1 ˝ x ˝ 1 � .a � f /2 ˝ 1˝ x C .a � f /3 ˝ 1˝ 1;

and

a � 	n.f ˝ 1˝ 1/ D a � .f1 ˝ x ˝ 1 � f2 ˝ 1˝ x C f3 ˝ 1˝ 1/
D a � f1 ˝ x ˝ 1 � ��1.a/ � f2 ˝ 1˝ x
C ı��1.a/ � f2 ˝ 1˝ 1C a � f3 ˝ 1˝ 1

D a � f1 ˝ x ˝ 1 � ��1.a/ � f2 ˝ 1˝ x
C .ı��1.a/ � f2 C a � f3/˝ 1˝ 1:

It is easy to verify that .a � f /1 D a � f1, .a � f /2 D ��1.a/ � f2 and

.a � f /3.a1; : : : ; an/
D .ı ˝ id/.a � f /.��1.a1/; : : : ; ��1.an//C .id˝ı��1/.a � f /.a1; : : : ; an/
�

nP
jD1

.a � f /.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//

DP
ı.f .��1.a1/; : : : ; ��1.an//0/˝ af .��1.a1/; : : : ; ��1.an//00

CP
f .a1; : : : ; an/

0 ˝ ı��1.af .a1; : : : ; an/00/
�Pn

jD1.a � f /.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//
DP

ı.f .��1.a1/; : : : ; ��1.an//0/˝ af .��1.a1/; : : : ; ��1.an//00

CP
f .a1; : : : ; an/

0 ˝ ı��1.a/��1.f .a1; : : : ; an/00/
CP

f .a1; : : : ; an/
0 ˝ aı��1.f .a1; : : : ; an/00/

�Pn
jD1.a � f /.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//

D a � .ı ˝ id/f .��1.a1/; : : : ; ��1.an//
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C ı��1.a/ � .id˝��1/f .a1; : : : ; an/
C a � .id˝ı��1/f .a1; : : : ; an/

�
nP

jD1
.a � f /.a1; : : : ; aj�1; ı��1.aj /; ��1.ajC1/; : : : ; ��1.an//

D .ı��1.a/ � f2 C a � f3/.a1 : : : ; an/:
Thus (2.11) holds and (2.12) can be checked in a similar way. Therefore, 	 is

constructed as desired.

Lemma 2.6. Suppose that A is a flat k-algebra and E D AŒxI �; ı� is an Ore
extension. Let f 2 C n.A;A˝ A/ (n 2 N) and f1, f2, f3 be given by (2.8), (2.9),
(2.10). The following are equivalent:

(1) f is a cocycle (resp. coboundary) in C n.A;A˝ A/,
(2) f1 is a cocycle (resp. coboundary) in C n.A;A˝ A��1

/,

(3) f2 is a cocycle (resp. coboundary) in C n.A;A˝ A��1
/.

If the above conditions are satisfied, f3 is also a cocycle (resp. coboundary) in
C n.A;A˝ A��1

/.

Proof. Take l D k D 1 in (2.7), then

	nC1.bf ˝ 1˝ 1/ D .bf /1 ˝ x ˝ 1 � .bf /2 ˝ 1˝ x C .bf /3 ˝ 1˝ 1
D b��1f1 ˝ x ˝ 1 � b��1f2 ˝ 1˝ x C b��1f3 ˝ 1˝ 1:

It follows that

.bf /1 D .� ˝ id/.bf /.��1/˝nC1 D b��1f1; .bf /2 D .id˝ ��1/.bf / D b��1f2

and .bf /3 D b��1f3.
So f is a cocycle if and only if f1 is a cocycle, if and only if f2 is a cocycle. If

any one of f , f1 and f2 is a cocycle, then f3 is also a cocycle.
If f is a coboundary, say f D bg, then f1 D .� ˝ id/.bg/.��1/˝n D b��1g1,

f2 D b��1g2 and f3 D b��1g3. Thus f1, f2 and f3 are all coboundaries.
If either f1 D .� ˝ id/f .��1/˝n or f2 D .id˝��1/f is a coboundary, then f

is a coboundary.

Theorem 2.7. Let A be a projective k-algebra and E D AŒxI �; ı� be an Ore ex-
tension. Suppose that A admits a finitely generated projective resolution as an Ae-
module. Then for any n 2 N,

0! Hn.A;E ˝E/ @�! Hn.A;E ˝E��1

/! HnC1.E;E ˝E/! 0

is an exact sequence of Ee-modules.
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Proof. Since A admits a finitely generated projective resolution as an Ae-module,
the two horizontal arrows in (2.6) are quasi-isomorphisms of Ee-module complexes.
Thus the sequence (2.5) becomes

� � � ! Hn.A;A˝ A/˝ kŒx�˝2
Q@�! Hn.A;A˝ A��1

/˝ kŒx�˝2

! HnC1.E;E ˝E/! � � � ;

where Q@ is induced by @ and Q@ D Hn.	/.
It is sufficient to show Q@ is injective.
Suppose that

P
.l;k/ f

l;k˝xl ˝xk is a cocycle in C n.A;A˝A/˝kŒx�˝2 such

that Q@.P.l;k/ f
l;k ˝ xl ˝ xk C Im.bn�1 ˝ id˝2// D 0. Then

	n.
P
.l;k/

f l;k ˝ xl ˝ xk/ D P
.l;k/

f
l;k
1 ˝ xlC1 ˝ xk � P

.l;k/

f
l;k
2 ˝ xl ˝ xkC1

C P
.l;k/

f
l;k
3 ˝ xl ˝ xk

2 Im.bn�1
��1 ˝ id˝2/:

(2.13)

Endow N2 with the lexicographical order from right to left, that is, .a; b/ > .c; d/ if
b > d or (b D d , a > c). So the set consisting of all pairs .l; k/ such that f l;k ¤ 0
is a totally ordered set with respect to the order. Pick the greatest index .l0; k0/ and
observe that f l0;k0

2 ˝xl0˝xk0C1 is the unique term in (2.13) containing xl0˝xk0C1

as its tensor factor. Therefore, f l0;k0

2 is a coboundary and so is f l0;k0 . It follows
that Q@ is injective.

3. Ore extensions preserve the twisted Calabi–Yau property

In this section, we will show that the twisted Calabi–Yau property is preserved by Ore
extensions. First of all, recall the short exact sequence (2.1). If A admits a finitely
generated Ae-projective resolution of finite length, say P�, and

 W E ˝A P� ˝A ��1

E ! E ˝A P� ˝A E
is a morphism lifting �, then cone. / is a bounded complex of finitely generated
Ee-projective modules. Thus the following proposition is concluded immediately.

Proposition 3.1. Let A be an algebra and E D AŒxI �; ı� be an Ore extension. If A
is homologically smooth, then so is E.

Next, we consider the cohomology H�.E;E ˝E/.
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Proposition 3.2. Let A be a projective k-algebra and E D AŒxI �; ı� be an Ore
extension. Suppose that

(1) A admits a finitely generated projective resolution as an Ae-module,

(2) H i .A;A˝ A/ D 0 unless i D d for some d 2 N.

ThenH i .E;E ˝E/ D 0 unless i D d C 1.
Let!,!0 and
 be the cohomology groupsHd .A;A˝A/,Hd .A;A˝A��1

/ and
HdC1.E;E ˝ E/, respectively. Then 
 Š !0 ˝ kŒx� and the Ee-module structure
on !0 ˝ kŒx� is given as follows, for any a 2 A, Œ Qf � 2 !0, k 2 N,

a F .Œ Qf �˝ xk/ D
kP
iD0

qki .a/Œ
Qf �˝ xi ; (3.1)

x F .Œ Qf �˝ xk/ D Œ Qf �˝ xkC1; (3.2)

.Œ Qf �˝ xk/ G a D Œ Qf �a˝ xk; (3.3)

.Œ Qf �˝ xk/ G x D Œf2�˝ xkC1 � Œf3�˝ xk; (3.4)

where f D .��1 ˝ id/ Qf .�˝d /, f2 and f3 are given by (2.9) and (2.10).

Proof. SinceH i .A;A˝A��1
/ Š H i .A;A˝�A/, by Theorem 2.7,H i .E;E˝E/ D

0 for all i ¤ d C 1. And as Ee-modules,

Hd .A;E ˝E/ Š ! ˝ kŒx�˝2; Hd .A;E ˝E��1

/ Š !0 ˝ kŒx�˝2;

where the Ee-module structure on !0 ˝ kŒx�˝2 is given by

x � .Œ Qf �˝ xl ˝ xk/ D Œ Qf �˝ xl ˝ xkC1 for all Œ Qf � 2 !0; k; l 2 N; (3.5)

a � .Œ Qf �˝ xl ˝ xk/ D
kP
iD0

qki .a/Œ
Qf �˝ xl ˝ xi for all a 2 A; (3.6)

.Œ Qf �˝ xl ˝ xk/ � x D Œ Qf �˝ xlC1 ˝ xk; (3.7)

.Œ Qf �˝ xl ˝ xk/ � a D
lP
iD0
Œ Qf �pli .a/˝ xi ˝ xk; (3.8)

and the Ee-module structure on ! ˝ kŒx�˝2 is given similarly. By the proof of
Theorem 2.7,

0! ! ˝ kŒx�˝2
Q@�! !0 ˝ kŒx�˝2 ! 
! 0

is exact.
To show 
 Š !0 ˝ kŒx�, it suffices to show that !0 ˝ kŒx� is the cokernel of Q@.
Now, for any cocycle Qf 2 C d .A;A˝A��1

/, let f D .��1˝ id/ Qf .�˝d /. Then,
by the definition of 	, f1 D Qf and

Qf ˝ xlC1 ˝ xk D f2 ˝ xl ˝ xkC1 � f3 ˝ xl ˝ xk .mod Im 	d /: (3.9)
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By Lemma 2.6, f2, f3 are also cocycles. If, in particular, Qf is a coboundary, then so
are f2, f3, and vice versa. It follows that for any l , k 2 N,

Qf ˝ xl ˝ xk D
lP

jD0
gj ˝ 1˝ xjCk .mod Im 	d / (3.10)

for some cocycles gj in C d .A;A˝ A��1
/, and Qf is a coboundary if and only if all

of the gj ’s are coboundaries.
Obviously, f D 0 if and only if f1 D 0. It follows from (2.13) that

P
j gj ˝

1˝ xj 2 Im 	d if and only if gj D 0 for all j . This implies that the cocycles gj in
(3.10) are unique. Hence there exists a bijection

ˆ1 W .!0 ˝ kŒx�˝2/
ı

Im Q@! !0 ˝ kŒx�

Œ Qf �˝ xl ˝ xk C Im Q@ 7�!
lX

jD0
Œgj �˝ xjCk :

Therefore, 
 Š !0 ˝ kŒx�. It follows from (3.5), (3.6), (3.8) that the induced
Ee-module structure on !0 ˝ kŒx� satisfies (3.1), (3.2), (3.3). By (3.9),

ˆ1.Œf1�˝ x ˝ 1C Im Q@/ D Œf2�˝ x � Œf3�˝ 1: (3.11)

Then it follows from (3.2) and (3.7) that .Œ Qf �˝ xk/G x D Œf2�˝ xkC1 � Œf3�˝ xk ,
i.e., (3.4) holds.

Theorem 3.3. Let A be a projective k-algebra and E D AŒxI �; ı� be an Ore ex-
tension. Suppose that A is �-twisted Calabi–Yau of dimension d . Then E is twisted
Calabi–Yau of dimension d C 1 and the Nakayama automorphism �0 of E satisfies
that �0jA D ��1� and �0.x/ D ux C b with u, b 2 A and u invertible.

Proof. We still use !, !0 and 
 as above. As !0 Š �! and ! Š A� , we may fix a
bimodule isomorphism ' W !0 ! �A� .

It follows from Proposition 3.2 that
 Š !0˝kŒx� Š �A�˝kŒx�. TheE˝Aop-
module structure on �A� ˝ kŒx� is induced from (3.1), (3.2) and (3.3). Let us prove
�A� ˝ kŒx� Š E��1� as E ˝ Aop-modules.

In fact, the composition

�A� ˝ kŒx�
��1˝id�����! A�

�1�˝ kŒx�
��! kŒx�˝ A��1� ��! E�

�1� ;

denoted by ˆ3, is an isomorphism of E ˝ Aop-modules.
Clearly, ˆ3 is bijective. For any a0; a 2 A and k 2 N,

ˆ3..a
0 ˝ xk/ G a/ D ˆ3.a0�.a/˝ xk/

D xk��1.a0/��1�.a/
D ˆ3.a0 ˝ xk/ � a;
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ˆ3.x F .a0 ˝ xk// D ˆ3.a0 ˝ xkC1/ D xkC1��1.a0/
D xxk��1.a0/
D x �ˆ3.a0 ˝ xk/:

Recall the maps qki W A! A in (1.2) such that axk DPk
iD0 xiqki .a/,

ˆ3.a F .a0 ˝ xk// D ˆ3.
kP
iD0

�.qki .a//a
0 ˝ xi /

D
kP
iD0

xiqki .a/�
�1.a0/ D axk��1.a0/

D a �ˆ3.a0 ˝ xk/:

So 
 Š E�
�1� as E ˝ Aop-modules. There exists an endomorphism �0 of E

such that
 Š E�0

as Ee-modules and �0jA D ��1�. In such a way, ˆ3 is indeed an
isomorphism of Ee-modules.

Now we try to decide �0.x/. Let ˆ2 D ' ˝ id W !0 ˝ kŒx�! �A� ˝ kŒx�. Since

!0 Š �A� via ', there exists a cocycle Qf 2 C d .A;A˝ A��1
/ such that

ˆ2ˆ1.Œ Qf �˝ 1˝ 1C Im Q@/ D 1A ˝ 1:
Define f , h 2 C d .A;A ˝ A/ by f D .��1 ˝ id/ Qf .�˝d / and h D .id˝�/ Qf ,
respectively. Clearly, Qf D f1 D h2. Thus f and h are both cocycles. Then

�0.x/ D 1E � x
D ˆ3ˆ2ˆ1.Œ Qf �˝ 1˝ 1C Im Q@/ � x
D ˆ3ˆ2ˆ1.Œ Qf �˝ x ˝ 1C Im Q@/ by (3.7)

D ˆ3ˆ2ˆ1.Œf1�˝ x ˝ 1C Im Q@/
D ˆ3ˆ2.Œf2�˝ x/ �ˆ3ˆ2.Œf3�˝ 1/ by (3.11)

D ˆ3.'.Œf2�/˝ x/ �ˆ3.'.Œf3�/˝ 1/
D x��1'.Œf2�/ � ��1'.Œf3�/
D '.Œf2�/x C ı��1'.Œf2�/ � ��1'.Œf3�/:

Let u D '.Œf2�/ and b D ı��1'.Œf2�/ � ��1'.Œf3�/. Then �0.x/ D ux C b.
On the other hand,

x D x �ˆ3ˆ2ˆ1.Œ Qf �˝ 1˝ 1C Im Q@/ D ˆ3ˆ2ˆ1.Œh2�˝ 1˝ x C Im Q@/
D ˆ3ˆ2ˆ1.Œh1�˝ x ˝ 1C Im Q@/Cˆ3ˆ2ˆ1.Œh3�˝ 1˝ 1C Im Q@/
D ˆ3ˆ2ˆ1.Œh1�˝ 1˝ 1C Im Q@/ � x Cˆ3ˆ2ˆ1.Œh3�˝ 1˝ 1C Im Q@/
D ��1'.Œh1�/ � x C ��1'.Œh3�/:
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Let v D ��1'.Œh1�/, c D ��1'.Œh3�/. Then

x D v � x C c D v.ux C b/C c D vux C vb C c;
which implies vu D 1A and vb C c D 0.

Since �0jA is an automorphism and u is left invertible, x 2 Im �0, namely, �0
is surjective. Suppose that �0.

Pn
iD0 xiai / D 0. Then develop �0.

Pn
iD0 xiai / DPn

iD0.uxC b/i��1�.ai / to the form
Pn
iD0 xia0

i . It is easy to show that the leading
term is xn��n.u/ : : : ��2.u/��1.u/��1�.an/. So the coefficient is zero. Since u is
left invertible and � , � are automorphisms, an D 0. Consequently, �0 is injective.

Finally, we prove that u is also right invertible. In fact, for any a 2 A, xa D
�.a/x C ı.a/. Under the action of �0,

.ux C b/��1�.a/ D u.�.a/x C ı��1�.a//C b��1�.a/
D ��1��.a/.ux C b/C ��1�ı.a/:

Comparing the coefficients of x, we have ��1��.a/u D u�.a/ for any a 2 A. In
particular, let a D ��1��1�.v/ and so u is also right invertible.

Therefore, by Propositions 3.1, 3.2, E is twisted Calabi–Yau of dimension d C 1
and the Nakayama automorphism �0 satisfies the required conditions.

Remark 3.4. By the definition of 	 in (2.6), f1 D f2 if � D id, and f3 D 0 if ı D 0.
Thus �0.x/ D x C b if � D id, and �0.x/ D ux if ı D 0.

4. Applications

One motivation of studying the twisted Calabi–Yau property of Ore extensions is
studying the right coideal subalgebras of the positive Borel part of a quantized en-
veloping algebra and computing their Nakayama automorphisms [LW14] by the first-
named and the third-named authors. Such algebras can be obtained by iterated Ore
extensions. In [LW14], a class of right coideal subalgebras (quantum homogeneous
spaces) C � Uq.g/ is proved to be twisted Calabi–Yau, and the Nakayama automor-
phisms are given explicitly in some cases.

In this section, the base ring k is assumed to be a field.

4.1. Quantumaffine spaces. As stated in Section 1, multi-parameter quantum affine
n-spaces Oq.kn/ can be obtained by iterated Ore extensions. Their Nakayama auto-
morphisms can be computed by using Theorem 3.3. Of course, all the results in this
section are known and can be deduced in some other way.

Let n � 1 and q be a matrix .qij /n�n whose entries are in k satisfying qi i D 1

and qij qj i D 1 for all 1 � i; j � n. The quantum affine n-space Oq.kn/ is defined
to be a k-algebra generated by x1; : : : ; xn with the relations xjxi D qijxixj for all
1 � i; j � n.
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Proposition 4.1. The quantum affine n-space Oq.kn/ is twisted Calabi–Yau of di-
mension n, whose Nakayama automorphism � sends xi to

Qn
jD1 qj ixi .

Proof. If n D 1, Oq.k/ D kŒx1�. The conclusion is true.
If n > 1, we assume the conclusion holds for n�1. Let q0 be an .n�1/� .n�1/

matrix obtained by deleting the nth row and the nth column of q, and q00 by deleting
the first row and the first column of q. Now consider the following two quantum
.n � 1/-spaces

Oq0.kn�1/ D khx1; : : : ; xn�1 j xjxi D qijxixj ; 1 � i; j � n � 1i;
Oq00.kn�1/ D khx2; : : : ; xn j xjxi D qijxixj ; 2 � i; j � ni:

Clearly, Oq.kn/ D Oq0.kn�1/ŒxnI � 0� where � 0.xi / D qinxi for 1 � i � n � 1, and
Oq.kn/ D Oq00.kn�1/Œx1I � 00� where � 00.xi / D qi1xi for 2 � i � n.

By the inductive hypothesis, Oq0.kn�1/ and Oq00.kn�1/ are both twisted Calabi–
Yau of dimension n � 1 and their Nakayama automorphisms �0, �00 are given by

�0.xi / D
n�1Q
jD1

qj ixi ; 1 � i � n � 1;

�00.xi / D
nQ

jD2
qj ixi ; 2 � i � n;

respectively.
Since the invertible elements in Oq.kn/ are those nonzero scalars in k, the identity

map is the only inner automorphism of Oq.kn/. By Theorem 3.3, Oq.kn/ is twisted
Calabi–Yau of dimension n whose Nakayama automorphism � satisfies

�.xi / D � 0�1� n�1Q
jD1

qj ixi
� D nQ

jD1
qj ixi ; 1 � i � n � 1;

�.xi / D � 00�1� Qn
jD2 qj ixi

� D nQ
jD1

qj ixi ; 2 � i � n:

So �.xi / DQn
jD1 qj ixi for 1 � i � n.

Therefore, the proposition holds for all n � 1.

Remark 4.2. The same method can be applied to Weyl algebras An.k/, n � 1.
As a consequence, Weyl algebra An.k/ is Calabi–Yau of dimension 2n [Ber09],
Theorem 6.5.

4.2. A 3-dimensionalAS-regular algebra. LetA be generated by x, y, z with three
relations

yx � xy � x2; zx � xz; zy � yz � 2xz:
Then A is a 3-dimensional AS-regular algebra.



606 L.-Y. Liu, S.-Q. Wang, and Q.-S. Wu

Let B D khx; yi=.yx � xy � x2/ be the Jordan plane, which is an AS-regular
algebra of dimension 2. Obviously, B D kŒx�ŒyI ı1� with ı1.x/ D x2. It follows
thatB is twisted Calabi–Yau, but not Calabi–Yau, with the Nakayama automorphism
given by �.x/ D x and �.y/ D 2x C y.

On one hand, A D BŒzI �� is an Ore extension of Jordan plane. ThenA is twisted
Calabi–Yau with the Nakayama automorphism �0 such that �0.x/ D x and �0.y/ D y.

On the other hand, A D kŒx; z�ŒyI ı� where ı is given by ı.x/ D x2 and ı.z/ D
�2xz. So, �0.z/ D z.

It follows that A is Calabi–Yau, which was proved by Berger and Pichereau
[BP14].

4.3. A class of AS-regular algebras of dimension 5. Classifying quantum pro-
jective spaces Pn – noncommutative analogues of projective n-spaces – is one of
the most important questions in noncommutative projective algebraic geometry. An
algebraic approach to construct a quantum Pn is to form the noncommutative pro-
jective scheme ProjA [AZ94], where A is a noetherian connected graded AS-regular
algebra of global dimension nC 1. So the question turns out to be the classification
of AS-regular algebras.

Recently, the second-named and the third-named authors tried to classify quantum
P4s. In [WW12], AS-regular algebras of dimension 5, generated by two generators of
degree 1with three generating relations of degree 4, are classified under some generic
condition. There are nine types of such AS-regular algebras in the classification list.
Among them, algebras D and G can be realized by iterated Ore extensions ([WW12],
Proposition 5.7 and Theorem 5.8).

In this section, we compute the Nakayama automorphisms of these two types of
algebras. Assume k is a field of characteristic zero. The algebras D and G are of the
form khx; yi=.r1; r2; r3/.

For the algebra D,

r1 D x3y C px2yx C qxyx2 � p.2p2 C q/yx3;
r2 D x2y2 � p.p2 C q/yxyx � q2y2x2 C .q � p2/xy2x C .q � p2/yx2y;
r3 D xy3 C pyxy2 C qy2xy � p.2p2 C q/y3x;

where p, q 2 k n f0g and 2p4 � p2q C q2 D 0.
For the algebra G ,

r1 D x3y C px2yx C qxyx2 C syx3;
r2 D x2y2 C l2xyxy C l3yxyx C l4y2x2 C l5xy2x C l5yx2y;
r3 D xy3 C pyxy2 C qy2xy C sy3x;

where

l2 D �s
2.qs � g/
g.qs C g/ ; l3 D s � pg.ps � q

2/

q.qs C g/ ; l4 D �g
2

s2
; l5 D ps2 C qg

qs C g ;
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with p, q, s, g 2 k n f0g, ps3g C qsg2 C s5 C g3 D 0, p3s D q3, ps ¤ q2,
q2s2 ¤ g2 and s5 C g3 ¤ 0.

It is proved that the algebras D and G can be obtained as an iterated Ore extension
by a unified process [WW12], Section 5.2. We give a sketch of the process here.

LetA D kŒy�with degy D 1. Leta, b 2 k satisfyab.aCb/.a2Cb2/.a3�b3/ ¤
0.

Define A1 D AŒz1I �1� to be the graded Ore extension of A with deg z1 D 3,
where

�1.y/ D ay:
DefineA2 D A1Œz2I �2; ı2� to be the graded Ore extension ofA1 with deg z2 D 2,

where

�2.y/ D by; �2.z1/ D az1;
ı2.y/ D z1; ı2.z1/ D 0:

DefineA3 D A2Œz3I �3; ı3� to be the graded Ore extension ofA2 with deg z3 D 3,
where

�3.y/ D a�1b3y; �3.z1/ D b3z1; �3.z2/ D az2;
ı3.y/ D z22 ; ı3.z1/ D .a � b/z32 ; ı3.z2/ D 0:

Define A4 D A3ŒxI �4; ı4� to be the graded Ore extension of A3 with deg x D 1,
where

�4.y/ D a�1b2y; �4.z1/ D a�1b3z1; �4.z2/ D bz2; �4.z3/ D az3;

ı4.y/ D z2; ı4.z1/ D a3 � b3
a.aC b/z

2
2 ; ı4.z2/ D a3 � b3

a.aC b/z3; ı4.z3/ D 0:

Leta D p�3q2, b D �p�1q. ThenA4 Š D. Leta D s2g�1, b D �p�1q. Then
A4 Š G . Both isomorphisms send the indeterminants x, y in A4 to the generators
x, y of D and G , respectively.

Now let us compute the graded Nakayama automorphism � of A4.
By Theorem 3.3, �.y/ D ��1

4 ��1
3 ��1

2 ��1
1 .y/ D ab�6y.

Observe that A4 can be also obtained as an iterated Ore extension along the
opposite direction, that is, adding z3, z2, z1,y to kŒx� successively. The corresponding
automorphisms and derivations are determined by �i and ıi (1 � i � 4). We do not
give their concrete expressions but only the result �.x/ D a�1b6x.

Return to the algebras D and G . For D, a�1b6 D p3q�2p�6q6 D p�3q4, and
the Nakayama automorphism � is given by

�.x/ D p�3q4x; �.y/ D p3q�4y:

For G , a�1b6 D s�2gp�6q6 D g, and the Nakayama automorphism � is given by

�.x/ D gx; �.y/ D g�1y:

Thus we have
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Theorem 4.3. (1) The algebra D is twisted Calabi–Yau with the Nakayama auto-
morphism � given by

�.x/ D p�3q4x; �.y/ D p3q�4y:

And D is Calabi–Yau if and only if that p, q satisfy the system of equations´
p3 D q4;
2p4 � p2q C q2 D 0:

(2) The algebra G is twisted Calabi–Yau with the Nakayama automorphism �

given by
�.x/ D gx; �.y/ D g�1y:

And G is Calabi–Yau if and only if g D 1.
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