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A Chern–Simons action for noncommutative spaces in general
with the example SUq.2/

Oliver Pfante

Abstract. Witten constructed a topological quantum field theory with the Chern–Simons action
as Lagrangian. We define a Chern–Simons action for 3-dimensional spectral triples. We prove
gauge invariance of the Chern–Simons action, and we prove that it concurs with the classical
one in the case the spectral triple comes from a 3-dimensional spin manifold. In contrast to
the classical Chern–Simons action, or a noncommutative generalization of it introduced by
A. H. Chamseddine, A. Connes, and M. Marcolli by use of cyclic cohomology, the formula
of our definition contains a linear term which shifts the critical points of the action, i.e., the
solutions of the corresponding variational problem.

Additionally, we investigate and compute the action for a particular example: the quantum
group SUq.2/. Two different spectral triples were constructed for SUq.2/. We investigate
the Chern–Simons action defined in the present paper in both cases and conclude the non-
topological nature of the action. Using the Chern–Simons action as Lagrangian we define and
compute the path integral, at least conceptually.
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1. Introduction

S.-S. Chern and J. Simons uncovered a geometrical invariant which grew out of an
attempt to derive a purely combinatorial formula for the first Pontrjagin number of a
4-manifold. This Chern–Simons invariant turned out to be a higher dimensional ana-
logue of the 1-dimensional geodesic curvature and seemed to be interesting in its own
right [6]. This classical Chern–Simons invariant has found numerous applications in
differential geometry, global analysis, topology and theoretical physics.

E. Witten [26] used the Chern–Simons invariant to derive a 3-dimensional quan-
tum field theory in order to give an intrinsic definition of the Jones Polynomial and
its generalizations dealing with the mysteries of knots in three-dimensional space.
Witten’s approach is motivated by the Lagrangian formulation of quantum field the-
ory, where observables are computed by means of integration of an action functional
over all possible physical states modulo gauge transformations, i.e., one computes
the Feynman path integral.

Knot polynomials deal with topological invariants, and understanding these the-
ories as quantum field theories, as Witten did, involves the construction of theories
in which all of the observables are topological invariants. The physical meaning of
“topological invariance” is “general covariance”. A quantity that can be computed
from a manifold M as a topological space without any choice of a metric is called
a “topological invariant” by mathematicians. To a physicist, a quantum field theory
defined on a manifold M without any a priori choice of a metric on M is said to
be generally covariant. Obviously, any quantity computed in a generally covariant
quantum field theory will be a topological invariant. Conversely, a quantum field
theory in which all observables are topological invariants can naturally be seen as a
generally covariant quantum field theory. The surprise, for physicists, comes in how
general covariance in Witten’s three-dimensional covariant quantum field theory is
achieved. General relativity gives us a prototype for how to construct a quantum field
theory with no a priori choice of metric: we introduce a metric and then integrate
over all metrics. Witten constructs an exactly soluble generally covariant quantum
field theory in which general covariance is achieved not by integrating over metrics,
instead he starts with a gauge invariant Lagrangian that does not contain any metric,
the Chern–Simons invariant, which becomes the Chern–Simons action.

LetM denote a 3-dimensional, closed, oriented manifold and A 2 MN .�
1.M//

a hermitian .N �N/-matrix of differential 1-forms onM . The Chern–Simons action
for A is given by

SCS.A/ ´ k

4�

Z
M

Trace.A ^ dAC 2
3
A ^ A ^ A/ (1.1)

for an integer k 2 Z which is called the level. Clearly, SCS.A/ does not depend on
a metric, and therefore it is a topological invariant. In addition, the Chern–Simons
action is gauge invariant. Under gauge transformation

A 7! Au D uAu� C udu�
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of the 1-form by a gauge map u W M ! SU.N / we have

SCS.A
u/ D SCS.A/C 2�m

for an integer m 2 Z, called the winding number of the gauge map u. Next Witten
computes the partition function

Z.k/ D
Z
DŒA�eiSCS.A/ (1.2)

of the action, where we integrate over all possible hermitian .N � N/-matrices of
differential 1-forms A on M modulo gauge transformation. Note that the integrand
is well defined because it does not depend on the special choice of the representative
A of the equivalence class ŒA� due to the gauge invariance of the action.

The partition function Z.k/ is a topological invariant of the manifold M in the
variable k corresponding to the so-called no knot case in [26], which is interesting
in its own right. There exists a meromorphic continuation of Z.k/ in k which was
computed in [26] for some explicit examples. For the 3-sphere M D S3 and the
gauge group SU.2/ one gets

Z.k/ D
r

2

2C k
sin

�
�

k C 2

�
:

For manifolds of the form X � S1, for a 2-dimensional manifold X , and arbitrary
gauge group SU.N /, one obtains Z.k/ D NX as result, with an integer NX 2 N
depending only on the manifold X .

Our main concern in this paper is the definition of a Chern–Simons action on non-
commutative spaces, so-called spectral triples .A;H ;D/, consisting of a pre-C�-al-
gebra A of bounded operators on the Hilbert space H and an unbounded, self-adjoint
operator D on H with compact resolvent such that the commutators Œa;D � for a 2 A

are bounded. Spectral triples are the starting point for the study of noncommutative
manifolds [7]. One can think of them being a generalization of the notion of ordinary
differential manifolds because every spin manifold without boundary can be encoded
uniquely by a spectral triple [9]. In this framework some core structures of topology
and geometry such as the index theorem [11] were extended far beyond the classical
scope.

By means of the local index theorem proven by A. Connes and H. Moscovici
in [11] we define a Chern–Simons action for noncommutative spaces in general.
This definition looks similar to the classical one (1.1), but an additional linear term
appears which comes from the 1-cochain of the cyclic cocycle given by the local index
formula. Next we reconstruct the analogue of gauge transformations and prove gauge
invariance of the Chern–Simons action. We derive this most important result of this
work by means of the coupling between cyclic cohomology and K-theory [7]. Finally,
we prove that the Chern–Simons action, defined by us, coincides with the classical
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one if one works with a commutative spectral triple coming from a 3-dimensional
spin manifold.

Our definition of a noncommutative Chern–Simons action is not the first one. Sev-
eral proposals were given before: for instance by T. Krajewski [18] and A. H. Cham-
seddine, J. Fröhlich [5]. The Chern–Simons action in [18], which is defined as the
classical one (1.1) using the Wodzicki residue instead of the integral, fails to be gauge
invariant in general. For the quantum group SUq.2/ and its spectral triple constructed
by P. S. Chakraborty and A. Pal [3] the Chern–Simons action of [18] is not gauge
invariant in general.

In [5] a definition of a Chern–Simons action is given, using a Chern–Simons
form constructed in cyclic cohomology by D. Quillen [21]. But the definition in [5]
covers only the case, where the spectral triple essentially comes from a cylindrical
manifold Œ0; 1��M , with a 2-dimensional manifold M , where noncommutativity is
implemented by tensoring the algebra of smooth functions on the manifold with a
finite dimensional matrix algebra.

The very first consideration about a Chern–Simons action in noncommutative
geometry can be found in [25] by E. Witten himself. In the book [10] of A. Connes
and M. Marcolli these considerations were generalised (based on a joint work [4] of
the first author with A. H. Chamseddine, where a Chern–Simons term appears in the
variation of the spectral action under inner fluctuations) in order to define a Chern–
Simons action for arbitrary unital, involutive algebras A in the framework of cyclic
cohomology. Let  be a cyclic 3-cocycle on A. The functional

CS .A/ D
Z
 

AdAC 2

3
A3; A 2 �1.A/;

with  .a0; a1; a2; a3/ D R
 
a0da1da2da3, transforms A 7! Au D udu� C uAu�

under gauge transformation, for a unitary u 2 A, into

CS .A
u/ D CS .A/C 1

3
h ; ui;

where h ; ui is the pairing betweenHC 3.A/ andK1.A/. This construction is similar
to the one which is given in this paper, but there are also some differences.

First, our construction is more explicit. We make use of the additional structure
given by the spectral triple in order to define a unique Chern–Simons action for
the particular triple. The definition by means of cyclic cohomology does not suggest
uniqueness, and there is the question left which cocycle should be chosen. Second, our
definition contains an additional linear term: the cocycle�1 of the local index formula.
Such an additional linear term in the definition of a noncommutative Chern–Simons
action is new but not necessarily unreasonable. In [16], V. Gayal and R. Wulkenhaar
investigate the Yang–Mills action for a triple constructed on the noncommutative d -
dimensional Moyal space and discovered also an additional linear part of the Yang–
Mills action for this noncommutative space.
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In the present paper we shall apply additionally the general results about a non-
commutative Chern–Simons action to a special example of noncommutative spaces:
the quantum group SUq.2/with deformation parameter 0 � q < 1. One can think of
SUq.2/ as a noncommutative generalization of the ordinary 3-sphereS3, which is iso-
morphic to SU.2/. Spectral triples for SUq.2/were constructed by P. S. Chakraborty
and A. Pal [3] on the one hand, and L. Da̧browski, G. Landi, A. Sitarz, W. van Sui-
jlekom and J. C. Várilly [22] on the other hand. The index theoretical aspects of the
spectral triple in [3] were carefully studied by A. Connes [8]. The same was done for
the spectral triple in [22] by the same authors in [23].

In this article we mainly work with the spectral triple .C1.SUq.2//;H ;D/ of [3]
using the results in [8]. We construct a symbol map �q W C1.SUq.2// ! C1.S1/
and show that the Chern–Simons action is essentially a pull-back by �q of an action
functional on the algebra C1.S1/. Using this, we can reduce complexity of the
path integral even when gauge breaking is involved. We compute the Chern–Simons
action explicitly, and obtain an additional linear term which is characteristic for our
approach. This additional linear term shifts the critical points of the action and has
made explicit computations of the path integral impossible so far.

Another triple is available for SUq.2/, given by the authors of [22], which is
slightly different from the one in [3]. The modifications in [22] are performed in
such a way that the resulting triple is similar with the commutative one, given by
the 3-sphere SU.2/. There is only one crucial problem with this construction: the
“volume form”, the cochain �3 of the local index formula, whose special shape is
determined in [23], vanishes identically. The proof bases upon the results in [23] and
is carried out in the present paper. Hence the noncommutative analogue of a Chern–
Simons action, defined in the present paper, becomes rather trivial and uninteresting.
Although Chern–Simons theory is not particularly interesting for this spectral triple, it
delivers an extremely useful insight into the nature of our noncommutative approach.
The different shape of the Chern–Simons action for the triples in [3] or [22] proves the
non-topological nature of our action. This is interesting in its own right because in the
classical setting, working with a 3-dimensional manifold, the topological nature of
the Chern–Simons action (1.1) is rather obvious. We prove that the noncommutative
action coincides with the classical one for commutative triples coming from a 3-
dimensional spin manifold. Hence one might expect topological invariance of the
action defined in the present paper too. Here by topological invariance we mean
that the action should depend only on the underlying “noncommutative topological
space”, which in both cases is the C�-algebra C.SUq.2//.

The paper is divided into two parts. In the first part a general definition of a
Chern–Simons action on noncommutative spaces is worked out thoroughly. This part
starts with the second section, where we introduce the main tools of noncommutative
differential geometry in order to keep this paper self-contained. In the third section
we define a noncommutative Chern–Simons action. Additionally, we prove gauge
invariance of this noncommutative Chern–Simons action, and we prove that this
action coincides with the classical one (1.1) in the case the spectral triple comes from
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a 3-dimensional spin manifold.
In the second part of the present paper we apply the general results to SUq.2/

and its 3-dimensional spectral triples. In the fourth section we give a rough overview
of the triple in [3] and its properties proven there and in [8]. Distinguishing the
case q D 0 from 0 < q < 1 becomes important, especially for the local index
theorem, because the shape of the cyclic cocycle .�3; �1/ is different. Eliminating
this distinction is the main result of a technical lemma in the fifth section, where we
construct a symbol map �q W C1.SUq.2// ! C1.S1/ for 0 � q < 1. In terms of
this symbol map we can express the crucial property of the Chern–Simons action:
a linearity property of the action which we take into account, when we define and
compute, at least conceptually, a noncommutative analogue of the path integral (1.2)
in the sixth section. In the last section we analyse the differences that appear if one
works with the spectral triple given in [22] instead, and deduce the non-topological
nature of the Chern–Simons action defined in the first part.

This paper is one of two papers about the content of my Ph.D. thesis. An additional
paper [20] will appear, where we compute the Chern–Simons action explicitly for
the noncommutative 3-torus. Also there we make sense of the path integral for this
noncommutative space, i.e., we give a definition of the measure DŒA� in (1.2). In
addition, for the noncommutative 3-torus we were able to carry out computations of
the path integral more explicitly than for SUq.2/, i.e., instead of a conceptual result
only, in [20] the first coefficient in the Taylor expansion series of the partition function
Z.k/ in the variable k�1 is computed.

It is a great pleasure for me to thank my advisor Raimar Wulkenhaar who took
care of me and my work for years. In addition, I appreciate helpful discussions with
Alain Connes, Giovanni Landi, Walter van Suijlekom and Christian Voigt.

Part I Chern–Simons action on noncommutative spaces

This part establishes the main results of the paper concerning the definition of a
Chern–Simons action on 3-dimensional spectral triples. Gauge invariance of the
action is proved for a noncommutative analogue of gauge mapping, and that the
action coincides with the classical Chern–Simons action if one works with a spectral
triple coming from a 3-dimensional spin manifold.

2. Noncommutative differential geometry

In this section we give some preliminaries about noncommutative differential geom-
etry [7]. Starting point is the definition of a spectral triple.

Definition 2.1. A spectral triple .A;H ;D/ consists of a unital pre-C�-algebra A, a
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separable Hilbert space H and a densely defined, self-adjoint operator D on H such
that

� there is a faithful representation � W A ! B.H / of the pre-C�-algebra A by
bounded operators on H ,

� the commutator ŒD ; �.a/� is densely defined on H for all a 2 A and extends
to a bounded operator on H ,

� the resolvent .D � �/�1 extends for � … R to a compact operator on H .

Remark 2.1. A pre-C�-algebra differs from an ordinary C�-algebra being only closed
with respect to holomorphic functional calculus.

The commutative world provides us with a large class of so-called commutative
spectral triples .C1.M/;L2.�/;D/ consisting of the Dirac operator acting on the
Hilbert space L2.�/ of L2-spinors over a closed spin manifold M .

Next we introduce the noncommutative replacement of n-forms. See [19].

Definition2.2. Forn � 0 let�n.A/ D A˝ NA˝n the vector space of noncommutative
n-forms over A, where NA D A � C1 denotes the vector space we obtain from the
algebra A if one takes away the unital element 1 2 A.

Here we used the notation

NA˝n D NA ˝ � � � ˝ NA
to denote the tensor product of n copies of NA. Elements of �n.A/ are written in the
more suggestive form a0da1 : : : dan for a0; : : : ; an 2 A, setting a0da1 : : : dan D 0

if ai D 1 for i � 1. We also write da1 : : : dan if a0 D 1.

Remark 2.2. The notion of noncommutative n-forms and their homology theory can
be built up for arbitrary algebras, especially non-unital ones. In this case the definition
differs slightly from the one we have just given. See [19] for more details.

One can define a A-A-bimodule structure on �n.A/. Let us first consider the
case n D 1. We define a left A-module structure on �1.A/ by setting

a
�
a0da1

� D aa0da1:

A right A-module structure on �1.A/ is defined according to the Leibniz rule
d.ab/ D dab C adb by

.a0da1/a D a0d.a1a/ � a0a1da:
With these definitions �1.A/ becomes an A-A-bimodule. It is also easy to verify
that there is a natural isomorphism

�n.A/ Š �1.A/˝A �
1.A/˝A � � � ˝A �

1.A/ D �1.A/˝An
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(as vector spaces) for every n � 1. As a consequence, the spaces�n.A/ are equipped
with an A-A-bimodule structure in a natural way. Explicitly, the left A-module
structure on �n.A/ is given by

a.a0da1 : : : dan/ D aa0da1 : : : dan

and the right A-module structure may be written as

.a0da1 : : : dan/a D a0da1 : : : d.ana/C
n�1P
jD1

.�1/n�ja0da1 : : : d.ajajC1/ : : :

: : : dandaC .�1/na0a1da2 : : : danda:
Moreover, we view �0.A/ D A as an A-bimodule in the obvious way using the
multiplication in A. We are also able to define a map�n.A/˝�m.A/ ! �nCm.A/
by considering the natural map

�1.A/˝An ˝�1.A/˝Am ! �1.A/˝An ˝A �
1.A/˝Am D �1.A/˝AnCm:

Let us denote by�.A/ the direct sum of the spaces�n.A/ for n � 0. Then the maps
�n.A/˝�m.A/ ! �nCm.A/ assemble to the map �.A/˝�.A/ ! �.A/. In
this way the space �.A/ becomes an algebra. Actually �.A/ is a graded algebra if
one considers the natural grading given by the degree of a differential form. Let us
now define a linear operator d W �n.A/ ! �nC1.A/ by

d.a0da1 : : : dan/ D da0 : : : dan; d.da1 : : : dan/ D 0;

for a0; : : : ; an 2 A. It follows immediately from the definition that d2 D 0. A
differential form in �.A/ is called homogeneous of degree n if it is contained in the
subspace �n.A/. Then the graded Leibniz rule

d.!�/ D d!�C .�1/j!j!d�

for homogeneous forms ! and � holds true.
We define the linear operator b W �n.A/ ! �n�1.A/ by

b.a0da1 : : : dan/ D .�1/n�1.a0da1 : : : dan�1an � ana0da1 : : : dan�1/
D .�1/n�1Œa0da1 : : : dan�1; an�

D a0a1da2 : : : dan C
n�1P
jD1

.�1/ja0da1 : : : d.ajajC1/ : : : dan

C .�1/nana0da1 : : : dan�1:

A short calculation shows thatb2D0. Next we introduce theB-operatorB W �n.A/!
�nC1.A/ given by

B.a0da1 : : : dan/ D
nP
iD0
.�1/nidanC1�i : : : danda0 : : : dan�i : (2.1)
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One can check that b2 D B2 D 0 and Bb C bB D 0. According to these equations
we can form the .B; b/-bicomplex of A:

:::

��

:::

��

:::

��

:::

��
�3.A/

b

��

�2.A/
B��

b

��

�1.A/
B��

b

��

�0.A/
B��

�2.A/

b

��

�1.A/

b

��

B�� �0.A/
B��

�1.A/

b

��

�0.A/
B��

�0.A/.

The cyclic homology of A is the homology of the total complex of the .B; b/-
bicomplex of A.

The corresponding cohomological version, cyclic cohomology, is quite easy to
define. If V is a vector space we denote by V 0 D Hom.V;C/ its dual space. If
f W V ! W is a linear map then it induces a linear map W 0 ! V 0 which will be
denoted by f 0. Applying the dual space functor to the .B; b/-complex we have the
.B 0; b0/-complex of an algebra A which is again a bicomplex, i.e., b02 D 0, B 02 D 0

and B 0b0 C b0B 0 D 0. The cyclic cohomology of A is the cohomology of the total
complex of the dual .B 0; b0/-bicomplex of A. In the sequel we simply writeB instead
of B 0 and b instead of b0 because it is always clear which kind of map, the ordinary
or the dual one, is considered.

Next we discuss the noncommutative replacement of pseudo-differential calculus
and the Atiyah–Singer’s index theorem. The main source for this part is [11]. In
order to make pseudo-differential calculus work for spectral triples we must impose
three additional constraints.

Dimension. There is an integer n such that the decreasing sequence .�k/k2N of
eigenvalues of the compact operator jD j�1 satisfies

�k D O.k�1=n/

when k ! 1.

The smallest integer which fulfils this condition is called the dimension of the
spectral triple. In the case of a p-dimensional, closed spin manifold, the dimension
of the triple .C1.M/;L2.�/;D/ coincides with the dimension p of the manifold.
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Since D has compact resolvent, its kernel ker D is finite dimensional and jD j�1, with
jD j D p

D2, is well defined as jD j�1 on the orthogonal complement of ker D and
0 on ker D . Since the kernel finite dimensional, it does not influence the asymptotic
behaviour of the Dirac operator or its inverse respectively.

Now we consider the derivation ı defined by ı.T / D ŒjD j; T � for an operator T
on H .

Regularity. Any element b of the algebra generated by �.A/ and ŒD ; �.A/� is
contained in the domain of ık for all k 2 N, i.e., ık.b/ is densely defined and has a
bounded extension on H .

In the case of a spin manifold M this condition tells us that we should work
with C1.M/-functions only. Combining the dimension and regularity conditions
we obtain that the functions

	b.z/ D Trace.bjD j�2z/
are well defined and analytic for Re z > p=2 and all b in the algebra B generated by
the elements

ık.�.a//; ık.ŒD ; �.a/�/ for a 2 A and k � 0:

In order to apply the local index theorem [11] of A. Connes and H. Moscovici we
need even more. More precisely, we have to introduce the notion of the dimension
spectrum of a spectral triple. This is the set † � C of singularities of functions

	b.z/ D Trace.bjD j�2z/; Re z > p=2; b 2 B:

We assume the following:

Dimension spectrum. † is a discrete subset of C. Therefore, for any element b of
the algebra B the functions

	b.z/ D Trace.bjD j�2z/
extend holomorphically to C n†.

By means of the third condition the functions 	b are meromorphic for any b 2 B.
In the commutative case of a p-dimensional manifold M the dimension spectrum
† consists of all positive integers less or equal p and is simple, i.e., the poles of 	b
are all simple. All spectral triples we are going to work with have simple dimension
spectrum.

Let us introduce pseudo-differential calculus (see [11] for a full discussion). Let
dom.ı/ denote the domain of the map ı which consists of all a 2 B.H / such that
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ı.a/ is densely defined on H and can be extended to a bounded operator. We shall
define the order of operators by the following filtration: For r 2 R set

OP0 D T
n�0

dom.ın/; OPr D jD jr OP0 : (2.2)

Due to regularity we obtain B � OP0. Additionally, for every P in OPr the operator
jD j�rP is densely defined and has a bounded extension.

Let r be the derivation r.T / D ŒD2; T � for an operator T on H . Consider the
algebra D generated by

rk.T /; T 2 A or ŒD ;A�

for k � 0. The algebra D is the analogue of the algebra of differential operators. By
Corollary B.1 of [11] we obtain rk.T / 2 OPk for any T in A or ŒD ;A�.

We introduce the notation


k.bjD jy/ D ReszD0 zk Trace.bjD jy�2z/;

for b 2 D, y 2 † and an integer k � 0. These residues are independent of the choice
of the definition of jD j�1 on the kernel of D because the kernel is finite dimensional.
A change of the definition of jD j�1 on the kernel of jD j results in a change by a trace
class operator.

Now we are ready to state the local index theorem proven in [11] for spectral
triples which fulfil the three conditions above. First, let us recall the definition of
the index. Let u 2 A be a unitary. Then, by definition of a spectral triple, the
commutator ŒD ; �.u/� is bounded. This forces the compression P�.u/P of �.u/ to
be a Fredholm operator (if F D sgn D then P D .F C 1/=2). The index is defined
by

Index.P�.u/P / D dim kerP�.u/P � dim kerP�.u/�P:
The index map u 7! Index.P�.u/P / defines a homomorphism from the K1-group
of the pre-C �-algebra A to Z, see [7]. By the local index theorem this index can be
calculated as a sum of residues 
k.bjD jy/, for various b 2 D. Since we are only in-
terested in the three-dimensional case we state the local index theorem (Corollary II.1
of [11]) only for this case.

Theorem 2.1. Let .A;H ;D/ be a three-dimensional spectral triple fulfilling the
three conditions above and let u 2 A be a unitary. Then

Index P�.u/P D �1.u
�du/ � �3.u�dudu�du/;

where

�3.a
0da1da2da3/ D 1

12

0.�.a

0/ŒD ; �.a1/�ŒD ; �.a2/�ŒD ; �.a3/�jD j�3/
� 1
6

1.�.a

0/ŒD ; �.a1/�ŒD ; �.a2/�ŒD ; �.a3/�jD j�3/
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and

�1.a
0da1/ D 
0.�.a

0/ŒD ; �.a1/�jD j�1/
� 1
4

0.�.a

0/r.ŒD ; �.a1/�/jD j�1/
� 1
2

1.�.a

0/r.ŒD ; �.a1/�/jD j�3/
C 1

8

0.�.a

0/r2.ŒD ; �.a1/�/jD j�5/
C 1

3

1.�.a

0/r2.ŒD ; �.a1/�/jD j�5/
C 1

12

2.�.a

0/r2.ŒD ; �.a1/�/jD j�5/
for a0; a1; a2; a3 2 A. In addition, the pair .�3; �1/ defines a cyclic cocycle in
Connes’ .B; b/-complex.

In order to prove the main result of this thesis, the gauge invariance of the Chern–
Simons action, which is defined in the following section, we need the trace property
of the cochain �3, i.e.,

�3.AB/ D �3.BA/

for all A 2 �i .A/ and B 2 �3�i .A/, with i D 0, 1, 2, 3.

Lemma 2.2. Let .A;H ;D/ be a three-dimensional spectral triple fulfilling the three
conditions above. Then for every operator A and B in A or ŒD ;A�, and k � 0 the
equation


k.ABjD j�3/ D 
k.BAjD j�3/
holds true.

Proof. Recall the filtration (2.2). If P is an operator on H and P 2 OP�3�� for
some � > 0, then P is trace class. Let A and B be in A or ŒD ;A�. If one uses the
relation jD j�1A D AjD j�1 � jD j�1ŒjD j; A�jD j�1 one obtains


k.ABjD j�3/ D ReszD0 zk Trace.ABjD j�3�2z/
D ReszD0 zk Trace.BjD j�3�2zA/
D ReszD0 zk Trace.BjD j�2zAjD j�3/

C
3P
iD1

ReszD0 zk Trace.BjD j�2z�iAjD j�3C.i�1//:

The operators in the last row are all trace class for Re.z/ > �1=2, thus the residues
of their traces at z D 0 vanish. By Theorem B.1 of [11] we have

jD j�2zAjD j2z � A 2 OP�1 :

This implies the identity

BjD j�2zAjD j�3 D BjD j�2zAjD j2zjD j�3�2z � BAjD j�3�2z mod OP�4 :

Summarizing these observations yields the claimed identity.
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3. Noncommutative Chern–Simons action

If .A;H ;D/ is a spectral triple, then .MN .A/;H ˝CN ;D ˝IN / is a spectral triple
over the matrix algebra MN .A/ of A, for a positive integer N 2 N, satisfying all
requirements imposed to .A;H ;D/. In the sequel, we shall work with the second
one, whose differential forms�1.MN .A// D MN .�

1.A// are matrices with values
in�1.A/. The Dirac operator of the extended triple will be also denoted by D instead
of D ˝ IN . A matrix 1-form A D .aijdbij /1�i;j�N is called hermitian if A D A�
with

..aijdbij /i;j�N /� D ..aj idbj i /
�/1�i;j�N ;

where the 	-operator on �.A/ is defined by

.a0da1 : : : dan/� D .�1/ndan� : : : da1�a0�

for a0; : : : ; an 2 A.

Definition 3.1. Let .A;H ;D/ be a spectral triple satisfying the conditions of the
previous section, N 2 N, and A 2 MN .�

1.A// a hermitian matrix of 1-forms. We
define a Chern–Simons action by

SCS.A/ D 6�k�3.AdAC 2
3
A3/ � 2�k�1.A/

for an integer k, with the cyclic cocycle .�3; �1/ of the local index Theorem 2.1.

Firstly, we have to study the behaviour of the action under gauge transformations.
The transformed action should differ from the initial one only by 2�m, withm 2 Z.
Secondly, we show that the noncommutative Chern–Simons action is the classical
one (1.1) if the spectral triple .C1.M/;L2.�/;D/ comes from a 3-dimensional,
closed spin manifold M with gauge group SU.N /.

We start by introducing the noncommutative replacement of a gauge mapping.
The gauge group of .MN .A/;H ˝ CN ;D ˝ IN / is the group of unitary elements
of MN .A/. An element u 2 MN .A/ is called unitary if u�u D uu� D 1. A gauge
transformation of a 1-form A 2 MN .�

1.A// by a unitary u 2 MN .A/ is given as
follows:

A 7! Au D uAu� C udu�:
If A 2 MN .�

1.A// is a hermitian matrix of 1-forms, then this holds true for Au too.

Theorem 3.1. Let .A;H ;D/ be a spectral triple satisfying the conditions of the
second section, N 2 N, and let A 2 MN .�

1.A// be a hermitian matrix of 1-
forms. Then under the gauge transformation of A by a unitary u 2 MN .A/ the
Chern–Simons action becomes

SCS.uAu
� C udu�/ D SCS.A/C 2�k Index.P�.u/P /;

where P D .1C F /=2 and F D sgn D is the sign of D .
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Proof. First, let us introduce the curvature F D dAC A2 of A. We have

AdAC 2
3
A3 D AF � 1

3
A3:

Under gauge transformationA becomes uAu� Cudu� and F transforms into uFu�.
This follows from 0 D d1 D d.uu�/ D .du/u� C udu� and the calculation

d.uAu� C udu�/C .uAu� C udu�/2 D duAu� C udAu� � uAdu� C dudu�

C uA2u� C udu�.uAu�/
C uAu�.udu�/C udu�.udu�/

D uA2u� C udAu�

D uFu�

Therefore, we have

SCS.uAu
� C udu�/ D 6�k�3..uAu

� C udu�/uFu� � 1
3
.uAu� C udu�/3/

� 2�k�1.uAu� C udu�/:

If one uses the trace property of �3, Lemma 2.2, and du�u D �u�du, we obtain

�3..uAu
� C udu�/uFu�/ D �3.AF / � �3.duFu�/

and
� 1
3
�3..uAu

� C udu�/3/
D �1

3
�3.A

3/ � 1
3
�3..udu

�/3/ � �3.udu�uA2u�/ � �3.uAu�.udu�/2/
D �1

3
�3.A

3/C 1
3
�3.udu

�dudu�/ � �3.udu�uA2u�/C �3.duAdu
�/

Due to the fact that .�3; �1/ is a cyclic cocycle, the term �1.uAu
�/ can be rewritten

in a more convenient form:

��1.uAu�/C �1.A/ D ��1.ŒuA; u��/
D b�1.uAdu

�/ D �B�3.uAdu�/ D �3�3.d.uA/du�/;

where the last equality follows by Definition 2.1 of the operator B and the trace
property of �3. Therefore,

�1.uAu
�/ D �1.A/C 3�3.d.uA/du

�/:

Gathering all these terms yields

SCS.uAu
� C udu�/

D 6�k�3.AF � 1
3
A3/ � 6�k�3.duFu�/C 2�k�3.udu

�dudu�/
� 6�k�3.udu�uA2u�/C 6�k�3.duAdu

�/
� 2�k�1.A/ � 6�k�3.d.uA/du�/ � 2�k�1.udu�/

D SCS.A/ � 2�k Index.P�.u�/P /
C 6�k�3.duAdu

� � duFu� � udu�uA2u�/ � 6�k�3.d.uA/du�/:
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Using again of the trace property (Lemma 2.2) of �3 and the relation du�u D �u�du
one can simplify the last term

�3.duAdu
� � duFu� � udu�uA2u�/

D �3.duAdu
� � du.dAC A2/u� C duA2u�/

D �3.duAdu
� � dudAu�/

D �3.duAdu
� C dAdu�u/

D �3.d.uA/du
�/:

The index map u 7! Index.P�.u/P / is a homomorphism from the K1-group of A

to Z. Thus we have � Index.P�.u�/P / D Index.P�.u/P /, and the proof is done.

Next we have to prove that for spectral triples .C1.M/;L2.�/;D/ coming from
a 3-dimensional, closed spin manifold M with spinor bundle S , Definition 3.1 of a
noncommutative Chern–Simons action coincides with the classical one (1.1). Essen-
tially, this is given by the following theorem, see [11], Remark II.1.

Theorem 3.2. Let .A;H ;D/ consisting of the Dirac operator D acting on the
Hilbert space of L2-spinors over a closed spin manifoldM of dimension p and with
A D C1.M/. Then:

� The dimension of the triple .A;H ;D/ is simple and contained in the set fn 2
N j n � pg; this forces 
k D 0 for k � 1.

� One has


0.�.a
0/rk1 ŒD ; �.a1/� : : :rkn ŒD ; �.an/�jD j�n�2jkj/ D 0

for jkj ¤ 0 with k D .k1; : : : ; kn/ 2 N and n � q.

� For k1 D k2 D � � � D kn D 0, one has


0.�.a
0/ŒD ; �.a1/� : : : ŒD ; �.an/�jD j�p/ D �p

Z
M

OA.R/^a0da1^� � �^dan;

where�p is a numerical factor depending only on the dimensionp of themanifold
M and OA.R/ stands for the OA-form of the Riemannian curvature ofM .

The OA-form of the Riemannian curvature of a p-dimensional Riemannian mani-
fold M is a polynomial in the Pontrjagin forms pj .TM/ of the tangent bundle TM
with the Levi-Civita connection. These Pontrjagin forms pj .TM/ are in the 4j -th
cohomology groupH 4j .M/ ofM . For further details see [17], Chapter 2. Since we
are only interested in the case p D 3, all Pontrjagin forms pj vanish for j � 1 and
we get OA D 1. Hence the formulas for the cyclic cocycle .�3; �1/ have the form

�1 D 0; �3.a
0da1da2da3/ D �3

12

Z
M

a0da1 ^ da2 ^ da3 (3.1)
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for ai 2 C1.M/. The only thing we need to know is the exact value of �3. In order
to achieve this we make use of the results of A. Carey, J. Phillips and F. Sukochev in
[2]. From Theorem 5.6 in [2] we obtain the identity

lim
s!3C

Trace.jD j�s/ D 3
!.jD j�3/;

where 
! denotes the so-called Dixmier trace, a trace defined on the so-called Schat-
ten class L.1;1/.H /, which is an ideal in B.H /. The precise meaning of 
! and
L.1;1/.H / does not bother us because we get rid of them by Formula 7.1 [2] which
states the equality


!.jD j�3/ D 1

3.2�3/

Z
M�S2

�3.jD j3/.x; 
/�1d�.x/d
:

The integral term on the right-hand side of the equality is called the Wodzicki residue
Wres.jD j�3/ of the pseudo-differential operator jD j�3. From example 5.16 in [24]
we obtain

Wres.jD j�3/ D 8� Vol.M/:

Combining all these identities we obtain


0.jD j�3/ D lim
z!0

z Trace.jD j�3�2z/

D 1

2
lim
s!3C

s Trace.jD j�s/

D 3

2

!.jD j�3/

D 1

2.2�3/
Wres.jD j�3/

D 1

2�2
Vol.M/;

which forces
�3 D .2�2/�1:

An additional problem arises. One deals with the extended triple .C1.M/˝MN .C/,
L2.�/˝CN ;D ˝IN / instead of the commutative triple .C1.M/;L2.�/;D/. This
spectral triple is no longer commutative. But the cyclic cocycle of the extended
triple is given by the pair .Trace ˝�3;Trace ˝�1/ where .�3; �1/ denotes the cyclic
cocycle of the initial, commutative spectral triple, and “Trace” denotes the trace on
the .N �N/-matrices MN .C/. It is easy to verify that the formulas for the extended
triple adopt a form analogous to (3.1):

Trace ˝�1 D 0; Trace ˝�3.a0da1da2da3/ D �3

12

Z
M

Trace.a0da1 ^ da2 ^ da3/;

with ai 2 MN .�
1.A//.
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Corollary 3.3. Let .A;H ;D/ consisting of the Dirac operator D acting on the
Hilbert space of L2-spinors over a closed spin manifold M of dimension 3, and let
A D C1.M/. Then the Chern–Simons action of Definition 3.1 adopts the form

SCS.A/ D k

4�

Z
M

Trace.A ^ dAC 2
3
A ^ A ^ A/

for a hermitian one form A 2 MN .�
1.C1.M///.

Remark 3.1. One must take care of the sloppy notation in the corollary. Formally,
the hermitian 1-form A 2 MN .�

1.C1.M/// on the left-hand side of the equation
is a 1-form defined in the noncommutative framework. But due to the Hochschild–
Kostant–Rosenberg Theorem (see [19]) 1-forms in �1.C1.M// do not coincide
with ordinary differential 1-forms onM . Therefore, an additional clue of the identity
in the corollary above is the different nature of the 3-forms on both sides of it. We
have an element of MN .�

3.C1.M/// as input in the cyclic cocycle �3 on the left-
hand side. Instead the integrand on the right-hand side is an ordinary, matrix valued,
differential 3-form. Hence the use of the same symbol A for the 1-forms on both
sides of the equation in the corollary above is not absolutely correct.

Part II Chern–Simons theory for the quantum group SUq.2/

In the second part of the paper we apply the general theory of the first one to the
quantum group SUq.2/ and its 3-dimensional spectral triples constructed in [3] and
[22].

4. The quantum group SUq.2/

For the overview of the spectral triple constructed in [3] we follow [8]. Let q be a
real number 0 � q < 1. We start with the presentation of the algebra of coordinates
on the quantum group SUq.2/ in the form

˛�˛Cˇ�ˇ D 1; ˛˛� Cq2ˇˇ� D 1; ˛ˇ D qˇ˛; ˛ˇ� D qˇ�˛; ˇˇ� D ˇ�ˇ:

Let us recall the notations for the standard representation of this algebra. One lets
H be the Hilbert space with orthonormal basis e.n/ij where n 2 1

2
N varies among

half-integers while i; j 2 f�n;�nC 1; : : : ; ng. Thus the first elements are

e
.0/
00 ; e

.1=2/
ij ; i; j 2 ˚ � 1

2
; 1
2

�
; : : :
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The following formulas define a unitary representation on H ,

˛e
.n/
ij D aC.n; i; j /e

.nC 1
2 /

i� 1
2 ;j� 1

2

C a�.n; i; j /e
.n� 1

2 /

i� 1
2 ;j� 1

2

;

ˇe
.n/
ij D bC.n; i; j /e

.nC 1
2 /

iC 1
2 ;j� 1

2

C b�.n; i; j /e
.n� 1

2 /

iC 1
2 ;j� 1

2

;

where the explicit form of a˙ and b˙ is

aC.n; i; j / D q2nCiCjC1 .1 � q2n�2jC2/1=2.1 � q2n�2iC2/1=2

.1 � q4nC2/1=2.1 � q4nC4/1=2
;

a�.n; i; j / D .1 � q2nC2j /1=2.1 � q2nC2i /1=2

.1 � q4n/1=2.1 � q4nC2/1=2

(4.1)

and

bC.n; i; j / D �qnCj .1 � q2n�2jC2/1=2.1 � q2nC2iC2/1=2

.1 � q4nC2/1=2.1 � q4nC4/1=2
;

b�.n; i; j / D qnCi .1 � q2nC2j /1=2.1 � q2n�2i /1=2

.1 � q4n/1=2.1 � q4nC2/1=2
:

(4.2)

Observe that a� does vanish if i D �n or j D �n, which gives meaning to

a�.n; i; j /e
.n� 1

2 /

i� 1
2 ;j� 1

2

for these values while i � 1
2

… Œ�.n � 1
2
/; n � 1

2
� or j � 1

2
…

Œ�.n � 1
2
/; n � 1

2
�. Similarly b� vanishes for j D �n or i D n.

Let now, as in [3], D be the diagonal operator on H given by

D.e
.n/
ij / D .2ı0.n � i/ � 1/2ne.n/ij ;

where ı0.k/ D 0 if k ¤ 0 and ı0.0/ D 1. It follows from [3] that the triple
.C1.SUq.2//;H ;D/ is a spectral triple, where C1.SUq.2// is the pre-C�-algebra
generated by the elements ˛ and ˇ. Due to Theorem 3.2 and Theorem 7.1 in [8] we
obtain:

Theorem 4.1. The spectral dimension of the triple .C1.SUq.2//;H ;D/ is simple
and equal to † D f1; 2; 3g.

In the sequel we have to treat the case q D 0 separately from the general case
0 < q < 1.
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4.1. Local index formula for SU0.2/. For q D 0 the representations of ˛ and ˇ
adopt a comparatively simple form.

aC.n; i; j / D 0;

a�.n; i; j / D 0 if i D �n or j D �n;
a�.n; i; j / D 1 if i ¤ �n and j ¤ �n;
bC.n; i; j / D 0 if j ¤ �n;
bC.n; i; j / D �1 if j D �n;
b�.n; i; j / D 0 if i ¤ �n or j D �n;
b�.n; i; j / D 1 if i D �n and j ¤ �n:

(4.3)

Thus for q D 0 the operators ˛ and ˇ on H are given by

˛e
.n/
ij D e

.n� 1
2 /

i� 1
2 ;j� 1

2

if i > �n; j > �n

and ˛e.n/ij D 0 if i D �n or j D �n. Moreover,

ˇe
.n/
ij D 0 if i ¤ �n and j ¤ �n;

ˇe
.n/
�n;j D e

.n� 1
2 /

�.n� 1
2 /;j� 1

2

if j ¤ �n;
and

ˇe
.n/
i;�n D �e.nC 1

2 /

iC 1
2 ;�.nC 1

2 /
:

By construction ˇˇ� D ˇ�ˇ is the projection e on the subset fi D �n or j D �ng
of the basis. Moreover, ˛ is a partial isometry with initial support 1 � e and final
support 1 D ˛˛�. The basic relations between ˛ and ˇ are

˛�˛ C ˇ�ˇ D 1; ˛˛� D 1; ˛ˇ D ˛ˇ� D 0; ˇˇ� D ˇ�ˇ:

For f 2 C1.S1/, f D P Ofnein� we let

f .ˇ/ D P
n>0

Ofnˇn C P
n<0

Ofnˇ�.�n/ C Of0e;

and the map f ! f .ˇ/ gives a (degenerate) representation of C1.S1/ on H . Let
C1.SU0.2// denote the linear span of the elements

a D P
k;`�0

˛�kfk`.ˇ/˛` C P
`�0

�`˛
` C P

k>0

�0
k
˛�k;

where � and �0 are sequences (of complex numbers) of rapid decay and .fk`/ is
a sequence of rapid decay with values in C1.S1/. Due to Proposition 3.1 of [8]
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C1.SU0.2// is a 	-subalgebra of B.H / closed under holomorphic calculus. We
define a linear map � from C1.SU0.2// to C1.S1/ by

�.a/ D P
`�0

�` u
` C P

k>0

�0
k
u�k; (4.4)

where u D ei� denotes the unitary generator of C1.S1/. In the proof of Proposi-
tion 3.1 in [8] it is actually shown that � is a 	-homomorphism, which becomes quite
important for the description of the cyclic cocycle .�3; �1/ for SU0.2/. We start this
description with the following formulas defining a cyclic cocycle 
1 onC1.SU0.2//:


1.˛
�k; x/ D 
1.x; ˛

�k/ D 
1.˛
l ; x/ D 
1.x; ˛

l/ D 0;

for all integers k, l and any x 2 C1.SU0.2//,


1.˛
�kf .ˇ/˛`; ˛�k0

g.ˇ/˛`
0
/ D 0

unless `0 D k, k0 D ` and


1.˛
�kf .ˇ/˛`; ˛�`g.ˇ/˛k/ D 1

�i

Z
S1

f dg:

Let '0 be the 0-cochain given by '0.˛�kf .ˇ/˛`/ D 0 unless k D ` and

'0.˛
�kf .ˇ/˛k/ D �.k/

1

2�

Z 2�

0

f d�;

where �.j / D 2
3

� j � j 2. Finally, let '2 be the 2-cochain given by the pull back by
� of the cochain

�.f0; f1; f2/ D �1
24

1

2�i

Z 2�

0

f0f
0
1f

00
2 d�

on C1.S1/. Using these definitions, Theorem 4.1 of [8] provides us with following
result.

Theorem 4.2. The local index formula in Theorem 2.1 of the spectral triple
.C1.SU0.2//;H ;D/ is given by the cyclic cocycle 
1 up to the coboundary of
the cochain .'0; '2/. The precise equations are

'1 D 
1 C b'0 C B'2; '3 D b'2:

4.2. Local index formula for SUq.2/, 0 < q < 1. Let Bq be the algebra generated
by the elements ık.a/ for a 2 C1.SUq.2//, with the derivation ı given by the
commutator bracket ı. � / D ŒjD j; � �. By construction, the generators ˛ and ˇ of
C1.SUq.2// are of the form

˛ D ˛C C ˛�; ˇ D ˇC C ˇ�;
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where
ı.˛˙/ D ˙˛˙; ı.ˇ˙/ D ˙ˇ˙:

The explicit form of˛˙, ˇ˙ is, using n
2

instead of n for the notation of the half-integer,

˛˙.e.n=2/.i;j /
/ D a˙.n=2; i; j /e

.n˙1
2 /

.i� 1
2 ;j� 1

2 /
;

ˇ˙.e.n=2/.i;j /
/ D b˙.n=2; i; j /e

.n˙1
2 /

.iC 1
2 ;j� 1

2 /
;

where a˙, b˙ are as in (4.1) and (4.2) above. Thus the algebra Bq is generated by
the operators ˛˙, ˇ˙ and their adjoints. Since we want to compute local formulas
of operators in Bq we are entitled to mod out smoothing operators

OP�1 D T
k>0

OP�k;

where the operator spaces OP�k are given by equation (2.2). This simplification leads
us to the cosphere bundle C1.S�

q /.
We introduce the following representations �˙ of C1.SUq.2//. In both cases

the Hilbert spaces are H˙ D `2.N/ with basis ."x/x2N and the representations are
given by

�˙.˛/"x D .1 � q2x/1=2"x�1; �˙.ˇ/"x D ˙qx"x for all x 2 N:

Additionally, one defines a Z-grading on Bq by means of the one-parameter group
of automorphisms �t given by

�t .P / D eit jDjPe�it jDj for P 2 Bq:

For the corresponding Z-grading one has

deg.˛˙/ D ˙1; deg.ˇ˙/ D ˙1: (4.5)

From the definition of the representations �˙ one obtains b � b� 2 ker �˙. Hence,
the representations �˙ are not faithful. Let us denote by

C1.D2
q˙/ D C1.SUq.2//= ker.�˙/

the quotient algebras and r˙ the restriction morphisms. We are prepared to restate
Proposition 6.1 of [8].

Proposition 4.3. The following formulas define an algebra homomorphism � from
Bq to C1.D2

qC/˝ C1.D2
q�/˝ C1.S1/:

�.˛C/ D �qˇ� ˝ ˇ ˝ u; �.˛�/ D ˛ ˝ ˛ ˝ u�;
�.ˇC/ D ˛� ˝ ˇ ˝ u; �.ˇ�/ D ˇ ˝ ˛ ˝ u�:

Here we omitted rC ˝ r�.
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Definition 4.1. LetC1.S�
q / be the range of � inC1.D2

qC/˝C1.D2
q�/˝C1.S1/.

There is a symbol map � W C1.D2
q˙/ ! C1.S1/ which is given as a 	-

homomorphism on the generators of C1.D2
q˙/ by

�.r˙.˛// D u; �.r˙.ˇ// D 0; (4.6)

where u is the unitary generator of C1.S1/. The representations �˙ in `2.N/, with
basis f"x j x 2 Ng, induce representations on C1.D2

q˙/, which we also denote by
�˙. We define two linear functionals 
1 and 
0 on C1.D2

q˙/ by


1.a/ D 1

2�

Z 2�

0

�.a/ d� for all a 2 C1.D2
q/ (4.7)

and


0.a/ D lim
N!1 TraceN .�.a// � 
1.a/N; (4.8)

where

TraceN .a/ D
NP
0

ha"x; "xi:

(Here we omitted ˙ in the above formulas).

Theorem 4.4. Let b 2 Bq , �.b/ 2 C1.S�
q / its symbol. Then let �.b/0 be the

component of degree 0, with the grading on C1.S�
q / induced by the one on Bq .

Then one has «
bjD j�3 D .
1 ˝ 
1/.r�.b/

0/;«
bjD j�2 D .
1 ˝ 
0 C 
0 ˝ 
1/.r�.b/

0/;«
bjD j�1 D .
0 ˝ 
0/.r�.b/

0/;

with the natural restriction homomorphism r W C1.S�
q / ! C1.D2

qC/˝C1.D2
q�/

and the Wodzicki residue «
P D ReszD0 Trace.P jD j�z/:

From Theorem 4.4 one gets the explicit form of the local index formula for SUq.2/.
The only difficulty is the definition of a cycle .�; d;

R
/ (see [7], Chapter III for a

careful discussion). More precisely, let us define the C1.SUq.2//-bimodule �1

whose underlying linear space is given by the direct sum �1 D C1.SUq.2// ˚
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�.2/.S1/ where�.2/.S1/ is the space of differential forms f .�/ d�2 of weight 2 on
S1. The bimodule structure is defined by

a.
; f / D .a
; �.a/f /; .
; f /b D .
b;�i�.
/�.b/0 C f�.b// (4.9)

for a; b 2 C1.SUq.2//, 
 2 C1.SUq.2//, f 2 �.2/.S1/ and the map � defined in
(4.6) omitting r˙ in the formula. The differential d is then given by

da D @aC 1

2
�.a/00d�2 (4.10)

as in a Taylor expansion. The functional
R W �1 ! C is defined byZ

.
; f / D 
.
/C 1

2�i

Z
f d�; (4.11)

with the linear map 
.a/ D 
0.r�.a0// for a 2 C1.SUq.2//, where a0 denotes the
component of a of degree 0, with respect to the grading on C1.SUq.2// induced by
the derivative @ D @ˇ � @˛ . From Proposition 8.1 in [8], we obtain:

Proposition 4.5. The triple .�; d;
R
/ is a cycle, i.e., � D C1.SUq.2// ˚ �1

equipped with d as a graded differential algebra (with�0 D C1.SUq.2//), and the
functional

R
is a closed graded trace on �.

We let� be the cyclic 1-cocycle which is the character of the above cycle, explicitly

�.a0da1/ D
Z
a0da1 for all a0; a1 2 C1.SUq.2//:

Similar to the case q D 0 we define the cochains

'0.a/ D Trace.ajDj�s/sD0;
'2.a

0da1da2/ D � 1

24

«
a0ı.a1/ı2.a2/jD j�3:

Now we obtain a form of the local index formula similar to the case q D 0

(Theorem 8.2 in [8]).

Theorem 4.6. The local index formula of the spectral triple .C1.SUq.2//;H ;D/

is given by the cyclic cocycle � up to the coboundary of the cochain .'0; '2/.

5. Chern–Simons action for SUq.2/

We start this section with the construction of symbol maps �q W Bq ! C1.S1/, for
0 � q < 1 and the 	-subalgebras Bq (as described in Section 4.2) of B.H / generated
by ık.a/, with a 2 C1.SUq.2// and the derivation ı. � / D ŒjD j; � �.
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First let q D 0. From (4.4) we have a symbol map � W C1.SU0.2// ! C1.S1/.
We extend � to a 	-homomorphism �0 W B0 ! C1.S1/ on the generators of B0 by

�0.ı
m.a// D im�0.a/

.m/;

where f .m/ denotes the m-th derivative of f 2 C1.S1/.
In the general case, 0 < q < 1, we establish a definition of �q as follows. From

Proposition 4.3, eq. (4.6) and the restriction homomorphism r in Theorem 4.4 we can
define the following sequence of maps

Bq

��! C1.S�
q /

r�! C1.D2
qC/˝ C1.D2

q�/
�˝����! C1.S1/˝ C1.S1/ Š C1.S1 � S1/:

The composition map Q� D .�˝�/Br B� W Bq ! C1.S1�S1/ acts on the generators
˛˙ and ˇ˙ of Bq as follows:

Q�.˛C/ D � ˝ �.�qˇ� ˝ ˇ/ D 0; Q�.˛�/ D � ˝ �.˛ ˝ ˛/ D ei�ei� ;

Q�.ˇC/ D � ˝ �.˛� ˝ ˇ/ D 0; Q�.ˇ�/ D � ˝ �.ˇ ˝ ˛/ D 0:

The unitary ei.�C�/ is the generator of the image of Q� in C1.S1 � S1/. Hence, via
the 	-homomorphism which maps ei.�C�/ 7! ei� , we can identify the image of Q�
with C1.S1/. Let us denote by �q W Bq ! C1.S1/ the map we obtain from Q� by
means of this identification.

Lemma 5.1. Let .C1.SUq.2//;H ;D/ be the spectral triple of SUq.2/ with 0 �
q < 1, and let the algebra Bq be generated by ık.a/, with a 2 C1.SUq.2// and the
derivation ı. � / D ŒjD j; � �. Then Bq is generated by ˛˙ and ˇ˙ with

˛˙.e.n=2/.i;j /
/ D a˙.n=2; i; j /e

.n˙1
2 /

.i� 1
2 ;j� 1

2 /
;

ˇ˙.e.n=2/.i;j /
/ D b˙.n=2; i; j /e

.n˙1
2 /

.iC 1
2 ;j� 1

2 /
;

where a˙, b˙ are as in (4.1) and (4.2). The 	-homomorphisms �q W Bq ! C1.S1/,
for 0 � q < 1, act on these generators of Bq by

�q W Bq ! C1.S1/; ˛� 7! ei� ; ˛C; b˙ 7! 0

and fulfil the properties«
bjD j�3 D 1

2�

Z
�q.b/d�; �q.ı

m.b// D im�q.b/
.m/ for all b 2 Bq; (5.1)

with the Wodzicki residue
ª

given in Theorem 4.4.
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Proof. The case q D 0. From (4.3) we obtain the identities ˛ D ˛� and ˛C D 0.
In addition, from (4.3) it is easy to check that ı.˛/ D �˛ and ı.ˇ˙/ D ˙ˇ˙. This
proves the second equality of (5.1).

The proof of Theorem 3.2 in [8], especially the eqs. (3.46) and (3.47) there, shows
that any operator B in ker �0 can be written as

B D P
k;l�0

˛�kbkl˛l ;

with a rapidly decreasing sequence of bounded operators .bkl/ whose support is
contained in eH , with the projection e D ˇˇ� D ˇ�ˇ. Since e commutes with
jD j�3 we have ejD j�3 D ejD j�3e. Hence, the operator ejD j�3 is positive. In
addition ejD j�3 is trace class, because

Trace.ejD j�3/ D P
n2 1

2 N

nP
iD�n

nP
jD�n

he.n/i;j ; ejD j�3e.n/i;j i

D P
n2 1

2 N

nP
iD�n

nP
jD�n

1
.2n/3

he.n/i;j ; e e.n/i;j i

D P
n2 1

2 N

nP
iD�nC1

nP
jD�n

1
.2n/3

.he.n/�n;j ; e
.n/
�n;j i C he.n/i;�n; e.n/i;�ni/

D P
n2 1

2 N

4nC1
.2n/3

D 2
P
m2N

1
m2 C P

m2N

1
m3 < 1:

The space of trace class operators is an ideal in B.H /. Hence,

˛�kbkl˛l jD j�3 D ˛�kbklejD j�3jD j3˛l jD j�3

D ˛�kbklejD j�3 .
3P
kD0

ık.˛l/jD j�k/„ ƒ‚ …
2B.H/

is trace class for all k; l � 0 and therefore the operator BjD j�3 as well.
For b 2 B0 and f ´ �0.b/ 2 C1.S1/ we introduce the notation

f .˛/ D P
`�0

Of`˛` C P
k>0

Of�k˛�k;

where . Ofk/k denotes the coefficients of the Fourier decomposition of f . We have
b � f .˛/ 2 ker �0, thus the operator .b � f .˛//jD j�3 is trace class. Additionally,
from the definition of the representation of ˛ in (4.3) and eq. (4.76) in [8] one obtains

Trace.˛kjD j�3/ D Trace.˛�kjD j�3/ D ık for all k � 0;
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with the Kronecker symbol ık and˛0 D ˛�0 D 1. Summarizing these considerations
yields «

bjD j�3 D
«
f .˛/jD j�3 D Of0 D 1

2�

Z 2�

0

f .�/ d�:

This proves the first equation of (5.1) and therefore the lemma for the case q D 0.
The case 0 < q < 1. From Definitions (4.1) and (4.2) of ˛˙ and ˇ˙ one obtains

ı.a˙/ D ˙˛˙ and ı.b˙/ D ˙b˙. Hence the second identity of (5.1) follows by the
definition of �q .

Let b be a word in the variables ˛˙, ˛�̇ , ˇ˙ and ˇ�̇ , i.e.,

b D
NQ
iD1

x
ni

i ;

with xi 2 f˛˙; ˛�̇ ; ˇ˙; ˇ�̇ g, ni � 0, and the convention x0i D 1. From Theorem 4.4
and the definition of the symbol map �q we easily obtain«

bjD j�3 D 0 D 1

2�

Z 2�

0

�q.b/„ƒ‚…
D0

d�

provided that there is at least one index i0 2 f1; : : : ; N g such that ni0 > 0 and
xi0 2 f˛C; ˛�C; ˇ˙; ˇ�̇ g. Let us consider the case when all xi are contained in the
set f˛�; ˛��g. Due to (4.5) the degree deg.b/ of b is given by the sum

NP
iD1

deg.xi /ni :

Applying again Theorem 4.4 and the definition of �q we compute«
bjD j�3 D 
1 ˝ 
1.r�.b/

0/

D ıdeg.b/
1 ˝ 
1.r�.b//

D ıdeg.b/
1

2�

Z 2�

0

edeg.b/i� d�
1

2�

Z 2�

0

edeg.b/i�d�

D 1

4�2

Z 2�

0

edeg.b/i.�C�/d�d�

D 1

2�

Z 2�

0

edeg.b/i�d�

D 1

2�

Z 2�

0

�q.b/ d�;

with the Kronecker delta symbol ık . Since the space Bq is the linear span of elements
like b, the second equality of (5.1) is proved.
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If we apply the lemma to compute the cochain '2 of Theorem 4.6, we obtain for
0 < q < 1

'2.a
0da1da2/ D � 1

24

«
a0ı.a1/ı2.a2/jD j�3

D � 1

24

1

2�i

Z 2�

0

�q.a
0/�q.a

1/0�q.a2/00d�;

i.e., the same formula as in the case q D 0.

Corollary 5.2. Let .C1.SUq.2//;H ;D/ the spectral triple for the quantum group
SUq.2/ and �q W Bq ! C1.S1/ the symbol map from Lemma 5.1 for 0 � q < 1.
The cochain '2 of Theorems 4.2 and 4.6 is given by the pullback by �q of the cochain

�.f0; f1; f2/ D � 1

24

1

2�i

Z 2�

0

f0f
0
1f

00
2 d�:

The symbol map �q W C1.SUq.2// ! C1.S1/ induces a short exact sequence

0 ! �q ! C1.SUq.2//
�q�! C1.S1/ ! 0:

Let A 2 MN .�
1.C1.SUq.2//// an arbitrary 1-form. There are C1.SUq.2//-

valued .N �N/-matrices a0; : : : ; an and b0; : : : ; bn such that

A D P
i

aidbi

Let Pq W C1.SUq.2// ! �q denote the projection onto �q D ker �q . We define

ai1 D Pq.a
i /; bi1 D Pq.b

i / for all i D 1; : : : ; n;

A1 D P
i

ai1db
i
1 and A2 D A � A1:

Theorem 5.3. Let A 2 MN .�
1.C1.SUq.2//// a hermitian 1-form and A D A1 C

A2 its decomposition. The Chern–Simons action in Definition 3.1 of A has the form

SCS.A/ D SCS.A1/ � 2�k�1.A2/:
Thus the action is linear in A2 because �1 is a 1-cochain.

Proof. Due to Theorems 4.2 and 4.6 we have�3 D b�2. By Corollary 5.2, �2 is given
as the pullback of a 2-cochain on C1.S1/ by �q . From this it follows immediately
that �3.a0da1da2da3/ D 0, with ai 2 C1.SUq.2//, if at least one of the ai is
contained in �q . From this observation we obtain

SCS.A/ D 6�k�3.AdAC 2
3
A3/ � 2�k�1.A/

D 6�k�3..A1 C A2/d.A1 C A2/C 2
3
.A1 C A2/

3/ � 2�k�1.A1 C A2/

D 6�k�3.A1dA1 C 2
3
A31/ � 2�k�1.A1/ � 2�k�1.A2/

D SCS.A1/ � 2�k�1.A2/:
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Let us now compute the Chern–Simons action explicitly. Suppose that
A 2 MN .�

1.C1.SUq.2//// is an arbitrary 1-form. Since we are only interested in
the A1-part of the 1-form, we can assume that A D P

i aidbi with

ai D P
k�0

�i
k
˛k C P

k>0

�i�k˛
�k; bi D P

k�0
�i
k
˛k C P

k>0

�i�k˛
�k;

where .�i
k
/k and .�i

k
/k is a sequence of complex .N �N/-matrices of rapid decay.

We are only interested in hermitian 1-forms. Hence, we symmetrise the expression

QA D 1
2
.AC A�/ D 1

2

P
i

aidbi C b�
i da

�
i � d.b�

i a
�
i /:

Theorem 5.4. Let QA the hermitian 1-form defined above and

Rekl D 1
2

P
i

Trace.�i�k�
i
l

C �i��l�
i�
k
/; Imkl D 1

2

P
i

Trace.�i�k�
i
l

� �i��l�
i�
k
/:

Then the summands of the Chern–Simons action of QA are

�3. QAd QAC QA3/ D � 1
12

P
ki 2Z

k2k3k4Imk1k2
Rek3k4

ık2�k1Ck4�k3

C 1
18

P
ki 2Z

k2k4k6Imk1k2
Imk3k4

Imk5k6
ık2�k1Ck4�k3Ck6�k5

;

with Kronecker delta ık . The cochain �1 has different forms depending on the range
of the parameter q:

For 0 < q < 1,

�1. QA/ D �. QA/C b'0. QA/C B'2. QA/
D �2 P

k2Z

kImkkFk.q/C .1C i/
P
k2Z

k2Rekk C P
k2Z

sgn.k/k2 Imkk

� 2 P
k2Z

sgn.k/ImkkHjkj.q/ � 1
12

P
k2Z

k3 Imkk

with

Fk.q/ D
1P
x2N

.
kQ

jD1
.1 � q2.jCx// � 1/; Hk.q/ D '0.Œ˛

k; ˛�k�/:

For q D 0,

�1. QA/ D 
1. QA/C b'0. QA/C B'2. QA/

D �2 P
k2Znf0g

sgn.k/Imkk

jk�1jP
jD1

�.j / � 1
12

P
k2Z

k3 Imkk :
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Proof. Let us compute the cochain �1 for the case 0 < q < 1. We start with �. QA/.
Since � D R

is a closed trace, we obtain �.d.b�
i a

�
i // D 0. Hence,

�. QA/ D 1
2

P
i

�.aidbi C b�
i da

�
i /

D 1
2

P
i

�.
P
k;l�0

�i
k
�i
l
˛kd˛l/C 1

2

P
i

�.
P

k�0;l>0
�i
k
�i�l˛

kd˛�l/

C 1
2

P
i

�.
P

k>0;l�0
�i�k�

i
l
˛�kd˛l/C 1

2

P
i �.

P
k;l>0

�i�k�
i
�l˛

�kd˛�l/

C 1
2

P
i

�.
P
l;k�0

�i�
l
�i�
k
˛�ld˛�k/C 1

2

P
i

�.
P

l�0;k>0
�i�
l
�i��k˛

�ld˛k/

C 1
2

P
i

�.
P

l>0;k�0
�i��l�

i�
k
˛ld˛�k/C 1

2

P
i

�.
P
l;k>0

�i��l�
i�
�k˛

ld˛k/

D P
k;l�0

1
2

P
i Trace.�i

k
�i
l
/�.˛kd˛l/C P

k�0;l>0
1
2

P
i

Trace.�i
k
�i�l/�.˛

kd˛�l/

C P
k>0;l�0

1
2

P
i

Trace.�i�k�
i
l
/�.˛�kd˛l/

C P
k;l>0

1
2

P
i

Trace.�i�k�
i
�l/�.˛

�kd˛�l/

C P
l;k�0

1
2

P
i

Trace.�i�
l
�i�
k
/�.˛�ld˛�k/

C P
l�0;k>0

1
2

P
i

Trace.�i�
l
�i��k/�.˛

�ld˛k/

C P
l>0;k�0

1
2

P
i

Trace.�i��l�
i�
k
/�.˛ld˛�k/

C P
l;k>0

1
2

P
i

Trace.�i��l�
i�
�k/�.˛

ld˛k/:

From the equations (4.9), (4.10) and (4.11) one gets for k; l;2 Z

�.˛kd˛l/ D �.˛k@.˛l//C �.˛k 1
2
�.˛l/00d�2/

D �l
0.r�.˛k˛l/0/C 1

4�i

Z 2�

0

eik� .eil� /00 d�

D �l
0.r�.˛k˛l//ıkCl � l2

2i
ıkCl ;

with ˛l D ˛�.�l/ for l < 0 and the Kronecker delta ım. Therefore, the above
expression reduces to

�. QA/ D P
k>0

P
i

Trace.�i
k
�i�k/.k
0.r�.˛

k˛�k// � k2

2i
/

C P
k>0

P
i

Trace.�i�k�
i
k
/.�k
0.r�.˛�k˛k// � k2

2i
/

C P
k>0

P
i

Trace.�i�
k
�i��k/.�k
0.r�.˛�k˛k// � k2

2i
/
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C P
k>0

P
i

Trace.�i��k�
i�
k
/.k
0.r�.˛k˛�k// � k2

2i
/

D P
k>0

P
i

k Trace.�i
k
�i�k/
0.r�.˛

k˛�k// � k Trace.�i�k�
i
k
/
0.r�.˛�k˛k//

� P
k>0

P
i

k Trace.�i�
k
�i��k/
0.r�.˛

�k˛k//

� k Trace.�i��k�
i�
k /
0.r�.˛

k˛�k//C i
P
k2Z

k2Rekk :

Using formula (8.5) in [8] one gets


0.r�.˛�k˛k//D 
0.r�.˛k˛�k//� 1

2�i

Z 2�

0

�.˛�k/d�.ak/D 
0.r�.˛k˛�k//�k:

Inserting this in the formulae above, one obtains

�. QA/ D P
k>0

P
i

k Trace.�i
k
�i�k/
0.r�.˛

k˛�k// � k Trace.�i�k�
i
k
/
0.r�.˛k˛�k//

� P
k>0

P
i

k Trace.�i�
k
�i��k/
0.r�.˛

k˛�k//

� k Trace.�i��k�
i�
k /
0.r�.˛

k˛�k//
C i

P
k2Z

k2Rekk C P
k>0

P
i

k2 Trace.�i�k�
i
k
/C k2 Trace.�i�

k
�i��k/

D �2 P
k2Z

kImkk
0.r�.˛k˛�k//C i
P
k2Z

k2Rekk

C P
k>0

P
i

k2 Trace.�i�k�
i
k
/C k2 Trace.�i�

k
�i��k/

D �2
X
k2Z

kImkk
0.r�.˛k˛�k//C i
X
k2Z

k2Rekk

C P
k>0

k2.Rekk C Imkk C Re�k�k � Im�k�k/

D �2 P
k2Z

kImkk
0.r�.˛k˛�k//C .1C i/
P
k2Z

k2Rekk

C
X
k2Z

sgn.k/k2 Imkk :

By the defining commutation relations of SUq.2/ one obtains immediately

˛k˛�k D
kQ

jD1
.1 � q2jˇˇ�/:

By the definition of the representations �˙ (4.4), the operator r�.ˇˇ�/ acts as a
diagonal operator on `2.N/ with ��.ˇˇ�/"x D q2x"x , for x 2 N. Hence from
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Definitions (4.8) and (4.7) of 
0 and 
1 we obtain


0.r�.˛k˛�k// D lim
N!1 TraceN .��.˛k˛�k// �N
1.˛k˛�k/

D lim
N!1 TraceN .��.

kQ
jD1

.1 � q2jˇˇ�/// �N

D lim
N!1

NP
xD1

kQ
jD1

..1 � q2.jCx// � 1/ D Fk.q/:

Using Lemma 5.1 and the definition of the B-operator one gets

B'2. QA/ D 1

2

X
i

'2.daidbi � dbidai C db�
i da

�
i � da�

i db
�
i /

D � 1

48

1

2�i

X
i

Z 2�

0

Trace.�q.ai /
0�q.bi /00 � �q.bi /0�q.ai /00/ d�

� 1

48

1

2�i

X
i

Z 2�

0

Trace.�q.b
�
i /

0�q.a�
i /

00 � �q.a�
i /

0�q.b�
i /

00/ d�

By means of Trace.�q.bi /0�q.ai /00/ D Trace.�q.ai /00�q.bi /0/ and partial integration
one achievesZ 2�

0

Trace.�q.ai /
0�q.bi /00 � �q.bi /0�q.ai /00/d� D 2

Z 2�

0

Trace.�q.ai /
0�q.bi /00/d�

and in an analogue way for the second integral. Hence,

B'2. QA/ D � 1

24

1

2�i

X
i

Z 2�

0

Trace.�q.ai /
0�q.bi /00 C �q.b

�
i /

0�q.a�
i /

00/ d�

D � 1

24

1

2�i

X
k;l2Z

X
i

Z 2�

0

Trace.�ik�
i
l/.e

ik/0.eil/00

C Trace.�i�k �
i�
l /.e

�ik/0.e�il/00 d�

D 1

24

X
k;l2Z

X
i

kl2 Trace.�ik�
i
l/ıkCl � kl2 Trace.�i�k �

i�
l /ıkCl

D 1

24

X
k2Z

k3
X
i

Trace.�ik�
i
�k � �i�k �i��k/

D � 1

12

X
k2Z

k3 Imkk :

Finally, the cochain b'0. Since of analogous grading properties as in the case of the
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cycle � one obtains

b'0. QA/ D b'0.aidbi C b�
i da

�
i � d.a�

i b
�
i //

D '0.Œai ; bi �/C '0.Œb
�
i ; a

�
i �/ � '0.Œ1; a�

i b
�
i �/

D P
k>0

P
i

Trace.�i
k
�i�k/'0.Œ˛

k; ˛�k�/C Trace.�i�k�
i
k
/'0.Œ˛

�k; ˛k�/

C P
k>0

P
i

Trace.�i�
k
�i��k/'0.Œ˛

�k; ˛k�/C Trace.�i��k�
i�
k
/'0.Œ˛

k; ˛�k�/

D P
k>0

P
i

.Trace.�i
k
�i�k/ � Trace.�i�

k
�i��k//Hk.q/

� P
k>0

P
i

.Trace.�i�k�
i
k
/ � Trace.�i��k�

i�
k
//Hk.q/

D �2 P
k2Z

sgn.k/ImkkHjkj.q/:

The computation of the cochain �1 for the case q D 0 is much simpler and be omitted.
The same holds true for the computation of the cochain �3. In the computation of
this cochain the different cases need not be distinguished, and the calculation can be
done easily if one uses Corollary 5.2 and Lemma 5.1.

Remark 5.1. We want to point out two important aspects of the special shape of the
Chern–Simons action computed in Theorem 5.4. Firstly, the action depends on the
deformation parameter q, at least the linear �1-part of the action. Hence, the critical
points of the action is shifted differently for different q’s.

Second, the action depends only on the values Rekl and Imkl , with k; l 2 Z,
and not on the parameters �i

k
and �i

l
itself. Using this property of the action we can

define a measure for the path integral consisting of an infinite product of the Lebesgue
measures dRekl and d Imkl . This will be carried out in detail in the next section.

6. Path integral

In this section we study the drawbacks and opportunities of an explicit computation
of the path integral

Z.k/ D
Z
DŒA�eiSCS.A/;

where integration is performed over all hermitian�1.C1.SUq.2///-valued .N�N/-
matrices, modulo gauge transformations. Firstly, we give an outline of the gauge
breaking mechanism by Faddeev–Popov. For a detailed discussion we refer the
reader to G. B. Follands book [13].

Then we have to make sense of the path integral in the noncommutative setting.
Theorems 5.3 and 5.4 are crucial tools in this section, not only for the definition of the
path integral on SUq.2/ but also for an at least conceptual computation of it. Finally,
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we point out the problems of an explicit computation by means of a loop expansion
series, i.e., a Taylor expansion series of the partition function Z.k/ in the variable
k�1. These problems particularly concern the linear shift of the Chern–Simons action
caused by the �1-cochain in the index formula.

6.1. Gauge-breaking. In the computation of the path integral one does not integrate
over all hermitian 1-forms, but only over equivalence classes modulo gauge trans-
formations. In order to achieve this we restrict the space of all 1-forms to a subset
where all configurations modulo gauge transformations are only counted once, i.e.,
we fix the gauge or break the symmetry. The usual way of doing this is a device
due to Faddeev and Popov explained thoroughly in [13]. To explain the idea, let us
consider a similar but much simpler situation. Let f�t j t 2 Rg be a one-parameter
group of measure-preserving diffeomorphisms on Rn whose orbits are (generically)
unbounded, and suppose F is a function which is invariant under these transforma-
tions. We wish to extract a finite and meaningful quantity from the divergent integralR
F.x/ dnx. One possibility is to find a hypersurface M that is a cross-section for

the orbits and consider instead the integral
R
M
F.x/ d†.x/ where d† is the surface

measure of M . This quantity, however, depends on the choice of M . A related pro-
cedure is to find a smooth function h such thatM D h�1.0/ and consider the integralR
F.x/ı.h.x// dnx. This quantity depends on the choice of both M and h, for one

must take into account the behaviour of the delta function under a change of variable.
(The basic formula is this: if � is a smooth function on R and there is a unique t0
such that �.t0/ D 0, then ı.t � t0/ D �0.t0/ı.�.t//.)

A better idea is to incorporate the appropriate change-of-measure factor into the
integral. Specifically, with M and h as above, let

�.x/ D d

dt
Œh.�t .x//�tDt.x/;

where t .x/ is the unique number such that h.�t.x/.x// D 0, and insert the factor

1 D
Z
ı.u/du D

Z
ı.h.�t.x///�.x/ dt

into the integral
R
F.x/ dnx to obtain (informally speaking)Z
F.x/ dnx D

Z
F.x/ı.h.�t.x///ı.x/ dtd

nx:

Now F and the measure are assumed to be invariant under the transformations �t ,
and it is easily checked that this holds true for �.x/ too; see [13], Chapter 7. Hence
we can make the substitution x D ��t .y/ to obtainZ

F.x/dnx D
� Z

dt

� � Z
F.y/ı.h.y//�.y/ dny

�
:
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The divergence has now been isolated as the infinite factor
R
dt . The remaining y-

integral is the quantity we have been seeking: it is finite provided the restriction of F
toM decays suitably at infinity, and one can verify that it is independent of the choice
of M and �. (On the informal level, one can observe that

R
dt is merely the volume

of the transformation group, which does not depend onM , � orF , so that its removal
should yield an invariant quantity too. This, of course, is the reasoning employed
in the functional integral situation, where everything is somewhat ill-defined.) The
same idea works for multi-parameter groups of transformations; the factor�.x/ there
is an appropriate Jacobian determinant.

With this prelude in mind, we can start with our rearrangement of the path integral.
Our gauge group is the group U MN .C

1.SUq.2/// of unitary elements, and the
gauge transformation is A 7! Au D uAu� C udu� for a unitary element u 2
U MN .C

1.SUq.2///. We are choosing a gauge fixing h of the following form.
Let X D fxn j n � 0g and CŒX� the formal ring of finite polynomials with

complex coefficients in the variables xn. For h 2 CŒX� there is an integer k such that
h depends only on x0; : : : ; xk and

h.x0; : : : ; xk/ D P
a
m0;:::;mj
n0;:::;nj

x
m0
n0
: : : ; x

mj
nj
;

where only finitely many coefficients a
m0;:::;mj
n0;:::;nj

are different from zero. Given such
a gauge fixing h 2 CŒX� we define for any 1-form A D P

i aidbi

h.A/ D P
i

h.aidbi /

D P
i

h.aiı.bi /; : : : ; ı
k.aiı.bi ///

D P
i

P
a
m0;:::;mj
n0;:::;nj

.ın0.aiı.bi ///
m0 : : : .ınj .aiı.bi ///

mj :

Remark6.1. Usually, in the commutative case, i.e., if one works with a3-dimensional
spin manifold .M; �/, one chooses always Lorenz gauge. Every local map .U; �/
consisting of an open subset U � M and a diffeomorphism � W U ! �.U / � R3

provides us with a local trivialization ��1.U / Š U � R3 of the tangent bundle TM ,
where � W TM ! M denotes the canonical projection. Let A 2 MN .�

1.M// be
a matrix of differential 1-forms on M . Due to the local trivialization the restriction
AU of A on the open subset U decomposes into A D f	dx

	 for smooth functions
f	 W U ! MN .C/, with � D 1, 2, 3. Lorenz gauge condition can be expressed, at
least locally, by @=@x1f1 C @=@x2f3 C @=@x3f3 D !, for a smooth, matrix valued
function ! 2 C1.U /˝ MN .C/ on U .

In noncommutative geometry neither local maps nor a related decomposition of
1-forms A 2 MN .�

1.A// is available in general. There is one exception: the
noncommutative 3-torus C1.T 3

‚/ whose Chern–Simons theory is studied in [20].
As noncommutative generalization of the 3-torus T 3, whose tangent bundle TT 3

is globally trivial, i.e., TT 3 Š T 3 � R3, 1-forms A 2 MN .�
1.C1.T 3

‚// always
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decompose as in the commutative case, see [12] for details. Therefore, Lorenz gauge
can be chosen and is used in [20] to compute the path integral for the noncommutative
3-torus.

For SUq.2/ such a decomposition of 1-forms is not available at all due to the lack
of local maps, which are necessary in the commutative case S3 Š SU.3/ because the
tangent bundle TS3 is not longer globally trivial. Hence we cannot use Lorenzian
gauge for SUq.2/ and we were forced introducing a different gauge. But Lorenz
gauge is not the canonical one. Any other gauge fixing is as good as the Lorenzian
one. Different gauge fixings are studied by P. Gaigg, W. Kummer, and M. Schweda
in [15].

Denote by u.A/ the unitary element such that h.Au.A// � ! D 0, and let QA D
Au.A/. The geometrical interpretation of QA is the following: For a given configuration
we follow the orbit Au until we arrive at the configuration given by the gauge fixing.
As before, we write

1 D
Z
Duı.u/ D

Z
Duı.h. QAu/ � !/ det.ıh. QAu/=ıujuD1/: (6.1)

The integrals here are functional integrals over the space U MN .C
1.SUq.2/// of

all unitary elements, the delta-function represents the point mass at the identity 1 2
U MN .C

1.SUq.2/// and the differential ıh. QAu/=ıujuD1 is the formal functional
derivative of h. QAu/with respect to u at the point u D 1. Moreover, “det” denotes the
functional determinant, the counterpart of the Jacobian determinant in our infinite-
dimensional setting.

For the following calculation we rename QA to A and we insert (6.1) in the path
integral, obtainingZ
DA exp.iSCS.A// D

“
DuDA exp.iSCS.A//ı.h.A

u/�!/ det.ıh.Au/=ıujuD1/:

The “Lebesgue measure” DA is gauge invariant because a gauge transformation
A 7! uAu� C udu� results in a conjugation and a simple translation in the space of
fields, and both operations leave this space unchanged. Additionally, we have

exp.iSCS.A
u// D exp.iSCS.A/C 2�i Index.PuP // D exp.iSCS.A//:

Hence the substitution Au
�

for A turns the above integrand into an expression that is
independent of u so thatZ
DA exp.iSCS.A// D

Z
Du

Z
DA exp.iSCS.A//ı.h.A/�!/ det.ıh.Au/=ıujuD1/:

The integral
R
Du (the volume of the gauge group) is an infinite constant that can be

ignored, and the integral that is left has some hope of being meaningful; this is the
analogue of the finite-dimensional result that we derived above.
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To proceed further, we put the arbitrary element ! 2 MN .C
1.SUq.2/// to use.

Since the above identity is valid for each !, it remains valid if we take a weighted
average over different !’s. We can then get rid of the ı-function by multiplying both
sides with

N.a/�1 D
Z
D! exp

�«
� i

2a
!2jD j�3

�
a noncommutative analogue of the Gaussian integral, where “N.a/” means that the
normalization of the Gaussian integral will depend on the parameter a. However,
again it is a constant (infinite) normalization factor independent of any dynamics.
Moreover,

ª
denotes the noncommutative replacement of the integral, the Wodzicki

residue of Theorem 4.4. As a result we getZ
DA exp.iSCS.A// D N.a/

Z
Du

�
“

DAD! exp
�
iSCS.A/ � i

2a

«
!2jD j�3

�
ı.h.A/ � !/ det.ıh.Au/=ıujuD1/:

Performing the integration over ! we obtain, up to an infinite constant,Z
DA exp

�
iSCS.A/ � i

2a

«
h.A/2jD j�3

�
det.ıh.Au/=ıujuD1/: (6.2)

Finally, we represent the functional determinant as a Gaussian integral over Grass-
mann variables due to the following lemma which describes the finite dimensional
case.

Lemma 6.1. “
Œd	�d	� exp.�	�A	/ D detA;

with the notational conventions

	�A	 D
X
j;k

	�
j Ajk	k;

“
Œd	�d	� D

“
� � �
“

d	�
nd	n : : : d	

�
1d	1

for complex Grassmann variables 	j , 	�
j (j D 1; : : : ; n) and a complex .n � n/-

matrix A.

Let us denote by G the space of complex Grassmann numbers generated by the
pairwise anticommuting Grassmann variables f	j ; 	�

j gj2N. We call G ˝MN .Bq/ the
space of ghost fields. The noncommutative integral, the Wodzicki residue, generalizes
in a canonical fashion on G ˝ MN .Bq/ via«

v ˝ ajD j�3 D
�«

ajD j�3
�
v for all a 2 MN .Bq/; v 2 G:



Chern–Simons action for noncommutative spaces 647

Equipped with these preliminaries we rewrite the functional determinant

Z
Dc�Dc exp

�
�
«
c�ıh.Au/=ıujuD1cjD j�3

�
D det.ıh.Au/=ıujuD1/

for two ghost fields c�; c 2 G ˝ MN .Bq/. Inserting this expression in (6.2) yields

Z
Dc�DcDA exp

�
iSCS.A/ �

« �
i

2a
h.A/2 C c�ıh.Au/=ıujuD1c

�
jD j�3

�
:

(6.3)

Remark 6.2. Note that in (6.3) we integrate over hermitian 1-forms itself instead
of equivalence classes, which is actually the aim doing gauge breaking. Therefore,
(6.3) allows an explicit computation which is performed in the next subsection as far
as possible.

6.2. Reduction theorem and conclusions. We work out a simplification of (6.3) by
means of Theorem 5.3 and Lemma 5.1. As a result we yield that the expression (6.3)
depends only on the A1-part ofA up to an infinite, but irrelevant constant. Using this
simplification we receive a more or less precise meaning of the notion “integrating
over all hermitian 1-forms A”.

LetA 2 MN .�
1.C1.SUq.2//// be a hermitian matrix of 1-forms,A D A1CA2

its decomposition given by Theorem 5.3. By means of Lemma 5.1 and the definition
of the gauge condition h we get

«
i

2a
h.A/2jD j�3 D i

4a �

Z 2�

0

�q.h.A
2// d�

D i

4a �

Z 2�

0

�q.h.A
2
1// d�

D
«

i

2a
h.A1/

2jD j�3:

Let x 2 C1.SUq.2// be a selfadjoint element and ut D exp.i tx/, for t 2 R, a
continuous 1-parameter group of unitary elements in C1.SUq.2//. We rewrite the
functional derivative ıh.Au/=ıujuD1 as

ıh.Au/=ıujuD1 D lim
t!0

.h.Aut / � h.A//u�t :

In order to apply Lemma 5.1 again we define the symbol map�q W G˝MN .Bq/ ! G
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also for ghost fields by �q.v ˝ a/ D v�q.a/ for all a 2 MN .Bq/ and v 2 G .«
c�ıh.Au/=ıujuD1cjD j�3

D
«
c� lim

t!0
.h.Aut / � h.A//u�t cjD j�3

D 1

2�

Z 2�

0

�q.c
�/�q. lim

t!0
.h.Aut / � h.A//u�t /�q.c�/ d�

D 1

2�

Z 2�

0

�q.c
�/. lim

t!0
.�q.h.A

ut // � �q.h.A///�q.u�t //�q.c/ d�

D 1

2�

Z 2�

0

�q.c
�/. lim

t!0
.�q.h.A

ut

1 // � �q.h.A1///�q.u�t //�q.c/ d�

D
«
c� lim

t!0
.h.A

ut

1 / � h.A1//u�tcjD j�3

D
«
c�ıh.Au

1/=ıujuD1cjD j�3;

where the fourth row follows from the fact that � is continuous on MN .Bq/. We are
ready to state the main result of this section.

Theorem 6.2. Let A D A1 C A2 a hermitian form in MN .�
1.C1.SUq.2//// and

its decomposition given by Theorem 5.3. The path integral of the Chern–Simons
action SCS.A/ over all hermitian 1-forms up to gauge equivalence depends only on
the A1-part of the action, i.e., up to an infinite – but irrelevant – constant, it is equal
toZ

DA1DcDc
� exp

�
iSCS.A1/ �

« �
i

2a
h.A1/

2 C c�ıh.Au1/=ıujuD1c
�

jD j�3
�

for any gauge fixing h 2 CŒX�.

Proof. From Theorem 5.3 we obtain SCS.A/ D SCS.A1/ � 2�k�1.A2/ and by the
considerations above we can perform the integration in the A2-part for itself, i.e.,

D
Z
DcDc�DA exp

�
iSCS.A/ �

« �
i

2a
h.A/2 C c�ıh.Au/=ıujuD1c

�
jD j�3

�

D
Z
DcDc�DA1DA2 exp.iSCS.A1/C iSCS.A2//

� exp
�

�
« �

i

2a
h.A1/

2 C c�ıh.Au1/=ıujuD1c�jD j�3
��

D
Z
DA2 exp.�2�ik�1.A2//

Z
DcDc�DA1

� exp
�
iSCS.A1/ �

« �
i

2a
h.A1/

2 C c�ıh.Au1/=ıujuD1c
�

jD j�3
�
:
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Since the cochain �1 is linear in A2 the first integral is a Fourier integral over A2 and
the statement follows.

Remark 6.3. By means of the theorems 5.4 and 6.2 one might think that the variables
Imkl and Rekl with k; l 2 Z are the relevant, dynamical ones and one can choose
the measure DA1 to be Q

k;l2Z

d ImkldRekl ;

an infinite product of ordinary Lebesgue measures. The only thing one has to take
care of is the appearance of A1 in the gauge fixing term. But if one chooses the
gauge fixing h appropriately, for instance linear in A1, one can also achieve that the
parameters �i

k
and �i

l
assemble to Rekl and Imkl as for the Chern–Simons action.

Hence we obtain a sensible measure for the path integral.

There are two properties of the Chern–Simons action for the quantum group
SUq.2/ which should be emphasized. Firstly, due to Theorem 5.4, the linear part of
our definition of the Chern–Simons action, resulting from the �1-cochain, does not
vanish. This makes the difference in comparison to the noncommutative 3-torus or
spectral triples coming from a 3-dimensional spin manifold, where the linear part
vanishes identically due to Proposition 3.2 in [20] or Corollary 3.3 respectively.

Second, the linear part shifts the critical points, the 1-forms where the Chern–
Simons action is extremal. This is important for the following reason. The Chern–
Simons action on equivalence classes of hermitian 1-forms A, modulo gauge trans-
formations, is only well-defined up to an additional additive constant 2�m, for an
integerm. Hence we can not perform Wick rotation in order to replace the integrand
exp.2�iSCS.A// of the path integral by exp.2�SCS.A//, because the last term de-
pends on the special choice of the representative A. This problem emerges also in
the classical, commutative case investigated by Witten in [26]. Witten circumvents
these problems by the use of techniques which are not available in noncommutative
geometry: eta invariants, frames, etc. Even though we are able to make sense of the
path integral for the quantum group SUq.2/ , it seems to be impossible to reproduce
Witten’s calculations in our noncommutative framework. Therefore, we do not want
to compute the path integral itself but only its 2-loops, i.e., we calculate the coeffi-
cient of k�1 in the Taylor expansion series of the path integral Z.k/ in the coupling
constant k�1. This was done, for instance, for the noncommutative 3-torus in [20].

In order to compute the path integral by means of a loop expansion we have to
perform this expansion at an extremal point of the Chern–Simons action SCS. Heuris-
tically, this can be understood as follows. We compute the integral of exp.iSCS.A//

over all hermitian 1-forms A up to gauge equivalence. For a 1-form A0 where the
first variation of the action SCS does not vanish, the integrand exp.iSCS.A// is oscil-
latory, so the contribution of neighbouring 1-forms A will tend to cancel out. But for
connection 1-forms where the Chern–Simons action is extremal, the first variation of
the action vanishes so that nearby 1-forms give constructive rather than destructive
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interferences. In other words, the major contribution to the path integral comes from
1-forms where the action is stationary. In the classical, commutative case, where no
additional linear terms emerge in the formula of the action functional, the Chern–
Simons action is extremal iff the curvature of the connection 1-form is zero (see [14],
Proposition 3.1, for a proof of this statement). Connection 1-forms with vanishing
curvature are called flat.

For SUq.2/ things do not work so easily any longer because the appearance of
the non vanishing linear part �1 forces a shift of the critical points to be different
from flat ones. In order to compute the 2-loops of path integral for SUq.2/ we must
find the shifted extremal points. This seems rather difficult. If one takes a closer
look at the formulas in Theorem 5.4 for the Chern–Simons action, the coupling of the
indices of the independent variables Rekl and Imkl by means of the ı:::-terms in the
expression of the �3-cochain, and the additional linear term induced by the cochain
�1 is remarkable. These two obstacles make a correct choice of the parameters Im0

kl

and Re0kl such that the Chern–Simons action becomes extremal rather difficult. At
this point, numerical methods should be applied.

Finally, we would like to mention that this is not the first time a classical action
is expanded by a linear term in the noncommutative setting. In [16] V. Gayal and
R. Wulkenhaar investigate the Yang–Mills action for a triple constructed on the non-
commutative d -dimensional Moyal space. Moreover, in [16] the authors discovered
an additional linear part of the Yang–Mills action for this noncommutative space.
With this linear part similar problems arises as in our Chern–Simons setting, due to
the shift of the critical points.

7. Chern–Simons action on noncommutative spaces – a topological invariant?

For ordinary 3-dimensional manifolds one obtains the Chern–Simons action by in-
tegration of a 3-form, i.e., a volume form. Hence the result does not depend on the
metric of the manifold. For noncommutative spaces it is not as easy to establish an
analogous result. Topological invariance in this case would mean that the action of
Definition 3.1 depends only on the underlying C�-algebra A of the spectral triple
.A;H ;D/, but not on the differential structure incorporated into the spectral triple
by the Dirac operator D , Hilbert space H , and the pre-C�-algebra A � A which
contains, due to regularity, the “smooth” elements of A. But exactly these additional
ingredients are involved in the definition of the cochains �3 and �1. Hence it is not
obvious why the action should be a topological invariant as in the classical case.

In fact, this does not hold true. The different spectral triples in [3] and [22]
for the quantum group SUq.2/ provide a counterexample. In many ways the triple
.C1.SUq.2//;H ;D/ constructed in [22] is very similar to the one in [3]. There is
essentially one important difference, the definition of the Hilbert space H . The Hilbert
space in [22] is a doubled version of the one in [3]. More precisely, the Hilbert space
of spinors H has an orthonormal basis labelled as follows. For each j D 0; 1

2
; 1; : : : ,
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we abbreviate jC D j C 1
2

and j� D j � 1
2

. The orthonormal basis consists
of vectors jj�n "i for j D 0; 1

2
; 1; : : : , � D �j; : : : ; j and n D �jC; : : : ; jC;

together with jj�n #i for j D 1
2
; 1; : : : , � D �j; : : : ; j and n D �j�; : : : ; j�. We

adopt a vector notation by juxtaposing the pair of spinors

jj�nii ´
 jj�n "i

jj�n #i

!
;

with the convention that the lower component is zero when n D ˙.j C 1
2
/ or j D 0.

In this way, we get a decomposition H D H " ˚ H # into subspaces spanned by the
“up” and “down” kets respectively.

The Dirac operator D is diagonal in the given orthonormal basis of H , and is a
selfadjoint operator of the form

D jj�nii D
�
2j C 3

2
0

0 �2j � 1
2

�
jj�nii:

The spectrum of this Dirac operator coincides with the one of the classical Dirac
operator of the sphere S3 equipped with the standard metric. We let D D F jD j be
the polar decomposition of D where jD j ´ p

D2 and F D sgn D . Explicitly, we
see that

F jj�nii D
�
1 0

0 �1
�

jj�nii; jD j jj�nii D
�
2j C 3

2
0

0 2j C 1
2

�
jj�nii:

Clearly, P " ´ 1
2
.1 C F / and P # ´ 1

2
.1 � F / D 1 � P " are the orthogonal

projectors whose range spaces are H " and H # respectively.
The precise form of the representation of the generators ˛ and ˇ is not necessary

for our purposes. Hence we skip the definitions and refer the reader to [22].
In [23] the authors proceed by constructing a cosphere bundle C1.S�

q / for
.C1.SUq.2//;H ;D/ in an analogous way as in [8], and end up with a similar

result for the local index formula. The maps �, 
1, 
"
0 , 
#

0 and the grading are defined
in a similar way as in Section 4.2. Let us state Theorem 4.1 in [23].

Theorem 7.1. The dimension spectrum of the spectral triple .C1.SUq.2//;H ;D/

is simple and given by f1; 2; 3g; the corresponding residues are«
T jD j�3 D 2.
1 ˝ 
1/.r�.T /

0/;«
T jD j�2 D .
1 ˝ .


"
0 C 


#
0 /C .


"
0 C 


#
0 /˝ 
1/.r�.T /

0/;«
T jD j�1 D .


"
0 ˝ 


#
0 C 


#
0 ˝ 


"
0 /.r�.T /

0/;
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P "T jD j�3 D .
1 ˝ 
1/.r�.T /

0/;«
P "T jD j�2 D .
1 ˝ 


#
0 C 


"
0 ˝ 
1/.r�.T /

0/;«
P "T jD j�1 D .


"
0 ˝ 


#
0 /.r�.T /

0/;

with T 2 Bq . Here �.T /0 denotes the zero graded part of �.T / in the cosphere
bundle C1.S�

q /.

Knowing all these residues we can compute the cyclic cocycle .�3; �1/ of the local
index theorem in general, and the cochain �3 in particular. Due to the simplicity of
the dimension spectrum the cochain �3 reduces to the formula

�3.a
0da1da2da3/ D 1

12

«
a0 ŒD; a1� ŒD; a2� ŒD; a3�jD j�3:

Corollary 7.2. Let .C1.SUq.2//;H ;D/ be the spectral triple for SUq.2/ con-
structed in [22]. Then the cochain �3 vanishes identically.

Proof. In [23] it was proven that ŒF; x� is a trace class operator for all x 2 ‰0.A/,
where ‰0.A/ denotes the algebra which is generated by ık.A/ and ık.ŒD ;A�/ for
k � 0, with ı. � / D ŒjD j; � �. Since the space of trace class operators is an ideal in
B.H / and

ª
T D 0 for any trace class operator T , we can rewrite the cochain �3 in

the following form:

�3.a0da1da2da3/ D 1

12

«
a0 ŒD; a1� ŒD; a2� ŒD; a3� jDj�3

D 1

12

«
Fa0 ŒjDj; a1� ŒjDj; a2� ŒjDj; a3� jDj�3:

We have the identity F D 2P " � 1, and with Theorem 7.1 we obtain

�3.a0da1da2da3/ D 1

12

«
Fa0 ŒjDj; a1� ŒjDj; a2� ŒjDj; a3� jDj�3

D 1

6

«
P "a0 ŒjDj; a1� ŒjDj; a2� ŒjDj; a3� jDj�3

� 1

12

«
a0 ŒjDj; a1� ŒjDj; a2� ŒjDj; a3� jDj�3

D 1

6
.
1 ˝ 
1/.r�.a0 ŒjDj; a1� ŒjDj; a2� ŒjDj; a3�/0/

� 1

12
.2.
1 ˝ 
1/.r�.a0 ŒjDj; a1� ŒjDj; a2� ŒjDj; a3�/0//

D 0:
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Since the cochain �3 vanishes, the Chern–Simons action for the triple in [22]
reduces to the �1-term, i.e., for any matrix of 1-forms A 2 �1.MN .C

1.SUq.2////
we obtain SCS.A/ D �2�k�1.A/. Hence the action is linear inA, which is certainly
not true for the action computed in Theorem 5.4.

Theorem 7.3. The Chern–Simons action of Definition 3.1 depends not only on the
underlying C�-algebraA but also on the particular spectral triple .A;H ;D/. Hence
it is not a topological invariant.
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