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Abstract. We develop an elliptic theory for operators associated with a diffeomorphism of a
closed smooth manifold. The aim of the present paper is to obtain an index formula for such
operators in terms of topological invariants of the manifold and the symbol of the operator.
The symbol in this situation is an element of a certain crossed product. We express the index
as the pairing of the class in K-theory defined by the symbol and the Todd class in periodic
cyclic cohomology of the crossed product.
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Introduction

Let M be a smooth manifold and g W M ! M be a diffeomorphism. We develop an
elliptic theory for operators of the form

D D P
k

DkT
k W C1.M/ ! C1.M/: (0.1)

Here T is the shift operator T u.x/ D u.g.x// along the orbits of g, Dk are pseu-
dodifferential operators ( DO) on M , and the sum is assumed to be finite.

The aim of the present paper is to obtain an index formula for the operator (0.1)
in terms of topological invariants of the manifold and of the symbol of the operator.
Precise definitions of all the objects will be given below, but now let us note an
important characteristic property of this theory. Namely, the algebra of symbols of
operators (0.1) is not commutative. More precisely, an explicit computation shows
that the algebra of symbols is the crossed product C1.S�M/ Ì Z of the algebra
of functions on the cosphere bundle by the action of the group Z. This essentially
means that we consider noncommutative elliptic theory.

Special classes of operators (0.1) were considered by a number of authors (e.g.,
see [1], [2], [16], [27], [29], [30], [37], [38], [39]). In these papers, as a rule, certain
conditions were imposed on the manifold M and on the diffeomorphism g. For
example, in the book [27] it is assumed that the diffeomorphism is an isometry, in
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[2] the diffeomorphism is arbitrary, but the manifold is one-dimensional, and so on.
Further, we would like to mention papers [17] and [26], where the authors study
elliptic operators of the form (0.1) that are associated with the Dirac operator and
conformal diffeomorphisms. Let us stress that in the present paper we consider an
arbitrary compact smooth manifold and an arbitrary diffeomorphism without any
restrictions.

The main result of the paper is an explicit index formula for the elliptic operator
(0.1). More explicitly, the answer is given by the formula

indD D .2�i/�nhŒ�.D/�;Todd.T �
CM/i; dimM D n; (0.2)

in terms of cyclic cohomology, where Œ�.D/� 2 K0.C
1.S�M � S1/ Ì Z/ is the

class of symbol in K-theory, Todd.T �
CM/ 2 HPev.C1.S�M � S1/Ì Z/ is the Todd

class in cyclic cohomology and the brackets h ; i denote the pairing of K-theory and
cyclic cohomology.

Let us briefly describe the methods used in the present paper. It is clear more
or less that a noncommutative elliptic theory requires a noncommutative apparatus:
noncommutative differential forms, noncommutative trace, etc. Moreover, since the
diffeomorphism generates an action of the group Z, the relevant topological invariants
are naturally elements of the Haefliger cohomology groupH�.S�M=Z/ (see [22]). In
this framework, we define the Chern character and establish an important intermediate
index formula (interesting in its own right) as an integral of a Haefliger form over
S�M � S1. After this, we reduce the obtained formula to the natural and elegant
formula (0.2). The latter index formula can be considered as an analogue of the
Atiyah–Singer formula in our situation.

We now describe the contents of the paper. In Section 1 we introduce a notion of
ellipticity and prove finiteness theorem. In Section 2 we define Chern characters for
crossed products, including twisted Chern character, and define the Chern character
of an elliptic symbol. Section 3 is devoted to the solution of the equation

ch y D Td x; (0.3)

where Td x is the Todd class of a complex vector bundle x and ch is the Chern char-
acter. The point here is that in our situation the Todd class is generally speaking
undefined. However, it can be replaced by the Chern character of a bundle satisfying
eq. (0.3). Finally, in Section 4 we formulate an index theorem (in Haefliger coho-
mology). The proof of the index theorem is given in Sections 5 and 6. Namely, in
Section 5 we reduce our initial operator to a special boundary value problem on the
cylinder M � Œ0; 1� (see [32], [33]), which is then reduced to a certain pseudodiffer-
ential operator on the torus of the original manifold twisted by the diffeomorphism g

(cf. [7], [11]). The index of the latter operator can be computed by the Atiyah–Singer
formula. However, to give an index formula in terms of the original operator, we
need to compare the index formula for the pseudodifferential operator on the torus
and the formula announced in Section 4. So the proof of the index formula for the
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original operator is complete, at least in the framework of Haefliger cohomology.
In Section 7 we interpret the index formula in Haefliger cohomology as an Atiyah–
Singer formula in cyclic cohomology. Here we use equivariant characteristic classes
in cyclic cohomology (see [21]). In Section 8 we give some remarks and consider an
example.

This work was supported in part by RFBR grant Nr. 12-01-00577, DFG grant
436 RUS 113/849/0-1r“K-theory and noncommutative geometry of stratified mani-
folds”, the Simons Foundation and was done at the Institute of Analysis of Leibniz
University of Hannover. We are grateful to Prof. Elmar Schrohe, in whose working
group this research was done, for attention and excellent working conditions. We are
also grateful to Prof. Victor Nistor for useful remarks.

1. Ellipticity and finiteness theorem

LetM be a smooth closed manifold and g W M ! M be a diffeomorphism. Consider
an operator of the form

D D P
k

DkT
k W C1.M;CN / ! C1.M;CN /; (1.1)

where T W C1.M/ ! C1.M/, T u.x/ D u.g.x//, is the shift operator correspond-
ing to g, the coefficients

Dk W C1.M;CN / ! C1.M;CN /

are pseudodifferential operators ( DO) of order zero and the sum in (1.1) is finite.
Denote the principal symbols of the coefficients by

�.Dk/ 2 C1.S�M;MatN .C//:

Here S�M D T �
0M=RC stands for the cosphere bundle with the projection

� W S�M ! M , where T �
0M D T �M n 0 is the cotangent bundle with the zero

section deleted.

Definition 1.1. The symbol of the operator D is the collection �.D/ D f�.Dk/g of
symbols of its coefficients.

If
B D P

BkT
k W C1.M;CN / ! C1.M;CN / (1.2)

is another operator of the form (1.1), then the symbol of the composition of (1.1) and
(1.2) is determined by the formula

�.DB/.k/ D P
lCmDk

�.Dl/Œ.@g/
l��.Bm/�: (1.3)

The product of symbols on the right-hand side of eq. (1.3) is called the crossed product
of symbols. Here @g D .dgt /�1 W T �M ! T �M is the codifferential of g.
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Definition 1.2. An operatorD is elliptic if there exists a symbol �.D/�1 with a finite
number of nonzero components such that

�.D/�.D/�1 D 1; �.D/�1�.D/ D 1;

where the product of symbols is defined by eq. (1.3), while the symbol of the identity
operator Id D T 0 is denoted by 1.

The composition formula (1.3) readily implies the following finiteness theorem.

Theorem 1.1. An elliptic operator (1.1),

D W H s.M;CN / ! H s.M;CN /;

is Fredholm in Sobolev spaces for all s, and its kernel and cokernel consist of smooth
functions.

Proof. Indeed, since D is elliptic, the inverse symbol �.D/�1 has finitely many
nonzero components. Denote by D�1 an arbitrary operator with symbol equal to
�.D/�1. Then a direct computation shows that D�1 is an inverse of D modulo
operators of negative order.

Remark 1.1. The set of all symbols is an algebra with respect to the product (1.3).
This algebra is actually the algebra of matrices whose entries are elements of the
crossed product (e.g., see [44]) of the algebra C1.S�M/ of smooth functions on
S�M and the group Z. The latter algebra is denoted by C1.S�M/ Ì Z. In the
present paper, we consider only algebraic crossed products whose elements have at
most a finite number of nonzero components.

2. Chern characters for crossed products

2.1. Chern character. Let g W X ! X be a diffeomorphism of a smooth closed
manifold X and E 2 Vect.X/ be a vector bundle.

We recall some facts of the theory of noncommutative differential forms (e.g., see
[15], [16], [27]).

Noncommutative differential forms. Letƒ.X/ be the algebra of differential forms
onX with smooth coefficients. Following [27], we define the spaceƒ.X;EndE;Z/
of noncommutative forms on X . This space consists of finite sequences

a D fa.k/g; a.k/ 2 ƒ.X/˝ Hom.gk
�
E;E/; deg a D max

k
deg a.k/;

which we represent as operators

a D P
k

a.k/T k W ƒ.X;E/ ! ƒ.X;E/;
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where for ! 2 ƒ.X;E/ we set T! ´ g�! 2 ƒ.X; g�E/. This operator inter-
pretation endows the space ƒ.X;EndE;Z/ with an algebra structure. Namely, the
product of two forms a D P

k a.k/T
k and b D P

l b.l/T
l is the form

ab D P
k;l

a.k/gk
�
.b.l//T kCl :

The subalgebra of forms of zero degree is denoted by C1.X;EndE;Z/.

Remark 2.1. For a trivial bundle 1n of rank n, we have

ƒ.X;End 1n;Z/ ' ƒ.X;Matn.C// Ì Z:

More generally, suppose we are given a g-bundle E. This means that the mapping
g W X ! X is extended to a fiberwise-linear mapping Qg D ˛g� W E ! E, where
˛ W g�E ! E is an isomorphism of vector bundles. In this case we have an isomor-
phism of algebras

ƒ.X;EndE;Z/ ' ƒ.X;EndE/ Ì Z;
P
k

a.k/T k 7! P
k

Œa.k/T k.˛T /�k� zT k :

Here
zT D ˛T W ƒ.X;E/ ! ƒ.X;E/ (2.1)

is the action of the shift operator on the sections ofE, while the algebraƒ.X;EndE/Ì
Z is the crossed product for the shift operator (2.1).

Graded trace. We define a graded trace on noncommutative forms taking values in
Haefliger forms on the manifold. To this end, we first recall necessary facts about
Haefliger forms and cohomology (see [22]). In the de Rham complex .ƒ.X/; d/,
consider the subcomplex ..1 � g�/ƒ.X/; d/.

Definition 2.1. The space of Haefliger forms on X , denoted by ƒ.X=Z/, is the
quotient space ƒ.X/=.1 � g�/ƒ.X/. The cohomology of the quotient complex
.ƒ.X/=.1 � g�/ƒ.X/; d/ is the Haefliger cohomology of X with respect to the
diffeomorphism g and is denoted by H.X=Z/.

Example 2.1. It is clear from the definition that Haefliger forms are automatically
g-invariant. Moreover, if gN D Id , then the spectral decomposition with respect
to g shows that the Haefliger complex is isomorphic to the complex .ƒ.X/g ; d / of
g-invariant forms. Therefore, Haefliger cohomology in this case is isomorphic to
the cohomology of the quotient X=ZN of X by the action of the group generated
by the diffeomorphism g. This gives an explanation for our notation of Haefliger
cohomology.
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Consider the mapping

�E W ƒ.X;EndE;Z/ ! ƒ.X=Z/;
P
k

!.k/T k 7! trE .!.0//; (2.2)

where ƒ.X=Z/ is the space of Haefliger forms on X , while trE W ƒ.X;EndE/ !
ƒ.X/ is the trace of an endomorphism of E.

The mapping (2.2) for the trivial bundle E D X � Cn will be denoted by � .

Lemma 2.1. The mapping (2.2) is a graded trace on the algebra ƒ.X;EndE;Z/,
i.e.,

�E
�
Œ!1; !2�

� D 0 whenever !1; !2 2 ƒ.X;EndE;Z/;

where Œ ; � stands for the supercommutator

Œ!1; !2� D !1!2 � .�1/deg!1 deg!2!2!1:

Proof. The proof is straightforward:

�E .!1T
k!2T

�k/ D trE .!1g
k�.!2//

D trg�k�E .g
�k�.!1gk�.!2///

D trg�k�E ..g
�k�!1/!2/

D .�1/deg!1 deg!2�E .!2T
�k!1T k/:

Here !1 2 ƒ.X;Hom.gk�E;E// and !2 2 ƒ.X;Hom.g�k�E;E// . The first and
the last equalities follow from the definition of the product of noncommutative forms;
the second equality follows from the properties of Haefliger forms; the third equality
follows from the properties of the induced mapping.

Noncommutative connection and curvature form. We choose a connection in E

rE W ƒ.X;E/ ! ƒ.X;E/:

Given a projection p 2 C1.X;EndE;Z/, we define a differential operator

r ´ prEp W ƒ.X;E/ ! ƒ.X;E/: (2.3)

of order one. A noncommutative connection for p is the sum

p.rE C !/p

of the operator (2.3) and multiplication by p!p with ! 2 ƒ1.X;EndE;Z/.

Lemma 2.2. For a noncommutative connection r one has

d�E .A/ D �E .Œr; A�/
whenever A 2 ƒ.X;EndE;Z/ is such that pA D A D Ap.
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Proof. 1. Since �E is a graded trace, we see that the right-hand side of the equality
does not depend on the choice of r. Therefore, below we assume that r is defined
as in (2.3).

2. For a trivial bundle with the trivial connection r D p � d � p we obtain

�.Œp � d � p;A�/ D �.pdpAC pdA � dpA/ D �.pdA/ D �.dA/ D d�.A/:

(Here we use the identities .dA/p CA.dp/ D dA and .dp/AC pdA D dA, which
are obtained by differentiation of Ap D A D pA.)

3. Let us realizeE as a subbundle in the trivial bundleX�Cn. Then the left-hand
side of the desired equality is equal to

d�E .A/ D d�.A/;

whereas the right-hand side is equal to

�.ŒprEp;A�/ D �.ŒprCnp;A�/ D �.Œp � d � p;A�/ D d�.A/:

(In the trivial bundle X � Cn we choose the connection rCn equal to the direct sum
of the connection in E and some connection in the orthogonal complement of E.)

Proposition 2.1. For any noncommutative connection r the operator

r2 W ƒ.X;E/ ! ƒ.X;E/

is an operator of multiplication by a 2-form. This form is denoted by

� 2 ƒ2.X;EndE;Z/ (2.4)

and is called the curvature form of the noncommutative connection r.

Proof. Let us embed E as a subbundle of the trivial bundle X � Cn. Then the direct
sum of a noncommutative connection for p and some noncommutative connection
for 1 � p is a noncommutative connection of the form rCn D d C !, where ! is a
matrix-valued noncommutative 1-form on X .

Given a section u D pu, a direct computation enables us to compute the curvature
form

.prp/2u D .prCnp/2u

D .p.d C !/p/2u

D .p.d C !//2u

D .pdpdp � !dp C !p! C dp! C pd!/u:
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Chern character

Definition 2.2. The Chern character form of a projection

p 2 C1.X;EndE;Z/

is the Haefliger form

chp ´ �E

�
p exp

�
� �

2�i

��
2 ƒev.X=Z/;

where � is the curvature form (2.4).

Proposition 2.2. The form chp is closed and its Haefliger cohomology class does
not depend on the choice of a noncommutative connection and is determined by the
class of projection p in the group K0.C1.X;EndE;Z//.

Remark 2.2. Here the K0-group of C1.X;EndE;Z/ is by definition the Grothen-
dieck group of homotopy classes of matrix projections with entries in this algebra.

Remark2.3. Strictly speaking, to define the Chern character on theK-group, we need
to consider arbitrary matrix projections overC1.X;EndE;Z/, while we considered
only scalar projections. However, matrix projections can be considered as elements
of the algebra C1.X;End.E ˝ Ck/;Z/. Therefore, we do not consider the matrix
case to avoid excessively complicated notation.

Proof of Proposition 2.2. 1. By Lemma 2.2, the form chp is closed. Indeed, we
have

d�E .�
k/ D �E .Œr; �k�/ D 0

since Œr;r2k� D 0.
2. Let us show that the cohomology class of chp does not depend on the choice of

the noncommutative connection r. Let r0, r1 be two noncommutative connections
for p. Then their difference is an operator of multiplication by a noncommutative
1-form ˛ ´ r1 � r0. Consider the homotopy of noncommutative connections

rt D .1 � t /r0 C tr1:
Then we have d

dt
rt D p.r1 � r0/p D p˛p: Hence,

d

dt
�E .r2k

t / D k�E

��
d

dt
r2
t

�
r2k�2
t

�

D k�E

��
rt ; d

dt
rt
�
r2k�2
t

�

D k�E

��
rt ;

� d
dt

rt
	
r2k�2
t

��

D d�E

�
k

�
d

dt
rt
�

r2k�2
t

�
:
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Integrating this expression over t 2 Œ0; 1�, we obtain

�E .r2k
1 / � �E .r2k

0 / D d!0; (2.5)

where !0 is some differential form. Eq. (2.5) means that the forms chp defined in
terms of r1 and r0 are cohomologous.

3. Let pt ; t 2 Œ0; 1� be a smooth homotopy of projections connecting p0 to p1.
We want to show that the difference of the corresponding Chern character forms is
an exact form. By item 2 of the present proof, it suffices to consider the case, where
p acts in a trivial bundle with the trivial connection rE D d . In this case, �E is a
differential graded trace. Hence, homotopy invariance of the Chern form in Haefliger
cohomology follows from the standard computations (e.g., see [27]).

By this proposition, we obtain a well-defined mapping (Chern character)

K0.C
1.X;EndE;Z//

ch�! H ev.X=Z/:

Example 2.2. Let E D X � CN be the trivial bundle and rE D d . Then the
noncommutative connection is equal to rp D pdp, its curvature form is equal to
�p D .rp/2 D pdpdp. Hence, the Chern character form is given by the standard
formula

chp D trŒp exp.�dpdp=2�i/�0;
where !0 denotes the coefficient at T 0 D 1 and tr is the matrix trace.

2.2. Twisted Chern character (Chern character with coefficients in a vector bun-
dle). Given a diffeomorphism g W X ! X as above, we defined Chern character
on the K-group K0.C1.X/ Ì Z/. Suppose now, we are also given a g-bundle
E 2 Vect.X/ (i.e., there is an extension of the diffeomorphism g W X ! X to a
fiberwise isomorphism E ! E). Then on the same K-group we can define Chern
character twisted by E. To define this twisted Chern character, consider the algebra
homomorphism

ˇ W C1.X/ Ì Z ! C1.X;EndE/ Ì Z;
P
k

a.k/T k 7! P
k

.a.k/˝ 1E / zT k;

where zT W C1.X;E/ ! C1.X;E/ is the shift operator (see (2.1)).

Definition 2.3. The twisted Chern character is the composition of mappings

chE W K0.C1.X/ Ì Z/
ˇ��! K0.C

1.X;EndE/ Ì Z/
ch�! H ev.X=Z/:

If the element of K-theory comes from the commutative subalgebra C1.X/ �
C1.X/ Ì Z, then the twisted Chern character is computed in terms of the classical
Chern character as shown in the following proposition.
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Proposition 2.3. The composition of mappings

K0.C
1.X// ! K0.C

1.X/ Ì Z/
chE��! H ev.X=Z/

is equal to Œp� 7! .ch Im p/.chE/, where Im p 2 Vect.X/ is the vector bundle
defined by projection p, while ch is the Chern character of a vector bundle.

Proof. Take Œp� 2 K0.C
1.X//. Then we have chE .p/ D ch.ˇ.p//. But ˇ.p/ D

p ˝ 1E is a matrix over the algebra C1.X;EndE/. Hence, the class ch.ˇ.p//
coincides with the classical Chern character of the vector bundle Im.p ˝ 1E / '
Imp˝E. Hence, by the multiplicative property of the classical Chern character, we
obtain the desired formula chE .p/ D .ch Im p/.chE/:

2.3. The Chern character of an elliptic symbol

Class of symbol in K-theory. Let D be an elliptic operator of the form (1.1). To
its symbol �.D/ we now assign an element in K-theory. To this end, we extend the
diffeomorphism @g W S�M ! S�M to a diffeomorphism S�M � S1 ! S�M � S1

that acts as identity along S1. This action defines a crossed product denoted by
C1.S�M � S1/ Ì Z. Consider the projection P D fP .'/g

P .'/ D

8̂̂ˆ̂<
ˆ̂̂̂:

 
IN cos2 ' �.D/ sin ' cos'

�.D/�1 sin ' cos' IN sin2 '

!
for ' 2 Œ0; �=2�;

 
IN cos2 ' IN sin ' cos'

IN sin ' cos' IN sin2 '

!
for ' 2 Œ�=2; 2��;

where ' is the coordinate on the circle. Note that the coefficients of P are piecewise
smooth functions of '.

Let us define the element

Œ�.D/� D ŒP � 2 K0.C1.S�M � S1/ Ì Z/; (2.6)

where ŒP � is the equivalence class of the smoothed family of projections fP .'/g in
a neighborhood of submanifolds ' D 0 and ' D �=2.

Chern character. Given an elliptic symbol and a g-bundleE 2 Vect.X/, it follows
from the constructions of the previous subsection that we have the twisted Chern
character

chE Œ�.D/� 2 H ev.S�M=Z/ (2.7)

in Haefliger cohomology. In Section 3, we define a special twisting bundle that is
useful for the index formula. Let us now obtain a property of the Chern character (2.7)
that simplifies its computation.

Let t D '=2� be the coordinate along the generator of the torus S�M � S1.
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Lemma 2.3. One has

chE Œ�.D/� D trE exp
�

� r2
tor

2�i

�
2 H�..S�M � S1/=Z/; (2.8)

where the operator

rtor D dt
@

@t
C tr C .1 � t /��1r�; � D ˇ.�.D//; (2.9)

is defined by an arbitrary noncommutative connection r inE and r2
tor is the curvature

form.

Proof. We have Œ�.D/� D ŒP � (see (2.6)). Consider the isomorphism

U' W Im P .0/ ! Im P .'/; ' 2 Œ0; 2��;

U' D

8̂̂ˆ̂̂<
ˆ̂̂̂̂:

 
IN cos' �.� sin '/

��1 sin ' IN cos'

!
if ' 2 Œ0; �=2�;0

@cos.' � �=2/ � sin.' � �=2/

sin.' � �=2/ cos.' � �=2/

1
A 0 ��

��1 0

!
if ' 2 Œ�=2; 2��:

We use this isomorphism and operator (2.9) to define the noncommutative connection

r 0 D .P .'/U'/rtor.U
�1
' P .'//

for the projection P D fP .'/g on the cylinder S�M � Œ0; 2��. We claim that this
expression defines a connection on the torus S�M � S1. To prove this, we need to
check that the coefficients of the connection at ' D 0 and ' D 2� are compatible.
At ' D 0 we have

r 0j'D0 D
�
1 0

0 0

�
��1r�

�
1 0

0 0

�
D
�
��1r� 0

0 0

�
;

while at ' D 2� we obtain

r 0j'D2� D
�
1 0

0 0

��
��1 0

0 �

�
r
�
� 0

0 ��1
��

1 0

0 0

�
D
�
��1r� 0

0 0

�
:

Therefore, we obtain the equality r 0j'D0 D r 0j'D2� , i.e., the coefficients of the
connection are compatible and therefore r 0 is a well-defined connection on the torus
S�M � S1.

The powers of the curvature form of this connection are equal to

.r 0/2N D .P .'/U'/r2N
tor .U

�1
' P .'//; N � 1:

Hence we have �E .r 02N / D �E .r2N
tor /; i.e., we obtain the desired equality (2.8).
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3. The equation chy D Tdx

Let x be a complex vector bundle over some space Z. Consider the equation

ch y D Td x; (3.1)

where Td x is the Todd class of x. Since the Chern character defines a rational
isomorphism K0.Z/ ˝ Q ' H ev.Z/ ˝ Q, eq. (3.1) has a unique solution y 2
K0.Z/˝Q, which we denote for brevity by .x/. Moreover, the mappingx 7!  .x/

defines the operation

 W K0.Z/˝ Q ! K0.Z/˝ Q

in K-theory with rational coefficients. This operation is multiplicative,

 .aC b/ D  .a/ .b/

(this follows from the multiplicative property of the Todd class), and stable,

 .aC 1/ D  .a/:

By a theorem of Atiyah [5] any stable operation in K-theory is a formal power
series in Grothendieck operations �j , j D 1, 2, … , with rational coefficients. In
addition, any multiplicative operation is determined by a formal power series

f .x/ D 1C P
k�1

akx
k

as follows:

1) The infinite product f .x1/f .x2/ : : : is represented as a symmetric formal power
series in variables x1, x2, …. Hence, this product is expressed as a formal power
series Q

j

f .xj / D P.�1; �2; : : : /

in terms of elementary symmetric functions �1.x1; x2; : : : /, �2.x1; x2; : : : /, ….

2) A multiplicative operation for f is obtained if we replace the elementary sym-
metric functions by Grothendieck operations

P.�1; �2; : : : /:

For the operation  , the corresponding formal power series is computed in the
following proposition.

Proposition 3.1. The multiplicative operation  is defined by the series

 .x/ D ln.1C x/

x
.1C x/ D 1C

1X
nD1

.�1/nC1

n.nC 1/
xn:



Index of elliptic operators for diffeomorphisms of manifolds 707

Proof. To compute the coefficients of the desired series f , let us take Z D CPN as
N ! 1. We have K.CPN / D ZŒx�=fxNC1 D 0g, x D Œ"� � Œ1�, where " is the
tautological line bundle over the projective space and 1 is the trivial line bundle. We
have ch x D eu � 1, where u D ŒCP1� � H 2.CPN / D Z is the generator.

Let us use the method of undetermined coefficients. Let

 .x/ D P
k�0

ckx
k; c0 D 1:

Then the equation ch .x/ D Td x is written asX
k

ck.e
u � 1/k D u

1 � e�u :

Changing the variable by the rule eu � 1 D t , this gives the desired function

 .t/ D .1C t /
ln.1C t /

t
:

Note that Grothendieck operations can be expressed in terms of operations of direct
sum, tensor product and exterior powers. Therefore, if E is a g-bundle, then  .E/
(as a virtual bundle with rational coefficients) can also be considered as a g-bundle.
A direct computation gives the following explicit expressions for the operation  on
spaces Z of small dimension.

Proposition 3.2. The operation  is equal to (here n D rkE)

 .E/ D 1C E � n
2

if dimZ � 3;

 .E/ D 3n2 � 19nC 24

24
C .�3nC 13/

12
E � 1

6
E ˝E C 7

12
ƒ2E if dimZ � 5.

Proof. The series  .x/ defines the symmetric formal power series

Y
j

.1C xj /
Y
j

ln.1C xj /

xj
� AB; A D 1C �1 C �2 C � � � :

Let us express the term B in terms of elementary symmetric functions. We have

B D
Y�

1 � xj

2
C x2j

3
� x3j

4
C � � �

	
D 1 � 1

2

X
xj C 1

3

X
x2j C 1

4

X
i<j

xixj � 1

4

X
x3j

� 1

6

X
i¤j

xix
2
j � 1

8

X
i<j<k

xixjxk C � � � ;



708 A. Savin and B. Sternin

where dots stand for terms of orders � 4. Let pk D P
j x

k
j and continue the

computation

B D 1 � p1

2
C p2

3
C �2

4
� p3

12
� p1p2

6
� �3

8
C � � �

D 1 � �1

2
C �21 � 2�2

3
C �2

4
� �31 � 3�1�2 C 3�3

12
� �1.�

2
1 � 2�2/
6

� �3

8
C � � �

D 1 � �1

2
C 4�21 � 5�2

12
C �6�31 C 14�1�2 � 9�3

24
C � � � :

Here we used Newton’s formulas

p1 D �1; p2 D �21 � 2�2; p3 D �31 � 3�1�2 C 3�3:

This implies the following expression for  in terms of Grothendieck operations:

 D .1C �1 C �2 C �3 C : : : /�
1 � �1

2
C 4�21 � 5�2

12
C �6�31 C 14�1�2 � 9�3

24
C � � �

	
D 1C �1

2
C �2�21 C 7�2

12
C 2�31 � 8�1�2 C 15�3

24
C � � � :

(3.2)

The operations �j can be expressed in terms of exterior powers (see [5])

�t �
X

�j t
j

D
X
k�0

tk

.1 � t /kƒ
k.1 � t /n

D .1 � t /n
�
1C t

1 � t ƒ
1 C t2

.1 � t /2ƒ
2 C t3

.1 � t /3ƒ
3 C � � �

	
D .1 � t /n.1C tƒ1 C t2.ƒ1 Cƒ2/C t3.ƒ1 C 2ƒ2 Cƒ3/C � � � /
D 1C t .ƒ1 � n/C t2

�
ƒ1 Cƒ2 � nƒ1 C n.n � 1/

2

	
C t3

�
ƒ1 C 2ƒ2Cƒ3

� nƒ1 � nƒ2 C n.n � 1/
2

ƒ1 � n.n � 1/.n � 2/
6

	
C � � � :

Substituting these expressions in (3.2), we obtain the following formula

 D 1C ƒ1 � n
2

C �2.ƒ1 � n/2 C 7.ƒ1 Cƒ2 � nƒ1 C n.n � 1/=2/
12

C 2.ƒ1 � n/3 � 8.ƒ1 � n/.ƒ1 Cƒ2 � nƒ1 C n.n � 1/=2//
24

C 15.ƒ1 C 2ƒ2 Cƒ3 � nƒ1 � nƒ2 C n.n�1/ƒ1

2
� n.n�1/.n�2/

6
/

24
C � � � :

(3.3)
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In Borel–Hirzebruch formalism [12] we have ch D P
exj . Hence

ch �t D Q
.1C t .exj � 1//:

It follows from this expression that for a vector bundleE 2 Vect.Z/we get ch �k.E/ 2
H�2k.Z/. Now consider the class ch �K.E/, where K D .k1; : : : ; kp/ is a multi-
index, and �K.E/ D �k1

.E/ : : : �kp
.E/. Then this expression is identically zero

whenever 2jKj D 2
P
kj > dimZ. This implies that the terms denoted by dots in

eq. (3.3) are actually equal to zero provided that dimZ � 7. Using this remark, we
obtain the following expressions for the operation  :

dimZ � 3:
 .E/ D 1C .E � n/=2:

dimZ � 5:

 .E/ D 1C E � n
2

C �2.E2 � 2nECn2/C 7.E Cƒ2E � nE C n.n � 1/=2/
12

D 3n2 � 19nC 24

24
C .�3nC 13/

12
E � 1

6
E ˝E C 7

12
ƒ2E;

and so on.

4. Index theorem

The complexification of the cotangent bundle will be denoted by T �
CM D T �M ˝C

.

Theorem 4.1. LetD be an elliptic operator. Then its index is equal to

indD D
Z
S�M�S1

ch .T �

CM/Œ�.D/�; (4.1)

where the operation  was defined in Proposition 3.1 and ch stands for the twisted
Chern character (see Definition 2.3).

The right-hand side of eq. (4.1) will be referred to as the topological index of D
and denoted by indtopD.

Proposition 4.1. For an elliptic  DO D, the topological index is equal to the topo-
logical index of Atiyah and Singer (see [8]).

Proof. In our situation we have

ch .T �

CM/Œ�.D/� D chŒ�.D/� ch .T �
CM/ D chŒ�.D/�Td.T �

CM/:
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Here the first equality follows from Proposition 2.3 and the fact that D is a  DO.
The second equality follows from the definition of  . These equalities show that the
topological index in this case is equal to

indtopD D
Z
S�M�S1

chŒ�.D/�Td.T �
CM/:

The last expression is actually the Atiyah–Singer index formula for the index of a
pseudodifferential operator D.

Theorem 4.1 will be proved in subsequent sections. Here we give the scheme of
the proof.

(1) First in Section 5 we give a reduction of the operator (1.1) to some special
operator, whose index is equal to the index of a certain elliptic DO on a special
smooth closed manifold: the mapping torus of the diffeomorphismg W M ! M .

(2) Then we prove in Section 6 that the index of this  DO on the torus (computed
using the Atiyah–Singer index formula) is equal to the topological index of the
operator (1.1) on M .

5. Reduction of a noncommutative operator to a  DO on a closed manifold

5.1. Reduction to a special operator. In this subsection we obtain a reduction
(stable homotopy) of the operator (1.1) to an operator of the same type, but of a
simpler form.

Given matrix projections

p; q 2 C1.S�M;MatN .C//; p2 D p; q2 D q;

over S�M , we choose some  DOs with symbols equal to p and q and denote them
by P and Q.

Definition 5.1. A special operator is an operator of the form

D D QD0TP C .1 �Q/D1.1 � P / W H s.M;CN / ! H s.M;CN /; (5.1)

where H s is the Sobolev space, while

D0 W H s.M;CN / ! H s.M;CN /; D1 W H s.M;CN / ! H s.M;CN /;

are  DOs of order zero such that their symbols define vector bundle isomorphisms

�.D0/ W .@g/� Im p ! Im q; �.D1/ W Im .1 � p/ ! Im.1 � q/ (5.2)

over S�M . These vector bundles are defined as the ranges of projections p, q, 1�p,
1 � q.
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A special operator is elliptic in the sense of Definition 1.2. Moreover, an almost-
inverse operator can be defined by the formula

D�1 D PT �1D�1
0 QC .1 � P /D�1

1 .1 �Q/:

A homotopy of elliptic operators is a family fDtg, t 2 Œ0; 1�, of elliptic operators
such that the families of their coefficients are piecewise smooth functions of the
parameter t and the number of nonzero components of the family and its almost
inverse family are uniformly bounded. Two elliptic operators are stably homotopic
if there exists a homotopy between their direct sums with identity operators acting in
sections of some bundles.

Proposition 5.1 (cf. [3], [31]). The following statements hold.

(1) An arbitrary elliptic operator is stably homotopic to some special operator.

(2) An arbitrary special operator can be reduced by a stable homotopy and direct
sum with operator T ˚ T ˚ � � � ˚ T to a direct sum of an elliptic  DO and a
special operator of the form

D D PD0TP C .1 � P / W H s.M;CN / ! H s.M;CN /; (5.3)

i.e., in (5.1) one can suppose thatQ D P andD1 D 1:

Proof. (1) Indeed, a direct computation shows that the homotopy defined in the paper
[39] gives the desired result, i.e., the homotopy preserves ellipticity, and we obtain a
special operator at the end of the homotopy.

(2) By (5.2), we have the vector bundle isomorphism

Im.1 � p/ ' Im.1 � q/:

This implies that ŒIm p� D ŒIm q� 2 K.S�M/. If the ranks of the projections are
large enough (this can be achieved by taking a direct sum of the special operator
and some operator of the form T ˚ T ˚ � � � ˚ T ), then there exists a vector bundle
isomorphism a W Im q ! Im p. Consider an elliptic  DO D0 with the symbol

�.D0/ D a˚ .�.D1//
�1 W Im q ˚ Im.1 � q/ ! Im p ˚ Im.1 � p/:

Then we obtain the factorization

D D D0TP CD1.1 � P / D .D0/�1.D0D0TP C .1 � P //

modulo compact operators. This proves the proposition since a composition of oper-
ators is stably homotopic to their direct sum.
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5.2. Reduction to a boundary value problem. Let us consider the elliptic special
operator

D D D0TP C .1N � P / W C1.M;CN / ! C1.M;CN /: (5.4)

Recall that the ellipticity condition in this case means that the symbol of D0 defines
an isomorphism

�.D0/ W .@g/� Im �.P / ! Im �.P / (5.5)

of vector bundles over S�M . Here the vector bundles are defined by the symbol
of P .

On the cylinder M � Œ0; 1� with coordinates x and t consider the boundary value
problem (see [32], [33])8̂̂<

ˆ̂:

�
@

@t
C .2P � 1N /

p
�M

�
u D f1; u 2 H s.M � Œ0; 1�;CN /;

D0TPujtD0 � ujtD1 D f2; f1 2 H s�1.M � Œ0; 1�;CN /;

f2 2 H s�1=2.M;CN /:

(5.6)

Here �M is the Laplace operator defined by a metric on M . This boundary value
problem, denoted for brevity by .D ; B/, is elliptic and one has (see op. cit.)

indD D ind.D ; B/: (5.7)

5.3. Homotopy of the boundary condition. Methods of the theory of boundary
value problems (e.g., see [23], [40]) enable one to simplify the boundary operator in
eq. (5.6) using homotopies of elliptic boundary value problems. Namely, we start
with the rotation homotopy

P.'/ D
�

.cos2 '/P .cos' sin '/g�1�
.D�1

0 P /

.cos' sin '/g�1�
.PD0/ .sin2 '/g�1�

.P /

�
;

' 2 Œ0; �=2�, connecting the almost projections P ˚ 0 and 0 ˚ g�1�
.P /. For all

' 2 Œ0; �=2� the operatorP.'/ is an almost-projection, i.e., its symbol is a projection.
To check this property, it is useful to represent this homotopy in the form

P.'/ D U'

�
P 0

0 0

�
U�1
' (5.8)

in terms of the family of almost-invertible operators

U' D
�

.cos'/P .� sin '/g�1�
.D�1

0 P /

.sin '/g�1�
.PD0/ .cos'/g�1�

.P /

�
C
�
1N � P 0

0 1N � g�1�
.P /

�
:

Here we have an equality U�1
' D U�' modulo compact operators.
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Then we define the homotopy of operators

D.'/ D
�
.cos'/D0g�.P / .sin '/P

0 0

�
D
�
D0g

�.P / 0

0 0

�
g�.U�1

' /:

Finally, we define the homotopy of boundary value problems on the cylinder8<
:
�
@

@t
C Œ2P.'	.t// � 12N �

p
�M

�
U D F1;

D.'/T U jtD0 � U jtD1 D F2

(5.9)

and denote this homotopy by .D' ; B'/. Here the unknown function and the right-
hand side belong to the spaces U 2 H s.M � Œ0; 1�;C2N /, F1 2 H s�1.M �
Œ0; 1�;C2N /, F2 2 H s�1=2.M;C2N /, and 	.t/ is a smooth nonincreasing function
equal to 1 if t � 1=3 and equal to 0 if t � 2=3.

Lemma 5.1. The homotopy (5.9) consists of elliptic boundary value problems.

Proof (cf. [33]). The boundary condition in (5.9) relates the values of U at t D 0

and t D 1, i.e., it is a nonlocal condition. Nonlocal boundary value problems of this
type were considered in [36]. Let us show that this problem is elliptic in the sense
of the cited paper. Indeed, let us reduce the nonlocal problem to a local problem
in a neighborhood of the boundary of the cylinder. To this end we introduce new
unknown functions V and W :

V.t/ D T U.t/; W.t/ D U.1 � t /:
In a neighborhood of the boundary the system (5.9) is written in the following

equivalent form8̂̂ˆ̂<
ˆ̂̂̂:
T

�
@

@t
C Œ2P.'	.t// � 12N �

p
�M

�
T �1V.t/ D TF1.t/;�

� @

@t
C Œ2P.0/ � 12N �

p
�M

�
W.t/ D F1.1 � t /;

D.'/V jtD0 �W jtD0 D F2;

0 � t < 1=2:

(5.10)
Note that the system (5.10) is already local. The first two equations of the system are
elliptic. Let us show that the boundary value problem (5.10) is elliptic, i.e., it satisfies
the Shapiro–Lopatinskii condition (e.g., see [23]). To prove this, we consider the
Calderón bundle [23] (see also [36])

LC � S�M � C4N

of the main operator in (5.10). A direct computation shows that this bundle is equal
to

LC D ImŒ.@g/��.P.'//�˚ ImŒ12N � �.P.0//�
D ImŒ.@g/��.U'P.0//�˚ ImŒ12N � �.P.0//�: (5.11)
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Here the second equality follows from (5.8).
The Shapiro–Lopatinskii condition for the problem (5.10) is equivalent to the

requirement that the symbol of the boundary operator, i.e., the vector bundle homo-
morphism

LC ! S�M � C2N ; .V;W / 7! �.D.'//V �W; (5.12)

is an isomorphism. This requirement is satisfied in our case, since (5.11) implies that

W 2 ImŒ12N � �.P.0//�;
and the mapping

�.D.'// D �

��
D0g

�.P / 0
0 0

�
g�.U�1

' /

�
W Im Œ.@g/��.U'P.0//� ! ImŒ�.P.0//�

is an isomorphism of vector bundles by (5.8) and (5.5).
So the Shapiro–Lopatinskii condition is satisfied and the problem (5.10) is elliptic.

Hence, (5.9) defines a Fredholm operator.

It follows from Lemma 5.1 and eq. (5.7) that

indD D ind.D0; B0/ D ind.D�=2; B�=2/:

Let us now consider the boundary value problem8̂̂
<̂
ˆ̂̂:

�
@

@t
C 


2P.�
2
	.t// � 12N

�p
�M;h.t/

�
U D F1; 

0 1

1 0

!
T U jtD0 � U jtD1 D F2;

(5.13)

where �M;h.t/ is the Laplace operator on M for a family of metrics h.t/ smoothly
depending on t .

Lemma 5.2. The problem (5.13) is elliptic and its index is equal to the index of the
problem .D�=2; B�=2/.

Proof. It suffices to show that the linear homotopy connecting these two boundary
value problems preserves ellipticity.

First, the linear homotopy between the main operators of (5.13) and (5.9) consists
of elliptic operators. This follows from the fact that the operators differ only by
metrics defining the Laplace operators.

Second, for the linear homotopy between the problems (5.13) and (5.9), the
Calderón bundle LC is constant. Moreover, for the boundary value problems in
this homotopy the corresponding family of vector bundle homomorphisms (5.12)
also does not change. Hence the linear homotopy consists of elliptic problems.
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5.4. Reduction to a  DO on the torus. Let M �g S1 be the torus of the diffeo-
morphism g. Recall that the torus of a diffeomorphism is a closed smooth manifold
obtained from the cylinder M � Œ0; 1� by identifying its bases with a “twist” defined
by g:

M �g S1 D M � Œ0; 1�=f.x; 0/ 	 .g�1.x/; 1/g:
Consider a family of metrics h.t/ in (5.13) such that

h.t/ D
´
h if t < 1=3;

g�h if t > 2=3;

where h is some fixed metric. This family is a smooth family of metrics in the fibers
of the bundle M �g S1.

The problem (5.13) defined by this family of metrics is denoted by .D 0;B 0/. The
operator D 0 defines an elliptic  DO on the torus M �g S1:

D 0
0 D @

@t
C Œ2P.�

2
	.t//�12N �

p
�M;h.t/ W C1.M �g S1;E/ ! C1.M �g S1;E/;

where E 2 Vect.M �g S1/ stands for the vector bundle with the total space

E D .M � Œ0; 1� � C2N /=f.x; 0; v1; v2/ 	 .g�1.x/; 1; v2; v1/g: (5.14)

Proposition 5.2. One has ind.D 0;B 0/ D ind D 0
0.

Proof. 1. Since the operator of boundary condition in .D 0;B 0/ is surjective, we
see that the index of the boundary value problem is equal to the index of the same
boundary value problem but with homogeneous boundary condition. This condition
has the form �

0 1

1 0

�
T U jtD0 � U jtD1 D 0;

i.e., it coincides with the continuity condition of U.t/ considered as a section of the
bundle E over the torus M �g S1.

2. Since the boundary condition is actually the continuity condition, the remaining
part of the proof is standard and we omit it (e.g., see [33]).

6. Comparison of topological indices

6.1. Computationof the indexof DOon the torususingAtiyah–Singer formula.
The operator D 0

0 is an operator of the form

D 0
0 D @

@t
C A.t/;
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i.e., it is defined by a family A D fA.t/g, t 2 Œ0; 1�, of operators on the sections
M � ftg of the torus. Moreover, the family consists of elliptic operators and the
corresponding family of symbols

�.A.t//.x; 
/ D Œ2�.P.t//.x; 
/ � 1�j
jt
(here j
jt is the norm of a covector with respect to a family of metrics h.t/) has a
real spectrum at each point .x; 
/. It follows that the positive spectral subspace of the
symbol �.A.t//.x; 
/ (by definition this subspace is generated by the eigenvectors
with positive eigenvalues) is just the space Im �.P.t//.x; 
/. Hence, the family of
positive spectral subspaces defines a smooth vector bundle over the torusS�M �gS1.
Denote this vector bundle by

�C.A/ 2 Vect.S�M �g S1/: (6.1)

The following lemma (cf. Theorem 7.4 in [7]) expresses the index of operator D 0
0 in

terms of the bundle (6.1).

Lemma 6.1. One has

ind D 0
0 D

Z
S�M�gS1

chŒ�C.A/�Td.T �
CM �g S1/:

Proof. To make the paper self-contained, we give the proof of this fact.
1. The Atiyah–Singer index formula for D 0

0 has the form

ind D 0
0 D

Z
T.M�gS1/

ch Œ�.D 0
0/�Td.TC.M �g S1//: (6.2)

Here and below in the proof we identify the tangent and cotangent bundles using
some metric.

2. We have the decomposition T .M �g S1/ D .TM �g S1/˚ 1 into directions
perpendicular and parallel to the generator of the torus. Thus, we get

Td.TC.M �g S1// D Td.TCM �g S1/:

3. Denote the composition of embeddings

SM �g S1 � TM �g S1 � T .M �g S1/

by i . The normal bundle of this embedding is, obviously, a direct sum of two one-
dimensional trivial bundles. Moreover, one has

Œ�.D 0
0/� D iŠŒ�C.A/� 2 K0.T .M �g S1//; (6.3)

where
iŠ W K0.SM �g S1/ ! K0.T .M �g S1//
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is the direct image mapping corresponding to the embedding i (see [5]). Applying
the Riemann–Roch–Atiyah–Hirzebruch formula [6] to (6.3), we obtain

chŒ�.D 0
0/� D ch iŠŒ�C.A/� D i� chŒ�C.A/�:

(The normal bundle of i is trivial, hence the Todd class is equal to one.)
4. Substituting the formulas obtained in items 2 and 3 of the proof in eq. (6.2),

we obtain

ind D 0
0 D p�.i�.ch �C.A/Td.TCM �g S1// D p0�.ch �C.A//Td.TCM �g S1//;

where p� and p0� stand for Gysin maps in cohomology (integration over the funda-
mental cycle), induced by the projections p W T .M �g S1/ ! pt and p0 W SM �g
S1 ! pt .

The proof of the lemma is complete.

On the cylinder consider the vector bundle Im �.P / 2 Vect.S�M � Œ0; 1�/ and
identify the fibers of this bundle over the components of the boundary using the
mapping �.D0/ (see (5.4)) as follows:

V D f.x; 
; t; v/ j v 2 Im �.P /.x; 
/g=f.x; 
; 0; v/ 	 ..@g/�1.x; 
/;
1; �.D0/..@g/

�1.x; 
//v/g: (6.4)

This space is a vector bundle V 2 Vect.S�M �g S1/ over the torus S�M �g S1.

Lemma 6.2. One has an isomorphism of vector bundles over S�M �g S1:

�C.A/ ' V : (6.5)

Proof. The pull-backs of the bundles �C.A/ and V to the cylinder S�M � Œ0; 1� are
equal to

Im p
��
2
	.t/

	
and Im p.0/;

where p.'/ D �.P.'//. The formula

u�1
�
2 �.t/

W Im p
��
2
	.t/

	
! Im p.0/; (6.6)

where u' D �.U'/, defines a vector bundle isomorphism on the cylinder. This
mapping is well defined by eq. (5.8).

Let us verify that the isomorphism (6.6) of vector bundles over the cylinder extends
by continuity to an isomorphism of bundles on the torus. To prove this, it suffices to
show that the diagram

Im p.�=2/
u�1

�=2 ��

��

Im p.0/

��
Im p.0/

u�1
0 �� Im p.0/

(6.7)
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is commutative. Here the horizontal mappings are just the restrictions of the iso-
morphism u�1

�
2 �.t/

at t D 0 (upper row) and at t D 1 (lower row), while the vertical
mappings are just identifications of vector bundles on the boundary of the cylinder.
Recall that these identification mappings are defined in (5.14) and (6.4) and give
bundles on the torus.

Let us prove that (6.7) is a commutative diagram. We have

u0 D 12N ; u�1
�=2 D �

�
1N � P g�1�.D�1

0 P /

�g�1.PD0/ 1N � g�1�.P /

�
;

p.0/ D �

�
P 0

0 0

�
; p.�=2/ D �

�
0 0

0 g�1�.P /

�
:

Suppose that .x; 
; 0; v/ 2 Im p.�=2/. This means that .x; 
/ 2 S�M and v 2
Im p..@g/�1.x; 
//. Then, passing the diagram (6.7) through the lower left corner,
we obtain the elements

.x; 
; 0; v/

��
..@g/�1.x; 
/; v; 0/ �� ...@g/�1.x; 
/; v/.

(6.8)

If we now pass the diagram through the right upper corner, we obtain the elements

.x; 
; 0; v/ �� .x; 
; ��.D0/�1..@g/�1.x; 
//v/

��
..@g/�1.x; 
/; v/.

(6.9)

Since the elements obtained in the right lower corner in (6.8) and (6.9) are equal, the
diagram (6.7) is commutative. Hence, (6.6) defines an isomorphism on the cylinder,
and this isomorphism defines the desired isomorphism (6.5) on the torus.

6.2. Comparison of the topological indices of the  DO on the torus and of the
original operator. Consider the equalities

indD D ind D 0
0

D
Z
S�M�gS1

chŒ�C.A/�Td.T �
CM �g S1/

D
Z
S�M�gS1

ch V Td.T �
CM �g S1/

D
Z
S�M�gS1

ch V ch .T �
CM �g S1/

D
Z
S�M�gS1

ch.V ˝  .T �
CM �g S1//:

(6.10)
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Here the first equality follows from the results of Section 5. The second follows from
Lemma 6.1 and the third follows from Lemma 6.2. The fourth equality is just the
definition of operation  .

To complete the proof of the Index Theorem 4.1, it suffices to show that the
topological index indtopD of the operator (5.4) is equal to the right-hand side in (6.10).
Note that, generally speaking, the element  .T �

CM �g S1/ 2 K.M �g S1/˝ Q is a
virtual bundle, i.e., a linear combination of vector bundles with rational coefficients
(see Section 3). To simplify the notation, we shall assume that  .T �

CM �g S1/ is a
vector bundle, thus omitting the corresponding sum and coefficients.

Let F D V ˝  .T �
CM �g S1/ for brevity. The sections of F are just sections

F D fF.x; 
; t/g of the bundle Im p ˝  .T �
CM/ (here p D �.P /) on the cylinder

S�M � Œ0; 1� such that

�.D0/.@g/
�F jtD0 D F jtD1: (6.11)

This statement is verified by a direct computation using eq. (6.4).
Let us compute the Chern character of F using the formalism of connections. Let

rp D pr p be a connection in the bundle .Im p/˝ . Here stands for the bundle
 .T �

CM/ for brevity, while r is a connection in this bundle. Then the formula

r 0
tor D dt

@

@t
C trp C .1 � t /Œ�.D0/.@g/���1rpŒ�.D0/.@g/��

defines the connection in F :

r 0
tor W ƒ.S�M �g S1;F / ! ƒ.S�M �g S1;F /:

A direct computation using (6.11) shows that this connection is well defined. The
Chern character form of F is defined by the classical formula

ch F D tr
�
p exp

�
� r 0

tor
2

2�i

��
:

Let us now consider the original operator (5.4). By Lemma 2.3 we have for this
operator (and E D  .T �

CM/)

ch .T �

CM/Œ�.D/� D tr
�

exp
�

� r2
tor

2�i

��
;

where the noncommutative connection is equal to

rtor D dt
@

@t
C tr C .1 � t /.�.D/�1/r.�.D// (6.12)

and is expressed in terms of some connection r in the bundle CN ˝  over S�M .
Let us now define r by

r D pr p C .1 � p/r .1 � p/ (6.13)



720 A. Savin and B. Sternin

and recall that

�.D/ D �.D0/Tp C .1 � p/; �.D/�1 D .�.D0/T /
�1p C .1 � p/ (6.14)

(see (5.4)). Substituting the expressions (6.13) and (6.14) in eq. (6.12), we obtain

rtor D dt
@

@t
C tpr p C .1 � p/r .1 � p/

C .1 � t /.�.D0/T /�1pr p.�.D0/T /
D pr 0

torp C .1 � p/.dt @
@t

C r /.1 � p/:
This implies that the curvature form is equal to

.rtor/
2 D pr 0

tor
2
p C Œ.1 � p/r .1 � p/�2:

Hence the Chern character forms for the connections r 0
tor and rtor differ by a form

that does not contain dt . Hence, the integrals of these Chern character forms are
equal,Z

S�M�Œ0;1�
tr
�
p exp

�
� .rtor/

2

2�i

��
D
Z
S�M�Œ0;1�

tr
�
p exp

�
� .r 0

tor/
2

2�i

��
;

i.e., we obtain the desired equalityZ
S�M�gS1

ch.V ˝  .T �
CM �g S1// D

Z
S�M�Œ0;1�

ch .T �

CM/Œ�.D/� D indtopD:

The proof of the Index Theorem 4.1 is now complete.

7. Index formula in cyclic cohomology

In this section we give an interpretation of the index formula (4.1) in terms of cyclic
cohomology (see [16], [43] and for cyclic cohomology of crossed products [14], [19],
[28]).

7.1. Equivariant Chern character

1. Chern character in cyclic cohomology. Let E 2 Vect.X/ be a vector bundle
over a smooth closed oriented manifold X , dimX D n. We fix a connection rE in
E and define following [21] the multilinear functionals

Chark.E;rE I a0; a1; : : : ; ak/

D .�1/.n�k/=2�
nCk
2

	
Š

X
i0C���CikD.n�k/=2

Z
X

trE Œ.a0�
i0r.a1/� i1r.a2/ : : :r.ak/� ik /0�;

(7.1)
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where ak 2 C1.X;EndE;Z/ and k D n; n � 2; n � 4; : : : (cf. Jaffe–Lesnievski–
Osterwalder formula [24]). Here for a noncommutative form ! by !0 we denote the
coefficient at T 0 D 1, � D r2

E is the curvature of the connection, while the operator
r W ƒ.X;EndE;Z/ ! ƒ.X;EndE;Z/ is defined as

r.!/ D r! � .�1/deg!!r
or, more explicitly,

r.P
k

!kT
k/ D P

k

ŒrE!k � .�1/deg!k!kg
k�.rE /�T k;

where the expression rE!k � .�1/deg!k!kg
k�.rE / is an operator of multiplication

by a 1-form. It follows from [21] that the collection of functionals fChark.E;rE /g
defines a cyclic cocycle over the algebra C1.X;EndE;Z/, and the class of this
cocycle in periodic cyclic cohomology

Char.E/ D ŒfChark.E;rE /g� 2 HP�.C1.X;EndE;Z//

does not depend on the choice of connection rE .

Example 7.1. LetE be a flat bundle, i.e., � D 0. Then the Chern character (7.1) has
only one nonzero component Charn.E/ that is equal to (dimX D n)

Charn.E;rE I a0; : : : ; an/ D 1

nŠ

Z
X

trE .a0r.a1/r.a2/ : : :r.an//0:

2. Relation to the Chern character in Haefliger cohomology

Proposition 7.1. One has a commutative diagram

K0.C
1.X;EndE;Z//

ch

����������������
Cnh � ;Char.E/i

����������������

H ev.X=Z/ R
X

�� C,

(7.2)

where Cn D .2�i/�n=2, ch is the Chern character from Section 2.1,
R
X

stands for
the integral and h � ; � i is the pairing of the K0-group with cyclic cohomology. This
pairing is defined by the formula

hŒp�; Œ'�i D
X
k

.�1/k.2k/Š
kŠ

'2k.p � 1=2; p; : : : ; p/; (7.3)

where Œp� 2 K0.C1.X;EndE;Z//, Œ'� 2 HPev.C1.X;EndE;Z//, and the cyclic
cocycle ' is extended to matrix elements in the usual way:

'l.m0 ˝ a0; m1 ˝ a1; : : : ; ml ˝ al/ D tr.m0m1 : : : ml/'l.a0; a1; : : : ; al/:
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Proof. 1. Let us carry out an additional construction. Namely, we embed the trian-
gle (7.2) in the diagram

K0.C
1.X;MatN .C/;Z//

ch

����������������������������

Cnh � ;Char.X�CN /i

���������������������������

K0.C
1.X;EndE;Z//

��

ch		������������������

Cnh � ;Char.E/i


��������������������

H ev.X=Z/ R
X

�� C.

(7.4)

Here the mapping K0.C1.X;EndE;Z// ! K0.C
1.X;MatN .C/;Z// is induced

by an embedding E � X � CN in the trivial bundle.
2. We claim that the left and the right triangles of the diagram (7.4) are commuta-

tive. Indeed, let us prove the commutativity of the left triangle (the commutativity of
the right triangle is obtained similarly). Suppose that E D Im q � X � CN , where
q is a projection in the trivial bundle. Then we have an isomorphism

C1.X;EndE;Z/ D qŒC1.X;MatN .C/;Z/�q:

In particular, to a projection p over C1.X;EndE;Z/we assign a projection p0 over
the algebra C1.X;MatN .C/;Z/. Thus, we have

chŒp� D Œch.p;rE /� D Œch.p0; qrEq C .1 � q/d.1 � q//� D chŒp0�:

Here the first and last equalities follow from the definition of the Chern character, and
the equality in the middle follows from the equality of the corresponding differential
forms.

3. The perimeter of the diagram (7.4) is also a commutative triangle. Indeed, in the
trivial bundle, let us choose the flat connection defined by the exterior differential d .
Then by Example 2.2 for a projection p over C1.X;MatN .C/;Z/ we obtainZ

X

chŒp� D 1

.n=2/Š

�
� 1

2�i

�n=2 Z
X

trŒp.dpdp/n=2�0:

On the other hand, it follows from the formula obtained in Example 7.1 that

hŒp�;Char.X � CN /i D .�1/n=2
.n=2/Š

Z
X

trŒp.dpdp/n=2�0:

We see that the last two expressions differ only by the factor Cn D .2�i/�n=2. This
proves that the perimeter of the diagram (7.4) is commutative.

4. We proved the commutativity of all the triangles in the diagram (7.4) except
for the lower triangle. Hence, the lower triangle is commutative.

The proof of the proposition is complete.
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3. Equivariant Chern character [21]. Define the equivariant Chern character of
a g-bundle E on X

Ch.E/ 2 HP�.C1.X/ Ì Z/

as Ch.E/ ´ ˇ� Char.E/, where ˇ� W HP�.C1.X;EndE/ÌZ/ ! HP�.C1.X/Ì
Z/ is the mapping induced by the homomorphism of algebras

ˇ W C1.X/ Ì Z ! C1.X;EndE/ Ì ZI
X
k

!kT
k 7!

X
k

.!k ˝ 1E / zT k :

There is an analogue of the commutative diagram (7.2) for the equivariant Chern
character. Namely, one has

K0.C
1.X/ Ì Z/

chE

���������������
Cnh�;Ch.E/i

��												

H ev.X=Z/ R
X

�� C.

(7.5)

7.2. Index formula in cyclic cohomology. Given a g-bundle E 2 Vect.X/ over a
smooth closed oriented manifold X , we define the equivariant Todd class

Todd.E/ 2 HP�.C1.X/ Ì Z/

as Todd.E/ ´ Ch. .E//, where  is the operation in rational K-theory defined in
Section 3.

1. Index formula

Theorem 7.1. For an elliptic operatorD one has an index formula

indD D .2�i/�nhŒ�.D/�;Todd.��T �
CM/i; dimM D n; (7.6)

where � W S�M � S1 ! M is the projection and the brackets h ; i stand for the
pairing of K-theory with cyclic cohomology (see (7.3)).

Proof. The index formula (4.1) gives us

indD D
Z
S�M�S1

ch .��T �

CM/Œ�.D/�: (7.7)

Using the commutative diagram (7.5) and the definition of the equivariant Todd class,
we can rewrite the right-hand side in (7.7) in the desired formZ

S�M�S1

ch .��T �

CM/Œ�.D/� D .2�i/�nhŒ�.D/�;Ch. .��T �
CM//i

D .2�i/�nhŒ�.D/�;Todd.��T �
CM/i:
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2. A special case. Suppose that the Todd class Td.T �
C.M�gS1// of the complexified

cotangent bundle of the twisted torus is equal to one. Then one can replace the class
Todd.��T �

CM/ in (7.6) simply by the transverse fundamental class of the manifold
S�M � S1 in the sense of [15]. This enables one to write the index formula in the
form

indD D .n � 1/Š
.2�i/n.2n � 1/Š

Z
S�M

tr.��1d�/2n�1
0 ; � D �.D/: (7.8)

The index formula (7.8) is a corollary of the following more general statement.

Proposition 7.2. Suppose that the homology class Poincaré dual to the Todd class
Td.T �

CM �g S1/ has a representative1 of the form

! 7�! z

�Z
S1

!

�
; ! 2 ƒ.S�M �g S1/;

where z is a closed g-invariant current on S�M . Then the equivariant Todd class in
the index formula (7.6) can be replaced by the collection of cyclic cocycles with the
components

.a0; : : : ; a2k/ 7�! .2�i/n�k

.2k/Š
z.a0da1da2 : : : da2k/; k D 0; 1; : : : ; n:

Proof. The proof of this proposition is similar to the proof of index formula (7.6).
The main difference is that instead of equality (6.10) one uses equalities of the form

indD D ind D 0
0 D

Z
S�M�gS1

.ch V/Td.T �
CM �g S1/ D z

�Z
S1

ch V

�
:

Example 7.2. Suppose that Td.T �
CM �g S1/ D 1. Then we can take the current z

of degree 2n � 1 defined by integration over S�M . Then Proposition 7.2 gives the
index formula (7.8) (after a standard integration over S1). This remark applies, for
instance, to elliptic operators for a diffeomorphism of the sphere in the connected
component of the identity (see [17], [26]).

Proposition 7.2 can be applied if g is an isometry. In this case we define the
current z by the formula

z.!/ D
Z
S�M

! ^ Td.T �
CM/; ! 2 ƒ.S�M/;

where Td.T �
CM/ is the differential form representing the Todd class using a g-in-

variant metric. In this case we obtain the index formula first proved in [27].

1Here the homology group is treated in terms of closed de Rham currents (see [18]).
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8. Examples. Remarks

8.1. Example. Operators on the torus T 3. The index formula (7.6), despite its
compact and elegant form, often leads to serious computational difficulties, when one
really needs to compute the index of a specific operator. To solve this problem, it
is sometimes useful to simplify the formula so that the new formula could really be
used to compute the desired number.

In this section, we exhibit a procedure of this form for a relatively simple operator
related to the Dirac operator. The answer we obtain is quite suitable to get explicit
numerical expression for the index of the problem.

1. Consider the torus T 3 D R3=2�Z3 with coordinates x D .x1; x2; x3/ and the
diffeomorphism2

g W T 3 ! T 3; g

0
@x1x2
x3

1
Ap D

0
@2 1 0

1 1 0

0 0 1

1
A
0
@x1x2
x3

1
A :

Consider the Dirac operator on T 3,

3X
jD1

cj

�
�i @
@xj

�
W C1.T 3;C2/ ! C1.T 3;C2/; (8.1)

where

c1 D
�
0 1

1 0

�
; c2 D

�
0 �i
i 0

�
; c3 D

�
1 0

0 �1
�

stand for Pauli matrices. The Dirac operator is elliptic and self-adjoint in the space
L2. Therefore, it has a discrete real spectrum, while the eigenvalues have finite
multiplicities. Consider the positive spectral projection for the Dirac operator, i.e.,
the orthogonal projection on the subspace generated by eigenfunctions of the Dirac
operator with positive eigenvalues. This projection is denoted by P and is a  DO of
order zero (see [42]).

Theorem 8.1. Let f 2 C1.T 3;MatN .C// be a function taking values in invertible
matrices. Then the operator

D D .f ˝ 1/.1˝ P/T .1˝ P /C 1˝ .1 � P / W
H s.T 3;CN ˝ C2/ ! H s.T 3;CN ˝ C2/;

(8.2)

where T D g� is the shift operator for g, is Fredholm for all s and its index is equal
to

indD D 1

.2�i/23Š

Z
T 3

tr.f �1df /3: (8.3)

2This diffeomorphism is “Arnold’s cat map” [4] acting along x1, x2 and the identity map along x3.
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Let us write the operator (8.2) simply asD D fPTP C1�P omitting the tensor
products.

2. Let us prove that D is elliptic. To this end, we first compute the symbol of P .
The symbol of the Dirac operator (8.1) is equal to

c.
/ D c1
1 C c2
2 C c3
3 2 Mat2.C/;

where 
 D .
1; 
2; 
3/ stand for variables dual to x. In what follows, it is useful to
write the following Clifford identity (e.g., see [25]):

c.
/c.
 0/v C c.
 0/c.
/v D 2.
; 
 0/v; 
; 
 0 2 R3; v 2 C2; (8.4)

where on the right-hand side of (8.4) we have the inner product of vectors. In partic-
ular, eq. (8.4) implies that the matrix

p.
/ D 1C c.
/

2
; j
j D 1

is a rank-one projection. Moreover, this projection is just the positive spectral pro-
jection of the symbol c.
/ of the Dirac operator. We extend this function to a degree
zero homogeneous function in 
. Then the results of the paper [42] give the equality

�.P / D p:

We are now ready to prove that D is elliptic. Consider the mapping

u.
/ D p.
/ W Im .@g/�p.
/ ! Im p.
/: (8.5)

We claim that the mapping (8.5) is invertible (cf. [33]). Indeed, let us consider the
converse, i.e., suppose that for some 
 we have a nonzero vector

v 2 Im.@g/�p.
/ D Im p.g�1
/ such that p.
/v D 0: (8.6)

In terms of Clifford multiplication, condition (8.6) is written as

c.
/v D �v; c

�
g�1


jg�1
j
�
v D v:

Substituting these two formulas in (8.4), we get

�2v D 2

�

;
g�1


jg�1
j
�
v or cos.
; g�1
/ D �1;

i.e., the vectors 
 and g�1
 form an angle equal to � . But this cannot be true since the
matrix g�1 has no negative eigenvalues. This contradiction shows that the mapping
(8.5) is an isomorphism.
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Denote byU�1 a DO on T 3 such that the restriction of its symbol to the subspace
Im p.
/ coincides with u.
/�1. We claim that the operator

B D T �1f �1U�1P C 1 � P
is an almost inverse ofD (i.e., inverse up to operators of negative order). Indeed, for
example, let us compute the composition of symbols:

�.D/�.B/ D .fpTp C 1 � p/.T �1u�1pf �1 C 1 � p/
D fpTpT �1u�1pf �1 C .1 � p/C .1 � p/T �1u�1pf �1

D fpŒ.@g/�p�u�1pf �1 C .1 � p/C .1 � p/T �1TpT �1u�1pf �1

D fpf �1 C .1 � p/C .1 � p/pT �1u�1pf �1

D p C 1 � p D 1:

(8.7)

The equality �.B/�.D/ D 1 is obtained similarly.
Thus, D is elliptic and Fredholm by Theorem 1.1.
3. By the Index Theorem 4.1 the analytic index of D is equal to the topological

index of its symbol. Let us compute the topological index of �.D/. The symbol
�.D/ has the factorization

�.D/ D �0�1; �0 D pfp C 1 � p; �1 D pTp C .1 � p/; (8.8)

into two elliptic symbols, where �0 does not contain the shift operator T . Let us
compute the topological indices of these symbols. The index of �0 coincides with
the Atiyah–Singer topological index and is equal to (see [9], [10])

indtop �0 D
Z
S�T 3

chŒf � ch.Im p/Td.T �
CT 3/;

where Œf � 2 K1.T 3/ is the class of f in the odd K-group. Further, we getZ
S�T 3

chŒf � ch.Im p/Td.T �
CT 3/ D

Z
S�T 3

chŒf � ch.Im p/

D
Z

T 3

chŒf �
Z

S2

ch.Im p/

D C

Z
T 3

tr.f �1df /3;

where C D ..2�i/23Š/�1. Here we first noted that the tangent bundle of the torus
is trivial and replaced the Todd class by one. Then, we used the decomposition
S�T 3 D T 3 � S2 with the coordinates x; 
 on the factors. Moreover, since f
depends only on x, and p depends only on 
 , the integral over T 3 � S2 is just the
product of an integral over T 3 and an integral over S2. In the next to the last equality,
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the Chern character in the first factor is represented by a differential form and we
noted that Im p is the Bott bundle on S2 (see [5] and [20]) and one hasZ

S2

ch Im p D 1:

So we obtain

indtop �0 D 1

.2�i/23Š

Z
T 3

tr.f �1df /3: (8.9)

Proposition 8.1. One has indtop �1 D 0.

Proof. By eq. (7.8), the topological index of �1 is equal to

indtop �1 D 2Š

.2�i/35Š

Z
S�M

tr.��1
1 d�1/

5
0: (8.10)

Let us compute this integral. The symbol �1 2 C1.S�T 3;Mat2.C// Ì Z is con-
stant in x. Thus, its differential d�1 2 ƒ1.S�T 3;Mat2.C// Ì Z does not contain
differentials dxj . The product ��1

1 d�1 also has no differentials dxj . This uses the
fact that g is a linear diffeomorphism. The same reasoning shows that the form

.��1
1 d�1/

5

(see (8.10)) also does not contain differentials dxj . On the other hand, the degree
of this form is equal to five. Therefore, this form is identically zero. Thus, (8.10)
implies that the topological index of �1 is zero.

The formula (8.3) now follows from eq. (8.9) and Proposition 8.1. This completes
the proof of Theorem 8.1.

4. Let us give a direct proof of Theorem 8.1.
Namely, let us first prove thatD is elliptic. One has an equality (cf. (8.8)) modulo

compact operators

D D D0D1; D0 D fP C .1 � P /; D1 D PTP C .1 � P /:
Here D0 is an elliptic  DO and its index (computed by the Atiyah–Singer formula)
is equal to the right-hand side in (8.9) (see the above computation). Thus, to prove
Theorem 8.1, it suffices to show that D1 is a Fredholm operator of index zero.

Proposition 8.2. The operatorD1 D PTP C .1 � P / is invertible.

Proof. Let us treat functions on the torus as Fourier series
P
k ake

i.k;x/, where k D
.k1; k2; k3/ 2 Z3, and .k; x/ D k1x1 C k2x2 C k3x3. In this notation, we have

P.
P
k

ake
i.k;x// D P

k¤0
akp.k/e

i.k;x/; (8.11)
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where p.k/ is the value of the function p.
/ at 
 D k. In this representation, the
shift operator is equal to

T .
P
k

ake
i.k;x// D P

k

ake
i.gk;x/;

since g has a symmetric matrix. Let U�1 be the operator defined by a formula of the
form (8.11) using the symbol u�1.
/. In this case the mappings

P W Im TPT �1 ! ImP

and

U�1 W ImP ! Im TPT �1

are inverses of each other. It follows that the operatorB D T �1U�1P C1�P is the
inverse of D1. The proofs of these statements are similar to the computation (8.7).

8.2. Remark. Special operators as operators in subspaces. Let us give here a
method of computing the index of special operators using elliptic theory in subspaces
defined by pseudodifferential projections (see [34], [35]). We write a special operator
(5.1) as

D D QD0TP C .1 �Q/D1.1 � P / W C1.M;CN / ! C1.M;CN /: (8.12)

Without loss of generality, we can assume that P and Q are projections P 2 D P ,
Q2 D Q. In this case, the operator D is a direct sum

D D QD0TP ˚ .1 �Q/D1.1 � P /
of operators acting in subspaces defined by the projectionsP;Q; 1�P; 1�Q. Using
this decomposition, we can compute the index of D. Indeed, we get

indD D indŒQD0T W ImP ! ImQ�

C indŒ.1 �Q/D1 W Im .1 � P / ! Im.1 �Q/�
D indŒD0 W Im g�P ! ImQ�C indŒD1 W Im.1 � P / ! Im.1 �Q/�:

(8.13)

Here in the last equality we used the fact that T defines an isomorphism of the ranges
of the projections P and g�P D TPT �1.

An application of the index formulas obtained in the papers [34], [35] to the
operators in (8.13) gives an index formula for D. To formulate the result, consider
the involution ˛ W T �M ! T �M , ˛.x; 
/ D .x;�
/ and for a  DO A let ˛�A
denote any  DO with the symbol ˛��.A/.
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Proposition 8.3. Let a special operator (8.12) be elliptic, the manifold M be odd-
dimensional, and the projections P ,Q be even, i.e., they satisfy the condition

˛��.P / D �.P /; ˛��.Q/ D �.Q/:

Then one has the equality

indD D 1

2
indŒD0.˛

�.D0/�1/QCD1.˛
�.D1/�1/.1 �Q/�; (8.14)

where the operator in the square brackets is an elliptic  DO onM .

Proof. 1. Application of the index formula from the paper [34] to the operators
D0 W Im g�P ! ImQ and D1 W Im .1 � P / ! Im.1 �Q/ gives us

ind.D0 W Im g�P ! ImQ/

D 1

2
indŒD0.˛

�.D0/�1/QC .1 �Q/�C d.g�P / � d.Q/; (8.15)

ind.D1 W Im .1 � P / ! Im.1 �Q//
D 1

2
indŒQCD1.˛

�.D1/�1/.1 �Q/�C d.1 � P / � d.1 �Q/; (8.16)

where d is the homotopy invariant of even pseudodifferential projections constructed
in [34]. Adding the last two expressions (8.15) and (8.16), we obtain the following
expression for the index of D:

indD D 1

2
indŒD0.˛

�.D0/�1/QCD1.˛
�.D1//�1/.1 �Q/�

C .d.g�P /C d.1 � P // � .d.Q/C d.1 �Q//:
(8.17)

The cited paper contains the following properties of the functional d :

d.Q/C d.1 �Q/ D 0 and d.g�P / D d.P /:

Hence, the last two terms in eq. (8.17) are equal to zero and we obtain the desired
index formula (8.14).

There is an analog of this proposition on even-dimensional manifolds (see [35]).

8.3. Remark. A generalization of the notion of ellipticity. In [2], [3] a different
condition of ellipticity of operators (1.1) is used. This condition does not require that
the number of nonzero components of the inverse symbol is finite. In this situation,
the symbol is naturally an element of theC �-crossed productC.S�M/ÌZ (see [44])
of the algebra of continuous symbols on S�M by the action of the diffeomorphism
g, and the ellipticity is just the invertibility in this C �-crossed product. On the other
hand, it was shown in the papers [33], [39] that an elliptic operator in this sense is
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stably homotopic to an operator elliptic in the sense of Definition 1.2. This implies
that to obtain an index formula for this class of operators it suffices to extend the
cyclic cocycle Todd 2 HP�.C1.S�M � S1/ Ì Z/ (see (7.6)) to some local algebra
A such that

C1.S�M/ Ì Z � A � C.S�M/ Ì Z

or, in more invariant form, to define a class Todd 2 HP�.A/ that is the pull-back of
the class

Todd 2 HP�.C1.S�M � S1/ Ì Z/

under the embedding
C1.S�M � S1/ Ì Z � A:

Such extensions are known for many interesting classes of diffeomorphisms (e.g.,
see [13], [15], [39], [41]). Therefore, we obtain an index formula of the type (7.6)
for operators elliptic in the sense of [3] for these classes of diffeomorphisms.
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