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Asymptotic morphisms and superselection theory
in the scaling limit
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Abstract. Given a local Haag–Kastler net of von Neumann algebras and one of its scaling
limit states, we introduce a variant of the notion of asymptotic morphism by Connes and
Higson, and we show that the unitary equivalence classes of (localized) morphisms of the
scaling limit theory of the original net are in bijection with classes of suitable pairs of such
asymptotic morphisms. In the process, we also show that the quasi-local C*-algebras of two
nets are isomorphic under very general hypotheses, and we construct an extension of the scaling
algebra whose representation on the scaling limit Hilbert space contains the local von Neumann
algebras. We also study the relation between our asymptotic morphisms and superselection
sectors preserved in the scaling limit.
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1. Introduction

Quantum Field Theory (QFT) provides a convenient mathematical framework for
the description of fundamental interactions, and it is widely recognized that, in its
continual search of concepts and results, it owes a lot to geometrical insight.

A fruitful approach to QFT, that we follow in this work, is the algebraic one [24],
in which a theory is determined by an assignment O 7! A.O/, also called net, be-
tween spacetime regions and operator algebras, satisfying a number of physically
motivated axioms. On the other hand, a very powerful mathematical arena for devel-
oping geometry in the language of operator algebras is provided by Noncommutative
Geometry (NCG) [10].

Possible connections between QFT and NCG have been explored by several au-
thors in the recent past, among which we just cite [26], [18], [27], [5], [32], [9], [8].
In the present paper, we look at some NCG inspired structures naturally arising in
the algebraic framework of QFT. In particular, the bridge between QFT and NCG is
provided here by (a suitable variant of) the notion of asymptotic morphisms originally
proposed by Connes and Higson [11] as a starting point for a version of KK-theory,
thereby called E-theory, possibly more suitable for applications to the Baum–Connes
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conjecture. However, the need for such a notion does not arise from the interplay
between “classical” and “quantum” but rather from a comparison between the charge
content of a theory – described by equivalence classes of representations of A, called
superselection sectors – at different scales. (In other words, our small parameter is
the spatio-temporal scale � and not Planck’s constant „ as in [28].) On the physical
side, this is related to the idea that charges can be confined at small scales, which is
believed to happen, e.g., for the color charge in Quantum Chromodynamics (QCD).

In order to explain in greater detail the way in which (objects similar to) asymptotic
morphisms appear in QFT, we need to recall two independent constructions that are
relevant for the present work. On one hand (if the dimension of spacetime is at least
three), by the results of Doplicher and Roberts [21] one can construct in a canonical
way a field netO 7! F .O/ and a compact gauge groupG acting on F , such that A is
recovered as the fixed point of F underG, and the Hilbert space on which F naturally
acts contains all superselection sectors of A. On the other hand, it is well known that
the understanding of some important issues in physics, such as color confinement in
QCD, requires a careful study of the short distance behaviour of quantum fields [4].
With this aim in mind, Buchholz and Verch [6] suggested how to associate to A a
whole family of new nets A0;�, hereafter called scaling limit nets, which are in a sense
“tangent spaces” of A and contain the whole information of the theory at short scales,
in an intrinsic way (for the paper to be reasonably self-contained we have included
in Appendix A the precise definitions and few basic results).

In general, the two constructions do not commute, namely the scaling limit of the
field net of A is not necessarily equal to the field net of the scaling limit A0;�. To
make a long story short, sectors of A and A0;� are related in some nontrivial way
[15], [16], [14]: in general, sectors of A may either disappear in the scaling limit, or
be preserved, while new sectors of A0;� may arise in the limit. The latter ones are
identified as describing the confined charges of the underlying theory A for obvious
reasons. It is also interesting to observe that the mutual relationship between the two
canonical gauge groups G and G0;� of A and A0;� could possibly play a role in the
process of obtaining an intrinsic description of quantum gauge theories.

Thanks to Haag duality, the superselection sectors of a local net are described by
(classes of) suitable endomorphisms of the associated quasi-local algebra [19]. This
clearly applies both to A and A0;�. Now the problem naturally arises about finding
ways to conveniently describe all the sectors of A0;� in terms of structural aspects of
the original net A at scale one. It has been known for some time that all sectors of
A0;� can be described by the so-called asymptotic charge transfer chains of A [29],
[30], a concept arising by applying the usual method of “shifting a compensating
charge behind the moon” to the scaling limit net. Among these sectors, those arising
from the preserved sectors of A have been described in somewhat more detail. In
particular, these sectors of A0;� can still be represented through families .�.�//�>0 of
endomorphisms of A, parametrized by the scale �. This observation led S. Doplicher
to ask to one of us the question whether it is possible to describe all the superselection
sectors of A0;� by objects related to the Connes–Higson asymptotic morphisms.
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The main motivation for this paper has been to provide a first answer this question.
It turns out that this can actually be done, but, due to the peculiarities of the scaling
algebra construction, even if the asymptotic morphisms we consider are formally
similar to the Connes–Higson ones, strictly speaking they are not exactly the same
thing, see Definition 5.1.

As explained in more detail at the beginning of Section 2, asymptotic morphisms
of A can be equivalently defined as morphisms

� W A ! A0;� (1.1)

compatible in some mild way with the net structure and Heisenberg uncertainty prin-
ciple. Bona fide asymptotic morphisms .��/�>0 of A are thus obtained after choosing
a continuous section for a suitable extension of the GNS representation �0;� of a scal-
ing limit state. The construction of the latter is carried out in Section 4. It provides
us with an extension of the scaling algebra whose representation on the scaling limit
Hilbert space contains the local von Neumann algebras A0;�.O/.

Then, in order to set up a correspondence between asymptotic morphisms of A and
morphisms�0 of A0;�, one needs to relate the latter ones to morphisms as in (1.1). This
can of course be done by defining � D �0� for an isomorphism � W A ! A0;� of the
quasi-local C*-algebras. In some specific cases, the choice of such an isomorphism
is more or less natural. This is certainly the case for dilation covariant theories
satisfying some nuclearity requirement, discussed, as a warm up, in Section 2, and
also for the bosonic massive scalar free field in d � 3 spacetime dimensions, thanks
to the locally Fock property. More generally, it was already pointed out in [17] that a
C*-algebra isomorphism � W A ! B as above exists for a large class of nets A and
B (we also discuss this issue in detail in Section 3). However, there seems to be no
natural way of singling out a particular such isomorphism, even in the particular case
B D A0;�. Indeed, loosely speaking, any such isomorphism could be considered
in a sense analogous to the choice of renormalization scheme in conventional QFT.
Therefore, in the spirit of the scaling algebra construction, we take the point of view
of considering them all together. As shown in Section 5, this results in a one to
one correspondence between unitary equivalence classes of morphisms of A0;� and
suitably defined equivalence classes of pairs of asymptotic morphisms of A (thus in
a way formally similar to the Cuntz description of KK-groups).

We note that, to the best of our knowledge, this is the first time that the existence
of isomorphisms between the quasi-local C*-algebras of possibly different nets is
promoted from a mere observation to a structural tool.

In the remaining part of the paper we discuss further properties of our asymptotic
morphisms in relation with the superselection structures of A and A0;�. In particular,
in Section 6 we define localized pairs of asymptotic morphisms and characterize
them in terms of asymptotic charge transfer chains. In Section 7 we come back to
our original motivation by showing that there is a natural choice of an asymptotic
morphism corresponding to a preserved sector of A, obtained in terms of the family
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.�.�//�>0 of localized morphisms of A mentioned above. These results raise the
further question about the existence of some close connection between asymptotic
morphisms and asymptotic charge transfer chains also for non preserved sectors.
Although we refrain from giving a complete answer here, in Section 8 we point out
some difficulties which one has to face in trying to do so. Finally in Section 9 we
define a C*-category of asymptotic morphisms, following a similar construction for
Connes–Higson asymptotic morphisms presented in Appendix B. The paper is ended
by a summary of our results and an outlook about open issues and future directions.

2. Asymptotic morphisms for dilation covariant theories

According to E-theory, given two C�-algebrasA andB , an asymptotic morphism from
A to B determines a �-homomorphism from A into B0 ´ Cb.RC; B/=C0.RC; B/
and, conversely, all asymptotic morphisms arise in this way, making use of set-
theoretic sections from B0 to Cb.RC; B/ [11], [23] (see also Appendix A). In par-
ticular, asymptotic morphisms of a C�-algebra A into itself are basically the same as
morphisms A ! Cb.RC; A/=C0.RC; A/.

In the present investigation, we adapt this notion to a special class of C�-algebras
endowed with further structure motivated by Quantum Field Theory [24]. More
precisely, we assume we are given a local netO 7! A.O/ of von Neumann algebras
on (open double cones in) d -dimensional Minkowski space acting irreducibly on a
vacuum Hilbert space H . We assume furthermore that A is covariant with respect to
an automorphic action of the translation group ˛ W Rd ! Aut.A/ which is unitarily
implemented and satisfies the spectrum condition. Finally, we denote by� 2 H the
vacuum vector, i.e., the (up to a phase) unique translation invariant unit vector in H ,
and by ! D h�; . � /�i the corresponding vector state on the quasilocal C�-algebra
of the net, still denoted by A.

In this framework, a reasonable way to provide examples of suitable asymptotic
morphisms of A relies on the natural analogy between the algebra A0 of the above
remark and the scaling limit net A0;� of A [6] (see also Appendix A for a short
overview), and therefore on the existence of morphisms from A into A0;�. The
role of Cb.RC; A/ is then played by the quasi-local scaling algebra A of the scaling
algebras net

A.O/ ´ fA 2 B j A� 2 A.�O/; � > 0; lim
x!0

˛x.A/ D Ag; (2.1)

where B is the C�-algebra of all bounded functions B W RC ! B.H / with naturally
defined operations and ˛x.A/� ´ ˛�x.A�/, while the role of the ideal C0.RC; A/
is played by the kernel of the GNS representation �0;� of a fixed scaling state !0;� of
A. The latter is defined as a weak* limit point, as � ! 0, of the family .!�/�>0 of
states over A defined by

!�.A/ ´ !.A�/; � > 0; A 2 A:
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In view of applications to superselection theory, one should also stress that A0;�,
which is going to replace A0, is better defined not as the quotient A= ker �0;� as in
[6], but rather as a local completion of the latter, meaning that

A0;�.O/ ´ �0;�.A.O//
00 for all O:

Before proceeding further along these lines, we anticipate some considerations.
As discussed in the Introduction, the main motivation of the present paper is to
look for a description of superselection sectors of the scaling limit theory in terms of
asymptotic morphisms of the underlying theory. In general, however, it is not obvious
at all how to associate in a natural and physically meaningful way morphisms from
A to A0;� to sectors of A0;� (or of A). Moreover a number of technical problems
are likely to arise if one is going to take seriously the analogy between A0 and A0;�,
e.g., the fact that it is not clear if it is possible to extend sections �0;�.A/ ! A to
A0;�. Furthermore, note that in E-theory the asymptotic notions are required to hold
in the norm topology of A, while in our context it is reasonable to expect that this
condition needs to be weakened. This is of course related to the fact that scaling
algebra elements are not norm-continuous functions of � in general.

In order to illustrate the connection between morphisms of the scaling limit net
and asymptotic morphisms of the underlying net, we consider a simple example in
which some of such problems do not occur. Let A be a net of C�-algebras for which
there exists an isomorphism of the quasi-local C�-algebras

� W A ! �0;�.A/:

This is the case, for instance, of a dilation covariant theory satisfying Haag–Swieca
compactness, where � can be chosen to be even a net isomorphism [6]. We pick a
set-theoretic section s W �0;�.A/ ! A and a morphism �0 W �0;�.A/ ! �0;�.A/ and
define

��.A/ ´ s.�0�.A//�; A 2 A; � > 0:

Proposition 2.1. With .��/� a net defining the scaling limit state !0;�, there holds,
for all A;B 2 A, ˛ 2 C:

�.A/ ´ .� 7! ��.A// 2 A;

lim
�

kŒ���
.A/� � ���

.A�/��k D 0;

lim
�

kŒ���
.AC ˛B/ � ���

.A/ � ˛���
.B/��k D 0;

lim
�

kŒ���
.AB/ � ���

.A/���
.B/��k D 0:

In particular setting�.A/ D �0;�.�.A//,A 2 A, one gets a morphism of C�-algebras
� W A ! �0;�.A/.
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Proof. The first property is obvious from the definition of ��. We just prove the fourth
equation, the proof of the other two being analogous. Noting that, by definition,
�0;�.s.�.A/// D �.A/, we have

lim
�

kŒ���
.AB/ � ���

.A/���
.B/��k

D lim
�

kŒs.�0�.AB//��
� s.�0�.A//��

s.�0�.B//��
��k

D kŒ�0;�.s.�0�.AB/// � �0;�.s.�0�.A//s.�0�.B///��0;�k
D kŒ�0�.AB/ � �0�.A/�0�.B/��0;�k D 0:

The last statement follows at once from the equation � D �0�.

In the case of a dilation covariant theory there is a canonical choice of the section
s W �0;�.A/ ! A, namely

s.�0;�.A//� D ı��
�1.�0;�.A//:

Then given a morphism �0 of �0;�.A/ and denoting by � D ��1�0� the associated
morphism of A, the .��/�>0 corresponding to �0 satisfies

��.A/ D ı��.A/ D �.�/.ı�.A//; A 2 A; (2.2)

where �.�/ D ı��ı
�1
�

is the dilated morphism �, which is localized in �O if � is
localized in O . This suggests the possibility of a similar relation in more general
theories between asymptotic morphisms and families of morphisms .�.�//�>0 asso-
ciated to preserved sectors as in [15] (in a dilation covariant theory all sectors are
preserved). We will show later that this is indeed the case, see Theorem 7.2 and
Remark 7.3 (iii).

3. On the existence of C�-isomorphisms between quasi-local algebras

In this section we present a somewhat more accurate description of the C�-isomor-
phism between the quasi-local C�-algebras of possibly different local nets, whose
existence can be traced back to [17]. Such C�-isomorphisms will be employed later
in order to relate morphisms of the scaling limit net A0;� with morphisms between A

and A0;�. In this way, we can circumvent one of the problems mentioned in Section 2.
We recall that a local net O 7! A.O/ satisfies the split property [20] if for any

pair of double cones O1, O2 such that xO1 � O2 (written also O1 �� O2), there
exists a type I factor N such that A.O1/ � N � A.O2/.

Theorem 3.1. Let A and B be local nets of type III1 factors with the split property.
Then given any increasing sequence of double cones

O1 �� O2 �� � � � �� On �� � � �
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such that
S

nOn D Rd , there exists an isomorphism � W A ! B of the quasilocal
C �-algebras such that

�.A.On// D B.On/; n D 1; 2; 3; : : : :

Proof. By the split property, there is an increasing family .Nk/k2N of type I factors
such that

A.O1/ � N1 � A.O2/ � N2 � A.O3/ � � � � � Nk � A.OkC1/ � � � �
so that the quasilocal C �-algebra A is the norm-closure of

S
k Nk (“funnel” of

type I factors). Moreover, consider the universal C �-algebra O0
K associated to an

infinite dimensional separable Hilbert spaceK and defined as the C �-inductive limit
limk B.K

˝k/ with respect to the family of inclusions T 7! T ˝ IK . Then, as
explained in [17], there exists a C �-isomorphism �A of A onto O0

K , such that, for
all k � 1,

�A.Nk/ D B.K˝k/ D B.K/˝ � � � ˝ B.K/:

In other words, there is a commutative diagram

N1 � N2 � N3 � N4 � � � � A

# # # # #
B.K/ ,! B.K˝2/ ,! B.K˝3/ ,! B.K˝4/ ,! � � � O0

K ;

where the vertical arrows are surjective C �-isomorphisms.
Now �A.A.O1// μ A1 is a type III1 factor in B.K/. Moreover, �A.A.O2// is

a type III1 factor in B.K ˝K/, clearly containing B.K/˝ I . It is then easy to see
that �A.A.O2// must be of the form B.K/˝ A2 for a type III factor A2 in B.K/.
Then, by [33], Thm. 4.22, A2 is isomorphic to A.O2/, and hence of type III1. By
repeating the argument, one must have �A.A.Ok// D B.K/˝B.K/˝ � � � ˝ Ak (k
factors) for suitable type III1 factors Ak isomorphic to A.Ok/.

Similarly, there exists an isomorphism �B W B ! O0
K such that, for all k � 1,

�B.B.Ok// D B.K/˝ B.K/˝ � � � ˝ Bk for suitable type III1 factors Bk .
Observe that, thanks to the split property, the type III1 factors A.Ok/, B.Ok/

are hyperfinite and therefore isomorphic [25]. Then, Ak and Bk being isomorphic
properly infinite von Neumann algebras with properly infinite commutants (inB.K/),
for each k there exists a unitary Uk 2 B.K/ such that

UkAkU
�
k D Bk :

One can then construct the ITP-type automorphism

˛ ´ N
k

Ad.Uk/

of O0
K which clearly satisfies ˛ B �A.A.Ok// D �B.B.Ok// for all k � 1. The

proof is complete by defining � ´ ��1
B

B ˛ B �A.
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Remark 3.2. (i) It is clear from the proof that, more generally, for any two sequences
of double cones O.i/

k
as above (i D 1; 2), there exists an isomorphism � W A ! B

such that �.A.O.1/

k
// D B.O

.2/

k
/ for all k. Indeed, the same arguments apply even

to two nets living on different, possibly curved, spacetimes.
(ii) If O 7! A.O/ is the net of von Neumann algebras associated to the massive

scalar free field in d � 3 spacetime dimensions and A0;� denotes its unique scaling
limit net, due to local normality, a stronger result is available, namely there exists aC �-
algebra isomorphism � W A ! A0;� between the corresponding quasilocal algebras
such that �.A.O// D A0;�.O/ for all double cones O based on the hyperplane
x0 D 0 [7].

Corollary 3.3. Assume that A and its scaling limit A0;� are nets of type III1 factors
satisfying the split property. Then there exists a map ' W Mor.A0;�/ ! Mor.A;A0;�/

such that '.�0/ D �0�, with � W A ! A0;� the isomorphism defined in the above
theorem.

4. Functions asymptotically contained in the scaling limit

Given an element of A0;�.O/, we address the problem of lifting it to a suitable
function � 7! A� taking values in the quasi-local algebra A but not necessarily
belonging to the scaling algebra A. This is connected with the issue of extending
sections s W �0;�.A/ ! A to the net A0;� of von Neumann algebras in the scaling
limit. As a result, we embed A into a larger net of C�-algebras A

� to which �0;�

extends in such a way that the image of A
�

.O/ contains A0;�.O/.
Throughout the present section, !0;� D lim� !��

will denote a fixed scaling limit
state of A and A0;� the corresponding scaling limit net. The following definition
already appeared in [15].

Definition 4.1. Let � 2 RC 7! A� 2 A be a norm-bounded function such that
A� 2 A.�O/ for some double cone O and all � > 0. Then � 7! A� is said to be
asymptotically contained in A0;�. yO/, yO a double cone, if for all " > 0 there exist
elements A;A0 2 A. yO/ such that

lim sup
�

.k.A��
� A��

/�k C k.A�
��

� A0
��
/�k/ < ":

We denote by A
�

.O/ the set of functions as above which are asymptotically
contained in A0;�. yO/ for all yO � xO . When there is no danger of confusion, we will
adopt the simplified notation A for a function � 7! A� belonging to A

�

.O/.

It is clear that A
�

.O/ is a self-adjoint linear space containing A.O/ and that the
correspondence O 7! A

�

.O/ is isotonous, but we can say more.
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As in [15], givenA 2 A.O/ andh 2 Cc.Rd /, we consider elements˛hA 2 A. yO/,
yO � O C supp h, defined by

.˛hA/� ´
Z

Rd

dx h.x/˛�x.A�/:

Lemma 4.2. Let A;B 2 A
�

.O/ and let .h�/�2N � Cc.Rd / be a ı-sequence. Then

lim
�;�

kŒA��
B��

�.˛h�
A/��

.˛h�
B/��

��kCkŒA��
B��

�.˛h�
A/��

.˛h�
B/��

���kD0;

where the limit is taken according to the partial (directed ) order .�0; 	0/ � .�; 	/ if
and only if �0 � �; 	0 � 	.

Proof. According to [15], Lemma 5.3 (c), there holds

lim
�;�

kŒA��
� .˛h�

A/��
���k D 0 D lim

�;�
kŒB��

� .˛h�
B/��

��k;

and therefore, by an "=2-argument and the boundedness of � 7! A�, � 7! B� in
norm, it is sufficient to show that

lim
�;�

kŒA��
� .˛h�

A/��
�B��

�k D 0 D lim
�;�

kŒB��
� .˛h�

B/��
��A�

��
�k:

We prove the first equality (the proof of the second one being completely analogous)
with a variation of the argument in the proof of the implication (c) H) (b) of [15],
Lemma 5.3. To this end, letM D sup�>0 kA�k, fix " > 0 and choose correspondingly
a N	 2 N and a �.1/

" such that

kŒB��
� .˛h N�

B/��
��k < "=8M

for all � � �
.1/
" . Consider then a double cone yO containing O C supp h� for all

	 2 N. Then if W � yO 0 is a wedge, �0;� is cyclic for the algebra �0;�.A.W // by a
standard Reeh–Schlieder argument (as recalled in Appendix A). Therefore, we can
find a C 2 A.W / such that

kŒ�0;�.˛h N�
B/ � �0;�.C /��0;�k < "=16M;

and consequently we can find �.2/
" such that

kŒ.˛h N�
B/��

� C��
��k < "=8M

for � � �
.2/
" . Finally, fix 	" 2 N and �.3/

" such that if .	; �/ � .	"; k
.3/
" /, there holds

kŒA��
� .˛h�

A/��
��k < "=2kCk:
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Then if 	 � 	" and � � �
.i/
" , i D 1; 2; 3, we have the inequalities

kŒA��
� .˛h�

A/��
�B��

�k
� kŒA��

� .˛h�
A/��

�.B��
� C��

/�k C kŒA��
� .˛h�

A/��
�C��

�k
� 2Mk.B��

� C��
/�k C kC��

ŒA��
� .˛h�

A/��
��k

� 2M.kŒB��
� .˛h N�

B/��
��k C kŒ.˛h N�

B/��
� C��

��k/
C kCkkŒA��

� .˛h�
A/��

��k < ";
where in the second inequality we have taken into account the fact that C� commutes
with A� � .˛h�

A/�.

Proposition 4.3. A
�

.O/ is a C�-subalgebra of B.RC;A/ for every double cone O .

Proof. We start by showing that A
�

.O/ is a *-algebra. Given A;B 2 A
�

.O/ and
yO � xO , one has ˛h�

A˛h�
B 2 A. yO/ for 	 sufficiently large, and according to the

above lemma,

lim sup
�

kŒA��
B��

�.˛h�
A/��

.˛h�
B/��

��kCkŒA��
B��

�.˛h�
A/��

.˛h�
B/��

���k

can be made arbitrarily small by taking 	 sufficiently large.
It is then sufficient to show that A

�

.O/ is norm-closed in B.RC;A/. To this end,
consider a sequence .An/n2N � A

�

.O/ and A 2 B.RC;A/ such that

lim
n!C1 sup

�

kAn;� � A�k D 0:

Since An;� 2 A.�O/ for all n 2 N, � > 0, this implies that A� 2 A.�O/ for all
� > 0. Given now " > 0, fix n 2 N such that sup� kAn;� � A�k < "=4. Then, for
any yO � xO , we can choose An; A

0
n 2 A. yO/ such that

lim sup
�

.k.An;��
� An;��

/�k C k.A�
n;��

� A0
n;��

/�k/ < "=2:

Then by an "=2-argument,

lim sup
�

.k.A��
� An;��

/�k C k.A�
��

� A0
n;��

/�k/ < ";

which proves the statement.

It is obvious that O 7! A
�

.O/ is a local net of C�-algebras.
Next we show that it is possible to extend the scaling limit representation �0;�

from A to the inductive limit A
� � B.RC;A/ of the C�-algebras A

�

.O/. We begin
with some preparatory lemmas.
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Lemma 4.4. There exists a unique bounded self-adjoint linear map ��

0;� W A
� !

B.H0;�/ which extends �0;� W A ! A0;� and such that

h�0;�.B/�0;�; �
�

0;�.A/�0;�.C /�0;�i D lim
�
!.B�

��
A��

C��
/; B; C 2 A: (4.1)

for all A 2 A
�. Furthermore, ��

0;�.A
�

.O// � Ad
0;�.O/ ´ A0;�.O

0/0 for all double
cones O .

Proof. The limit on the right-hand side of (4.1) exists because, as shown in [1], it can
be viewed as the evaluation, on the function � 7! !.B�

�
A�C�/, of a multiplicative

mean on the algebra of bounded functions on RC. Furthermore, there holds the bound

j lim
�
!.B�

��
A��

C��
/j � sup

�

kA�k lim
�

kB��
�kkC��

�k
D sup

�

kA�kk�0;�.B/�0;�kk�0;�.C /�0;�k:

Due to the density of�0;�.A/�0;� in H0;�, this shows the existence of a unique bounded
operator ��

0;�.A/ on H0;� satisfying (4.1). The map A 7! �
�

0;�.A/ is clearly linear,
self-adjoint, with norm bounded by 1, and extends �0;� since for A 2 A,

lim
�
!.B�

��
A��

C��
/ D h�0;�.B/�0;�; �0;�.A/�0;�.C /�0;�i:

Finally, if A 2 A
�

.O/, O1 � O 0 and D 2 A.O1/, there holds

h�0;�.B/�0;�; �
�

0;�.A/�0;�.D/�0;�.C /�0;�i
D lim

�
!.B�

��
A��

D��
C��

/

D lim
�
!.B�

��
D��

A��
C��

/

D h�0;�.B/�0;�; �0;�.D/�
�

0;�.A/�0;�.C /�0;�i;
where in the second equality we have used the fact that A� 2 A.�O/ for all � > 0.
This shows that ��

0;�.A/ 2 A0;�.O
0/0.

Lemma 4.5. For each ı-sequence .h�/�2N and for each A 2 A
�

.O/, there holds

s*-lim
�!C1�0;�.˛h�

A/ D �
�

0;�.A/

(limit in the strong* operator topology).

Proof. By the Reeh–Schlieder property of wedges in the scaling limit, it is sufficient
to show that the equations

lim
�!C1 kŒ��

0;�.A/ � �0;�.˛h�
A/��0;�.C /�0;�k

D 0 D lim
�!C1 kŒ��

0;�.A/ � �0;�.˛h�
A/���0;�.C /�0;�k (4.2)
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hold for all C 2 A.W /, whereW is a wedge spacelike to some double cone yO � xO .
As the proof is the same, we only show the validity of the first equation. Fix then
" > 0 and, due to [15], Lemma 5.3 (c), choose 	"; �" such that for 	 � 	", � � �"

one has
kŒA��

� .˛h�
A/��

��k < ":
This implies that

lim
�

kC��
ŒA��

� .˛h�
A/��

��k � kCk"
for 	 � 	". Keeping in mind that, according to the previous lemma and to the
localization properties of ˛h�

A, ��

0;�.A/ � �0;�.˛h�
A/ commutes with �0;�.C /, we

see that eq. (4.2) holds.

We denote by A0;�;r the inductive limit of the outer regularized von Neumann
algebras

A0;�;r.O/ ´ T
yO� xO

A0;�. yO/:

We draw the conclusions of the above discussion in the following form.

Theorem 4.6. There exists a morphism �
�

0;� W A
� ! A0;� which extends �0;�.

Proof. It follows from Lemmas 4.4, 4.5 that for all double cones O , ��

0;�.A
�

.O// �
A0;�;r.O/\Ad

0;�.O/. Then, since the quasi-local algebras A0;�;r and A0;� � Ad
0;� co-

incide, one obtains, by norm continuity, a bounded self-adjoint linear map��

0;� W A
� !

A0;�.
In order to show that ��

0;� is multiplicative we can argue as in the proof of
Lemma 4.5, using Lemma 4.2 to show that

lim
�!C1 kŒ��

0;�.AB/ � �0;�.˛h�
A/�0;�.˛h�

B/��0;�.C /�0;�k D 0

holds for all A;B 2 A
�

.O/ and all C 2 A.W / with W a wedge spacelike to some
yO � xO .

In the remaining part of this section, we show that, under fairly general conditions,
the local von Neumann algebras A0;�.O/ of the scaling limit theory are in the image
of ��

0;�.

Lemma 4.7. Let .An/n2N � A.O/be a norm-bounded sequence and .�n/n2N � RC
be such that �n & 0. Assume in addition that

k.AnC1;� � An;�/�k < 1

2n
; k.AnC1;� � An;�/

��k < 1

2n
; � � �n; n 2 N:

(4.3)
Then the function� 7! A� defined byA� D An;� for� 2 .�nC1; �n� is asymptotically
contained in A0;�.O/.
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Proof. If � < �n there is an m � n such that � 2 .�mC1; �m� and therefore

k.A� � An;�/�k D k.Am;� � An;�/�k �
m�1X
kDn

k.AkC1;� � Ak;�/�k < 1

2n�1
;

since � � �m < �m�1 < � � � < �n. Similarly sup�<�n
k.A� �An;�/

��k < 1=2n�1,
and then

lim sup
�!0

.k.A� � An;�/�k C k.A� � An;�/
��k/ < 1

2n�2
;

which shows that � 7! A� is asymptotically contained in A0;�.O/, keeping in mind
the fact that for all � > 0 there exists a � such that �0 � � implies ��0 � �.

In the following theorem we use the notion of convergent scaling limit as in [2],
Def. 4.4. We recall that this means that there is a C�-subalgebra Aconv � A such
that �0;�.Aconv \ A.O//00 D A0;�.O/ for everyO and, for all A 2 Aconv, there exists
lim�!0 !.A�/ D !0;�.A/. This condition is expected to hold in many physically
interesting models and can be explicitly verified, e.g., in dilation covariant theories
satisfying Haag–Swieca compactness and in the theory of the Klein–Gordon field in
d D 3; 4 spacetime dimensions [2], Thms. 7.1, 7.5.

Theorem 4.8. Assume that A has a convergent scaling limit. Then

A0;�.O/ � �
�

0;�.A
�

.O//

for all double cones O .

Proof. It is sufficient to show that, given A0 2 A0;�.O/, we can choose an element
A asymptotically contained in A0;�.O/ such that

lim
�!C1�0;�.˛h�

A/ D A0 (4.4)

in the strong* operator topology, for every ı-sequence .h�/�2N. In fact, if this is true,
the conclusion is obtained by observing that an element asymptotically contained in
A0;�.O/ is also asymptotically contained in A0;�. yO/ for all yO � xO , and therefore
we have A 2 A

�

.O/ and ��

0;�.A/ D A0 according to Lemma 4.5.
ConsiderA0 2 A0;�.O/. Since�0;�.Aconv\A.O// is strongly * dense in A0;�.O/,

due to Kaplanski’s density theorem and to the fact that�0;� is separating for A0;�.O/

there are elements An 2 Aconv \ A.O/ such that kAnk � kA0k and

lim
n!C1�0;�.An/ D A0

in the strong* operator topology. Passing to a subsequence, if necessary, we can also
assume that

k.�0;�.AnC1/ � �0;�.An//�0;�k < 1

2n
; k.�0;�.AnC1/ � �0;�.An//

��0;�k < 1

2n
:



748 R. Conti and G. Morsella

Now, since for B 2 Aconv one has k�0;�.B/�0;�k D lim�!0 kB��k, we see that we
can find a sequence .�n/n2N � RC such that �n & 0 and (4.3) holds. Therefore the
function � 7! A� defined as in Lemma 4.7 is asymptotically contained in A0;�.O/

and satisfies sup� kA�k � kA0k, so we only need to show that (4.4) holds.
To this end, given " > 0, we fix n 2 N such that

k.�0;�.An/ � A0/�0;�k < ";
lim sup

�!0

.k.A� � An;�/�k C k.A� � An;�/
��k/ < ":

Correspondingly, we can find 	" such that if 	 > 	", thenZ
Rd

dx h�.x/k˛x.An/ � Ank < ":

The two latter inequalities imply that for sufficiently small � and 	 > 	",

k..˛h�
A/� � An;�/�k �

����
� Z

Rd

dx h�.x/˛�x.A�/ �
Z

Rd

dx h�.x/˛�x.An;�/

�
�

����
C

����
Z

Rd

dx h�.x/.˛�x.An;�/ � An;�/�

����
� k.A� � An;�/�k C

Z
Rd

dx h�.x/k˛x.An/ � Ank
< 2";

and therefore

k.�0;�.˛h�
A/ � �0;�.An//�0;�k D lim

�
k..˛h�

A/��
� An;��

/�k � 2"

for 	 > 	". Finally, the inequality

k.�0;�.˛h�
A/ � A0/�0;�k

� k.�0;�.˛h�
A/ � �0;�.An//�0;�k C k.�0;�.An/ � A0/�0;�k < 3"

and a similar argument for k.�0;�.˛h�
A/ � A0/

��0;�k show that (4.4) holds.

It seems of interest to decide whether the above argument can be generalized by
dropping the assumption of convergent scaling limit for A.

5. Asymptotic morphisms and scaling limit morphisms

Thanks to the results of the previous section, we are now ready to introduce a natural
notion of asymptotic morphism adapted to the situation at hand, following the analogy
discussed in Section 2. The present section will be devoted to the study of the relations
between these objects and the morphisms from A or A0;� into A0;�.
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Definition 5.1. By an asymptotic morphism of the net A relative to the scaling limit
state !0;� D lim� !��

we mean a family .��/�>0 of maps �� W A ! A such that

lim
�

kŒ���
.A/� � ���

.A�/��k D 0; (5.1)

lim
�

kŒ���
.AC ˛B/ � ���

.A/ � ˛���
.B/��k D 0; (5.2)

lim
�

kŒ���
.AB/ � ���

.A/���
.B/��k D 0: (5.3)

for all A;B 2 A, ˛ 2 C. The asymptotic morphism .��/�>0 will be called tame if
the following properties hold:

(i) for each A 2 A the map ��

.A/ W RC ! A defined by � 7! ��.A/ is an element
of A

�;

(ii) the map A 2 A 7! �
�

.A/ 2 A
� is norm-continuous;

(iii) ��

0;�.�
�

.
S

O A.O/// � S
O A0;�.O/.

Note that a morphism � W A ! A naturally defines an asymptotic morphism
according to the above definition, setting �� ´ � for all � > 0; however .��/ thus
defined will not be tame in general.

We will denote by AMor�.A/ the set of tame asymptotic morphisms of A relative
to the scaling limit state !0;�. When there is no possibility of confusion, we will
however often drop the subscript 
 in order to have a lighter notation.

We will also say that a morphism � W A ! B, with A;B nets of C�-algebras,
is properly supported if �.

S
O A.O// � S

O B.O/. The set of properly supported
morphisms from A to B will be denoted by Morps.A;B/. If � W A ! B is an
isomorphism, we will call it properly supported, by a slight abuse of terminology, if
it is properly supported in the above sense along with its inverse or, equivalently, if
�.

S
O A.O// D S

O B.O/.
A way to produce asymptotic morphisms is to “lift” morphisms A ! A0;� as

explained in the following result.

Theorem 5.2. Assume that A has a convergent scaling limit, and let � W A ! A0;�

be a properly supported morphism. Then there exists a tame asymptotic morphism
.��/�>0 of A such that

�
�

0;�.�
�

.A// D �.A/; A 2 A: (5.4)

Proof. Since A0;� D �
�

0;�.A
�

/, Theorem 4.8, due to the Bartle–Graves SelectionTheo-
rem [3], TVS II.35, Prop. 12, we can choose a continuous section of��

0;� W A
� ! A0;�,

i.e., a norm-continuous map s W A0;� ! A
� such that ��

0;� B s D 1A0;�
. We define

��.A/ ´ s.�.A//� for all � > 0, A 2 A. Properties (i)–(iii) of Definition 5.1 and
eq. (5.4) follow at once. We show that

lim
�

kŒ���
.AB/ � ���

.A/���
.B/��k D 0; A;B 2 A:
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Since A
� is a C�-algebra, setting

Z� ´ s.�.AB//� � s.�.A//�s.�.B//�; � > 0;

we have Z 2 A
�, and therefore, using (4.1) with B D C D 1 and the fact that, by

Theorem 4.6, ��

0;� is a morphism,

lim
�

kŒ���
.AB/ � ���

.A/���
.B/��k2

D lim
�
!.Z�

��
Z��

/

D !0;�.�
�

0;�.Z
�Z//

D kŒ��

0;�.s.�.AB/// � ��

0;�.s.�.A///�
�

0;�.s.�.B///��0;�k2

D kŒ�.AB/ � �.A/�.B/��0;�k2 D 0:

The proof of the equations lim� kŒ��k
.A�/ � ���

.A/���k D 0 D lim� kŒ���
.A C

˛B/ � ���
.A/ � ˛���

.B/��k D 0 is analogous, and this shows indeed that .��/ is
an asymptotic morphism of A.

Remarks. (i) The assumption �.
S

O A.O// � S
O A0;�.O/, which is only needed

to show the validity of property (iii) of Definition 5.1, is natural having in mind
applications to superselection theory: e.g. it is satisfied by � ´ �0�, where �0 is a
localized morphims of A0;� and � W A ! A0;� is an isomorphism as in Theorem 3.1.

(ii) In the setting of the theorem, it is not granted that for each A 2 S
O A.O/,

there exists a double cone O1 with ��.A/ 2 A.�O1/ for all � > 0. The validity
of such property can actually be obtained, by a suitable modification of the above
argument, at the price of restricting the domain of the asymptotic morphism .��/ to
the dense �-subalgebra

S
O A.O/.

The previous theorem has the following converse.

Theorem 5.3. Let .��/ be a tame asymptotic morphism of a local net A relative
to !0;�. Then defining �.A/ ´ �

�

0;�.�
�

.A//, A 2 A, we get a properly supported
morphism � W A ! A0;�.

Proof. Consider A;B 2 S
O A.O/. Then we have

kŒ�.AB/ � �.A/�.B/��0;�k D k�0;�.�
�

.AB/ � ��

.A/�
�

.B//�0;�k
D lim

�
kŒ���

.AB/ � ���
.A/���

.B/��k
D 0:

Due to the fact that �0;� is separating for local algebras and to property (iii) of
Definition 5.1, this implies that � is multiplicative on strictly local elements. The
multiplicativity of � on A then follows from the fact that, according to property (ii)
of Definition 5.1, it is norm-continuous. The proof of the linearity and self-adjointness
of � follows the same lines.
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Obviously, given morphisms �;� W A ! A0;� with � an isomorphism, we get
a morphism �0 of A0;� simply by �0 ´ ���1, and all morphisms of A0;� can be
obtained in this way. In view of the correspondence between morphisms A ! A0;�

and asymptotic morphisms of A established above, it is then possible to describe
morphisms of A0;� by pairs of suitable asymptotic morphisms.

Definition 5.4. An asymptotic isomorphism of A relative to the scaling limit state
!0;� is a tame asymptotic morphism .��/ of A relative to !0;� such that

(i) �� W A ! A
� is injective;

(ii) there exists a continuous section Ns W A0;� ! A
� of ��

0;� such that

�
�
� S

O

A.O/
� D Ns� S

O

A0;�.O/
�
:

We will use the notation AIso�.A/ (or simply AIso.A/) to denote the set of
asymptotic isomorphisms of A relative to !0;�.

Lemma 5.5. Assume that A has a convergent scaling limit. If .��/ is an asymp-
totic isomorphism of A, then the morphism � W A ! A0;� associated to it according
to Theorem 5.3 is a properly supported isomorphism. Conversely given a properly
supported isomorphism � W A ! A0;�, the asymptotic morphism obtained in Theo-
rem 5.2 can be chosen to be an asymptotic isomorphism.

Proof. Let .��/ be an asymptotic isomorphism of A. We show that the associated
morphism � W A ! A0;� is injective. Since �� is injective and � D �

�

0;��
�, it is

sufficient to show that��

.A/\ker ��

0;� D f0g. In order to do that, we first note that, if
A 2 S

O A.O/, by property (ii) of Definition 5.4 there isA0 2 S
O A0;�.O/ such that

�
�

.A/ D Ns.A0/, and applying��

0;� to both sides, one sees that��

.A/ D Ns.��

0;��
�

.A//.
By continuity of��, Ns and��

0;�, this last equation is actually valid for allA 2 A, which
entails ��

.A/ � Ns.A0;�/. Then one has

�
�

.A/ \ ker ��

0;� � Ns.A0;�/ \ ker ��

0;� D f0g
since ��

0;� Ns D 1. The surjectivity of � follows from property (ii) of Definition 5.4
and continuity since

�
� S

O

A.O/
� D �

�

0;�

�
�

�
� S

O

A.O/
�� D �

�

0;�

�Ns� S
O

A0;�.O/
�� D S

O

A0;�.O/:

The last equation also shows that � is a properly supported isomorphism.
Assume now that � W A ! A0;� is a properly supported isomorphism. As seen

in the proof of Theorem 5.2, there exists a tame asymptotic morphism .��/ such that
�

�

.A/ D Ns.�.A//, A 2 A, for some continuous section Ns W A0;� ! A
� of ��

0;�. This
immediately entails property (ii) of Definition 5.4 for ��. Furthermore, if ��

.A/ D
�

�

.B/, A;B 2 A, then applying ��

0;� to both members one gets �.A/ D �.B/ and
therefore A D B , � being an isomorphism.
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It is well known that under fairly general assumptions the quasi-local C�-algebra
A turns out to be simple, and thus in this case a nonzero morphism from A into A0;�

is automatically injective.
We are now in the position of showing that, under suitable hypotheses, morphisms

of A0;� can be described by means of asymptotic morphisms of A.

Theorem 5.6. Assume that A has a convergent scaling limit and that there exists a
properly supported isomorphism � W A ! A0;�. Given a properly supported mor-
phism �0 of A0;�, there exists a tame asymptotic morphism .��/ and an asymptotic
isomorphism .��/ of A such that

�0 D �
�

0;��
�

.�
�

/�1 Ns; (5.5)

where Ns is the section in Definition 5.4 (ii).
Conversely, given a tame asymptotic morphism .��/ and an asymptotic isomor-

phism .��/ of A, �0 defined by formula (5.5) is a properly supported morphism of
A0;�.

Proof. We start by noticing that � ´ �0� W A ! A0;� is a properly supported
morphism. Consider then a tame asymptotic morphism .��/ associated to� according
to Theorem 5.2 and an asymptotic isomorphism .��/ associated to � according to
Lemma 5.5. Since �� is injective and Ns.A0;�/ D �

�

.A/, there holds ��1 D .�
�

/�1 Ns
and therefore

�0 D ���1 D �
�

0;��
�

.�
�

/�1 Ns:
The converse statement is clear since both � D �

�

0;��
� W A ! A0;� and ��1 D

.�
�

/�1 Ns W A0;� ! A are properly supported morphisms.

Remarks. (i) Loosely speaking, every morphism of A0;� is thus realized as a (multi-
plicative) difference of asymptotic morphisms. This is somewhat reminiscent of the
representation of KK-elements in the Cuntz picture.

(ii) If we had a canonical isomorphism between A and A0;� (as for dilation co-
variant theories), we could identify morphisms of A0;� with morphisms between A

and A0;� and thus we could avoid talking about differences. In the general case, the
usage of differences allows to bypass the arbitrariness of the choice of a noncanonical
isomorphism.

Theorem 5.6 allows us to define a surjective map

‰ W AMor�.A/ 	 AIso�.A/ ! Morps.A0;�/ (5.6)

through formula (5.5). Notice that the second part of Theorem 5.6 is actually in-
dependent of the assumption of convergent scaling limit for A. Therefore, also the
definition of ‰ does not rely on this hypothesis.
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Next, we turn to consider equivalence of pairs of asymptotic morphisms. We
will give below such a notion so that equivalent pairs of asymptotic morphisms are
mapped to unitarily equivalent morphisms by ‰.

As a start, it is useful to consider a few relevant notions of equivalence for (single)
asymptotic morphisms.

We recall that two morphisms �; � W B1 ! B2, B1, B2 C�-algebras, are unitarily
equivalent if there exists a unitary operator U 2 B2 such that � D U�. � /U �.

We say that U D .U�/ 2 A
� is an asymptotic unitary if ��

0;�.U / 2 A0;� is unitary.
It is easy to see that if U 2 A

�

.W /, with W a wedge, this is equivalent to

lim
�

kŒU��
U �

��
� 1��k D 0 D lim

�
kŒU �

��
U��

� 1��k:

Definition 5.7. Let .��/, .��/ be asymptotic morphisms of A relative to !0;�. We
say that

(i) .��/, .��/ are asymptotically equal if

lim
�

kŒ���
.A/ � ���

.A/��k D 0

for all A 2 A;

(ii) .��/, .��/ are asymptotically (inner) equivalent if there exists an asymptotic
unitary .U�/ 2 A

� such that �0
�

´ U���. �/U �
�

defines an asymptotic morphism
asymptotically equal to .��/.

If .��/, .��/ are tame asymptotic morphisms, it is easy to see that if they are
asymptotically equal then the associated morphisms �; � W A ! A0;� coincide, and
conversely that given a properly supported morphism � W A ! A0;� all the tame
asymptotic morphisms .��/ of A such that � D �

�

0;��
� are asymptotically equal to

each other. Similarly, .��/, .��/ are asymptotically equivalent if and only if �; �
are unitarily equivalent through a unitary U0 D �

�

0;�.U / 2 A0;�. This also shows
that asymptotic equivalence is actually an equivalence relation. Note that in general
�0

�
D U���. � /U �

�
will not be a tame asymptotic morphism, however it makes perfect

sense to consider ��

0;�.U�
�

. � /U �/ D �
�

0;�.U /�. � /��

0;�.U /
� which is a morphism

from A to A0;�.
We also remark that there is a natural right action of Aut.A/ on the set of asymp-

totic morphisms of A given by associating to ˛ 2 Aut.A/ and .��/ the asymp-
totic morphism .��˛/. Moreover, if ˛.

S
O A.O// � S

O A.O/ we also have that
.��˛/ 2 AMor.A/ for all .��/ 2 AMor.A/, and the morphism associated to .��˛/

as in Theorem 5.3 is �˛. Furthermore if ˛.
S

O A.O// D S
O A.O/ the action of ˛

preserves AIso.A/.

Definition 5.8. We say that ..��/; .��//; ..��/; . �// 2 AMor�.A/ 	 AIso�.A/ are
asymptotically equivalent if .���

�1 / and .��/ are asymptotically equivalent as
asymptotic morphisms (see Definition 5.7).
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Note that, thanks to the fact that ��1 is an automorphism of A, this is actually
an equivalence relation.

Proposition 5.9. Assume that A has a convergent scaling limit and that A and A0;�

are isomorphic as C�-algebras, through a properly supported isomorphism.
If ..��/; .��//; ..��/; . �// 2 AMor�.A/ 	 AIso�.A/ are asymptotically equiv-

alent, then �0 D ‰..��/; .��// and �0 D ‰..��/; . �// are unitarily equivalent.
Conversely, if �0; �0 2 Morps.A0;�/ are unitarily equivalent, there exist asymp-

totically equivalent ..��/; .��//; ..��/; . �// 2 AMor�.A/ 	 AIso�.A/ such that

�0 D ‰..��/; .��//; �0 D ‰..��/; . �//:

Proof. Let ..��/; .��/
�
;
�
.��/; . �// 2 AMor�.A/ 	 AIso�.A/ be asymptotically

equivalent. Then according to the remarks following Definition 5.7, there exists a
unitary operator U0 2 A0;� such that

���1 D U0� . � /U �
0 ;

where, as usual, � D �
�

0;��
�, � D �

�

0;��
�, � D �

�

0;��
�,  D �

�

0;� 
�. Therefore,

according to formula (5.5), one has

�0.A/ D U0� 
�1.A/U �

0 D U0�0.A/U
�
0

for all A 2 A0;�, which shows the first part of the statement.
Assume now that �0; �0 2 Morps.A0;�/ are unitarily equivalent and consider a

properly supported isomorphism � W A ! A0;�. Due to Theorem 5.6, there exist
.��/; .��/ 2 AMor.A/ and .��/ 2 AIso.A/ such that � D �

�

0;��
� and �0 D

‰..��/; .��//, �0 D ‰..��/; .��//. It follows from formula (5.5) that � D �
�

0;��
�,

� D �
�

0;��
� are unitarily equivalent, and therefore, again using the remark following

Definition 5.7, .��/ D .���
�1�/ and .��/ are asymptotically equivalent.

Furthermore, given ..��/; .��//; ..��/; . �// 2 AMor�.A/ 	 AIso�.A/, one
sees at once, again by the remarks following Definition 5.7, that ‰..��/; .��// D
‰..��/; . �// if and only if the asymptotic morphisms .���

�1 / and .��/ are
asymptotically equal.

We summarize the above discussion in the following result.

Corollary 5.10. If A has a convergent scaling limit and there exists a properly sup-
ported isomorphism � W A ! A0;�, there is a bijective correspondence between the
asymptotic equivalence classes of AMor�.A/	AIso�.A/ and the unitary equivalence
classes of Morps.A0;�/.

Proof. The map which associates to the class of ..��/; .��// 2 AMor�.A/	AIso�.A/

the class of‰..��/; .��/ 2 Morps.A0;�/ is well defined due to the first part of Propo-
sition 5.9, injective due to the second part of the same proposition together with the
remark following it, and surjective due to the first part of Theorem 5.6.
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6. Localized asymptotic morphisms

Throughout this section, we assume that A has a convergent scaling limit. We now
wish to focus our attention on pairs of asymptotic morphisms ..��/; .��// giving rise,
via the map‰, to localized morphisms of A0;�. We recall that a morphism � of a local
net A is localized if there exists a double coneO such that �.A/ D A if A 2 A.O 0/.
A localized morphism is properly supported if A satisfies Haag duality. A natural
guess would be that ‰..��/; .��// being localized is equivalent to requiring

lim
�

kŒ���
.A/ � ���

.A/��k D 0; A 2 A; �.A/ 2 A0;�.O
0/:

There are however a number of technical problems in proving this, including poor
control on ��1.A0;�.O

0//.
Instead of tackling this issue directly, here we appeal to the characterization of

localized morphisms of A0;� in terms of asymptotic charge transfer chains (ACTC)
of A [29], [30]. These are suitable sequences .U k/k2N � A which behave, roughly
speaking, as charge transfer chains (CTC)1 for � ! 0, i.e., U k;� is asymptotically
bilocalized in a couple of regions, one of which goes to spacelike infinity ask ! C1,
while U �

k;�
U h;� is asymptotically bilocalized in a couple of regions both going to

spacelike infinity as k; h ! 1. Moreover one has

�
U
0 .A/ D s-lim

k!1
�0;�.U k/A�0;�.U k/

�; A 2 A0;�;

with �U
0 a localized morphism of A0;�, and all such morphisms arise in this way. We

will call �U
0 the scaling limit morphism associated to .U k/, and we will denote by

ACTC.A/ the set of asymptotic charge transfer chains of A.
Since, as shown in the previous section, there is a one-to-one correspondence be-

tween classes of morphisms of A0;�, localized or not, and classes of pairs of asymptotic
morphisms of A, this will provide us with a description of those pairs of asymptotic
morphisms corresponding to localized morphisms in terms of asymptotic charge
transfer chains.

Definition 6.1. We say that a pair ..��/; .��// 2 AMor�.A/	 AIso�.A/ is localized
if ‰..��/; .��// 2 Morps.A0;�/ is a localized morphism of A0;�.

Proposition 6.2. The pair ..��/; .��// 2 AMor�.A/ 	 AIso�.A/ is localized if and
only if there exists an ACTC .U k/k2N such that

s-lim
k!C1

�
�

0;�.U k�
�

.A/U �
k/ D �

�

0;��
�

.A/; A 2 A: (6.1)

1The notion of charge transfer chain can be traced back to [19] (see also [31]). Here we follow the
formal definitions and results of [29], [30].
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Proof. Assume that �0 ´ ‰..��/; .��// 2 Morps.A0;�/ is localized. Then there
exists an ACTC .U k/k2N such that

s-lim
k!C1

�0;�.U k/A0�0;�.U k/
� D �0.A0/; A0 2 A0;�:

Due to Theorems 5.3 and 5.6, this implies immediately

s-lim
k!C1

�
�

0;�.U k�
�

.A/U �
k/ D s-lim

k!C1
�0;�.U k/�

�

0;�.�
�

.A//�0;�.U k/
�

D �0.�
�

0;�.�
�

.A///

D �0�.A/

D �
�

0;��
�

.A/:

Conversely, if formula (6.1) holds for some ACTC .U k/k2N, then the same com-
putation shows that ��

0;��
� D �

U
0 �, i.e.,‰..��/; .��// D �

U
0 is a localized morphism

of A0;�.

Obviously, there is a map from classes of asymptotic charge transfer chains of A

to classes of pairs of asymptotic morphisms of A which makes the following diagram
commutative:

�.A0;�/=Š��

��

� � �� Morps.A0;�/=Š��

��
ACTC.A/=
 �� AMor�.A/ 	 AIso�.A/=
,

where we have denoted by�.A0;�/ the semigroup of localized morphisms of the net
A0;�. Due to the above proposition, we see that a class Œ.U k/k2N� 2 ACTC.A/=

gets mapped onto a class Œ..��/; . �//� 2 AMor�.A/ 	 AIso�.A/=
 if and only if
there exists a unitary operator W on H0;� such that

s-lim
k!C1

�
�

0;�.U k 
�

.A/U �
k/ D W�

�

0;�� .A/W
�; A 2 A:

By the above, there is also a natural notion of transportability of localized pairs
of asymptotic morphisms. We skip the easy details.

Of course, in view of applications to superselection theory, an important question
that we plan to address elsewhere is to find some characterization of further proper-
ties of “physical morphisms” (like being irreducible, covariant, with finite statistics,
having a conjugate …) of A0;� in terms of suitable pairs of asymptotic morphisms.

7. Asymptotic morphisms and preserved sectors

We now want to discuss some relation between the asymptotic morphisms of A

introduced in Theorem 5.2 and the morphism �0 of A0;� associated to a preserved
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sector as defined in [15]. These are the sectors of A which “survive” to the scaling
limit, and thus give rise to sectors of A0;�. Throughout this section, we assume that
d D 3; 4.

To this end, we need to introduce the canonical DR field net F determined by the
superselection sectors of A [21]. The corresponding scaling algebra F and scaling
limit net F0;� have been defined in [15]. There, also the concept of (bounded) functions
� 7! F� 2 F , F� 2 F .�O/, asymptotically contained in F0;�. yO/ is defined, in a
way analogous to Definition 4.1. Using then arguments similar to those of Section 4,
it is not difficult to show that the set F

�

.O/ of elements asymptotically contained

in F0;�. yO/ for all yO � xO is a C�-algebra, and that the scaling limit representation
�0;� W F ! B.HF0;�

/ lifts to a representation ��

0;� W F
� ! B.HF0;�

/ such that, for all
F 2 F

�

.O/, and for all ı-sequences .h�/�2N,

s*-lim
�!C1�0;�.˛h�

F / D �
�

0;�.F /:

Furthermore the restriction of ��

0;� to A
� and H0;� coincides with the extension to A

�

of the restriction of �0;� to A and H0;�, cf. [13], p. 491. We will still use for these
restrictions the notations��

0;�,�0;� respectively. Denoting byg 2 G 7! ˇg 2 Aut.F /
the action of the canonical gauge group G on F , it is also easy to verify that

F
�

.O/G ´ fF 2 F
�

.O/ j ˇg.F�/ D F� for all g 2 G; � > 0g D A
�

.O/:

We first mention a result similar in spirit to [15], Prop. 5.6, but based on the
notion of ACTC as discussed in [29], [30]. This is an easy consequence of the above
definitions and known facts. We put it on record here since its formulation, in which
only observables appear, can be subject to interesting generalizations.

Proposition 7.1. Let  be a preserved sector of the local net A. For any double cone
O , there exists an ACTC .U k/k2N � A such that

(i) there holds, for A 2 A and � > 0,

s-lim
k!C1

U k;�AU
�
k;� D �.�/.A/; (7.1)

where �.�/ are morphisms of A of class  localized in �O;

(ii) there holds, for A0 2 A0;�,

s-lim
k!C1

�0;�.U k/A0�0;�.U k/
� D �0.A0/

with �0 D �
U
0 a morphism of A0;� localized in any yO � xO;

(iii) for each A 2 A
� the function ��

.A/ W � 7! �.�/.A�/ belongs to A
� and

�
�

0;�.�
�

.A// D �0.�
�

0;�.A//: (7.2)
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Proof. According to [15], Def. 5.4, for each O we can find a multiplet  j .�/ 2
F .�O/, j D 1; : : : ; d , of class  such that the functions  j W � 7!  j .�/ belong
to F

�

.O/. Let now xk 2 W be a sequence converging to spacelike infinity in a
given wedgeW and .hk/k2N be a ı-sequence of non-negative continuous, compactly
supported functions on Rd . Define

U k;� D
dP

j D1

.˛hk
 j /�˛xk

.˛hk
 j /

�
�
: (7.3)

Then properties (i) and (ii) follow from [30], Thm. 4.4. This also implies that indeed

�.�/.A/ ´
dP

j D1

 j .�/A j .�/
�; A 2 A;

and, using also Prop. 5.5 of [15] and Lemma 4.5,

�0.A0/ D
dP

j D1

�
�

0;�. j /A0�
�

0;�. j /
�; A0 2 A0;�: (7.4)

The localization property of �0 is then a consequence of the fact that ��

0;�.F
�

.O// �
F0;�;r.O/, cf. the proof of Theorem 4.6. For what concerns property (iii), note that
since A 2 A

� � F
�

,  j 2 F
�

, j D 1; : : : ; d , and F
�

is a C�-algebra, it follows at
once that ��

.A/ 2 F
�

. It is then also clear that ˇg.�.�/.A�// D �.�/.A�/ for all
g 2 G, � > 0, and therefore by the above remark ��

.A/ 2 A
�. Then eq. (7.2) follows

immediately from the fact that ��

0;� is a representation of F
�

.

We now show that, for preserved sectors, there is a preferred choice of the asso-
ciated asymptotic morphism.

Theorem 7.2. Let  be a preserved sector of A, and �0 2 Morps.A0;�/, �.�/ 2
Morps.A/ the associated morphisms as in Proposition 7.1. If .��/ 2 AIso�.A/,
defining

�� ´ �.�/��; � > 0; (7.5)

there holds that .��/ 2 AMor�.A/ and ‰..��/; .��// D �0.

Proof. We start by showing that .��/ is an asymptotic morphism of A. Since �.�/
is a morphism of A for all � > 0 one has, for all A;B 2 A,

lim
�

kŒ���
.A/���

.B/ � ���
.AB/��k

D lim
�

kŒ�.��/
�
���

.A/���
.B/ � ���

.AB//��k
D k��

0;�.�
�

.�
�

.A/�
�

.B/ � ��

.AB///�0;�k
D k P

j

�
�

0;�. j /
�
�.A/�.B/ � �.AB//��

0;�. j /
��0;�k

D 0;
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where in the third equality we used eqs. (7.2), (7.4) and where the last equality holds
because � D �

�

0;��
� W A ! A0;� is an isomorphism. Thus eq. (5.3) holds for .��/.

Eqs. (5.1), (5.2) are verified similarly.
Next we prove that .��/ is tame. Property (i) of Definition 5.1 follows at once

from Proposition 7.1 (iii) and from the fact that, since .��/ is tame, ��

.A/ 2 A
� for

all A 2 A. For property (ii), �.�/ being a morphism of C�-algebras, and therefore
contractive, there holds

sup
�

k�.�/.��.A/ � ��.B//k � sup
�

k��.A/ � ��.B/k;

and we can then use again that (ii) holds for .��/. Finally property (iii) follows from
eqs. (7.2), (7.4), from the localization of ��

0;�. j / and from property (iii) for .��/.
It remains to prove that ‰..��/; .��// D �0. Since, according to Proposi-

tion 7.1 (iii),��

0;�.�
�

.�
�

.A/// D �0.�.A//,A 2 A, in order to conclude it is sufficient,
due to formula (5.5), to observe that

�
�

0;�.�
�

.A// D �
�

0;�.�
�

.�
�

.A///; A 2 A;

which is clear by definition.

Remark 7.3. (i) According to Definition 5.8 and the remark following Proposi-
tion 5.9, if .��/ is a tame asymptotic morphism such that ‰..��/; .��// D �0 then
.��/ is asymptotically equal to .��/ defined by (7.5).

(ii) Let ; �0 and .��/ be as above, and let .U k/ be the ACTC defined by eq. (7.3).
Consider, for each A 2 A and k 2 N, the function �k.A/ W � 7! U k;���.A/U

�
k;�

,
which is an element of A

�. Then, due to Proposition 7.1, there holds

�
�

0;�

�
lim

k!C1
�k.A/

� D s-lim
k!C1

�
�

0;�.�k.A//; (7.6)

where the limit in the left-hand side is to be understood as the pointwise convergence,
in the strong operator topology, of the sequence of functions .�k/k2N with values in
B.H /. As the definition of ��

0;� involves a � ! 0 limit, eq. (7.6) can be interpreted
as an exchange of the limits in k and �.

(iii) If A is a dilation covariant theory satisfying the Haag–Swieca compactness
condition, it is not difficult to see that the isomorphism� W A ! A0;� of [2], Thm. 7.1,
satisfies

��1.�
�

0;�.A// D w-lim
�

ı�1
��
.A��

/; A 2 A
�

;

(see also the proof of Proposition 8.4 below) and that a continuous section s W A0;� !
A

� is obtained by

s.�
�

0;�.A//� ´ ı��
�1.�

�

0;�.A//; A 2 A
�

:

The asymptotic isomorphism corresponding to ��1 and to this choice of the section
is given by �� D ı�, and therefore eq. (7.5) gives back eq. (2.2).
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8. Some remarks on asymptotic charge transfer chains

It seems interesting to understand what becomes of Proposition 7.1 and Theorem 7.2
of the previous section if one drops the assumption that  is a preserved sector of A0;�.
In particular one may ask under which conditions on an ACTC .U k/k2N � A the
limit in the left-hand side of (7.1) exists, what kind of maps are obtained in this way,
and what is their relation with the morphism �

U
0 associated to .U k/. We point out

here some facts that illustrate what kind of difficulties may arise in trying to answer
such questions.

Definition 8.1. The map ˆ� W A ! A, � > 0, defined by

ˆ�.A/� ´
´
A�; � < �;

1; � � �;

is called a filter at scale �.

If !0;� is a scaling limit state, with associated scaling limit representation �0;�,
there holds �0;�.ˆ�.A// D �0;�.A/ for all A 2 A, � > 0.

Proposition8.2. Let .U k/k2N beanACTCofA. Then there exists anACTC .V k/k2N

with �V
0 D �

U
0 and such that, for all � > 0;

lim
k!C1

V k;�AV
�
k;� D A; A 2 A:

Proof. Define V k ´ ˆ1=k.U k/ 2 A. Then by the above remark �0;�.V k/ D
�0;�.U k/ for all k. According to [30], Def. 4.1, this implies that .V k/k2N is an
ACTC, and it is also clear that it has �U

0 as associated scaling limit morphism. In
addition, for k > ��1 one has

V k;�AV
�
k;� D A;

which concludes the proof.

An ACTC .V k/k2N as above will be called trivial. Therefore every localized
transportable morphism of the scaling limit theory is associated to a trivial ACTC,
irrespective of whether it belongs to a confined sector or not. Furthermore, since
.V k/k and .U k/k give rise to the same scaling limit localized morphism, they are
equivalent ACTCs in the sense of [29], [30].

Remark 8.3. (i) Going back to the case of preserved sectors considered in Proposi-
tion 7.1, we see that it is possible to find pairs of ACTCs .U k/k , .V k/k which have
the same associated morphism in the scaling limit and which define morphisms �.�/,
�.�/ at finite scales which are non-equivalent for every � > 0.

(ii) In general, a trivial ACTC does not satisfy condition (7.2) in the previous
section since in this case ��

.A/ D A for all A 2 A
�.
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Elaborating on the above argument a bit more we can show that, at least for dilation
covariant theories, one can change an ACTC, within its equivalence class, in such a
way as to obtain an arbitrary sector in the k ! 1 limit (at fixed scale). However,
this unpleasant feature is ruled out by requiring that the morphisms at fixed scales
and in the scaling limit are connected by eq. (7.2).

Proposition 8.4. Let A be a dilation covariant net satisfying Haag–Swieca compact-
ness. Given an ACTC .V k/k and a localized transportable morphism � belonging

to a dilation covariant sector  of A, there exists an ACTC .W k/k2N with �W
0 D �

V
0

and such that
s-lim

k!C1
W k;�AW

�
k;� D ı��ı

�1
� .A/; A 2 A: (8.1)

for all � > 0. Furthermore if ��1 W A0;� ! A is the isomorphism defined in [2], one

has �V
0 D ����1 if and only if condition (7.2) holds with �0 D �

V
0 , �.�/ D ı��ı

�1
�

,
� > 0 .

Proof. Since the sector  is preserved by [15], Sec. 5, we can apply Proposition 7.1.
In particular, we get an ACTC .U k/k2N such that (7.1) holds with �.�/ D ı��ı

�1
�

.
Define then

W k;� ´
´
V k;� � < 1=k;

U k;� � � 1=k:

It is clear that W k 2 A and that �0;�.W k/ D �0;�.V k/, so that .W k/k is an ACTC
and �U

0 is associated also to .W k/k . Eq. (8.1) is also obvious.
Recall from [6] that��1 is defined by��1.�0;�.A// D w-lim� ı

�1
��
.A��

/,A 2 A.

By an "=3 argument, together with Lemma 4.5 and the fact that ��1 is unitarily
implemented, we see that there also holds

��1.�
�

0;�.A// D w-lim
�

ı�1
��
.A��

/

for all A 2 A
�. Then since ��

.A/� D ı��ı
�1
�
.A�/, one has, for A 2 A

�

.O/,

��1.�
�

0;�.�
�

.A/// D w-lim
�

ı�1
��
.�

�

.A/��
/ D w-lim

�
�ı�1

��
.A��

/ D ���1.�
�

0;�.A//;

where in the last equality we used the local normality of the localized transportable
morphism � and the fact that ı�1

�
.A�/ 2 A.O/ for all � > 0. Therefore eq. (7.2)

holds if and only if �V
0 D ����1.

More generally, consider a family .�.�//�>0 of morphisms of a local net A and
a sequence .V k/k � A such that, in some of the usual topologies,

lim
k!C1

V k;�AV
�
k;� D �.�/.A/; A 2 A:



762 R. Conti and G. Morsella

It is then clear, again by the same argument, that for any scaling limit morphism �0

one can find an ACTC .W k/k which has �0 as associated scaling limit morphism and
such that

lim
k!C1

W k;�AW
�
k;� D �.�/.A/; A 2 A;

in the same topology as the above limit.

Due to the large arbitrariness in the values of U k at finite scales it seems difficult,
if not impossible, to show, for a general ACTC .U k/k , that there exist the limit

lim
k!C1

U k;�AU
�
k;�

for each fixed � > 0. This arbitrariness is also at the root of the results presented
in this section. They indicate that, even if the above limit exists, there is in general
no tight connection between the maps it defines at each scale � > 0 and the scaling
limit morphism �

U
0 associated to .U k/. As in the case of preserved sectors, in order

to have such a connection one has to select a subclass of ACTCs possessing suitably
strengthened properties.

9. A C�-category of asymptotic morphisms

We now wish to define a C�-category whose objects are pairs of asymptotic mor-
phisms of A in AMor�.A/ 	 AIso�.A/. In order to do this, we proceed in parallel
with Appendix B, where we perform the same construction using Connes–Higson
asymptotic morphisms as objects. As many details are common to both situations,
we limit ourselves here to indicating the main steps.

Definition 9.1. An intertwiner between two pairs ..��/; .��// and ..��/; . �// of
asymptotic morphisms in AMor�.A/ 	 AIso�.A/ is a function T 2 A

� such that

lim
�

kŒT��
���
��1.A/ � ���

 �1.A/T��
��k D 0

for all A 2 A0;�. We write T 2 HomŒ..��/; .��//; ..��/; . �//�.

From the above definition, it follows that if �0 D ‰..��/; .��// and �0 D
‰..��/; . �//, then T 2 HomŒ..��/; .��//; ..��/; . �//� if and only if ��

0;�.T / is an
intertwiner between �0 and �0 in Morps.A0;�/.

Let T 2 HomŒ..��/; .��//; ..��/; . �//�, S 2 HomŒ..��/; . �//; ..��/; .��//�

be intertwiners. Then their composition is naturally defined by .S BT /� ´ S�T� and,
due to the observation above, it is clear that S BT 2 HomŒ..��/; .��//; ..��/; .��//�.
The linear space of intertwiners HomŒ..��/; .��//; ..��/; . �//�, naturally equipped
with the norm inherited from A

�,

kT k D sup
�>0

kT�k;
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becomes a Banach space. Furthermore kS B T k � kSkkT k. Finally, an involution
on intertwiners is defined by T � ´ .� 7! T �

�
/ 2 HomŒ..��/; . �//; ..��/; .��//�,

and one straightforwardly verifies that the axioms of a C�-category [22] are satisfied.
In particular each self-intertwiner space HomŒ..��/; .��//; ..��/; .��//� becomes a
unital C�-algebra.

We denote the C�-category thus obtained by E�.A/.

Proposition 9.2. There is a canonical �-functor ‰ W E�.A/ ! Morps.A0;�/ defined
by the map‰ W AMor�.A/	 AIso�.A/ ! Morps.A0;�/ of eq. (5.6) on objects and by
‰.T / ´ �

�

0;�.T / on intertwiners.
If A has a convergent scaling limit, and if there exists a properly supported

isomorphism � W A ! A0;�, then ‰ is full and surjective.

Surjectivity of the functor ‰ follows from Theorem 5.6, and its fullness from
Theorem 4.6.

The above statement is of course valid also if we restrict to the full subcategories
of E�.A/ and of Morps.A0;�/ defined by the localized objects.

It is also not difficult to see that it is possible to generalize the above result to
asymptotic morphisms between two nets A, B and their intertwiners, defined in the
obvious way. In this way one gets a C�-category E�.A;B/ and a full surjective
�-functor between E�.A;B/ and Morps.A0;�;B0;�/.

10. Summary and outlook

In the present investigation, we introduced a variant of the concept of asymptotic
morphism of Connes and Higson, and showed that such objects can be used to describe
the superselection (i.e., charge) structure of the short distance scaling limit of a QFT
defined by a given local net A.

The main differences between our notion of asymptotic morphism and the Connes–
Higson one are due to the facts that: (1) the algebra-valued functions which naturally
arise in the description of the scaling limit enjoy rather poor continuity properties,
and in particular they cannot be norm-continuous for � ! 0, and (2) when studying
superselection theory, one has to assume that the local algebras are weakly closed,
and therefore they cannot be just quotients of the local scaling algebras with respect
to the kernel of the scaling limit representation.

In order to tackle issue (2) above, we had to construct, following ideas already
present in [15], a new net O 7! A

�

.O/ which extends the scaling algebras net,
and which is still represented on the original scaling limit Hilbert space in such a
way as to contain the local von Neumann algebras A0;�.O/ (if the underlying theory
has a convergent scaling limit). This allowed us to set up a bijective correspondence
between classes of asymptotically equivalent asymptotic morphisms .��/ and unitary
equivalence classes of morphisms � from A to A0;�, so that �.A/, A 2 A, is the
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“scaling limit” of the function � 7! ��.A/. In order to relate the morphisms � with
the superselection structure of A0;�, we showed that the quasi-local C*-algebras of two
nets A and B are isomorphic under very general conditions. Therefore by mapping
the pair of asymptotic morphisms ..��/; .��//, the second of which corresponds to
such an isomorphism � W A ! A0;�, to the morphism �0 D ���1 W A0;� ! A0;�,
we obtain a bijection between classes of such pairs and unitary equivalence classes
of morphisms of A0;�.

We note that the existence of an isomorphism � W A ! B at the level of quasi-
local C*-algebras by no means implies the physical equivalence of the corresponding
theories. Even if � respects the net structure, which generally speaking seems not to
be the case, there is no reason why it should also intertwine the actions of the symmetry
group and the vacuum states. Therefore, it seems an interesting problem whether one
can establish, in the case B D A0;�, the existence of such an isomorphism which is
canonical in some sense.

We have also shown that one can view (localized) pairs of asymptotic morphisms
as above as objects of a C*-category E�.A/. A natural question is then how much of the
information carried by the superselection category of A0;� can be encoded into E�.A/.
In particular one may ask if it is possible to define additional structures/operations on
the family of asymptotic morphisms such as, e.g., a tensor product. In this respect,
we observe that the obvious composition of asymptotic morphisms is not in general
an asymptotic morphism. This is a problem also in the context of Connes–Higson
E-theory, where it is solved by appealing to homotopy classes. It seems possible that
similar methods can be employed in the present case too.

It could also be worthwhile to study these concepts in models. Apart from the
obvious case of free field theories, it should also be remarked that for the methods
developed in this work the dimensionality of spacetime is irrelevant, thus opening the
way to the study of two-dimensional models, for which a detailed analysis of nontrivial
examples is available. In particular, one may ask questions about the nature of the
asymptotic morphisms corresponding to the confined sectors of the Schwinger model
[4], [7]. (A possible source of problems, here, could be the arbitrariness introduced
by the use of a section of �0;� in defining them.)

The study of such examples could also provide hints about a possible characteri-
zation of confined sectors in terms of asymptotic morphisms.

More in prospect, as already suggested in [12], bearing in mind the relationships
between E-theory and KK-theory one should investigate the possibility of using the
asymptotic morphisms introduce here in order to define noncommutative geometric
invariants with a clearcut physical interpretation for the local net A.

Acknowledgements. We wish to thank S. Doplicher, who first pointed out the possi-
ble relevance of asymptotic morphisms in the description of superselection structure
in the scaling limit of QFT. We are also grateful to M. Weiner for a useful discussion
about Section 3 and to R. Hillier for his comments on a preliminary version of this
work.
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A. Appendix: Scaling algebras and scaling limit

For the reader’s convenience, we collect in this appendix few facts about scaling
algebras and scaling limit theories which are used throughout the main text. For
physical motivations and further details we refer to the original paper [6].

LetO 7! A.O/ be a local net of von Neumann algebras defined over double cones
in d -dimensional Minkowski spacetime, acting on the vacuum Hilbert space H . We
assume the existence of a strongly continuous representationU W Rd ! U.H / of the
translation group acting geometrically on the net, i.e., for each O ,

U.x/A.O/U.x/� D A.O C x/; x 2 Rd :

Moreover U is such that SpU is contained in the closed forward light cone of Rd

(spectrum condition) and admits a unique invariant vector � 2 H , up to a phase,
called the vacuum, which is assumed to by cyclic for the quasi-local C*-algebra

A D S
O

A.O/

(norm-closure) of the net A. It follows that A acts irreducibly on H . We use the
standard notation ˛x ´ AdU.x/ for the automorphic action of Rd on A induced by
U .

The scaling algebra A is then defined as the norm-closure of the union of the
local scaling algebras A.O/, where A.O/ is the C*-algebra of all bounded functions
� 2 RC 7! A� 2 A satisfying

A� 2 A.�O/; � > 0; lim
x!0

k˛x.A/ � Ak D 0:

In the last formula, we adopted the notations

kAk ´ sup
�>0

kA�k; ˛x.A/� ´ ˛�x.A�/; x 2 Rd ; � > 0

for the norm of A and the automorphic action of Rd on it.
For each � > 0, define a state !� on A by !�.A/ ´ h�;A��i. A scaling limit

state is by definition any weak*-limit, as � ! 0, of the family of states .!�/�>0. For
any such state !0;� we denote the corresponding GNS triple as .�0;�;H0;�; �0;�/.

For any fixed scaling limit state, the corresponding scaling limit netO 7! A0;�.O/

is obtained taking for each double cone the bicommutant of the image of A.O/ in the
corresponding GNS representation, i.e.,

A0;�.O/ ´ �0;�.A.O//
00:

It comes equipped with a natural automorphic action of Rd induced by a strongly
continuous unitary representation of Rd satisfying the spectrum condition, and acts
irreducibly on H0;� (if d D 3; 4).
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It is useful to recall the following fact from [6], Lemma 6.1. Denoting by W
a wedge in Minkowski space, i.e., a Poincaré transform of one of the two standard
wedges

W˙ ´ ¹x 2 Rd j ˙x1 > jx0jº;
and by A.W / the C*-algebra generated by the algebras A.O/, O � W , one has that
�0;� is cyclic and separating for �0;�.A.W //

00 (Reeh–Schlieder property for wedges).

B. Appendix: The C �-category of asymptotic morphisms

Given a unital C �-algebra A, it is well known that there is a C �-category End.A/
whose objects are the (unital �-)endomorphisms from A into itself and whose arrows
are their intertwiner operators. Recall that given two endomorphisms � and �0 one
says that an element T 2 A is an intertwiner between � and �0 if it holds

T�.A/ D �0.A/T; A 2 A;

and denotes by .�; �0/ the Banach space of all such intertwiners. The C �-category
End.A/ is equipped with relevant additional structure, for instance it is a monoidal
C �-category, where the monoidal (tensor) product of objects is given just by compo-
sition, �˝ �0 ´ ��0, while the monoidal operation of arrows is defined by

T 	 S ´ T�.S/ D �0.S/T; T 2 .�; �0/; S 2 .�; � 0/:

It is then obvious to verify that indeed T 	 S 2 .��0; �� 0/.
Similarly, if A and B are two unitalC �-algebras one may define theC �-category

End.A;B/, whose objects are the endomorphisms from A into B and whose arrows
are the intertwining operators, i.e. elements of B satisfying the same intertwining re-
lation as above. However the tensor structure is lost when B ¤ A as the composition
of endomorphisms is no longer possible.

Our aim in this appendix is to extend the previous construction to the case of
Connes–Higson asymptotic morphisms. According to E-theory, as developed in [11],
an asymptotic morphism between two unitalC �-algebras A and B is a family .��/�>0

such that each ��, � > 0, is a map from A into B, satisfying the following properties:

(i) for each A 2 A, the function � 7! ��.A/ belongs to Cb.RC;B/, the bounded
continuous functions from RC to B;

(ii) it holds, for all A;B 2 A and ˛ 2 C,

lim
�!0

k��.A
�/ � ��.A/

�k D 0;

lim
�!0

k��.AC ˛B/ � ��.A/ � ˛��.B/k D 0;

lim
�!0

k��.AB/ � ��.A/��.B/k D 0:
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It is then easy to see that every asymptotic morphism .��/ from A into B defines
a bona fide morphism � from A into B0 ´ Cb.RC;B/=C0.RC;B/ given by

�.A/ D .� 7! ��.A//C C0.RC;B/;

where C0.RC;B/ is the closed ideal of Cb.RC;B/ of functions vanishing at the
origin.

We now wish to define aC �-category E.A;B/ of asymptotic morphisms, namely
a C �-category whose objects are asymptotic morphisms from A into B and whose
arrows are suitably defined asymptotic intertwiners.

Definition. Given two asymptotic morphisms .��/ and .�0
�
/ from A into B, an

asymptotic intertwiner is a family .T�/ of elements of B, indexed by RC, such that

(i) the function � 7! T� belongs to Cb.RC;B/;
(ii) lim�!0 kT���.A/ � �0

�
.A/T�k D 0 for all A 2 A.

We then write .T�/ 2 HomŒ.��/; .�
0
�
/�. Notice that two asymptotic morphisms

.��/; .�
0
�
/ are asymptotically equivalent in the sense of [11] if and only if 1 2

HomŒ.��/; .�
0
�
/�, where 1 W RC ! B denotes the constant function 1� D 1.

We now claim that using the above definition one obtains a C �-category whose
objects and arrows are asymptotic morphisms and asymptotic intertwiners, respec-
tively.

For this purpose let us define the norm of the asymptotic intertwiner .T�/ by
k.T�/k D sup�>0 kT�k. Now it is straightforward to verify the following facts:

(1) Composition of asymptotic intertwiners is well-defined and associative: namely,
.T�/.S�/ 2 HomŒ.��/; .�

00
�
/� whenever .S�/ 2 HomŒ.��/; .�

0
�
/� and .T�/ 2

HomŒ.�0
�
/; .�00

�
/�, where the composition is defined as .T�/.S�/ ´ .T�S�/ and

.U�/.T�/.S�/ is independent of the bracketing; moreover, for each .��/ there
is a unit 1 2 HomŒ.��/; .��/�.

(2) Each asymptotic intertwiner space HomŒ.��/; .�
0
�
/� is a complex linear space

which, when equipped with the above norm, becomes a Banach space, and
k.T�/.S�/k � k.T�/kk.S�/k.

(3) On the (Banach) category obtained in this way there is a contravariant antilinear
involutive endofunctor �, given by .T�/

� D .T �
�
/, such that HomŒ.��/; .�

0
�
/�� D

HomŒ.�0
�
/; .��/�.

(4) The C �-identity for the norm holds, namely k.T�/
�.T�/k D k.T�/k2 for any

asymptotic intertwiner .T�/.

(5) If .S�/ 2 HomŒ.��/; .�
0
�
/� then .S�

�
S�/ is a positive element of the C �-algebra

Cb.RC;B/, and hence of its (unital) C�-subalgebra HomŒ.��/; .��/�.

One can also show that if .T�/ is an asymptotic intertwiner between the asymp-
totic morphisms .��/ and .��/ from A into B then it defines naturally a bona fide



768 R. Conti and G. Morsella

intertwinerT0 between the corresponding morphisms� and � from A into B0. In this
way one obtains a �-functor F from the C �-category E.A;B/ into the C �-category
Mor.A;B0/, which is easily seen to be surjective on the objects and full.

We collect together all the facts discussed above.

Theorem. Let A and B be unital C �-algebras.

(i) With the above definitions, E.A;B/ is a C �-category.

(ii) There is a canonical surjective full �-functor F W E.A;B/ ! Mor.A;B0/.

In particular, there are natural surjective �-functors E.A;A/ ! Mor.A;A0/ and
E.A0;A/ ! End.A0/.

It seems interesting to study the existence of further remarkable structures of the
C�-categories E.A;B/, but this falls outside the scope of the present work.
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