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Abstract. We construct Dirac operators and spectral triples for certain, not necessarily self-
similar, fractal sets built on curves. Connes’ distance formula of noncommutative geometry
provides a natural metric on the fractal. To motivate the construction, we address Kigami’s
measurable Riemannian geometry, which is a metric realization of the Sierpinski gasket as
a self-affine space with continuously differentiable geodesics. As a fractal analog of Connes’
theorem for a compact Riemmanian manifold, it is proved that the natural metric coincides with
Kigami’s geodesic metric. This present work extends to the harmonic gasket and other fractals
built on curves a significant part of the earlier results of E. Christensen, C. Ivan, and the first
author obtained, in particular, for the Euclidean Sierpinski gasket. (As is now well known, the
harmonic gasket, unlike the Euclidean gasket, is ideally suited to analysis on fractals. It can
be viewed as the Euclidean gasket in harmonic coordinates.) Our current, broader framework
allows for a variety of potential applications to geometric analysis on fractal manifolds.
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1. Introduction

In this article, we provide a general construction of a Dirac operator and its
associated spectral triple for a large class of sets built on curves, which includes
the self-similar Sierpinski gasket, the self-affine harmonic gasket, and other spaces
which carry an intrinsic metric. Using methods from noncommutative geometry, it
is shown that the intrinsic metric can be recovered from the spectral triple. In this
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sense, there are ‘target’ geometries in mind, which are recovered using the operator-
theoretic data contained in a spectral triple. Informally, this method involves using
a space of functions on the underlying space as coordinates. If the function space is
a commutative C �-algebra, then one can tease from it a topological space. This is a
consequence of Gelfand’s theorem. If that topological space is metrizable, then more
information is needed in order to determine a metric. Knowledge of a certain Hilbert
space of vector fields on the space and a particular differential operator is enough to
determine a metric in many instances. This way of constructing a geometry is part
of the broader theory of noncommutative geometry.

Alain Connes [9, 10] proved that for a compact spin Riemannian manifold,
M , a triple of objects, called a spectral triple, encodes the geometry of M . The
spectral triple consists of the C �-algebra of complex-continuous functions on M ,
the Hilbert space of L2-spinor fields, and a differential operator called the Dirac
operator. The Dirac operator is constructed from the spin connection associated
to M and can be thought of as the square root of the spin-Laplacian (mod scalar
curvature). Connes’ formula, though very simple, uses the information from the
spectral triple in order to recover the geodesic distance on M , and hence the
geometry of M (by the Meyers–Steenrod Theorem [38]). The observation that the
Dirac operator defines the geometry is one of Connes’ contributions to the field
of geometry [46]. Indeed, it is a springboard for defining generalized manifolds
and geometries in the context of spaces which admit a meaningful generalization
of the Dirac operator, but not meaningful generalizations of smooth structure or
metric or even paths in the space. In the absence of spin or even orientability,
this result still holds, though the Dirac operator may not be uniquely defined. The
reason for the name noncommutative geometry is that the arguments involved in
this result do not rely on the commutativity of the C �-algebra, which opens the
door to the possibility of defining geometries on noncommutative C �-algebras. The
applications of noncommutative geometry in this article, however, stay within the
context of the commutative C �-algebras of complex-continuous functions on a class
of sets.

Previous work by Michel Lapidus has provided applications of the methods
of noncommutative geometry to fractals. His program for viewing fractals as
generalized manifolds and possibly noncommutative spaces is outlined in [34].
Building in particular upon [33] and [32], he investigated in many different ways
the possibility of developing a kind of noncommutative fractal geometry, which
would merge aspects of analysis on fractals (as now presented, e.g., in [24]) and
Connes’ noncommutative geometry [10]. (See also parts of [32] and [33].) Central
to [34] was the proposal to construct suitable spectral triples that would capture the
geometric and spectral aspects of a given self-similar fractal, including its metric
structure. In [2], Erik Christensen and Cristina Ivan constructed a spectral triple for
the approximately finite-dimensional (AF) C �-algebras. The continuous functions
on the Cantor set form an AF C �-algebra since the Cantor set is totally disconnected.
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Hence, it was quite natural to try to apply the general results of that paper for AF
C �-algebras to this well-known example. In this manner, they showed in [2] once
again how suitable noncommutative geometry may be to the study of the geometry
of a fractal. Since then, the authors of the present article have searched for possible
spectral triples associated to other known fractals. The hope is that these triples may
be relevant to both fractal geometry and analysis on fractals. We have been especially
interested in the Sierpinski gasket, a well-known nowhere differentiable planar curve,
because of its key role in the development of harmonic analysis on fractals. (See, for
example, [1], [24], [27], [28], [43], [44].) In [5], Erik Christensen, Christina Ivan
and Michel Lapidus applied these noncommutative methods to some fractal sets built
on curves—including trees, graphs, and the Sierpinski gasket. The work in [5] on
the more complex sets is based largely on the Dirac operator and spectral triple on
the circle. It is important to note that the work in [5] on the Sierpinski gasket is with
respect to the Sierpinski gasket in the Euclidean metric as opposed to the treatment of
the Sierpinski gasket in the harmonic metric of the present paper. Of many results in
[5], the application of noncommutative methods to the Euclidean Sierpinski gasket
recovered the geodesic distance, volume measure (in that case, the natural Hausdorff
measure), and metric spectral dimension (there, the Hausdorff dimension).

The Sierpinski gasket is a fractal set which is not a smooth manifold nor even a
topological manifold. It is shown below in Figure 1 (of Section 2) as it is usually
viewed, in the Euclidean metric. The Sierpinski gasket has a natural metric structure
induced by the Euclidean metric in R2, given by the existence of a shortest path
(non unique) between any two points. These shortest paths are piecewise Euclidean
segments and hence piecewise differentiable, but in general not differentiable. In
[25] (see also [26]), Jun Kigami uses a theory of harmonic functions on the Sierpinski
gasket (see, e.g., [24]) in order to construct a new metric space that is homeomorphic
to the Sierpinski gasket. This new space shown below (Figure 2 of Section 2), called
the harmonic gasket or the Sierpinski gasket in harmonic coordinates, is actually
given by a single harmonic coordinate chart for the Sierpinski gasket. The harmonic
gasket has aC 1 shortest path (non unique) between any two points. It is interesting to
note that the harmonic coordinate chart smoothes out the Sierpinski gasket. Kigami
[22,25,26], building on work by Kusuoka [29,30], has found several formulas in the
setting of the harmonic gasket which are measurable analogs to their counterparts in
Riemannian geometry. In particular, he has found formulas for energy and geodesic
distance involving measurable analogs to Riemannian metric, Riemannian gradient,
and Riemannian volume. For this reason, this geometry is appropriately called
measurable Riemannian geometry.

In this article, as an example, we recover Kigami’s measurable Riemannian
geometry using spectral triples. As in [5], here the basis for the construction of
these spectral triples is the spectral triple for a circle: Finite and countable direct
sums of the circle triples are used to construct the desired spectral triples. We have
constructed several spectral triples for the harmonic gasket, all of which recover the
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geodesic distance on the harmonic gasket as well as on the (Euclidean) Sierpinski
gasket. The general construction provided in Proposition 1 below applies to a class
of sets built on countable unions of curves in Rn which includes the Sierpinski
gasket and harmonic gasket. The spectral triple on the harmonic gasket provides
a fractal analog to Connes’ theorem. Indeed, on the one hand, there is a target
geometry that is a fractal analog of Riemannian geometry—Kigami’s measurable
Riemannian geometry. On the other hand, there is our construction of the Dirac
operator and spectral triple for fractal sets which can be used to recover Kigami’s
geometry, namely through the Dirac operator.

We point out that our results, which make use of and extend the methods of
[5], encompass the results of [5] concerning the construction of Dirac operators
and the recovery of the geodesic metric. Furthermore, our results allow more
flexibility and are better suited to a further development of geometric analysis on
fractals. Indeed, in particular, in light of the results of [20, 21, 25, 26, 29, 30, 44, 45],
the harmonic gasket (rather than the ordinary Euclidean gasket) is the appropriate
model for studying probability theory and harmonic analysis as well as the analog of
Riemannian geometry on such a fractal. Recent developments (some of which are
alluded to in Section 7) suggest that many other fractal geometries can be similarly
viewed as fractal (Riemannian) manifolds.

In the concluding remarks of this article, in addition to providing several
additional references relevant to this paper, we discuss work in progress which
includes a different construction of a Dirac operator and spectral triple from the ones
built from direct sums. This global Dirac operator is defined directly from Kigami’s
measurable Riemannian metric and gradient, giving it a stronger resemblance to
Connes’ Dirac operator on a compact Riemannian manifold. The Hilbert space of
the triple is constructed from Kigami’s L2-vector fields on the gasket, again giving
a stronger fractal analog to Connes’ theorem. In addition, the global construction
may prove a better starting point for showing that the Dirac operator squares to the
appropriate Laplacian in this setting, the Kusuoka Laplacian. We also discuss two
open problems. These problems, which are inherently linked, are the computation
of the spectral dimension and volume measure induced by the spectral triples for the
harmonic gasket.

The remainder of this paper is organized as follows. In Section 2 are provided
various preliminaries concerning spectral triples and Connes’ formula, some of the
methods and results of [5] which we will extend, as well as analysis on fractals
(focusing on the Euclidean and harmonic Sierpinski gaskets) and the results of [25]
concerning measurable Riemannian geometry, particularly the construction of the
geodesic metric and the existence of C 1 (but not usually C 2) geodesics on the
harmonic gasket.

In Section 3, we discuss spectral geometry on a new class of fractal sets built
on curves. [In short, they are compact metric length spaces (see Definition 3.1 of
Section 3) satisfying two basic axioms.] These “fractals” (which are not necessarily
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self-similar or even “self-alike”) include both discrete structures (such as certain
infinite trees, as considered in [5]) and continuous structures (such as the Euclidean
and harmonic gaskets). We construct Dirac operators and associated spectral triples
on such fractals. We also show that one can recover the natural geodesic metric on
them.

In Section 4 and Section 5, respectively, we show that the Euclidean gasket
and the harmonic gasket belong to the class of fractals introduced in Section 3. In
particular, we deduce from the results obtained in Sections 3 and 4 that the Euclidean
geodesic metric on the Sierpinski gasket can be recovered from the spectral triple
(as was already done in [5]). Furthermore, we deduce from the results obtained in
Sections 3 and 5 the new fact according to which the C 1 geodesic metric of [25] can
be recovered from the spectral triple constructed in Section 5.

In Section 6, we provide several alternative constructions of spectral triples
associated with the harmonic gasket and compare the corresponding eigenvalue
spectra and spectral dimensions. We also show that they all induce the same
noncommutative metric, namely, the harmonic geodesic metric (just as in Section
5).

Finally, in Section 7, as was mentioned in more detail above, we discuss further
work connected to various aspects of the present paper, as well as propose several
open problems and directions for future research in the area of noncommutative
fractal geometry [34] and geometric analysis on fractals.

2. Preliminaries

2.1. Spectral triples, Dirac operators, and noncommutative geometry. From
the perspective of noncommutative geometry, the geometric information of a space is
encoded in a triple. One part of the triple is a C �-algebra. Recall that a C �-algebra
is a Banach algebra with a conjugate linear involution � satisfying: .xy/� D y�x�

and jjx�xjj D jjx�jjjjxjj D jjxjj2. Some relevant examples of C �-algebras are
the complex numbers C, the complex continuous functions C.X/ on a compact
Hausdorff space X , and the bounded linear operators B.H/ on a Hilbert space H .

The Gelfand–Naimark Theorem [10, 46] states that every unital commutative
C �-algebra A is �-isomorphic to C.X/, for some compact Hausdorff space X .
The space X is unique, up to homeomorphism. In fact, X is determined as the
set of all pure states (characters) of A, with the weak�-topology assigned. Note that
if X is a compact metric space, then the weak�-topology on the set of pure states is
metrizable. A second, more general, result due to Gelfand and Naimark is that any
C �-algebra can be faithfully represented in B.H/, for some Hilbert space H .

The Gelfand–Naimark Theorem yields a perspective for partitioning topologies
(or geometries) roughly through the following correspondences (modulo Morita
equivalence, see [10, 46]):
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(1) commutative topologies/geometries” commutative C �-algebras;

(2) noncommutative topologies/geometries” noncommutative C �-algebras.

Since C.X/ is commutative, we say that X has a commutative topology or
geometry. In this way, one may consider noncommutative rings of functions on some
‘noncommutative spaces’. The geometries presented in this article are examples of
commutative, yet non-classical, geometries.

Specifying a natural or intrinsic distance function on a set or space is central
to noncommutative geometry. In the context of C �-algebras, it was first suggested
by Connes ([9], see also [10]) that from a suitable Lipschitz seminorm one obtains
an ordinary metric on the state space of the C �-algebra. (See also Reiffel’s work in
[41,42] and the references therein for further abstractions and extensions of this point
of view.) Let X be a compact metric space with metric �. Defined on real-valued or
complex-valued functions on X , the Lipschitz seminorm, Lip�, determined by �, is
given by

Lip�.f / D sup
�
jf .x/ � f .y/j

�.x; y/
W x ¤ y

�
: (2.1)

The space of �-Lipschitz functions on X is comprised of those functions f on X
satisfying Lip�.f / < 1. One can recover the metric �, in a simple way, from L�,
by the following formula [42]:

�.x; y/ D supfjf .x/ � f .y/j W Lip�.f / � 1g:

In noncommutative geometry, a standard way to specify the suitable Lipschitz
seminorm is via a Dirac operatorD on a Hilbert spaceH , the remaining parts of the
triple. Dirac operators have origin in quantum mechanics, but will be defined here in
the context of unbounded Fredholm modules and spectral triples. Following [5], we
will use the following definitions (see also, e.g., [11]):

Definition 2.1. Let A be a unital C �-algebra. An unbounded Fredholm module
.H;D/ over A consists of a Hilbert space H which carries a unital representation �
of A and an unbounded, self-adjoint operator D on H such that

i. the set

fa 2 A W ŒD; �.a/� is densely defined & extends to a bounded operator on H g

is a dense subset of A ,

ii. the operator .I CD2/�1 is compact.

Definition 2.2. Let A be a unital C �-algebra and .H;D/ an unbounded Fredholm
module of A. If the underlying representation � is faithful, then .A;H;D/ is called
a spectral triple. In addition, D is called a Dirac operator.
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We will denote an unbounded Fredholm module .H;D/ over A as the triple
.A;H;D/ and call D a Dirac operator, whether or not � is faithful.

Using the information contained in the spectral triple for a compact spin
Riemannian manifold .M; g/, Connes’ Formula 1 below recovers the geodesic
distance and hence the geometry of .M; g/. Let A D C.M/,H be the Hilbert space
ofL2-spinors,D the Dirac operator associated to the spin connection on .M; g/, and
let dg be the geodesic distance on .M; g/. Connes’ formula can now be stated ([9];
[10], p. 544) as follows:

Formula 1. For any points p; q 2M , we have

dg.p; q/ D sup
a2A
fja.p/ � a.q/j W jjŒD; �a�jj � 1g;

where jj:jj denotes the norm on the space of bounded linear operators on H .

We will usually refer to Formula 1 as the spectral distance or the distance induced
by the spectral triple via Formula 1. In all of our applications, � is a representation
as a multiplication operator and it will be clear that our Dirac operator D satisfies

ŒD; �a�.g/ D �Da.g/ D .Da/g:

In other words, the commutator operator is multiplication by the functionDa. Since
the operator norm of a multiplication operator is equal to the essential supremum of
the function by which it multiplies, we have

jjŒD; �a�jj D jj�Dajj D jjDajj1;M ;

where in general M will be a compact length space in Rn. This allows us to
equivalently write the spectral distance as

dg.p; q/ D sup
a2A
fja.p/ � a.q/j W jjDajj1;M � 1g:

Let d be the metric on M and jj:jj1;M denote the supremum norm on M . Then
dg D d if (and only if) jjDajj1;M D Lipd .a/, where Lipd is the Lipschitz
seminorm with respect to d (see Equation (1)). The brief argument for the ‘if’
part of the statement is well known and is given in the proof of Theorem 2 below.
Due to this relationship, several lemmas to follow show, for various settings, that
jjDajj1;M D Lipd .a/. These lemmas allow us to recover the metric d on M as the
spectral distance.

In [5], an additional definition associated to a spectral triple is used to define
the spectral dimension of the spectral triple. (It is also called the metric dimension
in [11].) This is a generalization of the dimension of a manifold—and indeed,
in the case of a compact Riemannian manifold, recovers the dimension of the
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manifold [10]. (See also, for example, [2–7, 12, 16, 17, 28, 33, 34] for the case of
fractal spaces.) This information is contained in the pairing of the Dirac operator
and the Hilbert space, in the form of the asymptotics of the eigenvalues of the Dirac
operator:

Definition 2.3. Let D be the Dirac operator associated to the spectral triple in
Definitions 2.1 and 2.2. If T r..ICD2/�p=2/ <1 for some positive real number p,
then the spectral triple is called p-summable or just finitely summable. The number
@ST , given by

@ST D inffp > 0 W t r.D2
C I /

�p
2 <1g;

is called the spectral dimension of the spectral triple.

2.2. Circles, curves, and sets built on curves. The fundamental building block for
spectral triples for fractal sets built on curves in [5] is the spectral triple for a circle.
Using circle triples, the authors of [5] construct spectral triples for an array of sets.
Let Cr denote the circle with radius r > 0. In [5], the natural spectral triple for the
circle STn.Cr/ D .ACr ;Hr ;Dr/ is defined as follows:

I. ACr is the algebra of complex continuous 2�r-periodic functions on R;

II. Hr D L2.Œ��r; �r�; .1=2�r/�/;

III. Dr D �i ddx ;

IV. The representation � sends elements of ACr to multiplication operators on
Hr .

Note that Hr has a canonical orthonormal basis given by exp
�
ikx
r

�
, where

i D
p
�1. The operator Dr is actually defined as the closure of the restriction

of the above operator to the linear span of the basis. Then Dr is self-adjoint and

ŒDr ; �r.f /� D �r.�iDf / or just � iDf

for any C 1 2�r-periodic function f on R. Thus the natural spectral triple is a
spectral triple, and the eigenvalues of the Dirac operator are given as �k D k=r for
k 2 Z.

To use the circle triple as the basis for constructing spectral triples on more
complex sets, it will be necessary to take countable sums of circle triples. To avoid
the problem of having 0 as an eigenvalue with infinite multiplicity, the translated
spectral triple is used in [5]:

1. Let Dt
r D Dr C

1
2r
I .

2. STt .Cr/ D .ACr ;Hr ;D
t
r/ is called the translated spectral triple for the

circle.
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The set of eigenvalues becomes f.2k C 1/=2r W k 2 Zg, but the domain of
definition stays the same and most importantly, as to not change the effect of the
spectral triple,

ŒDt
r ; �r.f /� D ŒDr ; �r.f /�:

Let dc be the geodesic distance function on the circle. Theorem 2.4 in [5] gives
the following results:

� The metric induced by the spectral triple STn.Cr/ coincides with the geodesic
distance on Cr , i.e.,

dc.s; t/ D supfjf .t/ � f .s/j W jjŒDr ; �r.f /�jj � 1gI

� The circle triple is p-summable for any real s > 1 but not summable for
s D 1, thus the spectral dimension of the spectral triple is 1, coinciding with
the dimension of a circle.

The interval is studied by means of the circle—by taking two copies of the
interval and gluing the endpoints together. There is an injective homomorphism
‰ from the continuous functions on an interval Œ0; ˛� to the continuous functions on
Œ�˛; ˛� defined by

‰˛.f /.t/ D f .jt j/:

The circle triple .AC˛=� ;H˛=� ;Dt
˛=�
/ is then used to describe the spectral triple

for C.Œ0; ˛�/. The fact that the following definition indeed defines a spectral triple
follows immediately from the results on the circle.

For ˛ > 0, the ˛-interval spectral triple ST˛ D .A˛;H˛;D˛/ is given by the
following data:

i. A˛ D C.Œ0; ˛�/;
ii. H˛ D L

2.Œ�˛; ˛�;m=2˛/, wherem=2˛ is the normalized Lebesgue measure;

iii. the representation �˛ W A˛ ! B.H˛/ is defined for f in A˛ as the
multiplication operator which multiplies by the function ‰˛.f /;

iv. an orthonormal basis fek W k 2 Zg for H˛ is given by ek D exp.i�kx=˛/
and Dt

˛ is the self-adjoint operator on H˛ which has all the vectors ek as
eigenvectors and such that Dt

˛ek D .�.2k C 1/=2˛/ek for each k 2 Z. Thus
the eigenvalues of Dt

˛ are �k D .�.2k C 1/=2˛/ for each k 2 Z.

Let d˛.s; t/ D js � t j be the geodesic distance for the ˛-interval. Results for the
˛-interval spectral triple, which follow immediately from the results for the circle,
are stated in Theorem 3.3 in [5]:

� The metric induced by the ˛-interval triple coincides with the geodesic
distance for the ˛-interval, i.e.,

dc.s; t/ D supfjf .t/ � f .s/j W jjŒD˛; �˛.f /�jj � 1gI
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� The ˛-interval triple is p-summable for s > 1 but not summable for
s D 1, thus it has spectral dimension 1, coinciding with the dimension of
the ˛-interval.

Let T be a compact Hausdorff space and r W Œ0; ˛� ! T a continuous
injective mapping. The image in T will be called the continuous curve and r the
parameterization. The r-curve triple, STr , is given by the interval triple as follows.

Let r be as above and .A˛;H˛;Dt
˛/ be the ˛-interval spectral triple. Then

STr D .C.T /;H˛;D
t
˛/ is an unbounded Fredholm module with representation

�r W C.T / ! B.H˛/ defined via a homomorphism �r of C.T / onto A˛ given
by

a. For all f 2 C.T /, for all t 2 Œ0; ˛�, �r.f /.t/ WD f .r.t//;

b. For all f 2 C.T /, �r.f / WD �˛.�r.f //.

Remark 2.4. We will use the r-curve triple quite often; so it is convenient to use
the notation for its Dirac operator, Dr D Dt

˛ . Moreover, if there are curves rj , and
it is clear we are using the rj -curve triples, then we will use Dj D Drj . Note that
from (iv) above, the eigenvectors of Dr are ek D exp.i�kx=˛/ with corresponding
eigenvalues �k D .�.2k C 1/=2˛/, for each k 2 Z.

As is expected, the curve triple is summable for s > 1 but not for s D 1; so
its spectral dimension is 1 (see Proposition 4.1 in [5]). One can recover a metric
distance on the image of the curve in T , of course dependent of parameterization.
If T is a metric space, then a parameterization can be chosen so that the recovered
metric distance coincides with the metric distance inherited from T (see Proposition
4.3 in [5]).

The applications in [5] focused on sets built on curves, including finite collections
of curves in a compact Hausdorff space, parameterized graphs, trees, and the
Sierpinski gasket. The general method for constructing triples for these sets given
in [5] is by taking sums of triples for curves (circles, intervals). Let

˚
Rj
	
j

be a
collection of curves in a space T (e.g., compact Hausdorff space, compact metric
space, compact subspace of RN ). Then, following [5], the triple for the union of
these curves is, in general, given by

S D

0@C.T /;M
j

Hj ;
M
j

Dj

1A :
If T is a compact Hausdorff space, then (even with a finite collection of rectifiable
curves) it is not always true that S is an unbounded Fredholm module. However, in
the case when there are finitely many rectifiable curves which pairwise intersect
at finitely many points, S is an unbounded Fredholm module ([5], Prop. 5.1).
This type of construction is used in [5] for parameterized (finite) graphs, infinite
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trees, and for the self-similar Sierpinski gasket, with T considered as a subspace of
Euclidean space. In the case of the Sierpinski gasket embedded in the 2-dimensional
Euclidean space R2, a countable sum of circle triples forms a spectral triple for the
gasket. The countable collection of circles corresponds to the countable collection
of triangles, whose closure forms the Sierpinski gasket. The spectral dimension is
computed as log 3= log 2, which corresponds to its classic fractal dimension(s). The
spectral distance function recovers the Euclidean-induced geodesic distance and the
(renormalized) standard measure on the gasket is recovered via the Dixmier trace
[5]. The construction of the spectral triple for the gasket and the recovering of
its geometric data from the spectral triple is streamlined, due to its self-similarity.
One of the motivating factors for this article is to generalize such constructions
and results to possibly non-self-similar sets built on curves, including the harmonic
(Sierpinski) gasket which is perfectly suited to study analysis on the ordinary
Euclidean (Sierpinski) gasket. In addition, Proposition 1 in the current article
unifies the constructions for many of the applications in [5]. By considering T as
a compact length space in RN , and without any assumptions on the intersections of
curves, we provide (in Proposition 1) a spectral triple construction for a large class
of sets built on countable collections of curves which includes both the Sierpinski
gasket and the harmonic gasket (see Axiom 1 below). In the next subsection, we
conclude the preliminaries with definitions of the Sierpinski gasket and the harmonic
gasket, as well as a discussion of the ‘measurable Riemannian geometry’ of the
Sierpinski/harmonic gasket.

2.3. Sierpinski gasket and harmonic gasket. The most common and intuitive
presentation of the Sierpinski gasket is as a solid equilateral triangle which has
a smaller equilateral triangle removed from its center, and again an even smaller
triangle removed from each of the three remaining triangles and so on, ad infinitum,
as seen in Figure 1. This is done a countable number of times, and the closure of
this process is called the Sierpinski gasket. See the left side of Figure 2 for a high
approximation of the Sierpinski gasket.

Considering the gasket in stages, or as approximations, is intuitive but also
fundamental to defining additional structure on the gasket. Graph approximations
will be the starting point for defining measure, operators, harmonic functions, etc.
on the gasket.

The Sierpinski gasket is well described analytically as the unique fixed point
of a certain contraction mapping on a metric space. The contraction mapping to be
defined is composed of three contraction mappings of R2 that will allow for analysis,
not just on graph approximations, but on arbitrarily small portions of the gasket,
called cells.

Although continuity inherited from the Euclidean topology of the plane naturally
connects with the analysis of the gasket, it is not critical to the definitions of measure,
operators, harmonic functions, etc. (In fact, it turns out that harmonic functions,
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Figure 1. Construction of the Sierpinski gasket by the removal of triangles

defined exclusively in terms of graphs, are necessarily continuous functions in the
Euclidean induced topology of the gasket.) To generate the desired structure on the
gasket, Euclidean neighborhoods are replaced with graph neighborhoods. To begin,
we define the following contractions on the plane:

Fix D
1

2
.x � pi /C pi

i D 1; 2; 3Ipi is a vertex of a regular 3-simplex, P :
The Sierpinski gasket is the unique nonempty compact subset of R2 such that

K D
S3
iD1 Fi .K/. For any integer m � 1, let w be the multi-index given by

w D .w1; :::; wm/; wj 2 f1; 2; 3g and Fw be given by Fw D Fw1
ı � � � ı Fwm

:

Then K satisfies K D
S
jwjDm Fw.K/. This is called the decomposition of K into

m-cells, with Fw.K/ being the m-cell given by w, denoted Kw . Note that Kw is a
subset of K.

The multi-index w also provides a convenient addressing system for points of
K, using words whose letters are elements of the set S D f1; 2; 3g. Let † D SN,
W0 D f;g, and Wm D Sm for m > 0. (Note that for m � 0, Wm is the set of
all words of length m.) The set of all words of finite length is W � D

S
m�0Wm.

To describe the identification of words with points of K, it is useful to define the
vertices V � of K given by V � D

S
m�0 Vm, where V0 D P D fp1; p2; p3g and

Vm D
S
w2Wm

Fw.V0/. Consider †, the set of infinite words, to have the standard
metric topology on sequences and K to have the Euclidean topology inherited from
the plane. Then it is well known (see, e.g., [24, 43]) that there is a continuous
surjection � W †! K such that

�.w/ D
\
m�0

Kw1;:::;wm
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and

j��1.x/j D

�
2; x 2 V � � V0
1; otherwise.

Graph approximations of K and their associated vertices are central to all
further analysis of the gasket. The mth-level graph approximation, �m, is given by
�m D

S
jwjDm Fw.V0/ and has vertices Vm. Thus V � is the union of the vertices of

all graph approximations. A graph cell, �w , is defined as �w D V0 for jwj D 0 and
�w D Fw.V0/ for jwj > 0. The transition from analysis on graphs to analysis on
K comes readily since V � is a dense subset of K. The functions on K that we will
consider will be continuous (in the Euclidean subspace topology) and therefore they
will be completely determined by their values on the collection of vertices. Graph
cells, however, play a special role in certain spectral triple constructions, particularly
in their identification with the triangles they define in R2. For this reason, we will
always identify a graph cell �w , as a set, with the triangle it defines in R2.

The energy form on K is constructed from graph energies, independent of
a notion of Laplacian or differential operators. The graph energy form on �m,
EmŒu; v�, is given by ([24, 43])

Em.u; v/ D
�
5

3

�m X
pŠqWp;q2Vm

.u.p/ � u.q//.v.p/ � v.q//;

where Vm is the set of vertices of �m and for p; q 2 Vm, the notation p Š q means
that p and q are neighbors in the finite graph �m. The energy form, E.u; v/, on K
is then given by E.u; v/ D limm!1 Em.u; v/ with the energy, E.u/, on K given by
E.u/ D E.u; u/.

Since Em is a non-decreasing sequence, the above limit defining E.u; v/ exists
and is finite by design, for all u; v 2 dom E D fu 2 C.K/j limm!1 Em.u; u/ < 1g:
The expression for the graph energies has several motivations. Kusuoka in [29, 30],
and Goldstein in [14], have independently constructed the Brownian motion on the
Sierpinski gasket as a scaling limit of random walks. To view the energy as an
analytic counterpart to Brownian motion on the gasket, one must think of it is a
Dirichlet form (see [1, 22–24, 29, 30]). Other physical interpretations of the energy
are provided in terms of electrical resistance networks (see [23, 24]), as well as in
terms of systems of springs attached to point masses assigned to graph vertices (see
[39, 40] and, e.g., [43]).

The theory of harmonic functions on K is a generalization of classical harmonic
theory in which there are the standard equivalences: (1) u is harmonic; (2) u is an
energy minimizer, for given boundary values; (3) u has the mean value property;
(4) �u D 0. A suitable springboard for harmonic theory on K is that of energy
minimization. It is the case that a harmonic function defined in this way will enjoy a
mean value property as well the Laplacian condition. To be precise, let u be defined
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on V0. (Here, V0 should be thought of as the ‘boundary’ of K.) Then, there is a
unique extension of u from V0 to VmC1, denoted Ou, which minimizes the energy
EmC1 with the relation

E0.u/ D

�
5

3

�m
EmC1. Ou/:

The function Ou is called the harmonic extension of u. Given values of a function u
on V0, u can be uniquely extended harmonically to Vm for any m and therefore can
be extended to V �. The function Ou, defined in this way, is (uniformly) continuous
on V � which is dense in K with respect to the Euclidean inherited topology. Hence,
Ou extends uniquely to a function u on K, called a harmonic function on K.

Note that the harmonic function u, is uniquely determined by its boundary value,
ujV0

. Let the space of harmonic functions be denoted by H. In this case, H forms
a 3-dimensional linear space which we can identify with R3 by associating u 2 H
to the triple .u.p1/; u.p2/; u.p3// in R3. Moreover, modding out H by the constant
functions on K, we have H=fconstant functionsg Š R3=fspan.1; 1; 1/g. Note that
the right side is the 2-dimensional subspace of R3,

M0 WD f.x; y; z/ 2 R3 j x C y C z D 0g:

The Sierpinski gasket is not a smooth, nor even a topological manifold; yet, we
can look at it as a space to be geometrized. The analysis has been based on graphs
and the neighbor relation so that the bending, stretching, and twisting of K away
from how it sits in the flat plane, while preserving the neighbor relations of vertices,
does not affect the analysis. So even though the standard visualization of K is in the
plane, this perspective begs to see K as a more abstract object, awaiting a metric.

In this section, K is assigned or geometrized by the harmonic metric to become
the ‘geometric’ space called the harmonic gasket (or sometimes, the harmonic
Sierpinski gasket) and denoted KH , a particular geometric realization of K. The
latter perspective hints atK andKH as being distinct spaces equipped with their own
geometries: K with the geometry implied by its specific manner of inclusion in the
Euclidean plane, andKH with the geometry implied by its configuration in the plane
M0 in R3. The harmonic gasket is defined using the space of harmonic functions,
H. Recall that a harmonic function, h, is determined uniquely by its values on V0.
Identifying H with R3, take fh1 D .1; 0; 0/; h2 D .0; 1; 0/; h3 D .0; 0; 1/g, as a
basis for H. In terms of the evaluation of harmonic functions, this is equivalent with
hi .pj / D ıij for i; j D 1; 2; 3 and pj 2 V0. The final step in the construction of the
harmonic gasket is to use h1; h2; and h3 as a single ‘coordinate chart’ for K in the
plane M0.
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Kigami [22] (see also [25]) defines the following map,

ˆ W K !M0

by ˆ.x/ D
1
p
2

0@0@ h1.x/

h2.x/

h3.x/

1A � 1
3

0@ 1

1

1

1A1A ;
which is a homeomorphism onto its image (see Figure 2). Then K Š ˆ.K/ � KH
defines the harmonic gasket or Sierpinski gasket in harmonic metric. ThoughKH is
not a self-similar fractal, it is self-affine and can be given as the unique fixed point
of a certain contraction mapping, induced by the iterated function system fHig3iD1
defined below. The homeomorphism ˆ preserves compactness, so that KH is a
compact subset of M0. To be precise, let P be the orthogonal projection from R3 to
M0. Let

qi D
P.ei /
p
2

for i D 1; 2; 3;

where feig3iD1 is the standard basis for R3. The qi ’s form a 3-simplex in M0. For
each i D 1; 2; 3, choose fi such that �

qi

jqi j
; fi

�

gives an orthonormal basis for M0. Also, define the maps Ji WM0 !M0 by

Ji .qi / D
3

5
qi and Ji .fi / D

1

5
fi :

Using the Ji ’s, define the following contractionsHi WM0 !M0 byHi .x/ D Ji .x�
qi / C qi for i D 1; 2; 3: The harmonic gasket, KH , is then the unique nonempty
compact subset of M0 such that KH D

S3
iD1Hi .KH /. Recall that, unlike K,

which is self-similar, KH is only self-affine. The contractions Hi naturally relate to
the contractions Fi used to define K via the homeomorphism ˆ which commutes
with the contractions, in the sense that ˆ ı Fi D Hi ı ˆ for i D 1; 2; 3. The graph
approximations of KH can be attained through ˆ from the Fi ’s or directly from
the Hi ’s as in the case of K. See Figure 2 for a comparison of the Sierpinski and
harmonic gaskets.

In the sequel, we denote by Jw the linear map obtained by composing the
Ji ’s corresponding to the finite word w. Specifically, Jw D Jw1

ı � � � ı Jwm
if

w D w1 � � �wm 2 Wm.
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Sierpinski Gasket homeomorphism harmonic gasket

ˆ
�!

Figure 2. The Sierpinski gasketK is pictured on the left and the ‘harmonic gasket’KH pictured
on the right is the homeomorphic image of K by ˆ, which is a ‘harmonic coordinate chart’ for
the Sierpinski gasket.

2.4. Measurable Riemannian geometry. The primary ingredients of Kigami’s
prototype for a measurable Riemannian geometry are the measurable Riemannian
structure and geodesic distance; see [25]. The measurable Riemannian structure is
due to Kusuoka [29] and is a triple .�;Z;er/, where � is the Kusuoka measure on
K, Z is a non-negative symmetric matrix, and er is an operator analogous to the
Riemannian gradient. More precisely, Kusuoka has shown in [29, 30] that for any u
and v in the domain dom E of the energy functional on the Sierpinski gasket, K, we
have

E.u; v/ D
Z
K

.eru;Zerv/d�;
whereZ, eru, and erv, are �-measurable functions defined �-a.e. onK; see also [22]
and [25]. The equality above is analogous to its smooth counterpart in Riemannian
geometry, and thus gives validity to the title ‘measurable Riemannian structure’ for
.�;Z;er/. Here, the Kusuoka measure � is the analog of the Riemannian volume and
Z is the analog of the Riemannian metric. In [25], Kigami furthers the likeness to
Riemannian geometry by introducing a notion of smooth functions on K, as well as
a theorem relating the Kusuoka gradient to the usual gradient on the Euclidean plane
(see also [22]), and a notion of geodesic distance on K, which is realized by a C 1

path in the plane.
The Sierpinski gasket, in Euclidean or standard metric does not have C 1

paths between points, in general. In order to get C 1 paths, Kigami views the
gasket in harmonic coordinates, as the harmonic gasket described earlier. The
harmonic gasket, KH , does have C 1 paths between any two points. Then via the
homeomorphism, ‰, a geodesic distance, realized by a C 1 path on KH of minimal
length, is attached to K. (It is noteworthy that such a geodesic path is C 1 but not
usually C 2; see [44].)
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The Kusuoka measure is the measurable analog of Riemannian volume. The
existence of the Kusuoka measure � onK is due to Kusouka [29]. Further details on
the Kusuoka measure can be found in [29], [30], [22], [25], [44] and [45].

The measurable analog of the Riemannian metric, or the measurable Riemannian
metric Z, is also due to Kusuoka [29, 30]. In Proposition 2.11 of [25], the definition
of Z is given as follows: Let w 2 Wm and define Zm.w/ D J tw.Jw/=jjJw jj

2
HS ,

where J tw is defined in terms of the transpose (or the adjoint) of Jw and jjJw jjHS
denotes the Hilbert–Schmidt norm of Jw . Then Z.w/ D limm!1Zm.w1:::wm/

exists �-a.e. for w 2 †, rankZ.w/ D 1 and Z.w/ is the orthogonal projection onto
its image for �-a.e. w 2 †.

In order to define the metric on K, let Z�.x/ D Z.��1.x//, where � was
defined in Subsection 2.3. Then Z� is well defined, has rank 1 and is the orthogonal
projection onto its image for �-a.e. x 2 K. Similar as with the Kusuoka measure,
the � is dropped and Z is used instead of Z�. It also holds that Z is well defined on
V �, since for x 2 V � and ��1.x/ D fw; �g, we have Z.w/ D Z.�/; see [25].

There are a few characterizations of the gradient in the setting of the measurable
Riemannian structure. The first we will mention is due to Kusuoka [29]. In Theorem
2.12 in [25], Kigami gives Kusuoka’s result which is the existence of an assignmenter W dom E ! fY j Y W K !M0; Y is �-measurableg such that

E.u; v/ D
Z
K

.eru;Zerv/d�;
for any u; v 2 dom E .

Kigami’s approach to the gradient onK is to start with the usual gradient on open
subsets of the plane M0 which contain KH . More precisely, fixing an orthonormal
basis for M0 and identifying M0 with R2, the gradient on M0 is given by
ru D t .@u=@x1; @u=@x2/. In Proposition 4.6 of [25], it is shown that if U is an
open subset of M0 which containsKH , v1; v2 2 C 1.U /, and v1jKH

D v2jKH
, then

.rv1/jKH
D .rv2/jKH

. In this sense, the gradient of a smooth function on KH is
well defined by the restriction of the usual gradient to an open subset of M0. Then,
using ˆ, this theory can be pulled back to K. Precisely, in [25], Kigami defines the
space C 1.K/ given by

fu W u D .vjKH
/ ıˆ; where v is C 1 on an open subset of M0 containing KH g

and for u 2 C 1.K/,
ru D .rvjKH

/ ıˆ:

In Theorem 4.8 of [25], the following results are established:

(1) C 1.K/ is a dense subset of dom E under the norm

jjujj D
p
E.u; u/C jjujj1;K I



964 M. L. Lapidus and J. J. Sarhad

(2) eru D Zru for any u 2 C 1.K/;

(3) E.u; v/ D
Z
K

.ru;Zrv/d� for any u; v 2 C 1.K/.

Thus Kigami shows that his gradient, r, ‘essentially’ coincides with the Kusuoka
gradient, er—at least up to its role in the energy formula. For related representations
of the gradient for the harmonic gasket, see [44].

The first important theorem regarding a geodesic, or segment, or shortest path
between two points on K, in the context of K in harmonic coordinates, is due
to Teplyaev. First, a boundary curve � of the gasket in harmonic coordinates, is
defined by Teplyaev as a parameterization of a boundary of a connected component
of M0nKH . In Theorem 4.7 of [44], Teplyaev states the following:

(1) � is concave and is a C 1 curve but is not a C 2 curve;

(2) for any x 2 K such that ‰.x/ 2 � , the projection Px is, in harmonic
coordinates, the orthogonal projection onto the tangent line to � .

Let

h�.p; q/ WD inff l./ j  is a rectifiable curve in KH between p and qg;

where l./ is the length of the curve  . Kigami makes use of the above results to
prove Theorem 5.1 in [25] which states that for any p; q 2 KH , there exists a C 1

curve � W Œ0; 1�! KH such that �.0/ D p, �.1/ D q, Z.ˆ�1.�.t/// exists and
d�
dt
2 ImZ.ˆ�1.�.t/// for any t 2 Œ0; 1�, and

h�.�.a/; �.b// D

Z b

a

�
d�

dt
;Z.ˆ�1.�.t///

d�

dt

� 1
2

dt

for any a; b 2 Œ0; 1� with a < b. Note that due to this result, the infimum in
the definition of h� can be replaced by the minimum. Kigami calls � a geodesic
between p and q. The proof of this theorem is lengthy, with the majority of the work
going into proving Theorem 5.4 of [25]. Kigami credits Teplyaev (Theorem 4.7 in
[44]) for the latter result but gives his own proof. He uses the distance function h�
in order to define the harmonic shortest path metric on K, d�.:; :/, for x; y 2 K, as

d�.x; y/ D h�.ˆ.x/;ˆ.y//;

or with slight abuse,

d�.x; y/ D

Z b

a

h P;Z Pi
1
2dt;

where  is a geodesic (shortest path) between x and y in KH with .a/ D x and
.b/ D y. This latter representation provides a strong analogy with the geodesic
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distance on a Riemannian manifold, where a smooth metric has been replaced by a
measurable metric, Z.

Note that d� corresponds to the geodesic metric on the harmonic gasket KH .
Further note that, clearly, a geodesic between any two points ofKH (or, equivalently,
a shortest harmonic path between any two points of K) is usually not unique. (See
Figure 2.)

3. Spectral Geometry of Fractal Sets

This section is motivated by the desire to specify a natural or intrinsic metric on
certain sets built on curves, including certain fractal sets (and certain infinite graphs),
via a Dirac operator and its associated spectral triple. In this section, we look at a
class of sets built on curves in Rn, each of which is assumed to have a shortest
path metric which we will call the geodesic distance. The construction of the Dirac
operator detailed in this section is a generalization of a construction for a finite
collection of curves used in [5]. We show that the spectral distance function induced
by the Dirac operator recovers the geodesic distance for this class of sets. The
Sierpinski gasket and the harmonic gasket both fall in this class of sets, whereas
only the former example lies within the scope of [5]. The harmonic gasket as well as
alternate constructions for the Dirac operator for the harmonic gasket are discussed
in the next section. First we recall some definitions related to length spaces and
a relevant result, the Hopf–Rinow Theorem (see, e.g., [15] for the general case of
length spaces and [38] for the original case of Riemannian manifolds):
Definition 3.1. Let .M; d/ be a metric space. The induced intrinsic metric
dI D dI .x; y/ is defined as the infimum of the d -induced lengths of (continuous)
paths from x to y. When there is no path from x to y, then dI .x; y/ is defined to be
infinite. If d.x; y/ D dI .x; y/ for all x and y in M , then .M; d/ is called a length
space and the metric d is said to be intrinsic.
Definition 3.2. Let .M; d/ be a length space and  W I ! M be a continuous path
parameterized by arclength, where I is an interval of the reals. If d..t1/; .t2// D
jt1� t2j for all t1 and t2 in I , then  is called a minimizing geodesic or shortest path.
Theorem 1. (Hopf–Rinow) If a length space .M; d/ is complete and locally
compact, then any two points in M can be connected by a minimizing geodesic,
and any bounded closed set in M is compact.

Let X � Rn be a compact length space. Then X is necessarily complete. Fur-
thermore, by the Hopf–Rinow Theorem (Theorem 1), X has minimizing geodesics.
Let L./ denote the length of the continuous curve  parameterized by its arclength.
We consider the following axioms for X :

Axiom 1: X D R, where R D
S
j2NRj ; Rj is a rectifiable C 1 curve for

each j 2 N, with L.Rj /! 0 as j !1.
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Axiom 2: There exists a dense set B � X such that for each p 2 B and
each q 2 X , one of the minimizing geodesics from p to q can be given as a
countable (or finite) concatenation of the Rj ’s.

Remark 3.3. In Axiom 2, it is understood that the countable concatenation of Rj ’s
begins with p 2 B as the initial endpoint of some Rj . Therefore, B is a subset of
the collection of endpoints of the Rj curves, and hence, Axiom 2 implies that the
endpoints are dense in X .

For p; q 2 X and  a minimizing geodesic between p and q, we will define the
geodesic distance, dgeo , by dgeo.p; q/ D L./.

Proposition 1. Suppose X is a compact length space which satisfies Axiom 1. Then
the countable sum ofRj -curve triples, S.X/, is a spectral triple forX . Furthermore,
if D is the Dirac operator associated to S.X/ and L.Rj / D ˛j for each j 2 N,
then the spectrum of D is given by

�.D/ D
[
j2N

��
.2k C 1/�

2˛j

�
W k 2 Z

�
:

Moreover, the spectral dimension of X with respect to S.X/ (or equivalently, the
metric dimension of S.X/) is given by

dS.X/ D inf

8<:p > 1 WX
j2N

˛
p
j <1

9=; :
Proof. For each j 2 N, let Rj be parameterized such that L.Rj / D ˛j . Using the
r-curve triple with r D Rj and ˛ D ˛j yields the unbounded Fredholm module

Sj D
�
C.X/;Hj ;Dj

�
for Rj , with representation �j . To construct a spectral triple for X , we define

M
j2N

Sj D

0@C.X/;M
j2N

Hj ;
M
|2N

Dj

1A ;
with representation M

j2N

�j :

We refer to S.X/ as the countable sum of Rj -triples, with the notation

S.X/ D
M
|2N

Sj ; D D
M
|2N

Dj ; H D
M
j2N

Hj ; and �X D
M
j2N

�j ;

so that S.X/ D .C.X/;H;D/.
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By the Stone–Weierstrass Theorem, the real linear functionals on Rn are a dense
subset of C.X/. The real functionals will suffice as a dense subset having bounded
commutators with the Dirac operator D. Indeed, if f .x1; : : : ; xn/ D a1x1 C � � � C

anxn is an arbitrary real functional and Rj is parameterized (by arclength) in the
variable � , then (letting jj:jj1 WD jj:jj1;Rn , i WD

p
�1 and using the discussion

following Formula 1 in Subsection 2.1 in order to justify the first two equalities), we
obtain

jjŒDj ; �j .f /�jj D jjDj .f /jj D jjDj .f /jj1 D

ˇ̌̌̌ˇ̌̌̌
1

i

df

d�

ˇ̌̌̌ˇ̌̌̌
1

D jja1.x
0
1.�//C � � � C an.x

0
n.�//jj1 � ja1j C � � � C janj:

Since this bound is not dependent on j , we have

jjŒD; �X .f /�jj D sup
j

˚
jjŒDj ; �j .f /�jj

	
� ja1j C � � � C janj:

Therefore, as claimed above, the real linear functionals on Rn form a dense subspace
of C.X/ comprised of elements having bounded commutators with D.

The eigenvalues of Dj are determined by the length ˛j of Rj and are given in
Remark 2.4 of Subsection 2.2 above as .�.2kC1/=2˛j / for k 2 Z. The eigenvalues
of D are the disjoint union of the eigenvalues for the Dj ’s; so

�.D/ D
[
j2N

��
.2k C 1/�

2˛j

�
W k 2 Z

�
:

Since ˛j ! 0 as j !1, we deduce that .D2CI /�1 is a compact operator. The
self-adjointness of D follows from the fact that its summands Dj are self-adjoint
for each j . Thus S.X/ is an unbounded Fredholm module. Furthermore, since a
function in the image of �X is densely defined on X , the representation is faithful,
so that S.X/ is a spectral triple. (See Definitions 2.1 and 2.2 in Subsection 2.1.)

Using the expression for the spectrum �.D/ obtained above, we see that the
spectral dimension (Definition 2.3 in Subsection 2.1) is given by

dS.X/ D inf

8<:p > 0 WX
j2N

X
k2Z

ˇ̌̌̌
.2k C 1/�

2˛j

ˇ̌̌̌�p
<1

9=; :
Now, the double sum over j and k is finite if and only if the sum over k,P
k2N.2k C 1/

�p , and the sum over j ,
P
j2N ˛

p
j , are both finite. (Indeed, up to

a trivial multiplicative factor, the double sum can be written as the product of these
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two single sums.) Since, clearly,
P
k2N.2k C 1/

�p < 1 if and only if p > 1, it
follows that

dS.X/ D inf

8<:p > 1 WX
j2N

˛
p
j <1

9=; ;
as desired.

Remark 3.4. It follows from the expression obtained for d D dS.X/ in Proposition 1
that the spectral dimension of X always satisfies the inequality d � 1.

Since X is a compact metric space in the geodesic metric, dgeo, we define its
associated Lipschitz seminorm Lipg as in (2.1); namely,

Lipg.f / D sup
�
jf .x/ � f .y/j

dgeo.x; y/
W x ¤ y

�
:

The following lemma will be useful in recovering dgeo from the Dirac operator via
Formula 1:

Lemma 3.5. Let X be a compact length space satisfying Axioms 1 and 2, and let
Lipg be the Lipschitz seminorm for the compact metric spaceX with respect to dgeo.
Then, for any function f in the domain of D, we have

jjDf jj1;X D Lipg.f /:

Proof. For any f in the domain of D, we have (with i WD
p
�1)

jjDf jj1;X D sup
j

˚
jjDjf jj1;Rj

	
D sup

j

(ˇ̌̌̌ˇ̌̌̌
1

i

df

dx

ˇ̌̌̌ˇ̌̌̌
1;Rj

)

D sup
j

(
sup

p;q2Rj

�
jf .p/ � f .q/j

dgeo.p; q/

�)
� Lipg.f /:

The first equality follows since R is dense in X , according to Axiom 1. The last
inequality is clear since Lipg is the supremum over all p ¤ q 2 X , not just those
p ¤ q restricted to being in the same Rj .

The inequality in the other direction will come from Axiom 2. First suppose
p 2 B and q 2 X . Then there is a geodesic from p to q which is a concatenation
of Rj curves. Let f.pj ; pjC1/g be the sequence of pairs of endpoints tracking the
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Rj curves such that p1 D p and limn!1 pn D q along  . We have the following
estimate:

jf .p/ � f .pn/j D j

nX
jD1

f .pj / � f .pjC1/j �

nX
jD1

jf .pj / � f .pjC1/j

�

nX
jD1

�
dgeo.pj ; pjC1/jjDjf jj1;Rj

�
�
�
jjDf jj1;X

� nX
jD1

dgeo.pj ; pjC1/ D jjDf jj1;Xdgeo.p; pn/:

By the continuity of f .x/ and letting a.x/ WD dgeo.p; x/, we deduce that

jf .p/ � f .q/j

dgeo.p; q/
� jjDf jj1;X :

Note that the above estimate does not rely on the fact that p 2 B, but only on the
fact that p is an endpoint; see Remark 3.3 above.

Now suppose p and q are arbitrary distinct points in X . By Axiom 2, there is a
minimizing geodesic  in X connecting p and q. Since B is dense in X ,  intersects
some point of B, say r0. Let l1 be the length of  from r0 to p and l2 be the length
of  from r0 to q. Thus the total length of  is l1 C l2.

By Axiom 2, there exist minimizing geodesics 1 and 2 from r0 to p, and from
r0 to q, respectively, which are countable concatenations of curves in R originating
out of r0. It follows that 1 has length l1 and 2 has length l2. For completeness, we
briefly explain why this is the case. Indeed, supposing the length of 1 is less than
l1 implies that the concatenation of 1 with  from r0 to q would have length less
than l1C l2, contradicting the fact that  is a shortest path. Moreover, if we suppose
that 1 has length greater than l1, then it follows that  is a shorter path from r0 to
p , contradicting the fact that 1 is a shortest path. The same arguments hold for 2.
Hence, the concatenation of 1 and 2 has length l1 C l2 and is therefore a geodesic
between p and q.

Let 2 be tracked by endpoints frig of the concatenated curves Ri in R such that
r1 D r0 and limi!1.ri / D q. Define 1i to be the path obtained by concatenating
the first i paths of 2 with 1 at r0. Using the estimate for an endpoint to a point in
X , applied to 1i from ri to p, we have

jf .p/ � f .ri /j

dgeo.p; ri /
� jjDf jj1;X for all i 2 N:
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Again using the continuity of the functions f .x/ and a.x/ WD dgeo.p; x/, we have

jf .p/ � f .q/j

dgeo.p; q/
� jjDf jj1;X :

Since p and q are arbitrary points in X , it follows that Lipg.f / � jjDf jj1;X , as
desired.

We can now state and prove our main result for this section:

Theorem 2. Let X be a compact length space satisfying Axioms 1 and 2, and let
dX be the distance function on X induced by the spectral triple via Formula 1.
Then dX D dgeo, with the spectrum �.D/ of the Dirac operator and the spectral
dimension d D dS.X/ as given in Proposition 1.

Proof. First, we note that the spectrum of the Dirac operator and the spectral
dimension are given as in Proposition 1 since X satisfies Axiom 1.

To prove that dX D dgeo, let p; q 2 X . To compare dgeo.p; q/ with dX .p; q/,
note that for any f (in the domain of D) such that jjDf jj1;X � 1, we have by
Lemma 3.5 that Lipg.f / D jjDf jj1;X and hence,

jf .p/ � f .q/j

dgeo.p; q/
� 1:

In this case, jf .p/ � f .q/j � dgeo.p; q/, and it holds that dX .p; q/ � dgeo.p; q/.
To get the inequality in the other direction, define the function h.x/ D dgeo.p; x/.
Then, Lipg.h/ D 1 and

jh.p/ � h.q/j D j0 � dgeo.p; q/j D dgeo.p; q/:

Therefore, since h is a Lipschitz function on X , h is witness to the inequality
dgeo.p; q/ � dX .p; q/, and we have shown that dX .p; q/ D dgeo.p; q/, as
desired.

Theorem 2 is an extension of Connes’ theorem on a compact Riemannian
manifold to the class of compact length spaces determined by Axioms 1 and 2.
In the next two sections, we provide examples of fractal sets which fall in this
class of length spaces. The first example is the Sierpinski gasket, in which case
its geometry has been recovered using similar methods in [5]. The second example
is the harmonic gasket and its measurable Riemannian geometry which provide a
setting closer to that of Riemmanian manifolds, and for which our results are new.
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4. Spectral Geometry of the Sierpinski Gasket

In this section, we show that the Sierpinski gasket, K, is a model for Theorem 2. It
is shown in [5] that K is a compact length space. It remains to prove that K satisfies
Axiom 1 and Axiom 2:

Proposition 2. The Sierpinski gasket K satisfies Axioms 1 and 2.

Proof. Let K be decomposed into its cell edges by decomposing each of its graph
cells �w into �w;j , for j 2 fl; r; bg, where l , r , and b denote the left, right, and
bottom, respectively, of each graph cell (triangle) of the gasket. Then, the union over
jwj D n 2 N and j 2 fl; r; bg of the �w;j ’s is the countable union of cell edges
whose closure is K. Indeed, this union contains the set of vertices V �, which is
dense in K. We can reorder the cell edges with N, with each cell edge given by Rj ,
for some j 2 N, in non-increasing order. Let

R D
[
j2N

Rj :

Then K D R. The first graph cell has R1, R2, and R3 as its edges, which are
of equal finite length. An Rj curve which is an edge of a graph cell of �m has
length proportional to .1=2m/. There are 3m curves of this length. It follows that the
sequence of (Euclidean) lengths ˛j D L.Rj / satisfies L.Rj / ! 0 as j ! 1 and
that each Rj is a rectifiable C 1 curve (a straight line segment in R2 with bounded
length). Therefore, K satisfies Axiom 1.

We now show that K satisfies Axiom 2. The key properties which allow K to
satisfy Axiom 2 are its connectedness and the fact that every edge curve is itself a
minimizing geodesic between its endpoints. Let p 2 V � and q 2 K. A shortest path
to q from p is constructed by considering the lowest graph approximation �m which
puts p and q in separate cells, Kw and Kw0 , respectively, with jwj D jw0j D m.
First suppose p is a vertex in the graph cell �w , with jwj D m.

By connectedness, the shortest (in fact, any) path from p to q must pass through a
vertex v of �w0 . There is an Rj which is an edge of a graph cell in �m connecting p
to v. Each Rj is a straight line segment and is therefore itself a minimizing geodesic
between its endpoints. Hence, the curve Rj connecting p to v suffices as the first leg
of the shortest path from p to q. We repeat the previous argument, finding the lowest
graph approximation placing v and q in different cells. Since v is necessarily a
vertex of this (higher) graph approximation, we apply the same argument to the cells
separating v and q. Continuing in this manner, we obtain a path that is a countable
concatenation of Rj ’s which are edges of cells whose diameters go to zero. The
finite intersection property yields a unique limit point, which is necessarily q.

For the case when p 2 V � but is a vertex of a higher approximation than �m,
we can use the special case above. Let u be a vertex of �w and p 2 Kw . The
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argument above for a shortest path from p to q applies to the shortest path from u to
p. However, in this case, since p 2 V �, the process terminates after finitely many
iterations. Indeed, there is a ‘last’ graph cell the path must travel to until it is at most
one edge curve away from p. This finite concatenation can be reversed from p to u
and then concatenated with the path from u to q. The resulting path is a minimizing
geodesic from p to q which is a countable concatenation of Rj curves. Since V � is
dense in K, Axiom 2 is satisfied.

In the light of Proposition 2, we have the following immediate corollary to
Theorem 2.

Corollary 4.1. The spectral triple, S.K/, constructed from the countable sum of
Rj -curve triples, satisfies the following: (1) The distance function induced by S.K/
via Formula 1 coincides with the geodesic distance function on K; (2) The spectral
dimension of S.K/ is equal to log 3= log 2.1

5. Spectral and Measurable Riemannian Geometry

As mentioned in subsection 2.4, it is shown in [25] that KH is a compact length
space and that the minimizing geodesics have a representation in the language of
measurable Riemannian geometry analogous to the corresponding representation
of geodesics in Riemannian geometry. In this section, we show that the harmonic
gasket, KH , satisfies Axioms 1 and 2 and is thus a model for Theorem 2. The result
is that we are able to recover Kigami’s geodesic distance from the spectral triple and
Dirac operator for the harmonic gasket via Formula 1. Let D be the Dirac operator
on KH and let A D C.KH /. Corollary 5.1 at the end of this section yields the
following result:

Theorem 3. Let p and q be arbitrary points in KH , and let  be a minimizing
geodesic from p to q such that .t1/ D p and .t2/ D q. Then we haveZ t2

t1

h P;Z Pi
1
2dt D sup

a2A
fja.p/ � a.q/j W jjŒD; �a�jj � 1g : (5.1)

As measurable Riemmannian geometry extends notions of smooth Riemmanian
geometry to a certain fractal set, equality (2) extends Connes’ theorem for a compact
Riemannian manifold to this setting. We first show that KH satisfies Axioms 1 and
2.

1This value coincides with the Hausdorff dimension of K, both with respect to the Euclidean metric
(as is well known, see, e.g., [13,37]) and with respect to the geodesic metric ofK (according to the results
of [5]). It does not, however, coincide with the Hausdorff metric of KH with respect to the geodesic
metric, which is also > 1 but close to 1.3 (as was recently shown in [19–21]). (To our knowledge, the
fractal dimension ofKH with respect to the Euclidean metric is still unknown.)
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Proposition 3. The harmonic gasket KH satisfies Axioms 1 and 2.

Proof. Using the homeomorphism ˆ between K and KH , and whose definition
was recalled towards the end of Subsection 2.3, we can decompose KH from the
decomposition we used for K. The edges of graph cells in KH are exactly given as
ˆ.Rj /, where the Rj ’s are edges of graph cells of K. Let

R D
[
j2N

ˆ.Rj /:

Because ˆ is a homeomorphism and since K satisfies Axiom 1 (by Proposition 2),
we have thatKH D R. By Theorem 5.4 in [25] (Theorem 4.7 in [44] gives the same
result), ˆ.Rj / is a C 1 curve. Moreover, by Lemma 5.5 in [25], the curve ˆ.Rj / is
rectifiable. Since every cell edge is an affine image of an edge of the first graph cell,
with maximum eigenvalue 3=5, it follows that the sequence of (Euclidean) lengths
of the curve ˆ.Rj / satisfies L.ˆ.Rj // ! 0 as j ! 1. Therefore, KH satisfies
Axiom 1.

The argument that KH satisfies Axiom 2 is analogous to the argument for K
(given in the second part of the proof of Proposition 2), except that convexity is a
proxy for straight lines. To be precise, we need to show that if p and q are the
endpoints of an edge,ˆ.Rj /, thenˆ.Rj / is the minimizing geodesic inKH between
p and q (and thus the shortest path between any two points on Rj lies on ˆ.Rj /).
Let p and q be vertices of a cell KH;w of KH and pq be the straight line segment in
M0 connecting p and q. Let ˆ.Rj / be the cell edge connecting p and q and Dpq
be the compact region bounded by pq [ˆ.Rj /. Lemma 5.5 in [25] states that Dpq
is convex and that ˆ.Rj / is rectifiable.

Theorem 5.2 in [25] states that if C � D are compact subsets in R2 with C
convex and @D a rectifiable Jordan curve, then L.@C/ � L.@D/. Lemma 5.6 in [25]
uses this theorem to show that ˆ.Rj / is a shortest path between p and q among all
rectifiable paths in KH;w between p and q. Since we would like to show this holds
among all rectifiable paths inKH , we follow the proof of Lemma 5.6 in [25], except
that we allow for fpq to be any rectifiable (w.l.o.g., non-intersecting) curve in KH
connecting p and q.

Let D0pq be the compact region bounded by fpq [ pq. Since ˆ is a homeomor-
phism and thus preserves the holes, and hence the interior and exterior of K, we
have that .Dpqnˆ.Rj // \KH is empty. It therefore holds that Dpq � D0pq and by
Theorem 5.2 in [25], L.cpq [ pq/ � L.fpq [ pq/. Subtracting off the segment, pq,
which the two boundaries have in common, yields L.cpq/ � L.fpq/. We have now
shown that ˆ.Rj / is the minimizing geodesic in KH between p and q.

Next, let p 2 ˆ.V �/ (i.e., p is a vertex of KH ) and let q 2 KH . Since KH is
topologically equivalent to K, the argument for a geodesic from p to q is the same
as for K (in the proof of Proposition 2), except that the straight line edges, Rj , are
replaced with the harmonic edges, ˆ.Rj /. Therefore, a geodesic from p to q can
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be given as a countable concatenation of ˆ.Rj /’s. Since ˆ.V �/ is dense in KH
(because V � is dense inK and ˆ is a homeomorphism fromK ontoKH ), it follows
that KH satisfies Axiom 2.

Proposition 3 shows that KH is a model for Theorem 2, and thus we have the
following corollary, which is the exact counterpart for KH of Corollary 4.1 stated
for K at the end of Section 4.

Corollary 5.1. The spectral triple, S.KH /, constructed from the countable sum of
ˆ.Rj /-curve triples satisfies the following: (1) The spectral distance induced by
S.KH / via Formula 1 coincides with Kigami’s geodesic distance on KH ; (2) The
spectrum �.D/ of the Dirac operator and the spectral dimension d D dS.KH / are
given as in Proposition 1 (with X D KH ).

6. Alternate Constructions for KH

In this section, we first construct the Dirac operator for KH in analogy with the
construction forK in [5]. More precisely, we construct a spectral triple forKH using
triples for the graph cells (distorted triangles) of the harmonic gasket, and therefore
the construction comes directly from circle triples. This construction has the benefit
of keeping track of the ‘holes’ in the gasket. We show that it also recovers Kigami’s
geometry, yet the spectrum of the Dirac operator, though asymptotically the same, is
not exactly the same as in the edge construction in the previous section. We conclude
this section with a construction which is the direct sum of the edge construction
and the cell construction. It is shown that this construction also recovers Kigami’s
measurable Riemannian geometry.

6.1. Harmonic cell triple. Recall from Subsection 2.3 that �w denotes a graph
cell of K associated with the finite word w. Using the homeomorphism ˆ from K

onto KH , we can define the corresponding graph cell Tw D ˆ.�w/; clearly, Tw is a
graph cell of KH . We can construct a triple on Tw by carrying the spectral triple on
a circle directly to Tw , as is done in [5] for an arbitrary graph cell of the Sierpinski
gasket. Let r be the radius of a circle. Since it is the complex continuous functions
on the circle that are of interest, we make the natural identification with the complex
continuous 2�r-periodic functions on the real line. Let the R2 induced arclength of
Tw be denoted by ˛w . (Here and in the sequel, we use the notation analogous to the
one introduced towards the end of Subsection 2.2.)

Considering a circle of radius ˛w , the appropriate algebra of functions
consists of the complex continuous 2�˛w -periodic functions on the real line. Let
rw W Œ��˛w ; �˛w � ! Tw be an arclength parameterization of Tw , counter-
clockwise, with rw.0/ equal to the vertex joining the bottom and right sides of
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Tw . According to Definition 8.1 in [5], the mapping rw induces a surjective
homomorphism ‰w of C.KH / onto C.Œ��˛w ; �˛w �/ given by

‰w.f /.�/ WD f .rw.�//; for f 2 C.KH / and � 2 Œ��˛w ; �˛w �:

Let
Hw D L

2.Œ��˛w ; �˛w �; .1=2�˛w/m/;

wherem is the Lebesgue measure on Œ��˛w ; �˛w �, and let…w W C.KH /! B.Hw/
be the representation of f in C.KH / defined as the multiplication operator which
multiplies by ‰w.f /. We will again use the translated Dirac operator and define
Dw D D

t
˛w . (See Subsection 2.2 above.)

The triple S.Tw/ D .C.KH /;Hw ;Dw/ is an unbounded Fredholm module
with representation …w . The results in the following proposition follow from the
corresponding results regarding the spectral triple on a circle obtained in Section 2
of [5].

Proposition 4. The triple S.Tw/ D .C.KH /;Hw ;Dw/ associated to Tw is an
unbounded Fredholm module satisfying the following properties:

(1) The spectrum of the Dirac operator, Dw , is given by

�.Dw/ D

���
.2k C 1/�

2˛w

��
W k 2 Z

�
:

(2) The metric dw induced by S.Tw/ on Tw coincides with the R2 induced
arclength metric lTw on Tw .

(3) The spectral dimension of Tw is 1.

Remark 6.1. Proposition 4 does not state that the metric dw coincides with the
restriction to the graph cell Tw of Kigami’s geodesic metric on KH , because in
general this is not the case. Indeed, points on different sides of Tw will be connected
by a geodesic that does not lie completely on Tw , and thus dw � dgeo. However,
from the proof of Proposition 3, it follows that dw restricted to an edge of Tw
coincides with Kigami’s geodesic distance.

6.2. Construction from cell triples. We now construct a spectral triple on KH
using the countable sum of triples S.Tw/ D .C.KH /;Hw ;Dw/: This is a natural
construction of the spectral triple with respect to its holes and connectedness; this is
also the construction used for the Sierpinski gasket in [5].

To be precise, this construction yields a triple for each closed path, or cycle,
in the space. Following the line of reasoning on page 23 of [5], each of these
triples associated to a cycle induces an element in the K-homology of each graph
approximation of KH . Each of these members of the K-homology group measures
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the winding number of a nonzero continuous function around the cycle to which it is
associated, keeping track of the connectedness type of the graph approximation.

To formally construct the countable sum of S.Tw/ triples, we will use the
following notation:

(1) HKH
D
Ln2N
jwjDnHw ;

(2) …KH
D
Ln2N
jwjDn…w ;

(3) DKH
D
Ln2N
jwjDnDw :

In each case, the countable orthogonal direct sum is extended over

W � D
[
m�0

Wm;

the set of all finite words, whereWm is the set of all words w of length jwj D m 2 N
on the alphabet S D 1; 2; 3; see Subsection 2.3 above.

Furthermore, the countable sum of the S.Tw/ triples is defined as

S.KH / D .C.KH /;HKH
;DKH

/:

In order to show that S.KH / is a spectral triple, we first note that a function in
the image of …KH

is densely defined on KH , so that we indeed have a faithful
representation.

Next, we show that there is a dense set of functions f in C.KH / such that
the commutator of …KH

.f / with the Dirac operator DKH
is bounded. The real-

valued linear functions on R2 restricted to KH , are dense in C.KH /. Furthermore,
any real-valued linear function, f .x; y/ D ax C by, restricted to the graph cell
Tw , has a bounded commutator with Dw with bound jaj C jbj, independent of w.
Thus jjŒDKH

;…KH
.f /�jj � jaj C jbj and hence the real-valued linear functions on

R2, restricted to KH , form a dense subset of C.KH / consisting of elements having
bounded commutators with DKH

.
To see that the operator .D2

KH
C I /�1 is compact, we look at the eigenvalues of

DKH
, which are given by the disjoint union of the eigenvalues of all of the Dw ’s.

�.DKH
/ D

[
n2N

[
jwjDn

��
.2k C 1/�

2˛w

�
W k 2 Z

�
;

where we have used part 1 of Proposition 4. As mentioned before, the ˛w ’s are the
lengths of the boundaries of thew-cells. As a result, the eigenvalues of .D2

KH
CI /�1

go to zero and therefore, .D2
KH
C I /�1 is compact. In addition, one verifies that

DKH
is symmetric when acting on its eigenvectors, so that it is self-adjoint.

To compare the spectral distance function induced by S.KH /with dgeo, we have
the following analog of Lemma 3.5 in Section 3, which characterizes jjDKH

jj1;KH

in terms of dgeo.
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Lemma 6.2. For any function f in the domain of DKH
, we have

jjDKH
f jj1;KH

D Lipg.f /:

Proof. For any f in the domain of DKH
, we have (with i WD

p
�1)

jjDKH
f jj1;KH

D sup
w
fjjDwf jj1;Twg D sup

w

(ˇ̌̌̌ˇ̌̌̌
1

i

df

dx

ˇ̌̌̌ˇ̌̌̌
1;Tw

)

D sup
w

(
sup

p;q2Tw

�
jf .p/ � f .q/j

dw.p; q/

�)

� sup
w

(
sup

p;q2Tw

�
jf .p/ � f .q/j

dgeo.p; q/

�)
� Lipg.f /;

since dw � dgeo (as was noted in Remark 6.1). The last inequality holds since
Lipg.f / is the supremum over all possible non-diagonal pairs of points on the
harmonic gasket, which includes the non-diagonal pairs of points restricted to
belonging to the same graph cell.

To achieve the reverse inequality, we note that the critical inequality used to get
this direction in Lemma 3.5 was

jf .pj / � f .pjC1/j � dgeo.pj ; pjC1/jjDRj
f jj1;Rj

;

where the pj ’s represent the decomposition of the geodesic constructed in Lemma 3.5,
and Rj is the edge curve connecting pj to pjC1. Recalling Remark 6.1 following
Proposition 4, we have that the spectral distance induced on Tw by S.Tw/ coincides
with dgeo when restricted to the edges of Tw . This is of course a sufficient condition
to replace Rj with Tw in the above inequality. Indeed, for pj and pjC1 belonging
to the same edge,

jf .pj / � f .pjC1/j

dgeo.pj ; pjC1/
D
jf .pj / � f .pjC1/j

dw.pj ; pjC1/
� jjDwf jj1;Tw

:

Therefore,

jf .pj / � f .pjC1/j � dgeo.pj ; pjC1/jjDwf jj1;Tw
:

Now it follows from the argument used in the proof of Lemma 3.5 that for an
arbitrary point q and a vertex p,

jf .p/ � f .q/j

dgeo.p; q/
� jjDKH

f jj1;KH
:



978 M. L. Lapidus and J. J. Sarhad

The extension to the case when p and q are both arbitrary points inKH also follows
the same argument as in the proof of Lemma 3.5 and therefore,

Lipg.f / � jjDKH
f jj1;KH

:

We deduce that jjDKH
f jj1;KH

D Lipg.f /, and hence, the proof of the lemma is
completed.

Let hspec be the distance function induced by S.KH / and let bKH
be the

spectral dimension of KH with respect to SKH
. Just as Lemma 3.5 gives dspec D

dgeo, Lemma 6.2 gives hspec D dgeo using the exact same argument as in the
proof of Theorem 2. The following theorem, an analog for the harmonic gasket
of Proposition 1 and Theorem 2, summarizes the results for the spectral triple
S.KH / D .C.KH /;HKH

;DKH
/.

Theorem 4. The triple S.KH / D .C.KH /;HKH
;DKH

/ associated to KH is a
spectral triple satisfying the following properties:

(1) The spectrum of the Dirac operator, DKH
, is given by

�.DKH
/ D

[
n2N

[
jwjDn

��
.2k C 1/�

2˛w

�
W k 2 Z

�
:

(2) The metric distance hspec induced by S.KH / coincides with Kigami’s
geodesic distance, dgeo.

(3) The spectral dimension bKH
is the infimum of all p > 1 such that

X
n2N

X
jwjDn

.˛w/
p <1:

In particular, bKH
� 1.

Proof. That S.KH / is a spectral triple for KH and the first two claims (1 and 2) of
Theorem 4 follow directly from the text just above Theorem 4. The third claim (3),
much as in the proof of Proposition 1, follows from the fact that by definition, and in
light of the first part (1),

bKH
D inf

8<:p > 0 WX
n2N

X
jwjDn

X
k2Z

ˇ̌̌̌
.2k C 1/�

2˛w

ˇ̌̌̌�p
<1

9=; :
It is clear that the triple sum in the expression above is finite if and only if the double
sum over n and w,

P
n2N

P
jwjDn.˛w/

p , and the sum over k,
P
k2N j2kC 1j

�p , are
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both finite. Since, clearly,
P
k2N.2k C 1/

�p < 1 if and only if p > 1, it follows
that

bKH
D inf

8<:p > 1 WX
n2N

X
jwjDn

.˛w/
p <1

9=; ;
as desired.

The following corollary compares the geometries of the Sierpinski gasket
induced by S.KH / and S.KH /:

Corollary 6.3. For the spectral distance functions, dspec and hspec , and the spectral
dimensions, dKH

and bKH
, the following equalities hold:

(1) dspec D hspec .

(2) dKH
D bKH

.

Proof. The first fact follows immediately from Corollary 5.1 and Theorem 4. The
second fact is true since

˛w D
X

s2fL;R;Bg

˛w;s:

6.3. The direct sum of S.KH / and S.KH /. In this section, we point out that the
two spectral triples on KH , S.KH / and S.KH /, constructed above can be summed
together, giving a spectral triple that also recovers Kigami’s distance on KH . This
construction involves the refinement of the curve triple construction and also keeps
track of the holes in KH .

Theorem 5. Let S.˚/ D S.KH /˚S.KH /, with �˚ D �KH
˚…KH

. Then S.˚/
is a spectral triple for KH and the distance, d˚, induced by S.˚/ on KH coincides
with Kigami’s geodesic distance on KH .

Proof. Let DKH
denote the Dirac operator associated to S.KH /. It is clear from

Proposition 1 and Theorem 4 that for any real-valued linear function, f .x; y/ D
ax C by on KH , we have

jjŒDKH
; �KH

.f /�jj � jaj C jbj and jjŒDKH
;…KH

.f /�jj � jaj C jbj:

Since D˚ D DKH
˚DKH

, it follows that

jjD˚; �˚.f /�jj � jaj C jbj:

(Recall that the underlying Hilbert space is the orthogonal direct sum of the Hilbert
spaces associated with each spectral triple.) Thus the real-valued linear functions on
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KH have bounded commutators withD˚ and hence, the dense subalgebra condition
is satisfied.

The operator, .D2
˚ C I /

�1 is compact, as the set of eigenvalues of D˚ is the
disjoint union of the eigenvalues of DKH

and DKH
. Indeed, the union is countable

and can be arranged in a non-increasing order according to which the eigenvalues
tend to zero. The self-adjointness ofD˚ is also clearly inherited from its summands.
A function in the image of �˚ is densely defined on KH ; so the representation is
faithful.

To prove the claim of recovery of Kigami’s distance, we need to verify that

jjD˚f jj1;KH
D Lipg.f /;

for any f in the domain of D˚. Indeed, by Lemma 3.5 and Lemma 6.2,

jjD˚f jj1;KH
D maxfjjDKH

jj1;KH
; jjDKH

jj1;KH
g D Lipg.f /:

It then follows immediately that d˚ D dgeo.

7. Concluding Comments and Future Research Directions

In this final section, we discuss several possible avenues for future investigation
connected with the results of this paper.

7.1. Spectral dimension and measure vs. Hausdorff dimension and measure.
We conjecture that the spectral dimension @ of the Dirac operator DKH

(for any of
the spectral triples considered in this paper) is equal to the Hausdorff dimension H
of (KH ; dgeo), the harmonic gasket equipped with the harmonic geodesic metric:
@ D H .

Moreover, we conjecture that (by analogy with the results obtained in [5] for the
Euclidean Sierpinski gasket, as well as results and conjectures in [9, 10, 12, 28, 33,
34]), the harmonic spectral measure, defined as the positive Borel measure naturally
associated (via the Dixmier trace) with the given Dirac operator D D DKH

,
is proportional to the normalized Hausdorff measure H D HH , defined as the
normalized H -dimensional Hausdorff measure of the metric space .KH ; dgeo/.
(Recall that by definition, H is the probability measure naturally associated with
the standard H -dimensional Hausdorff measure of .KH ; dgeo/.)

More specifically, if T r! is any suitable Dixmier trace, then, for every
f 2 C.KH /, we have (with @ D H , the Hausdorff dimension of .KH ; dgeo//:

T r!

�
D�@KH

f
�
D c

Z
KH

fdH; (7.1)
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for some positive constant c (equal to the spectral volume of .KH ; dgeo/, see [28,
33, 34]). (It follows from the results in the present paper that the left-hand side of
Equation (7.1) makes sense; see, e.g., [10, 33, 34].)

We note that the exact counterpart of the result conjectured just above is obtained
in [5] in the case of the standard Sierpinski gasket K, equipped with the (intrinsic)
Euclidean geodesic metric.

7.2. Global Dirac operator and Kusuoka Laplacian. We expect that a suitable
modification of the constructions provided in this paper should yield a global Dirac
operator on KH , and an associated spectral triple, with the same spectral dimension
@ D H and corresponding spectral volume (proportional to the harmonic Hausdorff
measure, as in Equation (7.1)), and whose square coincides with (or is in some
sense spectrally equivalent to) the Kusuoka Laplacian (that is, minus the Laplacian
with respect to the Kusuoka measure). Some further discussion of this topic will be
provided in Subsection 7.4 below.

Remark 7.1. Recently, after this work was completed (but independent of it),
generalizing to the specific case of the harmonic gasket and the Kusuoka Laplacian
Weyl’s asymptotic formula for p.c.f. (i.e., finitely ramified) fractals obtained in [27]
by Jun Kigami and the first author (see also the later paper [28]), and also using
results from [25, 26], Naotaka Kajino ([19] and, especially, [20, 21]) has determined
the leading spectral asymptotics of the Kusuoka Laplacian on KH . In particular,
he has shown in [19] that (twice) the spectral dimension of the Kusuoka Laplacian
coincides with the Hausdorff dimension H of .KH ; dgeo/. Furthermore, in [20],
he has shown that the Hausdorff measure of .KH ; dgeo/ can be recovered from the
leading asymptotics of the Kusuoka Laplacian restricted to an arbitrary (nonempty)
open subset of KH (including, of course, KH itself). These results in [20, 21] are
consistent with the conjectures made in Subsections 7.1 and 7.2 above. Furthermore,
we expect that some of the techniques developed in [19–21] will be very useful
in addressing and eventually resolving these conjectures, in this and more general
settings.

Finally, we note that it is also shown in [19–21] that the Hausdorff and Minkowski
(i.e., box-counting) dimensions of .KH ; dgeo/ coincide (which is of interest in light
of [31–37], for example), and that 1 < H < 2.

7.3. Energy measure on the gasket. Based in part on the results of [5], various
refinements and extensions of the spectral triples discussed in [5] were recently
introduced by Erik Christensen, Cristina Ivan, and Elmar Schrohe in [4]. In
particular, in [7], using the refinements introduced in [4], along with the earlier
results and methods of [5], Fabio Cipriani, Daniele Guido, Tommaso Isola and
Jean-Luc Sauvageot have shown that the Dirichlet energy form on the Euclidean
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Sierpinski gasket K can also be recovered from the Dirac operator (and the
associated spectral triple) via a suitable Dixmier trace construction. In light of
the results of the present paper and the conjectures made in Subsections 7.1 and
7.2, it is natural to expect that the results of [7] can be extended to the harmonic
gasket (as well as eventually, more general fractals). Namely, conjecturally, not
only the Hausdorff dimension and Hausdorff measure of .KH ; dgeo/, but also the
energy form on the gasket can be recovered (via a Dixmier trace construction) from a
suitable modification of the spectral triples discussed in this paper and in Subsection
7.2 above. In the process of establishing such a result, it would be helpful to
further examine the potential connections between the Dirichlet form, the harmonic
geodesic metric on KH , and the effective resistance metric (or intrinsic metric) on
K, as transported to KH via the homeomorphism ˆ (see [23, 24]).

Finally, we note that the modification in [4] of the spectral triple constructed
in [5] may be better suited to the study of the noncommutative topology and K-
homology of the fractals studied in the present paper, particularly for the harmonic
gasket KH (once our own extended construction has been taken into account). This
question remains to be explored, in conjunction with suitable modifications of the
various spectral triples constructed in this paper, including in Section 6.

7.4. Geometric analysis on the harmonic gasket. It would be interesting to
further develop geometric analysis on the harmonic Sierpinski gasket KH , viewed
as a measurable Riemannian manifold (in the sense of [25, 26]). In the long term,
one should be able to extend to this setting the differential calculus on smooth
(Riemannian) manifolds, including the notions of differential forms and (metric)
connections. At least for this important special example, this would be a significant
step towards realizing aspects of the research program outlined in [32–36]. (The
recent results obtained in [8] for differential 1-forms on the Euclidean gasket may be
useful in this setting; see also [6] along with the survey article [18] and the relevant
references therein.) Again, in the long term, we expect aspects of geometric analysis
to be developed from the present perspective on a broad class of fractal manifolds.

References

[1] M.T. Barlow, Diffusion on fractals. In Lectures on Probability Theory and Statistics (Saint-
Flour, 1995), Springer Lecture Notes in Math., 1690, Springer-Verlag, Berlin, 1998, pp. 1–
21. Zbl 0916.60069 MR 1668115

[2] E. Christensen and C. Ivan, Spectral triples for AF C�-algebras and metrics on the Cantor
set. J. Operator Theory 56 (2006), 17–46. Zbl 1111.46052 MR 2261610

[3] E. Christensen and C. Ivan, Sums of two-dimensional spectral triples. Math. Scand. 200
(2007), 35–60. Zbl 1155.58003 MR 2327719

https://zbmath.org/?q=an:0916.60069
http://www.ams.org/mathscinet-getitem?mr=MR1668115
https://zbmath.org/?q=an:1111.46052
http://www.ams.org/mathscinet-getitem?mr=MR2261610
https://zbmath.org/?q=an:1155.58003
http://www.ams.org/mathscinet-getitem?mr=MR2327719


Dirac operators and geodesic metric on fractals 983

[4] E. Christensen, C. Ivan and E. Schrohe, Spectral triples and the geometry of fractals.
Journal of Noncommutative Geometry No. 2, 6 (2012), 249–274. Zbl 1244.28010
MR 2914866

[5] E. Christensen, C. Ivan and M.L. Lapidus, Dirac operators and spectral triples for some
fractal sets built on curves. Adv. Math. No. 1, 217 (2008), 42–78. Zbl 1133.28002
MR 2357322

[6] F. Cipriani and J.-L. Sauvageot, Fredholm modules on P.C.F. self-similar fractals and
their conformal geometry. Commun. Math. Phys. 286 (2009), 541–558. Zbl 1190.28003
MR 2472035

[7] F. Cipriani, D. Guido, T. Isola and J.-L. Sauvageot, Spectral triples for the Sierpinski
gasket. J. Funct. Anal. No. 8, 266 (2014), 4809–4869. Zbl 06320835 MR 3177323

[8] F. Cipriani, D. Guido, T. Isola and J.-L. Sauvageot, Integrals and potentials of differential
1–forms on the Sierpinski gasket. Adv. Math. 239 (2013), 128–163. Zbl 1282.58004
MR 3045145

[9] A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic
Theory and Dynamical Systems 9 (1989), 207–220. Zbl 0718.46051 MR 1007407

[10] A. Connes, Noncommutative Geometry. Academic Press, San Diego, 1994.
Zbl 0818.46076 MR 1303779

[11] A. Connes and M. Marcolli, A walk in the noncommutative garden. In An Invitation to
Noncommutative Geometry, World Scientific Publ., Hackensack, NJ, 2008, pp. 1–128.
Zbl 1145.14005 MR 2408150

[12] A. Connes and D. Sullivan, Quantized calculus on S1 and quasi-Fuchsian groups.
Unpublished, 1994. (See also [9], Secs. IV.3. and IV.3.�.)

[13] K.J. Falconer, Fractal Geometry: Mathematical Foundations and Applications. John
Wiley and Sons, Chichester, 1990. (2nd edition, 2003.) Zbl 1060.28005 MR 2118797

[14] S. Goldstein, Random walks and diffusion on fractals. In Percolation and Ergodic Theory
of Infinite Particle Systems (H. Kesten, ed.), IMA Math. Appl., 8, 1987, pp. 121–129.
Zbl 0621.60073 MR 894545

[15] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser,
Boston, 2006. Zbl 0953.53002 MR 1699320

[16] D. Guido and T. Isola, Dimensions and singular traces for spectral triples, with
applications to fractals. J. Funct. Anal. 203 (2003), 362–400. Zbl 1031.46081 MR 2003353

[17] D. Guido and T. Isola, Dimensions and spectral triples for fractals in RN. In Advances
in Operator Algebras and Mathematical Physics (F. Boca et al., eds.), Theta Ser. Adv. in
Mathematics, 5, Theta, Bucharest, 2005, pp. 89–108. Zbl 1199.46160 MR 2238285

[18] M. Hinz and A. Teplyaev, Vector analysis on fractals and applications. e-print,
arXiv:1207.6375v2. [math.AP], 2012. Zbl 1276.00023 MR 3203862

[19] N. Kajino, Heat kernel asymptotics on the Sierpinski gasket. Potential Analysis 36 (2012),
67–115. Zbl 1248.28012 MR 2886454

[20] N. Kajino, Weyl’s Laplacian eigenvalue asymptotics for the measurable Riemannian
structure on the Sierpinski gasket (tentative title). In preparation, 2014.

https://zbmath.org/?q=an:1244.28010
http://www.ams.org/mathscinet-getitem?mr=MR2914866
https://zbmath.org/?q=an:1133.28002
http://www.ams.org/mathscinet-getitem?mr=MR2357322
https://zbmath.org/?q=an:1190.28003
http://www.ams.org/mathscinet-getitem?mr=MR2472035
https://zbmath.org/?q=an:06320835
http://www.ams.org/mathscinet-getitem?mr=MR3177323
https://zbmath.org/?q=an:1282.58004
http://www.ams.org/mathscinet-getitem?mr=MR3045145
https://zbmath.org/?q=an:0718.46051
http://www.ams.org/mathscinet-getitem?mr=MR1007407
https://zbmath.org/?q=an:0818.46076
http://www.ams.org/mathscinet-getitem?mr=MR1303779
https://zbmath.org/?q=an:1145.14005
http://www.ams.org/mathscinet-getitem?mr=MR2408150
https://zbmath.org/?q=an:1060.28005
http://www.ams.org/mathscinet-getitem?mr=MR2118797
https://zbmath.org/?q=an:0621.60073
http://www.ams.org/mathscinet-getitem?mr=MR0894545
https://zbmath.org/?q=an:0953.53002
http://www.ams.org/mathscinet-getitem?mr=MR1699320
https://zbmath.org/?q=an:1031.46081
http://www.ams.org/mathscinet-getitem?mr=MR2003353
https://zbmath.org/?q=an:1199.46160
http://www.ams.org/mathscinet-getitem?mr=MR2238285
https://zbmath.org/?q=an:1276.00023
http://www.ams.org/mathscinet-getitem?mr=MR3203862
https://zbmath.org/?q=an:1248.28012
http://www.ams.org/mathscinet-getitem?mr=MR2886454


984 M. L. Lapidus and J. J. Sarhad

[21] N. Kajino, Analysis and geometry of the measurable Riemannian structure on the
Sierpinski gasket. In Fractal Geometry and Dynamical Systems in Pure and Applied
Mathematics I: Fractals in Pure Mathematics (D. Carfi, M.L. Lapidus, E.P.J. Pearse, and
M. van Frankenhuijsen, eds.), Contemporary Mathematics, vol. 600, Amer. Math. Soc.,
RI, 2013, pp. 91–133. Zbl 1276.00022 MR 3203400

[22] J. Kigami, Harmonic metric and Dirichlet form on the Sierpinski gasket. In
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals
(Sanda/Kyoto, 1990), (K.D. Elworthy and N. Ikeda, eds.), Pitman Res. Math., 283, 1993,
pp. 210–218. Zbl 0793.31005 MR 1354156

[23] J. Kigami, Effective resistances for harmonic structures on P.C.F. self-similar sets. Math.
Proc. Cambridge Philos. Soc. 115 (1994), 291–303. Zbl 0803.60074 MR 1277061

[24] J. Kigami, Analysis on Fractals. Cambridge Univ. Press, Cambridge, 2001.
Zbl 0998.28004 MR 1840042

[25] J. Kigami, Measurable Riemannian geometry on the Sierpinski gasket: The Kusuoka
measure and the Gaussian heat kernel estimate. Math. Ann. No. 4, 340 (2008), 781–804.
Zbl 1143.28004 MR 2372738

[26] J. Kigami, Volume doubling measures and heat kernel estimates on self-similar sets. Mem.
Amer. Math. Soc. No. 932, 199 (2009), 1–94. Zbl 1181.28011 MR 2512802

[27] J. Kigami and M.L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians
on P.C.F. self-similar sets. Commun. Math. Phys. 158 (1993), 93–125. Zbl 0806.35130
MR 1243717

[28] J. Kigami and M.L. Lapidus, Self-similarity of volume measures for Laplacians on
P.C.F. self-similar fractals. Commun. Math. Phys. 217 (2001), 165–180. Zbl 0983.35097
MR 1815029

[29] S. Kusuoka, Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst.
Math. Sci. 25 (1989), 659–680. Zbl 0694.60071 MR 1025071

[30] S. Kusuoka, Lecture on diffusion processes on nested fractals. In Statistical Mechanics
and Fractals, Springer Lecture Notes in Math., 1567, Springer, Berlin, 1993, pp. 39–98.
Zbl 0787.60119 MR 1295841

[31] M.L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial
resolution of the Weyl–Berry conjecture. Trans. Amer. Math. Soc. 325 (1991), 465–529.
Zbl 0741.35048 MR 994168

[32] M.L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal
media, and the Weyl–Berry conjecture. In Ordinary and Partial Differential Equations
(B.D. Sleeman and R.J. Davis, eds.), vol. IV, Proc. Twelfth Internat. Conf. (Dundee,
Scotland, UK, June 1992), Pitman Res. Math., 289, 1993, pp. 126–209. Zbl 0830.35094
MR 1234502

[33] M.L. Lapidus, Analysis on fractals, Laplacians on self-similar sets, noncommutative
geometry and spectral dimensions. Topological Methods in Nonlinear Analysis 4 (1994),
137–195. Zbl 0836.35108 MR 1321811

[34] M.L. Lapidus, Towards a noncommutative fractal geometry? Laplacians and volume
measures on fractals. In Harmonic Analysis and Nonlinear Differential Equations,
Contemp. Math., 208, Amer. Math. Soc., Providence, RI, 1997, pp. 211–252.
Zbl 0889.58012 MR 1467009

https://zbmath.org/?q=an:1276.00022
http://www.ams.org/mathscinet-getitem?mr=MR3203400
https://zbmath.org/?q=an:0793.31005
http://www.ams.org/mathscinet-getitem?mr=MR1354156
https://zbmath.org/?q=an:0803.60074
http://www.ams.org/mathscinet-getitem?mr=MR1277061
https://zbmath.org/?q=an:0998.28004
http://www.ams.org/mathscinet-getitem?mr=MR1840042
https://zbmath.org/?q=an:1143.28004
http://www.ams.org/mathscinet-getitem?mr=MR2372738
https://zbmath.org/?q=an:1181.28011
http://www.ams.org/mathscinet-getitem?mr=MR2512802
https://zbmath.org/?q=an:0806.35130
http://www.ams.org/mathscinet-getitem?mr=MR1243717
https://zbmath.org/?q=an:0983.35097
http://www.ams.org/mathscinet-getitem?mr=MR1815029
http://zbmath.org/?q=an:0694.60071
http://www.ams.org/mathscinet-getitem?mr=MR1025071
https://zbmath.org/?q=an:0787.60119
http://www.ams.org/mathscinet-getitem?mr=1295841
https://zbmath.org/?q=an:0741.35048
http://www.ams.org/mathscinet-getitem?mr=MR0994168
https://zbmath.org/?q=an:0830.35094
http://www.ams.org/mathscinet-getitem?mr=MR1234502
https://zbmath.org/?q=an:0836.35108
http://www.ams.org/mathscinet-getitem?mr=MR1321811
https://zbmath.org/?q=an:0889.58012
http://www.ams.org/mathscinet-getitem?mr=MR1467009


Dirac operators and geodesic metric on fractals 985

[35] M.L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and
Noncommutative Spacetimes. Amer. Math. Soc., Providence, RI, 2008. Zbl 1150.11003
MR 2375028

[36] M.L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions
and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs
in Mathematics, Springer, New York, 2006. (2nd revised and enlarged edition, 2013.)
Zbl 1261.28011 MR 2977849

[37] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and
Rectifiability. Cambridge Univ. Press, Cambridge, 1995. Zbl 0819.28004 MR 1333890

[38] P. Peterson, Riemannian Geometry. Springer, New York, 1998. Zbl 0914.53001
MR 1480173

[39] R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45 (1984), 191–
206. MR 737523

[40] R. Rammal and G. Toulouse, Random walks on fractal structures and percolation cluster.
J. Physique Letters 44 (1983), L13–L22.

[41] M.A. Rieffel, Metrics on states from actions of compact groups. Doc. Math. 3 (1998),
215–229. Zbl 0993.46043 MR 1647515

[42] M.A. Rieffel, Metrics on state spaces. Doc. Math. 4 (1999), 559–600. Zbl 0945.46052
MR 1727499

[43] R.S. Strichartz, Differential Equations on Fractals: A Tutorial. Princeton Univ. Press,
Princeton, NJ, 2006. Zbl 1190.35001 MR 2246975

[44] A. Teplyaev, Energy and Laplacian on the Sierpinski gasket. In Fractal Geometry and
Applications: A Jubilee of Benoit Mandelbrot (M.L. Lapidus and M. van Frankenhuijsen,
eds.) Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, RI, 2004,
pp. 131–154. Zbl 1116.31003 MR 2112105

[45] A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure. Canad.
J. Math. 60 (2008), 457–480. Zbl 1219.28012 MR 2398758

[46] J.C. Varilly, H. Figueroa and J.M. Garcia-Bondia, Elements of Noncommutative Geometry.
Birkhäuser, Boston, 2001. Zbl 0958.46039 MR 1789831

Received 10 December, 2012

M. L. Lapidus, Department of Mathematics, University of California, Riverside,
CA 92521-0135, USA
E-mail: lapidus@math.ucr.edu

J. J. Sarhad, Department of Biology, University of California, Riverside, CA 92521, USA
E-mail: jonathan.sarhad@ucr.edu

https://zbmath.org/?q=an:1150.11003
http://www.ams.org/mathscinet-getitem?mr=MR2375028
https://zbmath.org/?q=an:1261.28011
http://www.ams.org/mathscinet-getitem?mr=MR2977849
https://zbmath.org/?q=an:0819.28004
http://www.ams.org/mathscinet-getitem?mr=MR1333890
https://zbmath.org/?q=an:0914.53001
http://www.ams.org/mathscinet-getitem?mr=MR1480173
http://www.ams.org/mathscinet-getitem?mr=MR0737523
https://zbmath.org/?q=an:0993.46043
http://www.ams.org/mathscinet-getitem?mr=MR1647515
https://zbmath.org/?q=an:0945.46052
http://www.ams.org/mathscinet-getitem?mr=MR1727499
https://zbmath.org/?q=an:1190.35001
http://www.ams.org/mathscinet-getitem?mr=MR2246975
https://zbmath.org/?q=an:1116.31003
http://www.ams.org/mathscinet-getitem?mr=MR2112105
https://zbmath.org/?q=an:1219.28012
http://www.ams.org/mathscinet-getitem?mr=MR2398758
https://zbmath.org/?q=an:0958.46039
http://www.ams.org/mathscinet-getitem?mr=MR1789831
mailto:lapidus@math.ucr.edu
mailto:jonathan.sarhad@ucr.edu

	Introduction
	Preliminaries
	Spectral triples, Dirac operators, and noncommutative geometry
	Circles, curves, and sets built on curves
	Sierpinski gasket and harmonic gasket
	Measurable Riemannian geometry

	Spectral Geometry of Fractal Sets
	Spectral Geometry of the Sierpinski Gasket
	Spectral and Measurable Riemannian Geometry
	Alternate Constructions for KH
	Harmonic cell triple
	Construction from cell triples
	The direct sum of S(KH) and S(KH)

	Concluding Comments and Future Research Directions
	Spectral dimension and measure vs. Hausdorff dimension and measure
	Global Dirac operator and Kusuoka Laplacian
	Energy measure on the gasket
	Geometric analysis on the harmonic gasket


