
J. Noncommut. Geom. 8 (2014), 837–871
DOI 10.4171/JNCG/172

Journal of Noncommutative Geometry
© European Mathematical Society

Equivariant Kasparov theory of finite groups via
Mackey functors

Ivo Dell’Ambrogio

Abstract. Let G be any finite group. In this paper we systematically exploit general homo-
logical methods in order to reduce the computation ofG-equivariant KK-theory to topological
equivariant K-theory. The key observation is that the functor on KKG that assigns to a G-C�-
algebra A the collection of its K-theory groups fKH

�
.A/ W H 6 Gg admits a lifting to the

abelian category of Z=2-graded Mackey modules over the representation Green functor forG;
moreover, this lifting is the universal exact homological functor for the resulting relative ho-
mological algebra in KKG . It follows that there is a spectral sequence abutting to KKG

�
.A;B/,

whose second page displays Ext groups computed in the category of Mackey modules. Due to
the nice properties of Mackey functors, we obtain a similar Künneth spectral sequence which
computes the equivariant K-theory groups of a tensor productA˝B . Both spectral sequences
behave nicely if A belongs to the localizing subcategory of KKG generated by the algebras
C.G=H/ for all subgroups H 6 G.
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1. Introduction

The theory of Mackey functors ([4], [8], [14], [27], [29], …) has proved itself to
be a powerful conceptual and computational tool in many branches of mathematics:
group cohomology, equivariant stable homotopy, algebraic K-theory of group rings,
algebraic number theory, etc.; in short, any theory where one has finite group actions
and induction/transfer maps. We refer to the survey article [29].

Equivariant Kasparov theory KKG ([11], [19], [21], [24], …), although typically
more preoccupied with topological groups or infinite discrete groups, is already quite
interesting when G is a finite group – see for instance the work of N. C. Phillips [24]
on the freeness of G-actions on C�-algebras. There exist induction maps for KKG-
theory, so it is natural to ask whether the theory of Mackey functors has anything
useful to say in this context. As we will shortly see, the answer is definitely “yes”.

Recall that for a finite (or, more generally, compact) group G and every G-
C�-algebra A, we have the natural identification KKG� .C; A/ Š KG� .A/ with G-
equivariant topological K-theoryKG� , which generalizes Atiyah and Segal’s classical
G-equivariant vector bundle K-cohomology of spaces and has similar properties.
Consequently, equivariant K-theory is often easier to compute than general equivari-
ant KK-theory. In view of all this, it is natural to ask:

Question. To what extent, and how, is it possible to reduce the computation of equiv-
ariant KK-theory groups to that of equivariant K-theory groups?

In order to answer this question precisely, the following two observations will
be crucial. First, for any fixed G-C�-algebra A the collection of all its equivariant
topological K-theory groups KH� .ResG

H A/ Š KKG� .C.G=H/;A/ (H 6 G) and of
the associated restriction, induction and conjugation maps, forms a graded Mackey
functor for G, that we denote kG� .A/. In fact, kG� .A/ carries the structure of a
Mackey module over the representation Green functor RG , and if we denote by
RG-MacZ=2 the category of Z=2-graded modules overRG – which is a perfectly nice
Grothendieck tensor abelian category – we obtain in this way a lifting of K-theory
to a homological functor kG� W KKG ! RG-MacZ=2 on the triangulated Kasparov
category of separable G-C�-algebras. The second basic observation is that kG� is
the “best” such lifting of K-theory to some abelian category approximating KKG : in
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the technical jargon of [20], [22], the functor kG� (or more precisely: its restriction
to countable modules) is the universal stable homological functor on KKG for the
relative homological algebra defined by the K-theory functors fKH� B ResG

H gH6G .
Another, but equivalent, way to formulate this second observation is the following:
the categoryRG-Mac ofRG-Mackey modules is equivalent to the category of additive
contravariant functors permG ! Ab, where permG denotes the full subcategory in
KKG of permutation algebras, i.e., those of the form C.X/ forX a finiteG-set. (See
§4.5.)

Once all of this is proved, it is a straightforward matter to apply the general
techniques of relative homological algebra in triangulated categories ( [1], [5], [18],
[20]) in order to obtain a universal coefficient spectral sequence which will provide
our answer to the above question. By further exploiting the nicely-behaved tensor
product of Mackey modules, we similarly obtain a Künneth spectral sequence for
equivariant K-theory, which moreover has better convergence properties.

The natural domain of convergence of these spectral sequences consists ofG-cell
algebras, namely, those algebras contained in the localizing triangulated subcategory
of KKG generated by permG (equivalently: generated by the algebras C.G=H/ for
all subgroups H 6 G). We note that the category CellG of G-cell algebras is rather
large. For instance it contains all abelian separableG-C�-algebras and is closed under
all the classical “bootstrap” operations (see Remark 2.4).

We can now formulate our results precisely.

Theorem (Thm. 5.13). LetG be a finite group. For everyA andB in KKG , depending
functorially on them, there exists a cohomologically indexed right half-plane spectral
sequence of the form

E
p;q
2 D Extp

RG .k
G� A; kG� B/�q

nDpCqHHHH) KKG
n .A;B/:

The spectral sequence converges conditionally whenever A is a G-cell algebra, and
converges strongly if moreover A is such that KKG.A; f / D 0 for every morphism
f that can be written, for each n > 1, as a composition of n maps, each of which
vanishes under kG� . IfA is aG-cell algebra and theRG-module kG� A has a projective
resolution of finite lengthm > 1, then the spectral sequence is confined in the region
0 6 p 6 mC 1 and thus collapses at the page E�;�

mC1 D E�;�1 .

The groups displayed in the second page E�;�
2 are the homogeneous components

of the graded Ext functors of RG-MacZ=2. Concretely, for M;N 2 RG-MacZ=2,

Extn
RG .M;N /` D

L
iCj D`

Extn
RG .Mi ;Mj / .` 2 Z=2; n > 0/;

where the right-hand side Extn
RG . ;Mj / denotes the n-th right derived functor of

the Hom functor RG-Mac. ;Mj / on the abelian category of RG-Mackey modules.
The latter category, as well as their objects kG� .A/, are explained in great detail in
Sections 3 and 4.
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Theorem (Thm. 5.14). Let G be a finite group. For all separable G-C�-algebras
A and B , depending functorially on them, there is a homologically indexed right
half-plane spectral sequence of the form

E2
p;q D TorRG

p .kG� A; kG� B/q
nDpCqHHHH) KG

n .A˝ B/

which strongly converges ifA is aG-cell algebra. If moreoverA is such that kG� A has
a projective resolution of finite length m > 1, then the spectral sequence is confined
in the region 0 6 p 6 m and thus collapses at the page EmC1�;� D E1�;�.

Now the second pageE2�;� contains the left derived functors of the tensor product
�RG of Z=2-graded RG-Mackey modules, which is explained in §3.4.

From these spectral sequences follow the usual consequences and special cases.
As a simple application (which does not mention Mackey functors at all) we only
furnish here the following vanishing result, which appears to be new.

Theorem 1.1. Let A and B be two G-C�-algebras for a finite group G, and assume
that either A or B is a G-cell algebra. If KE� .ResG

E A/ D 0 for all elementary
subgroups E of G, then KG� .A˝ B/ D 0.

Proof. The hypothesis on K-theory implies that kG� .A/ D 0 (see Lemma 2.10 below)
and therefore the second page of the Künneth spectral sequence is zero. By symmetry
of the tensor product we may assume that A 2 CellG , and so we can conclude that
KG� .A˝ B/ D 0 by the strong convergence.

Related work. To our knowledge, [15] is the only published work where spectral
sequences are systematically computed in abelian categories of Mackey modules; this
is done in the context of equivariant stable homotopy. There may be some overlap
between their results and ours; specifically, it should be possible to use [15] to reprove
our results in the special case of commutative C�-algebras. We also mention that [28]
performs explicit computations of Ext functors in the category of Mackey modules
over RG for some small groups G.

For G a connected Lie group with torsion-free fundamental group, and for a
sufficiently niceG-C�-algebra, there are the Künneth and universal coefficient spectral
sequences of [25], which are computed in the ordinary module category over the
complex representation ring of G. It seems plausible that a unified treatment of the
results of [25] and those of the present article might be both obtainable and desirable,
possibly in terms of Mackey functors for compact Lie groups (cf. Remark 4.13).

Quite recently, a universal coefficient short exact sequence was constructed in
[13] for KKG when G is a cyclic group of prime order. The invariant used in [13]
is a slightly more complicated lifting of K-theory than our Mackey module kG� and
contains more information. The range of applicability is the same though: the first
algebra must belong to CellG .
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Conventions. For simplicity, we will work only with complex C�-algebras and com-
plex group representations, although the alert reader will see without any trouble how
to adapt all results to the real case. Our notation ResG

H for the restriction functor
from G to H is at odds with e.g. [21], where ResH

G is used instead, but is compati-
ble with the common indexing conventions in the context of Mackey functors. We
always write C.X; Y / for the set of morphisms from the object X to the object Y in
a category C . We use the short-hand notations gH ´ gHg�1 and Hg ´ g�1Hg

for the conjugates of a subgroup H 6 G. If H;L 6 G are subgroups, the notation
ŒHnG=L� denotes a full set of representatives of the double cosets HgL � G.

Acknowledgements. Our warm thanks go to Serge Bouc for several illuminating
discussions on the virtues and vices of Mackey functors.

2. G -cell algebras

After some recollections on the equivariant Kasparov category, we introduce the
subcategory of G-cell algebras and derive its first properties.

2.1. Restriction, induction and conjugation. Let KKG be the Kasparov category
of separable G-C�-algebras, for a second countable locally compact group G. We
refer to the articles [19], [21] for an account of KK-theory considered from the
categorical point of view; therein the reader will find proofs or references for the facts
recalled in this section. For each G, the category KKG is additive and has arbitrary
countable coproducts, given by the C�-algebraic direct sums

L
i Ai on which G acts

coordinatewise. Moreover, it is equipped with the structure of a triangulated category
(see [21], especially Appendix A); in particular every morphism f 2 KKG.A;B/

fits into a distinguished triangle A ! B ! C ! AŒ1�, and the collection of
distinguished triangles satisfies a set of axioms that capture the homological behaviour
of KK-theory. Here the shift (or suspension, translation) functor A 7! AŒ1� is the
endoequivalence of KKG given by AŒ1� D C0.R/ ˝ A. By the Bott isomorphism
C0.R/˝C0.R/ Š C0.R/, this functor is its own quasi-inverse. Using a standard trick,
it is always possible to “correct” the shift functor making it a (strict) automorphism
(see [21], §2.1, and [12], §2). Therefore, in order to simplify notation, we shall

pretend that . /Œ1� W KKG ! KKG is strictly invertible, with Œ2�
def.D Œ1� B Œ1� D idKKG .

The triangulated category KKG is also endowed with a compatible symmetric
monoidal structure KKG � KKG ! KKG , which is induced by the spatial tensor
product A˝ B of C�-algebras on which G acts diagonally (in fact, we have already
used this to define the shift functor). The unit object 1G (or simply 1 if no confusion
arises) is the algebra C of complex numbers with the trivial G-action.

The tensor product is not the only construction at the C�-algebraic level that
extends to a triangulated functor on the Kasparov categories. For instance, there is
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an evident restriction functor

ResG
H W KKG ! KKH

for every subgroup H 6 G, which commutes with coproducts and is also (strict)
symmetric monoidal: ResG

H .A˝B/ D ResG
H .A/˝ResG

H .B/ and ResG
H .1

G/ D 1H .
If H is closed in G there is also a coproduct-preserving induction functor

IndG
H W KKH ! KKG ;

which on each H -C�-algebra A 2 KKH is given by the function C�-algebra

IndG
H .A/ D fG

'�! A j h'.xh/ D '.x/
for all x 2 G; h 2 H; .xH 7! k'.x/k/ 2 C0.G=H/g

equipped with the G-action .g � '/.x/´ '.g�1x/ (g; x 2 G). If G=H is discrete,
then induction is left adjoint to restriction, i.e., there is a natural isomorphism

KKG.IndG
H A;B/ Š KKH .A;ResG

H B/

for all A 2 KKG and B 2 KKH . Interestingly, if instead G=H is compact, then
induction is right adjoint to restriction. There is also a Frobenius isomorphism

IndG
H .A/˝ B Š IndG

H .A˝ ResG
H .B// (2.1)

natural in A 2 KKH and B 2 KKG .
The induction and restriction functors will be used constantly in this article. For

every subgroup H 6 G and every element g 2 G, we will also consider the conju-
gation functor

g. / W KKH ! KK
gH ;

which sends the H -C�-algebra A to the gH -C�-algebra gA whose underlying C�-
algebra is just A, equipped with the gH -action ghg�1a ´ ha (h 2 H; a 2 A).
Like restriction – and for the same reasons – each conjugation functor preserves
coproducts, triangles and tensor products. Moreover, it is an isomorphism of tensor
triangulated categories with inverse g�1

. /.

2.2. The category of G -cell algebras. For every closed subgroupH 6 G, we have
the “standard orbit” G-C�-algebra C0.G=H/. The idea is that G-cell algebras are
those (separable)G-C�-algebras that can be produced out of these by applying all the
standard operations of triangulated categories.

Although we will be mostly concerned with finite groups, in this section we briefly
study G-cell algebras in greater generality, for future reference.
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Definition 2.2. We define the Kasparov category of G-cell algebras to be the local-
izing triangulated subcategory of KKG generated by all C0.G=H/, in symbols:

CellG ´ hC0.G=H/ j H 6 Giloc � KKG :

This means that CellG is the smallest triangulated subcategory of KKG that contains
all C0.G=H/ and is closed under the formation of infinite direct sums.

Remark 2.3. The same notion ofG-cell algebra is considered in [13], and is proposed
as a KK-analogue of G-CW-complexes. An even better analogy would be “cellular
objects” in a (model) category of equivariant spaces, where the order of attachment
of the cells is completely free, like here. In order to obtain a more rigid notion of
noncommutative G-CW-complexes – which would serve similar purposes as in the
commutative case – one should rather extend to the equivariant setting the definition
of noncommutative CW-complexes of [9].

Remark 2.4. The class CellG contains many interestingG-C�-algebras, although this
may not be apparent from the definition. For instance if G is a compact (non neces-
sarily connected) Lie group, by [13], Thm. 9.5, the class CellG contains all separable
commutativeG-C�-algebras and is closed under the usual bootstrap operations, in the
sense that it enjoys the following closure properties:

(1) For every extension J � A � B of nuclear separable G-C�-algebras, if two
out of fJ;A;Bg are in CellG , then so is the third.

(2) CellG is closed under the formation (in the category of G-C�-algebras and G-
equivariant �-homomorphisms) of colimits of countable inductive systems of
nuclear separable G-C�-algebras.

(3) CellG is closed under exterior equivalence of G-actions.

(4) CellG is closed under G-stable isomorphisms.

(5) CellG is closed under the formation of crossed products with respect to Z- and
R-actions that commute with the given G-action.

Next we show that much of the functoriality of equivariant KK-theory descends
to G-cell algebras.

Lemma 2.5. Let T be a triangulated category equipped with a symmetric tensor
product which preserves coproducts (whatever are available in T ) and triangles.
Then hEiloc ˝ hF iloc � hE ˝ F iloc for any two subclasses E;F � T .

Proof. First, we claim that

hEiloc ˝ F � hE ˝ F iloc: (2.6)

For every object B 2 T , the functor ˝B commutes with coproducts and triangles
by hypothesis. Thus �B ´ fA 2 T j A ˝ B � hE ˝ Bilocg is a localizing
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triangulated subcategory of T , which moreover contains E; hence hEiloc � �B .
Therefore for every B 2 F we have hEiloc ˝ B � hE ˝ Biloc � hE ˝ F iloc, from
which (2.6) follows. Similarly, for every A 2 T we see that UA ´ fB 2 T j
A˝B � hE˝F ilocg is localizing, and therefore also U´ fB 2 T j hEiloc˝B �
hE ˝ F ilocg D T

A2hEiloc
UA. By (2.6), U contains F , so it must contain hF iloc.

This is precisely the claim.

Proposition 2.7. Assume that G is a discrete group or a compact Lie group. Then
CellG is a tensor-triangulated subcategory of KKG . Moreover, all restriction, in-
duction and conjugation functors ResG

H , IndG
H and g.�/ descend to the appropriate

Kasparov subcategories of cell algebras.

Proof. The tensor unit 1G D C0.G=G/ belongs to CellG . Moreover, for all closed
subgroupsH;L 6 G, the algebraC0.G=H/˝C0.G=L/ Š C0.G=H�G=L/ belongs
again to CellG . Indeed, if G is a compact Lie group this follows from Remark 2.4
because the algebra is commutative; ifG is discrete, then it follows simply by applying
the coproduct-preserving functor C0 to the orbit decomposition of G-sets

G=H �G=L Š `
x2ŒHnG=L�

G=.H \ xL/:

We conclude by Lemma 2.5, with E D F ´ fC0.G=H/ j H 6 G closedg, that
CellG ˝ CellG D hEiloc ˝ hEiloc � hE ˝ Eiloc � hEiloc D CellG . This proves that
CellG is a tensor subcategory of KKG .

The induction functors satisfy IndG
H B IndH

L Š IndG
L for all L 6 H 6 G, and

each IndH
G commutes with triangles and coproducts. Thus IndG

H .C0.H=L// D
IndG

H B IndH
L .C/ D C0.G=L/, and we conclude that IndG

H .CellH / � CellG . Sim-
ilarly, the identifications gC0.G=H/ Š C0.

gG=gH/ in KK
gG for all H 6 G show

that g.CellG/ � Cell
gG (and thus CellG Š Cell

gG). Finally, for G discrete the
isomorphism of H -C�-algebras

ResG
H C0.G=L/ D C0.ResG

H G=L/ Š L
x2ŒHnG=L�

C0.H=H \ xL/

shows that ResG
H C.G=L/ 2 CellH for all L 6 G and therefore ResG

H .CellG/ �
CellH . If G is a compact Lie group, we notice that ResG

H C.G=L/ is commutative
and appeal again to Remark 2.4.

Lemma 2.8. For finite groupsH 6 G, there is an isomorphism

KKG.A˝ C.G=H/;B/ Š KKG.A; C.G=H/˝ B/

natural in A;B 2 KKG .
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Proof. Since G=H is finite, IndG
H and ResG

H are adjoint to each other on both sides.
We obtain the composition of natural isomorphisms

KKG.A˝ C.G=H/;B/ D KKG.A˝ IndG
H .1

H /; B/

Š KKG.IndG
H .ResG

H .A/˝ 1H /; B/

Š KKH .ResG
H .A/˝ 1H ;ResG

H .B//

Š KKH .ResG
H .A/; 1

H ˝ ResG
H .B//

Š KKG.A; IndG
H .1

H ˝ ResG
H .B///

Š KKG.A; IndG
H .1

H /˝ B//
D KKG.A; C.G=H/˝ B//;

where we have also used Frobenius (2.1) in the second and sixth lines.

The next proposition says that, at least when G is finite, G-cell algebras form a
rather nice tensor triangulated category.

Proposition 2.9. For every finite group G, the tensor triangulated category CellG

is generated by the ( finite) set fC.G=H/; C.G=H/Œ1� j H 6 Gg of rigid and
compact@1

objects in the sense of [7]. In particular, CellG is compactly@1
gener-

ated, and its subcategory CellGc of compact@1
objects coincides with that of its rigid

objects and is therefore a tensor triangulated subcategory.

Proof. To prove the first part, consider the natural isomorphism

KKG.C.G=H/;A/ Š KKH .1;ResG
H A/ D KH

0 .ResG
H A/ Š K0.H Ë ResG

H A/

provided by the IndG
H -ResG

H adjunction and the Green–Julg theorem [24], §2.6. If
A is separable, then so is the cross-product H Ë ResG

H A, from which it follows that
the ordinary K-theory group on the right-hand side is countable; moreover, we see
that KKG.C.G=H/; / sends a coproduct in KKG to a coproduct of abelian groups.
These two facts together state precisely that C.G=H/ is a compact@1

object of KKG .
The same follows immediately for the suspensions C.G=H/Œ1�.

The second claim follows formally whenever the set of compact@1
generators

consists of rigid objets and contains the tensor unit. The latter is obvious since
1G D C.G=G/, and it follows immediately from Lemma 2.8 that each generator
C.G=H/ (and thus also each C.G=H/Œ1�) is rigid – in fact, self-dual.

Recall that a finite group is elementary if it has the form P �C , where C is cyclic
and P is a p-group for some prime p not dividing the order of C .

Lemma 2.10. Let A be a G-C�-algebra for a finite group G. Then:
(1) If KE� .ResG

E A/ D 0 for all elementary subgroups E 6 G, then KG� .A/ D 0.
(2) If KC� .ResG

E A/˝Z Q D 0 for all cyclic C 6 G, then KG� .A/˝Z Q D 0.
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Proof. (1) Denote by E.G/ the set of all elementary subgroups of G. Brauer’s clas-
sical induction theorem ([2], Thm. 5.6.4 and p. 188) says that the homomorphismP

E indG
E W

L
E2E.G/R.E/! R.G/ is surjective, where R.H/ denotes the repre-

sentation ring of a finite groupH . In particular, there exist finitely many Ei 2 E.G/

and xi 2 R.Ei / such that 1 D P
i indG

Ei
.xi / in R.G/. Now consider an A 2 KKG

such that KH� .ResG
E A/ D 0 for all E 2 E.G/. Since the equivariant K-theory of

A is a Mackey module over the representation ring (see Section 4), we compute, for
every x 2 KG� .A/,

x D 1R.G/ � x D
P
i

indG
Ei
.xi / � x DP

i

indG
Ei
.xi ResG

Ei
.x/

„ ƒ‚ …
D 0

/ D 0

by applying the vanishing hypothesis. The proof of (2) is similar, but now we must
use Artin’s induction theorem instead.

For finite G, denote by CellGQ the rationalization of the category CellG which
is compatible with countable coproducts, i.e., the one obtained by applying [7],
Thm. 2.33, to T ´ CellG andS ´ .ZXf0g/ �11. Thus CellGQ is again a compactly@1

generated tensor triangulated category with the same objects, and it has the property
that CellGQ.A;B/ Š KKG.A;B/˝Z Q for all compact@1

algebras A 2 CellGc (thus,
in particular, CellGQ.C.G=H/Œi �; B/ Š KH

i .ResG
H B/˝Z Q for every H 6 G).

By mixing familiar tricks from the theory of Mackey functors and from the the-
ory of triangulated categories, we obtain the following generation result for G-cell
algebras and rational G-cell algebras.

Proposition 2.11. Let G be a finite group. Then:
(1) CellG D hC.G=H/ j H is an elementary subgroup of Giloc.
(2) CellGQ D hC.G=H/ j H is a cyclic subgroup of Giloc.

Proof. If T is a triangulated category with countable coproducts and if E1;E2 � Tc

are two countable sets of compact objects which are closed under suspensions and
desuspensions, then hE1iloc D hE2iloc whenever E1 and E2 have the same right
orthogonal in T , i.e., if E?

1 ´ fB 2 T j T .A;B/ D 0 for all A 2 E1g equals
E?

2 ´ fB 2 T j T .A;B/ D 0 for all A 2 E2g (see [7], §2.1, for explanations).
Thus part (1) follows immediately, using T D KKG or T D CellG , by combining
Proposition 2.9 with Lemma 2.10 (1), while part (2) uses Lemma 2.10 (2) instead
(and T D CellGQ).

3. Recollections on Mackey and Green functors

Throughout this section, we fix a finite group G.
Mackey functors, and the related notions of Green functors and modules over

them, can be defined from various different point of views. The three most important
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(all of which are treated in detail in [4]) are the definition in terms of subgroups of
G, in terms of G-sets, and in terms of functor categories.

Since we are going to need all three of them, let us proceed without further delay.

3.1. The subgroup picture. This is the most concrete of the three points of view. A
Mackey functorM (forG) consists of a family of abelian groupsMŒH�, one for each
subgroupH 6 G, together with a restriction homomorphism resH

L W MŒH�!MŒL�

and an induction homomorphism indH
L W MŒL� ! MŒH� for all L 6 H 6 G, and

a conjugation homomorphism cong;H W MŒH� ! MŒgH� for all g 2 G and all
H 6 G. These three families of maps must satisfy the following six families of
relations:

resH
L resG

H D resG
L ; indG

H indH
L D indG

L .L 6 H 6 G/;

conf;gH cong;H D confg;H .f; g 2 G;H 6 G/;

cong;H indH
L D ind

gH
gL cong;L .g 2 G; L 6 H 6 G/;

cong;L resH
L D res

gH
gL cong;H .g 2 G; L 6 H 6 G/;

indH
H D resH

H D conh;H D idMŒH� .h 2 H; H 6 G/;

resH
L indH

K D
P

x2ŒLnG=K�

indL\xK
L conx;Lx\K resK

Lx\K .L;K 6 H 6 G/:

The last relation is the Mackey formula. A morphism ' W M ! N of Mackey functors
is a family of k-linear maps 'ŒH� W MŒH�! NŒH�which commute with restriction,
induction and conjugation maps in the evident way.

A (commutative) Green functor is a Mackey functorR such that eachRŒH� carries
the structure of a (commutative) associative unital ring, the restriction and conjugation
maps are unital ring homomorphisms, and the following Frobenius formulas hold:

indH
L .resH

L .y/ � x/ D y � indH
L .x/; indH

L .x � resH
L .y// D indH

L .x/ � y
for all L 6 H 6 G, x 2 RŒL� and y 2 RŒH�. Similarly, a (left) Mackey module
over R (or simply R-module) is a Mackey functor M , where each MŒH� carries the
structure of a (left) RŒH�-module in such a way that

resH
L .r �m/ D resH

L .r/ � resH
L .m/ .L 6 H 6 G; r 2 RŒH�; m 2MŒH�/;

cong;H .r �m/ D cong;H .x/ � cong;H .m/ .g 2 G;H 6 G; r 2 RŒH�;m 2MŒH�/;

r � indH
L .m/ D indH

L .resH
L .r/ �m/ .L 6 H 6 G; r 2 RŒH�; m 2MŒL�/;

indH
L .r/ �m D indH

L .r � resH
L .m// .L 6 H 6 G; r 2 RŒL�; m 2MŒH�/:

A morphism of R-Mackey modules, ' W M ! M 0, is a morphism of the underlying
Mackey functors such that each component 'ŒH� is RŒH�-linear. We will denote by

R-Mac
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the category of R-Mackey modules. We will see that it is a Grothendieck abelian
category with a projective generator and that it has a nice tensor product when R is
commutative.

Example 3.1. The Burnside ring Green functor, R D Bur, is defined by setting
BurŒH �´ K0.H-set/, the Grothendieck ring of the category of finite H-sets with
t and � yielding sum and multiplication, and with the structure maps induced by the
usual restriction, induction and conjugation operations for H-sets. It turns out that
Bur acts uniquely on all Mackey functors, so that Bur-Mac is just Mac, the category
of Mackey functors. (This is analogous to Z-Mod D Ab.)

Remarks3.2. Instead of using abelian groups for the base category, it is often useful in
applications to allow more general abelian categories, such as modules over some base
commutative ringk, possibly graded. It is straightforward to adapt the definitions. For
our applications, it will sometimes be useful to let our Mackey functors take values in
the category of Z=2-graded abelian groups and degree-preserving homomorphisms.
(A similar remark holds for the two other pictures.)

3.2. The G -set picture. The second picture is in terms of “bifunctors” on the cat-
egory of finite G-sets. Now a Mackey functor is defined to be a pair of functors
M D .M ?;M?/ from G-sets to abelian groups, with M ? contravariant and M?

covariant, having the same values on objects: M ?.X/ D M?.X/ DW M.X/ for all
X 2 G-set. Moreover, two axioms have to be satisfied:

(1) M sends every coproduct X ! X t Y  Y to a direct-sum diagram in Ab.

(2) M ?.g/M?.f / D M?.f
0/M ?.g0/ for every pull-back square

�
g0 ��

f 0

�� �
g��� f �� �

in

G-set.

Morphisms are natural transformations ' D f'.X/gX , where naturality is required
with respect to both functorialities. Every Mackey functor in this new sense deter-
mines a unique Mackey functor in the previous sense by setting

MŒH�´M.G=H/

and resH
L ´ M ?.G=L � G=H/, indH

L ´ M?.G=L � G=H/ and cong;H ´
M ?.gH Š H/ D M?.H Š gH/. Conversely, by decomposing each G-set into
orbits we see how a Mackey functor in the old sense determines an (up to isomorphism,
unique) Mackey functor in the new sense.

3.3. The functorial picture and the Burnside–Bouc category BR . Since Lindner
[17] it is known that one can “push” the two functorialities of Mackey functors into
the domain category, so that Mackey functors are – as their name would suggest –
just ordinary (additive) functors on a suitable category. It was proved by Serge Bouc
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that a similar trick can be performed also for Mackey modules as follows (see [4],
§3.2 1).

For any Mackey functorM and any finiteG-setX , letMX be the Mackey functor
which, in the G-set picture, is given by

MX .Y /´M.Y �X/ .Y 2 G-set/:

Let R be a Green functor. If M is an R-module, then MX inherits a natural
structure of R-module and the assignment M 7! MX extends to an endofunctor on
R-Mac which is its own right and left adjoint ([4], Lemma 3.1.1).

By [4], Prop. 3.1.3, there is an isomorphism

˛X;M W R-Mac.RX ;M/ ŠM.X/ (3.3)

natural in X 2 G-set and M 2 R-Mac. This looks suspiciously like the Yoneda
lemma. In fact, it can be turned into the Yoneda lemma! It suffices to define an
(essentially small Z-linear) category BR as follows. Its objects are the finite G-sets,
and its morphism groups are defined by BR.X; Y /´ R.X � Y /. The composition
of morphisms in BR is induced by that of the category ofR-Mackey modules, via the
natural bijection ˛X;M . The resulting embedding BR ! R-Mac, X 7! RX , extends
along the (additive) Yoneda embedding BR ! Ab.BR/op

, X 7! BR. ; X/, to an
equivalence of categories ([4], Theorem 3.3.5)

Ab.BR/op ' R-Mac :

Thus the functor BR ! R-Mac sending X to RX is identified with the Yoneda
embedding, and (3.3) with the Yoneda lemma. In particular, the category of Mackey
modules over R is an abelian functor category, and we see that the representables
RG=H (H 6 G) furnish a finite set of projective generators.

Example 3.4. For the Burnside ringR D Bur, the category BBur is just the Burnside
category B, which has finite G-sets for objects, Hom sets B.X; Y / D K0.G-set #
X � Y /, and composition induced by the pull-back of G-sets. We recover this way
Lindner’s picture Mac ' AbBop

of Mackey functors. The product X � Y of G-sets
clearly provides a tensor product (i.e., a symmetric monoidal structure) on B with
unit object G=G. By the theory of Kan extensions (i.e., “Day convolution” [6]),
there is, up to canonical isomorphism, a unique closed symmetric monoidal structure
on the presheaf category AbBop

which makes the Yoneda embedding B ,! AbBop

a symmetric monoidal functor. This is usually called the box product of Mackey
functors and is denoted by �. It turns out that a Green functor is quite simply a
monoid (D ring object) in the tensor category .Mac;�;Bur/, and it follows that
one can study the whole subject of Green functors and Mackey modules from the
categorical point of view; it is the fruitful approach taken by L. G. Lewis [14].

1Beware that we prefer to use the opposite category, thinking of presheaves, so that Bouc’s original
notation CA denotes the same category as our .BR/op (his A being the Green functor R). This is rather
immaterial though, in view of the isomorphism BR Š .BR/op.
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3.4. The tensor abelian category of R-Mackey modules. If we consider a com-
mutative Green functorR to be a commutative monoid in .Mac;�;Bur/, as in Exam-
ple 3.4, then the tensor productM �RN of twoR-modulesM andN with structure
maps �M W R � M ! M and �N W R � N ! N , respectively, is defined by the
coequalizer in Mac,

M �R �N �������!M��N

�������!
.�M B�/�N

M �N !M�R;

where � denotes the symmetry isomorphism of the box product. Specifically, the
value of M�RN at a G-set X is the quotient

.M �R N/.X/ D . L
˛ W Y !X

M.Y /˝Z M.Y //=J;

where the sum is over all G-maps into X and J is the subgroup generated by the
elements

M?.f /.m/˝ n0 �m˝N ?.f /.n0/; M ?.f /.m0/˝ n �m0 ˝N?.f /.n/;

m � r ˝ n �m˝ r � n
for all r 2 R.Y /, m 2 M.Y /, m0 2 M.Y 0/, n 2 N.Y /, n0 2 N.Y 0/ and all
morphisms f W .Y; ˛/ ! .Y 0; ˛0/ in the slice category G-set # X , i.e., all G-maps
f W Y ! Y 0 such that ˛0 B f D ˛ (see [4], §6.6).

As usual, this extends to define a closed symmetric monoidal structure onR-Mac
with unit objectR. The internal Hom functor HomR. ; / W .R-Mac/op�R-Mac!
R-Mac, which of course is characterized by the natural isomorphism

R-Mac.M�RN;L/ Š R-Mac.M; HomR.N;L//; (3.5)

has also the following more concrete and rather useful description:

HomR.M;N /.X/ D R-Mac.M;NX / (3.6)

for every G-set X (see [4], Prop. 6.5.4).
Finally, the tensor product extends to graded R-Mackey modules M and N by

the familiar formula

.M �R N/` ´
L

iCj D`

Mi �R Nj :

We will consider grading by an infinite or finite cyclic group Z=� (� 2 N), cf. §5.

Remark 3.7. It follows from the natural isomorphismRX�RRY Š RX�Y (see [14],
Prop. 2.5) that the tensor product restricts to representable modules in the functorial
pictureR-Mac ' Ab.BR/op

, inducing a tensor product on BR which is simplyX �Y
on objects. Therefore, we may recover �R as the Day convolution product extending
the tensor structure of BR back to all R-modules.
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3.5. Induction and restriction of Mackey functors. Just for a moment, let us see
what happens if we allow the group G to vary. Given a Mackey functor M for G
and a subgroupG0 6 G, there is an evident restricted Mackey functor forG0, written
ResG

G0.M/, which is simply ResG
G0.M/ŒH� ´ MŒH� at each H 6 G0. We obtain

this way a functor ResG
G0 from the category of Mackey functors forG to the category

of Mackey functors for G0. In particular, we see that if R is a Green functor for G,
then ResG

G0.R/ is a Green functor for G0, and that restriction may be considered as a
functor ResG

G0 W R-Mac! ResG
G0.R/-Mac.

Interestingly, there is also an induction functor IndG
G0 going the opposite way

which is both left and right adjoint to ResG
G0 (see [4], §8.7). It can be constructed as

follows: given a ResG
G0.R/-module M and H 6 G, set

IndG
G0.M/ŒH�´ L

a2ŒG0nG=H�

MŒG0 \ aH�: (3.8)

Each summand is made into an RŒH�-module in the evident way, that is, via the
composite ring homomorphism cona;G0a\H resH

G0a\H W RŒH�! RŒG0\aH�. In the
subgroup picture of Mackey functors, we have the simple formulas

IndG
G0.M/.X/ DM.ResG

G0 X/; ResG
G0.N /.Y / D N.IndG

G0 Y /

for all G-sets M and G0-sets N .
These restriction and induction functors for Mackey modules satisfy “higher ver-

sions” of the expected relations. For instance, there is a Mackey formula isomorphism
([27], Prop. 5.3), as well as the following Frobenius isomorphism (see also [4], §10.1,
for more general results of this type).

Proposition 3.9. There is a natural isomorphism of R-Mackey modules

IndG
G0.M/�R N Š IndG

G0.M�ResG
G0

.R/ ResG
G0.N //

for all N 2 R-Mac andM 2 ResG
G0.R/-Mac.

Proof. We will use for this proof the G-set picture of Mackey functors. Since there
is no ambiguity, we will drop the decorations on all induction and restriction functors
in order to avoid clutter. Let us start – innocently enough – with a much more evident
Frobenius isomorphism, namely, the natural isomorphism of G-sets

Ind.X/ � Y Š Ind.X � Res Y /

that exists for allG0-setsX and allG-sets Y . It follows from this that, for an arbitrary
L 2 R-Mac, we may identify

Res.LY / Š Res.L/Res Y (3.10)
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because of the computation

Res.LY /.X/ D LY .Ind X/

D L..Ind X/ � Y /
Š L.Ind.X � Res Y //

D ResL.X � Res Y /

D .ResL/Res Y .X/:

Next we claim the existence of a natural isomorphism

Ind HomRes.R/.M;ResL/ Š HomR.IndM;L/ (3.11)

for all M and L. Indeed, evaluating at every Y 2 G-set we find

Ind HomRes.R/.M;ResL/.Y / D HomRes.R/.M;ResL/.Res Y /

D Res.R/-Mac.M;Res.L/Res Y /

Š Res.R/-Mac.M;Res.LY //

Š R-Mac.IndM;LY /

D HomR.IndM;L/.Y /

by using (3.6) in the second and in the last lines, (3.10) in the third line, and the
.Ind;Res/-adjunction in the fourth. Finally, there is a natural isomorphism

R-Mac
�

Ind.M�Res.R/ ResN/;L
� Š Res.R/-Mac.M�Res.R/ ResN;ResL/

Š Res.R/-Mac.ResN; HomRes.R/.M;ResL//

Š R-Mac.N; Ind HomRes.R/.M;ResL//

Š R-Mac.N; HomR.IndM;L//

Š R-Mac..IndM/�RN;L/

by consecutive application of the .Ind;Res/-adjunction, the .�; Hom/-adjunction
(3.5), the .Ind;Res/-adjunction once again, the isomorphism (3.11), and the other
.�; Hom/-adjunction. Since this isomorphism is natural in L and since L is an
arbitrary R-module, we conclude by Yoneda the existence of a natural isomorphism

Ind.M/�RN Š Ind.M�Res.R/ Res.N //

of R-modules.

4. Equivariant K-theory as a Mackey module

4.1. The representation Green functor. Let us describe the commutative Green
functor that will concern us here, the representation Green functor, which we denote
by RG . It is also one of the most classical examples.
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By definition, the valueRG ŒH � at the subgroupH 6 G is the complex representa-
tion ringR.H/´ K0.CH -mod/. Addition is induced by the direct sum of modules
and multiplication by their tensor product over the base field C, equipped with the
diagonal G action. For L 6 H 6 G, the restriction maps resH

L W R.H/! R.L/ are
defined by restricting the action of a CH -module to CL via the inclusion CL! CH ,
and the induction maps indH

L W R.L/ ! R.H/ are defined by the usual induc-
tion of modules, M 7! CH ˝CL M (M 2 CL-mod). The conjugation maps
cong;H W R.H/! R.gH/, similarly to the restriction maps, are induced by precom-
position with the isomorphisms CgH ! CH , x 7! g�1xg. The verification thatRG

satisfies the axioms of a commutative Green functor is an easy exercise, and follows
immediately from general textbook properties of modules over group rings (e.g. [2],
§3.3).

4.2. Equivariant K-theory. For every separable G-C�-algebra A 2 C�sepG , we
want to define a Z=2-graded RG-Mackey module

kG� .A/´ fKH
� .ResG

H .A//gH6G
�2Z=2

by collecting all its topological K-theory groups. In order to describe the structure
maps of this RG-module as concretely as possible, we now briefly recall from [24],
§2, the definition of equivariant K-theory in terms of (Banach) modules.

Assume first that A is unital. A .G;A/-module E consists of a right module E
over the ringA, together with a representationG ! L.E/ ofG by continuous linear
operators onE such that g.ea/ D .ge/.ga/ for all g 2 G, e 2 E, a 2 A. Of course,
for L.E/ to make sense,E must be endowed with a topology; we do not belabor this
point because we will be exclusively concerned with modules that are projective and
finitely generated over A and which therefore inherit a Banach space structure (and
a unique topology) from that of A.

The direct sum of two .G;A/-modules is defined in the evident way with the
diagonal G-action, and a morphism of .E;A/-modules is a continuous A-module
map ' W E ! E 0 commuting with the G-action: '.ge/ D g'.e/ for all g 2 G,
e 2 E.

Let zKG
0 .A/ be the Grothendieck group of isomorphism classes of finitely gener-

ated A-projective .G;A/-modules, with addition induced by the direct sum. If V is
a finite dimensional CG-module and E a .G;A/-module, we may equip the tensor
product V ˝C E with the diagonal G-action g.v ˝ e/ ´ gv ˝ ge and the right
A-action .v ˝ e/a ´ v ˝ ea (g 2 G, v 2 V , e 2 E, a 2 A), thereby inducing
a left R.G/-action on the abelian group zKG

0 .A/. The assignment A 7! zKG
0 be-

comes a covariant functor from unital G-C�-algebras to R.G/-modules by extension
of scalars; indeed, given a unital G-equivariant *-homomorphism f W A! B and a
.G;A/-moduleE, we equip the finitely generated projectiveB-moduleE˝AB with
the G-action g.e ˝ b/´ ge ˝ gb.

IfA is a general, possibly non-unital,G-C�-algebra, then by the usual trick we set
KG

0 .A/ ´ ker. zKG
0 .�A W AC ! C//, where �A is the natural augmentation on the
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functorial unitization AC of A. ThenKG.A/ D zKG.A/ for unital A, andKG
0 yields

a functor C�algG ! R.G/-Mod on G-C�-algebras.

4.3. The RG -Mackey module kG .A/. We now define our K-theory Mackey mod-
ule. For all A 2 C�algG and H 6 G, set

kG.A/ŒH�´ KH
0 .ResG

H .A//:

For the definition of the structure maps, assume at first that A is unital.
The restriction maps resH

L are simply induced by restricting the H -action on
.H;A/-modules to L, as in the case of RG . The conjugation maps are as follows.
Given an .H;ResG

H A/-moduleE, let Cong.E/ denoteE equipped with the following
left H -action g� and right A-action �g :

.h g� e/´ g�1hge; .e �g a/´ e.g�1a/ .e 2 E; h 2 H; g 2 G/:

Lemma 4.1. The above formulas provide a well-defined .gH;ResG
gH .A//-module

CongE, and the assignment E 7! Cong.E/ induces a well-defined R.H/-linear
homomorphism

cong;H W KH
0 .ResG

H A/! K
gH
0 .ResG

gH A/:

Moreover, conf;gH cong;H D confg;H for all f; g 2 G, H 6 G, and cong;H D
idKH

0
.A/ whenever g 2 H .

Proof. The two actions are certainly well-defined (to see this for the A-action, recall
that G acts on A by algebra homomorphisms, which must be unital if A is unital),
and they are compatible by the computation

h g� .e �g a/ D .g�1hg/.e � g�1a/ D .g�1hge/.g�1hgg�1a/ D .h g� e/ �g .h � a/;
with h 2 H , a 2 A, e 2 E. Let E be finitely generated projective over A. Then
CongE is also finitely generated projective because (ignoring the group actions) the
map E ! CongE, e 7! g�1e is an A-linear isomorphism:

g�1.ea/ D .g�1e/.g�1a/ D .g�1e/ �g a .e 2 E; a 2 A/:
The rest is similarly straightforward.

Remark 4.2. Perhaps a more natural way to understand the conjugation maps is to
note that every .H;A/-module E can be considered as an .gH; gA/-module, say gE,
where gA is the gH -C�-algebra with underlying C�-algebraA and with the gH -action
ghg�1 g� a D ha as in §2.1. This is just as for the restriction maps: both group
actions, that on E and that on A, are precomposed with a group homomorphism, in
this case the conjugation isomorphisms gH ! H , h 7! g�1hg (for restriction, the
inclusion of a subgroup). Similarly, we let gA act on gE simply by e � a D ea, just
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as A acted on E, and the compatibility condition for gE is trivially satisfied because
it is for E. Now note that if the H -action on A comes from an action of the whole
group G, then the C�-algebra isomorphism g�1 W A ��!� gA provided by the action
is G-equivariant, since g�1.ha/ D .g�1hg/.g�1a/ D h g� .g�1a/ for all h 2 G
and a 2 A. Clearly, the restriction of gE along g�1 is precisely the .gH;A/-module
CongE defined above (or, with extension of scalars: .g�1/�.CongE/ Š gE).

We now define the induction maps, following [24], §5.1. Let L 6 H 6 G. If E
is an .L;A/-module, we define an .H;A/-module

IndH
L .E/´ f' W H ! E j '.x`/ D `�1'.x/ for all ` 2 L; x 2 H g

with the A- and H -actions

.' � a/.x/´ '.x/.x�1a/; .h � '/.x/´ '.h�1x/

for all ' 2 IndH
L .E/, a 2 A, and x; h 2 H . By [24], Prop. 5.1.3, the resulting

functor E 7! IndH
L .E/ from .L;A/-modules to .H;A/-modules preserves finitely

generated projectives, and the induced homomorphism

indH
L W KL

0 .ResG
L A/! KH

0 .ResG
H A/

isR.H/-linear. (Here as always, we turnKL
0 .ResG

L A/ into anR.H/-module via the
ring homomorphism resH

L W R.H/! R.L/.)

Remark 4.3. Note that when A D C is the trivial G-C�-algebra, there are evident
canonical isomorphisms KH

0 .C/ Š R.H/ (H 6 G) which identify the respective
induction, restriction and conjugation maps. In other words, we can identifykG.C/ D
RG as Mackey functors.

As usual with C�-algebras, it is easy to use the functorial unitisation to extend
the definitions of resH

L , indH
L and cong;H to general, possibly non-unital, algebras

A. For instance, indH
L is the map induced on kernels in the morphism of short exact

sequences,

KH
0 .ResG

H A/ �� �� KH
0 .ResG

H AC/ �� �� KH
0 .ResG

H C/ D R.H/

KH
0 .ResG

L A/
�� ��

indH
L

��

KH
0 .ResG

L A
C/ �� ��

indH
L

��

KH
0 .ResG

L C/ D R.L/,
indH

L

��

and similarly for resH
L and cong;H . Because of the naturality of the definition, it will

suffice to verify equalities between restriction, conjugation and induction maps for
the case of unital algebras.
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Lemma 4.4. There is an isomorphism of .H;A/-modules

ResG
H IndG

L .E/ Š
L

z2ŒHnG=L�

IndH
H\zL Conz ResL

H z\L.E/

for every .L;A/-module E and all subgroups H;L 6 G. Moreover, once the set of
representatives ŒHnG=L� is fixed, the isomorphism is natural in E.

Proof. Every choice of the set ŒHnG=L� yields a basic decomposition

HGL Š `
z2ŒHnG=L�

HzL

of .H;L/-bisets. There follows a decomposition of .H;A/-modules

ResG
H IndG

L .E/

D f' W `
z2ŒHnG=L�

HzL! E j `'.x`/ D '.x/ for all x 2 G; ` 2 Lg

D L
z2ŒHnG=L�

f' W HzL! E j `'.x`/ D '.x/ for all x 2 HzL; ` 2 Lg„ ƒ‚ …
μVz

:

Of course theH -action on each summand Vz is still given by .h � '/.x/ D '.h�1x/,
and the A-action by .' � a/.x/ D '.x/.x�1a/ (for all x 2 HzL, h 2 H , a 2 A).

For every z, let Wz ´ IndH
H\zL Conz ResL

H z\L.E/ denote the corresponding
summand of the right-hand side of the Mackey formula. Here Conz ResL

H z\L.E/ is
E equipped with the conjugated H \ zL-action h z� e D .z�1hz/e (for h 2 H \ zL

and e 2 E), so that

Wz D f W H ! E j .z�1hz/ .yh/ D  .y/ .y 2 H; h 2 H \ zL/g
D f W H ! E j ` .yz`z�1/ D  .y/ .y 2 H; ` 2 H z \ L/g:

On Wz too the H -action is again .h �  /.y/ D  .h�1y/, but now, because of
conjugation, the A-action looks as follows:

. �z a/.y/ D  .y/.z�1y�1a/ . 2 Wz; y 2 H; a 2 A/:
We claim that Vz Š Wz via the function ' 7! Q' given by Q'.y/ ´ '.yz/ for all
y 2 H . The function is well-defined because yz 2 HzL for all y 2 H and

` � Q'.yz`z�1/ D ` � '.yz`/ D ``�1'.yz/ D Q'.y/
for all ` 2 L. It is also evidently H -linear, and it is A-linear by the computation

.e' � a/.y/ D .' � a/.yz/ D '.yz/.z�1y�1a/ D . Q' �z a/.y/
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(' 2 Vz , a 2 A, y 2 H ). Finally, we claim that the inverse mapWz ! Vz ,  7! y ,
is given by the formula y .x/´ `�1 .h/ for each x D hz` 2 HzL. The map y is
well-defined: if x D hz` D h1z`1 2 HzL and  2 Wz , then

`�1 .h/ D `�1 .h1z`1`
�1z�1/

D `�1 .h1z`1z
�1.z`�1z�1//

D  .h1z`1z
�1/ . 2 Wz/

D `�1
1  .h1/ . 2 Wz/:

Moreover, the computation (with x D hz` 2 HzL, `0 2 L)

`0 y .x`0/ D `0.``0/�1 .h/ D `�1 .h/ D y .x/
shows that indeed y 2 Vz for all  2 Wz . The verification that . y /� D  and
. Q'/OD ' is equally immediate:

. Q'/OD `�1 Q'.h/ D `�1'.hz/ D '.hz`/ D '.x/ .' 2 Vz; x D hz` 2 HzL/;

. y /�.y/ D y .yz/ D  .y/ . 2 Wz; y 2 H/:
Hence we obtain the claimed isomorphism Vz Š Wz of .H;A/-modules. There-
fore we have an isomorphism as claimed in the lemma, and it is evident from its
construction that it is natural in the .L;A/-module E.

Proposition 4.5. The modules KH
0 .A/ and the maps resH

L , indH
L and cong;H de-

scribed above define an RG-Mackey module kG.A/, and the functorialities of all
KH

0 assemble to yield a functor kG W C�algG ! RG-Mac with kG.1/ D RG .

Proof. First of all, let us fix a G-C�-algebra A and verify that kG.A/ is a Mackey
functor. The Mackey formula holds by Lemma 4.4. The first and fifth relations (see
�3.1) are either contained in Lemma 4.1 or in [24], Prop. 5.1.3. There remain the
compatibilities of the conjugation maps with restrictions and inductions, which are
straightforward and are left to the reader. Thus kG.A/ is a Mackey functor. Next, we
must verify that the collected actions of R.H/ on KG

0 .ResG
H A/ turn kG.A/ into an

RG-module. The third and fourth relations for Mackey modules are proved in [24],
Prop. 5.1.3, (the third one under the guise of the R.H/-linearity of indH

L ). The RG-
linearity of restriction and conjugation maps (first and second relations), are easier
and are left to the reader. Finally, the functoriality of A 7! kG.A/ for equivariant
�-homomorphisms follows immediately from that of each H -equivariant K-theory,
and we have already seen (Remark 4.3) that kG.1/ D RG .

Remark 4.6. As usual we set KG
1 .A/´ KG

0 .AŒ1�/, so that we get a functor

KG� W C�algG ! R.G/-ModZ=2; KG� .A/´ fKG
" .A/g"2Z=2;
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to graded modules and degree-preserving morphisms. We similarly obtain a functor

kG� W C�algG ! RG-MacZ=2; kG� .A/´ fKH
" .A/gH6G

"2Z=2
;

into the category of Z=2-graded Mackey modules over RG . Alternatively, the target
category of kG� may be understood as the category of Mackey modules overRG based
in the category of Z=2-graded abelian groups.

4.4. The extension to the Kasparov category. Let us restrict our attention to the
subcategory of separable G-C�-algebras, C�sepG . Next, we extend our functor kG

to the G-equivariant Kasparov category and study the properties of the extension.

Lemma 4.7. The functor kG has a unique lifting, that we also denote by kG , to the
Kasparov category KKG along the canonical functor C�sepG ! KKG .

Proof. By the universal property of the canonical functor C�sepG ! KKG , as proved
in [18], the existence and uniqueness of such a lifting is equivalent to the functor kG

being homotopy invariant, C�-stable and split exact (in theG-equivariant sense). This
follows immediately from the basic fact that each K-theory functorKH

0 BResG
H does

enjoy the three properties.

Note that, for allH 6 G, the Green functorRH is just the restriction ofRG atH ,
in the sense of �3.5: RH D ResG

H .R
G/. Therefore, as explained there, the evident

restriction functor ResG
H W RG-Mac! RH -Mac has a left-and-right adjoint IndG

H .

Lemma 4.8. For allH 6 G, the diagrams

KKG
kG

��

ResG
H

��

RG-Mac

ResG
H

��
KKH

kH
�� RH -Mac,

KKG
kG

�� RG-Mac

KKH
kH

��

IndG
H

��

RH -Mac

IndG
H

��

commute up to isomorphism of functors.

Proof. The claim involving the restriction functors is evident from the definitions; in
this case, the square even commutes strictly. Now we prove the claim for induction.

Let A 2 KKH and L 6 G. In the case of the rank-one free module, the Mackey
formula of Lemma 4.4 can be easily rewritten as the following isomorphism of L-
C�-algebras:

ResG
L IndG

H .A/ Š
L

x2ŒLnG=H�

IndL
L\xH Res

xH
L\xH .

xA/:
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Once we have fixed the set of representatives forLnG=H , the isomorphism becomes
natural in A. Therefore we get a natural isomorphism

.kG B IndG
H .A//ŒL� D KL

0 .ResG
L IndG

H .A//

Š L
x2ŒLnG=H�

KL
0 .IndL

L\xH Res
xH
L\xH .

xA//

Š L
x2ŒLnG=H�

KL\xH
0 .Res

xH
L\xH .

xA//

Š L
x2ŒLnG=H�

k
xH .xA/ŒL \ xH�

Š L
x2ŒLnG=H�

kH .A/ŒH \ Lx� D .IndG
H B kH .A//ŒL�:

In the third line we have used the .Ind;Res/-adjunction for Kasparov theory, and in
the fifth we have used the H , xH -equivariant isomorphism A Š xA of Remark 4.2
and the isomorphism KH

0 .ResH
Lx\H A/ Š K

xH
0 .Res

xH
L\xH

xA/ it induces; the last
line is (3.8) with a D x�1. This proves the claim.

The next theorem is the main result of this article.

Theorem 4.9. The restriction of kG W KKG ! RG-Mac to the full subcategory
fC.G=H/ W H 6 Gg of KKG is a fully faithful functor.

Proof. Identifying kG B Ind D Ind BkH and kH BRes D Res BkG as in Lemma 4.8,
for all H;L 6 G we have the following commutative diagram:

KKG.C.G=H/; C.G=L//
kG

�� RG-Mac.kGC.G=H/; kGC.G=L//

KKG.IndG
H 1; IndG

L 1/
kG

��

Š
��

RG-Mac.IndG
H kH .1/; IndG

L k
L.1//

Š
��

KKH .1;ResG
H IndG

L 1/
kG

��

Š
��

RH -Mac.RH ; kH .ResG
H IndG

L 1//

can Š
��

KH
0 .ResG

H IndG
L 1/

can

Š
�� R.H/-Mod.R.H/;KH

0 .ResG
H IndG

L 1//

Therefore the upper map labeled kG is bijective.

4.5. The Burnside–Bouc category as equivariant KK-theory. To complete the
picture, we can now describe the Burnside–Bouc category associated with the repre-
sentation ring RG in terms of G-equivariant Kasparov theory. The relation is a very
simple and satisfying one.
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Definition 4.10. In analogy with permutation modules, we call a G-C�-algebra of
the form C0.X/, for some G-set X , a permutation algebra. Let

PermG resp. permG

be the full subcategory of KKG of separable permutation algebras, respectively of
finite dimensional permutation algebras. Note that they are precisely those of the
form A ŠL

i2I C.G=Hi / for some countable, respectively finite, index set I . Note
also that, by virtue of the natural isomorphisms C.X/ ˚ C.Y / Š C.X t Y / and
C.X/˝C.Y / Š C.X�Y /, both PermG and permG are additive tensor subcategories
of KKG .

Theorem 4.11. For every finite group G, the functor kG W KKG ! RG-Mac of §4.4
restricts to a tensor equivalence of permG with the full subcategory of representable
RG-modules, i.e., with the Burnside–Bouc category BR.

Proof. IdentifyingRG-Mac D Ab.B
RG /op

as in §3.3, we obtain the following diagram
of functors, which we claim is commutative (up to isomorphism):

.G-set/op can ��

C

��

C

������������ B

X 7!RG
X

��

can �� BRG

Yoneda

����
��

��
��

��
��

��
��

�

C�sepG

can

������������
kG

������������

ˇŠ

KKG
kG

�� RG-Mac.

Indeed, the left, bottom and right triangles (strictly) commute by definition. We must
show that there is a natural isomorphism ˇX W kG BC.X/ Š RG

X , making the central
triangle commute. For X D G=H and Y D G=L 2 G-set, we obtain the following
isomorphisms ˇG=H .G=L/:

kG.C.G=H//.G=L/ D KL
0 .ResG

L C.G=H//

D KL
0 .C.ResG

L G=H//

Š KL
0 C.

`
x2ŒLnG=H�

L=.L \ xH//

Š L
x2ŒLnG=H�

KL
0 C.L=.L \ xH//

Š L
x2ŒLnG=H�

R.L \ xH/
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Š RG.
L

x2ŒLnG=H�

G=.L \ xH//

D RG.G=L �G=H/
D RG

G=H .G=L/:

We leave to the reader the verification that, by letting L 6 G vary, these define an
isomorphism ˇG=H W kGC.G=H/ Š RG

G=H
, and that the latter can be extended to a

natural isomorphism ˇX as required.
The statement of the theorem follows now from the fact that the bottom horizontal

kG is fully faithful on the image ofC , by Theorem 4.9; the “tensor” part follows from
the identification kG.C/ D RG and from the natural isomorphism

�X;Y W kG.C.X//�RGkG.C.Y // Š RG
X �RGRG

Y

Š RG
X�Y

Š kG.C.X � Y //
Š kG.C.X/˝ C.Y //

for all X; Y 2 G-set, obtained by combining ˇ with the symmetric monoidal struc-
tures of the functor C and of the Yoneda embedding X 7! RX . Clearly the square

kGC.X/�RG
kGC.Y /

�X;Y

��

kG.switch/ �� kGC.Y /�RG
kGC.X/

�Y;X

��
kG.C.X/˝ C.Y // switch �� kG.C.Y /˝ C.X//

is commutative, showing that � turns kG into a symmetric monoidal functor on the
image of C .

Corollary 4.12. The category of additive functors .permG/op ! Ab is equivalent
to the category of Mackey modules over the representation Green functor RG . If we
equip the functor category with the Day convolution product, we have a symmetric
monoidal equivalence. The same holds for the category of coproduct-preserving
additive functors .PermG/op ! Ab.

Proof. We know from Theorem 4.11 thatkG� W permG ' BG
RG as tensor categories, so

this is just Bouc’s functorial picture forRG-Mackey modules (§3.3). Day convolution
provides the correct tensor structure by construction, cf. Remark 3.7.

Remark 4.13. Corollary 4.12 should be compared with the following result, see
[16], Proposition V.9.6: the Burnside category B D BBur is equivalent to the full
subcategory in the stable homotopy category of G-equivariant spectra, SHG , with
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objects all suspension spectra †1XC for X 2 G-set. The authors of [16] define
Mackey functors for a compact Lie groupG precisely so that the analogous statement
remains true in this case. It would be interesting to know whether the same definition
proves useful for the study of KKG when G is a compact Lie group.

Remark 4.14. In principle, it must be possible to prove Theorem 4.11 directly,
without appealing to Theorem 4.9. First notice that

KKG.C.G=H/; C.G=L// Š KKH .1;ResG
H C.G=L//

Š L
x2ŒHnG=L�

R.H \ xL/

D RG.G=H �G=L/
def.D BRG .G=H;G=L/

for allH;L 6 G, by the .Ind;Res/-adjunction in KK-theory. Then it remains “only”
to prove that this identification takes the composition of KKG to the composition of
BRG . But this seems like a lot of work: the Kasparov product is famously difficult
to compute explicitly (although, admittedly, we are dealing here with an easy special
case), and the explicit formula for the composition in the Burnside–Bouc category
is also rather involved (see [4], §3.2). In order to do this, one could perhaps use
the correspondences of [10] and their geometric picture of the Kasparov product.
Anyway, once Theorem 4.11 is proved it is then possible to use abstract considerations
to derive from it Theorem 4.9, rather than the other way round.

5. Relative homological algebra and G -cell algebras

We begin by recalling from [22] and [20] a few definitions and results of relative
homological algebra in triangulated categories. This will allow us to establish some
notation.

In the following, for the moment, let T be a triangulated category endowed with
arbitrary infinite coproducts. For simplicity we still assume that its shift functor
A 7! AŒ1� is a strict automorphism, rather than just a self-equivalence.

Definition 5.1. It will be convenient to define the periodicity, written � , of the shift
functor Œ1� W T ! T to be the smallest positive integer � such that there exists an
isomorphism Œn� Š idT , if such an integer exists; if it does not, we set � ´ 0.

5.1. Recollections and notation. A stable abelian category is an abelian category
equipped with a shift automorphism M 7! MŒ1�. A stable homological functor is
an additive functor F W T ! A to a stable abelian category A, which commutes
with the shift and which sends distinguished triangles to exact sequences in A. In
particular, a stable homological functor is homological in the usual sense.
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Conversely, if F W T ! A is a homological functor to some abelian category A,
then we can construct a stable homological functor

F� W T ! AZ=�

as follows (recall that we allow � D 0, in which case we have Z=� D Z). Here
AZ=� denotes the stable abelian category of Z=�-graded objects in A with degree-
preserving morphisms. As a category, it is simply the product AZ=� D

Q
i2Z=� A;

we write Mi for the i -th component of an object M , and similarly for morphisms.
The shift functor is given by .MŒ1�/i ´ Mi�1, and ditto for morphisms. Then we
define F� by F.A/i D Fi .A/´ F.AŒ�i �/.

Remark 5.2. This choice of degree follows the usual (homological) indexing conven-
tions, according to which a distinguished triangleA! B ! C ! AŒ1� gives rise to a
long exact sequence of the form � � � ! FiA! FiB ! FiC ! Fi�1A! � � � . Note
that if instead F W T op ! A is a contravariant homological functor, then the usual
convention requires us to write indices up,F i .A/´ F.AŒ�i �/, to indicate that differ-
entials now increase degree: � � � ! F i�1.A/! F i .C /! F i .B/! F i .A/! � � � .
If one must insist in using homological notation (as we will do later with graded
Yoneda and graded Ext groups), then one uses the conversion rule F i D F�i .

A homological ideal � in T is the collection of morphisms of T vanishing under
some stable homological functor H :

� D kerH ´ ff 2 Mor.T / j F.f / D 0g:
Thus in particular � is a categorical ideal which is closed under shifts of maps. Note
that different stable homological functors H can define the same homological ideal
�, but it is the latter datum that is of primary interest and will determine all “relative”
homologico-algebraic notions.2 A homological functor F W T ! A is �-exact if
� � ker F . An object P 2 T is �-projective if T .P; / W T ! Ab is �-exact.
An �-projective resolution of an object A 2 T is a diagram � � � ! Pn ! Pn�1 !
� � � ! P1 ! P0 ! A! 0 in T such that each Pn is �-projective and such that the
sequence is �-exact in a suitable sense (see [22], §3.2).

Let F W T ! A be an additive (usually homological) functor to an abelian cate-
gory, and let n > 0 be a nonnegative integer. The n-th �-relative left derived functor
of F , written L�

nF , is the functor T ! A obtained by taking an object A 2 T ,
choosing a projective resolution P

�
for it, applying F to the complex P

�
and taking

the n-th homology of the resulting complex in A – in the usual way. In the case of a
contravariant functor, F W T op ! A, we can still use �-projective resolutions in the
same way in T to define the �-relative right derived functors Rn

�
F W T op ! A.

2There is an elegant axiomatic approach due to Beligiannis [1] that does justice to this observation, but
we will not use it here.
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Remark 5.3. One of course has to prove that the recipes for L�
nF and Rn

�
F yield

well-defined functors. This is always the case – as in our examples – as soon as there
are enough �-projective objects, in the precise sense that for everyA 2 T there exists
a morphismP ! A fitting into a distinguished triangleB ! P ! A! BŒ1�where
P is �-projective and .A! BŒ1�/ 2 �. All our examples have enough �-projectives
but possibly not enough �-injectives, which causes the above asymmetrical definition
of derived functors.

Remark 5.4. It is immediate from the definitions that one may stabilize either before
or after taking derived functors, namely: .L�

nF /� D L�
n.F�/ and .Rn

�
F /� D Rn

�
.F�/.

5.2. The graded restricted Yoneda functor. Assume now that we are given an
(essentially) small set G � T of compact objects; that is, the functor T .X; / W T !
Ab commutes with arbitrary coproducts for each X 2 G .

Our goal is to understand the homological algebra in T relative to G , that is,
relative to the homological ideal

� ´ T
X2G

ker T .X; /�

D ff 2 Mor.T / j T .XŒi �; f / D 0 for all i 2 Z=�; X 2 G g:
Let T .A;B/� D fT .AŒi �; B/gi2Z=� denote the graded Hom in T induced by

the shift automorphism, and let T� denote the Z=�-graded category with the same
objects as T and composition given by

T .BŒj �; C / � T .AŒi �; B/! T .AŒi C j �; B/; .g; f / 7! gf ´ g B f Œj �:
Similarly, denote by G� the full graded subcategory of T� containing the objects of G .
Let GrMod-G� be the category of graded right G�-modules. Its objects are the degree-
preserving functors M W .G�/op ! .AbZ=�/� into the graded category of graded
abelian groups, and its morphisms are grading-preserving natural transformations
' W M ! M 0. Note that GrMod-G� is a stable abelian category with shift functor
given by .MŒk�/i ´ Mi�k and .f Œk�/i ´ fi�k . Every A 2 T defines a graded
G�-module h�.A/ ´ fT .. /Œi �; A/�G�

gi2Z=� in a natural way, so that we get a
(restricted ) Yoneda functor

h� W T ! GrMod-G�;

which is stable homological and moreover preserves coproducts since the objects of
G are compact.

Remark 5.5. It follows from the Yoneda lemma that the collection fh�.X/Œi � j i 2
Z=�;X 2 G g forms a set of projective generators for GrMod-G�. We also note that
h� detects the vanishing of any object in the localizing triangulated subcategory

Cell.T ;G /´ hG iloc � T

generated by G .
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Proposition 5.6. The restrictedYoneda functor h� W T ! GrMod-G� is the universal
�-exact stable homological functor on T . In particular, h� induces an equivalence

h� W Proj.T ;�/ ' Proj.GrMod-G�/

between the category of �-projective objects in T and that of projective graded
right G -modules, and for every A 2 T it induces a bijection between �-projective
resolutions of A in T and projective resolutions of the graded G -module h�.A/.

Proof. The necessary argument is well explained in the proof of [23], Theorem 4.4,
and relies on the recognition criterion of [22], Theorem 57.

Remark 5.7. If T does not have all set-indexed coproducts (as indeed in loc. cit.),
the same argument still works if instead the following two hypotheses are satisfied:

(1) There exists an uncountable regular cardinal @ such that T has all small@ co-
products, i.e., those indexed by sets of cardinality strictly smaller than @. (In
particular T has at least all countable coproducts.)

(2) Every objectX 2 G in our generating set is small@, that is, the functor T .X; /

commutes with small@ coproducts and sends every object A 2 T to a small@
set: jT .X;A/j < @.

Then Proposition 5.6 remains true, with precisely the same proof, if in its statement
we substitute GrMod-G� with the category of small@ graded G�-modules, that is, those
M 2 GrMod-G� such that each M.X/i is small@.

Example 5.8. Here, of course, we are concerned with the case when T D KKG

for a finite group G and G ´ fC.G=H/ j H 6 Gg. In this case we must apply
Remark 5.7 with @ D @1. By Bott periodicity T has periodicity � D 2. Then
Cell.T ;G / D CellG , and the stable abelian category GrMod-G� is just RG-MacZ=2,
the category of (Z=2-graded) Mackey modules over the representation Green functor
for G. This is because in this case G .XŒ1�; Y / D 0 for all X; Y 2 G , so that
GrMod-G� is quite simply the category of Z=2-graded objects in the usual ungraded
module category Mod-G , and we know from Corollary 4.12 that the latter is equivalent
toRG-Mac. IfG D 1, then Cell.T ;G / is the classical Bootstrap category of separable
C�-algebras [26], and GrMod-G� is the category AbZ=2 of graded abelian groups.

For the following next general statements, we may either assume that T has
arbitrary coproducts and the objects of G are compact, or that T and G satisfy the
hypothesis of Remark 5.7.

Notation 5.9. Let Extn
G�

.M;N /� be the graded Ext functor in GrMod-G�. In other
words, Extn

G�

. ; N /� denotes the right derived functors of the graded Hom functor
GrMod-G�. ; N /� W GrMod-G� ! AbZ=� ; as usual, it is computed by projective
resolutions of graded G -modules. If, as in Example 5.8, the category G� D G has
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only maps in degree zero, then GrMod-G� D .Mod-G /Z=� , and we may compute the
graded Ext in terms of the ungraded Ext functors, according to the formula

Extn
G�

.M;N /` D
L

iCj D`

Extn
G .Mi ;Mj / .n 2 N; ` 2 Z=�/:

Proposition 5.10. If F is a homological functor F W T op ! Ab sending coproducts
in T to products of abelian groups, then there are natural isomorphisms

Rn
�F

� Š Extn
G�

.h�. /; F�G�
/�� .n 2 N/

computing its right �-relative derived functors. Here F�G�
W G� ! AbZ=2 denotes

the graded G�-module obtained by considering the restriction of F to the full subcat-
egory fXŒi� j X 2 G ; i 2 Z=�g � T .

Proof. In view of Proposition 5.6, this claim follows from [22], Theorem 59.

Corollary 5.11. There are isomorphisms

Rn
�.T . ; B// Š Extn

G�

.h�. /; h�B/0 .n 2 N/

of functors T op ! Ab for all B 2 T .

Proof. (Cf. [20], p. 195.) For every B 2 T , the functor F ´ T . ; B/ W T op ! Ab
satisfies the hypothesis of Proposition 5.10, and in this case we have F�G�

D h�.B/
by definition. Now we apply the proposition and look at degree zero.

5.3. The universal coefficients spectral sequence. We are ready to prove the fol-
lowing general form of the universal coefficient theorem. We do not claim any
originality for this result, as it is already essentially contained in [5] and [22], [20].

Theorem 5.12. Let T be a triangulated category with arbitrary coproducts and let
G be a small set of its compact objects, or assume the @-relative versions of this
hypothesis as in Remark 5.7. For all objects A;B 2 T , there is a cohomologically
indexed right half-plane spectral sequence of the form

E
p;q
2 D Extp

G�

.h�A; h�B/�q

nDpCqHHHH) T .AŒn�; B/;

depending functorially on A and B .
The spectral sequence converges conditionally ([3]) ifA 2 Cell.T ;G /

def.DhG iloc �
T . We have strong convergence ifA is moreover �1-projective, that is, if T .A; f / D
0 for every morphism f which can be written, for every n > 1, as a composition of
n morphisms each of which vanishes under h�.

If A belongs to Cell.T ;G / and moreover has an �-projective resolution of finite
length m > 1 (equivalently: if A 2 Cell.T ;G / and h�A has a projective resolution
in GrMod-G� of length m), then the spectral sequence is confined in the region 0 6
p 6 m and therefore collapses at the .mC 1/-st page E�;�

mC1 D E�;�1 .
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Proof. We define our spectral sequence to be the ABC spectral sequence of [20]
associated to the triangulated category T , its homological ideal � D ker h�, the
contravariant homological functor F D T . ; B/ into abelian groups, and the object
A 2 T ; the hypotheses that T has countable coproducts, that � is closed under them,
and that F sends them to products, are all satisfied. By [20], Theorem 4.3, the ABC
spectral sequence is (from the second page onwards) functorial inA, and ours is clearly
also functorial in B by construction. Moreover, its second page contains the groups
E

p;q
2 D Rp

�
F q.A/, which take the required form by Corollary 5.11. The criterion

for strong convergence is proved in [20], Proposition 5.2 (where, in the notation of
loc. cit., A D LA and RF D F because A 2 Cell.T ;G /), and the criterion for
collapse is part of [20], Proposition 4.5. Conditional convergence is proved as in
[5], Proposition 4.4. The hypothesis of loc. cit. is that G -projective objects generate,
i.e., that Cell.T ;G / D T . However, for fixed A and B , the argument only uses that
A 2 Cell.T ;G /, notB: this still implies thatXk 2 Cell.T ;G / for all the stages of the
Adams resolution [5], (4.1), i.e., of the phantom tower [20], (3.1), and the conclusion
follows exactly with the same proof.

Specializing Theorem 5.12 to Example 5.8, we obtain the first of the results
promised in the Introduction.

Theorem 5.13. Let G be a finite group. For every A;B 2 KKG such that A is a G-
cell algebra, depending functorially on them, there exists a cohomologically indexed,
right half plane, conditionally convergent spectral sequence

E
p;q
2 D Extp

RG .k
G� A; kG� B/�q

nDpCqHHHH) KKG
n .A;B/

which converges strongly or collapses under the same hypothesis of Theorem 5.12.

Proof. Since KKG only has countable coproducts, we adopt the hypotheses of Re-
mark 5.7 with @ ´ @1. Note that the generators G D fC.G=H/ j H 6 Gg are
compact@1

by Proposition 2.9. The universal G -exact stable homological functor of
Proposition 5.6 is just our kG� W KKG ! RG-Mac@1

Z=2
(where the “@1” indicates that

we must restrict attention to countable modules), and the rest follows.

5.4. The Künneth spectral sequence. We now prove the second result of the In-
troduction.

Theorem 5.14. Let G be a finite group. For all separable G-C�-algebras A and B ,
there is a homologically indexed right half-plane spectral sequence of the form

E2
p;q D TorG�

p .kG� A; kG� B/q
nDpCqHHHH) KG

n .A˝ B/;

which is strongly convergent whenever A 2 CellG .
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The key is to show that the generators in G are sufficiently nice with respect to
the universal �-exact functor, so that we may correctly identify the second page.

Lemma 5.15. For everyH 6 G, there is an isomorphism of graded RG-modules

'H W kG� .C.G=H/˝ B/ Š kG� .C.G=H//�RGkG� .B/

natural in B 2 C�algG .

Proof. We define 'H by the following commutative diagram.

kG� .C.G=H/˝ B/
'H �� kG� .C.G=H//�RGkG� .B/

Š Lemma 4.8
��

kG� .IndG
H .1

H /˝ B/
Frobenius (2.1) Š

��

IndH
G .R

H /�RGkG� .B/

Š Frobenius 3.9
��

kG� .IndG
H .1

H ˝ ResG
H .B///

Š
��

IndG
H .R

H
�RH ResG

H .k
G� .B///

Š
��

kG� .IndG
H ResG

H ..B/// Š
Lemma 4.8 �� IndG

H ResG
H .k

G� .B//

Because each isomorphism is natural in B , their composition is too.

Proposition 5.16. For the stable homological functor F� ´ kG� . ˝ B/ W KKG !
AbZ=2, there are canonical isomorphisms

L�
nF� Š TorRG

n .kG� . /; kG� .B//� .A 2 KKG ; n 2 Z/

of functors KKG ! AbZ=2 between its �-relative left derived functors and the left de-
rived functors of the tensor product �RG of gradedRG-Mackey modules. Moreover,
if we equip both sides with the naturally induced RG-action, these isomorphisms
become isomorphisms of functors KKG ! RG-MacZ=2.

Proof. This statement is again, like Proposition 5.10, a consequence of [22], The-
orem 59. This time we also need the extra fact that F� identifies naturally with
kG� . /�RGkG� .B/ on �-projective objects, but this follows from Lemma 5.15.

Proof of Theorem 5.14. We define the Künneth spectral sequence to be the ABC
spectral sequence of [20] associated with the triangulated category T D KKG , the
homological ideal � DT

H6G ker.KH� B ResG
H / , the object A, and the covariant

homological functor F D kG. ˝ B/ W KKG ! Ab; the hypotheses that T has
countable coproducts, that � is closed under them and that F preserves them are all
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satisfied. The description of the second page follows from [20], Theorem 4.3, and the
computation in Proposition 5.16. The strong convergence to Fn.A/ D KG

n .A˝ B/
follows from [20], Theorem 5.1, together with the hypothesis thatA belongs to CellG ,
namely, to the localizing subcategory generated by the �-projective objects, which
implies that F.AŒn�/ D LF.AŒn�/ in the notation of [20]. (Note that, contrary to the
case of a contravariant homological functor, we do not need extra conditions on A
for strong convergence.)
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