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Z is universal

Bhishan Jacelon and Wilhelm Winter�

Abstract. We use order zero maps to express the Jiang–Su algebra Z as a universal C�-algebra
on countably many generators and relations, and we show that a natural deformation of these
relations yields the stably projectionless algebra W studied by Kishimoto, Kumjian and others.
Our presentation is entirely explicit and involves only �-polynomial and order relations.
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1. Introduction

In Elliott’s programme to classify simple, nuclear C�-algebras using K-theoretic
invariants, the Jiang–Su algebra Z plays a particularly prominent role (see [18]).
While there are various ways of characterizing Z (see for example [4] and [14]),
its most concise description (due to the second named author, in [20]) is as the
unique initial object in the category of strongly self-absorbing C�-algebras. Here,
a separable, unital C�-algebra D ¤ C is strongly self-absorbing if there is an
isomorphism ' W D ! D ˝D that is approximately unitarily equivalent to the first
factor embedding, cf. [16]. The statement that Z is an initial object in this category
is equivalent to saying that every strongly self-absorbing C�-algebra absorbs Z
tensorially (i.e. is ‘Z-stable’).

Apart from Z , the known strongly self-absorbing algebras are: the Cuntz algebras
O2 and O1, UHF algebras of infinite type, and such UHF algebras tensored with
O1. These all admit presentations as universal C�-algebras (see Section 5 for a
discussion), and Theorem 3.1 of this article provides such a description for Z which,
although complicated, is explicit and algebraic in the sense that it involves only
�-polynomial and order relations. The proof relies on the ‘order zero’ presentations
of prime dimension drop algebras described in [14] (see Section 2), and gives a
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construction of Z as an inductive limit of such algebras with connecting maps
defined in terms of generators and relations.

The Jiang–Su algebra may be thought of as a stably finite analogue of O1,
and the C�-algebra W constructed in [3] (and studied in another form in [5]) has
been similarly proposed as a stably finite analogue of O2. The conjecture that
W ˝W Š W , while still open, is known to have interesting consequences. For
example, it is shown in [3] that among the C�-algebras classified in [11], those that
are simple and have trivial K-theory would absorb W tensorially. On the other
hand, L. Robert proves in [12] that the Cuntz semigroup of a W-stable C�-algebra
is determined by the cone of its lower semicontinuous 2-quasitraces. These results
indicate that W may play an important role in the classification of nuclear, stably
projectionless C�-algebras. In this article, we examine the structure of W rather
than its role in classification, by showing in Theorem 4.3 how to obtain W as a
nonunital deformation of Z .

The paper is organized as follows. In Section 2 we establish notation and recall
various basic facts about order zero maps and dimension drop algebras. Section 3
contains the presentation of Z as a universal C�-algebra (Theorems 3.1 and 3.3), and
Section 4 contains the corresponding description of W (Theorem 4.3). We conclude
with some open questions in Section 5.

Acknowledgements. The first author would like to thank Simon Wassermann,
Stuart White, Rob Archbold and Ulrich Krähmer for carefully reading the version
of this article that appeared in his doctoral thesis.

2. Preliminaries

In this section, we collect some well-known facts about order zero maps and
dimension drop algebras that are used throughout the article. (Detailed exposition
of order zero maps can be found in [21] and [22].) We denote by eij (or e.n/ij ) the
canonical .i; j /-th matrix unit in Mn DMn.C/.

Recall that a completely positive (c.p.) map ' W B ! A has order zero if it
preserves orthogonality. Every completely positive and contractive (c.p.c.) order
zero map ' W B ! A (for B unital) is of the form '.�/ D �'.�/'.1B/ D '.1B/�'.�/

for a �-homomorphism �' W B ! A�� called the supporting �-homomorphism
of '. We frequently use the notion of positive functional calculus provided by
this decomposition: if f 2 C0.0; 1� is positive with kf k � 1 then the map
f .'/ W B ! A given by f .'/.�/ WD �'.�/f .'.1B// is a well-defined c.p.c. order
zero map. It is easy to see that if p 2 B is a projection, then f .'/.p/ D f .'.p//.
On the other hand, if '.1B/ is a projection, then ' is in fact a �-homomorphism.

Finally, c.p.c. order zero mapsB ! A correspond bijectively to �-homomorphis-
ms C0..0; 1�; B/! A. For B D Mn, one way of interpreting this fact is to say that
the cone C0..0; 1�;Mn/ is the universal C�-algebra generated by a c.p.c. order zero
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map on Mn. Equivalently, it is easy to check that C0..0; 1�;Mn/ is the universal
C�-algebra on generators x1; : : : ; xn subject to the relations R.0/

n given by

kxik � 1; x1 � 0; xix
�
i D x

2
1 ; x�j xj ? x

�
i xi for 1 � i ¤ j � n (2.1)

(for example by mapping xj to t1=2˝ e1j , so that t˝ eij corresponds to x�i xj ). One
can therefore view the statement

C0..0; 1�;Mn/ D C�.' j ' c.p.c. order zero on Mn/ (2.2)

as an abbreviation for these relations.
Remark 2.1. In the case n D 2, C0..0; 1�;M2/ is the universal C�-algebra
C�.x j kxk � 1; x2 D 0/. Therefore, if A is a C�-algebra and v 2 A is a contraction
with v2 D 0, then there is a unique c.p.c. order zero map  W M2 ! A with
 1=2.e12/ D v (so that  .e11/ D vv� and  .e22/ D v�v).

By a prime dimension drop algebra, we mean a C�-algebra of the form

Zp;q WD ff 2 C.Œ0; 1�;Mp ˝Mq/ j f .0/ 2Mp ˝ 1q; f .1/ 2 1p ˝Mqg; (2.3)

where p and q are coprime natural numbers. The Jiang–Su algebra Z is the unique
inductive limit of prime dimension drop algebras which is simple and has a unique
tracial state (see [4]).

The order zero notation (2.2) essentially appears in [14, Proposition 2.5], where
the presentation of prime dimension drop algebras described in [4, Proposition 7.3]
is reinterpreted in terms of order zero maps. Specifically, the prime dimension drop
algebra Zp;q is the universal unital C�-algebra

C�.˛; ˇ j ˛ c.p.c. order zero on Mp; ˇ c.p.c. order zero on Mq ,

˛.1p/C ˇ.1q/ D 1; Œ˛.Mp/; ˇ.Mq/� D 0/;

with generators corresponding to the obvious embeddings of C0.Œ0; 1/;Mp/ and
C0..0; 1�;Mq/ into Zp;q .

When q D p C 1, there is another presentation of Zp;pC1 in terms of order
zero maps that does not involve a commutation relation. The following is essentially
contained in [14, Proposition 5.1], and we note that these relations have already
proved highly useful, for example in [19], [21], [15] and [8].
Proposition 2.2. Let Z.n/ denote the universal unital C�-algebra C�.';  j Rn/,
where Rn is the set of relations:

(i) ' and  are c.p.c. order zero maps on Mn and M2 respectively;
(ii)  .e11/ D 1 � '.1n/;

(iii)  .e22/'.e11/ D  .e22/.
Then Z.n/ Š Zn;nC1.

In Section 3, we use Proposition 2.2 to write Z as a limit of dimension drop
algebras in a universal way. We make analogous use of Proposition 4.1, a nonunital
version of Proposition 2.2, to present W .
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3. Generators and relations for the Jiang–Su algebra

In this section, we will construct an inductive system .Z.q.k//; ˛k/, where q.k/ D p3
k

for some fixed p � 2 (p D 2 will do) and Z.q.k// D C�.'k;  k j Rq.k// Š

Zq.k/;q.k/C1 (as in Proposition 2.2), and we will check that the inductive limit is
simple with a unique tracial state. It will then follow from the classification theorem
of [4] that Z Š lim

�!
.Z.q.k//; ˛k/.

If this procedure is to provide an explicit presentation of Z as a universal C�-
algebra, we need to be able to describe the connecting maps ˛k in terms of generators
and relations. (This is perhaps the key difference between our construction and
the original construction of Z as an inductive limit in [4].) In other words, for
every k 2 N we will find c.p.c. order zero maps b'k W Mq.k/ ! Z.q.kC1//

and b k WM2 ! Z.q.kC1// that satisfy the relations Rq.k/ of Proposition 2.2. By
universality, we will then have unital connecting maps ˛k W Z

.q.k// ! Z.q.kC1//

with ˛k ı 'k Db'k and ˛k ı  k D b k .
Before giving the connecting maps, it is instructive to note that there are obvious

choices for b'k and b k . Since q.k C 1/ D q.k/3, we can identify Mq.kC1/ with
Mq.k/ ˝Mq.k/ ˝Mq.k/ (and e.q.kC1//11 with e.q.k//11 ˝ e

.q.k//
11 ˝ e

.q.k//
11 ). We could

then set b'k D 'kC1 ı .idMq.k/
˝ 1q.k/ ˝ 1q.k// and b k D  kC1; it is easy to see

that these maps satisfy the relations Rq.k/, but the corresponding inductive limit
certainly would not be simple. The idea is therefore to define b'k in such a way
as to ensure that Œ0; 1� is chopped up into suitably small pieces under the induced
�-homomorphism ˛k; b 1=2

k
.e12/ will then be some partial-isometry-like element

that facilitates the relations Rq.k/.
One way of doing this is as follows. Define �k WMq.k/ !Mq.kC1/ by

�k D .idMq.k/
˝ 1q.k/�1 ˝ 1q.k//˚

0@q.k/M
iD1

i

q.k/

�
idMq.k/

˝ eq.k/;q.k/ ˝ ei i
�1A :
(3.1)

Note that �k is c.p.c. order zero, with supporting �-homomorphism ��k
D idMq.k/

˝

1q.k/ ˝ 1q.k/. We may then define b'k WD 'kC1 ı �k . For this to work, we need
to be able to transport the defect 1 � 'kC1.�k.1q.k/// D .1 � 'kC1.1q.kC1/// C

'kC1.1q.kC1/ � �k.1q.k/// underneath 'kC1.�k.e
.q.k//
11 //, and the basic idea is to

do this in two steps.

Step 1. Use  kC1.e12/ to transport the corner

� kC1
.e11/.1 � 'kC1.�k.1q.k////� kC1

.e11/

underneath � kC1
.e22/'kC1.e

.q.kC1//
11 /� kC1

.e22/ � 'kC1.e
.q.kC1//
11 /

� 'kC1.�k.e
.q.k//
11 //:
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Step 2. Use a partial isometry vkC1 2 Mq.kC1/ to transport (a projection
bigger than) 1q.kC1/ � �k.1q.k// underneath (a projection smaller than)
�k.e

.q.k//
11 / � e

.q.kC1//
11 , so that 'kC1.vkC1/ transports the rest of

1 � 'kC1.�k.1q.k/// underneath 'kC1.�k.e
.q.k//
11 // � 'kC1.e

.q.kC1//
11 /.

Although this is essentially the right idea, it needs fine-tuning in the guise of
functional calculus. We achieve this in Theorem 3.3 by adjusting the relations for
Z.q.k//, while for Theorem 3.1, we modifyb'k and b k using the following piecewise
linear functions:

-
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These are chosen so that, writing d.t/ D d.1 � t /, we have

g D f � h; hf D h; .1 � f /d D 1 � f and gd D g: (3.2)

For use in Section 4, we also note that if bd is the function bd.t/ D d.t.1 � t // then
we have

.f � f 2/bd D f � f 2 and gbd D g: (3.3)

Finally, to accomplish Step 2, we choose a partial isometry

vkC1 2Mq.kC1/ (3.4)

such that
vkC1v

�
kC1 D 1q.k/ ˝ eq.k/;q.k/ ˝ 1q.k/�1

and

v�kC1vkC1 D .e11˝1q.k/�1˝1q.k//C.e11˝eq.k/;q.k/˝eq.k/;q.k//�.e11˝e11˝e11/:

This is possible since both of these projections have rank q.k/2 � q.k/; since they
are orthogonal, we moreover have v2

kC1
D 0. This vkC1 then satisfies:

(i) v�
kC1

vkC1 ? e11 ˝ e11 ˝ e11 D e
.q.kC1//
11 (in fact, vkC1v�kC1 is orthogonal to

e
.q.kC1//
11 , too);
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(ii) v�
kC1

vkC1 is dominated by �k.e
.q.k//
11 / (and therefore by �k.e

.q.k//
11 /�e

.q.kC1//
11 );

and

(iii) vkC1v�kC1 acts like a unit on

1q.kC1/ � �k.1q.k// D

q.k/M
iD1

�
1 �

i

q.k/

�
.1q.k/ ˝ eq.k/;q.k/ ˝ ei i /: (3.5)

Theorem 3.1. Let the functions d; f; g; h 2 C0.0; 1�, the partial isometries vkC1 2
Mq.kC1/, and the c.p.c. order zero maps �k W Mq.k/ ! Mq.kC1/ be as above for
each k 2 N. Define ZU to be the universal unital C�-algebra generated by c.p.c.
order zero maps 'k on Mq.k/ (k 2 N) and  k on M2 (k 2 N) such that for each k,
these maps satisfy the relations Rq.k/, i.e.

 k.e11/ D 1 � 'k.1q.k// (3.6)

and
 k.e22/'k.e11/ D  k.e22/; (3.7)

together with the additional relations Sq.k/ given by

'k D f .'kC1/ ı �k; (3.8)

 
1=2

k
.e12/ D

�
1 � f .'kC1/.1q.kC1//C g.'kC1/.1q.kC1/ � �k.1q.k///

�1=2
d. kC1/.e12/

Ch.'kC1/.1q.kC1/ � �k.1q.k///
1=2f .'kC1/.vkC1/: (3.9)

Then ZU Š Z .

Proof. For each k, define b'k W Mq.k/ ! Z.q.kC1// D C�.'kC1;  kC1 j Rq.kC1//

and b k WM2 ! Z.q.kC1// by

b'k D f .'kC1/ ı �k (3.10)

and b 1=2
k
.e12/ D k C ık; (3.11)

where

k WD
�
1 � f .'kC1/.1q.kC1//C g.'kC1/.1q.kC1/ � �k.1q.k///

�1=2
d. kC1/.e12/

(3.12)
and

ık WD h.'kC1/
�
1q.kC1/ � �k.1q.k//

�1=2
f .'kC1/.vkC1/: (3.13)
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We need to check that b'k and b k satisfy the relations Rq.k/. First, it is obvious
that b'k is c.p.c. order zero since 'kC1 and �k are, and f is contractive. Next,
to show that (3.11) genuinely defines a c.p.c. order zero map b k , it suffices to
check that k C ık is a contraction that squares to zero (see Remark 2.1). In
fact, this would follow automatically from the relations (3.6) and (3.7) for b'k andb k (where, for the moment, we interpret b k.e11/ and b k.e22/ as notation forb 1=2
k
.e12/b 1=2k .e12/

� and b 1=2
k
.e12/

�b 1=2
k
.e12/ respectively). Indeed, 1�b'k.1q.k//

is certainly a contraction, and (3.6) and (3.7) would imply thatb k.e22/b k.e11/ D b k.e22/.1 �b'k.1q.k///
D b k.e22/ � nX

iD1

b k.e22/b'k.e11/b'k.ei i / D 0; (3.14)

and hence that
�b 1=2

k
.e12/

�2
D 0. Let us now check thatb'k and b k really do satisfy

these relations.

Claim 1. b k.e11/ D 1 �b'k.1q.k//.
Proof of Claim 1. First note that, using (3.7) and property (i) of the partial isometry
vkC1, we have

d. kC1/.e12/f .'kC1/.v
�
kC1/

D d1=2. kC1/.e12/d
1=2. kC1/.e22/'kC1.e11/f .'kC1/.v

�
kC1vkC1v

�
kC1/ D 0:

Therefore, the cross terms kı�k and ık�k in the expansion of

b k.e11/ D b 1=2
k
.e12/b 1=2k .e12/

�

vanish.
Using the fact that f h D h, and property (iii) of vkC1, we have

h.'kC1/.1q.kC1/ � �k.1q.k///f .'kC1/.vkC1/f .'kC1/.v
�
kC1/

D h.'kC1/..1q.kC1/��k.1q.k//vkC1v
�
kC1/ D h.'kC1/.1q.kC1/��k.1q.k///:

Thus, ıkı�k D h.'kC1/.1q.kC1/ � �k.1q.k///. From (3.6) we have

d. kC1/.e11/ D d. kC1.e11// D d.1 � 'kC1.1q.kC1/// D d.'kC1.1q.kC1///;

where d.t/ D d.1 � t / as in (3.2), whence we also obtain

.1 � f .'kC1/.1q.kC1///d. kC1/.e11/ D .1 � f /.'kC1.1q.kC1///d.'kC1.1q.kC1///

D .1 � f /.'kC1.1q.kC1///

D 1 � f .'kC1/.1q.kC1//:
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Similarly, we have g.'kC1/.1q.kC1//d. kC1/.e11/ D g.'kC1/.1q.kC1//, hence

g.'kC1/.1q.kC1/ � �k.1q.k///d. kC1/.e11/ D g.'kC1/.1q.kC1/ � �k.1q.k///:

We therefore have k�k D 1� f .'kC1/.1q.kC1//C g.'kC1/.1q.kC1/ � �k.1q.k///.
Since g C h D f , it follows thatb k.e11/ D k�k C ıkı�k

D 1 � f .'kC1/.1q.kC1//C g.'kC1/.1q.kC1/ � �k.1q.k///

C h.'kC1/.1q.kC1/ � �k.1q.k///

D 1 � f .'kC1/.�k.1q.k///

D 1 �b'k.1q.k//:
Claim 2. b k.e22/b'k.e11/ D b k.e22/.
Proof of Claim 2. Since f h D h and vkC1 is a partial isometry with property (ii),
we have

h.'kC1/.1q.kC1/ � �k.1q.k///f .'kC1/.vkC1/f .'kC1/.�k.e11//

D h.'kC1/..1q.kC1/ � �k.1q.k///vkC1/

D h.'kC1/.1q.kC1/ � �k.1q.k///f .'kC1/.vkC1/:

Thus, ıkb'k.e11/ D ık . Next, it follows from (3.7), upon approximating d1=2 and f
uniformly by polynomials, that

d1=2. kC1/.e22/f .'kC1/.e11/ D f .1/d
1=2. kC1/.e22/ D d

1=2. kC1/.e22/:

Since e
.q.kC1//
11 ? .�k.e

.q.k//
11 / � e

.q.kC1//
11 / and f .'kC1/ is order zero, we

therefore have d1=2. kC1/.e22/f .'kC1/.�k.e11// D d1=2. kC1/.e22/, hence
d. kC1/.e12/f .'kC1/.�k.e11// D d. kC1/.e12/. Therefore, kb'k.e11/ D k ,
and so b k.e22/b'k.e11/ D .�k C ı�k/.k C ık/b'k.e11/ D b k.e22/.

We have now shown thatb'k and b k satisfy the relations Rq.k/. This means that,
for any k 2 N, (3.8) and (3.9) do not introduce any new relations on 'kC1 and  kC1;
thus, the sub-C�-algebra generated by 'kC1 and  kC1 within ZU is isomorphic to
the universal C�-algebra on relations Rq.kC1/ (that is, to Z.q.kC1//), and moreover
contains the sub-C�-algebra generated by 'k and  k . Therefore, by Proposition 2.2,
ZU is isomorphic to an inductive limit of prime dimension drop algebras.

The strategy for the remainder of the proof is to pass from the abstract picture
of ZU as a universal C�-algebra, to a concrete description as an inductive limit
lim
�!
.Z.q.k//; ˛k/, where the (unital) connecting maps ˛k W Z.q.k// ! Z.q.kC1//
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are determined by (3.8) and (3.9) (i.e. ˛k ı 'k D b'k and ˛k ı  k D b k). We will
obtain explicit descriptions of the maps ˛k , and use these to show that ZU is simple
and has a unique tracial state.

For each k 2 N, let us fix an identification of Z.q.k// with Zq.k/;q.k/C1 via the
order zero map Mq.k/ ! Zq.k/;q.k/C1 (which, abusing notation, we also call 'k)
defined by:

'k.a/.t/ D uk.t/.a˝ 1q.k//uk.t/
�
˚ .1 � t /.a˝ eq.k/C1;q.k/C1/ (3.15)

for a 2 Mq.k/ and t 2 Œ0; 1�. (Here, uk is a unitary in the algebra C.Œ0; 1�;Mq.k/ ˝

Mq.k//, included nonunitally in the top left corner of C.Œ0; 1�;Mq.k/ ˝Mq.k/C1/,
with uk.0/ D 1 and uk.1/ implementing the flip in Mq.k/ ˝ Mq.k/.) It is easy
to write down a suitable  k , but for the purpose of computing the connecting map
Zq.k/;q.k/C1 ! Zq.kC1/;q.kC1/C1 (also called ˛k), this is not necessary.

For each t 2 Œ0; 1�, let us write ˛t
k

for the map evt ı ˛k W Zq.k/;q.k/C1 !
Mq.kC1/ ˝ Mq.kC1/C1, where evt denotes evaluation at t . Then ˛t

k
is a finite-

dimensional representation of Zq.k/;q.k/C1, so is a direct sum of finitely many
irreducible representations � t1; : : : ; �

t
m.t/

of Zq.k/;q.k/C1 (corresponding up to
unitary equivalence and, at the endpoints, up to multiplicity, to point evaluations).
Since C�.'k.1q.k/// � Zq.k/;q.k/C1 separates the points of Œ0; 1�, it is easy to
see that the unitary equivalence classes of � t1; : : : ; �

t
m.t/

can be determined by
computing ˛t

k
.'k.1q.k///. To do this, note that

f .'kC1/.b/.t/ D ukC1.t/.b˝1q.kC1//ukC1.t/
�
˚f .1�t /.b˝eq.kC1/C1;q.kC1/C1/

(3.16)
for b 2 Mq.kC1/, and recall the definition (3.1) of �k . We then have, for a 2 Mq.k/

and t 2 Œ0; 1�,

˛tk.'k.a// D f .'kC1/.�k.a//.t/

D ukC1.t/.a˝ 1q.k/�1 ˝ 1q.k/ ˝ 1q.kC1//ukC1.t/
�

˚ ukC1.t/

0@q.k/M
iD1

i

q.k/

�
a˝ eq.k/;q.k/ ˝ ei i ˝ 1q.kC1/

�1AukC1.t/�
˚ f .1 � t /.a˝ 1q.k/�1 ˝ 1q.k/ ˝ eq.kC1/C1;q.kC1/C1/

˚ f .1 � t /

0@q.k/M
iD1

i

q.k/

�
a˝ eq.k/;q.k/ ˝ ei i ˝ eq.kC1/C1;q.kC1/C1

�1A
�u

0@q.kC1/M
mD1

q.k/�1M
iD1

'k.a/

�
1 �

i

q.k/

�1A
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˚

0@q.k/.q.k/�1/M
mD1

'k.a/.1 � f .1 � t //

1A
˚

0@q.k/M
iD1

'k.a/

�
1 �

if .1 � t /

q.k/

�1A ;
where �u denotes unitary equivalence. Write hi .t/ D 1 � if .1�t/

q.k/
(so that, in fact,

hq.k/ D 1�f .1� t / D h.t/). By our earlier reasoning it then follows that, for every
t 2 Œ0; 1�, there is a unitary wt

k
2Mq.kC1/ ˝Mq.kC1/C1 such that

˛tk D w
t
k

0@0@q.kC1/M
mD1

q.k/�1M
iD1

ev i
q.k/

1A˚0@q.k/.q.k/�1/M
mD1

evh.t/

1A ˚0@q.k/M
iD1

evhi .t/

1A1Awtk�:
(3.17)

It could be that t 7! wt
k

is not continuous, but this does not matter. (Moreover, it is
not difficult to show that, up to approximate unitary equivalence, continuity may be
assumed anyway.)

We can also give a description of the connecting map ˛k;kCn D ˛kCn�1ı� � �ı˛k .
For each j 2 N, letƒj be the sequence of continuous functions given by listing each
constant function i=q.j / (for 1 � i � q.j / � 1) with multiplicity q.j C 1/, then h
with multiplicity q.j /.q.j / � 1/ and then each hi for 1 � i � q.j /. Then ˛k;kCn
is fibrewise unitarily equivalent to the direct sum of all maps of the form evF1ı���ıFn

with Fj 2 ƒkCj�1 for 1 � j � n.
Let us write T .A/ for the space of tracial states on a C�-algebra A. Recall that

every tracial state on Zq.j /;q.j /C1 is of the form
R

tr ı evt .�/d�.t/ for some Borel
probability measure � on Œ0; 1�, where tr is the unique tracial state on Mq.j / ˝

Mq.j /C1. In particular, every such trace extends to a trace on C.Œ0; 1�;Mq.j / ˝

Mq.j /C1/, and is invariant under fibrewise unitary equivalence.
Since ZU Š lim

�!
Zq.k/;q.k/C1 with unital connecting maps ˛k , we have

T .ZU / Š lim
 �

T .Zq.k/;q.k/C1/. Thus T .ZU / is an inverse limit of nonempty
compact Hausdorff spaces, so is nonempty. That is, ZU has at least one tracial
state. For uniqueness, we need to show that for every k 2 N, every � > 0, and every
b 2 Zq.k/;q.k/C1 we have

j�1.˛k;kCn.b// � �2.˛k;kCn.b//j < � (3.18)

for all sufficiently large n and every �1; �2 2 T .Zq.kCn/;q.kCn/C1/. The key
observation for this is that for each j , most of the elements in the sequence ƒj
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defined above are constant functions. In fact, the proportion of functions in ƒj that
are not constant is

q.j /.q.j / � 1/C q.j /

q.j C 1/.q.j / � 1/C q.j /.q.j / � 1/C q.j /
D

q.j /2

q.j /4 � q.j /3 C q.j /2

D
1

q.j /2 � q.j /C 1
: (3.19)

Since F1 ı � � � ı Fn is constant if any of the Fi are constant, it follows that for
fixed b 2 Zq.k/;q.k/C1, ˛k;kCn.b/ is fibrewise unitarily equivalent to a direct sum of
continuous Mq.k/ ˝Mq.k/C1-valued functions, most of which are constant except
for a small corner. But any two tracial states agree on the constant pieces, and the
small corner has trace at most kbk

QkCn�1
jDk

1
q.j /2�q.j /C1

, which of course converges

to 0 as n!1. Thus (3.18) holds, and so ZU has a unique tracial state.
It is well known that, to establish simplicity, it suffices to show the following

(see for example [14, Theorem 3.4]): if b is a nonzero element of Zq.k/;q.k/C1, then
˛k;r.b/ generates Zq.r/;q.r/C1 as a (closed, two-sided) ideal for every sufficiently
large r (which is the case if and only if ˛t

k;r
.b/ is nonzero for every t 2 Œ0; 1�).

Suppose that b is such an element, so that there is an interval in .0; 1/ of width
� > 0 on which b is nonzero. For each n 2 N and t 2 Œ0; 1�, ˛t

k;kCnC1
.b/ contains

summands unitarily equivalent to b
�
h.n/

�
i

q.kCn/

��
for 1 � i � q.k C n/ � 1,

where h.n/ WD

n‚ …„ ƒ
h ı � � � ı h. Moreover, h.n/ is of the form

h.n/.t/ D

8̂<̂
:
0; 0 � t � ln=4

n

4nt � ln; ln=4
n � t � .1C ln/=4

n

1; .1C ln/=4
n � t � 1

for some ln, and so it suffices to show that for large n we have 1
q.kCn/

< �
4n . But

this is true for all large n since 4n

q.kCn/
D

4n

p3kCn �! 0 as n ! 1. Thus ZU is
simple.

It now follows from the classification theorem [4, Theorem 6.2] that ZU Š Z .

Remark 3.2. One point that should be emphasized is that, despite the use of
functional calculus, the relations of Theorem 3.1 really are algebraic, or at least
C�-algebraic in the sense that they involve only �-polynomial and order relations.
This can be made explicit by encoding the relations (3.2) satisfied by the functions
d , f , g and h into the relations for the building blocks Z.q.k//.

More specifically, it is not difficult to derive from Proposition 2.2 that the
dimension drop algebra Zn;nC1 is isomorphic to the universal C�-algebra on
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generators ',  and h with relations:

(i) ',  and h are c.p.c. order zero maps on Mn, M2 and C respectively (in
particular, h is just a positive contraction);

(ii) Œ .e11/; '.Mn/� D Œh; '.Mn/� D 0;

(iii)  .e11/h D h;

(iv) h.1 � '.1n// D 1 � '.1n/;

(v)  .e22/'.e11/ D  .e22/.

(It is a straightforward exercise in functional calculus to write down inverse
isomorphisms between the universal C�-algebra determined by these relations and
Z.n/ Š Zn;nC1.) The following is then proved in exactly the same way as
Theorem 3.1.

Theorem 3.3. The Jiang–Su algebra Z is isomorphic to the universal unital C�-
algebra generated by c.p.c. order zero maps 'k on Mq.k/ (k 2 N) and  k on M2

(k 2 N), and positive contractions hk (k 2 N), together with (for each k 2 N) the
relations:

Œ k.e11/; 'k.Mq.k//� D Œhk; 'k.Mq.k//� D 0;

 k.e11/hk D hk;

hk.1 � 'k.1q.k/// D 1 � 'k.1q.k//;

 k.e22/'k.e11/ D  k.e22/;

'k D 'kC1 ı �k;

1
p
2
.1C hk/

1=2 
1=2

k
.e12/ D .hkC1 C .1 � hkC1/'kC1.vkC1v

�
kC1//

1=2 
1=2

kC1
.e12/

C .1 �  kC1.e11//
1=2'

1=2

kC1
.vkC1/;

where the c.p.c. order zero maps �k W Mq.k/ ! Mq.kC1/ and the partial isometries
vk 2Mq.k/ are as in (3.1) and (3.4) respectively.

4. W as a universal C�-algebra

The article [10] (or, in a much more general setting, [11]) contains a classification
by tracial data of simple inductive limits of building blocks

Wn;m WD ff 2 C.Œ0; 1�;Mn˝Mm/ j f .0/ D a˝ 1m; f .1/ D a˝ 1m�1; a 2Mng;

(4.1)
where n;m 2 N; m > 1:

Such building blocks are easily seen to be stably projectionless, and it can
moreover be shown that they have trivial K-theory (this is why the classifying
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invariant is purely tracial). The classification is also complete in the sense that every
permissible value of the invariant is attained—see [17] or [3, Proposition 5.3]. Then,
W may be defined as the unique C�-algebra in this class which has a unique tracial
state (and no unbounded traces).

An explicit construction of W is given in [3], and in this section we obtain
another one by adapting the previous section’s universal characterization of Z . To
begin with, notice that Wn;nC1 is isomorphic to a subalgebra of the dimension drop
algebra Zn;nC1; the following indicates that it in fact may be thought of as its
nonuntial analogue (compare with Proposition 2.2).

Proposition 4.1. Let W .n/ denote the universal C�-algebra C�.';  j bRn/, wherebRn is the set of relations:

(i) ' and  are c.p.c. order zero maps on Mn and M2 respectively;

(ii)  .e11/ D '.1n/.1 � '.1n//;

(iii)  .e22/'.e11/ D  .e22/.

Then W .n/ Š Wn;nC1.

Proof. The proof is almost identical to that of Proposition 2.2, but we include it here
for completeness. Define ' WMn ! Wn;nC1 by

'.a/.t/ D .a˝ 1n/˚ .1 � t /.a˝ enC1;nC1/

for a 2Mn and t 2 Œ0; 1�. Then ' is clearly a c.p.c. order zero map. Equivalently, if
we write

xi .t/ D .e1i ˝ 1n/˚ .1 � t /
1=2.e1i ˝ enC1;nC1/ D '

1=2.e1i /.t/

for 1 � i � n, then the xi satisfy the order zero relations R.0/
n and '.eij / D x�i xj .

Next, define

v.t/ D t1=2.1 � t /1=2
nX
jD1

ej1 ˝ enC1;j :

Then vv� D '.1n/.1 � '.1n// and vx1 D v, and (so) kvk � 1 and v2 D 0.
In particular, there is a unique c.p.c. order zero map  W M2 ! Wn;nC1 with
 1=2.e12/ D v, i.e.

 .e12/.t/ D t .1 � t /

nX
jD1

ej1 ˝ enC1;j ;

so that  .e11/ D vv�,  .e22/ D v�v and ' and  satisfy all of the relations bRn.
Next, we check that v and the xi generate Wn;nC1 as a C�-algebra. Write

A WD C�.fv; x1; : : : ; xng/. We have

v�xi .t/ D t
1=2.1 � t /.e1i ˝ e1;nC1/
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and
v�xivxj .t/ D t .1 � t /

3=2.e1j ˝ e1i /

for 1 � i; j � n. Thus, for t 2 .0; 1/, the elements v�xi .t/ and v�xivxj .t/ give all
matrix units fe1k ˝ e1lg1�k�n;1�l�nC1, so generate all of Mn ˝MnC1, and so the
irreducible representation evt W Wn;nC1 ! Mn ˝MnC1 restricts to an irreducible
representation of A. For t 2 f0; 1g, the xi generate all the matrix units of Mn in the
endpoint irreducible representation ev1 W Wn;nC1 ! Mn. Thus every irreducible
representation of Wn;nC1 restricts to an irreducible representation of A. Also, since
x1.s/ is not unitarily equivalent to x1.t/ for distinct s; t 2 .0; 1/, it follows that
inequivalent irreducible representations ofWn;nC1 restrict to inequivalent irreducible
representations of A. Therefore, by Stone-Weierstrass (i.e. [2, Proposition 11.1.6]),
we do indeed have C�.fv; x1; : : : ; xng/ D Wn;nC1.

It remains to show that these generators ofWn;nC1 enjoy the appropriate universal
property: for every representation fb';b g of the given relations, we need to show that
there is a �-homomorphism Wn;nC1 ! C�.b';b / sending ' to b' and  to b . By
[7, Lemma 3.2.2], it suffices to consider the case where fb';b g is an irreducible
representation on some Hilbert space H (i.e. has trivial commutant in B.H/). Note
that the irreducible representations of Wn;nC1 are (up to unitary equivalence), the
evaluation maps evt W Wn;nC1 ! Mn.nC1/ for t 2 .0; 1/ together with the endpoint
representation ev1 W Wn;nC1 ! Mn. We will therefore show that (again, up to
unitary equivalence)b' D evt ı ' and b D evt ı  for some t 2 .0; 1/ [ f1g.

For each i 2 f1; : : : ; ng, let b i W M2 ! C�.b';b / be the c.p.c. order zero map
defined by b 1=2i .e12/ D b 1=2.e12/b'1=2.e1i /, so that b i .e11/ D b'.1n/.1 �b'.1n//
and b i .e22/b'.ei i / D b i .e22/. Define

z WD b .e11/C nX
iD1

b i .e22/ 2 C�.b';b /:
Then

Œz;b'.e1j /� D b 1.e22/b'.e1j / �b'.e1j /b j .e22/ D 0;
and

Œz;b .e12/� D b 2.e12/C nX
iD1

b i .e22/b 1=2.e11/b 1=2.e12/
�

nX
iD1

b .e12/b'.e11/b'.ei i /b i .e22/
D b 2.e12/C 0 � b 2.e12/
D 0;
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so z is central in C�.b';b /, and is therefore �1 for some scalar �. Moreover, z is
positive with kzk D kb .e11/k D kb'.1n/.1 �b'.1n//k � 1=4, so 0 � � � 1=4.

If � D 0 then b D 0 and b'.1n/ is therefore a projection. It follows that b' is
a �-homomorphism giving an irreducible representation of Mn on H . Thus (up to
unitary equivalence) H D Cn andb' D ev1 ı '.

Suppose that � > 0. Then �b .e11/ D zb .e11/ D .b .e11//2, so p WD ��1b .e11/
and qi WD ��1b i .e22/ are equivalent orthogonal projections with pC q1C � � � C qn
D 1. Since p commutes withb'.Mn/, the maps pb'.�/p and .1 � p/b'.�/.1 � p/ are
c.p.c. order zero. In fact,

�b'.1n/.1 � p/ Db'.1n/.z � b .e11// D z � b .e11/ D �.1 � p/;
i.e. .1�p/b'.1n/.1�p/ D 1�p. Thus, .1�p/b'.�/.1�p/ is a unital c.p.c. order zero
map into the corner .1�p/B.H/.1�p/ Š B..1�p/H/, so is a �-homomorphism
into this corner. Also, pb'.1n/p commutes with (the WOT-closure of) the corner
pC�.b';b /p D pC�.b'/p (which, by irreducibility, is all of pB.H/p Š B.pH/)
so pb'.1n/p D tp for some t 2 Œ0; 1�. So t�1pb'.�/p is also a �-homomorphism,
and is in fact an irreducible representation ofMn on pH . In particular, up to unitary
equivalence, pH D Cn and pb'.�/p D t � idMn

.
Moreover, since every qi is equivalent to p, they all have trace n (D tr.p/).

Thus (again up to unitary equivalence) .1 � p/H D Cn2
(so H D Cn.nC1/) and

.1 � p/b'.�/.1 � p/ WMn !Mn2 is just a 7! diag.a; : : : ; a/. Finally, since

t .1 � t /p D tp.p � tp/ Db'.1n/p.p �b'.1n/p/
D pb'.1n/.1 �b'.1n// D pb .e11/ D �p;

we have t .1� t / D �. Therefore,b' D pb'.�/pC .1�p/b'.�/.1�p/ D ev1�t ı' and,
since ��1=2b 1=2.e12/ is a partial isometry implementing an equivalence between q1
and p, b D ev1�t ı (up to conjugation by a unitary). ThusWn;nC1 has the required
universal property.

Remark 4.2. It should also be possible to detect �-homomorphisms from Wn;nC1
to a stable rank one C�-algebra A at the level of the Cuntz semigroup W.A/ (just as
for Zn;nC1 in [14, Proposition 5.1]). The existence of hxi 2 W.A/ and a positive
contraction y 2 A with nhxi D hyi and hy � y2i � hxi (where � denotes the
relation of compact containment) is probably necessary and sufficient, but perhaps
this is not the most useful characterization.

Finally, we present W as a nonunital deformation of Z .

Theorem 4.3. Choose positive functions d; f; g; h 2 C0.0; 1�, partial isometries
vkC1 2 Mq.kC1/, and c.p.c. order zero maps �k W Mq.k/ ! Mq.kC1/ as in
Theorem 3.1. Define WU to be the universal C�-algebra generated by c.p.c. order
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zero maps 'k on Mq.k/ (k 2 N) and  k on M2 (k 2 N) such that for each k, these
maps satisfy the relations bRq.k/, i.e.

 k.e11/ D 'k.1q.k//.1 � 'k.1q.k/// (4.2)

and
 k.e22/'k.e11/ D  k.e22/; (4.3)

together with the additional relations bSq.k/ given by

'k D f .'kC1/ ı �k; (4.4)

 
1=2

k
.e12/ (4.5)

D f .'kC1/.�k.1q.k///
1=2

�
h.'kC1/.1q.kC1/ � �k.1q.k///

1=2f .'kC1/.vkC1/

C
�
1 � f .'kC1/.1q.kC1//C g.'kC1/.1q.kC1/ � �k.1q.k///

�1=2
d. kC1/.e12/

�
:

Then WU ŠW .

Proof. The proof is essentially the same as that of Theorem 3.1, so we omit most of
the details. As before, let us write b'k D f .'kC1/ ı �k and b 1=2

k
.e12/ D k C ık ,

where this time

k WD f .'kC1/.�k.1q.k///
1=2�kd. kC1/.e12/

and
ık WD f .'kC1/.�k.1q.k///

1=2�kf .'kC1/.vkC1/;

with

�k WD .1 � f .'kC1/.1q.kC1//C g.'kC1/.1q.kC1/ � �k.1q.k////
1=2

and
�k WD h.'kC1/.1q.kC1/ � �k.1q.k///

1=2:

To show that b k.e11/ D b'k.1q.k//.1 � b'k.1q.k///, we proceed exactly as in the
proof of Claim 1. The only difference is that we now have

d. kC1/.e11/ D d. kC1.e11// D d.'kC1.1q.kC1//.1 � 'kC1.1q.kC1////

D bd.'kC1.1q.kC1///;
wherebd.t/ D d.t.1 � t // as in (3.3). We also have

f .'kC1/.�k.1q.k///.1 � f .'kC1/.1q.kC1///

D �'kC1
.�k.1q.kC1///.f � f

2/.'kC1.1q.kC1///:
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Sincebd.f � f 2/ D f � f 2, this therefore gives

f .'kC1/.�k.1q.k///.1 � f .'kC1/.1q.kC1///d. kC1/.e11/

D f .'kC1/.�k.1q.k///.1 � f .'kC1/.1q.kC1///;

and the rest of the argument carries over mutatis mutandis. (Note in particular
that �k and �k both commute with f .'kC1/.�k.1q.k///

1=2.) The proof thatb k.e22/b'k.e11/ D b k.e22/ is literally the same as the proof of Claim 2.
We now know that WU is isomorphic to an inductive limit lim

�!
.Wq.k/;q.kC1/; ˇk/.

Moreover, arguing exactly as before, we see that the connecting maps ˇk are
(fibrewise) unitarily equivalent to the connecting maps ˛k obtained earlier. That
is, there are unitaries zt

k
2Mq.kC1/ ˝Mq.kC1/C1 such that

ˇtk D z
t
k

0@0@q.kC1/M
mD1

q.k/�1M
iD1

ev i
q.k/

1A˚0@q.k/.q.k/�1/M
mD1

evh.t/

1A˚0@q.k/M
iD1

evhi .t/

1A1A ztk�
(4.6)

for every t 2 Œ0; 1�.
The same arguments as with ZU show that WU is simple and has a unique tracial

state. (One has to perhaps be slightly careful about the existence of a trace, since the
space of tracial states of a nonunital C�-algebra need not be compact. But this is not
an issue.) The only minor technicality is that, since the building blocks Wq.k/;q.kC1/
are nonunital and the connecting maps ˇk are degenerate, WU may have unbounded
traces. However, one can easily show, using (3.19), that this is not the case. It
therefore follows from the classification theorem of [10] (or indeed from the more
general result proved in [11]) that WU ŠW .

Corollary 4.4. There exists a trace-preserving embedding of W into Z . Such an
embedding is canonical at the level of the Cuntz semigroup, and is unique up to
approximate unitary equivalence.

Proof. This follows immediately from Theorem 4.3 and Theorem 3.1. The result can
already be deduced from the main theorem of [11], which also gives the uniqueness
statement.

5. Outlook

5.1. It might be interesting to characterize other C�-algebras as we have done for Z
and W . It should in particular be possible, for any n � 2, to obtain a universal
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construction of a simple, monotracial, stably projectionless C�-algebra Wn with
.K0.Wn/;K1.Wn// D .0;Z=.n � 1/Z/. Candidate building blocks could be of
the form

ff 2 C.Œ0; 1�;Mm ˝M.n�1/.mC1// W f .0/ D a˝ 1.n�1/.mC1/;

f .1/ D a˝ 1.n�1/m; a 2Mmg;

which at least have the right K-theory. Of course, W2 is just W , obtained as in
Theorem 4.3.

It was proved in [11] that W˝K Š O2oR for certain ‘quasi-free’ actions of R
on the Cuntz algebra O2 (see for example [5] and [1]). More generally, one would
expect (i.e. the Elliott conjecture predicts) that Wn ˝ K Š On o R, and in this
sense Wn might be thought of as a stably projectionless analogue of On. (Similar
speculation is made in the article [9].)

It is unclear what interpretation the corresponding universal unital algebras might
have. Note for example that the Jiang–Su algebra is not stably isomorphic to a
crossed product of a Kirchberg algebra by R (when simple, such a crossed product
is either traceless or stably projectionless—see [6, Proposition 4]).

5.2. One of our motivations for presenting Z as a universal C�-algebra was to find a
direct proof of its strong self-absorption (i.e. one that does not rely on classification).
To put this problem into context, consider the other strongly self-absorbing C�-
algebras. On the one hand, UHF algebras of infinite type can also be described
in terms of order zero generators and relations, for example:

M21 Š C�..'k/1kD1 j 'k order zero on Mq.k/;

'k.1q.k// D 'k.1q.k//
2; 'k D 'kC1 ı idq.k/ ˝ 1q.k/ ˝ 1q.k//

(where q.k/ is still 23
k

), and the proof of strong self-absorption in this case amounts
to linear algebra. On the other hand, while O2 and O1 are presented simply as
C�.s1; s2 j s�i si D 1 D s1s

�
1 C s2s

�
2 / and C�..si /1iD1 j s

�
i sj D ıij / respectively, the

proofs that O2 ˝ O2 Š O2 and O1 ˝ O1 Š O1 require some difficult analysis
(see for example [13]). It is conceivable that our presentation of Z lies somewhere
in the middle of this spectrum.

That being said, it is at least possible to show from our relations, in connection
with [11], that the C�-algebra Z˝1U is strongly self-absorbing. (One first shows
that Z˝1U has stable rank one and strict comparison, and then use the main theorem
of [11] to show that any two of the canonical embeddings of ZU into Z˝1U are
approximately unitarily equivalent; this then yields strong self-absorption of Z˝1U .
Details will be given in the second named author’s forthcoming CBMS monograph.)

Meanwhile, it remains an open problem to prove that W ˝W ŠW .
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