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On weakly group-theoretical non-degenerate braided fusion
categories
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Abstract. We show that the Witt class of a weakly group-theoretical non-degenerate braided
fusion category belongs to the subgroup generated by classes of non-degenerate pointed braided
fusion categories and Ising braided categories. This applies in particular to solvable non-
degenerate braided fusion categories. We also give some sufficient conditions for a braided
fusion category to be weakly group-theoretical or solvable in terms of the factorization of its
Frobenius–Perron dimension and the Frobenius–Perron dimensions of its simple objects. As
an application, we prove that every non-degenerate braided fusion category whose Frobenius–
Perron dimension is a natural number less than 1800, or an odd natural number less than 33075,
is weakly group-theoretical.
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1. Introduction

Let k be an algebraically closed field of characteristic zero. A fusion category over
k is a finite semisimple rigid tensor category C over k.

The notion of nilpotency of a fusion category was introduced in [13], extending
the corresponding one for finite groups: a fusion category is nilpotent if it can be
obtained from the category Vec of finite dimensional vector spaces over k by means
of a finite number of finite group extensions.

A fusion category C is called weakly group-theoretical if it is categorically Morita
equivalent to a nilpotent fusion category, that is, if there exists an indecomposable
module category M such that the category C�M of C-module endofunctors of M
is a nilpotent fusion category. In particular, every weakly group-theoretical fusion
category has integer Frobenius–Perron dimension. If, furthermore, C is Morita
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equivalent to a cyclically nilpotent fusion category, then C is called solvable.
Equivalently, C is solvable if there exist sequences Vec D C0; : : : ; Cn D C, of
fusion categories, and G1; : : : ; Gn, of cyclic groups of prime order such that for all
1 � i � n, Ci is a Gi -equivariantization or a Gi -extension of Ci�1. See Subsection
2.2. We refer the reader to [11] for other characterizations and main properties of
weakly group-theoretical and related fusion categories.

An important class of fusion categories is that of braided fusion categories, that
is, fusion categories C endowed with natural isomorphisms c W X ˝ Y ! Y ˝ X ,
X; Y 2 C, called a braiding, subject to appropriate axioms. Two extreme classes
of braided fusion categories, so-called symmetric and non-degenerate braided fusion
categories, appear related to the square of the braiding.

Symmetric fusion categories have been classified by Deligne [7]. On the other
side, a number of important results concerning the structure of a non-degenerate
braided fusion category have been established in the literature. A non-degenerate
braided fusion category endowed with a compatible ribbon structure is called a
modular category. Modular categories have many applications in distinct areas of
mathematics and mathematical physics, for instance, in low-dimensional topology,
they constitute an important tool in the construction of invariants of knots and
3-manifolds. See e.g., [1, 22].

The group of Witt classes of non-degenerate braided fusion categories, denoted
W , was introduced in [4]. Two non-degenerate braided fusion categories C1 and
C2 are called Witt equivalent if there exist fusion categories D1 and D2 such that
C1 �Z.D1/ Š C2 �Z.D2/ as braided tensor categories, where Z.Di / denotes the
Drinfeld center of the fusion category Di , i D 1; 2.

The Witt group W consists of equivalence classes of non-degenerate braided
fusion categories under this equivalence relation with multiplication induced by
Deligne’s tensor product �. The unit element is the class of the category Vec of
finite-dimensional vector spaces over the base field k and the inverse of the class of
a non-degenerate braided fusion category C is the class of the reverse braided fusion
category Crev. This endows W with the structure of an (infinite countable) abelian
group.

The explicit determination of the structure of the group W and the relations
amongst its elements are pointed out in [4] as relevant problems in connection with
the classification of fusion categories.

Let Wpt and WIsing denote, respectively, the subgroup of Witt classes of
pointed non-degenerate fusion categories and the subgroup generated by Witt classes
of Ising braided categories.

Recall that an Ising braided category is a non-pointed braided fusion category
of Frobenius–Perron dimension 4. Ising braided categories were classified in
[9, Appendix B]; it is known that they fall into 8 equivalence classes and all of them
are non-degenerate. If I is an Ising braided category, then the pointed subcategory
Ipt is the unique nontrivial (symmetric) subcategory of I , and it is equivalent to the
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category sVec of super-vector spaces. Besides, I has a unique non-invertible simple
object of Frobenius–Perron dimension

p
2.

The subgroups Wpt and WIsing are explicitly described in [9, Appendix A.7 and
Appendix B]; see also [4, Sections 5.3 and 6.4 (3)]. We have that WIsing is isomor-
phic to the cyclic group of order 16. On the other hand, if Wpt .p/ denotes the group
of classes of metric p-groups, we have an isomorphism Wpt Š

L
p prime Wpt .p/.

In addition, Wpt .2/ ' Z8 ˚ Z2, Wpt .p/ ' Z4, if p D 3.mod 4/, and
Wpt .p/ ' Z2 ˚ Z2, if p D 1.mod 4/.

In this paper we show that if C is a non-degenerate braided fusion category
such that C is weakly group-theoretical, then the Witt class ŒC� of C belongs to the
subgroup generated by Wpt and WIsing . If, moreover, C is integral, then ŒC� 2Wpt .
See Theorem 6.2.

The proof of Theorem 6.2 is given in Section 6. It relies on results of the paper
[4]. It makes use as well of the notion of a braided group-crossed fusion category
introduced by Turaev [23, 24] and its main properties, in particular, its connection
with the existence of nontrivial Tannakian subcategories in a braided fusion category.
These results are recalled in Sections 3 and 4. Using these tools, we also prove in
Section 5 a related result (Theorem 5.3) on the structure of solvable braided fusion
categories.

Let fW be the subgroup of W generated by Witt equivalence classes of the fusion
categories C.g; l/ of integrable highest weight modules of level l 2 ZC over the
affinization of a simple finite-dimensional Lie algebra g. It is shown in [4] that
Wpt ;WIsing �

fW . Conjecturally, fW coincides with the subgroup Wun of Witt
classes of pseudo-unitary non-degenerate braided fusion categories [4, Question 6.4].

On the other side, it is also conjectured that every fusion category of integer
Frobenius–Perron dimension is weakly group-theoretical [11, Question 2]. As a
consequence of Theorem 6.2, we obtain that for every non-degenerate braided fusion
category C such that C is weakly group-theoretical, then ŒC� 2fW .

One of the main results of [11] establishes the analogue of Burnside’s
paqb-theorem for fusion categories, namely, that any fusion category C whose
Frobenius–Perron dimension is paqb , where p and q are prime numbers and a; b
are non-negative integers, is solvable. Some solvability results for braided fusion
categories have been obtained in [19, 20]. In particular, if C is a braided fusion
category such that the Frobenius–Perron dimensions of simple objects of C are � 2,
or if FPdim C is odd and the Frobenius–Perron dimensions of simple objects of C are
powers of a fixed prime number, then C is solvable.

Combining the main properties of braided group-crossed fusion categories with
the methods developed in the paper [11], we also give in Section 7 some further
sufficient conditions for a braided fusion category to be solvable or weakly group-
theoretical. We show that every weakly integral braided fusion category whose
Frobenius–Perron dimensions of simple objects are powers of a fixed prime number
is always solvable. See Theorem 7.2. This extends the previously mentioned results
in [19, 20].
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In addition, we show that every non-degenerate braided fusion category C whose
Frobenius–Perron dimension factorizes in the form FPdim C D paqbc, where p and
q are prime numbers, a and b are nonnegative integers, and c is a square-free natural
number, is necessarily weakly group-theoretical. See Theorem 7.4.

In Section 8 we apply this result to show in Theorems 8.1 and 8.2, respectively,
that every weakly integral non-degenerate braided fusion category of Frobenius–
Perron dimension less than 1800 is weakly group-theoretical and moreover, it is
solvable if its Frobenius–Perron dimension is odd and less than 33075.

2. Preliminaries and notation

We shall work over an algebraically closed field k of characteristic zero. The
category of finite dimensional vector spaces over k will be denoted by Vec. A
fusion category over k is a semisimple rigid monoidal category over k with finitely
many isomorphism classes of simple objects, finite-dimensional Hom spaces, and
such that the unit object 1 is simple. We refer the reader to [10, 11, 9] for the
main notions about fusion categories and braided fusion categories used throughout.
Unless otherwise stated, all tensor categories will be assumed to be strict.

2.1. Frobenius–Perron dimensions. Let C be a fusion category. The Frobenius–
Perron dimension of a simple object X 2 C is, by definition, the Frobenius–Perron
eigenvalue of the matrix of left multiplication by the class of X in the basis Irr.C/ of
the Grothendieck ring of C consisting of isomorphism classes of simple objects. The
Frobenius–Perron dimension of C is the number FPdim C D

P
X2Irr.C/.FPdimX/2.

The category C is called integral if FPdimX 2 Z, for all simple object X 2 C, and it
is called weakly integral if FPdim C 2 Z.

If C is a weakly integral fusion category, then .FPdimX/2 2 Z, for all simple
object X 2 C [10, Proposition 8.27]. This implies, in particular, that a fusion
subcategory of C is also weakly integral. On the other hand, if C is weakly integral
(respectively, integral) and F W C ! D is a dominant (or surjective) tensor functor,
then D is weakly integral (respectively, integral) as well; see [2, Proposition 2.12],
[10, Corollary 8.36].

2.2. Nilpotent and weakly group-theoretical fusion categories. Let G be a finite
group. A G-grading on a fusion category C is a decomposition C D ˚g2GCg , such
that Cg˝Ch � Cgh and C�g � Cg�1 , for all g; h 2 G. The fusion category C is called
aG-extension of a fusion category D if there is a faithful grading C D ˚g2GCg with
neutral component Ce Š D.

If C is any fusion category, there exist a finite group U.C/, called the universal
grading group of C, and a canonical faithful grading C D ˚g2U.C/Cg , with neutral
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component Ce D Cad , where Cad is the adjoint subcategory of C, that is, the fusion
subcategory generated by X ˝X�, X 2 Irr.C/.

A fusion category C is (cyclically) nilpotent if there exists a sequence of fusion
categories Vec D C0 � C1 � � � � Cn D C, and finite (cyclic) groups G1; : : : ; Gn,
such that for all i D 1; : : : ; n, Ci is a Gi -extension of Ci�1.

Dual to the notion of a group extension, we have the notion of an equivarianti-
zation. Consider an action of a finite group G on a fusion category C by tensor
autoequivalences � W G ! Aut˝ C. The equivariantization of C with respect to the
action �, denoted CG , is a fusion category whose objects are pairs .X; �/, such thatX
is an object of C and� D .�g/g2G , is a collection of isomorphisms�g W �gX ! X ,
g 2 G, satisfying appropriate compatibility conditions.

The forgetful functor F W CG ! C, F.X;�/ D X , is a dominant tensor functor
that gives rise to a central exact sequence of fusion categories RepG ! CG ! C
[2], where RepG is the category of finite-dimensional representations of G.

A module category over a fusion category C is a finite semisimple k-linear abelian
category M endowed with a bifunctor˝ W C�M!M satisfying the associativity
and unit axioms for an action, up to coherent natural isomorphisms.

The module category M is called decomposable if it is equivalent as a module
category to a direct sum of non-trivial module categories, and it is called indecom-
posable otherwise. If M is an indecomposable module category over C, then the
category C�M of C-module endofunctors of M is also a fusion category.

Two fusion categories C and D are Morita equivalent if D is equivalent to C�M
for some indecomposable module category M.

A fusion category C is called group-theoretical if it is Morita equivalent to a
pointed fusion category, that is, to a fusion category all of whose simple objects are
invertible. On the other hand, C is called weakly group-theoretical (respectively,
solvable) if it is Morita equivalent to a nilpotent (respectively, cyclically nilpotent)
fusion category.

It is shown in [11, Proposition 4.1] that the class of weakly group-theoretical
fusion categories is stable under the operations of taking extensions, equivari-
antizations, Morita equivalent categories, tensor products, Drinfeld center, fusion
subcategories and components of quotient categories. Also, the class of solvable
fusion categories is stable under taking extensions and equivariantizations by
solvable groups, Morita equivalent categories, tensor products, Drinfeld center,
fusion subcategories and components of quotient categories.

2.3. Braided fusion categories. A braiding in a fusion category C is a natural
isomorphism cX;Y W X ˝ Y ! Y ˝X , X; Y 2 C, subject to the hexagon axioms. A
braided fusion category is a fusion category endowed with a braiding.

Suppose C is a braided fusion category. The reverse braided fusion category will
be denoted by Crev; thus, if cX;Y W X ˝ Y ! Y ˝X denotes the braiding of C, then
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Crev D C as a fusion category, with braiding crev
X;Y D c

�1
Y;X , for all objects X; Y .

If D is a fusion subcategory of a braided fusion category C, the Müger centralizer
of D in C will be denoted by Z2.D; C/, or also by D0 when there is no ambiguity.
Thus Z2.D; C/ is the full fusion subcategory generated by all objects X 2 C such
that cY;XcX;Y D idX˝Y , for all objects Y 2 D.

The Müger (or symmetric) center of C will be denoted by Z2.C/ WD Z2.C; C/.
The category C is called symmetric if Z2.C/ D C. If C is any braided fusion
category, its Müger center Z2.C/ is a symmetric fusion subcategory of C. On the
opposite extreme, C is called non-degenerate (respectively, slightly degenerate) if
Z2.C/ Š Vec (respectively, if Z2.C/ Š sVec).

For a fusion category C, the Drinfeld center of C will be denoted Z.C/. It is
known that Z.C/ is a braided non-degenerate fusion category of Frobenius–Perron
dimension FPdimZ.C/ D .FPdim C/2. Necessary and sufficient conditions for a
braided fusion category to be equivalent to the center of some fusion category are
given in [4].

LetG be a finite group. The fusion category of finite dimensional representations
of G will be denoted by RepG. This is a symmetric fusion category with respect
to the canonical braiding. A braided fusion category E is called Tannakian, if
E Š RepG for some finite group G as symmetric fusion categories.

A Theorem of Deligne [7], states that every symmetric fusion category L
is super-Tannakian, meaning that there exist a finite group G and a central
element u 2 G of order 2, such that L is equivalent to the category Rep.G; u/ of
representations of G on finite-dimensional super-vector spaces where u acts as the
parity operator.

Hence if L Š Rep.G; u/ is a symmetric fusion category, then E D RepG=u
is a Tannakian subcategory of L and FPdim E D FPdimL=2; in particular, if
FPdimL > 2, then L necessarily contains a Tannakian subcategory, and a non-
Tannakian symmetric fusion category of Frobenius–Perron dimension 2 is equivalent
to the category sVec of finite-dimensional super-vector spaces. See [11, Section 2.4].

3. Connected étale algebras in braided fusion categories

Let C be a braided fusion category. Recall from [4] that a separable commutative
algebra A 2 C is called an étale algebra in C. If HomC.1; A/ Š k, then A is called
connected.

Let A 2 C be a connected étale algebra. Let CA denote the category of right
A-modules in C. Every right A-module X , with action � W X ˝A! X , is endowed
with a left A-module structure defined by � c�1

X;A W A˝ X ! X , that makes it into
an A-bimodule in C. In this way, the category CA becomes a fusion category with
tensor product˝A and unit object A.
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Let also C0
A be the category of dyslectic A-modules in C, that is, C0

A is the full
subcategory of CA whose objects are right A-modules X in C such that the action
� W X ˝ A ! X satisfies � cA;X cX;A D �. The category C0

A is fusion subcategory
of CA and it is moreover braided with braiding induced from that of C.

If C is a non-degenerate braided fusion category, then there is an equivalence of
braided fusion categories

C � .C0
A/

rev
Š Z.CA/; (3.1)

such that the restriction of the forgetful functor U W Z.CA/ ! CA to C Š C � Vec
is isomorphic to the free module functor FA W C ! CA, FA.X/ D X ˝ A.
See [4, Corollary 3.30 and Remark 3.31 (i)]. It follows from this that C0

A is a
non-degenerate braided fusion category and FPdim C0

A D FPdim C=.FPdimA/2.
Moreover, .C0

A/
rev ' Z2.C;Z.CA// as braided fusion categories.

Proposition 3.1. Let C be a non-degenerate braided fusion category. Suppose
that A 2 C is a connected étale algebra. Then C is weakly integral (respectively,
integral, weakly group-theoretical, solvable or group-theoretical) if and only if CA is
weakly integral (respectively, integral, weakly group-theoretical, solvable or group-
theoretical).

Proof. Observe that the free module functor F W C ! CA is a dominant tensor
functor. This implies the ‘only if’ direction. Suppose now that CA is in one of the
prescribed classes, that is, it is weakly integral, integral, weakly group-theoretical,
solvable or group-theoretical. Then the center of CA is in the same class and, because
by (3.1), C is equivalent to a fusion subcategory of Z.CA/, then C is in that class as
well.

For a non-degenerate fusion category C, we shall denote by ŒC� its equivalence
class in the Witt group. Recall from [4, Corollary 5.9] that two non-degenerate
braided fusion categories C1 and C2 are Witt-equivalent if and only if there exists a
fusion category D such that Z.D/ Š C1 � Crev

2 as braided fusion categories.
In view of the equivalence (3.1), if A 2 C is a connected étale algebra, then

ŒC� D ŒC0
A�.

4. Braided fusion categories and braided G-crossed fusion categories

Let G be a finite group. Recall that a braided G-crossed fusion category [23, 24] is
a fusion category A endowed with a G-grading A D ˚g2GAg and an action of G
by tensor autoequivalences � W G ! Aut˝A, such that �g.Ah/ � Aghg�1 , for all
g; h 2 G, and a G-braiding c W X ˝ Y ! �g.Y /˝ X , g 2 G, X 2 Ag , Y 2 A,
subject to compatibility conditions.

A Tannakian subcategory E of a braided fusion category C gives rise to a
connected étale algebra A in C. If G is a finite group such that E Š RepG as
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symmetric categories, then A is the algebra of functions onG with the regular action
of G.

The fusion category CA is in this case the de-equivariantization CG of C with
respect to RepG, and it is a braided G-crossed fusion category.

The braided fusion category C0
A is the neutral component of CG with respect to

the associated G-grading.
Conversely, let A be a G-crossed braided fusion category. Then the equivari-

antization AG under the action of G is a braided fusion category. The canonical
embedding RepG ! AG of fusion categories is fact an embedding of braided fusion
categories. Hence AG contains E Š RepG as a Tannakian subcategory.

The G-braiding on A restricts to a braiding in the neutral component Ae of the
G-grading. Furthermore, the group G acts by restriction on Ae and this action
is by braided tensor autoequivalences. This makes the equivariantization AG

e into
a braided fusion subcategory of AG . This fusion subcategory coincides with the
centralizer Z2.E ;AG/ of the Tannakian subcategory E in AG . See [16].

In this way, equivariantization defines a bijective correspondence between
equivalence classes of braided fusion categories containing RepG as a Tannakian
subcategory andG-crossed braided fusion categories [15], [16], [9, Section 4.4]. The
braided fusion category AG is non-degenerate if and only if the neutral component
Ae is non-degenerate and the G-grading of A is faithful [9, Proposition 4.6 (ii)].

In particular, if C is a non-degenerate braided fusion category containing a
Tannakian subcategory E Š RepG, then jGj2 divides FPdim C.

LetA be aG-crossed braided fusion category such that the neutral componentAe

is non-degenerate and the G-grading of A is faithful. As a consequence of (3.1), we
have Arev

e D Z2.AG ;Z.A// and there is an equivalence of braided fusion categories

Z.A/ ' AG �Arev
e : (4.1)

In this context we have the following refinement of Proposition 3.1:

Proposition 4.1. Let C be a braided fusion category. Suppose that E Š RepG � C
is a Tannakian subcategory. Then C is weakly integral (respectively, integral or
weakly group-theoretical) if and only if C0

G is weakly integral (respectively, integral,
weakly group-theoretical). In addition, C is solvable if and only if C0

G is solvable and
G is solvable.

Proof. The statement concerning weakly integral, integral and weakly group-
theoretical fusion categories follows from Proposition 3.1, since the de-equi-
variantization CG is an H -extension of C0

G , for a (normal) subgroup H of G.
Suppose that C is solvable. Then the quotient category CG and hence its fusion
subcategory C0

G are solvable as well. Moreover, since C Š .CG/
G is a G-

equivariantization, then the category RepG is equivalent to a fusion subcategory
of C and it is thus solvable. Hence the group G is solvable. If, on the other hand,
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C0
G and G are solvable, then CG is solvable because it is an H -extension of C0

G , for
some subgroup H � G. Hence so is C Š .CG/

G .

Note that C is obtained from C0
G by anH -extension, whereH � G is a subgroup

of G (the support of CG) followed by a G-equivariantization. Since the class
of group-theoretical fusion categories is not stable under the operation of taking
extensions, then the property of being group-theoretical is not inherited in general
from C0

G .

5. Solvable braided fusion categories

Recall that a fusion category C is called group-theoretical if C is Morita equivalent
to a pointed fusion category.

If C is a braided fusion category, it is shown in [18, Theorem 7.2] that C is group-
theoretical if and only if C contains a Tannakian subcategory E Š RepG such that
the de-equivariantization CG is a pointed fusion category. This immediately implies
the following:

Lemma 5.1. Let C be a group-theoretical braided fusion category. Then either C is
pointed or it contains a nontrivial Tannakian subcategory.

Proposition 5.2. Let C be a braided solvable fusion category. Assume in addition
that C is integral. Then either C is pointed or it contains a nontrivial Tannakian
subcategory.

Proof. Since C is solvable, there exist a groupG of prime order and a fusion category
D such that C is equivalent as a fusion category to a G-equivariantization or to
a G-extension of D. In particular, D is integral and solvable and FPdimD D
FPdim C=jGj < FPdim C.

If C is a G-equivariantization of D, then there is a central exact sequence of
tensor functors RepG ! C ! D and RepG is a Tannakian subcategory of C. See
[2, Example 2.5 and Proposition 2.6].

Suppose next that C is a G-extension of D, then D is a braided fusion category
and we may assume inductively that D contains a Tannakian subcategory, whence
so does C, or D is pointed. The last possibility implies that C is nilpotent. By
[8, Theorem 6.10], an integral nilpotent braided fusion category is group-theoretical.
Then Lemma 5.1 implies that C has one of the required properties.

Theorem 5.3. Let C be a solvable non-degenerate braided fusion category. Then
one of the following holds:

(i) C contains a nontrivial Tannakian subcategory, or

(ii) C Š B � I1 � � � � � In, as braided fusion categories, where B is a pointed
non-degenerate fusion category and I1; : : : ;In are Ising braided categories.
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Proof. The proof is by induction on FPdim C (note that, since C is solvable, FPdim C
is a natural integer). In view of Proposition 5.2, we may assume that C is not integral.
We may further assume that C is prime, that is, C contains no proper non-degenerate
fusion subcategories other than Vec; otherwise, if D � C is a proper non-degenerate
fusion subcategory, then C Š D � Z2.D; C/ [9, Theorem 3.13], and both D and
Z2.D; C/ are solvable non-degenerate. By induction, D and Z2.D; C/ satisfy (i) or
(ii), and then so does C.

The adjoint subcategory Cad is a solvable braided fusion category and it is in
addition integral, by [10, Proposition 8.27]. If Cad D Vec, then C is pointed and we
are done. We may assume that Cad © Vec and contains no nontrivial Tannakian
subcategories (otherwise C satisfies (i)). By Proposition 5.2, we get that Cad is
pointed, and therefore Z2.Cad / Š sVec. Indeed, Z2.Cad / is pointed and symmetric,
therefore it is super-Tannakian, thus Z2.Cad / Š sVec in view of the assumption that
Cad contains no Tannakian subcategories.

Hence Cad is slightly degenerate, and therefore Cad Š sVec�C0, where C0 is a
pointed non-degenerate braided fusion category [11, Proposition 2.6 (ii)]. But C is
prime, by assumption, and hence Cad Š sVec.

Since C is non-degenerate, then Cad D Z2.Cpt ; C/ [9, Corollary 3.27]. Then we
get Cad D Z2.Cpt ; C/ � Cpt and thus Cad D Z2.Cpt / Š sVec. Appealing again to
[11, Proposition 2.6 (ii)], we obtain that Cpt D Cad D sVec. Then, by [9, Theorem
3.14], FPdim C D FPdim Cad FPdim Cpt D 4 and therefore C is an Ising braided
category. This finishes the proof of the theorem.

6. The Witt class of a weakly group-theoretical non-degenerate braided fusion
category

Let W be the group of Witt classes of non-degenerate braided fusion categories and
let Wpt and WIsing be the subgroups of Witt classes of pointed non-degenerate
fusion categories and Ising braided categories, respectively.

If C is a non-degenerate braided fusion category, C is called completely anisotropic
if the only connected étale algebra in C is A D 1. By [4, Theorem 5.13], every
non-degenerate braided fusion category is Witt equivalent to a unique completely
anisotropic non-degenerate fusion category.

Lemma 6.1. Let C be a weakly group-theoretical non-degenerate braided fusion
category. Suppose that C is completely anisotropic. Then C is nilpotent.

Note that, since every braided nilpotent fusion category is solvable [11, Proposi-
tion 4.5 (iii)], it follows that C is also solvable.

Proof. By [5, Corollary 3.8], equivalence classes of indecomposable module cate-
gories over C are parameterized by isomorphism classes of triples .A1; A2; �/, where
A1; A2 are connected étale algebras in C and � W C0

A1
! .C0

A2
/rev is a braided
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equivalence. Furthermore, invertible module categories correspond to such triples
where A1 D A2 D 1 (see Remark 3.9 loc. cit.).

The assumption that C is weakly group-theoretical means that there exists an
indecomposable module category M such that C�M is nilpotent. Since C is braided,
M is naturally a C-bimodule category [6, Section 2.8]. Consider the ˛-induction
tensor functors [21, Section 5.1]

˛˙ W C ! C�M; (6.1)

defined by ˛˙.X/.M/ D X ˝M , X 2 C, M 2M. Letting aX;Y;M W X ˝ .Y ˝

M/ ! .X ˝ Y /˝M , X; Y 2 C, M 2M, denote the associativity isomorphisms
for the C-action on M, the module functor structures on ˛˙.X/, X 2 C, are given,
respectively, by

a�1
Y;X;M .cX;Y ˝ id/aX;Y;M W ˛

C.X/.Y ˝M/! Y ˝ ˛C.X/.M/;

and

a�1
Y;X;M .c

rev
X;Y ˝ id/aX;Y;M W ˛

�.X/.Y ˝M/! Y ˝ ˛�.X/.M/;

Y 2 C, M 2M.
The assumption that C is completely anisotropic implies that the module category

M is an invertible C-bimodule category. Therefore the functors ˛˙ are equivalences
of fusion categories [12, Proposition 4.2]. Hence C is nilpotent, as claimed.

Theorem 6.2. Let C be a non-degenerate braided fusion category. Suppose that C
is weakly group-theoretical. Then ŒC� 2 hWpt ;WIsingi. If in addition C is integral,
then ŒC� 2Wpt .

Proof. The proof is by induction on FPdim C. We may assume that C is prime.
If A 2 C is a connected étale algebra, then C is Witt equivalent to the non-
degenerate fusion category C0

A. Moreover, C0
A is also weakly group-theoretical,

since it is a fusion subcategory of a quotient category of C, and FPdim C0
A D

FPdim C=.FPdimA/2. Hence we may assume that C is completely anisotropic,
otherwise the statement follows by induction. By Lemma 6.1, we get that C is
solvable. In particular, being completely anisotropic, C contains no nontrivial
Tannakian subcategory and it follows from Theorem 5.3 that C Š B�I1�� � ��In, as
braided fusion categories, where B is a pointed non-degenerate fusion category and
I1; : : : ;In are Ising braided categories. Hence ŒC� 2 hWpt ;WIsingi. Moreover, if C
is integral, then so is C0

A, hence we may also assume inductively that C is completely
anisotropic. Then Theorem 5.3 implies that C is indeed pointed in this case. This
finishes the proof of the theorem.

Let fW denote the subgroup generated by Witt equivalence classes of the fusion
categories C.g; l/ of integrable highest weight modules of level l over the affinization
of a simple finite-dimensional Lie algebra g.
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By [4, Remark 6.5], Wpt �
fW . On the other hand, for any Ising braided

category I , we have ŒI� D ŒC.sl.2/; 2/�m, for a unique odd number m, 1 � m � 15
[4, Section 6.4 (3)]. Thus the subgroup generated by Wpt and WIsing is contained
in fW . As a consequence of Theorem 6.2, we get:
Corollary 6.3. Let C be a non-degenerate braided fusion category. Suppose that C
is weakly group-theoretical. Then ŒC� 2fW .
Remark 6.4. Let sW denote the Witt group of slightly degenerate braided fusion
categories introduced in [5]. Recall from loc. cit. that there is a group
homomorphism S W W ! sW , defined by S.ŒC�/ D ŒC � sVec�, whose kernel
is the subgroup of W generated by the Witt classes of Ising braided categories. It
follows from Theorem 6.2 that for every weakly group-theoretical non-degenerate
braided fusion category C, we have S.ŒC�/ 2 sWpt .

We also point out the following consequence of Theorem 6.2:
Corollary 6.5. Let C be an integral non-degenerate braided fusion category.
Suppose C is weakly group-theoretical (respectively, solvable). Then there exist an
integral nilpotent (respectively, cyclically nilpotent) fusion category D and a pointed
non-degenerate completely anisotropic fusion category B such that Z.D/ Š C � B
as braided fusion categories.

Proof. By Theorem 6.2, there exist fusion category D and a pointed non-degenerate
fusion category B such that Z.D/ Š C � B as braided fusion categories. Moreover,
since every Witt class has a unique representative which is completely anisotropic,
we may assume that B is completely anisotropic.

This implies that Z.D/ is integral and weakly group-theoretical, and therefore
so is D. Hence there exists an indecomposable module category M such that D�M
is nilpotent. Furthermore, if C is solvable, then so is Z.D/, and therefore there
exists M such that D�M is cyclically nilpotent. This implies the corollary, since
Z.D/ Š Z.D�M/ as braided tensor categories.

7. Sufficient conditions for a non-degenerate braided fusion category to be
weakly group-theoretical

Let C be a fusion category. Let Irr.C/ be the set of isomorphism classes of simple
objects of C and let G.C/ be the group of isomorphism classes of invertible objects.

The group G.C/ acts on the set of isomorphism classes of simple objects by
tensor multiplication. For a simple object X 2 C let GŒX� denote the stabilizer of X
under this action. Thus GŒX� is a subgroup of G.C/ of order dividing .FPdimX/2.
Moreover, for every X 2 Irr.C/, we have an isomorphism

X ˝X� Š
M

g2GŒX�

g ˚
M

Y2Irr.C/
FPdim Y >1

HomC.Y;X ˝X
�/˝ Y: (7.1)
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Lemma 7.1. Let C be a braided fusion category. Suppose that C contains no
nontrivial non-degenerate or Tannakian fusion subcategories. Then C is slightly
degenerate and the following hold:

(i) Cpt D Z2.C/ Š sVec;

(ii) GŒX� D 1, for all simple object X 2 C.

Proof. Consider the Müger center Z2.C/ of C. Then Z2.C/ is a symmetric fusion
subcategory and therefore it is super-Tannakian. The assumptions on C imply that
Z2.C/ © Vec and also that Z2.C/ contains no nontrivial Tannakian subcategories.
Hence Z2.C/ Š sVec [11, Section 2.4] and therefore C is slightly degenerate.
Note that Z2.C/ � Cpt . Moreover, since Cpt cannot contain any nontrivial non-
degenerate or Tannakian fusion subcategory, then it is slightly degenerate as well. By
[11, Proposition 2.6 (ii)], every slightly degenerate pointed braided fusion category
factorizes in the form sVec�B, where B is a pointed non-degenerate braided fusion
category. This implies that in our case Cpt D Z2.C/ Š sVec, whence we get part (i).
Let 1 ¤ g 2 sVec be the unique nontrivial (fermionic) invertible object. If X 2 C is
a simple object, we have g˝X © X [11, Proposition 2.6 (i)]. This implies part (ii),
since by (i), g is the only nontrivial invertible object of C.

It is well-known that if all the character degrees of a finite group G are powers
of a prime number p, then G is solvable [14]. The following theorem extends this
result to braided fusion categories. Some instances of the theorem were obtained
previously in [19, Theorem 7.3] and [20, Theorem 1.1].

Theorem 7.2. Let C be a braided fusion category such that FPdim C 2 Z. Suppose
that p is a prime number such that FPdimX is a power of p, for all simple object
X 2 C. Then C is solvable.

Note that since the Frobenius–Perron dimension of C is an integer, we have
.FPdimX/2 2 Z, for all X 2 Irr.C/ [10, Proposition 8.27]. Therefore the possible
powers of p that can occur as simple Frobenius–Perron dimensions in C are half-
integer powers.

Proof. The proof is by induction on FPdim C. We may assume that C is integral.
Otherwise, C is a U.C/-extension of its integral fusion subcategory Cad , where U.C/
denotes the universal grading group of C. By induction, Cad is solvable. Since C is
braided, its universal grading group is abelian, and therefore C is also solvable.

It will be enough to show that C contains a nontrivial Tannakian subcategory
E . In such case, E Š RepG for some finite group G and G is solvable, because
dimY D pm, m � 0, for all simple objects Y 2 RepG. Moreover, it follows from
[3, Corollary 2.13], that the Frobenius–Perron dimensions of simple objects in the
de-equivariantization CG , and thus also in its fusion subcategory C0

G , are powers of
p as well. Since FPdim C0

G � FPdim CG D FPdim C=jGj < FPdim C and C0
G is

braided, then C0
G is solvable, by induction. Hence so is C, by Proposition 4.1.
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In view of the relations (7.1), the assumption implies that for every simple object
X of C the order of the group GŒX� is divisible by p. If C contains no nontrivial
non-degenerate or Tannakian subcategories, then Lemma 7.1 applies, and we obtain
that GŒX� D 1, for all simple object X 2 C, which is a contradiction.

We may thus assume that C contains a nontrivial non-degenerate fusion subcate-
gory. Suppose first that C is itself non-degenerate. Since p divides FPdim Cpt , then
Cpt ¤ Vec. Hence Cad D .Cpt /

0 ( C and, by induction, Cad is solvable. Then so is
C, because it is a U.C/-extension of Cad and U.C/ is abelian. If, on the other hand,
D ( C is a nontrivial non-degenerate fusion subcategory, then C Š D � D0 and
FPdimD;FPdimD0 < FPdim C. Hence D and D0 are both solvable by induction
and therefore so is C. This completes the proof of the theorem.

Corollary 7.3. Let C be a non-degenerate braided fusion category and let p be a
prime number. Suppose that FPdim C D pac, where a � 0 is an integer, and c is a
square free natural number. Then C is solvable.

Proof. Let X 2 C be a simple object. Since C is non-degenerate, then .FPdimX/2

divides FPdim C [11, Theorem 2.11 (i)]. If C is integral, then FPdimX must be a
power of p for all X 2 Irr.C/ and therefore C is solvable, by Theorem 7.2. Suppose
next that C is not integral. Then C is a G-extension of an integral fusion subcategory
D, where G is an elementary abelian 2-group [13, Theorem 3.10]. Again in this
case, we get that the Frobenius–Perron dimension of a simple object of D is a power
of p and therefore the braided fusion category D is solvable, by Theorem 7.2. Then
C, being a G-extension of D, is also solvable.

Theorem 7.4. Let p and q be prime numbers. Let C be a non-degenerate braided
fusion category such that FPdim C D paqbc, where a and b are nonnegative
integers, and c is a square-free natural number. Then C is weakly group-theoretical.

Proof. Observe that, after eventually replacing c by an appropriate divisor, we may
assume that c is relatively prime to p and q. The proof of the theorem is by induction
on FPdim C. As in the proof of Theorem 7.2, we may assume that C is integral and
it will be enough to show that C contains a nontrivial Tannakian subcategory.

Let us assume that C is not nilpotent (and in particular it is not pointed), otherwise
there is nothing to prove. Since C is non-degenerate, then for every simple object
X 2 C, we have that .FPdimX/2 divides FPdim C. Hence a � 2 or b � 2

and moreover, for every simple object X , we have FPdimX D pnqm, for some
n;m � 0.

Suppose first that C has no non-invertible simple object of prime power dimen-
sion. Then pqjFPdimX , for all non-invertible X 2 Irr.C/. In view of the relations
(7.1), this implies that for any fusion subcategory D, such that D is not pointed, the
Frobenius–Perron dimension of Dpt D D \ Cpt is divisible by pq. In particular,
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FPdim Cpt \ Cad is divisible by pq and thus it is bigger than 2. But, since C is non-
degenerate, then Cpt D C0

ad
and therefore the category Cpt \ Cad is symmetric. It

follows that Cpt \Cad contains a nontrivial Tannakian subcategory and we are done.
Suppose next that C has a simple object of positive prime power dimension.

By [11, Corollary 7.2], C contains a nontrivial symmetric subcategory D. We may
assume that D contains no nontrivial Tannakian subcategory, and thus D Š sVec.
Since D00 D D, then D0 is a slightly degenerate fusion category.

If D0 has a simple object of odd prime power dimension, then it contains a
nontrivial Tannakian subcategory by [11, Proposition 7.4], and we are done. If
FPdimX is divisible by pq for all non-invertible simple object X 2 D0, then pq
divides the order of the group GŒX� for all non-invertible X 2 Irr.D0/, by (7.1). In
view of Lemma 7.1, we may assume that D0 contains a nontrivial non-degenerate
fusion subcategory B. Then C Š B � B0, where B and B0 are both non-degenerate.
Then FPdimB FPdimB0 D FPdim C D paqbc and FPdimB;FPdimB0 < FPdim C.
It follows by induction that B and B0 are both weakly group-theoretical and then so
is C.

It remains to consider the case where FPdimX D 2m, m � 0, for every simple
objectX of D0. In this case, Theorem 7.2 implies that D0 is solvable. Then it follows
from Proposition 5.2, that either D0 contains a nontrivial Tannakian subcategory,
in which case we are done, or D0 is pointed. Suppose that D0 is pointed. By
[11, Proposition 2.6 (ii)], D0 Š sVec� B, where B is a pointed non-degenerate
fusion category. If B is not trivial then, as before, C Š B � B0, where B and B0 are
both non-degenerate and FPdimB;FPdimB0 < FPdim C, hence C is weakly group-
theoretical, by induction. If, on the other hand, B Š Vec, then FPdimD0 D 2 and
therefore FPdim C D FPdimD FPdimD0 D 4. Hence C is nilpotent and in particular
it is weakly group-theoretical as well. This completes the proof of the theorem.

8. Non-degenerate braided fusion categories of low dimension

As an application of Theorem 7.4 we prove in this section that non-degenerate fusion
categories of small dimension are weakly group-theoretical.

Theorem 8.1. Let C be a weakly integral non-degenerate fusion category such that
FPdim C < 1800. Then C is weakly group-theoretical.

Proof. Every natural number n < 1800 such that n ¤ 900, factorizes in the form
n D paqbc, where p and q are prime numbers, a; b � 0, and c is a square-
free integer. In view of Theorem 7.4 it will be enough to consider the case where
FPdim C D 900.

We may assume that C is a prime non-degenerate fusion category, that is, C
contains no nontrivial proper non-degenerate fusion subcategory, and in addition
C contains no nontrivial Tannakian subcategory. Indeed, if D � C is a nontrivial
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proper non-degenerate fusion subcategory, then C Š D � D0 where D and D0
are non-degenerate fusion subcategories of Frobenius–Perron dimension strictly less
than 900, and thus weakly group-theoretical. Then C is weakly group-theoretical in
this case. Similary, if C contains a nontrivial Tannakian subcategory E Š RepG,
where G is a finite group, jGj > 1, then the de-equivariantization CG is a G-crossed
braided fusion category of Frobenius–Perron dimension strictly less than 900, whose
neutral component C0

G is non-degenerate and thus weakly group-theoretical. Hence
CG and C are both weakly group-theoretical as well.

It follows from the proof of [11, Theorem 9.2] that a non-degenerate integral
fusion category of Frobenius–Perron dimension p2q2r2, where p < q < r are
prime numbers, contains a nontrivial Tannakian subcategory. Hence we may assume
that C is not integral.

Therefore C is anE-extension of an integral fusion subcategory D, whereE is an
elementary abelian 2-group [13, Theorem 3.10]. Then jEj D 2 or 4 and FPdimD D
FPdim C=jEj. Hence we may assume FPdimD D FPdim C=2, because otherwise
D and therefore also C would be solvable, in view of [11, Theorem 1.6]. We may
further assume that D contains no nontrivial non-degenerate or Tannakian fusion
subcategories. It follows from Lemma 7.1 that D is slightly degenerate, Dpt Š sVec
and GŒX� D 1, for all simple object X 2 D.

In addition, ifX 2 D is a simple object, then .FPdimX/2 divides 900 D FPdim C.
Thus FPdimX D 1; 2; 3; 5; 6; 10 or 15. Since the group of invertible objects of D
is of order 2 and GŒX� D 1, then the number of simple objects of D of a given
Frobenius–Perron dimension must be even. In particular, since FPdimD D 2.15/2,
then D cannot have simple objects of Frobenius–Perron dimension 15. Also, by
[11, Proposition 7.4], D has no simple objects of Frobenius–Perron dimension 3 or
5. Thus we conclude that the Frobenius–Perron dimension of every non-invertible
simple object X of D is necessarily even. Decomposing X ˝ X� into a sum of
simple objects and using that GŒX� D 1 we arrive to a contradiction; see (7.1). This
shows that C is weakly group-theoretical, as claimed.

The result in Theorem 8.1 can be strengthened in the odd-dimensional case. In
fact, we have:

Theorem 8.2. Let C be a weakly integral non-degenerate fusion category such that
FPdim C is odd and FPdim C < 33075. Then C is solvable.

Proof. It will be enough to show that C is weakly group-theoretical, since any
odd-dimensional weakly group-theoretical fusion category is necessarily solvable
[19, Proposition 7.1]. The assumption that FPdim C is odd implies furthermore that
C is integral [13, Corollary 3.11].

Observe that an odd natural number n < 33075 D 335272 such that n ¤ 11025,
factorizes in the form n D paqbc, where p and q are prime numbers, a; b � 0,
and c is a square-free integer. By Theorem 7.4, we only need to consider the case
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where FPdim C D 11025 D 325272. In this case, it follows from the proof of
[11, Lemma 9.3] that C contains a nontrivial symmetric (thus Tannakian) subcate-
gory E Š RepG. Then C0

G is weakly group-theoretical and hence so is C.
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