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On universal gradings, versal gradings and Schurian generated
categories
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Abstract. Categories over a field k can be graded by different groups in a connected way;
we consider morphisms between these gradings in order to define the fundamental grading
group. We prove that this group is isomorphic to the fundamental group a la Grothendieck
as considered in previous papers. In case the k-category is Schurian generated we prove
that a universal grading exists. Examples of non-Schurian generated categories with universal
grading, versal grading or none of them are considered.
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1. Introduction

We will consider throughout this paper small categories 3 enriched over k-vector
spaces, namely small categories whose sets of morphisms are k-vector spaces and
such that composition is bilinear; they are called k-categories. In particular the
endomorphisms of each object are k-algebras and the spaces of morphisms are
bimodules.

A grading X of B is a direct sum decomposition of each vector space of
morphisms into homogeneous components which are indexed by elements of the
structural group T'(X), such that the composition of 3 is compatible with the product
of the group. By definition the grading is connected if any element of the structural
group is the degree of a homogeneous closed walk.

Observe that a homotopy theory of loops taking into account the k-linear
structure of a k-category is not available. Previous papers—see [0, 8, 7]—show
that gradings may be considered as a substitute, see also Remark 2.4; we have
inferred an intrinsic fundamental group of a k-category which takes into account all
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its connected gradings and which is functorial with respect to full subcategories—see
[9].

In this paper we introduce morphisms between gradings, which are group maps
1 between the structural groups such that there exists a homogeneous automorphism
functor of B which is the identity on objects and which induces u on the degrees of
the homogeneous closed walks, see Definition 2.6.

This leads to the definition of the fundamental grading group. In case there
exists a universal grading U we obtain that I'(U) is isomorphic to this group. If
a versal grading V exists (see Definition 2.7) then the intrinsic fundamental group is
a subgroup of the fixed points group with respect to the automorphisms of V.

In Section 2 we study gradings as mentioned above while in Section 3 we recall
the intrinsic fundamental group a la Grothendieck obtained through Galois coverings
and smash products—see [6, 8]. In Section 4 we prove that the fundamental grading
group considered in Section 2 is indeed isomorphic to the intrinsic one.

In other words the gradings as considered in this paper provide a different
approach to the theory of the intrinsic fundamental group developed in [6, 8, 7].
Using the introduced morphisms of gradings, we show in Theorem 2.9 that in case a
universal grading exists its structural group is isomorphic to the fundamental group.

This result is important by itself as well as with respect to the following: the
proof of the analogous fact concerning universal coverings in [8, Proposition 4.3]
is actually incomplete. Indeed, towards the end of the proof a set of elements is
obtained which should provide an automorphism. For this purpose those elements
need to constitute a coherent family which means that they should correspond with
themselves through canonical group maps. However this is not proved in the cited
paper and the fact is not clear.

Note that in [12] a relation between gradings and coverings is established for
quivers with relations, see also [13]. In this paper we consider the intrinsic context,
where the categories are not given by a presentation.

In the rest of the paper we apply the theory developed before to Schurian
generated categories and other examples. By definition, a non-zero morphism from
one object b to an object b’ is called Schurian if the space of morphisms from b
to b’ is one-dimensional. The intersection of all the k-subcategories containing
them is called the Schurian generated subcategory of 3. When this intersection
is B the category is called Schurian generated. Note that in the framework of
k-categories presented by a quiver with admissible relations this corresponds to
constricted algebras (also called constrained algebras)—see [1]. We prove that a
Schurian generated category admits a universal grading. To this end we show that
its fundamental grading group is the structural group of a grading which is not
necessarily connected. This grading can be restricted to the image of its degree
map, providing this way a connected grading which is universal.

Finally we consider four examples. The first one is at the source of the theory
of the fundamental group a la Grothendieck. Indeed, Bongartz, Gabriel [2] and
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Martinez-Villa, de la Pefia [17] have considered a fundamental group attached to a
presentation by a quiver with admissible relations of a category. It is not an invariant
of the isomorphism class, it depends on the chosen presentation—see for instance
[4]. We provide a one-parameter family of k-categories B, that has a universal cover.
This one-parameter family of deformations is actually trivial and the fundamental
group is infinite cyclic. The second example is the Kronecker category, which has no
universal grading, but admits a versal grading. Its fundamental group is trivial. Then
we show that for a monomial Schurian category the above mentioned fundamental
group attached to a presentation is isomorphic to the intrinsic fundamental group.
Finally we consider the group algebra in characteristic p of the cyclic group C,, of
order p, which has neither universal nor versal grading; its fundamental group is the
product of the infinite cyclic group and C),.

2. Fundamental grading group

In this section we first recall definitions from [6, 8]. Then we introduce morphisms
of gradings, universal and versal gradings. This leads to the definition of the
fundamental grading group.

2.1. Homogeneous walks and grading homotopy. For a k-category B the set of
objects is denoted BBy while 58} is the vector space of morphisms having source b
and target b’. For f € pl8, we write 6(f) = b and t(f) = b’ A k-category is
connected if the graph of its non-zero morphisms is connected.

Definition 2.1. A grading X of a k-category BB by a group I'(X) is a direct sum
decomposition of each morphism space

w8y = @ X*uBs
sel'(X)

such that
(X' By) (X*pBp) C X" By,

The group I'(X) is called the structural group of the grading. A homogeneous
morphism f of degree s is a non-zero morphism lying in a homogeneous component
XS pBy. We write degy [ = s.

A virtual morphism is a pair (f,€) where f is a non-zero morphism and € is 1
or —1. We set that the source ¢ and the target T of ( f, —1) are reversed with respect
to those of f while for (f; 1) they remain unchanged. We do not compose virtual
morphisms.
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A walk w with source b and target b’ is a sequence of concatenated virtual
morphisms

w = (fn,en)v' "’(f2’€2)’(f1’61)

verifying

o(fi.€1) =b.t(f1.€1) = 0(fa.€2),....T(fn.€n) = D"

The formal inverse of wis w™! = (f1,—¢€1), (f2,—€2), ..., (fn. —€,) With source
b’ and target b.

We say that two walks w, w’ are concatenable if the target of w coincides with
the source of w’. We denote w’w their concatenation.

A virtual homogeneous morphism with respect to a grading is a virtual morphism
(f,€) where f is homogeneous. A homogeneous walk is a walk made of virtual
homogeneous morphisms. The set of homogeneous walks from b to b” with respect
to a grading X is denoted ,-H W (B, X).

For a grading X the degree of a homogeneous walk is by definition

degyw = (degy f»)" ... (degy f2)* (degy f1)' .

Remark 2.2. Let w and w’ be concatenable walks and let b € By. The following
facts are easy to verify.

e degyw ™! = (degyw)'.
e degyww’ = degyw degyw’.

e The image of the inferred degree map degy : p HWp (B, X) — I'(X) is a
subgroup of I'(X).

Definition 2.3. The grading is connected if degy : y HWp(B,X) — T'(X) is
surjective for any objects b and b’.

Note that if B is connected the degree map is surjective for a given pair of objects
if and only if the degree map is surjective for any pair of objects.

Remark 2.4. For a k-category there is no definition of homotopy of loops available
as in algebraic topology taking into account its linear structure. A first attempt—see
[2, 17]—is to choose a presentation of the k-category and to define homotopy using
minimal relations of the presentation.

However this way of doing provides a homotopy group which varies with the
chosen presentation—see [4]. Due to this fact we have previously introduced
an intrinsic fundamental group defined using coverings which are issued from
connected gradings. Indeed, gradings and coverings are closely related as we will
recall in the following.

In this context observe that a given grading X provides a partial substitute for a
homotopy theory of loops. Indeed we can consider among homogeneous walks with
same source and target an "X -homotopy" relation given by the degree map, namely
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two homogeneous walks are X -homotopic if they have the same X -degree. In case
X is connected the X-homotopy classes form a group which is isomorphic to the
structural group I'(X).

2.2. Universal and versal gradings. Let X and Y be gradings of a k-category
B. A k-automorphism functor J of B is called homogeneous from X to Y if J
is the identity on objects and if the image of X-homogeneous morphisms of B are
Y -homogeneous.

Definition 2.5. Let X,Y be two gradings of B3, b,b’ € By. A homogeneous
automorphism J from X to Y induces a map

HW(J) : yHW(B.X)p — yHW(B.Y),

HW(J)(w) = (J(fn).€n), ... (J(f1). €1)
forw = (fu.€n), ..., (f1.€1) an X-homogeneous walk.

However in general a map from I'(X) to I'(Y) induced by J does not exist since
the image by J of two homogeneous closed walks of same X-degree may have
different Y -degrees.

Definition 2.6. Let by be a base object of a connected k-category B3 and let X
and Y be connected gradings of B. A morphism yu : X — Y is a group map
W :T'(X) — I'(Y) such that there exists a (non-necessarily unique) homogeneous
automorphism functor J from X to Y making commutative the following diagram

HW(J)
bOHW(B7 X)b() - boHW(B7 Y)b()

degx i idegy

T'(X) r(Y).

Definition 2.7. A connected grading U is universal if for any connected grading X
there exists a unique morphism u : U — X. A connected grading V' is versal if for
any connected grading X there exists at least one morphism p : V' — X.

Concerning the notion of versal see for instance the appendix by J. P. Serre in
[11].

Of course if a universal grading exists, it iS unique up to an isomorphism of
gradings. In general universal gradings do not exist as we shall see in the last section.
Nevertheless we will prove that Schurian generated k-categories admit universal
gradings.



1106 C. Cibils, M. J. Redondo and A. Solotar

2.3. Graded coherent families. Next we will define the fundamental grading
group; in the following section we will prove that it is isomorphic to the intrinsic
fundamental group defined as the automorphism group of a fibre functor. In this
subsection we will show that the structural group of a universal grading is isomorphic
to the fundamental grading group.

Definition 2.8. Let B be a connected k-category, and let by be a fixed object. An
element of the fundamental grading group T1 lgr(B, bp) is a family y = (yx)y where
X varies among the connected gradings, yx € I'(X), and which is graded coherent
namely u(yx) = yy for each morphism p : X — Y. The product is pointwise.

Theorem 2.9. Let B be a connected k-category with a given object by admitting a
universal grading U. Then

1Y (B, bo) ~ T'(U).

Proof. For each connected grading X let ux : U — X be the unique morphism
of gradings. For any § € I'(U) we associate the family (uwx (§))y where X varies
among the connected gradings. This family is clearly graded coherent and we obtain
this way a group homomorphism I'(U) — ngr(B, bp). Its inverse associates to a
family (yx)y the element yy . O

For a grading X of B we denote Fix(X) the subgroup of I'(X) of elements ox
such that (ox) = oy for every morphism of gradings u : X — X.

Proposition 2.10. Let BB be a connected k-category with a given object by and which
admits a versal grading V. There is an injective group map

1. Y(B, bo) — Fix(V).

Proof. To an element y = (yx)y in ngr(B, by) we associate yy € I'(V) which
lies in Fix(}') since y is a coherent graded family. In case yy = 1 consider for each
connected grading X a map of gradings i : V' — X which exists since V is versal.
Since the family is graded coherent we infer that yx = u(yy) = u(1) = 1. O

3. Intrinsic fundamental group

In order to prove that the fundamental grading group considered above is isomorphic
to the intrinsic fundamental group that we have considered in [6, 8] we provide for
the convenience of the reader a brief account of the main tools and results concerning
this theory; complete proofs and details can be found in the cited papers.
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3.1. Galois coverings. The b-star of an object b in a k-category B is the direct sum
of the morphism spaces having b as a source or as a target. Let C be a connected and
non-empty k-category. A k-functor F : C — B is a covering if it is surjective
on objects and if it induces k-isomorphisms between corresponding stars; more
precisely each b-star in B is isomorphic - using F - to the ¢-star in C for any ¢ € Cy
such that F(c) = b. As a consequence a covering is always faithful. Note also that
if a covering of B exists then B is connected.

Let F : C — Band G : D — B be coverings of a k-category B. A morphism
from F to G is a pair of k-functors (H, J) where H : C - D and J : B — B are
such that :

— J is an automorphism of B which is the identity on objects,
— GH = JF.

Remark 3.1. Morphisms of the form (H, J) are called J-morphisms. Due to an
observation of P. Le Meur—see [14, 15, 16]—1-morphisms are not enough in order
to insure that some coverings are isomorphic: indeed if F is a covering and J is
an automorphism of B which is the identity on objects, JF is a covering which is
isomorphic to F but in general not through a 1-morphism.

For a covering F : C — B let Aut; F be the group of automorphisms of C
such that HF = F. Tt acts on the F-fibre of each b € By, namely it acts on
F~Y(b) = {c € Cy | F(c) = b}. This action is free due to a result by P. Le Meur
stating that two J-morphisms which coincide on some object are equal—see [8, 2.9].

Definition 3.2. A covering is Galois if the action of Aut; F' is transitive on some
fibre, or equivalently, if the action is transitive on any fibre.

A connected grading X of B provides a Galois covering through a k-category
called smash product B#X defined as follows. The set of objects is the cartesian
product By x I'(X) while the vector space of morphisms from (b, s) to (b',1) is
xi's » Bp—see [5, 6, 8]. Actually it can be proven that any Galois covering F
is isomorphic to a smash product through a 1-morphism which is not canonical, it
depends on the choice of an object in each fibre of F. We consider Gal*(13, by) the
full subcategory of the category of Galois coverings Gal(3, by) whose objects are
coverings of type Fy : B#X — B.

Given a connected grading X and the corresponding Galois covering Fy, the
structural group I'(X) is identified to Aut; (Fx) as follows: the action on objects is
given by left multiplication on the second component, and on morphisms is provided
by the identical translation of the corresponding homogeneous components. A map
of smash coverings (H, J) : Fx — Fy is given on objects by H(b,s) = (b, Hp(s))
and by J on morphisms.

Following methods closely related to the way in which the fundamental group is
considered in algebraic geometry after A. Grothendieck and C. Chevalley—see for
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instance the book by R. Douady and A. Douady [9]—we have defined in [6, 8] the
following:

Definition 3.3. Let by be an object of a connected k-category B and consider the
fibre functor ®* which assigns to a smash product Galois covering Fy its fibre
Fy (bo) in the category of sets. The intrinsic fundamental group T1{(B, by) is
Aut &%,

3.2. Morphisms of smash products. In order to have a concrete description of the
elements of the previous intrinsic fundamental group, we first recall that we associate
a unique group map

A,y P Autl F — Aut G

to a morphism of Galois coverings (H,J) : F — G such that Hf = Ag, ) (f)H
for every f € Aut; F. Note the following facts:

¢ A is functorial with respect to composition of morphisms of coverings, namely
A@E,g ) = AELIHAH,T)

* AgH.J) = qr,rq " forq € Aut F.

Let J be an automorphism of I3 which is the identity on objects and let X and
Y be connected gradings of B. In case there exists a J-morphism from Fy to Fy
we consider the normalized one verifying N (bg, 1) = (bg, 1). Observe that for any
(H,J) wehave N = Hp, (1)"'H. We set oy = A(y,s). According to the above
formula for A, #, ) we note the following for any morphism (H, J):

s = Hpy ()" A,y Hpy (1). (1)

More precisely Hp(s) = Acm,s)(s)Hp(1) since

(b, Hy(s)) = H(b.s) = Hs(b,1) = A5y (s)H (b, 1)
= A0 ($)(b, Hp(1) = (b, A1) () Hp(1)).

The following result is proven in detail in [9, 2.10]. The fundamental group
I1; (B, by) is isomorphic to the group of coherent families 0 = (0x)x where X
varies over all the connected gradings, ox € I'(X) and uy(ocx) = oy for any J
such that there exists a J-morphism from Fx to Fy.

3.3. Universal coverings. We consider pointed coverings of (B, bg), namely
coverings F : (C,c¢) — (B, bg) where ¢ is an object such that F(c) = bg. In
the previously cited papers a pointed Galois covering U : (U, u) — (B, by) is called
universal if for any Galois pointed covering F : (C,c) — (B, bg) there exists a
unique morphism (H, 1) from U to F such that U(u) = c.
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Remark 3.4. When defining a universal covering we require the existence of a
unique pointed morphism (H, 1). Instead, we could have required the existence of
a pointed morphism (H, J) without specifying the value of J. Doing so uniqueness
is impossible to fulfill since once a morphism exists any multiple of it by a non-zero
scalar is still a morphism.

Universal coverings do not always exist—see for instance [8]. Nevertheless
Schurian categories admit universal coverings—see [3, 7].

As mentioned in the introduction, the proof in [8, Proposition 4.3] of the
following result is incomplete: for a k-category admitting a universal covering, its
intrinsic fundamental group should be isomorphic to the automorphism group of
its universal covering. At the end of the proof of this result we obtain a family of
elements which should provide an automorphism. This is correct only if the obtained
family is coherent, which means that the elements correspond each other through the
canonical group maps; however this fact is not clear.

Instead it appears more natural to consider universal gradings. Indeed, Theo-
rem 2.9 states that in case a universal grading exists its structural group is isomorphic
to the fundamental grading group. In turn the latter is isomorphic to the intrinsic
fundamental group according to the next section.

4. Both fundamental groups are isomorphic

We will prove next that the two fundamental groups considered previously are
isomorphic. We note that both of them consist of families of elements of the
structural grading groups, where the families are respectively graded coherent and
coherent. In Proposition 4.3 we will prove that the set of morphisms involved in the
graded coherent and coherent requirements coincide. As an immediate consequence
we infer that the fundamental groups are isomorphic.

Lemma 4.1. Let B be a k-category, let X and Y be two connected gradings and
let (H,J) : Fx — Fy be a morphism of the Galois coverings obtained through
the smash product. The automorphism J is homogeneous from X to Y for any X -
homogeneous morphism f and we have that

degy J(f) = Hy (1)™" Acu,ry(degx 1) Hp(1).

Proof. Let f € X9, B,. By definition of the smash product f provides a morphism
(still denoted f) from (b, 1) to (b, d ') lying in the Fy-fibre of f.

Note that only homogeneous morphisms are lifted as a unique morphism,
otherwise the pre-image of f once a source object is fixed is a sum of morphisms
according to the homogeneous components of f.
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Since J is the identity on objects, H( /) is a morphism in B#Y from (b, Hy(1))
to (b, Hpy(d™")) = (V. Am,5)(d"")Hp/(1)). The morphism Fy(H(f)) is Y-
homogeneous from b to b” of degree

(Hy (D)™ A, (d) Hp(1).
O

Proposition 4.2. Let (H,J) be a morphism of Galois coverings from Fx to Fy
where X and Y are connected gradings of a k-category B. The group morphism
wy : T(X) = T(Y) is a morphism of gradings from X to Y.

Proof. Let w be a homogeneous closed walk at byg. We are going to prove that

degy J(w) = s (degyw).

If f is an X-homogeneous morphism then

degy J(f) = Hy (1)~ A7) (degy f) Hp(1).

We assert that this formula also holds for a homogeneous walk

W= (fo+1.€n+1) .- ... (f1.€1)

from by to b,4,. Indeed, the formula is verified by induction by inspecting the four
cases according to the values of €, and €, .

In particular if the homogeneous walk is closed at by we obtain the required
formula using the relation between .y and A (g, s) according to (1) in 3.2 ]

Proposition 4.3. Let B be a connected k-category with a base object by and let X
and Y be two connected gradings. For any morphism of gradings . : X — Y there
exists a morphism of Galois coverings (H, J) : Fx — Fy such that uj = .

Proof. Since X is connected we can choose a family (vp)pep, Where v, €
»pHW(B, X)p, and degy v, = 1. For an X -homogeneous morphism f let
-1
f = v Ve

The definition of a morphism of gradings i : X — Y includes the existence of a
homogeneous automorphism J from X to Y such that for any closed homogeneous
walk w,

degy J(w) = p (degxw) .

In particular

degy J(*f) = p(degx ("/)) = p (dengr‘(lf) degy f denga(f)) = p(degy f).
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On the other hand
degy J('f) = degy J (viy) f vats))
= degy J (vr_(lf)) degy J(f)degy J (vo(r)) -
We set hp = (degy J (v3)) " . Then

11 (degy ) = hx(r) degy J(f) hg( sy 2

We define H : B#X — B#Y on objects by H(b,s) = (b, u(s)hp). In order to
have a J-morphism of smash products let f° € /) B#Xp,s), that is a morphism

f e X’_lsb/l’)’b. We put H(f) = J(f). We only have to check that H( f) can be
viewed as a morphism from (b, p(s)hyp) to (b', u(t)hy). This is the case if and only
if

degy J(f) = [w(®)hy] ™" w(s)hy

and this equality is verified using (2) as follows:

degy J(f) = hy' . (degx (/) hy = hy' u (1™'s) hy,.

This morphism of smash products gives rise to a morphism of groups (. y. According
to the previous proposition ;s : X — Y is in turn also a morphism of gradings
associated to J. Then

ps (degxyw) = p (degyw).

Since degy is surjective we infer u = . O

Remark 4.4. Different morphisms of coverings can provide the same morphism of
gradings as the following examples show. Let C be the Kronecker category, that
is the k-category with two objects x and y whose endomorphism algebras are k,
with no non-zero morphisms from y to x, while , Ky is two-dimensional. Note that
once a basis {a, B} of , K, is chosen the category can also be described as the linear
envelope of the path category of the quiver

Let X be the grading with infinite cyclic structural group I'(X) generated by ¢ and
given by X(«) = ¢ and X(f) = 1. Note that this grading is connected. Let
Y be the quotient grading of X with structural group the cyclic group of order
2 and let u : I'(X) — I['(Y) be the quotient map of groups. Let J be the
automorphism of /C which interchanges « and B. It is easy to verify that there exists
a functor H : K#X — K#Y such that (H,J) : Fx — Fy is a morphism of the
Galois coverings; it provides p as morphism of gradings. Moreover the morphism
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of coverings obtained with the identity automorphism of /C also provides u as a
morphism of gradings.

Another example is provided by the set of automorphisms J, , of X where p
and g are non-zero scalars, J, 4(«) = pa and Jp, 4(B) = gB. All the corresponding
automorphisms (H parJ p,q) of Fx provide the identity as morphism of gradings.

5. Schurian generated categories

Let B be a k-category. By definition, a non-zero morphism from an object b to an
object b’ is called Schurian if the space of all morphisms in the category from b to b’
is one-dimensional. The Schurian generated subcategory of B is the intersection of
all the k-subcategories of BB containing the Schurian morphisms. Its morphisms are
the sums of compositions of Schurian morphisms. A k-category is called Schurian
generated (SG for short) if it coincides with its Schurian generated subcategory.

Our main purpose in this section is to prove that a connected SG-category B
admits a universal grading; actually first we will prove that /3 admits a connected
grading by its fundamental group.

Recall that a Schurian category is a k-category such that all the morphism spaces
are one-dimensional—see [3, 7]; a Schurian category is clearly Schurian generated.
From the cited papers we know that a Schurian category admits a universal covering.

Other examples of SG-categories are provided by constricted categories B as
follows. Recall that a presented k-category by a quiver Q with relations is a category
of the form kQ /I where kQ is the linearization of the free category determined by
Q and [ is a two-sided ideal contained in the square of the two-sided ideal generated
by the arrows. Note that isomorphic categories may admit different presentations.
It is easy to see that the arrows of the quiver generate the presented category. A
presented category kQ /1 is called constricted—see [1]—in case for each arrow a
any strictly parallel path (i.e. any path in Q different from a but sharing the same
source and target with a) is zero in the quotient. Clearly this insures that arrows of
Q are Schurian morphisms, hence the presented category is Schurian generated.

Definition 5.1. Let BB be an SG-category. A Schurian generated morphism (SG-
morphism for short) of B is a morphism which is a non-zero composition of Schurian
morphisms; a virtual SG-morphism is a virtual morphism where the morphism
involved is an SG-morphism. An SG-walk is a walk made of virtual SG-morphisms.

Lemma 5.2. Let B be an SG-category.
(1) SG-walks are homogeneous with respect to any grading.

(2) Let J be an automorphism which is the identity on objects, f an SG-
morphism and X a grading. Then J( f) is an SG-morphism anddegy J(f) =

degy f.
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Proof. Let X be a grading. A Schurian morphism from an object b to an object
b’ is clearly homogeneous since 3 3p is one-dimensional. An SG-morphism is a
composition of Schurian morphisms, then it is homogeneous of degree the product
of the degrees.

Moreover if J is an automorphism which is the identity on objects and f is a
Schurian morphism, then J( /) is homogeneous of the same degree. This also holds
for SG-morphisms. O]

Remark 5.3. Observe that assigning a group element to each one-dimensional space
of Schurian morphisms does not always produce a grading of the entire category.
Indeed a given morphism may be written in several ways as a sum of compositions
of SG-morphisms.

Lemma 5.4. Let B be a connected SG-category. Between any two objects there is at
least one SG-walk.

Proof. Since B is connected between any two objects there exists a walk w. The first
component of each virtual morphism of w is a sum of SG-morphisms. Replacing this
sum by one of its summands and performing this for each virtual morphism provides
a new walk w’ which is an SG-walk. O

Lemma 5.5. Let B be an SG-category with a grading X. Each X -homogeneous
morphism is a sum of SG-morphisms of same X -degree.

Proof. Let f be a non-zero morphism. Since B is Schurian generated f = ) f;
where each f; is an SG-morphism, hence homogeneous for any grading. We write
f =) gj where each g; is non-zero and is the sum of all the f;’s having same X -
degree. The g;’s are X -homogeneous of different degrees, which means that they are
the X-homogeneous components of f. Assume now f is X-homogeneous. Then
the sum of the g;’s is reduced to one summand, that is f is a sum of SG-morphisms
of same X-degree. O

Proposition 5.6. Let B be an SG-category with connected gradings X and Y. If
there exists an automorphism J of B homogeneous from X to Y, then the identity of
B is also homogeneous from X to Y and

degy o HW(J) = degy o HW(1).

Proof. Tt suffices to prove the equality by evaluating in an X-homogeneous mor-
phism f. By the previous lemma f = > f; where the f;’s are SG-morphisms
of same X-degree. We can assume that this expression is of minimal length, in
particular no subsum is zero. Now J(f) = > J(fi) = Y. A, fi, where the A;’s
are non-zero elements of k. Note that in this expression of J( f), no subsum is zero
since J is an automorphism. Recall that J( f) is Y -homogeneous. Moreover A; f;
is an SG-morphism for all 7 so it is ¥ -homogeneous as well. Hence all the f;’s have
same Y -degree and degy J(f) = degy f. O
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Corollary 5.7. Let B be an SG-category with connected gradings X and Y. There is
at most one morphism of gradings from X to Y.

Proof. Let u and ' be morphisms corresponding respectively to automorphisms J
and J’ which are homogeneous from X to Y. By the previous result

degy o HW(J) = degy o HW(1) = degy c HW(J'),
hence  degy = u’ degy. Since degy is surjective we obtain yu = . O

Let B be an SG-category with base object bg. Using Lemma 5.4 we choose a
family v = (vp)pen, of SG-walks (called connectors) where v, goes from bg to b
and with the special choice of vy, being the identity endomorphism at bg. As in the
proof of Proposition 4.3, given a morphism f we set

—1
f = v Ve

which is a closed walk at by. Observe that if f is an SG-morphism then Vf is a
closed SG-walk.

Proposition 5.8. Let B be a connected SG-category with base object by. There is a
grading P of B with structural group ngr(B, bo).

Proof. In order to define a grading P by the fundamental grading group we first
define the degree of an SG-morphism f:

degp f = (degx’f)x = (dengr_(lf) degy f denga(f))x )

where X runs over all connected gradings of B. Note that the morphisms involved
are SG-morphisms hence they are homogeneous for any connected grading by the
first part of Lemma 5.2. Consequently the right hand side of the equality makes
sense. We check now that the above family is graded coherent.

Let w : X — Y be a morphism of gradings. By definition there exists a
homogeneous automorphism J such that

p(degy"f) = degy (HW(J)(°f)).

Proposition 5.6 insures that

degy (HW(J)("f)) = degy"/.

Secondly for any p € ngr(B, bo), the homogeneous component of degree p is
defined as the set of all the sums of SG-morphisms of degree p. Since any morphism
is a sum of SG-morphisms it only remains to prove that the sum of the subspaces is
direct. Assume f; + --- 4+ f, = 0 where the f;’s are morphisms of distinct P-
degrees, our purpose is to prove f1 = f, = --- = f, = 0. Incasen > 1 and
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since degp f1 # degp f> there exists a connected grading Xo such thatdegy,*f1 #
degy, Uf,. Let
Iy ={i | degy,"fi = degy,"f1}

and let I, be its complement in {1,...,n}. Note that 1 € I; and 2 € [,. Since
Xo is a grading we infer Y ., fi = 0and }_;c;, f; = 0. The result follows by
induction. ]

Lemma 5.9. The identity automorphism is homogeneous from P to any connected
grading X. Moreover for any P-homogeneous morphism f

degp f = (degx"f)y -

Proof. Let f be a P-homogeneous morphism. By Lemma 5.5 we know that
f =2 fi where the f;’s are SG-morphisms of the same P-degree. As a
consequence for any connected grading X and for any pair of indices i and j

degy"'fi = degyx"f;.

Consequently Vf = Y Vf; is X-homogeneous for any connected grading X and
degx'f = degx"f; for any i. Finally

degp f = degp fi = (degx"fi)xy = (degx"f)x .
]

Let w be a P-homogeneous walk and let “w be the closed walk defined as before
for morphisms.

Lemma 5.10. A P-homogeneous walk w is X -homogeneous for every connected
grading X. Its P-degree is given by the same formula as above, namely:

degpw = (degy‘w)y .
In particular the connectors are P-homogeneous of trivial P-degree.

Proof. The P-degree of w is the product of the P-degrees of the homogeneous
virtual morphisms involved which can be computed according to Lemma 5.9 and
equality (3). Notice that the X -degrees of the connectors annihilate themselves.
Finally the connectors are SG-walks, hence they are P-homogeneous walks and
their degree can be computed using the formula just proved and the fact that the
connector at by is the identity which is of trivial degree for any grading. O

Theorem 5.11. A connected SG-category B with base object by admits a universal
grading with structural group isomorphic to T11(B, by).
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Proof. Recall from Remark 2.2 that Im degp is a subgroup of the structural group.
We claim that P can be restricted to a grading with structural group Im degp which
we will denote P |. To this end it suffices to check that the P-degree of a Schurian
morphism f is the P-degree of some closed P-homogeneous walk at by. Note that
since P is a grading we have the following:

degp’f = degpvr_(lf) degp f degpug(s)-

Since by Lemma 5.10 the P-degrees of the connectors are trivial, degp f = degp"f.
Consequently the grading P with structural group Im deg p exists. By construction
this grading is connected. Next we will prove it is universal.

Let X be a fixed connected grading of 3. Our purpose is to show the existence of
a unique morphism of gradings u : P — Xj, that is the existence of a unique group
morphism p : ' (P}) — I'(Xp) such that there exists at least one homogeneous
automorphism J of B making the following diagram commutative:

HW(J)
boHW(B’ P\L)bo E—— bOHW(B’ XO)bQ

degp, i idegxo

I'(P|) =Imdegp I'(Xo).

“w

Consider the group morphism p defined as follows: let y be an element in Im degp,
that is there exists a closed P-homogeneous walk w at by such that degpw = y. By
Lemma 5.10

degpw = (degy'w)y

and the latter equals (degyw) y since w is already a closed walk at . We set

p(y) = degy,w.

Note that w is well defined: let w’ be another closed P-homogeneous walk at by
representing y that is degpw’ = y = degpw, then degy, w’ = degy, w.
According to Lemma 5.9 the identity automorphism of 3 is homogeneous from
P to Xy. The morphism u above makes the diagram with J/ = 1 commutative.
The above morphism is unique since by Corollary 5.7 between two connected
gradings of an SG-category there is at most one morphism.
Theorem 2.9 asserts that the structural group of the universal grading is isomor-
phic to the fundamental group of the category. 0

6. Examples

We consider four examples. As mentioned in the Introduction the first one is
at the source of the theory of the fundamental group a la Grothendieck, it has
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a universal grading with cyclic fundamental group. The second example has no
universal grading but admits a versal grading and the fundamental group is trivial.
Then we show that for a presented monomial Schurian k-category the fundamental
group of the presentation is isomorphic to the intrinsic fundamental group. Finally
we consider an example in characteristic p which has neither universal nor versal
grading; its intrinsic fundamental group is the product of the infinite cyclic group
and the cyclic group of order p.

6.1. A one-parameter family. Let Q be the quiver

‘Y
/ K
X y Z
and let kQ be the linearization of its path category. For each ¢ € k the one-
dimensional vector space I, = k(dy — géfa) is a two-sided ideal of kQ. We
denote B, the quotient k-category kQ/1,. Note that y is not a Schurian morphism,
and does not belong to the Schurian generated subcategory.

We first recall that 53, is isomorphic to B, for all ¢ and ¢’. Indeed, let F be the
automorphism of £ Q which is the identity on the objects,

Fy)=y+ (¢ —q")pa

and is the identity on the other arrows. Clearly F(I;) = I, and it induces an
isomorphism F : B; — By . In particular B is isomorphic to By for any ¢, in other
words By is a trivial one-parameter deformation of By.

.z/

8

Remark 6.1. The non-intrinsic fundamental group considered by Bongartz, Gabriel
[2] and Martinez-Villa, de la Pefia [17] for representation theory purposes relies on
a particular presentation by a quiver with relations of the k-category. In case g # 0
this non-intrinsic fundamental group is trivial while it is the infinite cyclic group for
q = 0. One of the purposes of the fundamental group a la Grothendieck we have
considered is to provide a theory which does not depend on a presentation.

We will perform computations for an arbitrary value of the parameter g although
we know that it suffices to do it for a specific value, for instance ¢ = 0. We do
so in order to confirm in this example the theory of the fundamental grading group
in its intrinsic aspect, namely that it only depends on the isomorphism class of the
k-category.

Proposition 6.2. For any non-trivial connected grading X of By the morphism
y — qBa is homogeneous and the structural group is cyclic.

Proof. Let X be a connected grading. Since o, § and § are Schurian morphisms
they are homogeneous of degrees denoted respectively a, b and d. The space of
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morphisms from x to z is two-dimensional and B« is already homogeneous, let
y + 1B« be the other homogeneous morphism complementing Sa; we denote by ¢
its degree.

If ¢ = ba the homogeneous closed walks at x are all of trivial degree, implying
that the structural group is trivial since X is connected.

Note that §(y + [Ba) is homogeneous of degree dc. Moreover

S(y +IBa) = (¢ + 1)éBa.

Consequently if ¢ + [ # 0 the degrees of those morphisms coincide, namely
dc = dba, then ¢ = ba and the grading is trivial. If X is not trivial then [ = —g¢,
the morphism y — gBa is homogeneous of degree ¢ and ¢ # ba. Consider

degy : xHW(By. X)x — T'(X).

Then Im degy = {(c_lba)i | i € Z}. Since X is connected Im degy = I'(X).
O

Let U be the grading of kQ by the infinite cyclic group T =< t > such that «, 8
and § are of trivial degree while y —gBa is of degree ¢. The ideal /; is homogeneous
so the grading is well defined on 3, and we still denote it by U.

Proposition 6.3. The grading U of B, is universal.

Proof. For a given non-trivial connected grading X we will prove the existence of
a unique morphism of gradings u : U — X. Note that the identity automorphism
is homogeneous from U to X. We use the same notations as in the previous proof.
The group map u : T — I'(X) is given by u(t) = ¢~'ba. The following diagram

is commutative:

CHWB U)LY HwB. X),

degyy i idegx

T r'(X).

In order to prove that the morphism is unique let X and Y be non-trivial connected
gradings. As before, the identity automorphism is homogeneous from X to Y. We
assert that for any homogeneous automorphism J of B, from X to Y the following
holds:

degy o HW(J) = degy o HW(1). 4)

To this end, we show that J is multiplication by non-zero scalars when evaluated
on homogeneous morphisms. Indeed the homogeneous components are one-
dimensional and coincide for X and Y. Then J multiplies by non-zero scalars the
Schurian morphisms «, B and § as well as their possible compositions. Since J is
homogeneous J(y — ¢Ba) is homogeneous but cannot be a scalar multiple of S
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because this morphism is already in the image of J. Then J(y — ¢gB«) is a non-zero
scalar multiple of y — gBc.

Finally let ' : U — X be a morphism of gradings with corresponding
homogeneous automorphism J; we have just proved that degy o HW(J) =
degy o HW(1), then i’ degy = p degy and . = p’ since degy, is surjective. [

Corollary 6.4. For any q € k the intrinsic fundamental group T1,(By, x) is infinite
cyclic .

6.2. The Kronecker category. We will prove that the Kronecker category X
considered in Remark 4.4 does not have a universal grading, instead there exists
a unique versal grading with structural group the infinite cyclic group. Its fixed
subgroup and the intrinsic fundamental group of /C are trivial.

Lemma 6.5. Every non-trivial connected grading X of K has cyclic structural group
and it is determined by the choice of two linearly independent morphisms o, in
yKx and the assignment of their degrees a and b verifying that b~ 'a is a generator
of T'(X).

Proof. Let X be a connected grading of K. In case the entire , Ky is homogeneous
every closed walk at x is homogeneous of trivial degree, hence the connected grading
is trivial since the degree map is surjective.

In case X is not trivial, there exist two one-dimensional homogeneous compo-
nents and we can choose a homogeneous basis {«, 8} with distinct degrees denoted
a and b. Observe that the degrees of the closed homogeneous walks at x are powers
of b~ 'a, which shows that I"(X) is cyclic generated by h™1a.

Conversely a non-trivial connected grading can be constructed following this
pattern once a basis is given as well as two elements in the cyclic group such that
their difference is a generator of it. O

Proposition 6.6. /C does not admit a universal grading.

Proof. Let X be a non-trivial connected grading. We assert that X has an
automorphism of gradings with group map p determined by

ub™'a) = (b"'a)" =a"'b
and homogenous automorphism J given by
J(@)=Pand J(B) =«

making the required diagram commutative. This automorphism is not the identity
unless the structural group is of order 2, hence X is not universal out of this case.

If the structural group is finite cyclic (in particular of order 2) the grading is not
universal since there is no map from it to any grading by the infinite cyclic group. [J
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Let T be an infinite cyclic group with a given generator . We consider a grading
V' of KC with structural group 7" as follows. Let {«, 8} be a basis of ,K, and we set
degyo =t and degy 8 = 1. Note that V' is connected.

Proposition 6.7. The grading V is versal. Moreover Fix(V) and T11(IC, x) are
trivial.

Proof. Let X be a non-trivial connected grading with homogeneous linearly inde-
pendent morphisms &’ and B’ of degrees a and b. The groupmap u : T — T'(X)
given by u(t) = b~ 'a is a morphism of gradings. Indeed the homogeneous
automorphism J determined by J(«) = «’ and J(8) = B’ makes the required
diagram commutative.

In the proof of the preceding proposition we have shown that V' admits a non-
trivial grading automorphism with group map sending ¢ to #~! hence its structural
group does not have fixed elements except 1. By Proposition 2.10 the fundamental
group is also trivial. O

Note that all the connected gradings with infinite cyclic group are isomorphic
by analogous computations as before. Hence the versal grading is unique up to
isomorphisms of gradings.

6.3. Monomial Schurian categories. By definition a monomial presentation of a
k-category is as follows: let Q be a finite quiver, kQ be the path category and [
be a two-sided ideal of kQ generated by a set of paths of length at least 2. Assume
moreover that all paths of a given length n belong to 7.

Then the fundamental group of the presentation, as considered in [2, 17], is
clearly isomorphic to the topological fundamental group of the graph underlying
0.

Recall from [7] that a k-category B is Schurian if , By is zero or one-dimensional
for any objects x and y. In that case we have proved in this paper that the intrinsic
fundamental group of B is isomorphic to the topological fundamental group of the
associated CW-complex (Definition 3.1).

Assume now that B = kQ/I is monomial and Schurian. Then it is easy to
prove that the CW-complex and the underlying graph of Q have the same homotopy
type. Consequently the fundamental group of the presentation and the intrinsic
fundamental group are isomorphic.

6.4. Truncated polynomial algebras in finite characteristic. Let k be a field of
characteristic p, let C, =<t | t? = 1 > be the cyclic group of order p and
let B = kC, be the group algebra which is isomorphic to k[x]/(x?) through the
isomorphism assigning (x — 1) to t. We consider B as a k-category with a single
object having B as endomorphisms.
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Connected gradings of B have been studied in detail in [6, Section 5, p. 640].
There are two families of non-trivial connected gradings as follows:

e Invertible. In case there exists a non-scalar invertible X-homogeneous
element in B, then all the X-homogeneous elements are invertible and the
structural group is C,. So X is isomorphic to the natural grading of kC),.
Moreover X is simply connected, which means that if ¥ is a connected
grading and p : Y — X is a morphism then p is an isomorphism.

* Maximal. In case every X-homogeneous non scalar element belongs to the
maximal ideal (x), the structural group is cyclic and X is isomorphic to a
quotient of the natural grading of k[x]/(x?) where x is homogeneous. When
the structural group is infinite cyclic the grading is simply connected.

Any automorphism of B preserves the maximal ideal, hence there are no
morphisms of gradings between both families. There is no universal nor versal
grading and the fundamental group is 7' x C),.
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