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Abstract. Let ƒ be a finite abelian group. A dynamical system with transformation group ƒ is
a triple .A;ƒ; ˛/, consisting of a unital locally convex algebraA, the finite abelian groupƒ and
a group homomorphism ˛ W ƒ! Aut.A/, which induces an action ofƒ on A. In this paper we
present a new, geometrically oriented approach to the noncommutative geometry of principal
bundles with finite abelian structure group based on such dynamical systems.

Mathematics Subject Classification (2010). 46L87, 55R10; 37B05, 17A60.

Keywords. Noncommutative differential geometry, dynamical systems, (trivial) principal
bundles with finite abelian structure group, (trivial) noncommutative principal bundles with
finite abelian structure group, graded algebras, crossed-product algebras, factor systems.

1. Introduction

The correspondence between geometric spaces and commutative algebras is a
familiar and basic idea of algebraic geometry. Noncommutative Topology started
with the famous Gelfand–Naimark Theorems: Every commutative C*-algebra is
the algebra of continuous functions vanishing at infinity on a locally compact space
and vice versa. In particular, a noncommutative C*-algebra may be viewed as “the
algebra of continuous functions vanishing at infinity” on a “quantum space”. The
aim of Noncommutative Geometry is to develop the basic concepts of Topology,
Measure Theory and Differential Geometry in algebraic terms and then to generalize
the corresponding classical results to the setting of noncommutative algebras. The
question whether there is a way to translate the geometric concept of a fibre bundle
to Noncommutative Geometry is quite interesting in this context. In the case of
vector bundles a refined version of the Theorem of Serre and Swan [15] gives the
essential clue: The category of vector bundles over a manifold M is equivalent to
the category of finitely generated projective modules over C1.M/. It is therefore
reasonable to consider finitely generated projective modules over an arbitrary algebra
as “noncommutative vector bundles”. The case of principal bundles is so far not
treated in the same satisfactory way. From a geometrical point of view it is not
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sufficiently well understood what a “noncommutative principal bundle” should be.
Still, there are several approaches towards the noncommutative geometry of principal
bundles: For example, there is a well-developed abstract algebraic approach known
as Hopf–Galois extensions which uses the theory of Hopf algebras (cf. [14],
[8, Chapter VII] and [10]). Another topologically oriented approach can be found
in [5]; here the authors use C �-algebraic methods to develop a theory of principal
noncommutative torus bundles based on Green’s Theorem (cf. [7, Corollary 15]).
Furthermore, the authors of [2] introduce C �-algebraic analogs of freeness and
properness, since by a classical result (of Differential Geometry) having a free
and proper action of a Lie Group G on a manifold P is equivalent saying that P
carries the structure of a principal bundle with structure group G. In [19] we have
developed a geometrically oriented approach to the noncommutative geometry of
principal bundles based on dynamical systems and the representation theory of the
corresponding transformation groups.

As is well known from classical Differential Geometry, the relation between
locally and globally defined objects is important for many constructions and
applications. For example, a principal bundle .P;M;G; q; �/ can be considered as a
geometric object that is glued together from local pieces which are trivial, i.e., which
are of the form U �G for some open subset U of M . Thus, a natural step towards a
geometrically oriented theory of “noncommutative principal bundles” is to describe
the trivial objects first, i.e., to determine and to classify the “trivial” noncommutative
principal bundles. The case of the n-torus, i.e., G D Tn, was treated in [18]:

Definition 1.1. (Trivial noncommutative principal torus bundles). A (smooth)
dynamical system .A;Tn; ˛/ is called a (smooth) trivial noncommutative principal
Tn-bundle, if each isotypic component Ak, k 2 Zn, contains an invertible element.

A hint for the quality of this definition for trivial noncommutative principal torus
bundles is the observation that they have a natural counterpart in the theory of Hopf–
Galois extensions: In fact, up to a suitable completion, they correspond to the so-
called cleft CŒZn�-comodule algebras; a notion that is close, although in general not
equivalent, to the triviality of a principal bundle.

Remark 1.2. (Relation to cleft Hopf–Galois extensions). Let G be a group. An
algebra A is a CŒG�-comodule algebra if and only if A is a G-graded algebra (cf.
[3, Lemma 4.8]). Moreover, we conclude from [14, Example 2.1.4] that a G-graded
algebra A D

L
g2G Ag is a Hopf–Galois extension (of A1G ) if and only if A is

strongly graded, i.e., if AgAg0 D Agg0 for all g; g0 2 G. Now, a short calculation
shows that a CŒG�-comodule algebra A is cleft if and only if each grading space Ag
contains an invertible element. For more background on Hopf–Galois extensions, in
particular for the definition of cleft extensions, we refer to [14, Section 2.2].
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Unfortunately, if ƒ is a finite abelian group, then the class of cleft
CŒƒ�-comodule algebras do not extend the classical geometry of trivial principal
ƒ-bundles.

Our approach is inspired by the following observation: without loss of generality
we may assume that ƒ D Cn1 � � � � � Cnk , where k 2 N and each Cni denotes the
cyclic group of order ni . A principal ƒ-bundle .P;M;ƒ; q; �/ is trivial if and only
if it admits a trivialization map. Such a trivialization map consists basically of k
(smooth) functions fi W P ! Cni satisfying f nii D 1 and fi .�.p; �// D fi .p/ � �i
for all p 2 P and � D .�1; : : : ; �k/ 2 ƒ. From an algebraical point of view this
condition means that each isotypic component of the (naturally) induced dynamical
system .C1.P /;ƒ; ˛/ contains an invertible element of (some prescribed) finite
order.

In Section 2 we present a geometrically oriented approach to the noncommutative
geometry of trivial principal Cn-bundles based on dynamical systems of the form
.A; Cn; ˛/. We will in particular see that this approach extends the classical
geometry of trivial principal Cn-bundles. If A D C1.P / for some manifold P ,
then we recover a trivial principal Cn-bundle and, conversely, each trivial principal
bundle .P;M;Cn; q; �/ gives rise to a trivial noncommutative principal Cn-bundle
of the form .C1.P /; Cn; ˛/.

While in classical (commutative) differential geometry there exists up to isomor-
phy only one trivial principal Cn-bundle over a given manifold M , the situation
completely changes in the noncommutative world. Indeed, Fourier decomposition
shows that the underlying algebraic structure of a trivial noncommutative principal
Cn-bundle .A; Cn; ˛/ is the one of a so-called .Cn; ACn/-crossed product algebra,
which are described and classified in Appendix A. Thus, given a unital algebra B
(which serves as a “ base”), the main goal of the third section is to provide a complete
classification of .Cn; B/-crossed product algebras for which the associtated sequence
(2.1) of groups is split, i.e., to classify all “algebraically” trivial noncommutative
principal Cn-bundles with fixed point algebra B .

The goal of Section 4 is to extend the results of Section 2 to finite abelian
groups (which are, up to an isomorphism, products of cyclic groups), i.e., to
present a geometrically oriented approach to the noncommutative geometry of trivial
principal bundles with finite abelian structure group based on dynamical systems of
the form .A;ƒ; ˛/, where ƒ denotes a finite abelian group. Again, we will see
that this approach extends the classical geometry of trivial principal ƒ-bundles: If
A D C1.P / for some manifold P , then we recover a trivial principal ƒ-bundle
and, conversely, each trivial principal bundle .P;M;ƒ; q; �/ gives rise to a trivial
noncommutative principal ƒ-bundle of the form .C1.P /;ƒ; ˛/. Moreover, we
present a bunch of examples of trivial noncommutative principal ƒ-bundles. In
particular, given n 2 N, we will see that the matrix algebra Mn.C/ carries the
structure of a trivial noncommutative principal Cn � Cn-bundle. Furthermore,
the last part of Section 4 is dedicated to some ideas and problems concerning a
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classification theory of “ algebraically” trivial noncommutative principal ƒ-bundles
(with a prescribed fixed point algebra B).

Again, let ƒ be a finite abelian group. Section 5 is finally devoted to a
geometrically oriented approach to the noncommutative geometry of principal ƒ-
bundles. Since the freeness property of a group action is a local condition (cf.
[21, Remark 8.10]), our main idea is inspired by the classical setting: Loosely
speaking, a dynamical system .A;ƒ; ˛/ is called a noncommutative principal ƒ-
bundle, if it is “locally” a trivial noncommutative principal ƒ-bundle in the sense
of Section 4. At this point a localization method for non-commutative algebras or,
more generally, for dynamical systems enters the game (cf. [21]). We prove that
this approach extends the classical theory of principal ƒ-bundles and present some
noncommutative examples. In fact, we first show that each trivial noncommutative
principal ƒ-bundle carries the structure of a noncommutative principal ƒ-bundle
in its own right. We further show that examples of noncommutative principal ƒ-
bundles are provided by sections of algebra bundles with trivial noncommutative
principal ƒ-bundle as fibre, sections of algebra bundles which are pull-backs of
principal ƒ-bundles and sections of trivial equivariant algebra bundles.

Let G be a group and B be a unital algebra. A .G;B/-crossed product algebra
is a G-graded unital algebra with A1G D B and the additional property that each
grading space contains an invertible element. For example, if G is abelian and
B D C, then a .G;B/-crossed product algebra is the same as a G-quantum torus
in the terminology of [13]. In Appendix A we introduce a “cohomology theory”
for crossed product algebras, which is inspired by the classical cohomology theory
of groups. The corresponding cohomology spaces are crucial for the classification
of trivial noncommutative principal bundles with compact abelian structure group.
A detailed discussion for the case G D Zn can be found in [18]. Finally, given
a compact abelian group G, the last part of the appendix is devoted to a Landstad
duality theorem for C �-dynamical systems .A;G; ˛/ with the property that each
isotypic component contains an invertible element. We did not find such a result in
the literature.

The present paper is part of a larger program with the intention of finding a
geometric approach to noncommutative principal bundles (cf. [19], [18] and [21]).

Preliminaries and Notations. All manifolds appearing in this paper are assumed to
be finite-dimensional, paracompact, second countable and smooth. For the necessary
background on (principal) bundles and vector bundles we refer to [9]. All algebras
are assumed to be associative and complex if not mentioned otherwise. Given an
algebra A, we write �A WD Homalg.A;C/nf0g (with the topology of pointwise
convergence on A) for the spectrum of A and Aut.A/ for the corresponding group
of automorphisms in the category of A. Moreover, a dynamical system is a triple
.A;G; ˛/, consisting of a unital locally convex algebra A, a topological groupG and
a group homomorphism ˛ W G ! Aut.A/, which induces a continuous action of G
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on A. We will also make use of concepts coming from classical group cohomology:

If G;H are groups and p 2 N0, we say that a map f W Gp ! H is normalized if

.9j / gj D 1G ) f .g1; : : : ; gp/ D 1H

and write Cp.G;H/ for the space of all normalized mapsGp ! H , the so called p-
cochains. For a detailed background on group cohomology we refer to [11, Chapter
IV]. Finally, for n 2 N we write

Cn WD fz 2 C� W zn D 1g D f�k W � WD exp
�
2�i

n

�
; k D 0; 1; : : : ; n � 1g

for the cyclic subgroup of T of n-th roots of unity.

2. Trivial noncommutative principal Cn-bundles

In this section we present a geometrically oriented approach to the noncommutative
geometry of trivial principal Cn-bundles based on dynamical systems of the form
.A; Cn; ˛/. We will in particular see that this approach extends the classical
geometry of trivial principal Cn-bundles: If A D C1.P / for some manifold P ,
then we recover a trivial principal Cn-bundle and, conversely, each trivial principal
bundle .P;M;Cn; q; �/ gives rise to a trivial noncommutative principal Cn-bundle
of the form .C1.P /; Cn; ˛/.

Notation 2.1. We recall that the map

‰ W Cn ! Homgr.Cn;T/; ‰.�k/.�/ WD �k

is an isomorphism of abelian groups. In the following we will identify the character
group of Cn with Cn via the isomorphism ‰. In particular, if A is a unital locally
convex algebra and .A; Cn; ˛/ a dynamical system, then we write

Ak WD A‰.�k/ D fa 2 A W ˛.�/:a D ‰.�
k/.�/ � a D �k � ag

for the isotypic component corresponding to �k , k D 0; 1; : : : ; n � 1.

Definition 2.2. (Trivial noncommutative principal Cn-bundles). A dynamical
system .A; Cn; ˛/ is called a trivial noncommutative principal Cn-bundle if each
isotypic component Ak contains an invertible element ak satisfying an

k
D 1A.

Remark 2.3. Let .A; Cn; ˛/ be a dynamical system such that each isotypic
component Ak , k D 0; 1; : : : ; n � 1, contains an invertible element. Then the set

A�h WD
[

0�k�n�1

A�k
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of homogeneous units is a subgroup of A� containing A�0 and we thus obtain the
following short exact sequence

1 �! A�0 �! A�h
q
�! Cn �! 1 (2.1)

of groups, where q.ak/ WD �k .

Proposition 2.4. A dynamical system .A; Cn; ˛/ is a trivial noncommutative princi-
pal Cn-bundle if and only if the associtated sequence (2.1) is split, i.e., if there is a
group homomorphism � W Cn ! A�

h
satisfying q ı � D idCn .

Proof. (“)”) For this direction we first choose an invertible element a1 2 A1
satisfying an1 D 1A. Then a short calculation shows that the map

� W Cn ! A�h ; �.�
k/ WD .a1/

k

defines a group homomorphism splitting the associated sequence (2.1) of groups.
(“(”) Let � W Cn ! A�

h
be a group homomorphism splitting the associated

sequence (2.1) of groups and put ak WD �.�/k . Then ak 2 Ak is invertible by
definition and satisfies an

k
D �.�/kn D �.�kn/ D �.1/ D 1A.

Remark 2.5. Let .A; Cn; ˛/ be a trivial noncommutative principal Cn-bundle and
� W Cn ! A�

h
a group homomorphism which splits (2.1). Then the map

A�0 oS Cn ! A�h ; .a0; �
k/ 7! a0�.�/

k

is an isomorphism of groups, where the semidirect product is defined by the
homomorphism

S WD CA�
0
ı � W Cn ! Aut.A�0 /

and CA�
0
W A�

h
! Aut.A�0 / denotes the conjugation action of A�

h
on A�0 .

Lemma 2.6. Let .A; Cn; ˛/ be a dynamical system and B WD ACn . Then the
following statements are equivalent:

(a) There exist invertible elements a1 2 A1 and b1 2 B such that an1 D b
n
1 .

(b) For each k D 0; 1; : : : ; n � 1 there exist invertible element ak 2 Ak and
bk 2 B such that an

k
D bn

k
.

Proof. (a)) (b): For k D 0; 1; : : : ; n � 1 we simply put ak WD ak1 and bk WD bk1 .
Then ak 2 Ak and bk 2 B are both invertible and we have

ank D a
kn
1 D .a

n
1/
k
D .bn1 /

k
D .bk1 /

n
D bnk :

(b)) (a): This direction is obvious.
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Proposition 2.7. Let .A; Cn; ˛/ be a dynamical system such that B WD ACn is a
central subalgebra of A. Then .A; Cn; ˛/ is a trivial noncommutative principal
Cn-bundle if and only if .A; Cn; ˛/ satisfies one of the equivalent conditions of
Lemma 2.6.

Proof. (“)”) This direction immediately follows from Definition 2.2.
(“(”) For the other direction we first choose invertible elements a1 2 A1 and

b1 2 B such that an1 D b
n
1 . Then a short calculation shows that the map

� W Cn ! A�h ; �.�
k/ WD .a1b

�1
1 /k

is a group homomorphism which splits the associated sequence (2.1) of groups.

Lemma 2.8. If A is a unital locally convex algebra and .A; Cn; ˛/ a dynamical
system such that each isotypic component Ak contains an invertible element, then
the induced map

� W �A � Cn ! �A; �:�
k
WD �.�; �k/ WD � ı ˛.�k/

defines a free action of Cn on the spectrum �A of A.

Proof. An easy observation shows that � defines an action of Cn on the spectrum
�A. The crucial part is to verify the freeness of the map � , i.e., to show that the
stabilizer of each element of �A is trivial: For this, we first choose an invertible
element a1 2 A1. Now, let � 2 �A and 0 � l � n�1 such that �:�l D �ı˛.�l/ D �.
Then

.� ı ˛.�l//.a1/ D �.˛.�
l/:a1/ D �

l
� �.a1/ D �.a1/

implies that �l D 1 and thus in turn that l D 0, which proves the freeness of the map
� .

Remark 2.9. If P is a manifold, p 2 P and ıp the corresponding point evaluation
map on C1.P /, then there is a unique smooth structure on the spectrum �C1.P / of
C1.P / for which the map

ˆ W P ! �C1.P /; p 7! ıp

becomes a diffeomorphism. A proof of this statement can be found in [20, Lemma
2.5].

Proposition 2.10. Let P be a manifold and .C1.P /; Cn; ˛/ a dynamical system
such that each isotypic component C1.P /k contains an invertible element. Then
the map

� W P � Cn ! P; .ıp; �
k/ 7! ıp ı ˛.�

k/;



994 S. Wagner

where we have identifiedP with the set of characters via the mapˆ from Remark 2.9,
is smooth and defines a free and proper action ofCn on the manifoldP . In particular,
we obtain a principal bundle .P; P=Cn; Cn; pr; �/, where pr W P ! P=Cn denotes
the canonical orbit map.

Proof. Since the group Cn is finite, the map � is obviously smooth and proper. Its
freeness follows from Lemma 2.8. Therefore, the Quotient Theorem implies that we
obtain a principal bundle .P; P=Cn; Cn; pr; �/ (cf. [17, Kapitel VIII, Satz 21.6]).

Theorem 2.11. (Trivial principal Cn-bundles). Let P be a manifold. Then the
following assertions hold:

(a) If .C1.P /; Cn; ˛/ is a trivial noncommutative principal Cn-bundle, then the
corresponding principal bundle .P; P=Cn; Cn; pr; �/ of Proposition 2.10 is
trivial.

(b) Conversely, if .P;M;Cn; q; �/ is a trivial principal Cn-bundle, then the
corresponding dynamical system .C1.P /; Cn; ˛/ defined by

˛ W Cn � C
1.P /! C1.P /; ˛.�k; f /.p/ WD .�k :f /.p/ WD f .�.p; �k//;

is a trivial noncommutative principal Cn-bundle.

Proof. (a) If .C1.P /; Cn; ˛/ is a trivial noncommutative principal Cn-bundle, then
we may choose an invertible element f 2 C1.P /1 satisfying f n D 1 from which
we conclude that im.f / D Cn. In particular, the map

' W P ! P=Cn � Cn; p 7! .pr.p/; f .p//

defines an equivalence of principal Cn-bundles over P=Cn implying that the
principal bundle .P; P=Cn; Cn; pr; �/ of Proposition 2.10 is trivial.

(b) Conversely, let .P;M;Cn; q; �/ be a trivial principal Cn-bundle and

' W P !M � Cn; p 7! .q.p/; f .p//

be an equivalence of principal Cn-bundles over M . We first note that the function
f 2 C1.P / is invertible. Furthermore, the Cn-equivariance of ' implies that
f 2 C1.P /1. Hence, f 2 C1.P /1 is invertible and satisfies f n D 1. We thus
conclude that .C1.P /; Cn; ˛/ is a trivial noncommutative principal Cn-bundle.

3. Classification of trivial noncommutative principal Cn-bundles

While in classical (commutative) differential geometry there exists up to isomorphy
only one trivial principal Cn-bundle over a given manifold M , the situation
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completely changes in the noncommutative world. Indeed, Fourier decomposition
shows that the underlying algebraic structure of a trivial noncommutative principal
Cn-bundle .A; Cn; ˛/ is the one of a so-called .Cn; ACn/-crossed product algebra,
which are described and classified in Appendix A. Thus, given a unital algebra B
(which serves as a “base”), the main goal of this section is to provide a complete
classification of .Cn; B/-crossed product algebras for which the associtated sequence
(2.1) of groups is split, i.e., to classify all “algebraically” trivial noncommutative
principal Cn-bundles with fixed point algebra B .

Definition 3.1. Let B be a unital algebra. We say that two group homomorphisms
S; S 0 W Cn ! Aut.B/ are equivalent and write in that case S � S 0 if there exists an
element h 2 C 1.Cn; B�/ satisfying the following two conditions:

(i) We have S 0 D .CBıh/�S , whereCB W B� ! Aut.B/ denotes the conjugation
action of B� on B .

(ii) The class ŒdSh� 2 H 2.Cn; Z.B/
�/S (cf. [11, Chapter IV, Section 4] for the

corresponding definition) vanishes, where

dSh.�
k; �l/ WD h.�k/S.�k/.h.�l//h.�kCl/�1:

Remark 3.2. To see that the 2-cochain dSh in Definition 3.1 (ii) is actually a 2-
cocycle, we just have to note that condition (i) is equivalent to im.dSh/ � Z.B/�,
which in turn implies that dSh 2 Z2.Cn; Z.B/�/S (cf. [12, Remark 2.20 (b)]).

Lemma 3.3. Let B be a unital algebra. Then � defines an equivalence relation on
the set Homgr.Cn;Aut.B//.

Proof. For the proof we have to check that � is reflexive, symmetric and transitive:
� “Reflexivity”: We just take h � 1B .

� “Symmetry”: We take h0 WD h�1. Then a short calculation shows that
dS 0h

0 D dSh.

� “Transitivity”: If S � S 0 with h 2 C 1.Cn; B
�/ and S 0 � S 00 with

h0 2 C 1.Cn; B
�/, then we easily conclude S � S 00 with h0 �h 2 C 1.Cn; B�/.

In fact, another short calculation yields dS .h0 � h/ D dS 0h0 C dSh.

Definition 3.4. (Set of equivalence classes). Let B be a unital algebra. We write
Ext.Cn; B/split for the set of all equivalence classes of .Cn; B/-crossed product
algebras for which the associated sequence (2.1) of groups is split.

Proposition 3.5. Let B be a unital algebra and S W Cn ! Aut.B/ a group
homomorphism. Then the .Cn; B/-crossed product algebra AS WD A.S;1/ of
Construction A.11 defines an element of Ext.Cn; B/split.
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Proof. We just have to note that the map � W Cn ! A�
h

, �.�k/ WD v�k defines a
group homomorphism splitting the associated sequence (2.1) of groups.

Theorem 3.6. Let B be a unital algebra. Then the map

ˆ W Homgr.Cn;Aut.B//= �! Ext.Cn; B/split; ŒS� 7! ŒAS �

is a well-defined bijection.

Proof. We divide the proof of this theorem into three parts:
(i) That the map ˆ is well-defined is a consequence of Proposition 3.5 and [12,

Remark 2.20 (b)]: In fact, if S � S 0 with h 2 C 1.Cn; B�/, then we get

ŒAS � D ŒA.S 0;dSh/� D ŒdSh�:ŒAS 0 � D ŒAS 0 �

(cf. Theorem A.18).
(ii) Next, we show that ˆ is surjective: For this, let ŒA� 2 Ext.Cn; B/split and

choose a group homomorphism � W Cn ! A�
h

splitting the associated sequence
(2.1) of groups. Then S WD CB ı � W Cn ! Aut.B/ defines a group homomorphism
satisfying ˆ.ŒS�/ D ŒAS � D ŒA�.

(iii) To see that ˆ is injective, we choose S; S 0 2 Homgr.Cn;Aut.B// with
ŒAS � D ŒAS 0 �. Then there exists h 2 C 1.Cn; B

�/ with S 0 D .CB ı h/ � S

what is equivalent to im.dSh/ � Z.B/�, which in turn implies that dSh 2
Z2.Cn; Z.B/

�/S (cf. [12, Remark 2.20 (b)]). Now, we conclude from

ŒAS � D ŒA.S 0;dSh/� D ŒdSh�:ŒAS 0 � D ŒAS 0 �

that ŒdSh� 2 H 2.Cn; Z.B/
�/S vanishes. Therefore, we obtain S � S 0 (with h 2

C 1.Cn; B
�/).

Corollary 3.7. If B is commutative, then the map

ˆ W Homgr.Cn;Aut.B//! Ext.Cn; B/split; S 7! ŒAS �

is a well-defined bijection.

Proof. The assertion immediately follows from Theorem 3.6 and the fact that in this
case we have S � S 0 if and only if S D S 0.

Remark 3.8. Let ƒ be an abelian group and S W Cn ! Aut.ƒ/ be a group
homomorphism. Further, let Nƒ be the subgroup of ƒ generated by the elements of
the form �C S.�/:�C � � � C S.�n�1/:� for � 2 ƒ, i.e.,

Nƒ WD
˝
�C S.�/:�C � � � C S.�n�1/:� W � 2 ƒ

˛
:
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Then we have
H 2.Cn; ƒ/S Š ƒ

Cn=Nƒ:

In particular, if S is trivial, then H 2.Cn; ƒ/ Š ƒ=nƒ and thus H 2.Cn; ƒ/ is trivial
for divisible ƒ. A nice reference for the previous discussion is [11, Chapter IV,
Section 7].

Example 3.9. If B D C, then Aut.B/ D fidCg. We thus conclude from Corollary
3.7 and Remark 3.8 that Ext.Cn;C/split consists of a single element which is
geometrically realized as the trivial principal Cn-bundle over a single point f�g,
which algebraically corresponds to the group algebra CŒCn�.

Example 3.10. If B D C1.M/ for some manifold M , then Aut.B/ Š Diff.M/.
We thus conclude from Corollary 3.7 that Ext.Cn; C1.M//split is classified by
diffeomorphisms of the manifold M of finite order n. In particular, the trivial
principal Cn-bundle over M corresponds to the trivial diffeomorphism, i.e., to
S D 1.

Example 3.11. Let B D Mm.C/ for some m 2 N. Then Z.Mm.C//� Š C�
and according to the well-known Skolem–Noether Theorem each automorphism of
Mm.C/ is inner. In particular, each group homomorphism S 0 W Cn ! Inn.Mm.C//
is equivalent to S D 1, since H 2.Cn;C�/ is trivial (cf. Remark 3.8). From this we
conclude that Ext.Cn;Mm.C//split consists of a single element, which is realized by
the group algebra Mm.C/ŒCn� (with multiplication given by the usual convolution
product).

4. Trivial noncommutative principal bundles with finite abelian structure
group

In the following letƒ be a finite abelian group. The goal of this section is to present a
geometrically oriented approach to the noncommutative geometry of trivial principal
ƒ-bundles based on dynamical systems of the form .A;ƒ; ˛/. Again, we will see
that this approach extends the classical geometry of trivial principal ƒ-bundles. If
A D C1.P / for some manifold P , then we recover a trivial principal ƒ-bundle
and, conversely, each trivial principal bundle .P;M;ƒ; q; �/ gives rise to a trivial
noncommutative principal ƒ-bundle of the form .C1.P /;ƒ; ˛/.

Notation 4.1. Let ƒ be a finite abelian group and let f�1; : : : ; �kg be a set of
generators of ƒ (having order n1; : : : ; nk 2 N) of minimal cardinality. To each
such generator �i we associate an elementb�i of its dual group bƒ WD Homgr.ƒ;T/
by defining b�i .�j / WD (�i for i D j

1 otherwise:
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Here, the complex numbers �i are defined for each i D 1; : : : ; k through

Cni WD fz 2 C� W zni D 1g D
�
�li W �i WD exp

�
2�i

ni

�
; l D 0; 1; : : : ; ni � 1

�
:

Definition 4.2. (Trivial noncommutative principalƒ-bundles). A dynamical system
.A;ƒ; ˛/ is called a trivial noncommutative principalƒ-bundle if there exists a set of
generators f�1; : : : ; �kg of ƒ (having order n1; : : : ; nk 2 N) of minimal cardinality
such that each associated isotypic component

A O�i
WD fa 2 A W .8� 2 ƒ/ W ˛.�; a/ Db�i .�/ � ag

contains an invertible element ai satisfying anii D 1A.

Remark 4.3. Note that ifƒ is cyclic, i.e., ifƒ D Cn for some n 2 N, then Definition
4.2 coincides with Definition 2.2.

Remark 4.4. Let .A;ƒ; ˛/ be a dynamical system such that each isotypic com-
ponent contains an invertible element. Then the set A�

h
of homogeneous units is a

subgroup ofA� containingA�0 and we thus obtain the following short exact sequence

1 �! A�0 �! A�h
q
�! bƒ �! 1 (4.1)

of groups, where q.a O�/ WD
b� (wheneverb� 2 bƒ and a O� 2 A O�). If now f�1; : : : ; �kg

is a set of generators ofƒ (having order n1; : : : ; nk 2 N) of minimal cardinality, then
each of the natural inclusion maps �i W bƒi ! bƒ gives rise to a pull back extension

Ei W 1 �! A�0 �! A�h;i �!
bƒi �! 1 (4.2)

of (4.1). Here, bƒi denotes the subgroup of bƒ generated by b�i , i.e., bƒi WD hb�i igr

(note thatb�i has by definition order ni 2 N) and

A�h;i WD
[

0�l�ni�1

A�
O�l
i

:

Proposition 4.5. A dynamical system .A;ƒ; ˛/ is a trivial noncommutative prin-
cipal ƒ-bundle if and only if each pull back extension Ei (4.2) of the associtated
sequence (4.1) of groups is split, i.e., if for each i D 1; : : : ; k there is a group
homomorphism �i W bƒi ! A�

h;i
satisfying q ı �i D id Oƒi .

Proof. (“)”) For this direction we first choose for each i D 1; : : : ; k an invertible
element ai 2 A O�i satisfying anii D 1A. Then a short calculation shows that the map

�i W bƒi ! A�h;i ; �.
b�li / WD .ai /l ; l D 0; : : : ; ni � 1

defines a group homomorphism splitting the pull back extension Ei .
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(“(”) For each i D 1; : : : ; k, let �i W bƒi ! A�
h;i

be a group homomorphism

splitting the the pull back extension Ei and put ai WD �.b�i /. Then ai 2 A O�i is
invertible by definition and satisfies

a
ni
i D �.

b�i /n1 D �.b�nii / D �.1/ D 1A:
Lemma 4.6. If A is a unital locally convex algebra and .A;ƒ; ˛/ a dynamical
system such that each isotypic component contains an invertible element, then the
induced map

� W �A �ƒ! �A; �:� WD �.�; �/ WD � ı ˛.�/

defines a free action of ƒ on the spectrum �A of A.

Proof. The proof of this assertion is similar to the proof of Lemma 2.8. Alternatively,
we refer to [20, Proposition 5.6].

Proposition 4.7. Let P be a manifold and .C1.P /;ƒ; ˛/ a dynamical system such
that each isotypic component contains an invertible element. Then the map

� W P �ƒ! P; .ıp; �/ 7! ıp ı ˛.�/;

where we have identified P with the set of characters via the map ˆ from Remark
2.9, is smooth and defines a free and proper action of ƒ on the manifold P . In
particular, we obtain a principal bundle .P; P=ƒ;ƒ; pr; �/, where pr W P ! P=ƒ

denotes the canonical orbit map.

Proof. Since the group ƒ is finite, the map � is obviously smooth and proper. The
freeness of � is a consequence of Lemma 4.6. Therefore, the Quotient Theorem
implies that we obtain a principal bundle .P; P=ƒ;ƒ; pr; �/ (cf. [17, Kapitel VIII,
Satz 21.6]).

Theorem 4.8. (Trivial principal ƒ-bundles). If P is a manifold, then the following
assertions hold:

(a) If .C1.P /;ƒ; ˛/ is a smooth trivial NCP ƒ-bundle, then the corresponding
principal bundle .P; P=ƒ;ƒ; pr; �/ of Proposition 4.7 is trivial.

(b) Conversely, if .P;M;ƒ; q; �/ is a trivial principal ƒ-bundle, then the
corresponding smooth dynamical system .C1.P /;ƒ; ˛/ defined by

˛ W ƒ � C1.P /! C1.P /; ˛.�; f /.p/ WD .�:f /.p/ WD f .�.p; �//;

is a trivial noncommutative principal ƒ-bundle.
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Proof. (a) If .C1.P /;ƒ; ˛/ is a trivial noncommutative principal ƒ-bundle, then
there exist a set of generators f�1; : : : ; �kg of ƒ (having order n1; : : : ; nk 2 N) of
minimal cardinality and invertible elements fi 2 C1.P / O�i satisfying f nii D 1.
From this we immediately conclude that im.fi / D Cni . Moreover, we note that the
map

� W Cn1 � � � � � Cnk ! ƒ; .�
l1
1 ; : : : �

lk
k
/ 7! �

l1
1 � � ��

lk
1 ;

is an isomorphism of finite abelian groups. Now, a short observation shows that

' WD pr�.� ı .f1; : : : ; fk// W P ! P=ƒ �ƒ

defines an equivalence of principal ƒ-bundles over P=ƒ implying that the principal
bundle .P; P=ƒ;ƒ; pr; �/ of Proposition 4.7 is trivial.

(b) Conversely, let .P;M;ƒ; q; �/ be a trivial principal ƒ-bundle and let ' W
P ! M � ƒ be an equivalence of principal ƒ-bundles over M . Then ' induces a
ƒ-equivariant isomorphism of unital locally convex algebras between C1.P / and
C1.M �ƒ/ and thus the statment follows from the observation that

C1.M �ƒ/ D
M
O�2 Oƒ

b� � C1.M/:

holds as a consequence of Fourier decomposition.

Some more examples. In this subsection we present a bunch of examples of trivial
noncommutative principal ƒ-bundles. For this we recall that the dual group bƒ also
carries the structure of a finite abelian group. Moreover, given n 2 N, we will see that
the matrix algebra Mn.C/ carries the structure of a trivial noncommutative principal
Cn � Cn-bundle.
Construction 4.9. (`1-crossed products). Let .A; k � k;� / be an involutive Banach
algebra and .A;ƒ; ˛/ a dynamical system. Note that this means that ƒ acts by
isometries of A. We write F.ƒ;A/ for the vector space of functions f W ƒ ! A

and define a multiplication on this space by

.f ? g/.�/ WD
X
�02ƒ

f .�0/˛.�0; g.� � �0//:

Moreover, an involution is given by

f �.�/ WD ˛.�; .f .��//�/:

These two operations are continuous for the `1-norm

kf k1 WD
X
�2ƒ

kf .�/k:

For consistency we write `1.A o˛ ƒ/ for the corresponding involutive Banach
algebra.
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Proposition 4.10. If .A; k � k;� / is an involutive Banach algebra and .A;bƒ; ˛/ a
dynamical system, then the map

b̨ W ƒ � `1.Ao˛ bƒ/! `1.Ao˛ bƒ/; .b̨.�; f //.b�/ WD .�:f /.b�/ WDb�.�/ � f .b�/
defines an action of ƒ on `1.Ao˛ bƒ/ by algebra automorphisms. In particular, the
triple

.`1.Ao˛ bƒ/;ƒ;b̨/
defines a dynamical system.

Proof. The proof of this lemma is similar to the proof of [18, Lemma 2.6].

Example 4.11. If .A; k � k;� / is an involutive Banach algebra and .A;bƒ; ˛/ a
dynamical system, then the dynamical system .`1.A o˛ bƒ/;ƒ;b̨/ is a trivial NCP
ƒ-bundle. Indeed, given a set of generators f�1; : : : ; �kg of ƒ (having order
n1; : : : ; nk 2 N) of minimal cardinality, we define

ıi .b�/ WD (1A for b� Db�i
0 otherwise

:

Then
�:ıi Db�i .�/ � ıi ; and ıi ? ı

�
i D ı

�
i ? ıi D 1

show that ıi is an invertible element of `1.Ao˛ bƒ/ lying in the isotypic component
`1.Ao˛ bƒ/ O�i . From this observation and ınii D 1 we conclude that `1.Ao˛ bƒ/ is
a trivial noncommutative principal ƒ-bundle.

Example 4.12. If .A; k � k;� / is an involutive Banach algebra and .A;bƒ; ˛/ a
dynamical system, then the action b̨ of Proposition 4.10 extends to a continuous
action of ƒ on the enveloping C �-algebra C �.Ao˛ bƒ/ by algebra automorphisms.
For details we refer to the [16]. In particular, the corresponding dynamical system

.C �.Ao˛ bƒ/;ƒ;b̨/
is a trivial noncommutative ƒ-bundle. This follows exactly as in Example 4.11.

Remark 4.13. (2-cocycles). A 2-cocycle on ƒ with values in the circle T is a map
! W ƒ �ƒ! T satisfying !.0ƒ; 0ƒ/ D 1 and

!.�; �0/!.�C �0; �00/ D !.�; �0 C �00/!.�0; �00/

for all �; �0; �00 2 ƒ. We write Z2.ƒ;T/ for the space of all 2-cocycle on ƒ with
values in T.
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Construction 4.14. (`1-spaces associated to 2-cocycles). Let .A; k � k;� / be an
involutive Banach algebra and ! a 2-cocycle in Z2.ƒ;T/. The involutive Banach
algebra `1.A �! ƒ/ is defined similar to Construction 4.9 by introducing a twisted
multiplication

.f ? g/.�/ WD
X
�02�

f .�0/g.� � �0/!.�0; � � �0/

and an involution
.f �/.�/ WD !.�;��/ � f .��/:

In fact, the cocycle property ensures that the multiplication is associative. The
enveloping C �-algebra of `1.A �! ƒ/ is called the twisted A-valued group C �-
algebra of ƒ by ! and denoted by C �.A �! ƒ/.

Example 4.15. Let .A; k � k;� / be an involutive Banach algebra and ! a 2-cocycle
in Z2.bƒ;T/. Similarly to Proposition 4.10, we see that the map

b̨ W ƒ � `1.A �! bƒ/! `1.A �! bƒ/; .b̨.�; f //.b�/ WD .�:f /.b�/ WDb�.�/ � f .b�/
defines an action of ƒ on `1.A �! ƒ/ by algebra automorphisms. Moreover, the
corresponding dynamical system

.`1.A �! bƒ//;ƒ;b̨/
turns out to be a trivial noncommutative principal ƒ-bundle (cf. Example 4.11).

Example 4.16. The action b̨ of Example 4.15 extends to an action of ƒ on
C �.A �! bƒ/ by algebra automorphisms (cf. Example 4.12). The corresponding
dynamical system

.C �.A �! bƒ/;ƒ;b̨/
is a trivial noncommutative principal ƒ-bundle as well.

Example 4.17. (The matrix algebra). For n 2 N and � WD exp
�
2�i
n

�
we define

R WD

0BBBBB@
1

�

�2

: : :

�n�1

1CCCCCA and S WD

0BBBBBB@
0 � � � � � � 0 1

1 0 � � � 0 0
: : :

: : :
:::

:::
: : : 0

:::

0 1 0

1CCCCCCA :

We note that the matrices R and S are unitary and satisfy the relations Rn D 1,
Sn D 1 and RS D � � SR. Further, they generate a C �-subalgebra which clearly
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commutes only with the multiples of the identity, so it has to be the full matrix
algebra. The map

˛ W .Cn � Cn/ �Mn.C/! Mn.C/; .�k; �l/:A WD RlSkAS�kR�l

for k; l D 0; 1; : : : ; n � 1 defines a smooth group action of Cn � Cn on Mn.C/ with
fixed point algebra C. We now conclude from

R� 2 Mn.C/.1;0/ WD
n
A 2 Mn.C/ W .8.�k; �l/ 2 Cn � Cn/ .�k; �l/:A D �k � A

o
and

S 2 Mn.C/.0;1/ WD
n
A 2 Mn.C/ W .8.�k; �l/ 2 Cn � Cn/ .�k; �l/:A D �l � A

o
that the triple .Mn.C/; Cn � Cn; ˛/ is a smooth trivial noncommutative principal
Cn � Cn-bundle.

Some remarks on the classification of trivial noncommutative principal bundles
with finite abelian structure group. In Section 3 we gave a complete classification
of all “algebraically” trivial noncommutative principal Cn-bundles with a prescribed
fixed point algebra B . Unfortunately, a similar classification theory for a general
noncommutative principal ƒ-bundles seems to be much more involved. As before,
Fourier decomposition shows that the underlying algebraic structure of a trivial
noncommutative principal ƒ-bundle .A;ƒ; ˛/ is the one of a so-called .bƒ;Aƒ/-
crossed product algebra, which are described and classified in Appendix A. Thus,
given a unital algebra B (which serves as a “base”), the main goal of this
short subsection is to discuss some ideas and problems concerning a complete
classification of .ƒ;B/-crossed product algebras for which the corresponding pull
back extensions of the associtated sequence (4.1) of groups is split, i.e., to classify all
“ algebraically” trivial noncommutative principalƒ-bundles with fixed point algebra
B (cf. Remark 4.4 and Proposition 4.5).

Notation 4.18. Let B be a unital algebra. Then Ext.ƒ;B/ denotes the set of all
equivalence classes of .ƒ;B/-crossed product algebras (cf. Definition A.9) and we
recall that according to Theorem A.15, the map

� W Ext.ƒ;B/! H 2.ƒ;B/; ŒA� 7! �.A/ D Œ.S; !/�

is a well-defined bijection, i.e., the cohomology space H 2.ƒ;B/ from Appendix
A classifies the set of all equivalence classes of .ƒ;B/-crossed product algebras.
Next, given a set f�1; : : : ; �kg of generators of ƒ (having order n1; : : : ; nk 2 N) of
minimal cardinality and a class ŒA� 2 Ext.ƒ;B/ with �.A/ D Œ.S; !/�, we write ƒi
for the subgroup ofƒ generated by �i , i.e.,ƒi WD h�i igr and Œ.Si ; !i /� 2 H 2.ƒi ; B/

for the factor system of the corresponding pull back extension Ei (cf. Remark 4.4).
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Definition 4.19. Let B be a unital algebra. We write Ext.ƒ;B/ss for the set of
all equivalence classes of .ƒ;B/-crossed product algebras for which there exists
a set f�1; : : : ; �kg of generators of ƒ (having order n1; : : : ; nk 2 N) of minimal
cardinality such that ŒA.Si ;!i /� 2 Ext.ƒi ; B/split for all i D 1; : : : ; k (cf. Definition
3.4 and Construction A.11). Here, “ss” stands for “semisplit”.

Example 4.20. If B D C, then we conclude from Remark A.19 that Ext.ƒ;C/ is
classified by the space H 2.ƒ;C�/, which in turn can easily be computed with the
help of [13, Proposition II.4]. For example, if ƒ D Cn � Cn, then

H 2.Cn � Cn;C�/ Š Cn:

A short observation shows that the class of the trivial noncommutative principal
Cn � Cn-bundle .Mn.C/; Cn � Cn; ˛/ of Example 4.17 corresponds to the element
exp

�
2�i
n

�
.

We close this short subsection with the following open problem:

Open Problem 4.21. Find a computable description of the set Ext.ƒ;B/ss. For
this purpose, it is worth to study [12, Corollary 2.21]. Moreover, ideas of the
classification methods for loop algebras of [1] might be useful. The algebras Mm.C/
and C1.M/ for m 2 N and a manifold M are of particular interest and serve also
as a good starting point. We recall that Ext.ƒ;Mm.C// is classified by H 2.ƒ;C�/
(cf. Theorem A.18), which in turn can easily be computed with the help of [13,
Proposition II.4].

5. Non-trivial noncommutative principal bundles with finite abelian structure
sroup

The main goal of this section is to present a geometrically oriented approach to the
noncommutative geometry of principal ƒ-bundles. Since the freeness property of a
group action is a local condition (cf. [21, Remark 8.10]), our main idea is inspired
by the classical setting: Loosely speaking, a dynamical system .A;ƒ; ˛/ is called
a noncommutative principal ƒ-bundle, if it is “locally” a trivial noncommutative
principalƒ-bundle in the sense of Section 4. We prove that this approach extends the
classical theory of principalƒ-bundles and present some noncommutative examples.
In fact, we first show that each trivial noncommutative principalƒ-bundle carries the
structure of a noncommutative principal ƒ-bundle in its own right. We further show
that examples of noncommutative principal ƒ-bundles are provided by sections of
algebra bundles with trivial noncommutative principalƒ-bundle as fibre, sections of
algebra bundles which are pull-backs of principal ƒ-bundles and sections of trivial
equivariant algebra bundles.

Notation 5.1. Let A be a unital locally convex algebra and C1.R; A/ the algebra of
smooth A-valued function on R endowed with the smooth compact open topology.
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For each a 2 A we define an element of C1.R; A/ by fa W R ! A, t 7! 1A � ta

and write Ia for the closure of the two-sided ideal generated by this element. We
further write Afag WD C1.R; A/=Ia for the corresponding locally convex quotient
algebra and call it the smooth localization of A with respect to a. Given a dynamical
system .A;ƒ; ˛/ and an element z in the fixed point algebra of the induced action of
ƒ on the center CA of A, i.e., an element z 2 CƒA , the map

˛fzg W ƒ � Afzg ! Afzg; .�; Œf �/ 7! Œ˛.�/ ı f �

defines an action of ƒ on Afzg by algebra automorphisms. In particular, the
triple .Afzg; ƒ; ˛fzg/ is a dynamical system and is called the smooth localization of
.A;ƒ; ˛/ associated to the element z 2 CƒA . For a solid background on the previous
discussion we refer to the first part of [21].

Definition 5.2. (Noncommutative principalƒ-bundles). We call a dynamical system
.A;ƒ; ˛/ a noncommutative principal ƒ-bundle if for each � 2 �Cƒ

A
there exists an

element z 2 CƒA with �.z/ ¤ 0 such that the corresponding localized dynamical
system .Afzg; ƒ; ˛fzg/ is a trivial noncommutative principal ƒ-bundle the sense of
Section 4.

Remark 5.3. (An equivalent point of view). The previous definition of noncommu-
tative principalƒ-bundles is inspired by the classical setting. Indeed, given z 2 CƒA ,
we recall that D.z/ WD f� 2 �Cƒ

A
W �.z/ ¤ 0g. Then a short observation shows

that a dynamical system .A;ƒ; ˛/ is a noncommutative principal ƒ-bundle if and
only if there exists a family of elements .zi /i2I � CƒA satisfying the following two
conditions:

(i) The family .D.zi //i2I is an open covering of �Cƒ
A

.

(ii) The localized dynamical systems .Afzi g; ƒ; ˛fzi g/ are trivial noncommutative
principal ƒ-bundles.

Theorem 5.4. (Reconstruction Theorem). For a manifold P , the following asser-
tions hold:

(a) If P is compact and .C1.P /;ƒ; ˛/ is a noncommutative principalƒ-bundle,
then we obtain a principal ƒ-bundle .P; P=ƒ;ƒ; pr; �/.

(b) Conversely, if .P;M;ƒ; q; �/ is a principalƒ-bundle, then the corresponding
dynamical system .C1.P /;ƒ; ˛/ is a noncommutative principal ƒ-bundle.

Proof. The proof of this theorem is similar to the proof of [21, Theorem 8.11]. In
fact, for part (a) we recall that if A is a commutative unital locally convex algebra
and .A;ƒ; ˛/ a trivial noncommutative principal ƒ-bundle, then the induced action
of ƒ on the spectrum �A of A is free (cf. Propositon 4.7). For part (b) we have to
add Theorem 4.8.
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Example 1: Trivial noncommutative principal ƒ-bundles. We show that each
trivial noncommutative principalƒ-bundle carries the structure of a noncommutative
principal ƒ-bundle:

Theorem 5.5. (Trivial Noncommutative Principalƒ-bundles). Each trivial noncom-
mutative principal ƒ-bundle .A;ƒ; ˛/ carries the structure of a noncommutative
principal ƒ-bundle.

Proof. If .A;ƒ; ˛/ is a trivial noncommutative principal ƒ-bundle, then 1A 2 CƒA
and �.1A/ D 1 ¤ 0 holds for each � 2 �Cƒ

A
. In particular, [21, Corollary 2.10]

implies that Af1Ag Š A holds as unital locally convex algebras. Thus, .A;ƒ; ˛/ is a
noncommutative principal ƒ-bundle in its own right.

Example 2: Sections of algebra bundles with a trivial noncommutative principal
ƒ-bundle as fibre. We show that if A is a unital Fréchet algebra and .A;ƒ; ˛/
a trivial noncommutative principal ƒ-bundle such that CƒA is isomorphic to C,
then the algebra of sections of each algebra bundle with “fibre” .A;ƒ; ˛/ is a
noncommutative principal ƒ-bundle. We start with the following lemma:

Proposition 5.6. If .A;ƒ; ˛/ is a trivial noncommutative principal ƒ-bundle and
M a manifold, then the triple .C1.M;A/;ƒ; ˇ/, where

ˇ W ƒ � C1.M;A/! C1.M;A/; .�; f / 7! ˛.�/ ı f

carries the structure of a trivial noncommutative principal ƒ-bundle.

Proof. The claim directly follows from [21, Lemma 7.5] and the fact that the algebra
A is naturally embedded in C1.M;A/ through the constant maps. In fact, ifb� 2 bƒ
(again, bƒ denotes the dual group of ƒ), then the corresponding isotypic component
C1.M;A/ O� is equal to C1.M;A O�/.

Remark 5.7. (The automorphism group of a dynamical system). Let .A;ƒ; ˛/ be a
dynamical system. The group

Autƒ.A/ WD f' 2 Aut.A/ W .8� 2 ƒ/˛.�/ ı ' D ' ı ˛.�/g

is called the automorphism group of the dynamical system .A;ƒ; ˛/.

Example 5.8. Let .Mn.C/; Cn�Cn; ˛/ be the trivial noncommutative principalCn�
Cn-bundle of Example 4.17. Then we have

AutCn�Cn.Mn.C// Š Cn � Cn:

Indeed, we first recall that Mn.C/ is generated by the unitaries R and S . If now ' 2

AutCn�Cn.Mn.C//, then a short observation leads to '.R/ D �R �R and to '.S/ D
�S � S for some �R; �S 2 Cn. In particular, each element in AutCn�Cn.Mn.C//
corresponds to an element in Cn � Cn and vice versa.
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Theorem 5.9. Let A be a unital Fréchet algebra and .A;ƒ; ˛/ a trivial noncom-
mutative principal ƒ-bundle such that CƒA is isomorphic to C. Further, let M be a
manifold, .Ui /i2I an open cover ofM and Uij WD Ui \Uj for i; j 2 I . If .gij /i;j2I
is a collection of functions gij 2 C1.Uij ;Autƒ.A// satisfying

gi i D 1 and gijgjk D gik on Uijk WD Ui \ Uj \ Uk;

then the following assertions hold:

(a) There exists an algebra bundle .A;M;A; q/ and bundle charts 'i W Ui �A!
AUi such that

.'�1i ı 'j /.x; a/ D .x; gij .x/:a/:

Moreover, the map

� W ƒ � A! A; .�; a/ 7! 'i .x; ˛.�/:a0/;

where i 2 I with x D q.a/ 2 Ui and a0 2 A with 'i .x; a0/ D a, defines an
action of ƒ on A by fibrewise algebra automorphisms.

(b) The map
ˇ W ƒ � �A! �A; ˇ.�; s/.m/ WD �.�; s.m//

defines an action of ƒ on the corresponding space �A of sections by algebra
automorphisms. Furthermore, the triple .�A; ƒ; ˇ/ carries the structure of a
noncommutative principal ƒ-bundle.

Proof. The first assertion of this theorem is a consequence of [21, Proposition 8.17].
The proof of the second assertion is similar to the proof of [21, Theorem 8.20]. In
fact, we just have to add Proposition 5.6.

Example 5.10. (Non-triviality of the previous construction). In this example we
show that the previous construction actually leads to non-trivial examples. For
this we apply Theorem 5.9 to the trivial noncommutative principal Cn � Cn-bundle
.Mn.C/; Cn � Cn; ˛/ of Example 4.17. In view of Example 5.8 we have

AutCn�Cn.Mn.C// Š Cn � Cn:

In particular, a similar argument as in [18, Proposition 2.1.14] implies that there is
a one-to-one correspondence between the algebra bundles arising from Theorem 5.9
(a) and principal Cn � Cn-bundles. Thus, if .A;M;Mn.C/; q/ is such an algebra
bundle which corresponds to a non-trivial principal Cn � Cn-bundle, then also
.A;M;Mn.C/; q/ is non-trivial as algebra bundle. We claim that the associated
dynamical system .�A; Cn � Cn; ˇ/ of Theorem 5.9 (b) is a non-trivial noncom-
mutative principal Cn � Cn-bundle. To prove this claim we assume the converse,
i.e., that .�A; Cn � Cn; ˇ/ is a trivial noncommutative principal Cn � Cn-bundle.
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For this, we proceed as follows:
(i) Since .�A; Cn � Cn; ˇ/ is assumed to be a trivial noncommutative principal

Cn�Cn-bundle, there exist two generators �1, �2 of Cn�Cn and invertible elements

s1 2 .�A/ O�1 D
n
s 2 �A W .8m 2M/ s.m/ 2 .Am/ O�1

o
and

s2 2 .�A/ O�2 D
n
s 2 �A W .8m 2M/ s.m/ 2 .Am/ O�2

o
satisfying sn1 D s

n
2 D 1.

(ii) If si1 WD prMn.C/ ı'
�1
i ı s1jUi W Ui ! Mn.C/, then a short observation shows

that si1 D �i1 � V1 for a unitary V1 2 Mn.C/ O�1 satisfying V n1 D 1 (note that V1 has
the form RkS l for some k; l 2 N) and a (smooth) function �i1 W Ui ! Cn. The
same construction applied to s2 shows that si2 D �

i
2 �V2 for a unitary V2 2 Mn.C/ O�2

satisfying V n2 D 1 and a (smooth) function �i2 W Ui ! Cn.
(iii) Next, we recall that Mn.C/ is generated by the unitaries R and S . Therefore

it is also generated by the unitaries V1 and V2, i.e., its elements can uniquely be
written as finite sums of the form

a D
X

aklV
k
1 V

l
2 with akl 2 C:

(iv) We now show that the map

' WM �Mn.C/! A;
�
m; a D

X
aklV

k
1 V

l
2

�
7!

X
akls

k
1 .m/ � s

l
2.m/

is an equivalence of algebra bundles over M . Indeed, ' is bijective and fibrewise an
algebra automorphism. Moreover, the map ' is smooth if and only if the map

 i WD prMn.C/ ı'
�1
i ı 'jUi�Mn.C/ W Ui �Mn.C/! Mn.C/;�

x; a D
X

aklV
k
1 V

l
2

�
7!

X
akl.s

i
1/
k.x/ � .si2/

l.x/

is smooth for each i 2 I . Since

 i .x; a/ D
X

akl.�
i
1/
k.x/ � .�i2/

l.x/V k1 V
l
2 ;

we conclude that
 i D ˛ ı

�
.�i1; �

i
2/ � idMn.C/

�
;

i.e., that  i is smooth as a composition of smooth maps. A similar argument shows
the smoothness of the inverse map.

(v) We finally achieve the desired contradiction: In view of part (iv), A is a
trivial algebra bundle contradicting the construction of A, i.e., that A is non-trivial
as algebra bundle. This proves the claim.
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Example 3: Sections of algebra bundles which are pull-backs of principal
ƒ-bundles. We show that if A is a unital Fréchet algebra with trivial center,
.A;M;A; q/ an algebra bundle and .P;M;ƒ; �; �/ a principal ƒ-bundle, then the
algebra of sections of the pull-back bundle

��.A/ WD f.p; a/ 2 P � A W �.p/ D q.a/g

carries the structure of a noncommutative principal ƒ-bundle. We start with the
following lemma:

Proposition 5.11. If A is a unital locally convex algebra and M a manifold, then
the map

˛ W ƒ�C1.M �ƒ;A/! C1.M �ƒ;A/; .�; f / 7! .�:f /.m; �0/ WD f .m; ��0/

defines an action of ƒ on C1.M �ƒ;A/ by algebra automorphisms. In particular,
the triple .C1.M � ƒ;A/;ƒ; ˛/ carries the structure of a trivial noncommutative
principal ƒ-bundle.

Proof. For the proof we just have to note that the algebra C1.M �ƒ/ is naturally
embedded in C1.M �ƒ;A/ through the unit element of A.

Theorem 5.12. Let A be a unital Fréchet algebra with trivial center, .A;M;A; q/
an algebra bundle and .P;M;ƒ; �; �/ a principal bundle. If ��.A/ is the pull-back
bundle over P and A WD ���.A/ the corresponding space of sections, then the
following assertions hold:

(a) The map

�� W ��.A/ �ƒ! ��.A/; ..p; a/; �/ 7! .p:�; a/

defines an action of ƒ on ��.A/. Moreover, the map

˛ W ƒ �A! A; ˛.�; s/.p/ WD ��.s.p:�/; ��1/

defines an action of ƒ on A by algebra automorphisms.

(b) The dynamical system .A; ƒ; ˛/ carries the structure of a noncommutative
principal ƒ-bundle.

Proof. The first assertion of this theorem is a consequence of [21, Lemma 8.24 and
Proposition 8.25]. The proof of the second assertion is similar to the proof of [21,
Theorem 8.26]. In fact, we just have to add Proposition 5.11.
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Example 5.13. (Non-triviality of the previous construction). In this example we
show that the previous construction actually leads to non-trivial examples. Therefore
let n 2 N with n > 1 and � WD exp.2�i

n
/. Further, let m 2 N such that �m D �

(e.g. m D nC 1) and choose any algebra bundle A over T2 with fibre Mm.C/ (e.g.
take the smooth two-dimensional quantum torus T21

m

(cf. [21, Remark 8.22])). Then,

the pull-back along the non-trivial principal bundle (covering) defined by the natural
action of Cn � Cn on T2, i.e., by

.t1; t2/:.�
k; �l/ WD .�k � t1; �

l
� t2/

for k; l D 0; 1; : : : ; n � 1, leads to an algebra bundle ��.A/ over T2 with fibre
Mm.C/. We claim that the associated dynamical system .A; Cn�Cn; ˛/ of Theorem
5.12 (a) is a non-trivial noncommutative principal Cn � Cn-bundle. To prove this
claim we assume the converse, i.e., that .A; Cn �Cn; ˛/ is a trivial noncommutative
principal Cn � Cn-bundle and proceed as follows:

(i) In the following let .'i ; Ui /i2I be a bundle atlas of the pull-back bundle ��.A/
over T2. For a section s 2 A and i 2 I we write

si WD prMm.C/ ı'
�1
i ı sjUi

for the corresponding function in C1.Ui ;Mm.C// (cf. [21, Construction 4.3]). We
recall that sj .t/ D gj i .t/:si .t/ holds for all i; j 2 I and t 2 Ui \ Uj , where

gj i W .Ui \ Uj /! Aut.Mm.C//

denotes the smooth map defined by the transition function '�1j ı 'i .
(ii) Let s 2 A. We show that the map

Det.s/ W T2 ! C; Det.s/.t/ WD det.si .t//;

for i 2 I with z 2 Ui , is well-defined and smooth: In fact, the crucial point is to
show that the map Det.s/ is well-defined: For this let i; j 2 I with z 2 Ui \ Uj .
Since each automorphism of the matrix algebra Mm.C/ is inner (cf. the well-known
Skolem–Noether Theorem), we easily conclude that

det.sj .t// D det.gj i .t/ � si .t// D det.si .t//:

The smoothness of the map Det.s/ follows from the local description by a smooth
function.

(iii) Since .A; Cn � Cn; ˛/ is assumed to be a trivial noncommutative principal
Cn�Cn-bundle, there exist two generators �1, �2 of Cn�Cn and invertible elements
F1 2 A O�1 and F2 2 A O�2 satisfying F n1 D F

n
2 D 1A.
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(iv) Part (ii) now implies that f1 WD Det.F1/ 2 C1.T2/. Since F1 is invertible,
so is f1, i.e., f1 takes values in C�. Moreover, the function f1 satisfies

.�k; �l/:f1 D .�
k; �l/:Det.F1/ D Det.b�1.�k; �l/ � F1/

D .b�1.�k; �l//m � Det.F1/ Db�m1 .�k; �l/ � Det.F1/

Db�1.�k; �l/ � Det.F1/ Db�1.�k; �l/ � f1
for all k; l D 0; 1; : : : ; n � 1. Thus, f1 is an invertible element in C1.T2/ O�1
satisfying f n1 D 1 (here we have used that the action of Cn � Cn on A restricts
to an action on CA Š C1.T2/). The same construction applied to F2 gives an
invertible element f2 2 C1.T2/ O�2 satisfying .f2/n D 1.

(v) Finally, part (iv) leads to a contradiction: Indeed, we conclude just as in the
proof of Theorem 4.8 (a) that the smooth functions f1 and f2 have image Cn and
define an equivalence of principal Cn � Cn-bundles over T2=.Cn � Cn/ Š T2. But
this is not possible, since T2 is connected.

Example 4: Sections of trivial equivariant algebra bundles. We now consider
again a principal bundle .P;M;ƒ; q; �/ and, in addition, a unital locally convex
algebra A. If � W ƒ � A ! A defines a smooth action of ƒ on A by algebra
automorphisms, then .p; a/:� WD .p:�; �.��1/:a/ defines a (free) action of ƒ on
P � A and one easily verifies that the trivial algebra bundle .P � A;P;A; qP / is
ƒ-equivariant. Moreover, a short observation shows that the map

˛ W ƒ � C1.P;A/! C1.P;A/; .�:f /.p/ WD �.�/:f .p:�/

defines a smooth action of ƒ on C1.P;A/ by algebra automorphisms. We recall
that the corresponding fixed point algebra is isomorphic (as C1.M/-algebra) to the
space of sections of the associated algebra bundle

A WD P �� A WD P �ƒ A WD .P � A/=ƒ

over M . In fact, bundle charts of .P;M;ƒ; q; �/ induces bundle charts for the
associated algebra bundle.
Lemma 5.14. If we apply the previous situation to the trivial principal bundle .M �
ƒ;M;ƒ; qM ; �ƒ/, then the corresponding dynamical system .C1.M�ƒ;A/;ƒ; ˛/
carries the structure of a trivial noncommutative principalƒ-bundle with fixed point
algebra C1.M;A/.

Proof. For the proof we again just have to note that the algebra C1.M � ƒ/ is
naturally embedded in C1.M �ƒ;A/ through the unit element of A.

Theorem 5.15. If .P;M;ƒ; �; �/ is a principal bundle, A a unital Fréchet algebra
with trivial center and � W ƒ�A! A a smooth action ofƒ onA, then the dynamical
system .C1.P;A/;ƒ; ˛/ is a noncommutative principal ƒ-bundle.
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Proof. The proof of this theorem is similar to the proof of [21, Theorem 8.30]. In
fact, we just have to add Lemma 5.14).

Example 5.16. We want to apply Theorem 5.15 to the the non-trivial principal
bundle (covering) defined by the natural action of Cm � Cm on T2, i.e., by

.z1; z2/:.�
k; �l/ WD .�k � z1; �

l
� z2/

for k; l D 0; 1; : : : ; m�1, the algebraMm.C/ and the action of Cm�Cm onMm.C/
defined by

.�k; �l/:A WD RlSkAS�kR�l

for k; l D 0; 1; : : : ; m � 1. Here, R and S are defined as in Example 4.17
(� D 1

m
). The corresponding dynamical system .C1.T2;Mm.C//; Cm � Cm; ˛/

is a noncommutative principal Cm �Cm-bundle with fixed point algebra the rational
quantum torus T21

m

(cf. [19, Appendix E, Proposition E.2.5]). According to

Example 4.17, the algebra Mm.C/ carries the structure of a trivial noncommutative
principal Cm � Cm-bundle. Therefore, it turns out that the same holds for
.C1.T2;Mm.C//; Cm � Cm; ˛/ since Mm.C/ is naturally embedded in the algebra
C1.T2;Mm.C// through the constant maps.

Remark 5.17. (Non-triviality of the previous construction). Non-trivial examples
can be constructed similarly as in Example 5.13.

A. Classification of crossed product algebras

Let G be a group and B be a unital algebra. A .G;B/-crossed product algebra
is a G-graded unital algebra with A1G D B and the additional property that each
grading space contains an invertible element. For example, if G is abelian and
B D C, then a .G;B/-crossed product algebra is the same as a G-quantum torus
in the terminology of [13]. In this appendix we introduce a “cohomology theory”
for crossed product algebras, which is inspired by the classical cohomology theory
of groups. The corresponding cohomology spaces are crucial for the classification
of trivial noncommutative principal bundles with compact abelian structure group.
A detailed discussion for the case G D Zn can be found in [18].

Factor systems. We start with associating so-called factor systems to pairs .G;B/
consisting of a group G and a unital algebra B .

Definition A.1. Let G be a group and B be a unital algebra.
(a) We write CB W B� ! Aut.B/ for the conjugation action of B� on B .
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(b) We call a map S 2 C 1.G;Aut.B// an outer action of G on B if there exists

! 2 C 2.G;B�/ with ıS D CB ı !;

where
ıS .g; g

0/ WD S.g/S.g0/S.gg0/�1:

(c) On the set of outer actions we define an equivalence relation by

S � S 0 , .9h 2 C 1.G;B�// S 0 D .CB ı h/ � S

and call the equivalence class ŒS� of an outer action S a G-kernel.
(d) For S 2 C 1.G;Aut.B// and ! 2 C 2.G;B�/ let

.dS!/.g; g
0; g00/ WD S.g/.!.g0; g00//!.g; g0g00/!.gg0; g00/�1!.g; g0/�1:

Lemma A.2. Let n 2 N and B be a unital algebra and consider the group
C 1.G;B�/ with respect to pointwise multiplication. This group acts on the set

C 1.G;Aut.B// by h:S WD .CB ı h/ � S

and on the product set

C 1.G;Aut.B// � C 2.G;B�/ by h:.S; !/ WD .h:S; h �S !/

for
.h �S !/.g; g

0/ WD h.g/S.g/.h.g0//!.g; g0/h.gg0/�1:

The stabilizer of .S; !/ is given by

C 1.G;B�/.S;!/ D Z
1.G;Z.B/�/S

which depends only on ŒS�, but not on !, and the following assertions hold:
(a) The subset

f.S; !/ 2 C 1.G;Aut.B// � C 2.G;B�/ W ıS D CB ı !g

is invariant.
(b) If ıS D CB ı !, then im.dS!/ � Z.B/� .
(c) If ıS D CB ı ! and h:.S:!/ D .S 0; !0/, then dS 0!0 D dS!.

Proof. A proof of this Lemma can be found in [19, Lemma 7.3.2].

Definition A.3. Let n 2 N and B be a unital algebra. The elements of the set

Z2.G;B/ WD f.S; !/ 2 C 1.G;Aut.B// � C 2.G;B�/ W ıS D CB ı !; dS! D 1g

are called factor systems for the pair .G;B/. By Lemma A.2, the set Z2.G;B/ is
invariant under the action of C 1.G;B�/ and we write

H 2.G;B/ WD Z2.G;B/=C 1.G;B�/

for the corresponding cohomology space.
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Classification of crossed product algebras. Given a group G and a unital algebra
B , the main goal of this section is to present a complete classification of .G;B/-
crossed product algebras. We start with the precise definition:

Definition A.4. (Crossed product algebras). A G-graded unital algebra

A D
M
g2G

Ag

with B WD A1G is called an .G;B/-crossed product algebra, if each grading space
Ag contains an invertible element.

We now provide a construction that associates to each .G;B/-crossed product
algebra A a class in H 2.G;B/:

Construction A.5. (Characteristic classes). Let A be a .G;B/-crossed product
algebra. The set

A�h WD
[
g2G

A�g

of homogeneous units is a subgroup of A� containing B�. We thus obtain an
extension

1 �! B� �! A�h
q
�! G �! 1 (A.1)

of groups, where q.ag/ WD g. In particular, A�
h

is equivalent to a crossed product of
the form B� �.S;!/ G for a factor system .S; !/ 2 Z2.G;B/. In fact, if we choose
a section � W G ! A�

h
of the extension (A.1) which is normalized in the sense that

�.1G/ D 1A, then we may endow the product set B� �G with the multiplication

.b; g/.b0; g0/ D .bS.g/.b0/!.g; g0/; gg0/;

where
S W G ! Aut.B/; S.g/:b WD �.g/b�.g/�1

and
! W G �G ! B�; .g; g0/ 7! �.g/�.g0/�.gg0/�1:

A short observations shows that this multiplication turns B� � G into a group and
we write B� �.S;!/ G for the set B� � G endowed with the group multiplication
induced by the factor system .S; !/. In particular, the map

B� �.S;!/ G ! A�h ; .b; g/ 7! b�.g/

becomes an isomorphism of groups. In this way each .G;B/-crossed product algebra
A induces a characteristic class

�.A/ WD Œ.S; !/� 2 H 2.G;B/:
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Lemma A.6. Each .G;B/-crossed product algebra A possesses a characteristic
class �.A/ 2 H 2.G;B/.

Proof. Indeed, this statement immediately follows from Construction A.5.

Definition A.7. Two .G;B/-crossed product algebrasA andA0 are called equivalent
if there is an algebra isomorphism ' W A! A0 satisfying '.Ag/ D A0g for all g 2 G
and 'jB D idB . If A and A0 are equivalent .G;B/-crossed product algebras, then we
write ŒA� for the corresponding equivalence class.

Proposition A.8. Let A and A0 be two equivalent .G;B/-crossed product algebras.
Then their corresponding characteristic classes coincide, i.e.,

�.A/ D �.A0/ 2 H 2.G;B/:

Proof. If A and A0 are equivalent, then the same holds for their corresponding
extensions of Construction A.5. Thus, the claim follows from [11, Chapter IV,
Section 4].

Definition A.9. (Set of equivalence classes). Let G be a group and B be a unital
algebra. We write Ext.G;B/ for the set of all equivalence classes of .G;B/-crossed
product algebras.

Lemma A.10. The map

� W Ext.G;B/! H 2.G;B/; ŒA� 7! �.A/

is well-defined.

Proof. The statement immediately follows from Proposition A.8.

In the remaining part we show that the map � is a bijection:

Construction A.11. Let G be a group and B be a unital algebra. Further, let

A WD
M
g2G

Bvg

be a vector space with basis .vg/g2G . For a factor system .S; !/ 2 Z2.G;B/, we
define a multiplication map

m.S;!/ W A � A! A

given on homogeneous elements by

m.S;!/.bvg ; b
0vg0/ WD b.S.g/.b

0//!.g; g0/vgg0 ; (A.2)
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and write A.S;!/ for the vector space A endowed with the multiplication (A.2). A
short calculation shows that A.S;!/ is a G-graded unital algebra with A1G D B and
unit v1G . Moreover, each grading space Ag contains invertible elements w.r.t. to this
multiplication: Indeed, if b 2 B�, then the inverse of bvg is given by

S.g/�1.b�1!.g; g�1/�1/vg�1 :

Thus, A.S;!/ is a .G;B/-crossed product algebra which has characteristic class
�.A.S;!// D Œ.S; !/�.

Proposition A.12. If G is a group and B a unital algebra, then each element
Œ.S; !/� 2 H 2.G;B/ can be realized by a .G;B/-crossed product algebra with
�.A/ D Œ.S; !/�.

Proof. This statement is a consequence of Construction A.11: In fact, if Œ.S; !/�
represents a class in H 2.G;B/, then A.S;!/ satisfies the requirements of the
proposition.

Proposition A.13. Let A be a .G;B/-crossed product algebra. Then A is equivalent
to a .G;B/-crossed product algebra of the form A.S;!/ for some factor system
.S; !/ 2 Z2.G;B/.

Proof. Let A be a .G;B/-crossed product algebra. We consider the corresponding
short exact sequence of groups

1 �! A�1G �! A�h �! G �! 1

and choose a section � W G ! A�
h

. Now, a short calculation shows that the map

' W .A D
M
g2G

Ag ; mA/!
�M
g2G

Bvg ; m.CBı�;ı� /
�
;

given on homogeneous elements by

'.ag/ WD ag�.g/
�1vg ;

defines an equivalence of .G;B/-crossed product algebras.

Proposition A.14. Let G be a group and B be a unital algebra. Further, let .S; !/
and .S 0; !0/ be two factor systems in Z2.G;B/ with Œ.S; !/� D Œ.S 0; !0/�. Then the
corresponding .G;B/-crossed product algebras A.S;!/ and A.S 0;!0/ are equivalent.

Proof. First recall that the condition Œ.S 0; !0/� D Œ.S; !/� is equivalent to the
existence of an element h 2 C 1.G;B�/ with

h:.S; !/ D .S 0; !0/:
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Now, a short observation shows that the map

' W
�M
g2G

Bvg ; m.S 0;!0/
�
!
�M
g2G

Bvg ; m.S;!/
�
;

given on homogeneous elements by

'.bvg/ D bh.g/vg ;

is an automorphism of vector spaces leaving the grading spaces invariant. We further
have

m.S;!/.'.bvg/; '.b
0vg0// D m.S;!/.bh.g/vg ; b

0h.g0/vg0/

D bh.g/S.g/.b0h.g0//!.g; g0/vgg0

D bŒCB.h.g//.S.g/.b
0//�h.g/S.g/.h.g0//!.g; g0/vgg0

D b.h:S/.g/.b0/.h �S !/.g; g
0/h.gg0/vgg0

D '.b.h:S/.g/.b0/.h �S !/.g; g
0/vgg0/

D '.m.S 0;!0/.bvg ; b
0vg0//:

Hence, the map ' actually defines an equivalence of .G;B/-crossed product
algebras.

We are now ready to state and proof the main theorem of this section:

Theorem A.15. Let G be a group and B be a unital algebra. Then the map

� W Ext.G;B/! H 2.G;B/; ŒA� 7! �.A/

is a well-defined bijection.

Proof. We first note that Lemma A.10 implies that the map � is well-defined. The
surjectivity of � follows from Proposition A.12. Hence, it remains to show that the
map � is injective: For this let A and A0 be two .G;B/-crossed product algebras
with �.A/ D �.A0/. By Proposition A.13 we may assume that A D A.S;!/ and
A0 D A.S 0;!0/ for two factor systems .S; !/ and .S 0; !0/ in Z2.G;B/ with
Œ.S 0; !0/� D Œ.S; !/�. Thus, the claim follows from Proposition A.14.

G-Kernels. We just saw that the set of all equivalence classes of .G;B/-crossed
product algebras is classified by the cohomology space H 2.G;B/. Moreover,
Proposition A.8 in particular implies that equivalent .G;B/-crossed product algebras
correspond to the same G-kernel (cf. Definition A.1 (c)). This leads to the following
definition:

Definition A.16. (Equivalence classes of G-kernels). Let G be a group and B be a
unital algebra. We write Ext.G;B/ŒS� for the set of equivalence classes of .G;B/-
crossed product algebras corresponding to the G-kernel ŒS�.
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Note that the set Ext.G;B/ŒS� may be empty. The aim of this section is to show
how to classify this set and give conditions for its non-emptiness. The following
proposition basically states that if Ext.G;B/ŒS� is non-empty, then it is classified by
the second group cohomolgy space H 2.G;Z.B/�/ŒS� (cf. [11, Chapter IV, Section
4] for the necessary definitions on classical group cohomology.)

Proposition A.17. Let G be a group and B be a unital algebra. Further, let S be an
outer action of G on B with Ext.G;B/ŒS� ¤ ;. Then the following assertions hold:

(a) Each extension class in Ext.G;B/ŒS� can be represented by .G;B/-crossed
product algebra of the form A.S;!/.

(b) Any other .G;B/-crossed product algebra A.S;!0/ representing an element of
Ext.G;B/ŒS� satisfies

!0 � !�1 2 Z2.G;Z.B/�/ŒS�:

(c) Two .G;B/-crossed product algebrasA.S;!/ andA.S;!0/ are equivalent if and
only if

!0 � !�1 2 B2.G;Z.B/�/ŒS�:

Proof. (a) From Proposition A.12 we know that each .G;B/-crossed product algebra
A is equivalent to one of the form A.S 0;!0/. If ŒS� D ŒS 0� and the element
h 2 C 1.G;B�/ satisfies h:S D S 0, then h�1:.S 0; !0/ D .S; h�1 �S 0 !

0/, so that
!00 WD h�1 �S 0 !

0 implies that A.S 0;!0/ and A.S;!00/ are equivalent. This means that
each extension class in Ext.G;B/ŒS� can be represented by a .G;B/-crossed product
algebra of the form A.S;!00/.

(b) If .S; !/ and .S; !0/ are two factor systems for the pair .G;B/, thenCBı! D
ıS D CB ı!

0 implies ˇ WD !0 �!�1 2 C 2.G;Z.B/�/. Further dS!0 D dS! D 1B ,
so that

1B D dS!
0
D dS! � dSˇ D dSˇ

implies ˇ 2 Z2.G;Z.B/�/ŒS� and hence the assertion.
(c) (“)”) In view of Proposition A.8 and Proposition A.14, the equivalence of

the .G;B/-crossed product algebras A.S;!/ and A.S;!0/is equivalent to the existence
of an element h 2 C 1.G;B�/ with

S D h:S D .CB ı h/ � S and !0 D h �S !:

Then CB ıh D idB implies that h 2 C 1.G;Z.B/�/which in turn immediately leads
to !0 D h �S ! D .dSh/ � !, i.e.,

!0!�1 2 B2.G;Z.B/�/ŒS�:

(“(”) If conversely !0!�1 D dSh for some h 2 C 1.G;Z.B/�/, then we easily
conclude that h:S D S and !0 D h �S !.
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Theorem A.18. Let G be a group and B be a unital algebra. Further, let ŒS� be a
G-kernel with Ext.G;B/ŒS� ¤ ;. Then the map

H 2.G;Z.B/�/ŒS� � Ext.G;B/ŒS� ! Ext.G;B/ŒS�

given by
.Œˇ�; ŒA.S;!/�/ 7! ŒA.S;!�ˇ/�

is a well-defined action which is both transitive and free.

Proof. This follows directly form Proposition A.17.

Remark A.19. (Commutative fixed point algebras). Let G be a group and suppose
that B is a commutative unital algebra. Then the adjoint representation of B is
trivial and a factor system .S; !/ for .G;B/ consists of a module structure given
by a homomorphism S W G ! Aut.B/ and an element ! 2 C 2.G;B�/ satisfying
dS! D 1B (which is equivalent to ! 2 Z2.G;B�/ŒS�). In this case we simply write
A! for the corresponding .G;B/-crossed product algebra.

Further S � S 0 if and only if S D S 0. Hence a G-kernel ŒS� is the same as a
G-module structure S onB and Ext.G;B/S WD Ext.G;B/ŒS� is the set of all .G;B/-
crossed product algebras corresponding to the G-module structure on B given by S .

According to Theorem A.18, these equivalence classes correspond to cohomol-
ogy classes of cocycles, so that the map

H 2.G;B�/S ! Ext.G;B/S ; Œ!� 7! ŒA! �

is a well-defined bijection.

We now give a condition that ensures the non-emptiness of the set Ext.G;B/ŒS�
for a given G-kernel S . We first need the following definition:

Definition A.20. Let G be a group and B be a unital algebra. Further, let S be
an outer action of G on B and choose ! 2 C 2.G;B�/ with ıS D CB ı !. The
cohomology class

�.S/ WD ŒdS!� 2 H
3.G;Z.B/�/S

does not depend on the choice of ! and is constant on the equivalence class of S , so
that we may also write �.ŒS�/ WD �.S/ (cf. [19, Corollary 7.3.25 for G D Zn]). We
call �.S/ the characteristic class of S .

The next theorem provides a group theoretic criterion for the non-emptiness of
the set Ext.G;B/ŒS�:

Theorem A.21. Let G be a group and B be a unital algebra. If ŒS� is a G-kernel,
then

�.ŒS�/ D 1 , Ext.G;B/ŒS� ¤ ;:
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Proof. (“(”) If there exists a.G;B/-crossed product algebra A corresponding to
ŒS�, then Proposition A.13 implies that we may w.l.o.g. assume that it is of the
form A.S;!/. In particular, this means that dS! D 1B . Hence, we obtain �.ŒS�/ D
ŒdS!� D 1.

(“)”) Suppose, conversely, that �.ŒS�/ D ŒdS!� D 1. Then there exists an
element ! 2 C 2.G;B�/ with ıS D CB ı ! and some h 2 C 2.G;Z.B/�/ with
dS! D dSh

�1. Therefore !0 WD ! � h 2 C 2.G;B�/ satisfies

dS!
0
D dS! � dSh D 1 and ıS D CB ı !

0:

Hence, .S; !0/ is a factor system for .G;B/ and Proposition A.12 implies the
existence of a .G;B/-crossed product algebra A.S;!0/ corresponding to theG-kernel
ŒS�.

A Landstad duality theorem for crossed product algebras. In the following letG
be a compact abelian group. In the last part of this appendix we present a Landstad
duality theorem for C �-dynamical systems .A;G; ˛/ with the property that each
isotypic component contains an invertible element. We did not find such a result in
the literature.

Notation A.22. Given a C �-dynamical system .A;G; ˛/, we write

A' WD fa 2 A W .8g 2 G/˛.g; a/ D '.g/ � ag

for the isotypic component corresponding to an element ' in the dual group bG of G.
In particular, we write B WD AG D A0 for the corresponding fixed point algebra.

Lemma A.23. Let G be a compact abelian group and .A;G; ˛/ be a C �-dynamical
system such that each isotypic component contains an invertible element. Then each
isotypic component also contains a unitary element.

Proof. Let ' 2 bG and a' 2 A' be an invertible element. Then we conclude from
polar decomposition for C �-algebras that a' D ja' ju' for some positive element
ja' j and a unitary element u' . Further, the construction implies that ja' j 2 B and
thus that u' 2 A' as desired. Hence, each isotypic component contains a unitary
element.

Construction A.24. Let G be a compact abelian group and .A;G; ˛/ be a C �-
dynamical system such that each isotypic component contains an invertible element.
According to Lemma A.23, we may choose in each isotypic component A' a unitary
element u' , which in turn leads to a factor system .S; !/ for the pair .bG;B/ (cf. A.3)
defined by maps

S W bG ! Aut.B/; S.'/:b WD u'bu�'
and

! W bG � bG ! U.B/; !.'; '0/ WD u'u'0u�'�'0 ;
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where U.B/ denotes the unitary group of B . The corresponding algebra A.S;!/ from
Construction A.11 carries a natural involution given by

.bv'/
�
WD !.�'; '/�1S.�'/:b�v�'

and a short observation shows that multiplication and involution are continuous for
the `1-norm

k.b'v'/'2bGk1 WDX
'2bG kb'k:

We write `1.A.S;!// for the corresponding involutive Banach algebra and further
C �.A.S;!// for the enveloping C �-algebra of `1.A.S;!//.

Remark A.25. In view of the terminology of Example 4.12 (cf. Example 4.16) we
could also write `1.B�.S;!/bG/ for `1.A.S;!// and C �.B�.S;!/bG/ for C �.A.S;!//.

Proposition A.26. Suppose we are in the situation of Construction A.24. Then A is
isomorphic (as C �-algebra) to C �.A.S;!//.

Proof. The assertion immediately follows by extending the (algebraic) isomorphism
of Proposition A.13 to an C �-algebraic isomorphism of the corresponding comple-
tions. Alternatively, the assertion follows from [6, Proposition 4.2].

Acknowledgements. We thank Siegfried Echterhoff, Karl-Hermann Neeb and
Ryszard Nest for fruitful discussions on this topic. Moreover, we would like to
thank the anonymous referee for useful comments.

References

[1] Allison, B., S. Berman and A. Pianzola Covering Algebras II: Isomorphism of Loop
algebras, Journal für die reine und angewandte Mathematik (Crelles Journal), 571,
(2004), 39–71. Zbl 1056.17018 MR 2070143

[2] Baum, P., P. Hajac, R. Matthes and W. Szymanski, Non-commutative geometry approach
to principal and associated bundles, arXiv:0701033v2 [math.DG], 8 Jan 2007.

[3] Blattner, R. J. and S. Montgomery, A Duality Theorem for Hopf Module Algebras, Journal
of Algebra, 95, 153–172, 1985. Zbl 0589.16010 MR 797661

[4] Doran, R. S. and J. M. G. Fell, Representations of *-algebras, locally compact groups,
and Banach *-algebraic bundles, Pure and Applied Mathematics vol. 125 and 126,
Academic Press, 1988. Volume 1: Zbl 00193042; Volume 2: Zbl 0652.46051

[5] Echterhoff, S., Ryszard Nest and Herve Oyono-Oyono, Principal non-commutative torus
bundles, in Proceedings of the London Mathematical Society, (3) 99 (2009), 1–31.
Zbl 1176.19003 MR 2520349

[6] Exel, R., Amenability for Fell Bundles, in Journal für die reine und angewandte
Mathematik Crelles Journal, vol. 492, (1996), 1–31. Zbl 0881.46046 MR 1488064

https://zbmath.org/?q=an:1056.17018
http://www.ams.org/mathscinet-getitem?mr=MR2070143
http://arxiv.org/abs/math/0701033v2
https://zbmath.org/?q=an:0589.16010
http://www.ams.org/mathscinet-getitem?mr=MR0797661
https://zbmath.org/?q=an:00193042
https://zbmath.org/?q=an:0652.46051
https://zbmath.org/?q=an:1176.19003
http://www.ams.org/mathscinet-getitem?mr=MR2520349
https://zbmath.org/?q=an:0881.46046
http://www.ams.org/mathscinet-getitem?mr=MR1488064


1022 S. Wagner

[7] Green, P., C�-algebras of transformation groups with smooth orbit space, Pacific J.
Math. 72 (1977), no. 1, 71–97. Zbl 0374.46047 MR 453917

[8] Hajac, P. M., Lecture Notes on Noncommutative Geometry and Quantum Groups, Lecture
Notes edited by Piotr M. Hajac. Available at:

http://www.mimuw.edu.pl/~pwit/toknotes/toknotes.pdf.

[9] Kobayashi, S., and K. Nomizu, Foundations of Differential Geometry vol. 1, Interscience
Tracts in Pure and Applied Mathematics, Wiley, 1963.

[10] Landi, G., and W. van Suijlekom, Principal fibrations from noncommutative spheres,
Commun. Math. Phys. 260 (2005), 203–225. Zbl 1093.58004 MR 2175995

[11] Mac Lane, S., Homology, Classics in Mathematics, Springer-Verlag, 1995.
Zbl 0818.18001 MR 1344215

[12] Neeb, K.-H., Non-abelian extensions of infinite-dimensional Lie-groups, Annales de
l’Inst. Fourier 57 (2007), 209–271. Zbl 1127.22008 MR 2316238

[13] Neeb, K.-H., On the classification of rational quantum tori and the structure of
their automorphism groups, Canadian Mathematical Bulletin 51, (2008), 261–282.
Zbl 1163.16014 MR 2414213

[14] Schauenburg, P., Hopf-Galois and bi-Galois extensions, Fields Inst. Commun., 43, Amer.
Math. Soc., Providence, RI, (2004), 469–515. Zbl 1091.16023 MR 2075600

[15] Swan, R. G., Vector bundles and projective modules, Trans. Amer. Math. Soc. 105,
(1962), 264–277. Zbl 0109.41601 MR 143225

[16] Takai, H., On a Duality for Crossed Products of C�-Algebras, Journal of Functional
Analysis 19, 25–39 (1975). Zbl 0295.46088 MR 365160

[17] Tom Dieck, T., Topologie, de Gruyter, 2. Auflage, 2000. Zbl 0966.55001 MR 1150244

[18] Wagner, S., Trivial Noncommutative Principal Torus Bundles, Noncommutative
Harmonic Analysis with Applications to Probability III, Banach Center Publ. 96 (2012)
299–317. Zbl 1261.46066 MR 2986837

[19] Wagner, S., A Geometric Approach to Noncommutative Principal Bundles, PhD Thesis,
arXiv:1108.0311v1 [math.DG], 1 Aug 2011.

[20] Wagner, S., Free Group Actions from the Viewpoint of Dynamical Systems, Münster J. of
Math. 5 (2012), 73–97. Zbl 1286.46076 MR 3047627

[21] Wagner, S., A Geometric Approach to Noncommutative Principal Torus Bundles, Proc.
London Math. Soc. (3) 106 (2013), no. 6, 1179–1222. Zbl 1277.46039 MR 3072280

Received 07 September, 2012; revised 21 December, 2012

S. Wagner, Department of Mathematics and Statistics, P.O. Box 68 (Gustaf Hällströmin
katu 2b), 00014 University of Helsinki, Finland
E-mail: stefan.wagner@helsinki.fi

https://zbmath.org/?q=an:0374.46047
http://www.ams.org/mathscinet-getitem?mr=MR0453917
http://www.mimuw.edu.pl/~pwit/toknotes/toknotes.pdf
https://zbmath.org/?q=an:1093.58004
http://www.ams.org/mathscinet-getitem?mr=MR2175995
http://zbmath.org/?q=an:0818.18001
http://www.ams.org/mathscinet-getitem?mr=MR1344215
https://zbmath.org/?q=an:1127.22008
http://www.ams.org/mathscinet-getitem?mr=MR2316238
https://zbmath.org/?q=an:1163.16014
http://www.ams.org/mathscinet-getitem?mr=MR2414213
http://zbmath.org/?q=an:1091.16023
http://www.ams.org/mathscinet-getitem?mr=MR2075600
https://zbmath.org/?q=an:0109.41601
http://www.ams.org/mathscinet-getitem?mr=MR0143225
https://zbmath.org/?q=an:0295.46088
http://www.ams.org/mathscinet-getitem?mr=MR0365160
https://zbmath.org/?q=an:0966.55001
http://www.ams.org/mathscinet-getitem?mr=1150244
https://zbmath.org/?q=an:1261.46066
http://www.ams.org/mathscinet-getitem?mr=MR2986837
http://arxiv.org/abs/1108.0311v1
https://zbmath.org/?q=an:1286.46076
http://www.ams.org/mathscinet-getitem?mr=MR3047627
https://zbmath.org/?q=an:1277.46039
http://www.ams.org/mathscinet-getitem?mr=MR3072280
mailto:stefan.wagner@helsinki.fi

	Introduction
	Trivial noncommutative principal Cn-bundles
	Classification of trivial noncommutative principal Cn-bundles
	Trivial noncommutative principal bundles with finite abelian structure group
	Non-trivial noncommutative principal bundles with finite abelian structure sroup
	Classification of crossed product algebras

