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On the arithmetic of the BC-system

Alain Connes and Caterina Consani™

Abstract. For each prime p and each embedding o of the multiplicative group of an algebraic
closure of [, as complex roots of unity, we construct a p-adic indecomposable representation
7o of the integral BC-system as additive endomorphisms of the big Witt ring of [l?p. The
obtained representations are the p-adic analogues of the complex, extremal KMSo states of
the BC-system. The role of the Riemann zeta function, as partition function of the BC-system
over C is replaced, in the p-adic case, by the p-adic L-functions and the polylogarithms whose
values at roots of unity encode the KMS states. We use Iwasawa theory to extend the KMS
theory to a covering of the completion C,, of an algebraic closure of Q,. We show that our
previous work on the hyperring structure of the adele class space, combines with p-adic analysis
to refine the space of valuations on the cyclotomic extension of Q as a noncommutative space
intimately related to the integral BC-system and whose arithmetic geometry comes close to
fulfill the expectations of the “arithmetic site”. Finally, we explain how the integral BC-system
appears naturally also in de Smit and Lenstra construction of the standard model of I]?p which

singles out the subsystem associated to the Z-extension of Q.
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1. Introduction

This paper describes several arithmetic properties of the BC-system, showing new
and interesting connections with the theory of Witt vectors over the algebraic closure
of finite fields and with p-adic analysis.

The BC-system is a system of quantum statistical mechanics defined by a non-
commutative Hecke algebra of double classes in P T (Q) with respect to the subgroup
Pt (Z),where P C GL, is the “ax + b” algebraic group (cf. [4], [10]). The complex
Hecke algebra H¢ of the system has a highly non-trivial structure since its regular
representation, in the Hilbert space of one sided classes, generates a factor of type I1I;
and a canonical “time evolution” g; € Aut(H¢). The study of the KMS-equilibrium
states at different temperatures has revealed the arithmetic nature of this dynamical
system in view of the following facts.

* The partition function of the system is the Riemann zeta function.

* There is a phase transition with spontaneous symmetry breaking at the pole of
zeta function.

* The zero temperature vacuum states implement the global class field isomor-
phism for Q.

The study of the BC-system inaugurated the interplay between number-theory and
noncommutative geometry. It is exactly the noncommutativity of the Hecke algebra
of the system which generates its non-trivial dynamics. Moreover, on the noncom-
mutative space of adeles classes Aq/Q™*, which is naturally associated to the type II
dual of the BC-system, one obtains the spectral realization of zeros of L-functions
and the trace formula interpretation of the Riemann-Weil explicit formulas (cf. [8]).

Further study (cf. [16]) has shown that the integral Hecke algebra #7z = Z[Q/Z]x
N supplies an integral model to the BC-system. The endomorphisms o, (e(r)) =
e(nr), n € N, act on the canonical generators e(r) € Z[Q/Z] for r € Q/Z and
have natural linear quasi-inverses

Pn: ZIQ/Z] — Z[Q/Z],  pule(y)) = > e(y)).
ny’=y
which are used in the construction of the crossed product and in the presentation of
the algebra.

In this paper we establish, for each prime p, a strong relation connecting the
integral BC-system and the universal Witt ring WO([I?p) of an algebraic closure of a
prime field. The Witt construction is in fact considered in the following three different
forms:

— as a K-theory endofunctor A — Wy(A4) = K¢(End,)/Ko(A) in the category
of commutative rings (with unit);

— as the big Witt ring W (4);
— as the functor 4 — Wj00(A) for A of characteristic p.
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In the first two cases, the key structures are provided by the following operators:
— the Teichmiiller multiplicative lift t: A — Wy (A);
— the Frobenius endomorphisms F,: Wy(A4) — Wy(A4),n € N;

— the Verschiebung (= shift), that is, additive functorial maps V,: Wy(4) —
WO (A)’ ne D\I,

— the n-th ghost components gh, : Wy(4) — 4,n € N.

These basic operators extend from the universal ring YWy (A) to its completion YW (A)
whose elements are expressed by Witt vectors, in terms of which all the algebraic
operations can be defined in terms of polynomials with integral coefficients. This
integrality property encodes a rich and deep arithmetical information. Moreover, the
ring structure restricts to divisor stable subsets of N yielding, for the set of powers of
a prime p, the functor Wjeo.

In Proposition 4.4 and Theorem 4.5 we prove that the p-primary structure of
the integral BC-system is completely encoded by the universal ring WO(E,), with
a precise dictionary expressing the key operators o, and p, of the BC-system as
respectively the Frobenius F,, and the Verschiebung V;, on ¥, ([l?p). The isomorphism
connecting these algebraic structures depends upon the choice of a group isomorphism
of the multiplicative group of E, with the group of complex roots of unity of order
prime to p: the ambiguity inherent to this choice is the same as that pertaining to the
construction of Brauer lift of characters.

The completion process associated to the inclusion Wy(A4) C W (A4) with dense
image, is then used in Theorem 6.4 to obtain, when 4 = I]?p and for each injective
group homomorphism o : F; — C*, a p-adic indecomposable representation 77, of

the integral BC-system as additive endomorphisms of the big Witt ring W([P__p). The
construction uses the identification proven in Theorem 4.5 and the implementation
of the Artin—Hasse exponentials. These representations are the p-adic analogues of
the complex, extremal KMS4, states of the BC-system. In Section 7 this analogy
is pursued much further. By implementing the theory of p-adic L-functions, we
construct an analogue, in the p-adic case, of the partition function and of the KMSg
states. In particular, we show that the division relations for the p-adic polylogarithms
atroots of unity correspond to the KMS condition. In §7.5 we prove that the definition
of the functionals satisfying such condition extends from the standard ‘“‘extended s-
disk” to the natural multiplicative group covering of C,. These results are the p-
adic counterparts of the statements proven in [17] for function fields. However, we
also recognize an important difference with respect to the complex case, namely the
presence of an added symmetry at non-zero temperature, due to the invariance of
the states under the natural involution of Q®° which replaces each root of unity by
its inverse. This added symmetry is a consequence of the vanishing of the p-adic
L-functions associated to odd Dirichlet characters.

In the second part of this paper we first recall known results of number theory
on valuations of the cyclotomic field Q<¢, abstractly defined in Definition 8.1 as the
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quotient of the group ring Q[Q/Z] by the cyclotomic ideal. We then relate these
results to the first part, the parameter space X, for the p-adic representations of the
integral BC-system and the ongoing search of a geometric interpretation of the adele
class space. For p a prime number, the set X, is, using the exponential Q/Z >
y = e>™7 to embed Q¢ C C, the set of all injective group homomorphisms
o: @( — Q/Z. In Section 8, we relate this set with the space Val,(Q%°) of
extensions of the p-adic valuation to the maximal abelian field extension Q¢ of
Q. Let (Q/Z)® be the subgroup of Q/Z of fractions with denominator prime to
p and let Q9P be the subfield (i.e., the inertia subfield) of Q¢ generated by the
group u?) ~ (Q/Z)P of roots of unity of order prime to p. We describe canonical
isomorphisms of Val, (Q) with each of the following spaces:

(1) The space of sequences of irreducible polynomials P,(T) € F,[T], n € N,
fulfilling the basic conditions of the Conway polynomials (cf. Theorem 8.7).

(2) The space X, of bijections of the monoid M (p) = 1P U {0} commuting with
their conjugates, as in Definition 8.5 (cf. Proposition 8.8).

(3) The space Hom(QE P, @) of field homomorphisms, where Q{Y"? ¢ QP
is the decomposition subfield, i.e., the fixed field under the Frobenius automor-
phism (cf. Proposition 8.12).

(4) The quotient of the space X, by the action of Gal(ﬁ,) (cf. Proposition 8.14).

(5) The algebraic spectrum of the quotient algebra [,[(Q/ 7))/ Jp, where J, is
the reduction modulo p of the cyclotomic ideal (cf. Definition 8.1 and Proposi-
tion 8.16).

For a global field K of positive characteristic (i.e., a function field associated to
a projective, non-singular curve over a finite field [,) it is a well-known fact that
the space of valuations of the maximal abelian extension K% of K has a geometric
meaning. In fact, for each finite extension E of [, ®f, K C K2, the space Val(E) of
(discrete) valuations of E is an algebraic, one-dimensional scheme whose non-empty
open sets are the complements of the finite subsets F C Val(E). The structure sheaf
is locally defined by the intersection () R of the valuation rings inside E. Then the
space Val(IK?) is the projective limit of the schemes Val(E), E C K.

For the global field K = Q of rational numbers, one can consider its maximal
abelian extension Q¢ as an abstract field and try to follow a similar idea. In Sec-
tion 9, we show however that the space Val(Q®¢) provides only a rough analogue, in
characteristic zero, of Val(K®), more specifically the fiber Val, (Q%°) of Val(Q®¥°)
over a rational prime p does not give the sought for counterpart of the adelic descrip-
tion. Our approach to this problem is guided and motivated by the following three
results contained in our previous work:

(a) The adelic interpretation of the loop groupoid H*ib (X)' of the abelian cover of
the algebraic curve X associated to a function field (cf. [15] and § 9.1).

(b) The determination of the counting function N (¢) (adistribution on [1, c0)) which
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replaces, for K = Q, the classical Weil counting function for a function field
(cf.[11] and § 9.4).

(c) The interpretation of the counting function N(g) as an intersection number,
using the action of the idele class group on the adele class space (cf. [12]).

By applying these results we find that the sought for geometric fiber over a non-
archimedean, rational prime p is the total space of a principal bundle, with base
Val, (Q°) and structure group given by a connected, compact solenoid S whose
definition is given in Proposition 9.2. Then, in Proposition 9.3, we derive a natural
construction for the fiber as the mapping torus Y, of the action of the Frobenius on
the space X,. In Section 9.3, we consider the fiber Y, over the archimedean prime,
with the implementation of the theory of multiplicative norms.

The interpretation given in (c) for the counting function as intersection number
shows that the fibers Y, should not be considered in isolation, but as being part of
an ambient noncommutative space which is responsible for the transversality factors
due to the archimedean contribution to the explicit formulas. This interpretation is
explained in details in Section 9.4.

In Section 9.5, we show that the integral BC-system gives, for each p (including
the archimedean prime), a natural embedding of the fiber ¥, into a noncommutative
space constructed using the set &(C,) of the C,-rational points of the affine group
scheme & which defines the abelian part of the system (cf. [16]). Here C, denotes
the p-adic completion of an algebraic closure of Q. This result shows that the space

X(Cp) := (E(Cp) x(0,00))/(N x {£1}) (1)

matches, for any rational prime p including p = oo, the definition of the adele class
space. In Proposition 9.5 we show, using the fact that & is a group scheme, that
X(C,) is a free module of rank one over the hyperring Hq of the adele classes. The
problem of a correct interpretation of the connected factor (0, co) in (1) remains open.

It is a general principle that in our constructions the noncommutative spaces
arise as X(A) for a commutative ring A (cf. (1)), while the classical subspaces of
X(A) are defined as the support of the cyclotomic ideal (in the affine scheme & =
Spec(Z[Q/Z))).

We end the paper by showing in Section 10 the relevance of the recent work
of B. de Smit and H. Lenstra (cf. [19]) on the “standard model” for the algebraic
closure of a finite field. When K is a function field, the intermediate extension
KcL= I]?q ®F, K C [K2® plays an important geometric role, namely the extension
of scalars to an algebraically closed field, for the algebraic curve associated to K.
When K = @, we show that the intermediate extension Q C @CAYCI C Q% used by
de Smit and Lenstra comes very close to fulfill the expected properties for a similar
intermediate extension Q@ C L C Q%°. Their construction provides a conceptual
construction of the subfield of Tp union of all extensions whose degree is prime to
p. In the very last part of the paper we recall one of the first applications provided
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by E. Witt of his functor, which is a conceptual construction of the missing piece
\Un F,pn C Fp, using the simple equation X7 = X + 1 in Witt vectors.

2. The functor W

In this section we recall the definition and the main properties of the universal ring
Wo(A), where A is any commutative ring with unit. We refer to [1] to read more
details and also to [6], IX, Exercices 28-58, §1. The second part of the section
describes Wy (k), for an algebraically closed field k.

One lets End 4 (or End & (A4)) be the category of endomorphisms of projective A-
modules of finite rank. The objects are pairs (£, f) where E is a finite, projective A-
module and f* € End4(F). The morphisms in this category are required to commute
with the endomorphisms f. The following operations of direct sum and tensor
product,

(E1, 1) ® (E2, f2) = (E1 @ Ez, 1 D f2),
(E1, 1)) ® (E2, f2) = (E1 ® Ez, 1 ® f2),

turn the Grothendieck group Ko (End,) into a (commutative) ring. The pairs of the
form (E, f = 0) generate the ideal Ko(4) C Ko(End,). We denote the quotient
ring, Wo(4), by

Wo(A) = Ko(Endy)/Ko(A).
By construction, YW is an endofunctor of the category Rfing of commutative rings

with unit. Several key operators and maps act on W, the following are the most
relevant ones for our applications:

(1) The Teichmiiller lift t: A — Wy (A) which is a multiplicative map.
(2) For n € N, the Frobenius ring endomorphisms Fy, : Wo(A4) — Wy (A).

(3) Forn € N, the Verschiebung (= shift), additive functorial maps V;, : Wy(A) —
Wo(A).

(4) Forn € N, the n-th ghost component homomorphisms gh,,: Wy(4) — A.
We briefly recall their definitions.

(1) The Teichmiiller liftt = [-]: A — Wy(A) is defined by f +— t(f) =[f] =
(4. /).

(2) For n € N, the operations in End4 of raising an endomorphism f* to the n-th
power induce the Frobenius ring endomorphims in YWy (A):

Fu: Wo(A) = Wo(A),  Fu(E, f) = (E, 7). (2)



On the arithmetic of the BC-system 879

(3) For n € N, the Verschiebung maps are defined by the following operations on
matrices:

00 ... f
Va: Wo(4) = Wo(4).  Va(E. f) = (E@", [6 90 8]) (3)
000

(4) For n € N, the ghost components are given by
gh,: Wo(4) > A, gh,(E. f) = Trace(/").

Let A(A) := 1 + tA[[t]] be the multiplicative abelian group of formal power
series with constant term 1. The (inverse of the) characteristic polynomial defines a
homomorphism of abelian groups

L: Wo(4) = A(A), L(E, f) = det(l —tM(f))™", o))

where M( f) = (a;;) is amatrix associated to f: E — E (i.e., f <— >, x' ®x;,
x' € E*, x; € E, a;j = (x],x;)). By a fundamental result of G. Almkvist ([1],
Theorem 6.4, or [2], Main Theorem), one has

Theorem 2.1. The map L is injective and its image is the subgroup
Range(L) = {(1 +ait + -+ ant™)/(1 + b1t +--- + but") | aj, b; € A}
of A(A).

Note in particular that for £ a finite, projective A-module and f, g € Endg4(FE)
one has

(E. fg) = (E.gf) € Wo(4). @)

One also has
Vaim = VooV =VmoVu, Faum = Fyo by = FyoFy. (6)

The following proposition collects together several standard equations connecting
these operators

Proposition 2.2. Let A be a commutative ring and x,y € Wy(A). The following
hold:

(1) F,oV,(x) = nx.

2) Va(Fu(x)y) = xVa(y).

3) If (m,n) =1, then Vyy o Fyy = Fyy o V.
4) Forn e N, V,(x)Vy,(y) = nV,(xy).
(5) Forn € N, Fy(z(f)) = (/™).
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(6) Forn,m € N, gh, (Fn(f)) = gh,,,(f)
) ehy V() = {’"gh"/m(f »

0 otherwise.

Proof. All proofs are straightforward, we just check (4) as an example. For x €
End4(E), the action of X = V,,(E, x) on vectors § = (£1,...,&,) € E®" is given
by
(XE) = x&q,  (XE), =& forall j with2 < j <n.

Similar formulas hold for ¥ = V,(F,y) with y € End4q(F). By definition,
Vu(x)Vy(y) corresponds to X ® Y € Endyq(E®" ® F®"). This endomorphism
decomposes into the direct sum of n endomorphisms of (E ® F)®”", each of these is
of the form

0 0 cee o x®1 0o ... xX®y
1 0 0 ... 0 1 0 O 0
1 0 0

0 I®y O ... 0 or

0 0 1 0

S

0 0 0 1 0
By applying (5), one checks that each of the above endomorphisms is equivalent to
Vi (x ® y). The equality V,,(x)V,,(y) = nV, (xy) follows. O

We shall apply the following proposition to the case 4 = k = E, an algebraic
closure of [.

Proposition 2.3. Letr k be an algebraically closed field. Then the map which as-
sociates to (E, f) € Endy the divisor §(f) of non-zero eigenvalues of f (with
multiplicity taken into account) extends to a ring isomorphism

§: Wo(k) == Z[k™]. 7

Under the above isomorphism, the Frobenius F, on Wy (k) is given on Z[k*] by the
natural linearization of the group endomorphism k* — k>, g > g".

Proof. By applying Theorem 2.1, the characteristic polynomial extends to a complete
invariant on Ko (End; ) and to an isomorphism of Ko (End, ) with the ring of quotients
of monic polynomials in k[¢]. Moding out this ring by K (k) means that one removes
the powers of the variable. Thus the divisor of non-zero eigenvalues of f extends to
define a bijection of sets Wy (k) ~ Z[k™].

It remains to check that this bijection preserves the ring operations. For addition,
the set underlying the divisor §( f1 + f>) is the disjoint union of the two sets of roots
of f; and hence §( fi + f2) = 8(f1) + 8(f2). For the product, it is enough and easy
to check that the tensor product of two rank one elements (k, ) ® (k, b) is given by
(k, ab) for non-zero elements of k. The statement about F,, is checked in the same
way using (2) on elements (k, a). O



On the arithmetic of the BC-system 881

Recall the following formula for L( f') in terms of the divisor §(f) = Y n(a)[a] €
Z[k™]:
L(f) =TI —ar)™"@. ®)

Corollary 2.4. Forany given isomorphismo : I]?; ——(Q/Z) (P) of the multiplicative

group of the algebraic closure [F__p with the subgroup (Q/Z)P) ¢ Q/Z of fractions
with denominator prime to p, one derives an isomorphism

&: Wo(Fp) = Z[(@/2)").

Under the isomorphism &, the Frobenius F, of Wy (Tp) is given on Z[(Q/Z)@P]
by the natural linearization of the group endomorphism (Q/ 7)?» - (@ / 7)),
g+ g" (i.e., y — ny in additive notation).

3. The integral BC-system
For each n € N, one defines group ring endomorphisms
on: ZIQ/Z] — Z[Q/Z]. onle(y)) = e(ny),

and additive maps

pn: Z[Q/Z] — Z[Q/Z].  pule(y)) = X e(y). )

ny’=y
We recall from [16], Proposition 4.4, the following result.
Proposition 3.1. The endomorphisms o, and the maps py, fulfill the relations

Onm = OnOm, Pmn = PmPn forallm,n € N, (10)

Pm(Om(X)y) = xXpm(y) forallx,y € Z|Q/Z], n
and

0c(pp(x)) = (b,c) pp(0e(x)), b =b/(b.c). ' =c/(bc), (12)
where (b, c) = gecd(b, ¢).
Note that taking b = ¢ = n in (12) gives
on(pn(x)) =nx forallx € Z[Q/Z]. (13)
On the contrary, if we take b = n and ¢ = m to be relatively prime we get

On © Pm = Pm © Op. (14)
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We recall from [16] (Definition 4.7 and §4.2) the following facts. The integral BC-
algebra is the algebra Hz = Z[Q/Z] x5 N generated by the group ring Z[Q/Z]
and by the elements i, and ), with n € N, which satisfy the relations
AnXty = pn (),
P X = 0n(X) iy, (15)
Xfln = [lnOn(X),
where p,,, m € N, is defined in (9), as well as the relations

fnm = fnjilm forallm,m e N,
Pom = Unity, foralln,m,
nfln =1,
finttly = Wfin,  (nom) = 1.
After tensoring by Q, the Hecke algebra Hq = #z ®z Q has a simpler explicit

presentation with generators u, (= rll/ln), iy, n € N, and e(r), forr € Q/Z,
satisfying the relations

(16)

* Wriy = lforall n e N,

* Umin = fmns My = Uy forall m,n € N,

* Unfhy = Mo bn if (1, m) = 1,

e(0) =1,e(r)* =e(—r)and e(r)e(s) = e(r + s) forall r,s € Q/Z,
e forallm €e Nandallr € Q/Z,

e s = 3 els).

ns=r

After tensoring by C and completion one gets a C*-algebra with a natural time
evolution a; ([4], [18], Chapter III). The extremal KMS states below critical temper-
ature vanish on the monomials p,xuy, forn # m and x € Q[Q/Z], and their value
on Q[Q/Z] is given by

1 o0
oppe(a/) = £ ; nP o). (17)

where p € Z* determines an embedding in C of the cyclotomic field Q¢ generated
by the abstract roots of unity.

4. Wy ([I?,,) and the BC-system

In [30] Quillen makes use of the choice of an embedding

o [F;-MEX
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in the study of the algebraic K-theory of the general linear group over a finite field. In
this section we compare the description of the universal Witt ring W (E,), endowed
with the structure given by the Frobenius endomorphisms F, and the Verschiebung
maps V;, with the integral BC-algebra #z.

By a simple comparison process we notice that the relations (10), (11), (12)
holding on #7 are the same as those fulfilled by the Frobenius endomorphisms £, and
the Verschiebung maps V}, on Wo([F__p). More precisely, under the correspondences
on — Fy, pn — Vy the two relations of (6) correspond to (10), and the first three
relations of Proposition 2.2 correspond respectively to (13), (11) and (14). These
results evidently point out to the existence of a strong relation between the (A)-ring
Wo (Fp) and the group ring Z[Q/Z] endowed with the aforementioned operators.

Next, we compare the two groups rings: Z[(Q/Z)®)] and Z[Q/Z] which arise
in the description of WO(E,,) and in the construction of the BC-algebra respectively.
One has a surjective group homomorphism: Q/Z — (Q/Z)® induced by the
canonical factorization of the groups

Q/Z = (Q/Z)P x ppeo, (18)

where 100 is the group of fractions whose denominator is a power of p. Thus one
obtains a corresponding factorization of the rings

Z|Q/Z] = Z(Q/2)P] ®z Z[upe<].

By using the trivial representation of jt,c0 (i.e., the augmentation € of Z[ji,]), one
gets a retraction r = id ® € producing the splitting

2(@/2)") 2 zi/z1 225 z[(Q/2) ). (19)

Notice that (Q/Z)®) is preserved by the action of the map y +— ny,y € (Q/Z)®).
This implies that the endomorphisms o, acting on the BC-algebra restrict naturally
to determine endomorphisms o0, : Z[(Q/Z)P] — Z[(Q/Z)P)].

Letusdenote by /(p) C N the set of integers which are prime to p. The following
lemma describes the projection of the operators p, of the BC-algebra on the group

ring Z[(@/Z)(P)]

Proposition 4.1. Let n = p*m withm € I1(p). Fory € Q/Z, we write modulo 1

v=245 bel(p) ab,cseN. (20)
b ps
Then, with py, as in (9), we have
m—1
- + wb
ropneen = pt Y e LE2), @

w=0
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where y = b , [ € Z/bmZ, is the unique solution in Q / Z with denominator prime
to p of the equation

Py =2 eq/z. 22)
bm
Proof. The existence and uniqueness of the decomposition (20) derives from the
factorization (18). For d € I(p), the endomorphism of Q/Z: x + px restricts
to an automorphism on the subgroup Gy = {3 € Q/Z | a € Z} C Q/Z. For
d = bm, this fact shows the existence and uniqueness of the solution y = % of
(22). One has p¥y = 3 1 J for some integer j € Z, thus

a n J a + j a+,
—=—+ -, ny=-—+jm.
bmpk ~ pk  bn y=pT/

By applying (18), one also has a decomposition of the form

y:

c c d e
nps = mps+k = E + ps+k‘ (23)

n;S = %, thus the solutions of the equation ny’ = y
in Q/Z which enter in (9) are of the form

/

= —l—i—i—ik, uE{O,...,m—l},ve{O,...,pk—l}.
np* m p
By using (23) one derives

d

u v
y’:y—l———’,———l——k—l—s—%, uel0,....m—1}, vefo,... pF—1u.
m m p P

For the projection r(e(y’)) € Z[(Q/Z)?)] one thus gets that

r(e(y)) = e(y + %) = e(f meb), wef0,...,m—1},

which is repeated with multiplicity p*. Equation (21) follows. O

Corollary 4.2. One has

ropu(x)=ropy(r(x)) foralxeZ[Q/Z], n € N, (24)
and
1o Ppk(x) = pkos : Y(r(x)) fordlx e Z[Q/Z], k € N.
Proof. The two statements follow from (21). Ll

Definition 4.3. For p a prime number, we denote by X, the space of all injective
group homomorphisms o: F* —> Q/Z.
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The relation between WO([I?,,) and the abelian part Z[Q/Z] of the integral BC-
algebra #7 is described by the following lemma

Proposition 4.4. Let 0 € X, and let & be the associated ring isomorphism
5: Wo(Fp) = Z[(@/2)"] C Z[Q/Z].

Then the Frobenius Fy, and Verschiebung maps V, on W (Fp) are obtained by re-
striction of the ring endomorphisms oy, and the maps p, on Z|Q/Z] by the formulas

0o0oF,=0,00, 0oV, =ropyoo0. (25)

Proof. In Section 2 we recalled (cf. [20] for details) that the Frobenius F,, on Wy(A)
is given by F,(E, f) = (E, f"). At the level of the divisor of the eigenvalues of f
(it is a divisor in the virtual case), i.e., at the level of the associated element in Z[k*],
A=k = [l?p, the Frobenius F;, corresponds to the group homomorphism g — g”
(cf. Proposition 2.3). The Verschiebung maps V;, are described by the operation (3)
on matrices. The maps V}, are additive and hence determined by the elements V;, ([«])
where a € k. They correspond to the n eigenvalues of the following matrix

o o0 ... ... «
1 0 O ... O
0

Vi@y=10 1 0
0O 0 o0 1 0
Since the n-th power of the above matrix is the multiplication by «, all its eigenvalues
fulfill the equation 8" = «. In fact the characteristic polynomial of the above matrix
is P(X) = X" —a. Letn = pFm, where m is prime to p. Since [, is a perfect field,

—k = k . . . . o e
the root «” = € [, of X”* — o is unique and it admits m distinct roots of order m:

" = ocp_k, which are the m roots of P(X). They take the form &8¢, with £ = 1.
Thus the corresponding divisor is

§= Y p*EBol.
g=1

We now compare the above descrlptlon of the divisor associated to V,,(E, f) with
ropn(e(y)), wherey = o(a) = 7 € ((D/Z)(p) C Q/Z. The elements £y € [,
are the m distinct roots of the equatlon X" = «. Similarly, with the notations of
(21), the elements

f 4+ wb
bm

are the m solutions in (Q/Z)?) of the equation nz = y. One thus gets

o(S)—ka (f—l—wb)

c(@Q/7)P cQ/zZ, wel0,....m—1},
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Thus (21) shows that
6 (Va([a])) = 6(8) = r o pule(y)) =10 py o ([a]). O

Theorem 4.5. Let o € X),. The following formulas define a representation wto of the
integral BC-system Kz as additive endomorphisms of Wy ([F):

e (x)E = ~_1("(x)) £, HJ(ILZ) =Fy, ms(ftn) = Va (26)

forall & € Wo(Fp), x € Z|Q/Z] and n € N.

Proof. By construction x +— &~ !(r(x)) is a homomorphism of the group ring
Z|Q/Z] to Wy(F,) and hence, by composition with the left regular representation,
7y gives a representation of Z[Q/Z]. The F, and V,, are additive. It remains to
check the relations (15) and (16). The latter ones follow from (6) for the first two,
and from (1) and (3) of Proposition 2.2 for the last two. To check the first relation of
(15) one needs to show that

Varto (X) Fy = 705 (pn(x)). (27)

One has 75 (x) = 75(r(x)) for all x € Z[Q/Z]. Thus, by applying (24), one can
replace x by r(x) without changing both sides of the equation. Thus we can assume
that x = 6(z) for some z € W ([E,). Then 74 (x) is just the multiplication by z. By
(25) one has

ropn(x) =r10pu(6(2)) =370 Va(2).
Thus 74 (05, (x)) is the multiplication by V;,(z) and (27) follows from

Va(zFu(§)) = Va(2)§  forall § € Wo(F),

which is statement (2) of Proposition 2.2. Let us check the other two relations of
(15). The second one means

Furtg (x) = 75 (00 (X)) Fa,

and since roo,, = o,or, we can assume as beforethatx = 6(z) forsomez € WO(E,).
Then 74 (x) is the multiplication by z and, by (25), 74 (05, (X)) is the multiplication
by F,(z). The required equality then follows since F;,, is multiplicative. The last
relation of (15) means

7o (X) Vi = Vamg (0n (X)),

and assuming x = & (z) it reduces to
2Va(€) = Va(Fa(2)E) forall § € Wo(Fp),

which in turn follows from statement (2) of Proposition 2.2. O
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5. The Witt vectors functor and the truncation quotients

In this section we provide a short overview on the construction of the universal Witt
scheme in the form that is most suitable to the applications contained in this paper,
for more details we refer to [40], [29], [7], [24], [3], [34], [25]. In the second part of
the section we connect the universal ring YWy (A4) with W (4).

The construction of the ring of big Witt vectors (or generalized Witt vectors) is
described by a covariant endofunctor YV : ing — JRing in the category of commu-
tative rings (with unit). For A € obj(Ring), and as a functor to the category of sets,
one defines

W(A) = AN = {(x1,x2,x3,...) | x; € A}.

To a truncation set N € N (i.e., a subset of N which contains every positive divisor
of each of its elements), one associates the truncated functor

Wy : Ring — Gets, Wy (4) = AV.

As a functor to the category of sets, Wy is left represented by the polynomial ring
Ry = Z[xu|n € N]. Then it follows that the big Witt vectors functor W = Wy is
left represented by the symmetric algebra Symm = Z[x1, x5, x3, .. .]

W (A) = Homging (Symm, A) for all A € obj(NRing). (28)

As an endofunctor in the category of commutative rings, Wy : Ring — Ring is
uniquely determined by requiring that for any commutative ring A and foranyn € N,
the map
d
gh,: Wy (A) > A4, gh,(x)=> de/ ,
dln
called the n-th ghost component, is a ring homomorphism.
For ¢ a variable, the functorial bijection of sets

@a: W(A) = A(A) = 1+ tA[[t]]l, x = (e = fx(@) = T (1 —x,t™)7L,

neN
(29)
transports the ring structure from YV (A4) to the multiplicative abelian group A(A) of
power series over A with constant term 1, under the usual multiplication of power
series (the power series 1 acts as the identity element). In other words, one has

a(x +y) = pa(x)pa(y) forall x,y € W(A).

To make the description of the corresponding product » on A(A4) more explicit, one
introduces first the n-ghost components wy, : A(4A) — A, n € N, which are defined
by the formula

w(f) =w( +ait +axt? +azt® +---) = wit + wot?> + -+ = t L (log(f(1))).
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For example, the first three ghost components are given by the universal formulas
wi(f) = a1, wa(f) =—ai +2az, ws(f) =aj —3aias + 3as.

For products of the form [[;_, (1 — &)~ = 1 + a1t + axt*> + --- = f(t) this
means that

wit + wyt? + watd 4 -+ =t L (log(f(1)))

d
=14 Z log((1 — &)™)

(51 +E 5

~.

[ Mg [ Mg

pi(©)1.

~.

Thus the ghost components are given by the power sums in the &’s. Then the
product x on A(A) is uniquely determined by requiring that these ghost components
are (functorial) ring homomorphisms. In fact, distributivity and functoriality together
force the multiplication of power series in A (A) to be expressed by the rule

fO=TIa-&07" g0y =TI -m)™" = (f *)@) =[]0 —&n;n7
i 1 1,
(30)

where

(4 Q0e(T10 = &m0 ™) = T pu(®pa ",
i,j n=

It follows that multiplication according to (30) translates into component-wise multi-
plication for the ghost components on A(A). It is expressed by explicit polynomials
with integral coefficients of the form

(14> ant™) *» (14> but")
=1+a1bit + (Cl%b% — azb% — a%bz + Zazbz)lz + (Cli’b% — 2(11612[)% + Cl3b:f
—2a3byby + 5aya2b1by — 3aszbiby + ajbs — 3ajazbs + 3azbs)t + .- .

The ghost components gh,, (x) of aWitt vector x = (x1, x2, x3,...) € W(A) become
the ghost components of ¢4(x), i.e.,

h,: W(A) > A4, gh,(x) = wa(ga(x)).

It follows that the bijection ¢4: W (A) — A(A) becomes a ring isomorphism.
Note moreover that the homomorphism of abelian groups L: Wy(A4) — A(A)

of (4), preserves the product, i.e.,

L((E. f)® (F.g)) = L(E. /) * L((F. g)).
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so that it defines an injective ring homomorphism.
Two Witt vectors x, y € W(A) are added and multiplied by means of universal
polynomials with integer coefficients

x4+wy=usi(x,y), ns20x,9),...),
xxwy = (upi1(x,y), up2(x,y),...).

The polynomials ws;, p,; are recursively computed using the ghost components
by the formulas

gh, (s,1(x, ), s 2(x,y),...) = gh,(x) + gh, (),
gh, (up1(x,y), upa(x,y),...) = gh,(x)gh,(y).

Notice that the polynomials gh,, (x) depend only on the x4 for d a divisor of 1, hence
the n-th addition and multiplication polynomials s ,, (p, are polynomials that
only involve the x; and y; with d a divisor of n. Thus, for a truncation set N € N,
the polynomial ring Ry = Z[x, | n € N] is a sub Hopf algebra and a sub co-ring
object of Symm, this means that it defines a quotient functor, which coincides with
Wy . This result applies in particular to the truncation set N = {p” | n > 0}, where
p is a prime number. Thus the p-adic Witt vectors YW,cc (A4) can be interpreted as
a functorial quotient of the big Witt vectors (similarly one obtains W,n (A) as the
p-adic Witt vectors of length n + 1).

The Teichmiiller representative is a multiplicative map which defines a section to
the ghost map gh;. If N C N is a truncation set, the Teichmiiller representative is
defined as

a ifn=1,

[-In: A—> Wn(A4), aw>[a]ly = ([@]n)nen, [alnn = {O B

One has gh, ([a]y) = a" foralln e N.

On the functorial ring W (A) one can introduce several functorial operations which
derive from (the large number of) ring endomorphisms of Symm and by applying the
representability property (28). For instance, the Verschiebung, additive functorial
endomorphisms on YW and its quotients arise from the ring endomorphism

Xi/n if i is divisible by n,

V, : Symm — Symm, x; —
ne SY J ' {0 otherwise,

which corresponds to the map f(¢) — f(¢") in A(A).
For N C N a truncation set, the shift is the additive map given by

Va: Wy/n(A) = Wy (A).  Vu((ag | d € N/n)) = (a,, | m € N),
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.f = d’ .
where a), = da 1M 'n and N/n = {d € N | nd € N}. This means that
0 otherwise,

the composite with the ghost components is given by

oh V, = {n gh,,/,, ifn diV.ides m,
0 otherwise.

The n-th Frobenius is the (unique) natural ring homomorphism
Fn: Wi (A) > Wi/n(A)

which is defined on the ghost components by the formula gh, F,, = gh,,. Thus by
definition the n-th Frobenius map makes the diagram

Wy (4) —2 = gN

W/n(A) —m gN/n

commute, where F£" takes a sequence (a,, | m € N) to the sequence whose d-th
component is a4,. At the level of the components x; of a Witt vector x € Wy (A4),
the Frobenius F, is given by polynomials with integral coefficients. For instance, the
following are the first 5 components of F5(x):

F3(x)1 = xj + 3x3,

F3(x)2 = x5 — 3x3x3 — 3x2 + 3xs,

F3(x)3 = —3x%x3 — 9x3x2 — 8x3 + 3xo,

F3(x)s = —3x7x3 + 3x7x3x3 — 18x8x7 + 3x3xF — 36x;7x3,

—24x3 + x3 — 3x3x6 + 9x7 X3X6 + 9x3x6 — 3xZ + 3x12,

F3(x)s = —3x{%x3 — 18x7x2 — 54x8x3 — 81x3 x5 — 48x3 + x2 + 3x;5.
Note that when p is a rational prime one has (cf. [31] Proposition 5.12)
Fp(x)m = x2  (mod pA). 31
One also has (cf. [31], Proposition 5.9)
Vim=VaoVipn=VyoVy, Fym=Fy0F, =FuoF,,

where for the maps F;, one assumes nN C N and mN C N.
Proposition 2.2 extends without change (cf., e.g., [6], IX, Exercice 47, [31] Propo-
sition 5.10).
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Proposition 5.1. Let N C N be a truncation set andn € N withnN C N. Let A
be a commutative ring and x,y € Wy (A). Then:

(1) F,oV,(x) = nx.

2) Vu(Fr(x)y) = xV,u(p).
(3) If mis prime to n, one has Vy, o F, = F, o Vy,.

@) Va(xX)Vu(y) = nVyu(xy).

Proof. We refer to [31], Proposition 5.10. The statement (4) differs slightly from this
reference, it can be checked directly using Proposition 2.2. It implies that when 7 is
invertible in Wy (A4), then %Vn defines a ring endomorphism. O

It is important to see how the description of the universal ring YWy (A) fits with the
definition of W (A). There is a canonical ring monomorphism Wy(A4) < W (A),
which is given as the composite of the injective ring homomorphism L: Wy(A) —
A(A) as in (4) and of the ring isomorphism (pgl i A(A) => W (A) (cf. (29)):

Wo(A) = A(A) =~ W(A), (E, ) det(1 —tM(f))~". (32)

This ring monomorphism has dense range when one endows W (A4) >~ A(A) with the
topology of formal power series with coefficients in A, using the valuation on A(A4)
(and the discrete topology on A). In the case A = [F__p the characteristic polynomial
det(1 —tM(f)) = det(1 —tf') factorizes as a product of terms (1 — ;) of degree
one, where the o; € Fp are the eigenvalues of f (cf. (8)).

Lemma 5.2. Let [-]: F, —> W(F,), x — t(x) := [x], be the Teichmiiller lift, and
let §: Wo(Fp) — Z[F ] be the isomorphism of (7). Then the canonical map (32) is
given explicitly by

JiWo(Fp) = W(Fp)., jod ' Z[F)S]> Y njey = Y onjt(e;) € W(F,).

This lemma together with Theorem 2.1 shows that the subring Wo ( Tp) cWwW (E,)
is just the group ring Z[[F;] and is freely generated over Z by the Teichmiiller lifts.

6. The p-adic representations r, of the BC-system

In this section we shall implement the results of [7], [34], [3] to describe the ring
W([I?p), then using the embedding with dense image W, ([I?p) — W([l?p) we will
extend the representation 7, of 7z on WO(E,) (Theorem 4.5) to a representation of
the integral BC-system on W ([l?p). Such representation is the p-adic analogue of the
irreducible complex representation (48).

We begin by recalling the definition of the isomorphism

W(ﬂ__p) >~ Wpeo (”__p)l(p)’
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where 1(p) C N is the set of positive integers which are prime to p and p® is the
set of integer powers of p. At the conceptual level, this isomorphism is a special case
of the general functorial isomorphism holding for any commutative ring 4 with unit
([3], Theorem 1):

W(A) = Wip)(Wpee (4)).

When A is an [,-algebra, every element of /(p) is invertible in B = W0 (A), thus
one derives a canonical isomorphism Wy, (B) ~ B 1(P) which is defined in terms
of the ghost components. Let Z ;) be the ring Z localized at the prime ideal pZ so
that every element of /(p) is invertible in Z (). A central role, in the ring A(Zp)),
is played by the Artin—Hasse exponential, which is the power series

P P
Ep(t) = hexp(t) = exp (14 =4 T k) € AZg).

The following properties are well known (cf. [3], [34]).

Proposition 6.1. (1) E,(¢) is an idempotent of A(Z (p)).
(2) For n € I(p), the series Ep(n)(t) := %Vn (Ep)(t) € A(Z(p)) determine an
idempotent. As n varies in 1(p), the E,(n) form a partition of unity by idempotents.
(3) Forn ¢ pN, F,(E,)(t) = 1 (= 04) and For(Ep)(t) = Ep(t) forallk € N.

To check (1) directly, one shows that there exists a unique sequence (X,)neN €
W(Z (p)) such that

* X1 = 1,
¢ Xpk = Oforall k > 0,
* Fu(x),x = 0forallm € I(p) and k > 0.

This follows by noticing that the coefficient of x,,,« in F(x),x is m € I(p)
which is invertible in Z (), so that one determines the x, inductively. One then
checks that the ghost components of (x,)nen € W (Z(,)) are the same as those of
Ey(t),ie., ghy(x)isequalto 1ifn € p™N and is zero otherwise.

Note that any n € I(p) is invertible in A(Z(,)). Division by n corresponds to
the extraction of the n-th root of the power series f(¢) = 1 + g(¢). Formally, this is
given by the binomial formula

I|—=

1,1 1
2G oD Gk D

1
:(1+g)%=1+_g+..._}_
n k!

/

The p-adic valuation of the rational coefficient of gk is positive because % € Zp,

thus this coefficient can be approximated arbitrarily by a binomial coefficient. It
follows from Proposition 2.2 (4) that %Vn is an endomorphism of A(E,) and also a
right inverse of F;,.

One easily derives from [7], [3], [34] the following result.
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Proposition 6.2. Let A be an [Fp-algebra.
(a) The map

Va: Wpeo(A) = A(A)E,, Ya(x)(t) := hy(t) = HEp(xpntpn), x = (Xpn)nen,

is an isomorphism onto the reduced ring A(A)g, = {x € A(A) | x x E, = x}.
(b) For n € I(p), the composite 1//21 o Fy, is an isomorphism of the reduced
algebra A(A)E, n) with Wpoo (A).
(c) The composite
0a(x) = (04(x)n = Yz o Fu(x x Ep(n)). nel(p), x € A(4),  (33)

is a canonical isomorphism 04: A(A) = Wyeo (AP = W (A).
(d) The composite isomorphism 4 := 040¢4: W(A) = Wyeo (AP s given
explicitly on the components by

(Oa(X)n)pk = Fu(x),x forall x € W(A) andn € I(p). (34)

Proof. The first three statements follow from [7], §3.b, [3], Thm. 1 and Prop. 1,
[34], Thm. 9.15. We prove (d). Since the Frobenius F}, is an endomorphism and
Fu(x » E,(n)) = F,(x) » E,, one can rewrite (33) as

(64(x))n = Y1 ' (Ep * Fy(x)) foralln € I(p).

Thus, to show (34) it is enough to prove it for n = 1. One needs to check that for all
x € W(A), one has

Ep x pa(x) =[] Ep(xpnt?").
N
Indeed, this follows from distributivity and the identity

1 if N,
Bpetoany =l e
Ey(xt?") ifn = p~.

The above identity can be checked directly knowing that (1 — xt*)~! = V,(t(x))
and by applying the equality
Ep* (1= xt")™" = Ep % Va(2(x)) = Va(Fn(Ep) * T(x))
together with Proposition 6.1 (3) and the equality
() * (@) = 1=y~ * f(1) = f(y1),

which holds for any element f(¢) € A(A). In particular, for the Teichmiiller lift
7(y) = [y] of an element y € A one gets

0a(x(y))n = T(y") foralln € I(p) (35)

where, on the right-hand side, t denotes the original Teichmiiller lift 7: A —
Wyoo (A). Indeed one has Fy,(z(y)) = t()y"). O



894 A. Connes and C. Consani

Corollary 6.3. Let A be an [Fp-algebra. Then the common fixed points of the endo-
morphisms F,: W(A) — W(A) for n € I(p) are the elements of the form

L= Y n%Vm(Ep * 1), A€ Wy (A). (36)
mel(p)

One also has

Qa(L() = 1 haG™)n.

nel(p)

Proof. Let x € W (A) with F,,(x) = x forall n € I(p). Then it follows from (34)
and (33) that all the components (64(x)), are equal, so that for some A € W00 (A)
one has

1
E,(nyxx = =Vu(Ep x A)
n

and x is of the required form. Conversely, by Proposition 6.1 (3), one has F,(E,) =
04 forall @ € I(p), a # 1. Thus when one applies Fj, to %Vn(Ep * ), one gets 1
(= 04) unless k|n using Proposition 5.1 (2), (3). When k|n one obtains % Vin(Ep*A),
with m = n/k. Thus the elements of the form (36) are fixed under all F. ]

We now apply these results to the case A = [l?p. We identify W0 ([l?p) with a

subring of C, (the p-adic completion of an algebraic closure of Q). Let @‘ cGC,
be the completion of the maximal unramified extension of Q,. Then one knows that

Wpoo (E,) =0 G is the ring of integers of @‘. With ® the isomorphism of (34),
D

we have

0: W(F,) =>(Ogn) ™, (O()n)pk = Fa(x)pk,

foralln € I(p) and all x € W(H_-_p). Thus ® makes W([l?p) a module over (9@.
_ 4
To the Frobenius automorphism of [, corresponds, by functoriality, a canonical

automorphism Fr of @ G which extends to a continuous automorphism
2

Fr e Aut(@).

We can now describe the p-adic analogues of the complex irreducible representations
of the BC-system (cf. (48)). We recall that X, denotes the space of all injective group
homomorphisms o : Flf — C*. Using the embedding (84) of the abstract cyclotomic
field Q%¥° C C, and Proposition 8.16, the choice of o € X, determines an embedding
p: QP — C, of the cyclotomic field generated by the abstract roots of unity of
order prime to p inside C.

In the following we shall use the simplified notation @ = - Form € I(p),

we let €, be the vector in W (Fp) with only one non-zero component: €,,(m) = 1.
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Theorem 6.4. Let 0 € X,. The representation ns as in Theorem 4.5 extends by
continuity to a representation of the integral BC-algebra #z on W (Fp). Forn € I(p)
and for x € Z|Q/Z), w5 (lin), 7 (X) and 75 (1)) are O-linear operators on W(E,)
and we have

o (Un)€m = €nm, To(e(a/b))em = p(é‘[rln/b)em (37

foralla € Z and all b,m € I(p),

0  ifk¢nN,

. (38)
€k/n lfk e nlN.

ﬂo(M;)Ek = {

One has 715(x) = 7145(r(x)) for all x € Z[Q/Z] (r: Z[Q/Z] — Z[(Q/Z)P)] the

retraction as in (19)) and

To(up) = Fr', me(uy) = Fr, (39)

where Fr is the Frobenius automorphism acting componentwise as a skew-linear
operator.

Proof. Theorem 4.5 and the density of Wy ([F,) in W (F,) (cf., e.g., [23], 1.8) show
that 7, extends by continuity to a representation of the integral BC-algebra #z
on W(I]?p). In view of the invertibility of the elements n € I(p) in W(E,), the
description of the representation 7t is simplified by using the elements y, = % fn,toO
stress the analogy with the complex case. It follows from Corollary 6.3 that the subring
O of W(E,) is the fixed subring for the action of the operators F;, for all n € I(p).
For n € I(p), the operators F, are O-linear likewise the V}, (cf. Proposition 2.2 (2)
which correspond to the i, by means of the representation 7. Thus we obtain
the first equality in (37). The operators 4 (e(a/b)) are the multiplication operators
(cf. Corollary 2.4) by t(e(a/b)), thus they are (-linear and the second equation in
(37) follows from (35). By applying (26) one has 75 (1)) = F, for all n. Taking
n = p, one gets that 75 (14,) = Fp, which coincides with Fr acting componentwise,
as it follows from the commutation F), o %Vn = }an o Fp forn € I(p) and (31).
Since pyup = 1 and Fr is invertible, one gets (39). O

Definition 6.5. We denote by f, C Hz the two-sided ideal generated by the elements
l—e(p™) forallk € N. (40)

Proposition 6.6. One has §, = Ker n, (cf. (37)), and the intersection Z[Q/Z]N §p
is the ideal gg of Z|Q/Z] generated by the elements as in (40).
The sequence of commutative algebras

0— g% — Z[Q/Z] > Z[(Q/Z)P] - 0

is exact.
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Proof. Letr = idgq/z)y» ® €: Z[Q/Z] — Z[(Q/Z)P] be the retraction map
introduced in (19). By construction, one has

5(3 = Ker(r).

Since 75 (e(a/b)) only depends upon r(e(a/b)) it follows that §, C Ker ny. One
knows (cf. [16], Lemma 4.8) that any element of the algebra #z can be written as a
finite sum of monomials of the form

Yo flaXpy M. Xy € Z[Q/Z]. (41)
{a.b}eN2
(a.h)=1

We show that for any finite sum X as in (41) we have
Ts(X) =0 = xgapy € 4. (42)

It is enough to prove that (x4 ;) = 0 for all @,b € N, and since Z[(Q/Z)P
is torsion-free, it suffices to show that ar(xypy) = O for all a,b € N. Let
y: QL — Z[(Q/Z)P), y(%) := ar(x(,py); then y has finite support. For any
group homomorphism

x: (Q/2)P - ©*
there is a unique ring homomorphism /, with
hy: ZIQ/Z)P) — O, hyle(y)) = x(y) forally € (Q/Z)™.

This applies in particular, for any integer j , to y = p/ where we view p: QP — C p
as a group homomorphism p: (Q/Z)®) — ©*. One has

JQZ Kerh,; = {0} (43)

since an injective character of a finite cyclic group generates the dual group. Let
n,m € I(p) be relatively prime. Then one has

(76 (X)z€jm)jn = kZZ hpi ((p~F 2)) Fr*(2).

forany j € I(p) and z € @. Thus if 75(X) = 0 one has for all j and m, n as above

> hpi (p7*L)Frk(z) =0 forallz € O.
keZ

For z a root of unity one has Frf (z) = z? “. Thus the polynomial

Y by (y(pRny) zrt
keZ
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vanishes, for n large enough, on all roots of unity, thus it is identically zero, hence
all its coefficients must vanish, i.e.,

hyy(y(p¥2)) =0 forallk € Z, j € N.

It then follows from (43) that y (%) = y( pk ) = 0, hence (42) holds, and the proof
that any element of Ker r,; is in §, is complete. Finally, if x € Z[Q/Z] belongs
to Ker 75, one has x € 5(3 by (42), and thus the intersection Z[Q/Z] N &, is the

ideal ¢ ;,) . O

Definition 6.7. We denote by Jfg ) the quotient by ¢, of the subalgebra of #z
generated by Z[Q/Z], ji,, 1), forn € 1(p).

The algebra Jfép ) is generated by Z[(Q/Z)P)], the operators /i, and Wy for
n € I(p), and its presentation is similar to the presentation of #z. The relations are

Pnm = Anflm. Mg = Unity, foralln,m e I(p),
Unftn =n foralln € I(p),
Pnfhy, = iy foralln,m € I(p) with (n,m) =1,

as well as the relations

AnXpy = pn(X),  UpX = 0n(X)hpy, Xfn = [dnon(x), (44)

where p,, n € I(p), is defined by

Pule(y)) = Y e(y)) forally € (Q/Z)P. (45)
ny’'=y

Given an algebra », an automorphism ¢ € Aut(-A) and an integer p we let /4 xg , Z
be the subalgebra of the algebraic cross product {) .7 a,V" | a, € A} determined
by the condition

a_, € p"A foralln € N.

Lemma 6.8. Let V = U™ and pV_1 = l~], then A xg p, Z is generated by #, l~],
U™ with the relations

U*U = p, UxU*=p8~ ' (x), U*x=0(x)U*, xU=U60(Kx) (46)
forall x € A.

Proof. By construction all elements of A Xg ,Z are linear combinations of monomials

in A, U , U*. Moreover, the relations are sufficient to recover the cross product rules.
O
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Proposition 6.9. There exists a unique automorphism Fr € Aut(ﬂép )) such that

Fr(e(y)) = e(y)? forally € (Q/Z)P,
Fr(fin) = fin, Fr(p,) =, foralln € I(p).

One derives an isomorphism
Hz/p = ‘%ép) Xgr,p L.

Proof. The map y — py defines an automorphism of (Q/Z)®. Its linearization
Fr acts on Z[(Q/Z)'P] and commutes with the endomorphisms o, and 5. In fact
by applying the isomorphism of Proposition 4.4, Fr corresponds to the Frobenius
automorphism of [F__p. Thus it extends to an automorphism Fr € Aut(ﬂép )).

The second statement follows by comparing the presentation of #z/§, with that

of the crossed product J(’ép ) XEr,p Z as in (46). O

Proposition 6.10. Let o € X),.
(1) The restriction my| 0P of the representation 1y (as in Theorem 6.4) to J(g )
VA

is O-linear and indecomposable over ©.
(2) The representations 74| g0l are pairwise inequivalent.
z

(3) The representation my is linear and indecomposable over Z .
Wwo representations iy and mys are equivalent over if and only if there
@ T pre d quival Zp, d only if th
exists a € Aut(Fp) such that o’ = o o .

Proof. (1) The O-linearity property is checked directly on the generators using The-
orem 6.4. It follows from (37) that the vector €, is cyclic for Jfép ) ie., 7o (5‘(’%J ey
is dense in W ([F,) = 0@, One has

Oer = {5 € W(Fp) | m(uy)(€) = Oforalln # 1, n € I(p)}. (47

For any O-linear continuous operator 7 in the commutant of J(g ) one has
we(up)Ter = Tng(uy)er = 0 for all n > 1, and by (47) there exists A € O
such that Te; = Ae;. Thus, since €; is cyclic, T is given by the module action of
Ae0.

(2) By (37), the action of 775 (e(y)) fory € (Q/Z)® on the subspace (47) is given
by the multiplication by p(y) € @*. Thus, p is an invariant of the representation.

(3) Any element of the commutant of the action of #z is given by the module
action of A € @, where A is fixed for the action of the Frobenius on O, i.e., A € Z,,.
This shows that 77, is indecomposable.

(4) We show first that if there exists a € Aut(ﬁ,) such that 0/ = o o a™ !,
the representations 7, and 7,/ are equivalent over Z,. Let @ = Wyeo(a) €
Aut(Wyoe (Fp)) = Aut(O) and define U: 1P — 91 (U§), = a(&,), for
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alln € I(p). One has Ue,, = ¢, for all n € I(p), and if T is an @-linear operator
sois UT U, It thus follows from (37) and (38) that Uy (i,)U ' = 74 (1) and
Une (WU = ny(uk). For x € Z[Q/Z], Ury(x)U ™! only depends on r(x)
and for x = e(a/b), b € I(p), one has Un,(e(a/b))U e, = &(p(é‘f/b))em =
P'(§7)p)em = mor(e(a/b)).

Moreover, since & commutes with Fr, it follows from (39) that Ur, (u,)U ™! =
7o (1p) and Urng (i) U =7, (). Thus one gets the required equivalence.

Conversely, assume that two representations 7, and 7,/ are equivalent over Z,.
By (47) the Z ,-linear representation 7, (and similarly 7,/) determines uniquely the
representation

Bole(a/b))s = p(lasp)§, forall§ € O,

of Z[(Q/Z)P)] in the Zp-module @. In turn, this determines an extension of the
p-adic valuation to the subfield Q<Y*? C Q¥ generated over Q by 1 (?. Indeed the
formula

val(x) = inf{k > 0| Bo(x)O C p*©@} forall x € Z[(Q/Z)P)]

only depends on the class of x in QP and extends uniquely to a valuation on Q<Y*-P.
The conclusion then follows from Proposition 8.14. O

7. The KMS theory of the BC-system at a prime p

In [4] it was shown that the extremal, complex KMS states below critical temperature
of the BC-system (cf. (17)) are of the form

Tr(ﬂp(X)e_ﬂH)

Tr(e=PH) forall X € Jz7,

V8,0 (X ) =
where H is the Hamiltonian operator of multiplication by log 7 in the canonical basis
€n of the Hilbert space ¢>(IN) and 7, is the irreducible representation of the algebra
Haq given by

np(ﬂn)Em = €nm,; ﬂp(MZ) = ﬂp(ﬂn)*a ﬂp(e(a/b))em = p(é';"/b)em, (48)

where p € Z* determines an embedding in C of the cyclotomic field Q¢ generated
by the abstract roots of unity. Thus the extremal KMS states ¢g , are directly com-
putable using the representation 77, and the explicit description of the Hamiltonian.

In Section 6 we have described the p-adic analogue of the representation .
In this section, our goal is to obtain the p-adic analogue of the KMS states ¢g ,.
The guiding equation is provided by the general algebraic formulation of the KMS
condition which is described by the equality

o(xo(y)) =@(yx) forallx,y € A,
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where ¢ is alinear form on an algebra + endowed with an automorphism o € Aut(+4).
In our case the algebra is

A=HD =3P ®zC,.

In §7.1 we introduce, using the Iwasawa logarithm as a substitute for the above com-
plex Hamiltonian H, the automorphisms o®) e Aut(e%g) )). These automorphisms
are defined for 8 in the “extended s-disk” D), (cf. (50) below). In §7.5 we shall show
how to extend their definition from the domain D, to a covering M of C,. The
construction of the KMS states is based on the classical construction of the p-adic
L-functions and p-adic polylogarithm and many properties that we obtain rely on the
simplifications which occur when 8 = 1 —k(p — 1) (k € Z). In §7.2 we prove the
identities in the cyclotomic field, involving Bernoulli polynomials, which are behind
the verification of the KMS condition. In §7.3 we provide the construction of the
linear forms @g , using some of the results from [38] (cf. Chapter V). In §7.4 we prove
that the functionals ¢g , fulfill the KMS condition with respect to the automorphism

o® ¢ Aut(t}’fd(:l; )). Unlike the complex case, this construction exhibits the (new)

phenomenon of the invariance of the linear forms ¢g_, under the symmetry of Jfé’; )

given by the automorphism e(y) +— e(—y).
_ Throughout this section we fix a finite, rational prime p and an algebraic closure
Qp whose completion is denoted C,. We also use the notation

q=4if p =2, q=pifp #2, (49)
and
plg)=2ifp=2. ¢(q)=p—1ifp#2.
One has gp~ /(=D > 1. We consider the “extended s-disk”,

Dy :=1{BeCy||Bl, <gqp /P7D}, (50)

and first develop the theory for B € D). In §7.5 we shall explain how the Iwasawa
construction of p-adic L-functions allows one to extend the whole theory from the
domain D, to the covering of C, given by the multiplicative group M which is the
open disk of radius one and center 1 in C,,.

7.1. The automorphisms ¢ ® ¢ Aut(:r’(’q(:‘;)). LetZY, C @ be the multiplicative

group of rational fractions whose numerator and denominator are prime to p. We use
throughout the same notion of analyticity as in [38].

Lemma 7.1. Letr € Z ?p)‘ There exists a unique analytic function

D, = C, Brr®,
such that
r® =B forall B el —op(q)Z. (51)
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Proof. We recall that the Iwasawa logarithm log, is the unique extension of the
function defined in the open unit disk centered at 1 by

.n
~log,(1-x) =Y % forall x € Cp. |x|, < 1,

n=1

to amap log,: C; — C, such that

log,(xy) = log,(x) +1log,(y) forallx,y € C,, log,(p) =0. (52)
One has log,(—1) = 0 since —1 is a root of unity, and
log, (M|, <q~' forallr € Z,. (53)

Moreover, the exponential function is defined by the series

®© .n
X
exp(x) = Z . forallx € Cp, |x|p, <rp = p—ﬁ‘

n=1

We define
r® = rexp((B — 1)log,(r)) forall B € Dy. (54)

This is a well-defined, analytic function of B € D), since B — 1 € D,, and thus
|(B — 1 log,(r)|p < rp by (53). We show that (51) holds. This follows from the
equality

exp(ko(q) log,(r)) = rke@  forallr € Z?p), keZ,

which holds for r = —1 since ¢(q) is even. In general, (51) follows from the formula
exp(nlog,(a)) = a" foralla € Zy, n € p(¢9)Z,
as shown in [38] (Chapter 5, p. 52), where the notation
{a) = exp(log,(a)) (55)

is introduced. The uniqueness follows from the discreteness of the set of zeros of
analytic functions (cf. [38]). O

Lemma 7.2. Let B € Dp. Then

X
Z ()

(r BFHF(B)EC;

is a group homomorphism. Moreover, forr € Z E(p)’

B (B2) — . (Bi1+B2),.(0) forall Bj € D,. (56)
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Proof. This follows from (52) and the equality (cf. [33])
exp(x1 + x2) = exp(x1) exp(x2) forall x;, |x;|, < 7p. O

The standard notation for r® is w(r): it is the unique ¢(g) root of unity which
is congruent to » modulo ¢g. In particular one has

(r(o))w(q) =1 forallr e ZEp)' o7

Proposition 7.3. (1) For B € D, there exists a unique automorphism o® ¢
Aut(e}’fg; )) such that

B o _ (0P " )
0P Giaetn) = () fuetini foralab e 1(p). v € @/2)P.

(2) One has
B o 5B — 5B1+B2)  5(0) forall Bj € D, (58)

and 0© is an automorphism of order ¢(q).

Proof. Tt suffices to check that o) preserves the presentation given by the relations
(44) and (44). This follows from the multiplicativity shown in Lemma 7.2. Similarly
(58) follows from (56). The last statement follows from (57). ]

7.2. Cyclotomic identities for the polylogarithm. We recall that the Bernoulli
polynomials B, (u) are defined inductively as follows

1
Bo(x) =1, B (x) =nB,_1(x), /0 B, (x)dx = 0.

Equivalently, these polynomials can be introduced using the generating function

tet! 0 tn
Fu,)=—-— = Z()Bn(u);. (59)
n=

The first few are
Bo(u) =1,
1
Bi(u) = —3 + u,

1
By(u) = g ¢ +u?,

u  3u?
Balw) =5 =5+

1
Bi(u) = ~30 +u? —2u® +ut,
u 5u  5ut 5

B5(M)Z—E+T—T+M.
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These polynomials fulfill the equation B, (1 — u) = (—1)" B, (u). The Bernoulli
numbers are B, = B, (0). Using (59), one checks the identity (cf. [38], Chapter 4,
Proposition 4.1)

g—1 .
— X+
DY Bn( ) = By(x). (60)
— g
Jj=0
We also introduce inductively the rational fractions £g(z) for B € —N as follows:

z0:Lp(2) =Lp-1(2), Lo(z) = —
For « € Q/Z we denote by £, € Q¢ the class of e(x) € Q[Q/Z] modulo
the cyclotomic ideal (cf. Definition 8.1). It is a root of unity whose order is the

denominator of «.

Lemma 7.4. Letn > 1, a,b € N. Then

n—1 N\ ) li-nCasp) I Cap # 1,
b Zéa/b (%)= {Bn’ o Z 1 (61)

Proof. The equality (61) for ,/, = 1 follows from (60). Thus we can assume that
z = {u/p # 1. The Taylor expansion at # = 0 of (ze’ — 1) is given by

x n
(ze' =D '=@E-1)""- n; ()5 (62)
since (z — 1)™! = —1 — £o(z) and 9, agrees with zd,. Then for b € N and ¢ such
that ze # 1 one has
b—1 ) bt _
sze%’ S et 1.
=0 zeb — 1

Since z¢ = 1, one derives

(S (- Erlh)

n=0 zeb — 1

Since z # 1, taking the Taylor expansion at # = 0 using (62) gives the equality

b—1 .
szBn(é) = T lﬁl _n(z) forallnm > 1. O
j=0
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Proposition 7.5. Letn > 1,a,b € N.
(1) The sum

Yo (a/b) = f" IZ;a/b ( ) forall f €bN, £ £0 (63

only depends uponn and 3, € Q/Z.

(2) One has
b 1

—ZY(a/b)—b” 'B, = b""1Y,(0). (64)
a=0
(3) For g > 1, x8 # 1 one has

—Zel —n(Gisgx) = &' lion (x5). (65)

j =0
Proof. (1) Follows from (61). To obtain (2), note that

- bl
1
EZ(:)@‘ =0 forall j # 0 (mod b), bzg‘;/b—l for all j = 0 (mod b).

(3) One checks (65) as an identity between rational fractions by induction on
n € N. It holds for n = 1 by applying the operation —zd, log() to both sides of the
identity

g—1
[T —=¢jjez) =1—28.
j=0

To obtain (65) for n assuming it for n — 1 one applies the operation zd, to both sides
of the identity for n — 1. O

Combining (65) with (61) we obtain, using (64) when o € Z,

b—1 .

1

>3 Y,,(“ Z ]) — b Yp(a) foralla € Q/Z. (66)
j=0

7.3. The linear forms ¢g ,. In this section we shall provide a meaning to expres-
sions of the form

Zp(§5.B) = > ppmP. BeDy (67)

mel(p)

where 7 € Q, b € I(p) is an integer prime to p and p: Q¥¢ < C,,. Note that as
a function of m € I(p), p(¢ /b) only depends on the residue of m modulo b. We
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let f = bp and decompose the sum (67) according to the residue o of m modulo
f.Onehas Z/fZ = Z/pZ x Z/bZ. The elements of I(p) are characterized by
the fact that their residues mod. f are given by pairs & = (1, ®2) € Z/fZ, with
a;y # 0. Fora € (Z/pZ)* x Z/bZ, we let & € N be the smallest integer with
residue modulo f equal to a. Then the sum (67) can be written as

Zp(5-B) =2 (5 ) ZO(& +fm)F, B e D, (68)

Notice that the first sum (over «) in (68) only involves finitely many terms. Each
infinite sum in (68) is of the form (with z = @/ f)

Y@+ fm Pt =P Y +mP BeD,,

nelN nelN

and it is well known that this expression retains a meaning in the p-adic context
(cf. [38], Chapter V). More precisely, the asymptotic expansion in the complex case,
for z — oo (this process goes back to Euler’s computation of > 7° n™2),

%) ~ 1-8 ©© 1_[3 B
’;(24_”)3,\,%20:( i )BjZ]

motivates the following precise formula, where we prefer to leave some freedom in
the choice of the multiple f of bq.

Lemma 7.6. With g as in (50) and f € N, f # 0, a multiple of bq, the expression

Zp(5.B. f) = f (A /b) lﬂi(lfﬁ)(i)jlsj, B € Dy, (69)

l<c<f j=0 J ¢
cEpN

defines a meromorphic function of B € D, with at most a single pole at B = 1.

Proof. Tt follows from [38] (Proposition 5.8) and the inequality (cf. [38], Theo-
<plfl}

rem 5.10)
N o
(<) 5,

S

converges for |8, < |f|;1p_ﬁ and |f|;1p_ﬁ >qgp 7T > 1. O

that the series
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Lemma 7.7. For B a negative odd integer of the form 8 =1 —m = 1 — ko(q) and
feN, f #0, f amultiple of bq, one has

Zp(8.8. f) = ——p( n(5) = ("Z’)) (70)

with Yy, defined by (63).

Proof. For1 <c¢ < f,c ¢ pN, one has (c)l_/g = ¢™. The binomial coefficients
(l;ﬂ ) in (69) all vanish for j > m and the sum defining Z (3. B. f) is therefore finite.

One has
(O B =-Z 2 ()

Moreover for any integer m > 0, the Bernoulli polynomials fulfill the equation

1-8

m

Z (”?)Z—ij =z " B (2).

j=o 7

For1l <c¢ < f,c ¢ pN, one thus gets, taking z =

o

S () =L ()

For any ¢ € N one defines

T(c) 1= —f';_l Bm(i).

f
One has
Zy(5.B. 1) = 1<ZfT(C)p(§§/b) OZ T(o)p(g ) — 2 T()p(Es ).
cgpN e<f 0<C/<j;)/p

Since b divides f', one derives

m—1

> TnE) =~ Y ot Ba( ) = o m(Gaps),

0<c<f 0<c<f

while, since b divides f/p = f’, one gets

3 TP ) = — S )8 (i)=—1’m_l V()
a/b Pa/b m\ m PmGayp))-

c=jp 0<j<
0<i<f/p =i<f/p

The equality (70) follows. O

m—1




On the arithmetic of the BC-system 907

Corollary 7.8. The function

Zp(5.B):=Zp(5.B8. 1)
is independent of the choice of f € bgN, f # 0.

Proof. For two choices f, f’ the analytic function of § € D),

(B—=1(Zo(5.B. )= Zp(5.B. [)

vanishes at all negative integers 1 — kp(g) by the equality (70). Therefore it is
identically 0. 0

Definition 7.9. The equation

Zy(8.B) ifn=m=1,

. (71)
0 otherwise,

0,0(ne(§) i) = {
defines a linear form ¢g_, on Jfg ) for any B € D, where n,m € I(p) are relatively
prime.

The next lemma will play an important role in the proof (cf. next section) that
@8, fulfills the KMS condition.

Lemma 7.10. Foranyn € I(p) and B € Dy, B # 1, one has
¢8.0(Pn (X)) = (n)! P g ,(X) forall X € Z((Q/Z)""] (72)
(cf. (45) for the definition of py).

Proof. After multiplication by 8 — 1, both sides of (72) are analytic functions of
B € Dp. Thus it is enough to show that (72) holds for 8 = 1 —k¢(¢q) =1 —m. In
this case one has (n)!™# = n™ and, from (70) one gets

1
0p.0(e(V)) = =—p(Ym(y) = P"~Yu(py)) forally € (@/2).

To prove the equality (72) we can assume that X = e(a) fora € (Q/Z)®). One has
n—1

pux) = Yo (1)

Jj=0

so that

085 (5n (X)) = _%2‘)(“(& : j) (2 J )
=
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Then (72) follows from (66). Since p is prime to n and the rational numbers p % €
poatj

n

HZ_IYm(a:j) = 1" Ym(@), f”ﬂ(pu) e 6

Jj=0 J=0

Q/Z form the same subset as the set made by the , we derive

7.4. The KMSg condition. The main result of this section is the following

Theorem 7.11. Forany B € Dy, B # 1 and p: QP < C,, the linear form ¢g ,
fulfills the KMSg condition

goﬂ,p(xo(ﬂ)(y)) =g p(yx) forallx,y € qu(:i). (73)
Moreover, the partition function is the p-adic L-function
Z(B) = pp.o(1) = Lp(B. 1),
which does not vanish for f € Dp.
Proof. We fix x,y € %é’; ). Then after multiplication by 8 — 1 both sides of (73)
are analytic functions of B € D). We first assume that 8 # 1; we shall consider the

case B = 1 separately later. Since any element of the algebra J(’G(:’; ) can be written as
a finite linear combination of fi, Xu ), for X € Z[Q/Z], we may assume that

X = nXiy, ¥ =AYy,

where n,m € I(p), (n,m) = 1,s,t € I(p), (s,t) = 1and X,Y € Z[Q/Z]. Then
we use the presentation of %é’; ) to compute xy = fi, Xy, fisYiuy. Let u be the ged
of m = um’ and s = us’. One has

Pmbls = o Mg P fls’ = Ul flsr = UfLs [y,
llnX:u;,asYM;( = uﬂnxﬁs’M;/Y/’L: = uﬁnﬁs’as’(X)Om’(Y)/L:qhu)tk'
Let v be the ged of ns’ = vw and m’t = vz. One has
fnfls = fiwflys oy ly = Hyfhs,
o X Py s YL = o o0y (X)0m (VIS = Ui Po (05 (X)0mr (V)13

We obtain

- ¥~ v U . W ns

Pon X fls Y7 = U fLyy oy (05 (X)Om (Y)) 17, T =T
It follows that unless s = m and t = n one has % # 1 and

08.,(xa® () = g ,(y x) = 0.
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Thus we can assume that s = m and t = n. Then we have

0@y =m ()" mxr g =m (2) o)

so that, by (72), one derives

®)
08, (xaP () =m (m) (n)' o p(XY).

Similarly, by applying again (72), one has

YX =nimYXpp,  0po(yx)=n(m)Pop (XY).
Thus (73) follows from the equality
)]
" (£> ()P = nim)'=*,
m

which in turn derives from (54) and (55).
Now we turn to the normalization factor (i.e., partition function) in (71), which is
given by

()@ s

1=<c<gq j=0
cEpN

Z(B) = gp (1) = -

This is the p-adic L-function for the character y = 1 (cf. [38], Chapter 5, Theo-
rem 5.11):

Z(B) = Lp(B. 1).
Moreover, notice that the Iwasawa construction of L-functions (cf. [38], Chapter 7,
Theorem 7.10) yields a formal power series % g(T) € Z,|[T]]* such that (with g as
in (49)) the following equality holds:

L,(B.1)=g((1+q)f —1)/(1-=(1+q)'"F) forallpeD, (74

Since %g(T) € Z,[[T]] is invertible (cf. [38], Lemma 7.12), this gives the required
result. 0

Note that Z() has a pole at 8 = 1, with residue given by

1 Zl w(q) _pr—1
q1<(<q p

cEpN
Proposition 7.12. When 8 — 1 one has

1 ifeez,

0 otherwise.

lim Z(8)™'Z,(5.B) = {
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Proof. Assume first that - ¢ Z. Then £ = p({4/p) is a non-trivial root of unity,
whose order m > 1 divides » which is prime to p and hence prime to g. Thus using
the decomposition Z/bgZ = Z/qZ x Z/bZ we get

> =g ¥ & =0

l=<c<bgq neZ/bZ
cEpN
If Z—’ € Z, the result follows from the above discussion. ]

Notice in particular that the limit of the functional values Z(8)~'Z (3.B) as
B — 1 is independent of values of p (i.e., independent of the choice of 0 € X),).
In the complex case, the functional values for § > 1, are given by the formula (17).
In that case, we shall now check directly that for 8 € C, Re(f) > 1, the functional
values determine p: Q%° — C as an embedding of the abstract cyclotomic field QY¢
in C.

Lemma 7.13. (1) Let A € Z*, A # 1. Then the graph of the multiplication by A
in Q/Z is a dense subset of R/Z x R/Z.

(2) Let 0 € Aut((Q/Z)P)). Assume that 6 ¢ {£pZ}. Then the graph of 0 is
dense in R/Z x R/Z.

Proof. (1) The set G = {(a, Ax) | « € Q/Z} is a subgroup of R/Z x R/Z and so
is its closure G. If G were not dense, then there would exist a non-trivial character y
of the compact group R/Z x R/Z whose kernel contains G. Thus there would exist
a non-zero pair (n,m) € Z? such that nae + mAa € Z for all @« € Q/Z. This would
imply that the multiplication by A € Z* in the group Q/Z = Aq,r/ Z (Aq, s are
the finite adeles) ought to fulfill noe + mAx € Z foralla € Ag, 7. This implies that
(n + mAy)a € Z, for all « € Q, and hence n + mA, = 0 for all primes p. If
n/m ¢ {£1}, this contradicts the fact that A € 2* ie, A, € 2; for all p.

(2) The group G, = ]_[# » Zj is the group of automorphisms of the group
(Q/Z)P) viewed as the additive group I' = @z;& » Qe/Zg (cf. Lemma 8.6). Let
A € Gp represent 0 € Aut((Q/ Z)P)). Then the same proof as in (1) shows that
if the graph of 6 is not dense, there exists a non-zero pair (n,m) € Z? such that
n+mlg = 0 for all primes £ # p. It follows that —n/m € {£pZ}and 6 € {£pZ}.

O

From Lemma 7.13 we derive thatif f: {z € C | |z| = 1} — C is a continuous
non-constant function and p; : Q¢ — C are injective, an equality of the form

SF(p1Casp)) = f(p2(8asp)) foralla/b e Q/Z

necessarily implies that p, = p; or p» = p;. In the latter case one also gets

f(z)= f(z) forallz, |z| = 1.
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By uniqueness of the Fourier decomposition, however, this case cannot occur if
f(z) =30%  n=Pz" for Re(f) > 1.

Next we fix an integer 8 = 1 —m = 1 — ke(q), k > 0, and we investigate the
dependence on p in the expressions (70).

For a chosen pair of embeddings p, o', assume that Z,(%, 8) = Z (5, ) holds
foralla/b € (Q/Z)@, i.e., the equality holds for all fractions with denominator b
prime to p. It follows from (70) that one has (with Fr the Frobenius automorphism

of Q")

m—1

b
(1= p" ) Z,(5. ) =~

> Pt Bu(3) € G

1<c<b

Thus we get, extending the Bernoulli polynomials from the unit interval by periodicity,

> ) Bu(g) = X 0'(E5,) Bu(5) foralla/b e (Q/Z)P. (75)

1<c<b 1<c<b

Since both p and p’ are isomorphisms of the group of roots of unity in QP with
the group of roots of unity in C, of order prime to p, there exists an automorphism
6 € Aut((Q/Z)®) such that 0" (asp) = p(Co@yp)y) foralla/b e (Q/Z)P). One
has

> bp/(é‘;/b)Bm(%) = . > bP(%’(c/b))Bm(%) = > b,O(CZ/b)Bm(Q_l(%))-

1<c< 1<c=<

By uniqueness of the Fourier transform for the finite group Z/bZ, (75) yields the
equality
Bu(071(£)) = Bu(§) foralle/b e (Q/Z). (76)

Lemma 7.14. Let p > 2 and let 6 € Aut((Q/Z)P). If 6 € {£1}, one has

Zy(5.B) = Zoop(§.B) foralla/b € (Q/D)P . peDp.  (T7)

If0é{£l}and B =1—m =1—ke(q), k > 0, then the functionals Z ,( -, B) and
Zgop( -, B) are distinct.

Proof. To prove (77) we can assume that § = —1, i.e., that 0({s/p) = ;‘;}b for all
a/b € (Q/Z)®P. Then we have p’(é';/b) = p(Cfl’/_bc) with p’ = 0 o p. Let first
B=1—m=1—ke(g). One has

c b—c
Z Pl@é/b)Bm (Z) = Z P@;/b)Bm (T)
1<c<b 0<c<b-1
Since m = k¢(q) is even, the Bernoulli polynomial By, fulfills the equality

Byn(1 —x) = By(x) forallm e 2N.
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Thus (77) follows for all values 8 = 1 —m = 1 —kp(g). Since these values admit O
as an accumulation point, one derives the equality of the analytic functions on their
domain D).

Now we assume that 6 ¢ {=£pZ}. Then it follows from Lemma 7.13 that the
graph of 0 is dense in R/Z x R/Z. Thus (76) implies that B,,(x) is constant, which
is a contradiction. It remains to show that for non-zero powers p? of p one cannot
have an equality of the form

By (x) = Bp(p®x —[p®x]) forall x € [0,1],

where [p?x] is the integral part of p®x. In fact, this would imply that B, (x) —
B, (p?x) has infinitely many zeros, thus B, (x) = B, (p®x), which is a contradic-
tion. O

7.5. Extension of the KMSg theory to the covering of C,,. In this section we show
that the construction of the KMSg states ¢g , for B € D, extends naturally to the
covering of C, defined by the group homomorphism

log, A

M=D(1,1_)9A|—>ﬂ=€(k)=meq:p,
D

where M = D(1, 17) is the open unitdisk in C, withradius 1, viewed as a multiplica-
tive group. Up to the normalization factor log, (1 + ¢), this group homomorphism
coincides with the definition of the Iwasawa logarithm, it is surjective with kernel the
subgroup of roots of unity of order a p-power (cf. [33], Theorem on p. 257) and it
defines by restriction a bijection

C{AeM||A—1], <p VP Dy = p,
whose inverse is given by the map

Dp3 B vy(B)=(1+q)Pf =exp(Blog,(1 + q)).

By construction, this local section is a group homomorphism which allows one to
view the additive group D, as a subgroup of M.

We start by extending the definition of the functions ), as in (54), which were
implemented in the construction of the automorphisms o ®) e Aut(J(’d(:i )) (cf. Propo-
sition 7.3). Forr € Z Fp) the equality

logp(r)

ip(r) = —logp(l s € Zp

(78)

defines a group homomorphism from Z Z(p) to the additive group Z,.
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Lemma 7.15. For B € Dy, r € Zz(p) and A = (1 + q)P one has
(ryB =A@ B = (AT

Proof. Onehaslog,(r) = ip(r)log,(1+q) € gZ,. Thus |Blog,(r)|, < p~ V=1
and

(r)f = exp(Blog,(r)) = exp(Bip(r)log,(1 +q)) = (1 + ¢)?»? = 3¥»®.
The second equality follows from the definition (54). ]

Proposition 7.3 and its proof thus extend from D, to M. This means that for
A € M there exists a unique automorphism o [A] € Aut(e}’fé’; )) such that

o[M(fae(r)up) = o(b/a)A? 1D fize(y)uy foralla,b € I(p), y € (@Q/Z)P.

Next we extend the construction of the linear forms ¢g , given in §7.3. It is sufficient
to extend the definition of the functions

1-8 _ ;
Zy(5.P) ==% Y pige Z(ljﬁ)(i)ij BeD, (19

l<c<f p-1 =0 ¢
cépN

of Lemma 7.6 (which we proved to be independent of the choice of f 7 0 multiple of
bq). To define the sought for extension it is convenient to express the above function
in terms of the p-adic L-functions L, (B, y) associated to even Dirichlet characters
of conductor f, prime to p. By definition, a Dirichlet character y is a character of
the multiplicative group Z* and its conductor [y is the integer such that the kernel
of y is the kernel of the projection 7* - (Z] f4Z)*. The definition of L,(B, x) is
similar to (79), precisely as follows

Ly(B.2) :=% S 1) ?:B i(l_.ﬂ )(%)ij (80)

l<c<f j=0 ']
cEpN

where f is any multiple of p f, and where y has been extended to a periodic function
of period f, vanishing outside (Z/f,Z)*. We recall that the L-function L, (B, x)
is identically zero when the character y is odd, i.e., when y(—1) = —1 (cf. [38]
Remarks p. 57). Moreover when y is even, non-trivial, and its conductor is prime to
p, there exists an analytic function H, on M such that (cf. [38], Theorem 7.10)

Ly(B. x) = Hy((1+¢)?) forall pe D,. (81)

The extension of the functions Z p(%, B) to M is a consequence of the following
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Lemma 7.16. For any a/b € (Q/Z)P) there exists coefficients c(d, y) € C, such
that

Zo(5.P) = d% c(d, Lp(B. )d~Hd) P TT( = x (@)1 (€)'P),
X

where d varies among the divisors of b and, for fixed d, y varies among the set of
Dirichlet characters whose conductor f divides m = b/d. The integers { are the
primes which divide m/ f,, but not f.

Proof. Let b be an integer prime to p,and g € C(Z/bZ,C,). The expression

COEEDS g(c)<;)i_fi(1;ﬂ)(§)j3j BeD,

1<c<f j=0
cEpN

is independent of the choice of the multiple f # 0 of bg. Let y be a Dirichlet
character (with values in C,) with conductor f, and let m be a multiple of f,. Then
x(c) ifce(Z/mZ)*,

0 otherwise,

z(x.m)(c) = {

defines a multiplicative map from Z/mZ to C,. If m divides b and one replaces y
with z(y, m) in (80), one obtains instead of L, (B, y) the function

Y(z(x.m), B) = Lp(B. ) TT(1 = x(OLHOP), (82)

where the integers £ are the primes which divide m/f, without dividing f). Next
define for any divisor d of b and any function h € C(Z/mZ,Cp,), m = b/d,

__Jh(a/d) ifd]a,
ca(h)(@) = {0 otherwise.
One then gets
Y(ea(h), ) = = (d) P Y (h, B). (83)

Thus using (82) and (83) it is enough to prove that for any function g € C(Z/bZ.C,)
there exists coefficients c¢(d, y) € C, such that

glc)= ) c(d, pea(z(x,b/d)).
db,x

It is in fact enough to check this for g = §, where a € Z/bZ. Let then d be the ged
of @ and b. One has 8, = e4(8;) where ¢ = a/d is prime to m = b/d. Moreover,
for any element ¢ € (Z/mZ)* one has

8e(x) = ﬁ X%m (@) 'z(y,m)(x) forallx € Z/mZ,

which gives the required equality. O
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We thus obtain the following extension of Theorem 7.11, referring to [38] for the
precise meaning of analyticity in this context.

Theorem 7.17. There exists an analytic family of functionals ) ,, A € M, on %ép )
such that

° 1/})&,,0(1) =1;
* Vi, fulfills the KMS condition

Va0 (x0[A(0) = Yo,y x) forall x,y € XL,
*» Forfe Dyand A = (1 + q)P one has
Yap = Z(ﬂ)_lfpﬂ,p‘

Proof. 1t follows from (74) that there exists an analytic function z(1) of A € M such
that
ZB) ' =1 +q-0z(). A=(1+9F.

By applying (81), Lemma 7.15 and Lemma 7.16, we see that there exists, forb € 1(p)
and a/b ¢ Z, an analytic function H, (1) of A € M such that

Zy(;.B) = Hap(M). A= (1+q).

This proves the existence of the analytic family of functionals ¥, , fulfilling the
required conditions. O

8. Extension of the p-adic valuation to Q¢

For a global field K of positive characteristic (i.e., a function field associated to a
projective, geometrically connected non-singular curve C over a finite field [,) it is
a well-known fact that the space of valuations of the maximal abelian extension K*
of K has a geometric meaning. In fact, for each finite extension E of [I?q ®r, K C
K2 the space Val(E) of (discrete) valuations of E is turned into an algebraic, one-
dimensional scheme whose non-empty open sets are the complements of finite subsets
F C Val(E). The structure sheaf is locally defined by the intersection () R of the
valuation rings inside E. Then the space Val(K®) is the projective limit of the schemes
Val(E), E C K®.

For the global field K = Q of rational numbers, one can consider its maximal
abelian extension Q¢ as an abstract field (cf. Definition 8.1) and try to follow a
similar idea. In Section 9, we will see however that the space Val(Q®°) provides
only a rough analogue, in characteristic zero, of Val(K®). This section develops the
preliminary step of presenting five different but equivalent descriptions of the space
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Val, (Q9°) of extensions of the p-adic valuation of Q to the abstract cyclotomic field
Q9¢. The field Q%° is the composite of the field generated by roots of unity of order
a p-power and the field Q<P generated by the roots of unity of order prime to p.
We describe canonical isomorphisms of Val, (Q%°) with!

(1) the space of sequences of irreducible polynomials P,(T) € F,[T], n € N,
fulfilling the basic conditions of the Conway polynomials (cf. Theorem 8.7);

(2) the space X, of bijections of the monoid M(p) = 1) U {0} of roots of unity
of order prime to p which commute with their conjugates, as in Definition 8.5
(cf. Proposition 8.8);

(3) the space Hom(QgCl’p .Q,) of field homomorphisms, where di’p C Q9P
is the fixed field under the Frobenius automorphism (cf. Proposition 8.12);

(4) the quotient of the space X, of Definition 4.3 by the action of Gal([}__p) (cf. Propo-
sition 8.14);

(5) the algebraic spectrum of the quotient algebra F,[(Q/Z))]/J,, where J,, is
the reduction modulo p of the cyclotomic ideal (cf. Definition 8.1 and Proposi-
tion 8.16).

Incidentally, we notice that (1) describes the link between Val, (QR¢) and the
explicit construction of an algebraic closure [l?p of [, by means of a sequence of irre-
ducible polynomials over [, fulfilling the basic conditions of the Conway polynomi-
als.? Theorem 8.7 states that the map which associates to a valuation v € Val,(Q€¥°)
the sequence { P, } of characteristic polynomials for the action (by multiplication) of

the primitive root & 1€ Q%P on the residue field of the restriction of v to Q<P
pht—1
determines a bijection between Val,(Q“¢) and sequences of polynomials in [F,[7]

fulfilling the basic conditions of the Conway polynomials.

Definition 8.1. The abstract cyclotomic field Q¢ is the quotient of the group ring
Q[Q/Z] by the ideal J generated by the idempotents

1 n—1 ]
T, = — el=), n=>2.
Jj=0
where e(%) is the canonical element associated to ,’7 eQ/Z.

In general, if we let

-1
or(x) = Y x7/,
j=0

"While we believe these results may be known, we give the complete proofs for completeness.
2Conway polynomials provide a particular example of such sequence, they are selected using a lexi-
cographic ordering.
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then one knows that the n-th cyclotomic polynomial ®,,(x) is the gcd of the polyno-
mials o, (x?) form > 1, m|n and d = n/m. For x = e(1/n), and n = md one

has
m—1

om(x?) =Y e(j/m) = mmy € J,
j=0

thus @, (e(1/n)) € J. It follows that the homomorphism

po: QIQ/Z]/J — C, pole(y)) = e, (84)

induces an isomorphism of Q¢ with the subfield of C generated by roots of unity.

Using the identification Q/Z = Aé / Z the group Z* acts by automorphisms of
Q/Z and hence by automorphisms of the group ring Q[Q/Z]. This action preserves
globally the n-torsion in Q/Z and hence fixes each of the projection 7,,. It follows
that it leaves the ideal J globally invariant and hence it induces an action on the
quotient field Q®¢. This action gives the Galois group G = Gal(Q¥° : Q) =~ 7*,
which acts on roots of unity as it acts on Q/Z. For each prime p, one has ({ =
rational prime)

G=T12Z; =2Z;x [] Z; = Z x Gy.
¢ +p

One lifts Z; to the subgroup Z; x 1 C G, with all components equal to 1 except
at p. This subgroup acts trivially on (Q/Z)®. Its fixed subfield Q¥P C Q° is
the subfield of Q% generated over Q by the group 1?) € Q° of roots of unity of
order prime to p. It coincides with the inertia subfield

QY N @;r Cc QU

for any extension v € Val,(Q%°) of the p-adic valuation to Q®°. More precisely,
let (Q%¢), be the completion of Q¢ for the valuation v. Then one knows that the
composite subfield Q, - QY C (Q?°), is the maximal abelian extension Q ;‘,b of Q.
This extension is the composite (cf. [35])

b
QP = QY - Qpee,

where Q)" denotes the maximal unramified extension of Q;, and Qpee is obtained
by adjoining to Q,, all roots of unity of order a p-power. The translation Theorem of
Galois theory gives a canonical isomorphism (by restriction) of Galois groups

Gal(QY : Qp) =>Gal( @ : Q¥ NQ,). a > a|d. (85)

The decomposition subfield, Q%° N Q,, is independent of the choice of the valuation
v € Val, (Q%°) since G is abelian and acts transitively on Val, (Q®). More precisely,
one has the following classical result.
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Proposition 8.2. (1) The group G, = [y, Z} is the group of automorphisms of
the group (Q/Z)P).

(2) The inertia subfield QP is the fixed subfield of Z;, C G and its Galois group
is canonically isomorphic to G, acting on wP c QP as it acts on (Q/Z)P).

(3) Let f, € G, be the element of G, = ]_[e#p Z; with all components equal to
p. Then the associated automorphism Fr € Aut(Q%°P) is the unique automorphism
which acts by x > xP on the multiplicative group n® C Q.

(4) The fixed subfield di’p C Q9P of Fr is the decomposition subfield Q¢ N
@p-

(5) The group G = Gal(Q®* : Q) acts transitively on Val, (Q%°) with isotropy

Zy x fpz, where fpZ C Gy is the closure Offpz.

Proof. (1) Let T’ = (Q/Z)P) viewed as a discrete group. The Pontrjagin dual [ is
the product [ | (£p Z¢. We claim that the group of automorphisms of I" is

Aut(T) = J] Z;. (86)
L#p

Indeed, one has I' = @47&1) Q¢/Zy, so that the dual of T is ]_[e#p Z,. This is
a compact ring which contains Z as a dense subring. Thus an automorphism 6 of
the additive group is characterized by the assignment ¢ = 6#(1) and is given by
multiplication by a. Invertibility shows thata € [ t£p ZZ‘. This proves (86).

(2) Under the isomorphism (85) the Galois group Gal(Qpe : Qp) =~ Z; becomes
the subgroup Z; x 1 C G. The fixed subfield of this subgroup is QP C Q¢ and
is the inertia subfield of Q®°. The quotient G/Z3 is canonically isomorphic to Gp.

(3) Under the isomorphism Gal(Q%“P : Q) = G, the action of Fr on u?
corresponds to the multiplication by p in (Q/ Z)(P).

(4) The Galois group Gal(Q), : Qp) =~ Z is topologically generated by the
Frobenius automorphism Fr, whose action on the roots of unity of order prime to p
is given by Fr, (§) = £7. Under the isomorphism (85) this automorphism restricts to
the automorphism Fr € Aut(Q®%“P). Notice that the fields QP and Q,, are linearly
disjoint over their intersection

K=Q¥"nQ, =Q"NQ,. (87)

Then the translation theorem in Galois theory shows that, by restriction to Q<P one
has an isomorphism

Gal(Q} : Qp) = Gal(Q™¥*P: K), Frp > Fr.

This shows that K is the fixed subfield Q2P ¢ QP of Fr.
(5) It is well known that the Galois group acts transitively on extensions of a
valuation. Moreover the isotropy subgroup is the subgroup of the Galois group

corresponding to the decomposition subfield and is hence given by Z; X fPZ. O
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Corollary 8.3. The natural map Val,(Q%¢) — Val,(Q“P) given by restriction of
valuations is equivariant and bijective.

Proof. The restriction map is equivariant for the action of G on both spaces, these
actions are transitive and have the same isotropy group so the restriction map is
bijective. O

In fact it is worth giving explicitly the unique extension of a valuation v €
Val, (Q9¥P) to Q<°. The latter field is obtained by adjoining to Q%P primitive
roots of unity of order a power of p, i.e., a solution z of an equation of the form

L0200 Km0 22) KT

One writes z = 1 4 7 and finds that the equation fulfilled by 7 is of Eisenstein type,

the constant term being equal to p, and reduces to 7?™ = 0, modulo p. This shows

that

_ v
o(n)’

Then the valuation v, normalized so that v(p) = 1, extends uniquely to elements of

the extension Q<P[z] by setting

m—1

() p(n)=(p—1p

91y = inf )+ =L 88
v(ao +a1m + -+ apmy-17 ) Os}gw(n){v(a,) + oo (88)

Remark 8.4. The decomposition subfield Q, N Q° is an infinite extension of Q
which contains for instance /n for n a quadratic residue modulo p. Its Galois group
Gal(Q, N QY : Q) is the quotient of G, by the closure of the group of powers of
Jp and is a compact group which contains for each prime £ # p the cyclic group of
order £ — 1 coming from the torsion part of Zj.

Definition 8.5. Let M(p) = {0} U 1 be the monoid obtained by adjoining a
zero element to the multiplicative group u?). We denote by X p the set of bijections
s: M(p) — M(p) which commute with all their conjugates R o s o R™! under
rotations R by elements of 1) and fulfill the relations s(0) = 1, s? = soso---05 =
id.

The maps s encode the addition of 1 on M (p) when one enriches the multiplica-
tive structure of the monoid M (p) with an additive structure turning it to a field of
characteristic p (i.e., an algebraic closure of [,). Notice that using distributivity the
addition of 1 encodes the full additive structure (cf. [14]).

Lemma 8.6. The group G, = [z, Z] acts transitively on X, with isotropy
1E C Gp.
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Proof. We check that G, acts transitively on X,. Lets; € X,, for j = 1,2 and let
K(s;) be the two corresponding field structures on M (p). Then the two fields K(s;)
are algebraic closures of [, and hence they are isomorphic. Welet 6 : K(s1) — K(s2)
be such an isomorphism. By construction 8 is an automorphism of the multiplicative
group ;‘?) and it transports the operation s; of addition of 1 in K(s;) into the operation
s» of addition of 1 in K(s,). Since the Galois group of E, is topologically generated
by the Frobenius x + x? one gets, using Galois theory, that the isotropy of any

s € X, is the closure of the group of powers of f,, i.e., the subgroup fpZ CcGp,. O

We are now ready to state the main result of this section.

Theorem 8.7. There is a canonical bijection between Val,(Q%°) and sequences of
polynomials P,(T) € F,[T] of degree n > 1 such that

e each P,(T) is monic and irreducible,

o T € [,[T]/(Pn(T)) is a generator of the multiplicative group of the quotient
field,

o Pn(T?) isamultiple of Py (T) for any integermn andd = (p" —1)/(p™ —1).

Proof. The first step in the proof is to construct a natural map Val,(Q%) 5 v
sy € ¥p. We know that Q, C (Q®°), and that u(?) U {0} C Q¥ thus we consider
the valuation ring Zj7 C (Q%), of Q). It contains Z, and wP). Note that the
ring generated by Z and 1P is the ring of integers of the subfield Q%P C Q°
generated over Q by ,u(l’). One has the diagram of inclusions

@), Qs
F,<<—ZV Z5 NQY < ;) | {0y
F,~< 7, Z, N Q% t(F,),

where 7: [, — Z, is the Teichmiiller lift. Note that 7(F,) C Z, NQ° since this lift
is formed of roots of unity (of order p—1). In the middle line of the above diagram, the
composite map € from ? U {0} to [, is an isomorphism of multiplicative monoids.

Indeed, the Teichmiiller lift F, > x +— 7(x) € Z} gives the inverse map. Since

I]?p is a field one can transport its additive structure using € and one obtains a unique
element s, € X, by transporting the operation of addition of 1.

Proposition 8.8. The map Val,(Q%°) > v — s € X, is a bijection and is equiv-
ariant for the action of G, = Gal(Q?°P : Q).
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Proof. The action of G, on the subset ,u(P) is the one described in Lemma 8.6. This
shows that the map v > s, is equivariant. Since both spaces Val,(Q®¢) and X, are

homogeneous spaces over G, with the same isotropy groups »Z c G, as follows
from Lemmas 8.2 and 8.6, the map v — s, is bijective. O

We can produce a concrete construction of the valuation v associated to the map
Sy. One first determines v on the subfield Q9P C Q. It is enough to determine
the valuation v on elements of the form

x=Yn;§, njeZ & eu® cQe.

Let K = fp be the algebraic closure of [, obtained by endowing the multiplicative
monoid u? U {0} with the addition associated to s,. One then has

v(x) = wp(3_n;(§))),

where w), is the p-adic valuation in the Witt ring W,00 (K) and 7 the Teichmiiller lift.
Finally since the field Q®* is the composite of the subfields QP and the fixed field
of the action of G, C Z* = Gal(Q®° : Q), which is generated by roots of unity of
order a p-power, one can use (88) to extend the valuation v uniquely to Q®°.

Figure 1. The elements of [F>5 and roots of unity.

We are now ready to complete the proof of Theorem 8.7, i.e., we prove the fol-
lowing:

Lemma 8.9. An element s € X, is entirely characterized by a sequence Pn(T) of
polynomials of F,[T] fulfilling the Conway conditions as in Theorem 8.7.
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Proof. Lets € %,. Foreachn € N, let K, (s) be the corresponding field structure on
the union {0} U (P (n), where 1{?) (n) is the group of roots of unity of order p” — 1
in Q¢ generated by £ = e(ﬁ). The [, vector space K,(s) is of dimension
n since its cardinality is p”. The canonical generator £ of ;1‘?)(n) acts on the Fp
vector space K, (s) by the multiplication Mg. We let P,(T') be its characteristic
polynomial, i.e., the determinant P,(7") = det(T — M¢). It is a monic polynomial
of degree n with coefficients in [F,. In the field K,(s) one has P,(§) = 0, since
M fulfills its characteristic equation. Thus we derive a homomorphism of algebras
p: Fp[T]/(Pu(T)) — Ky (s) which sends T +— £. It is surjective since any non-zero
element of K, (s) is a power of £. Since P,(T) has degree n, the two algebras have
the same dimension over [, and thus p is an isomorphism. It follows that P, (T’) is
irreducible over [,,. The second property of P, (7T’) also follows since £ is a generator
of the multiplicative group. Now let m |n be a divisor of n. Then r = p™ — 1
divides k = p" — 1 and the group 1) (m) is a subgroup of £(?)(n). Thus one has
a field inclusion K,,(s) C K, (s), where the canonical generator &,, = e(ﬁ) of
K, (s) is sent to S,‘f, with &, the canonical generator &, = e(ﬁ) of K, (s) and
d = (p" —1)/(p™ — 1). One has P, (&) = 0 and hence Pm(é,‘f) = 0 so that,
using the above isomorphism p, it follows that the polynomial P,,(7'%) is a multiple
of P,(T).

Conversely, given a sequence P,(T) of polynomials fulfilling the conditions of
the theorem, one constructs an algebraic closure E,, and an isomorphism

F; E0!
as follows. One lets for each n, K, = F,[T]/(P,(T)) and one gets an inductive
system using for m|n the field homomorphism which sends the generator Ty, of K,
to Tnd, d = (p" —1)/(p™ — 1). The inductive limit K = lir_)n K, is an algebraic
closure Tp of [, and the map 7,, — e2milk p — p" — 1, defines an isomorphism
j of E" with (P). Note that this construction makes sense also for n = 1 and
that the first polynomial is of degree one and thus picks a specific generator of the
multiplicative group of [F,,. One checks that the sequence of polynomials associated to
the pair (Tp, J) is the sequence P, (7). Thus there is a complete equivalence between
elements s € X, and sequences of polynomials fulfilling the Conway conditions of
the theorem. O

To make the above map from X, to sequences of polynomials more explicit we
introduce the “trace invariant” of an element s € X,. We continue to denote by
K, (s) the field structure on the union {0} U u® (), where 1(?)(n) is the group of
roots of unity generated by § = e(ﬁ). In particular, K (s) is a field uniquely

isomorphic to F,. Let n € u(?). Then the orbit O = {Fr*(n) | k € N} of the map
x > Fr(x) = x? is a finite set, let || be its cardinality. Then the sum

trs(Q) = >
[¢]
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computed in any K,(s), for |@]| | n is the same and it determines an element of
|]<1(S) = [Fp.

Definition 8.10. Let O(p) be the space of orbits of the map x + Fr(x) = x? acting
on P, Lets € %,. We call the map

trg: O(p) = Fp, O = tr5(0),
the trace invariant of s.

The trace invariant characterizes s as shown by the next proposition.

Proposition 8.11. Let s € X,. Then for eachn € N the polynomial P,(T) € [F,[T]
associated to s by Lemma 8.9 is given by

n—1
Py(T)=T" + Y (—Dkop Tk
k=1
for
or = )y trs(0), (89)
OCDy

where Dy C (Q/Z)P) is the set of fractions # where 1 < a < p" — 1 and the
digits of a in base p are all zeros except for k of them which are equal to 1.

Proof. In the field Ky (s) the n roots of the polynomial P,(7") are the elements

e(pf,’,—f_l), for j =0,...,n — 1. Foreach k = 1,...,n, the set of products of k
distinct roots is the set of elements of the form

e(z r’ ) Y C{0,1,....n—1}, |Y]|=k.

jern_l

One thus gets that the k-th symmetric function oy of the roots of P, (T) is given by
the sum (89), over orbits O satisfying the prescribed condition O C Dy. O

We now give a third equivalent description of the space Val, (Q%°). We recall that
the decomposition subfield @, N Q* is independent of the choice of v € Val,(Q%°)

and is equal to QPP C Qe
Proposition 8.12. The map
B: Val,(Q%) — Hom(QE™. Q,), B(v) = fu: Q™ C Qp,

where the fields inclusion B, derives from (87), determines a canonical and G-
equivariant isomorphism of sets.
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Proof. Notice that the inclusion f, : Q¢

valuation v. One has 8, € Hom(Q{Y"*, Q,), and the map v +> f, is equivariant

for the action of G/ ];2 on Val,(Q%¢) and on the space Hom(QZ"?, @,) by

? C @, depends upon the choice of the

Hom(QY™?, Q,) 5 B> oy forally € G, = Gal(QYP : Q).
Since for both spaces the action of G,/ fp2 is free and transitive, it follows that the

map B is bijective. O

Welet Z[(Q/Z)P] be the groupring of (Q/Z)® andlet Fr € Aut(Z[(Q/Z)P])
be the Frobenius automorphism given by the natural linearization of the group auto-
morphism (Q/Z)® — (Q/Z)P), of multiplication by p (cf. Corollary 2.4). The
natural ring homomorphism

§: Z[(Q/2)P] — QP (90)

is equivariant for the action of Fr, its image is the subring of integers of QP while
the kernel is described by the intersection Z[(Q/Z)P] N J, where J is the ideal of
Definition 8.1. The [,-algebra

Z[(Q/2)P) @z F, = F[(Q/2)P)]

is perfect since the group (Q/Z)?) is uniquely p-divisible. By restriction to the
fixed points of Fr and composition with the residue map €: Z, — [,, one obtains
the map

Hom(QY"?, Q,) — Hom(F,[(R/Z)P]™, F,). « > res(a) = eoaos. (91)

Note that elements of Hom([,[(Q/ Z)PFr, [,) are finitely supported maps from
O(p) to [, thus they can be lifted to elements of Z[(Q/ 7)1 One derives

FI(Q/Z) P = Z[(Q/Z) P @7 Fp.

Next we show that the map res as in (91) is injective.

Proposition 8.13. Lerv € Val,(Q%°). Wedenotebys, € S, and f,: Q2 — Q,
the corresponding elements as in Lemma 8.8 and Proposition 8.12. Then the trace
invariant map of sy has the description

trs, = res(fBy). (92)
The map res as in (91) is injective.

Proof. The additive structure s, on M(p) = {0} U u?) is the same as that of the
residue field of the completion Q<P for the restriction of v. It follows that on each
orbit @ of the action of Fr on (Q/Z) the sum tr, (O) coincides with the residue

e(Bu(u)), u=YtecQyr.
]
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Since u = §(w), wherew =) o & € Z[(Q/Z)P], one gets (92). Then it follows
from Proposition 8.11 that the map res is injective. O

We now briefly explain how one can reconstruct @ € Hom(QE™?, Q,,) from its
residue res(a), using the Witt functor Wyeo. Given ¢ € Hom([F,[(Q/ Z)PFr Fp),
the Witt functor YW, yields a homomorphism

Wpeo (¢) € Hom(Wpee (F,[(Q/Z)P]), Z,).

If ¢ = res(a), one can reconstruct « directly using W0 (s). This gives a direct
proof of the injectivity of the map res. Indeed, for an orbit @ of the action of Fr on
(Q/Z)P), the element (zr = Teichmiiller lift)

v(0) = %T(v) € Wyee (F[(Q/Z)P))

is fixed by the Frobenius, i.e., v(0) € Wjoo ([Fp[(Q/Z)(P)]Fr). One then sees that

a(% v) = Wpee (6)((0)).

We end this section by giving the relation between X, = Val, (Q) and the space
Xp of all injective group homomorphisms o : F* — (Q%)* (cf. Definition 4.3).

We recall that the Galois group Aut(l]?p) is the closure fp2 of the group generated
by the Frobenius f),.

Proposition 8.14. Let F, be a fixed algebraic closure of F,. Then
(1) Gy acts freely and transitively on Xp;

(2) the quotient of X, by fpz is isomorphic to ¥, = Val,(Q%°).

Proof. Let o € X,. The range of o is the group (P of all roots of unity in Q%Y
of order prime to p. Thus for a pair 0; € X,, j = 1,2, one has 07 o 02_1 S
Aut(Q/Z2)P) = Gp. This proves the first statement.

For any isomorphism o : Tp* — (Q%¢)* of the multiplicative group of the alge-
braic closure [l?p with the group (Q/Z)®, the following defines an element s € IR

s(x) =0o(c ' (x)+1) forall x #—1, s(—1) = 0.

All elements of X, arise this way. Two pairs (Fp,aj), J = 1,2 whose associated
s; € X, are the same are easily seen to be related by an automorphism 6 € Aut([F,),
i.e., 0o = o7 o 6. The second statement thus follows. ]

Proposition 8.12 suggests a more appropriate equivalent description of X, using
a chosen algebraic closure @), of the p-adic field and its completion C,,.
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Corollary 8.15. The map

i: X, — Hom(Q%YP,C,), or> 100 ', (93)

where 6~ is composed with the Teichmiiller lift to determine a field homomorphism

Sfrom Q9P to C,, is a bijection of sets.
The canonical surjection X, — X, of Proposition 8.14 (2) is the restriction map

Hom(Q®*?, C,) — Hom(Q¥"". Q,). (94)

Proof. Leto € X,,theno™!: (Q/Z)P) — @‘ composed with the Teichmiiller lift

T: Flf — (9@ C C, extends to a unique homomorphism i (o) € Hom(Q%“P, C,).
P
The map i is equivariant for the action of G, on X, as in Proposition 8.14 and on
Hom(Q®*P, C,) by composition with elements of G, = Gal(Q¥*P : Q). Since
both actions are free and transitive, i is bijective.
For any y € Hom(Q%P, C,), the range of y is the subfield of the maximal

unramified extension Q)" C €, generated over Q by roots of unity of order prime
cycl

to p. One has by construction y o Fr = Fr, o y. Thus the image y(QE""?) is
contained in the fixed subfield Q) for the action of Fr, on Q. This shows that the
restriction map (94) is well defined. For j = 1,2, let y; € Hom(Q%“P, C,). Then
Y5 ' oy € Gal(Q®¥P : Q) and this automorphism fixes @%CLP pointwise if and

cycl

only the restrictions y; | e are equal. Since Gal(Q®YP : Q") is topologically
Fr

o
generated by Fr, this happens if and only if the y; are the same in the quotient of X,

by f,F. O

We implement the homomorphism § : Z[(Q/Z)P)] — QP of (90) to associate
to an element p € Hom(Q%P, C,) its residue

res(p) = €opod € Hom(Fp[(Q/Z)(p)], Fp).

The image of ¢ is the ring of integers of Q%“P; thus the image of p o § in C,

is contained in G and the composite € o p o § is well defined. Moreover, since
4

Ker(8) = JNZ[(Q/Z)P)],itfollows that Ker(res(p)) contains the ideal J » reduction
of Ker(8) modulo p.

Proposition 8.16. Let A be the quotient algebra F,[(Q/Z)P]/J,. Then
(1) the map

res: Hom(Q®“P, C,) — Hom(A, F,), res(p) = €opos,

is a bijection of sets;

(2) the algebraic spectrum Spec(sA) is in canonical bijection with the set Xp;
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(3) the canonical surjection X, — X, of Proposition 8.14(2) corresponds to the
natural map 3
Hom(, [F,) — Spec(+4).

Proof. (1) For any integer m prime to p, the ideal J, contains the projection (cf. Def-
inition 8.1) 7, = % Z;"z_ol e(r%). Thus an element p € Hom(A, Fp) is given by
a group homomorphism p: (Q /Z)(P) — [l?px such that (for m > 1 prime to p)
Z;"z_ol p(e(ni;)) = 0. Notice that this equality holds if and only if p is injective and
hence, by restriction to the finite level subgroups in the projective limit (Q/Z)®), if
and only if it is bijective. Thus (1) follows from the first statement of Corollary 8.15.

(2) Consider the finite field F,». Two generators of the multiplicative group [F;n
have the same characteristic polynomial if and only if they are conjugate under the
action of the Galois group Gal([F,» : [,). This shows that the cardinality of the set
I, of irreducible monic polynomials of degree n over [F,, whose roots are generators
of the multiplicative group, is ¢(p™ — 1)/n, where ¢ is the Euler totient function.
Each of these polynomials P(X) divides the reduction modulo p of the cyclotomic
polynomial ®,»_;(X), thus one derives, modulo p, the equality

Dpn—1(X) =lI_[P(X)

since the degrees of the polynomials are the same and the right-hand side divides the
left one. Moreover one also has

Dpn—1 (e(ﬁ)) € Jp.

This determines a canonical isomorphism

A = Fp[uP )]/ (T, N E [P (m)]) — 111 Fpn

and thus a canonical bijection of sets Spec(s4,) — I,. Since 4 is the inductive limit
of the 4, Spec(+A) is the projective limit of the [, i.e., the space of sequences of
Conway polynomials as in Theorem 8.7. This space is in canonical bijection with X ,.

(3) follows from the proof of (2). O

The restriction to the fixed points of the Frobenius automorphism Fr € Aut(+4)
does not change the algebraic spectrum as a set, thus we derive a canonical bijection
of sets

Spec(#4) = Spec(A™). (95)

Finally, we characterize the image of the map res as in (91).

Corollary 8.17. Let ¢ € Hom([Fp[(CD/Z)(I’)]Fr, Fp). Then ¢ belongs to the image of
the map res as in (91) if and only if Ker(¢) contains I]-_p[((D/Z)(I’)]Fr N Jp.
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Proof. By (95) and Proposition 8.16 (2), one has natural bijections of sets
¥, =~ Spec(s) ~ Spec(4) ~ Hom(A", F,).

Then the statement follows by noticing that the elements of Hom (A, [,)) are the
elements of Hom(F,[(Q/Z)" ], F,) whose kernel contains F,[(Q/Z)P]* N J,,.
O

9. The base point problem and the “curve” for the global field Q

In this section we compare the space Val, (Q%°) of extensions of the p-adic valuation
to Q% (studied at length in Section 8), with the fiber over a prime p of a space Y
which represents, in this set-up, the analogue of the curve that, for function fields,
plays a fundamental role in A. Weil’s proof of the Riemann Hypothesis. Our results
show that for each place v € X (Q), there is a natural model Y, for the fiber over v
and an embedding of this model in a noncommutative space X(C,) which is a v-adic
avatar of the adele class space Hg = Aq/Q*.

We shall denote by K a global field. To motivate our constructions we first recall
a few relevant facts holding for function fields.

9.1. Adelic interpretation of the loop groupoid H“ib (X)’ for function fields. In
this subsection we assume that K is a function field. We let [, C K be the field of
constants. Let K be a fixed separable closure of K and let K* C K be the maximal
abelian extension of K. We denote by [, the algebraic closure of the finite field [,
inside K.

A main result holding for function fields is that for each finite field extension E
of [F__q ®r, K the space of (discrete) valuations Val(E) inherits the structure of an
algebraic, one-dimensional scheme X g whose non-empty open sets are the comple-
ments of the finite subsets and whose structure sheaf is defined by considering the
intersection of the valuation rings inside £. More precisely, Val(E) coincides with
the set of (closed) points of the unique projective, non-singular algebraic curve Xg
over [, with function field E.

We recall (cf. Corollary 6.12 of [22]) that the category of non-singular, projective
algebraic curves over [Fq and dominant morphisms is equivalent to the category of
function fields of dimension one over [l?q. Thus, one associates (uniquely) to K*® =
li_)mE E the projective limit X® = h(_m X g which is the abelian cover X® — X
of the non-singular projective curve X over [, with function field K. By restricting
valuations, one also derives a natural projection map

7 X% = val(K®) - Z(K)

onto the space X (K) of valuations of K. Thus, in the function field case one derives a
geometric interpretation for the natural fibration associated to the space of valuations
of the field extension K* > K.
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In [15] we have given an adelic description of the loop groupoid IT{*(X ) of the
abelian cover X® — X. We recall that the adele class space Ax/K* of any global
field K has a natural structure of hyperring Hy (cf. [15]) and that the prime elements
P (Hg) of this hyperring determine a groupoid. The units of this groupoid form the
set X (K) of places of K, and the source and range maps coincide with the map

s: P(Hk) — S(K)

which associates to a prime element of H the principal prime ideal of H it generates
(and thus the associated place). When K is a function field, the groupoid P(H) is
canonically isomorphic to the loop groupoid T12°(X)’ of the abelian cover X*® — X,
and the isomorphism is equivariant for the respective actions of the abelianized Weil
group W (i.e., the subgroup of elements of Gal(K® : K) whose restriction to [, is
an integral power of the Frobenius), and of the idele class group Cx = A /K*.

It follows that, as a group action on a set, the action of W on Val(K®) is
isomorphic to the action of the idéle class group Ck on P(H). In other words, by
choosing a set-theoretic section £ of the projection

7t Val(K®) — =(K), 7(v) = vk,

one obtains an equivariant set-theoretic bijection P(Hy) ~¢ Val(K®) which depends
though, in a crucial manner, on the choice of the base point & (w), for each place
w € X(K). This dependence prevents one from transporting the algebraic geometric
structure of X onto P(H), and it also shows that the adelic space P(H) carries
only the information on the curve X given in terms of a set with a group action.

9.2. Fiber over a finite place of Q. Now we turn to the global field K = Q. A
natural starting point for the construction of a replacement of the covering X in
this number field case is to consider the maximal abelian extension of Q, i.e., the
cyclotomic field Q¥ as analogue of K®. Then the space Val, (Q*¥) of extensions of
the p-adic valuation to Q¥ appears as the first candidate for the analogue of the fiber,
over a finite place, of the abelian cover X ab _ X Thus, the first step is evidently that
to compare Val,(Q%¢) with the fiber P,(Hgq) of the fibration s: P(Hq) = X(Q)
over a rational prime p € X(Q). At the level of sets with group actions, this process
shows that Val, (Q°) is not yet the correct fiber. The following discussion indicates
that one should consider instead the total space of a principal bundle, with base
Val, (Q°¢) and structure group a connected compact solenoid S whose definition is
given in Proposition 9.2. Then a natural construction of the fiber is provided by the
mapping torus Y}, of the action of the Frobenius on the space X, of Definition 4.3.

Proposition 9.1. Let P,(Hq) be the fiber of the groupoid P(Hg) over a non-
archimedean, rational prime p € Xq. Then the following results hold.

(1) Theidele class group Cq = Ag/Q* acts transitively on P,(Hgq). The isotropy
group of any element of P,(Hq) is the cocompact subgroup W, = Q, C Cq
of classes of idéles (jy) such that j, = 1 for all v # p.
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(2) Under the class field theory isomorphism
Gal(@cyC : @) ~ CQ/DQ,

where D = connected component of 1, Cq acts transitively on Val,(Q%°)
and the isotropy group of any element of Val, (Q%°) is

I, =7} x H xR}, CZ* xR} = Cg.

H C G, = ]_[#p Zj is the closed subgroup p2 C Gy generated by p in
Gp = l_[e?ép Zz

Proof. (1) follows from Theorem 7.10 of [15]. (2) follows from Lemma 8.2. ]

Notice that if K is a function field and v is a valuation of K% extending the
valuation w of K, any g € W C Gal(K® : K) such that g(v) = v, belongs to the
local Weil group W;‘]b C ‘W®. This is due to the fact that the restriction of g to an
automorphism of [l?q is an integral power of the Frobenius.

When K = Q, the isotropy group of the valuation v is instead larger than the local
Weil group W,,. The difference is determined by the presence of the quotient 7,/ W,
of the isotropy group I, by the local Weil group W), = Qj; = Z, x ( p)Z. Here, p is
represented by the idele all of whose components are 1 except at the place p where it
is equal to p~!. By multiplying with the principal idele p, one gets the same class as
the element of Z* x R which is equal to p everywhere except at the place p where
itis equal to 1. Thus, its image in G, = [[,, Z7 is p. The quotient group

I,/ W, = (HxR)/())Z ~(ZxR)/Z =S

is a compact connected solenoid which is described in the following Proposition 9.2.
The presence of the connected piece S is due to the fact that the connected component
of the identity in the ide¢le class group acts trivially, at the Galois level, on Q°.

Proposition 9.2. The group S is compact and connected and is canonically isomor-
phic to the projective limit of the compact groups R/nZ, under divisibility of the
labels n.

Proof. We consider first the factor
Su = (Z/nZ) x R)/Z

of the projective limit S, where Z acts diagonally, i.e., by the element (1, 1), on
(Z/nZ) x R. One has a natural map p, : S, — R/nZ given by

pn(j,s)=s—j forallseR, jeZ/nZ,
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where one views Z/nZ as a subgroup of R/nZ. The map p,, is an isomorphism of
groups. When n divides m, the subgroup mZ C Z is contained in nZ C Z and this
inclusion corresponds to the projection Z/mZ — Z/nZ. Under the isomorphisms
Pn, this corresponds to the projection R/mZ — R/nZ. Thus the projective system
defining S is isomorphic to the projective system of the projections R/mZ — R/nZ
and the projective limits are isomorphic. O

Next we describe a general construction of mapping torus which yields, when

applied to the groups
X =G, Z=G,/p% (96)

the fiber P,(Hgq) of the groupoid P(Hgq) over a finite, rational prime p € X(Q).

Proposition 9.3. Let G, = ]_[# » Ly be the group of automorphisms of the multi-
plicative group u'P) of roots of unity in Q¢ of order prime to p and let Jp € Gp be
the element £ — &P. Let G, act freely and transitively on a compact space X. Let

Y be the quotient space
Y = (X x(0,1)) /oZ,

where oZ acts on the product X x (0, 1) by

o(x,p) = (fpx,p?) forallx € X, pe(0,1). 97

Then the following results hold.
(1) The space Y is compact and is an S -principal bundle over the quotient Z of X
by pr C Gp, where S is the solenoid group of Proposition 9.2.

(2) Let X and Z be as in (96). Then Y is canonically isomorphic to the fiber
Pp(He).

Proof. (1) We first look at the action of Z on the open interval (0, 1) givenby p — p?.
We consider the map ¢ : (0, 1) — R given by

¥ (p) = log(—log(p)) forall p € (0,1). (98)

One has

¥ (p?) = log(—log(p?))
= log(—plog(p)) = log(—1log(p)) + log(p) = ¥ (p) + log(p),

which shows that the action of Z on (0, 1) given by p + p? is isomorphic to the
action of Z on R given by translation by log(p).

By construction G, = [] t£p ZZ‘ is a compact, totally disconnected group. Next
we show that the map which associates to n € Z the element f! € G, extends

to a bijection of Z with the closed subgroup of G, generated by f,. In fact, the
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isomorphism follows from the isomorphism between G, and Gal([l?p : Fp), with f,
being the Frobenius. The result follows by applying e.g. [5] (Chapitre V, Appendice I,
Exercice 5). This gives a natural inclusion Z C Gp, a ];,“, as a closed subgroup.

We now consider the action of the product group Z x R*% on X x (0, 1) given by
(@,2) - (x,p) = (fy x, p").

By construction the element (1, p) € Z x R acts as o (cf. (97)). The quotient group
ZxR)/s%. s =(Lp),

is isomorphic to the solenoid S by using the isomorphism of the group R%} with R
given by the logarithm in base p. To see that Y is a principal bundle over S one uses
the map ¥ of (98) to check that S acts freely on Y. The quotient of Y by the action
of § is the quotient of X by the action of Z.

(2) The fiber P,(Hgq) has a canonical base point given by the idempotent u €
Py,(Hq), u? = u. Hence by applying Proposition 9.1, this fiber is canonically
isomorphic to the quotient Cq/ W,. By identifying Cq with 7* x R?, this quotient
coincides with the quotient of G, x R by the powers of the element (p, p) € G, xR7.
Under the bijection p > —log(p) from (0, 1) to R* , one obtains the same action as
in (97) and hence the desired isomorphism. ]

In order to obtain the analogue, for the global field K = Q, of the fiber of the
algebraic curve X*°, we should apply the construction of Proposition 9.3 to a compact
space X, so that the following requirements are satisfied:

(1) G acts freely and transitively on X,.

(2) The quotient of X, by fp2 is canonically isomorphic to Val, (Q%¢).

Proposition 8.14 provides a natural candidate for X,. Moreover, equation (93)
shows that one can equivalently describe X, as the space Hom(Q%“P, C,) and that

the canonical identification of X, / ];,Z with Val, (Q%°) is given by the restriction map
to the fixed points of Fr as in (94). We derive the definition of the following model
for the fiber Y, over a finite prime p

Y, = (Hom(Q¥P,C,) x (0, 1))/aZ. (99)

9.3. Fiber over the archimedean place of Q. We move now to the discussion of
the analogues of the spaces Val, (Q¢), X, and Y,,, when p is the archimedean prime
p = oo (i.e., the archimedean valuation). The space Val,, (Q%°) is the space of
multiplicative norms on Q¢ whose restriction to Q is the usual absolute value. For
v € Valoo (Q9°), the field completion (QY¢), is isomorphic to C, thus one derives

Valoo (Q¥¢) = Hom(Q%¢, C)/{£1},



On the arithmetic of the BC-system 933

where {£1} C 7* = Gal(Q%* : Q) corresponds to complex conjugation. It follows
that for p = oo the space X, is simply

Xoo = Hom(Q%¢, C).

On the other hand, the fiber Po(Hg) is the quotient Cq/ Weo, where Woo = R is
the cocompact subgroup of Cq given by classes of ideles whose components are all
1 except at the archimedean place. Then we derive that

Pos(Hg) = Z*/{x1}.

This discussion shows that at p = oo there is no need for a mapping torus, and that
the expected fiber is simply given by

Yoo = Valoo(Q¥) = Hom(Q¥, ©)/{£1} = Xoo/{£1}.  (100)

9.4. Ambient noncommutative space. The model (99) for the fiber over a rational
prime p is only a preliminary step toward the global construction of the “curve” which
we expect to replace, when K = Q, the geometric cover X ab 1p fact, one still needs
to suitably combine these models into a noncommutative space to account for the
presence of transversality factors in the explicit formulas. We explain why in some
details below.

In [11] we showed how to determine the counting function N(g) (a distribution
on [1, o)) which replaces, for K = Q, the classical Weil counting function for a field
K of functions of an algebraic curve ¥ over [, (cf. [28], [36]). The Weil counting
function determines the number of rational points on the curve Y defined over field
extensions [, of [,

#Y(Fy)) = N(@)=qg—> a"+1, qg=p".
o

The numbers «’s are the complex roots of the characteristic polynomial of the Frobe-
nius endomorphism acting on the étale cohomology H'(Y ® [, Qy), for £ # p. In
[11] we have shown that the distribution N(g) associated to the (complete) Riemann
zeta function is described by the similar formula

)+

where Z is the set of non-trivial zeros of the Riemann zeta function. This distribution
is positive on (1, oo) and fulfills all the expected properties of a counting function.
In particular, it takes the correct value N(1) = —oo in agreement with the (expected)
value of the Euler characteristic. In [12] we pushed these ideas further and we
explained how to implement the trace formula understanding of the explicit formulas
in number-theory, to express the distribution N(q) as an intersection number involving

up+1
p+1

Nu) =u-— :—u(g order(p)
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the scaling action of the idele class group on the adele class space. This development
involves a Lefschetz formula whose geometric side corresponds to the following
expression of the counting distribution N (u):

N@) = g0+ k). 90 = X n ) (101)

n<u

Here, A(n) is the von Mangoldt function taking the value log p at prime powers p*
and zero otherwise and « (u) is the distribution defined, for any test function f, by

oo oo ,,2 _
/’umeW=/ IO =IO v sy, = aogm + ).
1 1 -

u2

where y = —I"/(1) is the Euler constant. The distribution « (1) is positive on (1, 00)
and in this domain it is equal to the function k(1) = # The contribution in the

counting distribution N (1) coming from the term j—u(p(u) in (101) can be understood
geometrically as arising from a counting process performed on the fibers Y, (each
of them accounting for the delta functions located on the powers of p). The value
log(p) coming from the von Mangoldt function A (n) corresponds to the length of the
orbit in the mapping torus (cf. [12], §2.2). On the other hand, as explained in [12],
the contribution of the archimedean place cannot be understood in a naive manner as
a simple counting process of points and its expression involves a transversality factor
measuring the transversality of the action of the idele class group with respect to
periodic orbits. This shows that the periodic orbits cannot be considered in isolation
and must be thought of as (suitably) embedded in the ambient adele class space. This
development supplies a precious hint toward the final construction of the “curve” and
shows that the role of ergodic theory and noncommutative geometry is indispensable.

9.5. The BC-system over Z and 1~ ®F, Z. Next we shall explain how the BC-
system over Z gives, for each p, a natural embedding of the fiber Y, (cf. (100)) into a
noncommutative space constructed using the set &(C) of the C,-rational points of
the affine group scheme & which describes the abelian part of the system (cf. [16]).
Since the fields C, are abstractly pairwise isomorphic the obtained spaces are also
abstractly isomorphic, but in a non-canonical manner. In [16], following a proposal
of C. Soulé for the meaning of the ring F1» ®F, Z, we noted that the inductive limit

Fioo X, Z .= li_l’I)l[Fln QF, Z = Z[@/Z]
n
coincides with the abelian part of the algebra defining the integral BC-system. The
description given in that paper of the BC-system as an affine pro-group scheme &

over Z, together with the dynamic of the action of a semigroup of endomorphisms,
allows one to consider its rational points over any ring, A

&(A) = Hom(Z[Q/Z], A) .



On the arithmetic of the BC-system 935
Then one can implement, for each rational prime p, the canonical inclusion
X, = Hom(Q““?,C,) C Hom(Z[Q/Z],.C,) = &(C)). (102)
The next result shows that the space
X(Cp) 1= (6(Cp) x (0,00))/(N x {£1}) (103)

matches, for any p including p = oo, the definition of the adele class space Hg. The
action of m = =+n (in the semigroup N x {=£1}) is the product of the linearization
of the action e(y) +— e(my) on the (C,-rational points of the) scheme &, with the
action on (0, co) given by the map x — x™.

Proposition 9.4. (1) The space X(C) is canonically isomorphic to the adéle class
space Hq.

(2) The subspace of the adéle class space made by classes whose archimedean
component vanishes corresponds to the quotient

E(C)/(N x {£1}) = Z/(N x {£1}).

Proof. (1) The space &(C) is the space of complex characters of the abelian group
Q/Z and is canonically isomorphic to Z. We use the map p — —log(p) to map
the interval (0, co) to R. Under this map the transformation x — x™ becomes the
multiplication by m. The action e(y) > e(my) on the scheme & corresponds to the
multiplication by m in Z. Since any adele class is equivalent to an element of Z x R,
(103) gives, for p = oo,

X(C) = (Zx R)/(N x {£1}) = Ag/R* = Hg. (104)
(2) follows from the identification (104). J
Note that by using the inclusion (0, 1) C (0, c0), one derives a natural inclusion
Y, = (Hom(Q¥P, C,) x (0. 1))/0% — (&(C,) x (0,00)) /(N x {£1}) = X(C,).
For p = oo one has the natural inclusion
Yoo = Hom(Q%, C)/{£1} — (§(C) x (0,00))/(N x {£1}) = X(C),
which is obtained by using the canonical inclusion (102) for p = oo and the fixed
point 1 € (0, c0).
The group ring Z[Q/Z] is a Hopf algebra for the coproduct,
Ale(y)) = e(y) ®e(y) forally e Q/Z,

and the antipode e(y) + e(—Yy), thus & is a group scheme.
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Proposition 9.5. Let A be a commutative ring.
(1) The abelian group & (A) is torsion-free.
(2) The space
X(A) = (6(4) x (0,00))/(N x {£1}) (105)

is a module over the hyperring Hq.

(3) For any rational prime p, X(C)) is a free module of rank one over Hq.

Proof. (1) One has
&(A) = Hom(Z[Q/Z], A) = Hom(Q/Z, A™),

where the second Hom is taken in the category of abelian groups. Since the group
Q/Z is divisible, the group Hom(Q/Z, H) has no torsion for any abelian group H .

(2) We first show that X (A) is a hypergroup and in fact a vector space over the
Krasner hyperfield K = {0, 1} (cf. [15]). The two abelian groups & (A) and (0, co)
are both torsion-free, thus one gets

(E(A) x (0,00))/(N x {£1}) = ((§(A) x (0,00)) ®z Q)/Q”, (106)

which is a projective space, hence a vector space over K (cf. [15]). Next we show
that X(A) is a module over Hg. We use the canonical ring isomorphism Z =
Endz (Q/Z) to define the ring homomorphism

ca: Z — Endz(E(A)), ca@)f =Eoa forall § € Hom(Q/Z, AX),
from Z to the ring Endz (& (A4)). The map
p: R—Endz(R}), pQA)x = x*,

is a ring homomorphism, thus ¢4 x p defines a ring homomorphism from Z x Rto
the endomorphisms of the abelian group &(A) x (0,00). Foranym € Z C Z x R,
one has

(ca x p)(m)((e(y). x)) = (e(my),x™),
thus the restriction of ¢4 X p to the monoid of non-zero elements of Z gives the
equivalence relation which defines X(A) as in (105). It follows an action of the
hyperring R

(Z xR)®z Q)/Q* = A/Q” = Hq

on the hypergroup (106).

(3)It is easy to see that, once one fixes an embedding p: QY® — C, and an
x € (0,00) and a real number x # 1, the element (p, x) € X(C,) is a generator of
X(C,) as a free module over Hq. O

The next lemma provides some simple arithmetic-geometric properties of the
scheme &.
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Lemma 9.6. (1) Let @;‘,b C C, be the maximal abelian extension of Qp. Then the
natural map & (@;‘)b) — &(C)) is a bijection of sets.

(2) Let Q) C @;b be the maximal unramified extension of Qp and Z; C Q}f
the valuation ring of the p-adic valuation. Then the natural map &(Z}’) — &(Qy)
is a bijection of sets.

(3) Let €: Z}) — Fp be the residue homomorphism. Then the associated map
&(Z,y) — &(F,) is a bijection.

Proof. (1) Let p € €(C,) = Hom(Z[Q/Z], C,). Then the image of p is contained
in the subfield of C, generated over QQ by roots of unity, which is contained in @;‘,b.

(2) Let p € €(Q)) = Hom(Z[Q/Z], Q). Then the image of p is contained in
the subring of Q)" generated over Z by roots of unity (of order prime to p), which is
contained in Z.

(3) Let p € &€(Z)) = Hom(Z[Q/Z], Z}y). Then p is entirely characterized by
the group homomorphism

o: Q/Z — G,

where G is the group of roots of unity in Z%', which is non-canonically isomorphic

to the group 11(?) of abstract roots of unity of order prime to p. Similarly an element
of & ([F__p) = Hom(Z[Q/Z], Fp) is entirely characterized by the associated group ho-
momorphism from Q/Z to [l?p*. Since the residue morphism € gives an isomorphism
G = E’f, one obtains the conclusion. O

We can now describe the structure of the Hg-module X (E,).

Proposition 9.7. (4) The Hg-module
X(Fp) ~ X(Z)) ~ X(Q)) C X(QY) ~ X(Cp)

is described by B
X(Fp) = ppX(Cp).

where p, € Spec(Hq) is the prime ideal of adeéle classes whose p-component van-
ishes.

Proof. One has 7 = Hom(Q/Z,Q/Z). Let, as above, (Q/Z)P) C Q/Z be the
subgroup of elements of denominator prime to p. Then Hom(Q/Z, (Q/Z)®?) c
Hom(Q/Z,Q/Z) is given by

{(ag) €[1Z¢ =7 | ap =0},

which corresponds to the prime, principal ideal p, of the hyperring structure Hq
inherent to the adele class space (cf. [15]). O
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10. The standard model of F, and the BC-system

As shown in Section 8, the space Val,(Q%°) is intimately related to the space of
sequences of irreducible polynomials P,(T) € F,[T], n € N, fulfilling the basic
conditions of the Conway polynomials (cf. Theorem 8.7) and hence to the explicit
construction of an algebraic closure of [,. The normalization condition using the
lexicographic ordering just specifies a particular element v, of Val, (Q%°). Since the
explicit computation of the sequence P,(7T") € F,[T], n € N, associated to v, has
been proven to be completely untractable, B. de Smit and H. Lenstra have recently
devised a more efficient construction of [l?p (cf. [19]). Our goal in this section is to
make explicit the relation between their construction, the BC-system and the sought
for “curve”.

When K is a global field of positive characteristic, i.e., the function field of an al-
gebraic curve over a finite field [, the intermediate extension K C [, ®F, K C K®
plays an important geometric role since it corresponds to working over an alge-
braically closed field. For K = Q, it is therefore natural to ask for an intermediate
extension Q C L C Q9° playing a similar role. One feature of the former extension
is that the residue fields are algebraically closed.

In their construction, de Smit and Lenstra use the intermediate extension Q C
@CAyCl C Q%° which comes very close to fulfill the expected properties. For each
prime £, let us denote by Ay C Zj the torsion subgroup. For £ = 2 one has
Ay = {£1}, while for £ # 2 one gets Ay = ©(F/), where 7: F; — Z, is the
Teichmiiller lift. The product

A= 1_[ Ay C 1_[ Zz
14 12
is a compact group and a subgroup of the Galois group 7* = Gal(Q%° : Q). By
Galois theory, one can thus associate to A a (fixed) field extension
L=aQ3" ca™.

Notice that one derives a subsystem of the BC-system given by the fixed points of
the action of A. At the rational level and by implementing the cyclotomic ideal J of
Definition 8.1, one obtains the exact sequence of algebras

0— J NQR/Z* - QQ/Z]* 5 QY 0.

The image of the restriction to Z[Q/Z]2 of the homomorphism ¢ is contained in the
integers of @CAyCl and one has

Gal(QY" : Q) = Z* /A ~ ] Z}/ A
y4

The space Val, (Q%°) is the total space of a principal bundle whose base is the space
Val, (@Zyd) of valuations on (Dzyd extending the p-adic valuation. The group of the
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principal bundle is the quotient of A by its intersection A, with the isotropy group
of elements of Val,(Q%¢). The projection Val,(Q%¢) — Val, (@Zyd) is given by
restriction of valuations from Q¢ to @Zyd. For w € Val,(Q Zyd), the isotropy group
IT,, of w for the action of Gal((DZyCl : Q) is the image of the isotropy group of v in
Gal(Q%* : Q) for any extension v of w to Q. It follows from Lemma 8.2 that the

isotropy subgroup of v is Z; x fp2 C Z, x Gp, thus one gets
M, ~Z%/A, x fZ, fZc ] Z:/A
p—%pl=p > Jp o Jp o /2
P

Lemma 10.1. For each prime { the group Zj /Ay is canonically isomorphic to the
additive group Z . Moreover, for each prime p # {, the closed subgroup of Zj /A,
generated by p is open and of finite index £*(P D ywhere

w(p.b) = vt =1 —1 fort>2,
’ va(p?—1)—3  forl =2.

Proof. For each prime £ there is a canonical isomorphism of groups
Zy; =5 AN xZy, x> (0(x),ig(x)),

where the group Z; is viewed as an additive group. For £ odd, w(x) is the unique
£ — 1 root of unity which is congruent to x modulo £ and i;(x), as in (78), is the
ratio log, x/log,(1 + £). For £ = 2, w(x) = %1 is congruent to x modulo 4 and
i2(x) = log, x/log, (1 + 4). The first statement thus follows. The second statement
follows since one has

ve(ie(p)) = u(p, )
and the closed subgroup of Z; generated by iy (p) is £4P97,. O

Under the isomorphisms

Gal(@QY" : Q) ~ 1;[2;5/&Z ~ 1;[25 ~7 (107)

one gets, by the Chinese remainder theorem,

M, ~7Z,x [[ *®Yz, c Z. (108)
t#p

Notice the independence of the places £ in the above formula which makes the group
IT, a cartesian product and allows one to express Val, (@XCI) as an infinite product
of finite sets.

To label concretely these finite sets consider, for each prime £ the Z-extension

Boo(£) of Q. One has Boo(£) = |J; Br(£)) where, for k € N, the finite extension
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By (£) of Q is associated to £ ¥ € Q/Z viewed as a character of 7 ~ Gal(@ZyCl Q).
For ¢ odd, B () is the fixed subfield for the action of A; on the extension of Q
generated by a primitive root of unity of order ¢k+1 For £ = 2 one uses a primitive
root of unity of order 2¥*2. We denote by B({, p) = By(p.¢)(£): this is a cyclic
extension of @ of degree £4(P-) The Artin reciprocity law shows that, for p a prime
p # £, the reduction modulo p of the integers of B(¢, p) decomposes into a product
of £*(?:O copies of [F,, parameterized by the set Val, (B(£, p)) of extensions of the
p-adic valuation to B({, p), which is a finite set of cardinality £*(?-9.

The following result is a consequence of the construction of the “standard model”
of de Smit and Lenstra for the algebraic closure of a finite field.

Theorem 10.2. Let p be a rational prime.

(1) For £ # p a prime, the restriction map Val,(Bso(£)) — Val,(B(€, p)) is
bijective.

(2) The restriction maps from CDCAYC] to Boo (£) give a bijection

Val, (@) = I Valp (B ().
p

(3) The restriction of v € Val, (@Zyd) to QCAyC’p is unramified and the residue field
is isomorphic to 3
U |]'_pn Cc [,
nel(p)
where 1(p) C N denotes the subset of positive integers which are prime to p.

Proof. (1) It is enough to show that the image of the isotropy group Zj x p2 C
Z,x Gy, of Lemma 8.2 maps surjectively onto the Galois group Gal(B (£) : B(¢, p)).
This follows from Lemma 10.1.

(2) The restriction maps determine an equivariant map

Val, (QF) — [T Val,(Boo(£)) (109)
t#p

for the action of the Galois group Gal(@CAyCl : Q). By (107) and (108), the isotropy
groups are the same so that the map (109) is bijective.

(3) By extending v to an element of Val,(Q%) one gets that the restriction to
Q%P and hence to QXC’p is unramified. Moreover, the residue field is determined
by the topology on the closure set of the action of the Frobenius, i.e., on ]_[# pLe.
The result follows.

Next we shall explain the link with the notations used by de Smit and Lenstra and
their construction. First, we recall that the additive group Q/Z is the direct sum of
its £-torsion components

Hy = {a € Q/Z | there is n such that £"a = 0} >~ Q¢/Z;.
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Thus the group ring Z[Q/Z] can be written as a tensor product

Z|Q/Z) = Q Z[H].

£ prime

The natural action of Z* on Z [Q/Z] by automorphisms of the group QQ/Z factorizes
in the individual actions of Z; = Aut(Hy).
One lets Ay be the ring Z[ Xy, X1, ...] modulo the ideal generated by

— Xy forallk > 0. (110)

el ¢
> X xt,
j=0

Thus one has Xg = lin Ay and le+1 = Xy for all k > 0. The algebra By of de

Smit and Lenstra is defined as By = AKAE. The next lemma shows that the algebra
By is intimately related to the fixed point algebra Z[H,]2¢.

Lemma 10.3. One has
By =~ (Z[H,l/ D)2, (111)

where J is the ideal generated by the relations ), _qe(y) € Z[H,).

Proof. 1t follows from the relations (110) that X ,fkﬂ = 1 for all k. Moreover, the
map 8(e({™%)) = Xy_; extends to a surjective homomorphism Z[H] — A with
kernel J, one thus gets (111). O

One has the trace map

X:A;—> By, Z(x)= ) o(x),

0EAy

and natural ring homomorphisms By — E (). De Smit and Lenstra (cf. [19]) lift
the natural generator of Ey (£) as an extension of E;_;(€), and the Galois conjugates
under Gal(Ex (£) : Ex—1(£)) as the following elements of By

Newi =Sy +§), i=0,...0-1L

When £ = 2, one has simply A, = {1} C Z3, and in this case the above list of
elements reduces to
Mk = 2(e(zm))-

The two authors show that the prime ideals p of By that contain p are uniquely
specified by a finite system of elements a(p, j) € F,, 0 < j < Lu(p,£). More
precisely, p is generated by p and by the ng x41,; —a(p,i +k{) for0 <k <u(p,{)
and0 <i < /£.

To complete the dictionary with the notations of de Smit and Lenstra, we leave to
the reader as an exercise to show that
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* the prime ideals p of By that contain p correspond to the valuations Val, (B (£));
¢ the subfield Q, N Boo(£) C Boo(£)y is equal to B(L, p);

* the system of elements a(p, j) € [, corresponds, as in Proposition 8.13, to the
residue of the inclusion y, : B({, p) — Q,, defined as in Proposition 8.12.

Theorem 10.2 does not yield the full algebraic closure of [, but only the subfield
U [Fpn - ﬂ?p.
nel(p)

Thus it remains to understand how to produce naturally the missing part

U [Fppn C ﬂ?p
n

in such a way that the tensor product over [, yields E,.
De Smit and Lenstra construction of [, ,c0c = lim [ ,» is performed using the
—>n
Artin—Schreier equations

Yn

yn+1

yo—vo=1, ¥l i —vns1+ =0 foralln >0,
which have the advantage of simplicity. E. Witt gave in [39] a conceptual construction
of [, yo< based on the Witt functor Wyeo and its finite truncations YWy . The addition
of two Witt vectors x = (x;) and y = (y;) is a vector whose components S; (x, »)
were proven by Witt to be polynomials with integer coefficients. Note also that for
p # 2 the Witt components of —x (the additive inverse of x) are simply —x;, but this
result does not hold for p = 2. Recall also that in terms of Witt vectors the Frobenius
F is given in characteristic p by (F(x)); = xf forall j.
From [39], one derives the following result.

Theorem 10.4. Letn € N. Let R, = [Fp[xo. X1, ..., Xy—1] bethe ring of polynomials
in n variables and J,, C Ry, the ideal generated by the components of the Witt vector
F(x) —x — 1, where x € W,n—1(R) is the Witt vector with components x;. Then
Jn is a prime ideal and the quotient field of the integral ring R,/ J, defines the field
extension E, ~ I]-_p .

As an extension of E,,—1, E, is given by an Artin—Schreier equation of the form

XP=X+4+a, oacE,_;.

One derives, for instance, that the first extensions for p = 2 are given by the
equations with coefficients in [F5:

2
xg = 1 + xo,

2
Xi = Xo + X1,

2 3
X5 = Xo + Xg + Xox1 + X2,
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and
2 3 5 7 2 3 4
X3 = Xo + X5 + Xg + xo + XgX1 + XgX1 + XgX1

+ Xoxf + XoXx2 + xSxZ + Xox1x2 + Xx3.
For p = 3 one gets the following equations with coefficients in [

xg =1+ xo,
X7 = 2x0 + 2x7 + x1,
x5 = 2Xg + 2x§ + 2xg + 2xg + 2x§ + 2x§ + 2x5x1

3 4 2 2.2
+ xgx1 4+ 2xgx1 + Xox7 + x5x7 + Xx2.

In this way one obtains a completely canonical construction of the field [, ,oc by
simply writing the equation F'(X) = X 4 1 in the ring of Witt vectors Wpeo.
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