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Combinatorial descent data for gerbes

Amnon Yekutieli∗

Abstract. We consider descent data in cosimplicial crossed groupoids. This is a combinatorial
abstraction of the descent data for gerbes in algebraic geometry. The main result is this: a weak
equivalence between cosimplicial crossed groupoids induces a bijection on gauge equivalence
classes of descent data.
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1. Introduction

For a cosimplicial crossed groupoid G = {Gp }p∈N we denote by Desc(G) the set of
gauge equivalence classes of descent data. The purpose of this note is to prove:

Theorem 1.1 (Equivalence). Let Φ : G → H be a weak equivalence between
cosimplicial crossed groupoids. Then the function

Desc(Φ) : Desc(G) → Desc(H)

is bijective.

The various notions involved are recalled or defined in Section 2. The theorem
is repeated as Theorem 3.4 in Section 3, and proved there. Connections with other
papers, and several remarks, are in Section 4.

Theorem 1.1 plays a crucial role in the new version of our paper [18] on twisted
deformation quantization of algebraic varieties. This is explained in Remark 4.2.
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2. Combinatorial Descent Data

We begin with a quick review of cosimplicial theory. Let ∆ denote the simplex
category. The set of objects of ∆ is the set N of natural numbers. Given p,q ∈ N, the
morphisms α : p→ q in ∆ are order preserving functions

α : {0, . . . ,p} → {0, . . . ,q}.

We denote this set of morphisms by ∆qp . An element of ∆qp may be thought of as
a sequence i = (i0, . . . , ip ) of integers with 0 ≤ i0 ≤ · · · ≤ ip ≤ q. We call
∆q := {∆qp }p∈N the q-dimensional combinatorial simplex, and an element i ∈ ∆qp is
a p-dimensional face of ∆q .

Let C be some category. A cosimplicial object in C is a functor C : ∆→ C.
We shall usually write Cp := C(p) ∈ Ob(C), and leave the morphisms C(α) :
C(p) → C(q), for α ∈ ∆qp , implicit. Thus we shall refer to the cosimplicial object
C as {Cp }p∈N. The category of cosimplicial objects in C, where the morphisms are
natural transformations of functors ∆→ C, is denoted by ∆(C).

If C is a category of sets with structure, then an object C ∈ Ob(C) has elements
c ∈ C. Let {Cp }p∈N be a cosimplicial object of C. Given a face i ∈ ∆

q
p and an

element c ∈ Cp , it will be convenient to write

ci := C(i)(c) ∈ Cq . (2.1)

The picture to keep in mind is of “the element c pushed to the face i of the simplex
∆q”. See Figure 1 for an illustration.

Let G be a groupoid. For objects x, y ∈ Ob(G) we write G(x, y) := HomG (x, y),
the set of morphisms g : x → y. We also denote by G(x) := G(x, x) the
automorphism group of x.

Suppose G1 and G2 are groupoids, such that Ob(G1) = Ob(G2). An action
Ψ of G1 on G2 is a collection of group isomorphisms Ψ(g) : G2(x) '→G2(y) for all
x, y ∈ Ob(G1) and g ∈ G1(x, y), such that Ψ(h◦g) = Ψ(h)◦Ψ(g) whenever g and h
are composable, and Ψ(1x ) = 1G2 (x) . Here 1x ∈ G1(x) is the identity automorphism
of the object x in the groupoid G1, and 1G2 (x) is the identity automorphism of the
group G2(x). The prototypical example is the adjoint action AdG1 of the groupoid
G1 on itself, namely

AdG1 (g)(h) := g ◦ h ◦ g−1.

Definition 2.1. A crossed groupoid is a structure

G = (G1,G2,AdG1yG2 ,D)

consisting of:
• Groupoids G1 and G2, such that G2 is totally disconnected, and Ob(G1) =

Ob(G2). We write Ob(G) := Ob(G1).
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• An action AdG1yG2 of G1 on G2, called the twisting.
• A morphism of groupoids (i.e. a functor) D : G2 → G1 called the feedback,

which is the identity on objects.

These are the conditions:

(i) The morphism D is G1-equivariant with respect to the actions AdG1yG2 and
AdG1 . Namely

D(AdG1yG2 (g)(a)) = AdG1 (g)(D(a))

in the group G1(y), for any x, y ∈ Ob(G), g ∈ G1(x, y) and a ∈ G2(x).

(ii) For any x ∈ Ob(G) and a ∈ G2(x) there is equality

AdG1yG2 (D(a)) = AdG2 (x) (a),

as automorphisms of the group G2(x).

We sometimes refer to the morphisms in the groupoid G1 as 1-morphisms, and
to the morphisms in G2 as 2-morphisms.

Remark 2.2. A crossed groupoid is better known as a strict 2-groupoid, or a crossed
module over a groupoid, or a 2-truncated crossed complex; see [5]. When Ob(G)
is a singleton then G is just a crossed module (or a crossed group). More on this in
Remark 4.3.

Definition 2.3. Suppose H = (H1,H2,AdH1yH2 ,D) is another crossed groupoid. A
morphism of crossed groupoids Φ : G → H is a pair of morphisms of groupoids
Φi : Gi → Hi , i = 1,2, that are equal on objects, and respect the twistings and the
feedbacks.

We denote by CrGrpd the category consisting of crossed groupoids and mor-
phisms between them.

We shall be interested in cosimplicial crossed groupoids, i.e. in objects of the
category ∆(CrGrpd). A cosimplicial crossed groupoid G = {Gp }p∈N has a crossed
groupoid Gp in each simplicial dimension p. The morphisms of crossed groupoids
G(i) : Gp → Gq , for i ∈ ∆qp , are implicit, and we use notation (2.1) for objects,
1-morphisms and 2-morphisms.

Let us fix p ∈ N. Then for any x ∈ Ob(Gp ) there is a group homomorphism (the
feedback)

D : Gp
2 (x) → Gp

1 (x).

And for every morphism g : x → y in Gp
1 there is a group isomorphism (the twisting)

Ad(g) = AdGp
1 yG

p
2

(g) : Gp
2 (x) → Gp

2 (y).

Note that we are using the expression Ad(g) to mean both AdGp
1 yG

p
2

(g) and
AdGp

1
(g); hopefully that will not cause confusion.
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Definition 2.4. Let G = {Gp }p∈N be a cosimplicial crossed groupoid. A
combinatorial descent datum in G is a triple (x,g,a) of elements of the following
sorts:

(0) x ∈ Ob(G0).
(1) g ∈ G1

1(x (0) , x (1)), where x (0) , x (1) ∈ Ob(G1) are the objects corresponding to
the vertices (0) and (1) of ∆1.

(2) a ∈ G2
2(x (0)), where x (0) ∈ Ob(G2) is the object corresponding to the vertex

(0) of ∆2.
The conditions are as follows:
(i) (Failure of 1-cocycle)

g−1
(0,2) ◦ g(1,2) ◦ g(0,1) = D(a)

in the group G2
1(x (0)). Here x (i) ∈ Ob(G2) and g(i, j ) ∈ G2

1(x (i) , x ( j ))
correspond to the faces (i) and (i, j) respectively of ∆2.

(ii) (Twisted 2-cocycle)

a−1
(0,1,3) ◦ a(0,2,3) ◦ a(0,1,2) = Ad(g−1

(0,1))(a(1,2,3))

in the group G3
2(x (0)). Here x (i) ∈ Ob(G3), g(i, j ) ∈ G3

1(x (i) , x ( j )) and
a(i, j,k ) ∈ G3

2(x (i)) correspond to the faces (i), (i, j) and (i, j, k) respectively
of ∆3.

We denote by Desc(G) the set of all descent data in G.
See Figure 1 for an illustration.

Figure 1. Illustration of a combinatorial descent datum (x,g,a) in the cosimplicial crossed
groupoid G = {Gp }p∈N.
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Definition 2.5. Let (x,g,a) and (x ′,g′,a′) be descent data in the cosimplicial
crossed groupoid G. A gauge transformation (x,g,a) → (x ′,g′,a′) is a pair ( f ,c)
of elements of the following sorts:

(0) f ∈ G0
1(x, x ′).

(1) c ∈ G1
2(x (0)), where x (0) ∈ Ob(G1) is the object corresponding to the vertex

(0) of ∆1.

These two conditions must hold:

(i)
g′ = f (1) ◦ g ◦ D(c) ◦ f −1

(0)

in the set G1
1(x ′(0) , x

′
(1)).

(ii)
a′ = Ad( f (0))

(
c−1

(0,2) ◦ a ◦ Ad(g−1
(0,1))(c(1,2)) ◦ c(0,1)

)
in the group G2

2(x ′(0)).

This is illustrated in Figure 2.

Figure 2. Illustration of a gauge transformation ( f ,c) : (x,g,a) → (x ′,g′,a′) between descent
data.

Proposition 2.6. Let G be a cosimplicial crossed groupoid. The gauge transforma-
tions form an equivalence relation on the set Desc(G).

We call this relation gauge equivalence. Actually Desc(G) has a lot more
structure; see Remark 4.5.
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Proof. Given a descent datum (x,g,a), the pair (1x ,1x(0) ), where 1x ∈ G0
1(x) and

1x(0) ∈ G1
2(x (0)) are the identity elements of these groups, is a gauge transformation

from (x,g,a) to itself. Next let

( f ,c) : (x,g,a) → (x ′,g′,a′)

and
( f ′,c′) : (x ′,g′,a′) → (x ′′,g′′,a′′)

be gauge transformations between descent data. Then(
f ′ ◦ f , c ◦ f −1

(0) (c′)
)

: (x,g,a) → (x ′′,g′′,a′′)

is a gauge transformation. And(
f −1, f (0) (c−1)

)
: (x ′,g′,a′) → (x,g,a)

is a gauge transformation.

Let Φ : G → H be a morphism of cosimplicial crossed groupoids. Given a
descent datum (x,g,a) ∈ Desc(G), the triple

Φ(x,g,a) := (Φ(x),Φ(g),Φ(a))

is a descent datum in H . The resulting function

Desc(Φ) : Desc(G) → Desc(H)

respects the gauge equivalence relations.

Definition 2.7. For a cosimplicial crossed groupoid G we write

Desc(G) :=
Desc(G)

gauge equivalence
.

For a morphism Φ : G → H of cosimplicial crossed groupoids, we denote by

Desc(Φ) : Desc(G) → Desc(H)

the induced function.

3. The Main Theorem

Recall that for a groupoid G, the set of isomorphism classes of objects is denoted by
π0(G).
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Definition 3.1. Let G = (G1,G2,AdG1yG2 ,D) be a crossed groupoid. We define the
homotopy set

π0(G) := π0(G1),

and the homotopy groups

π1(G, x) := Coker
(
D : G2(x) → G1(x)

)
and

π2(G, x) := Ker
(
D : G2(x) → G1(x)

)
for x ∈ Ob(G).

The set π0(G) and the groups πi (G, x) are functorial in G. The group π2(G, x) is
central in G2(x), and in particular it is abelian.

Definition 3.2. A morphism of crossed groupoids Φ : G → H is called a weak
equivalence if the function

π0(Φ) : π0(G) → π0(H)

is bijective, and the group homomorphisms

πi (Φ, x) : πi (G, x) → πi (H,Φ(x))

are bijective for all x ∈ Ob(G) and i ∈ {1,2}.

Definition 3.3. A morphism Φ : G → H of cosimplicial crossed groupoids is called
a weak equivalence if in every simplicial dimension p the morphism of crossed
groupoids Φp : Gp → H p is a weak equivalence.

Theorem 3.4 (Equivalence). Let Φ : G → H be a weak equivalence between
cosimplicial crossed groupoids. Then the function

Desc(Φ) : Desc(G) → Desc(H)

from Definition 2.7 is bijective.

We need a couple of auxiliary results first. A partial descent datum in G is a pair
(x,g) of elements x ∈ Ob(G0) and g ∈ G1

1(x (0) , x (1)) (cf. Definition 2.4). Let (x,g)
and (x ′,g′) be partial descent data. A partial gauge transformation (x,g) → (x ′,g′)
is a pair ( f ,c) of elements as in Definition 2.5, that satisfies condition (i) of that
definition.

The next lemma is a sort of “Kan condition” satisfied by Desc(G).

Lemma 3.5. Let (x,g,a) be a descent datum in the cosimplicial crossed groupoid
G, let (x ′,g′) be a partial descent datum in G, and let ( f ,c) be a partial gauge
transformation (x,g) → (x ′,g′). Then there is a unique element a′ ∈ G2

2(x ′(0))
such that the triple (x ′,g′,a′) is a descent datum in G, and ( f ,c) is a gauge
transformation (x,g,a) → (x ′,g′,a′).
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Proof. Define

a′ := Ad( f (0))
(
c−1

(0,2) ◦ a ◦ Ad(g−1
(0,1))(c(1,2)) ◦ c(0,1)

)
∈ G2

2(x ′(0)).

Then a′ satisfies condition (ii) of Definition 2.5, and moreover it is unique.

We have to show that the triple (x ′,g′,a′) is a descent datum. Let us check
condition (i) of Definition 2.4. We have

(g′(0,2))
−1 ◦ g′(1,2) ◦ g

′
(0,1)

M
=
(

f (2) ◦ g(0,2) ◦ D(c(0,2)) ◦ f −1
(0)

)−1
◦
(

f (2) ◦ g(1,2) ◦ D(c(1,2)) ◦ f −1
(1)

)
◦
(

f (1) ◦ g(0,1) ◦ D(c(0,1)) ◦ f −1
(0)

)
♦
= f (0) ◦ D(c(0,2))−1 ◦ g−1

(0,2) ◦ g(1,2) ◦ D(c(1,2)) ◦ g(0,1) ◦ D(c(0,1)) ◦ f −1
(0)

♥
= Ad( f (0))

(
D(c−1

(0,2)) ◦ D(a) ◦ g−1
(0,1) ◦ D(c(1,2)) ◦ g(0,1) ◦ D(c(0,1))

)
?
= Ad( f (0))

(
D(c−1

(0,2)) ◦ D(a) ◦ Ad(g−1
(0,1))(D(c(1,2))) ◦ D(c(0,1))

)
�
= D
(
Ad( f (0))

(
c−1

(0,2) ◦ a ◦ Ad(g−1
(0,1))(c(1,2)) ◦ c(0,1)

)) O
= D(a′).

The equality marked M= is true because of condition (i) of Definition 2.5, applied to the
elements g′(i, j ) . The equality marked ♦= is true because of cancellation. The equality

marked ♥= is because condition (i) of Definition 2.4 holds for (x,g,a), and by the
definition of Ad( f (0)). The equality marked ?

= is by the definition of Ad(g−1
(0,1)). The

equality marked �= is because D is G2
1-equivariant (this is condition (i) of Definition

2.1). And the equality marked O= holds by definition of a′.

Finally we have to check that condition (ii) of Definition 2.4 holds for (x ′,g′,a′).
Namely, letting

u′ := (a′(0,1,3))
−1 ◦ a′(0,2,3) ◦ a′(0,1,2) ◦ Ad

(
(g′(0,1))

−1) (a′(1,2,3))
−1, (3.1)

we have to show that u′ = 1.
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From the definition of a′ we get

Ad
(
(g′(0,1))

−1) (a′(1,2,3))

= Ad
(
(g′(0,1))

−1 ◦ f (1)
) (

c−1
(1,3) ◦ a(1,2,3) ◦ Ad(g−1

(1,2))(c(2,3)) ◦ c(1,2)
)

♥
= Ad

(
f (0) ◦ D(c−1

(0,1)) ◦ (g(0,1))−1)(
c−1

(1,3) ◦ a(1,2,3) ◦ Ad(g−1
(1,2))(c(2,3)) ◦ c(1,2)

)
♦
=
(
Ad( f (0)) ◦ Ad(D(c−1

(0,1))) ◦ Ad(g(0,1))−1)(
c−1

(1,3) ◦ a(1,2,3) ◦ Ad(g−1
(1,2))(c(2,3)) ◦ c(1,2)

)
�
= Ad

(
f (0)
) (

c−1
(0,1) ◦ Ad

(
g−1

(0,1)
)
(c−1

(1,3)) ◦ Ad
(
g−1

(0,1)
)
(a(1,2,3))

◦ Ad
(
g−1

(0,1) ◦ g
−1
(1,2)
)
(c(2,3)) ◦ Ad

(
g−1

(0,1)
)
(c(1,2)) ◦ c(0,1)

)
.

(3.2)

The equality marked ♥= is true because

(g′(0,1))
−1 ◦ f (1) = f (0) ◦ D(c−1

(0,1)) ◦ (g(0,1))−1;

this is from condition (i) of Definition 2.5. The equality marked ♦= is because Ad is
a group homomorphism. And �= is because Ad(D(c−1

(0,1))) = Ad(c−1
(0,1)), which is an

instance of condition (ii) of Definition 2.1.
A consequence of condition (ii) of Definition 2.4 and condition (ii) of Definition

2.1 is that
a−1

(0,1,2) ◦ c ◦ a(0,1,2) = Ad(a−1
(0,1,2))(c)

= Ad(D(a−1
(0,1,2)))(c)

= Ad(g−1
(0,1) ◦ g

−1
(1,2) ◦ g(0,2))(c)

for any c ∈ G2
2(x (0)). Therefore, taking c := Ad(g−1

(0,2))(c(2,3)), we get

Ad(g−1
(0,2))(c(2,3)) ◦ a(0,1,2) = a(0,1,2) ◦ Ad(g−1

(0,1) ◦ g
−1
(1,2))(c(2,3)). (3.3)

By the definition of a′ and by formula (3.2) we have

u′ = Ad( f (0))
(
c−1

(0,3) ◦ a(0,1,3) ◦ Ad(g−1
(0,1))(c(1,3)) ◦ c(0,1)

)−1

◦ Ad( f (0))
(
c−1

(0,3) ◦ a(0,2,3) ◦ Ad(g−1
(0,2))(c(2,3)) ◦ c(0,2)

)
◦ Ad( f (0))

(
c−1

(0,2) ◦ a(0,1,2) ◦ Ad(g−1
(0,1))(c(1,2)) ◦ c(0,1)

)
◦ Ad

(
f (0)
) (

c−1
(0,1) ◦ Ad

(
g−1

(0,1)
)
(c−1

(1,3)) ◦ Ad
(
g−1

(0,1)
)
(a(1,2,3))

◦ Ad
(
g−1

(0,1) ◦ g
−1
(1,2)
)
(c(2,3)) ◦ Ad

(
g−1

(0,1)
)
(c(1,2)) ◦ c(0,1)

)−1
.
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Canceling adjacent inverse terms we get

u′ = Ad( f (0))
(
c−1

(0,1) ◦ Ad(g−1
(0,1))(c−1

(1,3)) ◦ v
′ ◦ Ad

(
g−1

(0,1)
)
(c(1,3)) ◦ c(0,1)

)
,

where

v′ := a−1
(0,1,3) ◦ a(0,2,3) ◦ Ad(g−1

(0,1) ◦ g
−1
(1,2))(c(2,3)) ◦ a(0,1,2)

◦ Ad
(
g−1

(0,1) ◦ g
−1
(1,2)
)
(c−1

(2,3)) ◦ Ad
(
g−1

(0,1)
)
(a−1

(1,2,3)) .

It suffices to prove that v′ = 1. Using formula (3.3) we have

v′ = a−1
(0,1,3) ◦ a(0,2,3) ◦ a(0,1,2) ◦ Ad(g−1

(0,1) ◦ g
−1
(1,2))(c(2,3))

◦ Ad
(
g−1

(0,1) ◦ g
−1
(1,2)
)
(c−1

(2,3)) ◦ Ad
(
g−1

(0,1)
)
(a−1

(1,2,3)) .

We now cancel two adjacent inverse terms, and use the fact that condition (ii) of
Definition 2.4 holds for (x,g,a), to conclude that v′ = 1.

Suppose G is a crossed groupoid and x, x ′ ∈ Ob(G). There is a right action of
the group G2(x) on the set G1(x, x ′), namely g 7→ g ◦ D(a) for g ∈ G1(x, x ′) and
a ∈ G2(x). The quotient set is

π1(G, x, x ′) := G1(x, x ′)/G2(x). (3.4)

Given g,g′ ∈ G1(x, x ′) let us define

G2(x)(g,g′) := {a ∈ G2(x) | g′ = g ◦ D(a)}. (3.5)

So π1(G, x, x) = π1(G, x) and G2(x)(1x ,1x ) = π2(G, x) in the notation of Definition
3.1.

Lemma 3.6. Let Φ : G → H be a weak equivalence between crossed groupoids.
Then the induced functions

π1(Φ, x, x ′) : π1(G, x, x ′) → π1
(
H,Φ(x),Φ(x ′)

)
and

Φ : G2(x)(g,g′) → H2
(
Φ(x)

) (
Φ(g),Φ(g′)

)
are bijective for all x, x ′ ∈ Ob(G) and f , f ′ ∈ G1(x, x ′).

Proof. This is the same as the usual proof for 2-groupoids (cf. [16, Lemma 1.1]).

Proof of Theorem 3.4. The proof is a “nonabelian diagram chasing”, made possible
by Lemma 3.5.

We begin by proving that the function Desc(Φ) is surjective. Given a descent
datum (y,h,b) ∈ Desc(H), we have to find a descent datum (x,g,a) ∈ Desc(G),
and a gauge transformation ( f ,c) : (y,h,b) → Φ(x,g,a) in H .
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Since the function π0(Φ0) : π0(G0) → π0(H0) is surjective, there is an object
x ∈ Ob(G0), and a 1-morphism f ∈ H0

1 (y, y′), where y′ := Φ(x) ∈ Ob(H0). Define

h′′ := f (1) ◦ h ◦ f −1
(0) ∈ H0

1 (y′(0) , y
′
(1))

and c′′ := 1y(0) ∈ H1
2 (y(0)). Then (y′,h′′) is a partial descent datum in H ,

and ( f ,c′′) : (y,h) → (y′,h′′) is a partial gauge transformation. According to
Lemma 3.5 there is a unique element b′′ ∈ H2

2 (y′(0)) such that (y′,h′′,b′′) is a descent
datum in H , and ( f ,c′′) : (y,h,b) → (y′,h′′,b′′) is a gauge transformation.

Now by Lemma 3.6 the function

π1(Φ1, x (0) , x (1)) : π1(G1, x (0) , x (1)) → π1(H1, y′(0) , y
′
(1))

is surjective. Hence there are elements g ∈ G1
1(x (0) , x (1)) and c′ ∈ H1

2 (y′(0)) such
that, letting h′ := Φ(g) ∈ H1

1 (y′(0) , y
′
(1)), we have h′′ = h′ ◦ D(c′). Consider

the partial gauge transformation (1y′ ,c′) : (y′,h′′) → (y′,h′). Lemma 3.5
there is a unique element b′ ∈ H2

2 (y′(0)) such that (y′,h′,b′) is a descent datum
in H , and (1y′ ,c′) : (y′,h′′,b′′) → (y′,h′,b′) is a gauge transformation. Let
c := Ad( f −1

(0))(c′)−1 ∈ H1
2 (y(0)). Then

( f ,c) : (y,h,b) → (y′,h′,b′)

is a gauge transformation in H , and (y′,h′) = Φ(x,g).
By Lemma 3.6 the function

Φ
2 : G2

2(x (0))
(
1x(0) ,g

−1
(0,2) ◦ g(1,2) ◦ g(0,1)

)
→ H2

2 (y′(0))
(
1y′(0)

, (h′(0,2))
−1 ◦ h′(1,2) ◦ h′(0,1)

)
is bijective. Let a ∈ G2

2(x (0)) be the unique element such that

D(a) = g−1
(0,2) ◦ g(1,2) ◦ g(0,1)

and Φ(a) = b′. Then the triple of elements (x,g,a) satisfies condition (i) of
Definition 2.4, and Φ(x,g,a) = (y′,h′,b′). Now the element

u := a−1
(0,1,3) ◦ a(0,2,3) ◦ a(0,1,2) ◦ Ad(g−1

(0,1))(a(1,2,3))−1 ∈ G3
2(x (0))

satisfies D(u) = 1, so it belongs to the subgroup π2(G3, x (0)) ⊂ G3
2(x (0)). Since the

group homomorphism

π2(Φ3, x (0)) : π2(G3, x (0)) → π2(H3, y′(0))

is injective, and since

π2(Φ3, x (0))(u) = Φ
3(u) =

(b′(0,1,3))
−1 ◦ b′(0,2,3) ◦ b′(0,1,2) ◦ Ad(h′(0,1))

−1(b′(1,2,3))
−1 = 1,
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we conclude that u = 1. Thus the triple (x,g,a) satisfies condition (ii) of
Definition 2.4, so it is a descent datum in G.

Now we prove that the function Desc(Φ) is injective. Given

(x,g,a), (x ′,g′,a′) ∈ Desc(G),

define (y,h,b) := Φ(x,g,a) and (y′,h′,b′) := Φ(x ′,g′,a′). Assume we are given a
gauge transformation

( f ,c) : (y,h,b) → (y′,h′,b′)

in H . We have to produce a gauge transformation

(e,d) : (x,g,a) → (x ′,g′,a′)

in G.
We know that the function

π1(Φ0, x, x ′) : π1(G0, x, x ′) → π1
(
H0, y, y′

)
is surjective. Therefore there is a 1-morphism e ∈ G0

1(x, x ′), and a 2-morphism
v ∈ H0

2 (y), such that Φ(e) = f ◦ D(v). Let

f̃ := f ◦ D(v) ∈ H0
1 (y, y′)

and
c̃ := Ad(h−1)(v−1

(1)) ◦ c ◦ v(0) ∈ H0
2 (y(0)).

A simple calculation shows that

( f̃ , c̃) : (y,h,b) → (y′,h′,b′)

is also a gauge transformation.
Recall that Φ(e) = f̃ , so

Φ(g−1 ◦ e−1
(1) ◦ g

′ ◦ e(0)) = h−1 ◦ f̃ −1
(1) ◦ h′ ◦ f̃ (0) = D(c̃).

This is condition (i) of Definition 2.5 for the gauge transformation ( f̃ , c̃). Because
the group homomorphism

π1(Φ1, x (0)) : π1(G1, x (0)) → π1(H1, y(0))

is injective, it follows that there is an element d ′ ∈ G1
2(x (0)) such that

g−1 ◦ e−1
(1) ◦ g

′ ◦ e(0) = D(d ′).

Consider the element w := c̃ ◦ Φ(d ′)−1 ∈ H1
2 (y(0)). It satisfies D(w) = 1, so it

belongs to the subgroup π2(H1, y(0)). But the homomorphism

π2(Φ1, x (0)) : π2(G1, x (0)) → π2(H1, y(0))
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is bijective, so there is a unique element v ∈ G1
2(x (0)) satisfying D(v) = 1 and

Φ(v) = w. Let d := v ◦ d ′ ∈ G1
2(x (0)). Then Φ(d) = c̃ and

D(d) = D(d ′) = g−1 ◦ e−1
(1) ◦ g

′ ◦ e(0) .

Thus the pair (e,d) is a partial gauge transformation (x,g) → (x ′,g′).
The last thing to check is that condition (ii) of Definition 2.5 holds for (e,d). Let

u := Ad(e−1
(0))(a′)−1 ◦ d−1

(0,2) ◦ a ◦ Ad(g−1
(0,1))(d(1,2)) ◦ d(0,1) ∈ G2

2(x (0)).

A direct calculation shows that D(u) = 1x(0) ∈ G2
1(x (0)), so u ∈ π2(G2, x (0)). We

know that Φ(u) = 1y(0) , and that the homomorphism

π2(Φ2, x (0)) : π2(G2, x (0)) → π2(H2, y(0))

is injective. It follows that u = 1x(0) , which is what we had to check.

4. Some Remarks

To finish the note, here are a few remarks and clarifications, to help place our work
in context.

Remark 4.1. Cosimplicial crossed groupoids arise naturally in the geometry of
gerbes. This is well-known—see [1, 3, 4, 9]. Let us quickly indicate how this occurs.
Let G be a sheaf of groups on a topological space X , and let Aut(G) be its sheaf
of automorphism groups. There is an obvious sheaf of crossed groups (i.e. crossed
modules)

G =
(

D : G → Aut(G)
)

on X . Consider an open covering U = {Uk } of X . The Čech construction gives rise
to a cosimplicial crossed group G := C(U ,G). The set Desc(G) is an approximation
of the set of equivalence classes of G-gerbes on X (the discrepancy is because we
may have to use refinements and hypercoverings).

If every G-gerbe totally trivializes on the covering U (see [18, Definition 9.16]),
then Desc(G) actually classifies G-gerbes. IfV is another such covering, andV →U
is a refinement, then there is an induced weak equivalence of cosimplicial crossed
groups C(U ,G) → C(V ,G).

More general gerbes (not G-gerbes as above) can sometimes be classified by a
sheaf of crossed groupoidsG—see next remark. For the full generality is it necessary
to invoke more complicated combinatorics—see Remark 4.6.

Remark 4.2. Theorem 1.1 is used to prove twisted deformation quantization in our
paper [18] (see also the survey article [20]). We look at a smooth algebraic variety
X over a field K of characteristic 0. By parameter K-algebra we mean a complete
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noetherian local commutative K-algebra R, with maximal ideal m and residue field
R/m = K. The main example is R = K[[~]], the algebra of power series in a variable
~.

On the variety X there are two important sheaves of DG Lie algebras: the algebra
Tpoly,X of poly derivations, and the algebra Dpoly,X of poly differential operators.
Consider the sheaves of pronilpotent DG Lie algebras m ⊗̂ Tpoly,X and m ⊗̂ Dpoly,X .
The Deligne crossed groupoid construction (see [8] or [19]) gives rise to sheaves of
crossed groupoids G := Del

(
m ⊗̂ Tpoly,X

)
andH := Del

(
m ⊗̂ Dpoly,X

)
.

Now letU be a finite affine open covering of X . Consider the cosimplicial crossed
groupoids G := C(U ,G) and H := C(U ,H ). The sets Desc(G) and Desc(H)
classify twisted Poisson R-deformations and twisted associative R-deformations
of OX , respectively. These twisted deformations are stacky versions of usual
deformations (similar to the stacks of algebroids in [14, 15]). The fact that twisted
R-deformations of OX totally trivialize on any affine open covering relies on our
paper [21].

There is a diagram of weak equivalences of cosimplicial crossed groupoids

G

ΦG̃

��

H

ΦH̃

��

G̃ Ψ̃ // H̃

The weak equivalences ΦG̃ : G → G̃ and ΦH̃ : H → H̃ come from suitable
resolutions of the sheaves of DG Lie algebras Tpoly,X and Dpoly,X respectively. The
weak equivalence Ψ̃ : G̃ → H̃ comes from the Kontsevich Formality Theorem and
its adaptation to the algebro-geometric setting; see [18, Theorems 10.3 and 10.6].
Due to Theorem 1.1 we obtain a bijection

tw.quant : Desc(G) → Desc(H),

tw.quant := Desc(ΦH̃ )−1 ◦ Desc(Ψ̃) ◦ Desc(ΦG̃ ).

A refinement argument shows that tw.quant is independent of the resolutions. We
call it the twisted quantization map.

The twisted quantization map tw.quant does not arise from a refinement or any
similar geometric operation. Indeed, it is conjectured that in some cases (e.g. when
X is a Calabi–Yau surface) the twisted quantization would send a sheaf to a stack,
thus destroying the geometry.

An earlier approach to twisted deformation quantization (in previous versions
of [18]) relied on nonabelian multiplicative integration on surfaces [23]. The new
approach uses Theorem 1.1, and is much shorter. Let us mention however that the
ideas of [23] were recently picked up by [2], for comparing various nerves of a
2-groupoid.
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Remark 4.3. A crossed groupoid (i.e. crossed module over a groupoid) is the same
as a strict 2-groupoid; see [19, Proposition 5.5]. The homotopy set π0(G) and groups
πi (G, x) are the same in both incarnations. A crossed groupoid is also the same as a
category with inner gauge groups (P, IG, ig) where P is a groupoid—see [18, Section
5 and Proposition 10.4].

Traditionally papers used the 2-groupoid language to discuss descent for gerbes
(cf. [1]). In [18] we realized that the crossed groupoid language is more effective:
geometric descent data comes naturally in terms of a cosimplicial crossed groupoid
(see [18, Section 10]), and also the Deligne construction (see [19, Section 6])
appears as a crossed groupoid, so it is more natural to talk about the Deligne crossed
groupoid.

Another reason for preferring the crossed groupoid language is that defining
combinatorial descent data, and proving Theorem 3.4, is easier this way.

Remark 4.4. To the best of our knowledge there is no prior proof of Theorem 1.1,
and moreover such a general result was not even conjectured before.

Results of similar flavor do appear in the work of Breen [3, 4] on classification
of gerbes. Indeed Breen shows that the morphism of crossed groups arising from
a refinement (cf. Remark 4.1) induces a bijection on Desc(−). It is possible that
Theorem 1.1 can be given a shorter proof using Breen’s diagram calculus.

Another earlier result, a special case of our Theorem 1.1, is [1, Proposition 3.3.1].
However it is too restricted for the purposes of [18].

Assertions in [6] that are similar to Theorem 1.1 are, to the best of our
understanding, not actually proved there.

The paper [17] by Prezma, which is a follow-up to our own present note, extends
Theorem 1.1 significantly (see next remark). The proof given in [17] uses methods
from homotopy theory, and is much more sophisticated than our direct calculations.
Nonetheless our proof is somewhat shorter, and is completely self-contained.

Remark 4.5. Let G ∈ ∆(CrGrpd). The set Desc(G) has a crossed groupoid structure,
in which the gauge transformations are the 1-morphisms; so π0(Desc(G)) =

Desc(G). See [17], and also [4, Section 5], [11] and [1] for special cases. A
morphism Φ : G → H in ∆(CrGrpd) induces a morphism

Desc(Φ) : Desc(G) → Desc(H)

in CrGrpd.
Prezma [17] proves that if Φ is a cosimplicial weak equivalence, then the

morphism of crossed groupoids Desc(Φ) is a weak equivalence. This of course
implies Theorem 1.1. The result of Prezma extends Jardine’s corresponding
result for (ordinary) groupoids [13]. Moreover Prezma shows how to extend his
equivalence theorem to higher (n > 2) groupoids.

Remark 4.6. We should emphasize that Theorem 1.1 holds in much greater
generality than stated. First observe that we made no use of the full cosimplicial
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structure of the cosimplicial crossed groupoids G and H—all we needed is that
these are 3-truncated semi-cosimplicial crossed groupoids. Namely that G and H
are functors ∆≤3

inj → CrGrpd, where ∆≤3
inj is the subcategory of ∆ on the object set

{0,1,2,3}, and with only injective functions α : p → q. Likewise for the weak
equivalence Φ : G → H .

The reason we chose to use the cosimplicial language is convenience. It also fits
nicely with the conventions of [18].

Other papers dealing with descent for gerbes and stacks (cf. [3, 4, 7]) indicate that
Theorem 1.1 might be extended further. It is almost clear to us that the theorem holds
for 4-truncated pseudo-semi-cosimplicial crossed groupoids, namely for pseudo-
functors G,H : ∆≤4

inj → CrGrpd. This would correspond to a Čech construction
performed on a stack of crossed groupoids on a space X .

A more complicated extension would be to replace the 2-category CrGrpd of
crossed groupoids with the 2-category w2Grpd of weak 2-groupoids, i.e. to work
with pseudo-functors ∆≤4

inj → w2Grpd.
It is reasonable to assume that proving such extended results would require either

a bare-hands approach like ours, or else very sophisticated homotopical machinery.
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