Almost normal operators mod Hilbert–Schmidt and the *K*-theory of the algebras $E \Lambda(\Omega)$

Dan-Virgil Voiculescu*

Abstract. Is there a mod Hilbert–Schmidt analogue of the BDF-theorem, with the Pincus g-function playing the role of the index? We show that part of the question is about the K-theory of certain Banach algebras. These Banach algebras, related to Lipschitz functions and Dirichlet algebras have nice Banach-space duality properties. Moreover their corona algebras are C^* -algebras.

Mathematics Subject Classification (2010). 46H85; 46L80, 47B20, 47L20. *Keywords*. Trace-class self-commutator, *K*-theory, Dirichlet algebras, bidual Banach algebra.

1. Introduction

The BDF-theorem [7] classifies, up to unitary equivalence, the normal elements of the Calkin algebra, by the spectrum and the index of the resolvent. If the ideal of compact operators is replaced by the trace-class, for operators with trace-class self-commutator, the Pincus *g*-function ([8], [9]) is an L^1 -function on \mathbb{C} which extends the index of the essential resolvent. The *g*-function has been related to algebraic *K*-theory by L. G. Brown ([5], [6]) and in another direction, after work of J. W. Helton and R. Howe ([18]), the distribution to which the *g*-function gives rise, has been interpreted in terms of cyclic cohomology by A. Connes ([13]).

These developments around the *g*-function, were however not accompanied by a corresponding BDF-type result. In ([28], [26], [27]) we formulated conjectures about operators with trace-class self-commutator, an affirmative answer to which would fill this gap. Besides the initial evidence in favor of these conjectures, there was no further progress. The situation is roughly that the *g*-function viewed in the cyclic cohomology framework covers the index part and our work on Hilbert–Schmidt perturbations of normal operators ([25]) covers the part about trivial extensions, while the rest is wide open. The absence on the technical side of a normal dilation result which would correspond to the existence of inverses in Ext and which in

^{*}Research supported in part by NSF Grant DMS 1001881.

the BDF context can be derived from the Choi–Effros completely positive lifting theorem, is a noted difficulty.

Our aim here is to decouple the normal dilation from the rest by introducing the algebras $E \Lambda(\Omega)$. In this way we are also able to bring *K*-theory to the study of this problem since we are led to the K_0 -group of such an algebra.

The Banach *-algebras $E\Lambda(\Omega)$ are the natural framework to study operators with trace-class self-commutator which are obtained from compressions of normal operators to mod Hilbert–Schmidt reducing projections. Roughly $E\Lambda(\Omega)$, where Ω is a Borel subset of \mathbb{C} is an algebra of operators in $L^2(\Omega, \lambda)$ with Hilbert–Schmidt commutators with the multiplication operators by Lipschitz functions, a construction reminiscent of Paschke-duality ([22]).

The algebras $E\Lambda(\Omega)$ have nice properties as Banach algebras. They resemble the Lipschitz algebras of [30], up to the use of a Hilbert–Schmidt norm instead of a uniform norm, which is a feature of the Dirichlet algebras of non-commutative potential theory ([1], [10], [11]). Actually the ideal $\mathcal{K}\Lambda(\Omega)$ of compact operators in $E\Lambda(\Omega)$ is a Dirichlet algebra and we show that $E\Lambda(\Omega)$ can be viewed both as the algebra of multipliers or as the bidual of $\mathcal{K}\Lambda(\Omega)$, when Ω is bounded. Since all this has the flavor of Banach algebra analogues of basic C^* -algebras, it is perhaps unexpected that the corona $E\Lambda(\Omega)/\mathcal{K}\Lambda(\Omega)$ which is the analogue of the Calkin algebra is really a C^* -algebra. Note, however, that while the Dirichlet algebra $\mathcal{K}\Lambda(\Omega)$ has the same simple K-theory as the algebra $\mathcal{K}(\mathcal{H})$ of compact operators, the K-theory of $E\Lambda(\Omega)$ and hence of $E\Lambda(\Omega)/\mathcal{K}\Lambda(\Omega)$, which interests us in connection with operators with trace-class self-commutator, is certainly richer.

On the technical side an essential ingredient is the existence of a bounded approximate unit consisting of projections for $\mathcal{K}\Lambda(\Omega)$, which is a consequence of our work on norm-ideal perturbations of Hilbert-space operators ([25], [29]).

Concerning the relation of the operator theory problems to the *K*-theory of the algebras $E \Lambda(\Omega)$, we should point out that while the *K*-theory problem is so to speak the operator theory problem minus the dilation problem, actually certain outcomes of the *K*-theory problem could provide a negative answer to the dilation problem. If the *K*-theory of $E \Lambda(\Omega)$ exhibits some integrality property making K_0 less rich this would answer in the negative the dilation problem.

In addition to the first section, which is the introduction, the paper has five more sections.

Section 2 contains background material about the conjectures about almost normal operators modulo Hilbert–Schmidt. Details of certain connections between these problems, left out previously, are included for the reader's convenience.

Section 3 introduces the algebras $E\Lambda(\Omega)$ and some of their basic properties. We also consider the ideal of compact operators $\mathcal{K}\Lambda(\Omega)$ of $E\Lambda(\Omega)$ and the Banach algebra $E\Lambda(\mathbb{C})_0$ which is the inductive limit of the $E\Lambda(\Omega)$ for bounded sets Ω .

In section 4 we look at the *K*-theory of the Banach algebras considered. We show that the problem about a mod Hilbert–Schmidt BDF-type theorem for almost normal

operators is equivalent to the normal dilation problem plus the problem whether the K_0 -group of $E \Lambda(\mathbb{C})_0$ is isomorphic via the Pincus *g*-function to the group $L^1_{re}(\mathbb{C}, \lambda)$ of real-valued L^1 -functions with bounded support.

Section 5 returns to the algebras $\mathcal{K}\Lambda(\Omega)$, $E\Lambda(\Omega)$ and $(E/\mathcal{K})\Lambda(\Omega)$ and gives results about duality, multipliers and the relation to C^* -algebras.

Section 6 contains concluding remarks in several directions: the action of bi-Lipschitz homeomorphisms on the algebras, the center of $(E/\mathcal{K})\Lambda(\Omega)$, the relation to Dirichlet algebras and non-commutative potential theory, the possibility of similar constructions with other Schatten–von Neumann classes C_p replacing the Hilbert– Schmidt class.

I would like to thank Jesse Peterson for useful comments about a possible connection to Dirichlet algebras.

2. Background

2.1. If \mathcal{H} is a separable infinite-dimensional Hilbert space over \mathbb{C} , then $\mathcal{B}(\mathcal{H})$ will denote the bounded operators on \mathcal{H} and $\mathcal{C}_p(\mathcal{H})$ the *Schatten–von Neumann p-class*. The *p*-norm $|\cdot|_p$ is $|T|_p = \text{Tr}(T^*T)^{p/2}$. In particular, $\mathcal{C}_1(\mathcal{H})$ is the *trace-class* and $\mathcal{C}_2(\mathcal{H})$ is the *Hilbert–Schmidt class*.

2.2. An operator $T \in B(\mathcal{H})$ is almost normal if its self-commutator $[T^*, T]$ is in $C_1(\mathcal{H})$. Equivalently, if T = A + iB with $A = A^*$, $B = B^*$ then $[A, B] \in C_1$ since $2i[A, B] = [T^*, T]$. We shall denote by $\mathcal{AN}(\mathcal{H})$ the set of almost operators. Background material and references to the literature for many facts about operators with trace-class self-commutator can be found in the books [12], [21].

2.3. If $T = A + iB \in \mathcal{AN}(\mathcal{H})$ and if $Q, R \in \mathbb{C}[X, Y]$ are polynomials in two commuting indeterminates, then since \tilde{A}, \tilde{B} the class of A, B in $\mathcal{B}(\mathcal{H})/\mathcal{C}_1(\mathcal{H})$ commute, we shall also write Q(A, B), R(A, B) for elements in $\mathcal{B}(\mathcal{H})$ so that $\widetilde{Q(A, B)} = Q(\tilde{A}, \tilde{B}), \widetilde{R(A, B)} = R(\tilde{A}, \tilde{B})$. Clearly these are only defined up to a \mathcal{C}_1 perturbation. The *Helton–Howe measure* P_T of $T = A + iB \in \mathcal{AN}(\mathcal{H})$ ([18]) is a compactly supported measure on \mathbb{R}^2 so that

$$\operatorname{Tr}[Q(A, B), R(A, B)] = (2\pi i)^{-1} \int \mathcal{J}(Q, R) dP_T$$

where

$$\mathcal{J}(Q,R) = \frac{\partial Q}{\partial X} \frac{\partial R}{\partial Y} - \frac{\partial Q}{\partial Y} \frac{\partial R}{\partial X}.$$

Then supp $P_T \subset \sigma(T)$ and P_T is absolutely continuous w.r.t. Lebesgue measure λ and the Radon–Nikodym derivative $\frac{dP_T}{d\lambda} = g_T \in L^1(\mathbb{R}^2)$ is the *Pincus principal function of T* (also called *Pincus g-function*).

2.4. Let $R_1^+(\mathcal{H}) = \{X \in B(\mathcal{H}) : X \text{ finite rank, } 0 \le X \le 1\}$, which is a directed ordered set. Then the obstruction to the existence of quasicentral approximate units relative to the Hilbert–Schmidt class ([25]) is

$$k_2(T_1,\ldots,T_n) = \liminf_{X \in R_1^+(\mathcal{H})} \max_{1 \le j \le n} |[T_j,X]|_2.$$

In [28] we showed that: if $T_1, T_2 \in \mathcal{AN}(\mathcal{H})$, $k_2(T_1) = 0$ and $T_1 - T_2 \in \mathcal{C}_2$, then $P_{T_1} = P_{T_2}$ (or equivalently $g_{T_1} = g_{T_2}$ a.e.).

2.5. We recall two of the conjectures about almost normal operators ([28] conjectures 3 and 4). Note that the second of these is a consequence of the first.

Conjecture 3 in [28]. If $T_1, T_2 \in \mathcal{AN}(\mathcal{H})$ are so that $P_{T_1} = P_{T_2}$ then there is a normal operator $N \in B(\mathcal{H})$ and a unitary operator $U \in B(\mathcal{H} \oplus \mathcal{H})$ so that $T_1 \oplus N - U(T_2 \oplus N)U^* \in C_2$.

If true, this statement would represent a kind of BDF-theorem with $\mathcal{AN}(\mathcal{H})$ and the Helton-Howe measure replacing the operators with compact self-commutator and respectively the index-data. Note also that the unitary equivalence is mod \mathcal{C}_2 (not \mathcal{C}_1).

Conjecture 4 in [28]. If $T \in AN(H)$ then there is $S \in AN(H)$ and a normal operator $M \in B(H \oplus H)$ so that $T \oplus S - M \in C_2$.

This conjecture is an analogue of the existence of inverses in Ext in the analogue of the "Ext is a group" part of the BDF theorem. Note that the analogue of the results for trivial extensions (i.e., Weyl–von Neumann theorem part) is covered by our results in [25]. For the derivation of Conjecture 4 from Conjecture 3 one also uses the result of R. V. Carey and J. D. Pincus that every L^1 -function is the g-function of some $T \in \mathcal{AN}(\mathcal{H})$ (see 4.9).

2.6. We would like to remark that Conjectures 3 and 4 in [28] don't bring the essential spectrum of the almost normal operators into the discussion. With consideration of the essential spectrum $\sigma_e(T)$, one might ask if $P_{T_1} = P_{T_2}$ and $\sigma_e(T_1) = \sigma_e(T_2)$ would imply $T_1 - UT_2U^* \in C_2$, form some unitary U, when $T_i \in \mathcal{AN}(\mathcal{H}), j = 1, 2$.

We didn't discuss the possibility of such a strengthening, because it seems to have to do also with phenomena of another kind involving perturbations of isolated points in $\sigma(T) \setminus \sigma_e(T)$.

2.7. A consequence of Conjecture 4 and hence also of Conjecture 3 is the following conjecture.

Conjecture 1 in [28]. If $T \in AN(H)$ then $k_2(T) = 0$.

The proof which was omitted in [28], involves using a result of [25], that $k_2(N) = 0$ for every normal operator N. Indeed, if Conjecture 4 holds for T, then $T \in \mathcal{AN}(\mathcal{H})$ is unitarily equivalent mod \mathcal{C}_2 to a compression $PN \mid P\mathcal{H}$

where $P = P^* = P^2$ is a projection, N is normal and $[P, N] \in C_2$. We infer that $k_2(T) = k_2(PN | PH)$. On the other hand $k_2(N) = 0$ implies there are $X_n \in R_1^+(H), X_n \uparrow I$ as $n \to \infty$, so that $\lim_{n\to\infty} |[X_n, N]|_2 = 0$. If $Y_n = PX_nP$ then $Y_n \in R_1^+$ and we have $Y_n \uparrow P$ as $n \to \infty$. We have

$$|[Y_n, PNP]|_2 = |P[X_n, PNP]P|_2 \le |P[X_n, NP]P|_2 + |[I - X_n, [P, N]P]|_2.$$

Since $[P, N]P \in C_2$ and $I - X_n \downarrow 0$ we have $|[I - X_n, [P, N]P]|_2 \rightarrow 0$ as $n \rightarrow \infty$. On the other hand

$$|P[X_n, NP]P|_2 \le |P[I - X_n, N]P|_2 + |P[N, P](I - X_n)P|_2$$

which converges to 0 as $n \to \infty$. Thus, Conjecture 1 holds for T, i.e., $k_2(T) = 0$.

2.8. We will also need to recall some of the results for normal operators which follow from [25]. Since $k_2(N) = 0$ for every normal operator N, we can use the kind of non-commutative Weyl–von Neumann results in [25] to infer that: if N_1 and N_2 are normal operators on \mathcal{H} and $\sigma(N_1) = \sigma(N_2) = \sigma_e(N_1) = \sigma_e(N_2)$ then there is a unitary operator U so that $UN_1U^* - N_2 \in C_2$ and $|UN_1U^* - N_2|_2 < \varepsilon$ for a given $\varepsilon > 0$.

Also, if $T \in \mathcal{AN}(\mathcal{H})$ and N is a normal operator with $\sigma(N) = \sigma_e(T)$ then there is a unitary operator $U : \mathcal{H} \to \mathcal{H} \oplus \mathcal{H}$ so that $(T \oplus N)U - UT$ is Hilbert–Schmidt and $|(T \oplus N)U - UT|_2 < \varepsilon$ for a given $\varepsilon > 0$,

3. The Banach Algebras $E\Lambda(\Omega)$

3.1. We shall define here the algebras $E\Lambda(\Omega)$ and give a few of their basic properties.

If $\Omega \subset \mathbb{C}$ is a Borel set and $f \in L^{\infty}(\Omega, \lambda)$, with λ denoting Lebesgue measure, let M_f be the multiplication operator by f on $L^2(\Omega, \lambda)$ and Df be the difference quotient

$$Df(s,t) = \frac{f(s) - f(t)}{s - t} (s \neq t)$$

which is the class up to null-sets of a Lebesgue-measurable function on $\Omega\times\Omega.$ Let further

$$\Lambda(\Omega) = \{ f \in L^{\infty}(\Omega, \lambda) \mid Df \in L^{\infty}(\Omega \times \Omega, \lambda \otimes \lambda) \}$$

be the subalgebra of essentially Lipschitz functions. If $T \in \mathcal{B}(L^2(\Omega, \lambda))$ let L(T) be given by

 $L(T) = \sup\{ |[M_f, T]|_2 \mid f \in \Lambda(\Omega), ||Df||_{\infty} \le 1 \}.$

We define $E\Lambda(\Omega)$ to be the subalgebra of $\mathcal{B}(L^2(\Omega))$

$$E\Lambda(\Omega) = \{T \in \mathcal{B}(L^2(\Omega, \lambda)) \mid L(T) < \infty\}.$$

It is easily seen that $E\Lambda(\Omega)$ is a *-subalgebra of $\mathcal{B}(L^2(\Omega, \Omega))$. Even more, $E\Lambda(\Omega)$ is an involutive Banach algebra with respect to the norm |||T||| = ||T|| + L(T) and the involution is isometric $|||T||| = |||T^*|||$. The proof is along standard lines and will be left to the reader.

3.2. If Ω is specified and $w \in \mathbb{C}$, let $(e(w))(z) = \exp(i \operatorname{Re}(z\overline{w}))$ and let $U(w) = M_{e(w)}$, which is a unitary operator on $L^2(\Omega, \lambda)$. Also, if Ω is bounded, the multiplication operators by the functions which at x + iy equal x + iy, x, y will be denoted by Z, X, Y.

Proposition 3.3. *If* $T \in \mathcal{B}(L^2(\Omega, \lambda))$ *and*

$$L_1(T) = \sup\{|w|^{-1} | [T, U(w)]|_2 \mid w \in \mathbb{C} \setminus \{0\}\}$$

then we have $L_1(T) \leq L(T) \leq 2L_1(T)$ and $|||T|||_1 = ||T|| + L_1(T)$ is an equivalent Banach algebra norm on $E\Lambda(\Omega)$.

If Ω is bounded then we have

$$L(T) = |[T, Z]|_2.$$

Proof. We first establish the assertions of the proposition in case $T \in C_2$. Then T is given by a kernel $K \in L^2(\Omega \times \Omega, \lambda \otimes \lambda)$ and the kernel of $[M_f, T]$ is (f(s) - f(t))K(s, t). The supremum of C_2 -norms of $[M_f, T]$ over all f with $\|Df\|_{\infty} \leq 1$ will then equal the L^2 -norm of (s - t)K(s, t), which for bounded Ω is the kernel of [Z, T]. On the other hand, if $f = e(w)|w|^{-1}$ we have $\|Df\|_{\infty} \leq 1$, so that $L_1(T) \leq L(T)$. Further, taking $w = \varepsilon w_0$, for some w_0 with $|w_0| = 1$ and letting $\varepsilon \downarrow 0$, the supremum of L^2 -norms of the corresponding (f(s) - f(t))K(s, t) will be the L^2 -norm of $\operatorname{Re}((s - t)\overline{w}_0)K(s, t)$. The bound $L(T) \leq 2L_1(T)$ is then obtained taking for instance $w_0 = 1$ and $w_0 = i$.

To deal with general T, we first take up the assertion that $L(T) = |[Z, T]|_2$ when Ω is bounded. Clearly it suffices to show that $L(T) \leq |[Z, T]|_2$ the opposite inequality being obvious. By our results in [25], since Z is a normal operator, there are finite rank projections $P_n \uparrow I$ so that $|[P_n, Z]|_2 \to 0$ as $n \to \infty$. Then if f is such that $||Df||_{\infty} \leq 1$, using the result for the Hilbert–Schmidt case, we have

$$\begin{split} |[M_f, T]|_2 &\leq \limsup_{n \to \infty} |[M_f, P_n T P_n]|_2 \\ &\leq \limsup_{n \to \infty} |[Z, P_n T P_n]|_2 \\ &\leq \limsup_{n \to \infty} (2|[Z, P_n]|_2 ||T|| + |[Z, T]|_2) \\ &= |[Z, T]|_2. \end{split}$$

To prove the assertion about $L_1(T)$ for unbounded Ω and general T, we proceed along similar lines, after showing that there exist finite rank projections $P_n \uparrow 1$ so that

$$\lim_{n\to\infty}\left(\sup_{w\in\mathbb{C}\setminus\{0\}}|[w^{-1}U(w),P_n]|_2\right)=0.$$

Let $\Omega_m = \{z \in \Omega \mid m-1 \leq |z| < m\}$ so that Ω is the disjoint union of the Ω_m , $m \in \mathbb{N}$. On $L^2(\Omega_m, \lambda)$ we can find, by our result from [25], finite rank projections P_{km} so that $P_{km} \uparrow I$ as $k \to \infty$ and $|[P_{km}, Z]|_2 \leq (k^2m)^{-1}$. Observe that by the result about $|[Z, T]|_2$ we proved, this gives $L(P_{km}) \leq (k^2m)^{-1}$. We then define the projection P_m acting on $L^2(\Omega, \lambda) = L^2(\Omega_1, \lambda) \oplus L^2(\Omega_2, \lambda) \oplus \ldots$ to be $P_{m1} \oplus P_{m2} \oplus \cdots \oplus P_{mm} \oplus 0 \oplus 0 \oplus \ldots$ so that $P_m \uparrow I$ and $L(P_m) \leq L(P_{m1}) + \cdots + L(P_{mm}) \leq Cm^{-1}$. Since $||Dw^{-1}e(w)||_{\infty} \leq 1$ we have $|[w^{-1}U(w), P_m]|_2 \leq Cm^{-1}$ which clearly converges to zero as $m \to \infty$ uniformly for $w \in \mathbb{C} \setminus \{0\}$. We then have for $f \in \Lambda(\Omega)$ with $||Df||_{\infty} \leq 1$ and $T \in \mathcal{B}(L^2(\Omega, \lambda))$

$$\begin{split} |[M_f, T]|_2 &\leq \limsup_{n \to \infty} |[M_f, P_n T P_n]|_2 \\ &\leq \limsup_{n \to \infty} 2L_1 (P_n T P_n) \\ &\leq \limsup_{n \to \infty} (4L_1 (P_n) ||T|| + 2L_1 (T)) \\ &= 2L_1 (T). \end{split}$$

3.4. If $\Omega = \mathbb{C}$ the proposition provides a characterization of the algebra $E\Lambda(\Omega)$ which translates well after Fourier transform. Let $\mathcal{F} : L^2(\mathbb{C}, \lambda) \to L^2(\mathbb{C}, \lambda)$ be the unitary Fourier transform

$$(\mathcal{F}f)(w) = c \int_{\mathbb{C}} f(z)(e(-w))(z)d\lambda(z).$$

Then $\mathcal{F}U(w_0) = V(w_0)\mathcal{F}$ where $(V(w_0)g)(w) = g(w - w_0)$ and we have the following corollary.

Corollary 3.5. If

$$S, T \in \mathcal{B}(L^2(\mathbb{C}, \lambda))$$

and

$$M(S) = \sup\{|w_0|^{-1}|S - V(w_0)SV(w_0)^*|_2 \mid w_0 \in \mathbb{C} \setminus \{0\}\}$$

then we have

$$M(\mathcal{F}T\mathcal{F}^{-1}) = L_1(T) \text{ and } \mathcal{F}E\Lambda(\mathbb{C})\mathcal{F}^{-1} = \{S \in \mathcal{B}(L^2(\mathbb{C},\lambda)) | M(S) < \infty\}.$$

3.6. If $\Omega_1 \subset \Omega_2$ let

$$i(\Omega_2, \Omega_1) : \mathcal{B}(L^2(\Omega_1, \lambda)) \to \mathcal{B}(L^2(\Omega_2, \lambda))$$

be the inclusion homomorphism defined by $i(\Omega_2, \Omega_1)(T) = T \oplus 0$ with respect to the decomposition $L^2(\Omega_2, \lambda) = L^2(\Omega_1, \lambda) \oplus L^2(\Omega_2 \setminus \Omega_1, \lambda)$. There is also a conditional expectation $\varepsilon(\Omega_1, \Omega_2) : \mathcal{B}(L^2(\Omega_2, \lambda)) \to \mathcal{B}(L^2(\Omega_1, \lambda))$, $\varepsilon(\Omega_1, \Omega_2)(S) = M_{\mathcal{X}_{\Omega_1}} SM_{\mathcal{X}_{\Omega_1}} | L^2(\Omega_1, \lambda)$ where \mathcal{X}_{Ω_1} is the indicator function of the subset Ω_1 of Ω_2 . It is easily checked that the Banach algebras $E\Lambda(\Omega)$ behave well with respect to the $i(\Omega_2, \Omega_1)$ and $\varepsilon(\Omega_2, \Omega_1)$.

Proposition 3.7. *If* $\Omega_1 \subset \Omega_2$ *then we have*

$$i(\Omega_2, \Omega_1)(E\Lambda(\Omega_1)) \subset E\Lambda(\Omega_2)$$

and the inclusion is isometric with respect to the $\||\cdot\||$ -norms and also with respect to the $\||\cdot\||_1$ -norms and $L(\cdot)$ and $L_1(\cdot)$ are preserved. We also have $\varepsilon(\Omega_1, \Omega_2)(E\Lambda(\Omega_2)) = E\Lambda(\Omega_1)$ and $\varepsilon(\Omega_1, \Omega_2)$ is contractive both in the $\||\cdot\||$ norms and in the $\||\cdot\||_1$ -norms and we have $\varepsilon(\Omega_1, \Omega_2)i(\Omega_2, \Omega_1)(T) = T$.

3.8. We define the Banach subalgebra $E\Lambda(\Omega)_0 \subset E\Lambda(\Omega)$ to be the closure in $E\Lambda(\Omega)$ of $\bigcup \{i(\Omega, \Omega_1) E\Lambda(\Omega_1) \mid \Omega_1 \subset \Omega, \Omega_1$ bounded Borel set}. Equivalently $E\Lambda(\Omega)_0$ is the closure in $E\Lambda(\Omega)$ of $\bigcup_{r>0} i(\Omega, \Omega \cap r\mathbb{D}) E\Lambda(\Omega \cap r\mathbb{D})$ where \mathbb{D} is the unit disk.

Proposition 3.9. $E \Lambda(\Omega)_0$ is an ideal in $E \Lambda(\Omega)$. If $\mathcal{X}_{\Omega \cap n\mathbb{D}}$ is the indicator function of $n\mathbb{D} \cap \Omega$ as a subset of Ω and $M_n = M_{\mathcal{X}_{\Omega \cap n\mathbb{D}'}}$ then $(M_n)_{n \ge 1}$ is an approximate unit of $E \Lambda(\Omega)_0$.

Proof. Since $|||M_n||| = ||M_n|| = 1$ and $M_n x = xM_n = x$ for any $x \in \bigcup \{i(\Omega, \Omega_1) E \Lambda(\Omega_1) \mid \Omega_1 \subset \Omega, \Omega_1$ bounded Borel as soon as n is large enough, we clearly have that $(M_n)_{n\geq 1}$ is an approximate unit of $E\Lambda(\Omega)_0$. To prove that $E\Lambda(\Omega)_0$ is a two-sided ideal in $E\Lambda(\Omega)$ it will suffice now to show that $TM_n \in E\Lambda(\Omega)_0$ and $M_nT \in E\Lambda(\Omega)_0$. Actually since we deal with involutive algebras it will suffice to show that $TM_n \in E\Lambda(\Omega)_0$ and this in turn reduces to checking that $|||(I - M_m)TM_n||| \to 0$ as $m \to +\infty$. It is easily seen that $L(T) < \infty$ implies $(I - M_{n+1})TM_n \in C_2$ and hence $||(I - M_m)TM_n|| \le |(I - M_m)(I - M_{n+1})TM_n|_2 \to 0$ as $m \to +\infty$. Also if $K(z_1, z_2)$ is the kernel of $(I - M_{n+1})TM_n$ then $L((I - M_{n+1})TM_n) < \infty$ means $(z_1 - z_2)K(z_1, z_2)$ is in $L^2(\Omega \times \Omega, \lambda \otimes \lambda)$. Then if m > n + 1, $L((I - M_m)TM_n)$ is the L^2 -norm of the kernel

$$(1 - \mathcal{X}_{\Omega \cap m\mathbb{D}}(z_1))(z_1 - z_2)K(z_1, z_2)$$

which converges to zero as $m \to +\infty$.

3.10. If Ω is bounded $C_2(L^2(\Omega,\lambda)) \subset E\Lambda(\Omega)$ and $|||X||| \leq (1+d)|X|_2$ where *d* is the diameter of Ω when $X \in C_2(L^2(\Omega,\lambda))$. If Ω is unbounded the $C_2\Lambda(\Omega) = C_2(L^2(\Omega,\lambda)) \cap E\Lambda(\Omega)$ is only a subset of $C_2(L^2(\Omega,\lambda))$. Similarly $R\Lambda(\Omega)$ will denote $\mathcal{R}(L^2(\Omega,\lambda)) \cap E\Lambda(\Omega)$ where $\mathcal{R}(\mathcal{H})$ stands for the finite rank operator on \mathcal{H} . Remark also that if $L^2\Lambda(\Omega)$ denotes functions $f \in L^2(\Omega,\lambda)$ so that $f(z)(1+|z|) \in L^2$ then the linear span of $\langle \cdot, f \rangle g$ is in $\mathcal{R}\Lambda(\Omega)$ when $f,g \in L^2\Lambda(\Omega)$. Note also that if $f \in L^{\infty}(\Omega,\lambda)$ then $||M_f||| = ||Mf||_1 = ||f||_{\infty} = ||M_f||$ since $L(M_f) = 0$ and $ML^{\infty}(\Omega) =$ $\{M_f \mid f \in L^{\infty}(\Omega,\lambda)\} \subset E\Lambda(\Omega)$.

The following lemma records a consequence of the diagonalizability mod C_2 of normal operators, which appeared in the last part of the proof of Proposition 3.3.

Lemma 3.11. In $E \Lambda(\Omega)$ there are finite rank projections P_n , so that $P_n \uparrow I$ and

$$\lim_{n\to\infty}L(P_n)=0.$$

Moreover we have $P_n \in i(\Omega, \Omega \cap n\mathbb{D}) E \Lambda(\Omega \cap n\mathbb{D})$ and $[P_n, M_{\chi_{\Omega \cap m\mathbb{D}}}] = 0$ for all $m \in \mathbb{N}$.

We will also find it useful to have the following technical lemma when Ω is unbounded.

Lemma 3.12. Let $M_n = M_{\chi_n} \in ML^{\infty}(\Omega, \lambda)$ where χ_n is the indicator function of $\Omega \cap n\mathbb{D}$ as a subset of Ω and let $T \in E \Lambda(\Omega)$. Then we have $L(T - M_nTM_n) \to 0$ as $n \to \infty$.

Proof. If $\Omega_n = \Omega \cap n\mathbb{D}$, then we have $M_nTM_n = i(\Omega, \Omega_n)\varepsilon(\Omega_n, \Omega)(T)$. With T_n denoting $\varepsilon(\Omega_n, \Omega)(T)$ and X_n denoting $i(\Omega, \Omega_n)([Z, T_n])$ we have the following martingale properties. If $m \ge n$ then $M_nX_mM_n = X_n$ and $|X_n|_2 = L(T_n) \le L(T)$. Hence, if X is a weak limit of some subsequence of the X_m 's as $m \to \infty$ we will have $|X|_2 < \infty$ and $X_n = M_nXM_n$. Thus if $m \ge n$

$$L(M_m T M_m - M_n T M_n) = L(\varepsilon(\Omega_m, \Omega)(M_m T M_m - M_n T M_n))$$

= $|[Z, \varepsilon(\Omega_m, \Omega)(M_m T M_m - M_n T M_n)]|_2$
= $|X_m - X_n|_2.$

Since $M_m T M_m$ converges weakly to T and X_m converges in 2-norm to X as $m \to \infty$, we infer

$$L(T - M_n T M_n) \le \sup_{m \ge n} L(M_m T M_m - M_n T M_n) = \sup_{m \ge n} |X_m - X_n|_2 = |X_m - X_n|_2.$$

The assertion of the lemma follows from

$$|X - X_n|_2 = |X - M_n X M_n|_2 \to 0$$

as $n \to \infty$.

3.13. We define $\mathcal{K}\Lambda(\Omega) = \{T \in E\Lambda(\Omega) \mid T \text{ compact}\}$. Clearly, $\mathcal{K}\Lambda(\Omega)$ is a closed ideal in $E\Lambda(\Omega)$.

Proposition 3.14. The ideal $\mathcal{K}\Lambda(\Omega)$ of $E\Lambda(\Omega)$ has an approximate unit $(P_n)_{n\geq 1}$ where P_n 's are self-adjoint projections with the properties outlined in Lemma 3.11. In particular $\bigcup_{n\geq 1} P_n \mathcal{B}(L^2(\Omega,\lambda))P_n$ is a dense subalgebra in $\mathcal{K}\Lambda(\Omega)$ in $\||\cdot\||$ -norm.

Proof. If $T \in \mathcal{K}\Lambda(\Omega)$ then with the notation in Lemma 3.12 we actually have $|||T - M_n T M_n||| \to 0$ as $n \to \infty$ in view of the lemma and of the compactness of T which gives $||T - M_n T M_n|| \to 0$. In view of the involution, the proof reduces to showing that $|||T - P_m T ||| \to 0$ as $m \to \infty$ where P_m are the projections in Lemma 3.11 and $T \in \mathcal{K}\Lambda(\Omega)$ satisfies $T = M_n T M_n$ for some fixed n.

Clearly T being compact we have $||T - P_m T|| \to 0$ as $m \to \infty$.

On the other hand if $m \ge n$, $T - P_m T = i(\Omega, \Omega \cap n\mathbb{D})(T' - P'_m T')$ where $T' = \varepsilon(\Omega \cap n\mathbb{D}, \Omega)(T)$ satisfies $i(\Omega, \Omega \cap n\mathbb{D})(T') = T$ and $P'_m = \varepsilon(\Omega \cap n\mathbb{D}, \Omega)(P_m) = \varepsilon(\Omega \cap n\mathbb{D}, \Omega)(P_m M_n)$ is a projection. We have

$$L(T - P_m T) = L(T' - P'_m T')$$

= $|[Z, (I - P'_m)T']|_2$
 $\leq L(I - P'_m)||T|| + |(I - P'_m)[Z, T']|_2 \to 0$

since $L(P'_m) \leq L(P_m) \rightarrow 0$ and $[Z, T'] \in \mathcal{C}_2, P'_m \uparrow I$.

The remaining assertion follows from the fact that P_n is an approximate unit once we remark that $P_n \mathcal{B}(L^2(\Omega, \lambda))P_n = P_n E \Lambda(\Omega)P_n = P_n \mathcal{K} \Lambda(\Omega)P_n$ because $P_n = M_n P_n M_n$.

Proposition 3.15. The unit ball of $E \Lambda(\Omega)$ in $\||\cdot\||$ -norm or $\||\cdot\||_1$ -norm is closed in the weak operator topology and hence is weakly compact. Moreover, $E \Lambda(\Omega)$ is inverse-closed as a subalgebra of $\mathcal{B}(L^2(\Omega))$ and also closed under C^{∞} -functional calculus for normal elements. In particular if $T \in E \Lambda(\Omega)$ has bounded inverse and T = V|T| is its polar decomposition, then V, |T| are in $E \Lambda(\Omega)$.

The proof is an exercise along standard lines and will be omitted.

3.16. We shall denote by $(E/\mathcal{K})\Lambda(\Omega)$ the quotient-Banach algebra $E\Lambda(\Omega)/\mathcal{K}\Lambda(\Omega)$ and by $p : E\Lambda(\Omega) \to (E/\mathcal{K})\Lambda(\Omega)$ the canonical surjection.

Remark also that we have $\mathcal{K}\Lambda(\Omega) \subset E\Lambda(\Omega)_0$ since the dense subalgebra of $\mathcal{K}\Lambda(\Omega)$ appearing in Proposition 3.14 is in $E\Lambda(\Omega)_0$. The quotient $E\Lambda(\Omega)_0/\mathcal{K}\Lambda(\Omega)$ will also be denoted $(E_0/\mathcal{K})\Lambda(\Omega)$.

Proposition 3.17. Given $n \in \mathbb{N}$ there are $U_k \in E\Lambda(\Omega)$, $1 \leq k \leq n$, such that $U : L^2(\Omega, \lambda) \to L^2(\Omega, \lambda) \otimes \mathbb{C}^n$ defined by $Uh = \sum_k U_k h \otimes e_k$ is a unitary operator. In particular we have $UE\Lambda(\Omega)U^* = E\Lambda(\Omega) \otimes M_n$ and $T \to UTU^*$

is a spatial isomorphism of $E\Lambda(\Omega)$ and $E\Lambda(\Omega) \otimes \mathcal{M}_n$. Additionally we also have that

$$UE\Lambda(\mathbb{C})_0U^* = E\Lambda(\mathbb{C})_0 \otimes \mathcal{M}_n.$$

Proof. The existence of U is a consequence of our results on normal operator mod C_2 ([25], 2.8). There will be some additional technicalities due to the fact that Ω may be unbounded. From ([25], 2.8) we get the existence of unitary operators $V_m : L^2(\Omega_m, \lambda) \to L^2(\Omega_m, \lambda) \otimes \mathbb{C}^n$, so that $|V_m Z - (Z \otimes I_n)V_m|_2 < 2^{-m-1}$, where $\Omega_m = \Omega \cap ((m+1)\mathbb{D}\backslash m\mathbb{D})$. If $V_m h = \sum_k V_{mk}h \otimes e_k$, we have $|[V_{mk}, Z]|_2 < 2^{-m-1}$ and hence $L(U_k) < 1$ where $U_k = \bigoplus_{m\geq 0} V_{mk}$, so that if $Uh = \sum_k U_k h \otimes e_k$ we will have that U is unitary and $U_k \in E\Lambda(\Omega), 1 \leq k \leq n$. It follows that $UE\Lambda(\Omega)U^* \subset E\Lambda(\Omega) \otimes \mathcal{M}_n$ and $U^*(E\Lambda(\Omega) \otimes \mathcal{M}_n)U \subset E\Lambda(\Omega)$, which implies that $UE\Lambda(\Omega)U^* = E\Lambda(\Omega) \otimes \mathcal{M}_n$.

For the last assertion to be proved, note that the operator U which we constructed, satisfies

$$U(i(\Omega, \Omega \cap n\mathbb{D}))E\Lambda(\Omega \cap n\mathbb{D}))U^* = (i(\Omega, \Omega \cap n\mathbb{D})E\Lambda(\Omega \cap n\mathbb{D})) \otimes \mathcal{M}_n.$$

The assertion then follows from the density of $\bigcup_{n\geq 1} i(\Omega, \Omega \cap n\mathbb{D}) E \Lambda(\Omega \cap n\mathbb{D})$ in $E \Lambda(\Omega)_0$.

3.18. Along similar lines with 3.17 one can show that $E\Lambda(\Omega)$ is a huge algebra. For instance, since Z and $Z \otimes I_{\mathcal{H}}$ are unitarily equivalent mod C_2 and since $I \otimes \mathcal{B}(\mathcal{H})$ is in the commutant of $Z \otimes I_{\mathcal{H}}$, (\mathcal{H} a separable Hilbert space), one infers that $E\Lambda(\Omega)$ contains a subalgebra spatially isomorphic to $I \otimes \mathcal{B}(\mathcal{H})$.

In the remainder of this section we exhibit a few special operators which are in $E\Lambda(\Omega)$.

Proposition 3.19. Let Ω be a bounded open set and let $A^2(\Omega)$ be the Bergman space of square-integrable analytic functions. Assume moreover that the rational functions with poles in $\mathbb{C}\setminus\overline{\Omega}$ are dense in $A^2(\Omega)$. Then we have $P_{\Omega} \in E\Lambda(\Omega)$, where P_{Ω} is the orthogonal projection of $L^2(\Omega, \lambda)$ onto the subspace $A^2(\Omega)$.

Proof. This is a consequence of the Berger–Shaw inequality (see for instance [21, p. 128, Theorem 1.3]). Indeed $T = Z \mid A^2(\Omega)$ is a subnormal operator and the constant function 1 is a rationally cyclic vector for T. The Berger–Shaw inequality then gives $Tr[T^*, T] < \infty$. With the simplified notation $P = P_{\Omega}$, we have

$$\operatorname{Tr}[PZ^*P, PZP] < \infty.$$

Since (I - P)ZP = 0 and $[Z^*, Z] = 0$ this gives

$$[PZ^*P, PZP] = PZ(I-P)Z^*P$$

and hence

$$[P, Z] = PZ(I - P) \in \mathcal{C}_2.$$

3.20. The Hilbert-transform singular integral operator on $\mathbb{C}([20], [23])$

$$Hf(\zeta) = \lim_{\epsilon \downarrow 0} \int_{|z-\zeta| > \epsilon} \frac{f(z)}{(\zeta - z)^2} d\lambda(z)$$

is a bounded operator on $L^2(\mathcal{C}, \lambda)$ and hence also its compression H_Ω to $L^2(\Omega, d\lambda)$, where Ω is bounded, is a bounded operator. Then also $T_\Omega = [Z, H_\Omega]$ is a bounded operator and

$$T_{\Omega}f(z) = \lim_{\varepsilon \downarrow 0} \int_{|z-\zeta| > \varepsilon} \frac{f(z)}{\zeta - z} d\lambda(z).$$

We have $[Z, T_{\Omega}] = \langle \cdot, 1 \rangle 1$ where 1 denotes the constant function equal to 1. Since $[Z, T_{\Omega}]$ is rank one, we have $T_{\Omega} \in E \Lambda(\Omega)$. Since z^{-1} is not in $L^2(\mathbb{D}, \lambda)$, T_{Ω} is not in \mathcal{C}_2 . It can be shown that $T_{\Omega} \in \mathcal{C}_2^+$ (the ideal of compact operators with singular numbers $s_n = O(n^{-1/2})$). Also clearly the linear span of operators of the form $M_f T_{\Omega} M_g$ gives operators K in $E \Lambda(\Omega)$ which are in \mathcal{C}_2^+ and the commutators of which [Z, K] are dense in $\mathcal{C}_2(L^2(\Omega, \lambda))$.

4. About the *K*-theory of $E\Lambda(\Omega)$

4.1. Passing via almost normal operators, the Pincus *g*-function gives a homomorphism of the K_0 -group of $E\Lambda(\Omega)$ to L^1 -functions. We shall prove that the Conjecture 3 about almost normal operators (see 2.5) implies that this homomorphism completely determines the group $K_0(E\Lambda(\mathbb{C})_0)$. Conversely, assuming Conjecture 4, we will show that such a result about the *K*-theory of $E\Lambda(\mathbb{C})_0$ implies Conjecture 3.

We begin with some technical facts.

Lemma 4.2. If $F = F^2 \in E\Lambda(\Omega)$ and $P = P^* = P^2 \in \mathcal{B}(L^2(\Omega, \lambda))$ is the orthogonal projection onto $F(L^2(\Omega, \lambda))$ then $P \in E\Lambda(\Omega)$ and P and F have the same class in K_0 .

Proof. The orthogonal projection P is equal to $\psi(FF^*)$ for some C^{∞} -function ψ . Hence $P \in E \Lambda(\Omega)$ is a consequence of Proposition 3.15 and tP + (1-t)F, $t \in [0, 1]$ is a continuous path of projections, so $[P]_0 = [F]_0$.

Lemma 4.3. Let $P \in E \Lambda(\Omega)$ be a self-adjoint projection, which is not finite rank and assume Ω is bounded. Then we have

$$PZP \in \mathcal{AN}(L^2(\Omega, \lambda)).$$

Proof. We have

$$[PZ^*P, PZP] = PZ(I-P)Z^*P - PZ^*(I-P)ZP \in \mathcal{C}_1$$

since $(I-P)ZP = (I-P)[Z, P] \in \mathcal{C}_2$ and $PZ(I-P) = [P, Z](I-P) \in \mathcal{C}_2$. \Box

Proposition 4.4. Assume Ω is bounded. For every $\alpha \in K_0(E\Lambda(\Omega))$ there is a selfadjoint projection $P \in E\Lambda(\Omega)$, not of finite rank, so that $[P]_0 = \alpha$. The Pincus g-function g_{PZP} depends only on α (i.e., not on the choice of P). Moreover, the map $K_0 \rightarrow L^1(\mathbb{C}, \lambda)$ which associates to a class α the L^1 -function g_{PZP} is a homomorphism.

Proof. The existence of unitary "Cuntz *n*-tuples" U_1, \ldots, U_n in $E\Lambda(\Omega)$, which was shown in Proposition 3.17, implies that $[I]_0 = 0$ and that for a projection $Q \in \mathcal{M}_n(E\Lambda(\Omega))$ there is a projection $P \in E\Lambda(\Omega)$ with $[P]_0 = [Q]_0$ so that $-[Q]_0 = [I-P]_0$. Hence $K_0(E\Lambda(\Omega))$ consists of classes of idempotents in $E\Lambda(\Omega)$ and these can be chosen to be self-adjoint by Lemma 4.2.

Again using Proposition 3.15 and Proposition 3.17 the fact that the map $\alpha \rightarrow g_{PZP}$ is a well-defined homomorphism is a consequence of the following two facts: a) if $P \in E\Lambda(\Omega)$ is a self-adjoint projection and $W \in E\Lambda(\Omega)$ is unitary, then $g_{(WPW^*)Z(WPW^*)} = g_{PZP}$ and b) if $P_1, P_2 \in E\Lambda(\Omega)$ are self-adjoint projections and $P_1P_2 = 0$, then $g_{P_1ZP_1} + g_{P_2ZP_2} = g_{(P_1+P_2)Z(P_1+P_2)}$.

To show that a) holds, remark that $g_{WPW*ZWPW*} = g_{PW*ZWP}$ by unitary equivalence and $PW^*ZWP - PZP \in C_2$. Moreover, in view of the argument in 2.7 we have $k_2(PZP) = 0$, $k_2(PW^*ZWP) = 0$ and we can then use 2.4 to get that $g_{PZP} = g_{PW*ZWP}$.

Assertion b) is proved by the same kind of combination of facts. By the argument of 2.7, we have

$$k_2(P_1ZP_1) = k_2(P_2ZP_2) = k_2((P_1 + P_2)Z(P_1 + P_2)) = 0.$$

We then remark that

$$P_1ZP_1 + P_2ZP_2 - (P_1 + P_2)Z(P_1 + P_2) \in C_2$$

and we can then use 2.4 to get

$$g_{(P_1+P_2)Z(P_1+P_2)} = g_{P_1ZP_1+P_2ZP_2} = g_{P_1ZP_1} + g_{P_2ZP_2},$$

where we used the fact that

$$k_2(P_1ZP_1 + P_2ZP_2) = k_2(P_1ZP_1 \oplus P_2ZP_2) = 0.$$

4.5. The homomorphism $K_0(E\Lambda(\Omega)) \to L^1_{rc}(\mathbb{C}, \lambda)$, constructed in Proposition 4.4, will be denoted by $\Gamma(\Omega)$ or simply Γ , when the bounded set Ω is not in doubt $(L^1_{rc}(\mathbb{C}, \lambda))$ being the L^1 -space of real-valued functions with compact support).

We shall also denote by $\mathcal{AND}(\mathcal{H})$ the almost normal operators for which Conjecture 4 (see 2.5) holds. We shall call such almost-normal operators dilatable. It is easily seen that this is equivalent to the fact that the almost-normal operator is a Hilbert–Schmidt perturbation of an almost-normal operator which is a compression PNP of a normal operator N by a projection P so that $[P, N] \in C_2$.

In 2.7 we showed that if $T \in AND(H)$ then $k_2(T) = 0$. Next we will give a few simple facts about *K*-theory for some of the algebras related to $E\Lambda(\Omega)$ and get some variants of the homomorphism Γ .

4.6. If $\Omega_1 \subset \Omega_2$ are bounded Borel sets, then it is immediate from the construction of Γ that

$$\Gamma(\Omega_2) \circ (i(\Omega_2, \Omega_1))_* = \Gamma(\Omega_1).$$

In view of 3.8, $E\Lambda(\mathbb{C})_0$ is the inductive limit of the $E\Lambda(\Omega)$ with Ω bounded (the inclusion will be denoted $i_0(\mathbb{C}, \Omega)$). Then $K_0(E\Lambda(\mathbb{C})_0)$ is the inductive limit of the $K_0(E\Lambda(\Omega))$, with bounded Ω , and there is a homomorphism

$$\Gamma_{\infty}: K_0(E\Lambda(\mathbb{C})_0) \to L^1_{rc}(\mathbb{C},\lambda)$$

so that

$$\Gamma_{\infty} \circ (i_0(\mathbb{C}, \Omega))_* = \Gamma(\Omega).$$

Lemma 4.7. We have $K_0(\mathcal{K}\Lambda(\Omega)) \cong \mathbb{Z}$, $K_1(\mathcal{K}\Lambda(\Omega)) = 0$, for any Ω (not of measure 0), the isomorphism for K_0 being given by the trace on $B(L^2(\Omega, \lambda))$. Moreover we have isomorphisms

$$K_0(E\Lambda(\Omega)) \xrightarrow{p_*} K_0((E/\mathcal{K})\Lambda(\Omega))$$
$$K_0(E\Lambda(\mathbb{C})_0) \xrightarrow{p_*} K_0((E_0/\mathcal{K})\Lambda(\mathbb{C})).$$

Proof. The assertions about the *K*-theory of $\mathcal{K}\Lambda(\Omega)$ are a consequence of the last assertion in Proposition 3.14.

To get the isomorphisms between K_0 -groups of $E\Lambda(\Omega)$ and $(E/\mathcal{K})\Lambda(\Omega)$ and respectively $E\Lambda(\mathbb{C})_0$ and $(E_0/\mathcal{K})\Lambda(\mathbb{C})$ we use the 6-term *K*-theory exact sequences associated with

$$0 \to \mathcal{K}\Lambda(\Omega) \to E\Lambda(\Omega) \to (E/\mathcal{K})\Lambda(\Omega) \to 0$$

and

$$0 \to \mathcal{K}\Lambda(\mathbb{C}) \to E\Lambda(\mathbb{C})_0 \to (E_0/\mathcal{K})\Lambda(\mathbb{C}) \to 0.$$

Since $K_1(\mathcal{K}\Lambda(\Omega)) = 0$ we have that the homomorphisms p_* are surjective. The injectivity of the p_* means to show the connecting homomorphisms $K^1 \to K^0$

are surjective. This is easily seen to be the case if we can prove $E\Lambda(\Omega)$ and $E\Lambda(\mathbb{C})_0 + \mathbb{C}I$ contain a Fredholm operator of index 1. If Ω is bounded, there is a Fredholm operator of index 1, $T \in \mathcal{B}(L^2(\Omega, \lambda))$ so that $[T, Z] \in \mathcal{C}_2$. This in turn follows from the easily seen fact that Z is unitarily equivalent to $Z \oplus \mu I_{\mathcal{H}} + K$, where \mathcal{H} is some infinite-dimensional Hilbert space, $\mu \in \sigma(Z)$ and $K \in \mathcal{C}_2$. For $E\Lambda(\mathbb{C})_0 + \mathbb{C}I$ we can use the Fredholm operator $T \in E\Lambda(\Omega)$ and consider $T \oplus I_{L^2(\mathbb{C}\setminus\Omega,\lambda)} \in E\Lambda(\mathbb{C})_0 + \mathbb{C}I$.

4.8. In view of Lemma 4.7 we infer for bounded Ω the existence of homomorphisms

$$\tilde{\Gamma}(\Omega): K_0((E/\mathcal{K})\Lambda(\Omega)) \to L^1_{rc}(\Omega,\lambda)$$

and

$$\overline{\Gamma}_{\infty}: K_0((E_0/\mathcal{K})\Lambda(\mathbb{C})) \to L^1_{rc}(\mathbb{C},\lambda)$$

so that

$$\Gamma(\Omega) \circ p_* = \Gamma(\Omega) \text{ and}$$

 $\tilde{\Gamma}_{\infty} \circ p_* = \Gamma_{\infty}.$

Fact 4.9. The following assertions are equivalent.

- (i) Conjecture 3 is true.
- (ii) Conjecture 4 is true and Γ_{∞} is an isomorphism.
- (iii) Conjecture 4 is true and Γ_{∞} is injective.

Proof. Since (ii) \Rightarrow (iii) it will be sufficient to show that (i) \Rightarrow (ii) and (iii) \Rightarrow (i).

(i) \Rightarrow (ii). Remark first that Conjecture 3 implies Conjecture 4. Indeed, if $T \in \mathcal{AN}(\mathcal{H})$ we can find $S_1 \in \mathcal{AN}(\mathcal{H})$ so that $g_{S_1} = -g_T$ (see [21] for instance). Then Conjecture 3 implies that there is a normal operator N_1 so that $T \oplus S_1 \oplus N_1 - N \in \mathcal{C}_2$ where N is a normal operator. Thus we can take $S = S_1 \oplus N_1$ and then $S \in \mathcal{AN}$ and $T \oplus S$ is equal $N \mod \mathcal{C}_2$, which is the assertion of Conjecture 4 for T.

To show Γ_{∞} is surjective consider $g \in L^{1}_{rc}(\mathbb{C}, \lambda)$. By the work of Carey–Pincus there is $T \in \mathcal{AN}(\mathcal{H}_{1})$ so that $g_{T} = g$. By Conjecture 4 and the fact that it implies Conjecture 1 we see that T can be chosen to be $QN \mid Q\mathcal{H}$ where N is a normal operator and Q an orthogonal projection, so that $[Q, N] \in \mathcal{C}_{2}$. We may also assume $\sigma(N) = n\overline{\mathbb{D}}$ for some $n \in \mathbb{N}$. Then by our results on normal operators mod \mathcal{C}_{2} , there is a unitary operator $U : \mathcal{H} \to L^{2}(n\mathbb{D}, \lambda)$ so that $ZU - UN \in \mathcal{C}_{2}$. Then taking $P = UQU^{*}$, we have $PZP - UQNQU^{*} \in \mathcal{C}_{2}$ and hence $g_{PZP} = g_{QNQ} = g$ so that $\Gamma(n\mathbb{D})[P]_{0} = g$. Clearly then $\Gamma_{\infty}([i_{0}(\mathbb{C}, n\mathbb{D})(P)]_{0}) = g$.

To prove that assuming Conjecture 3 holds, Γ_{∞} is injective, let $\alpha \in K_0(E \wedge (\mathbb{C})_0)$ be so that $\Gamma_{\infty}(\alpha) = 0$. Using 4.6 and Proposition 4.4 there is a self-adjoint projection $P \in E \wedge (n\mathbb{D})$ for some $n \in \mathbb{N}$, so that $(i_0(\mathbb{C}, n\mathbb{D}))_*[P]_0 = \alpha$ and $\Gamma(n\mathbb{D})([P]_0) =$ $\Gamma_{\infty}(\alpha) = 0$. Hence $g_{PZP} = 0$. Then Conjecture 3 gives that there is $m \ge n$ and there are normal operators N and N_1 with $\sigma(N) = \sigma(N_1) = m\overline{\mathbb{D}}$ so that

$$N - PZ \mid PL^2(n\mathbb{D}, \lambda) \oplus N_1 \in \mathcal{C}_2$$

Since we will use the operators Z in $E\Lambda(n\mathbb{D})$ and $E\Lambda(m\mathbb{D})$ simultaneously, we shall denote them here by Z_n and Z_m . Clearly, we may use a unitary equivalence and a C_2 -perturbation to choose N_1 . Similarly N can be chosen unitarily equivalent to Z_m . Thus, we get a unitary operator

$$U: PL^{2}(n\mathbb{D}, \lambda) \oplus L^{2}(m\mathbb{D}, \lambda) \to L^{2}(m\mathbb{D}, \lambda)$$

so that $Z_m U - U(PZ_n | PL^2(n\mathbb{D}, \lambda) \oplus Z_m) \in C_2$. This means that U gives rise to a partial isometry $W \in \mathcal{B}(L^2(m\mathbb{D}, \lambda) \oplus L^2(m\mathbb{D}, \lambda))$ so that $W^*W = i(m\mathbb{D}, n\mathbb{D})(P) \oplus I$ and $WW^* = 0 \oplus I$ with the property that $[W, Z_m \oplus Z_m] \in C_2$. Then we have $W \in \mathcal{M}_2(E\Lambda(m\mathbb{D}))$. This gives $i(m\mathbb{D}, n\mathbb{D})_*[P]_0 + [I]_0 = [I]_0$ in $K_0(E\Lambda(m\mathbb{D}, \lambda))$, so that $[i(m\mathbb{D}, n\mathbb{D})(P)]_0 = 0$. But then we must have $\alpha = [i_0(\mathbb{C}, n\mathbb{D})(P)]_0 = i_0(\mathbb{C}, m\mathbb{D})_*[i(m\mathbb{D}, n\mathbb{D})(P)]_0 = 0$.

(iii) \Rightarrow (i). Assume (iii) holds and let $T_1, T_2 \in \mathcal{AN}(\mathcal{H})$ with $g_{T_1} = g_{T_2}$. Since Conjecture 4 is part of the assumption (iii) we have $T_1, T_2 \in AND(H)$. This implies there are self-adjoint projection $P_1, P_2 \in E\Lambda(n\mathbb{D})$ for some $n \in \mathbb{N}$, so that T_i is unitarily equivalent to a \mathcal{C}_2 -perturbation of $P_i Z \mid P_i L^2(n\mathbb{D}, \lambda)$, j = 1, 2. Moreover, we have $\Gamma(n\mathbb{D})[P_1]_0 = \Gamma(n\mathbb{D})[P_2]_0$ because $g_{T_1} = g_{T_2}$. It follows that $\Gamma_{\infty}([i_0(\mathbb{C}, n\mathbb{D})(P_1)]_0) = \Gamma_{\infty}([i_0(\mathbb{C}, n\mathbb{D})(P_2)]_0)$ so that by (iii) we have $i_0(\mathbb{C}, n\mathbb{D})_*[P_1]_0 = i_0(\mathbb{C}, n\mathbb{D})[P_2]_0$. Since $E\Lambda(\mathbb{C})_0$ is the inductive limit of the $E\Lambda(m\mathbb{D})$ we infer that $[i(m\mathbb{D}, n\mathbb{D})(P_1)]_0 = [i(m\mathbb{D}, n\mathbb{D})(P_2)]_0$ for some $m \geq n$. Hence there is a unitary equivalence in $\mathcal{M}_{p+q+1}(E\Lambda(m\mathbb{D}))$ between the $Q_j = i(m\mathbb{D}, n\mathbb{D})P_j \oplus I \oplus \cdots \oplus I \oplus 0 \oplus \cdots \oplus 0, j = 1, 2$ (there are p summands I and q summands 0). Indeed the equality of K_0 -classes implies there is an invertible element intertwining Q_1, Q_2 and using Proposition 3.17 and Proposition 3.15 we can pass to the unitary in the polar decomposition of this invertible element of $\mathcal{M}_{p+q+1}(E\Lambda(n\mathbb{D}))$. This unitary will then commute with $Z \oplus \cdots \oplus Z$ modulo \mathcal{C}_2 and hence will intertwine mod C_2 the compressions $Q_i(Z \oplus \cdots \oplus Z)Q_i$, j = 1, 2. These compressions are unitarily equivalent to

$$P_j Z \mid P_j L^2(n\mathbb{D},\lambda) \oplus N_j$$

for some normal operators N_j , j = 1, 2. Thus $T_j \oplus N_j$, being unitarily equivalent mod C_2 to these compressions, will also be unitarily equivalent mod C_2 , which proves (i) under the assumption (iii).

4.10. In view of Lemma 4.7 and of 4.8 we have that Fact 4.9 also holds with Γ_{∞} replaced by $\tilde{\Gamma}_{\infty}$.

5. Multipliers, Corona and Bidual of $\mathcal{K}\Lambda(\Omega)$

5.1. We shall consider bounded multipliers $\mathcal{M}(\mathcal{K}\Lambda(\Omega))$, that is double centralizer pairs (T', T'') of bounded linear maps $\mathcal{K}\Lambda(\Omega) \to \mathcal{K}\Lambda(\Omega)$ so that T'(x)y = xT''(y). **Proposition 5.2.** We have $\mathcal{M}(\mathcal{K}\Lambda(\Omega)) = E\Lambda(\Omega)$, that is, if $(T', T'') \in \mathcal{M}(\mathcal{K}\Lambda(\Omega))$, then there is $T \in E\Lambda(\Omega)$ so that T'(x) = xT and T''(x) = Tx.

Proof. Let $(P_n)_{n \ge 1}$ be the approximate unit provided by Proposition 3.14 and define $K_n = T'(P_n)P_n = P_nT''(P_n)$. Clearly, the norms $||K_n||$ will be bounded by some constant *C* and if m > n we have

$$P_n K_m P_n = P_n T'(P_m) P_m P_n$$

= $P_n T'(P_m) P_n = P_n P_m T''(P_n)$
= $P_n T''(P_n) = K_n.$

Hence the weak limit T of the K_n 's exists, and we shall have $P_nTP_n = K_n$. Also $L(T) \leq \sup_n (L(K_n) + 2||T||L(P_n)) < \infty$, so that $T \in E\Lambda(\Omega)$. Moreover, we have $T'(P_n) = w \lim_{n \to \infty} T'(P_n)P_n$

$$T'(P_n) = w - \lim_{m \to \infty} T'(P_n) P_m$$

= $w - \lim_{m \to \infty} P_n T''(P_m)$
= $w - \lim_{m \to \infty} P_n P_m T''(P_m) = P_n T$

and similarly $T''(P_n) = TP_n$. This gives $P_nT''(x) = T'(P_n)x = P_nTx$ if $x \in \mathcal{K}\Lambda(\Omega)$ and hence

$$T''(x) = \lim_{n \to \infty} P_n T''(x) = \lim_{n \to \infty} P_n T x = T x.$$

Similarly $T'(x)P_n = xTP_m$ and $T(x) = \lim_{n \to \infty} T'(x)P_n = xT$.

Proposition 5.3. The involutive Banach algebra $(E/\mathcal{K})\Lambda(\Omega)$ is a C^* -algebra. Actually if $x \in E\Lambda(\Omega)$ the norm of p(x) in $(E/\mathcal{K})\Lambda(\Omega)$ is equal to the norm of $x + \mathcal{K}$ in the Calkin algebra \mathcal{B}/\mathcal{K} . In particular $(E/\mathcal{K})\Lambda(\Omega)$ is isometrically isomorphic to a C^* -subalgebra of \mathcal{B}/\mathcal{K} .

Proof. It is easily seen that all assertions follow from the equality of the norm of p(x) with the norm of $x + \mathcal{K}$ in the Calkin algebra. This in turn will follow from the fact that with $(P_n)_{n\geq 1}$ denoting the approximate unit of $\mathcal{K}\Lambda(\Omega)$ in Proposition 3.14

$$\lim_{n\to\infty} \|(I-P_n)x(I-P_n)\|$$

equals the Calkin norm of $x + \mathcal{K}$, if we will also show that

$$\lim_{n \to \infty} L((I - P_n)x(I - P_n)) = 0.$$

In case Ω is bounded we indeed have

$$L((I-P_n)x(I-P_n)) \le \lim_{n \to \infty} (2\|x\| ||[I-P_n, z]|_2 + |(I-P_n)[Z, x](I-P_n)|_2 = 0.$$

In case Ω is unbounded we use Lemma 3.12 and write $x = x_0 + x_1$ where $x_0 = M_m x M_m$ with *m* chosen so that $L(x_1) < \varepsilon$. We have

$$\limsup_{n \to \infty} L((I - P_n)x_1(I - P_n)) \le L(x_1) < \varepsilon$$

and since $\varepsilon > 0$ can be chosen arbitrarily small it will suffice to show that

$$\limsup_{n \to \infty} L((I - P_n)x_0(I - P_n)) = 0.$$

This in turn can be seen as follows. Let Z_k be the multiplication operator by $z(1 \wedge k|z|^{-1})$. Then for any $y \in E\Lambda(\Omega)$ we have

$$L(y) = \limsup_{k \to \infty} |[Z_k, y]|_2.$$

Moreover if $k \ge m$, $[Z_k, x_0] = [Z_m, x_0]$. Hence

$$L((I - P_n)x_0(I - P_n)) \le 2||x_0||L(I - P_n) + |(I - P_n)[Z_m, x_0](I - P_n)|_2 \to 0$$

as $n \to \infty$.

Remark 5.4. The C*-algebra

$$\{p(M_f) \in (E/\mathcal{K})\Lambda(\Omega) \mid f \in C\Lambda(\Omega)\},\$$

where $C\Lambda(\Omega)$ denotes the norm closure of $\Lambda(\Omega)$ in $L^{\infty}(\Omega, \lambda)$, is in the center of $(E/\mathcal{K})\Lambda(\Omega)$.

Indeed, if $f \in \Lambda(\Omega)$ then $[M_f, x] \in C_2\Lambda \subset \mathcal{K}\Lambda(\Omega)$ if $x \in E\Lambda(\Omega)$ so that $p(M_f)$ is in the center of $(E/\mathcal{K})\Lambda(\Omega)$. Since $|||M_f|| = ||M_f|| = ||f||_{\infty}$ if $f \in L^{\infty}(\Omega)$ and the center is clearly norm-closed in $(E/\mathcal{K})\Lambda(\Omega)$, the assertion follows.

5.5. We pass to describing the dual of $\mathcal{K}\Lambda(\Omega)$ for bounded Ω . Throughout \mathcal{C}_1 and \mathcal{C}_2 will stand for $\mathcal{C}_1(L^2(\Omega, \lambda))$ and respectively $\mathcal{C}_2(L^2(\Omega, \lambda))$.

Proposition 5.6. Assuming Ω is bounded, the dual of $\mathcal{K}\Lambda(\Omega)$ can be identified isometrically with $(\mathcal{C}_1 \times \mathcal{C}_2)/\mathcal{N}$ where

$$\mathcal{N} = \{ ([Z, H], H) \in \mathcal{C}_1 \times \mathcal{C}_2 \mid H \in \mathcal{C}_2 \text{ with } [Z, H] \in \mathcal{C}_1 \}$$

and the duality map $\mathcal{K}\Lambda(\Omega) \times (\mathcal{C}_1 \times \mathcal{C}_2) \to \mathbb{C}$ is $(T, (x, y)) = \operatorname{Tr}(Tx + [Z, T]y)$.

Proof. Since $T \to T \oplus [Z, T]$ identifies $\mathcal{K}\Lambda(\Omega)$ isometrically with a closed subspace of $\mathcal{K} \oplus \mathcal{C}_2$ endowed with the norm $||K \oplus H|| = ||K|| + |H|_2$, the dual of which is $\mathcal{C}_1 \times \mathcal{C}_2$, the proof will boil down to showing that \mathcal{N} is the annihilator of

$$\{T \oplus [Z, T] \in \mathcal{K} \oplus \mathcal{C}_2 \mid T \in \mathcal{K} \Lambda(\Omega)\}.$$

Since the set \mathcal{R} of finite rank operators is dense in $\mathcal{K}\Lambda(\Omega)$, it will be sufficient to show that \mathcal{N} is the annihilator of

$$\{R \oplus [Z, R] \in \mathcal{K} \oplus \mathcal{C}_2 \mid R \in \mathcal{R}\}.$$

If $R \in \mathcal{R}$ and $(x, y) \in \mathcal{N}$ we have

$$\operatorname{Tr}(Rx + [Z, R]y) = \operatorname{Tr}(R[Z, y] + [Z, R]y) = \operatorname{Tr}([Z, Ry]) = 0.$$

Conversely if $(x, y) \in C_1 \times C_2$ is such that

$$\operatorname{Tr}(Rx + [Z, R]y) = 0 \text{ for all } R \in \mathcal{R},$$

then

$$\operatorname{Tr}(R(x - [Z, y])) = 0 \text{ for all } R \in \mathcal{R}$$

and hence x = [Z, y], that is $(x, y) \in \mathcal{N}$.

Lemma 5.7. Under the same assumptions and notations like in 5.6,

$$\{([Z, R], R) \in \mathcal{C}_1 \times \mathcal{C}_2 \mid R \in \mathcal{R}\}$$

is dense in \mathcal{N} .

Proof. Let $(x, y) \in \mathcal{N}$, that is $y \in C_2$ is such that $x = [Z, y] \in C_1$. Let $(P_n)_{n \ge 1}$ be self-adjoint projections of finite rank so that $P_n \uparrow I$ and $|[P_n, Z]|_2 \to 0$. Then we have $|yP_n - y|_2 \to 0$ and also

$$|[Z, yP_n] - [Z, y]|_1 = |[Z, y]P_n + y[Z, P_n] - [Z, y]|_1$$

$$\leq |y|_2 |[Z, P_n]|_2 + |[Z, y](I - P_n)|_1 \to 0$$

o.

as $n \to \infty$.

Proposition 5.8. If Ω is bounded, with the same notations as in Proposition 5.6, the dual of $(C_1 \times C_2)/N$ identifies with $E \Lambda(\Omega)$ via the duality map

$$(T, (x, y)) \rightarrow \operatorname{Tr}(Tx + [Z, T]y).$$

In particular $E \Lambda(\Omega)$ identifies with the bidual of $\mathcal{K}\Lambda(\Omega)$.

Proof. The dual of $(C_1 \times C_2)/\mathcal{N}$ is the orthogonal of \mathcal{N} in $\mathcal{B} \oplus C_2 = (C_1 \times C_2)^d$ (the usual duality based on the trace). Since Lemma 5.7 provides a dense subset of \mathcal{N} , it suffices to show that $\{T \oplus [Z, T] \in \mathcal{B} \oplus C_2 \mid T \in E \Lambda(\Omega)\}$ is the orthogonal in $\mathcal{B} \oplus C_2$ of $\{([Z, R], R) \in C_1 \times C_2 \mid R \in \mathcal{R}\}$. Indeed, if $T \oplus H \in \mathcal{B} \oplus C_2$ is such that $\operatorname{Tr}(T[Z, R] + HR) = 0$ for all $R \in \mathcal{R}$, then $\operatorname{Tr}((-[Z, T] + H)R) = 0$ for all $R \in \mathcal{R}$ and hence H = [Z, T], which also implies $T \in E \Lambda(\Omega)$. Clearly, also if $T \in E \Lambda(\Omega)$ and $R \in \mathcal{R}$ we have

$$\operatorname{Tr}(T[Z, R] + [Z, T]R) = \operatorname{Tr}([Z, TR]) = 0.$$

6. Concluding Remarks

6.1. Isomorphisms induced by bi-Lipschitz map. Let Ω_1 and Ω_2 be Borel subsets of \mathbb{C} and let $F : \Omega_1 \to \Omega_2$ be a map which is Lipschitz and has an inverse which is also Lipschitz (i.e., F is bi-Lipschitz). Then if λ_j is the restriction of Lebesgue measure to Ω_j , the measures $F_*\lambda_1$ are λ_2 are mutually absolutely continuous with bounded Radon–Nikodym derivatives and the same holds for $(F^{-1})_*\lambda_2$ and λ_1 ([17]). This gives rise to a unitary operator

$$U(\Omega_2, \Omega_1)L^2(\Omega_1, \lambda_1) \to L^2(\Omega_2, \lambda_1)$$

which maps $f \in L^2(\Omega_1, \lambda_1)$ to $(f \circ F^{-1}) \cdot (dF_*\lambda_1/d\lambda_2)^{1/2}$. If $g \in L^{\infty}(\Omega_2, \lambda_2)$ then

$$U(\Omega_2, \Omega_1)^{-1} M_g U(\Omega_2, \Omega_1) = M_{g \circ F}.$$

The map $g \to g \circ F$ gives isomorphisms of $L^{\infty}(\Omega_2, \lambda_2)$ with $L^{\infty}(\Omega_1, \lambda_1)$ and of $\Lambda(\Omega_2)$ with $\Lambda(\Omega_1)$. Further $T \to U(\Omega_2, \Omega_1)^{-1}TU(\Omega_2, \Omega_1)$ is an isomorphism of $E\Lambda(\Omega_2)$ and $E\Lambda(\Omega_1)$. This is an isomorphism of Banach algebras with involution, which however is not isometric, since its norm depends on the Lipschitz constants of F and F^{-1} . These isomorphisms preserve finite-rank operators and hence $\mathcal{K}\Lambda(\Omega_2)$ is mapped onto $\mathcal{K}\Lambda(\Omega)$. This in turn implies there is an induced C^* -algebra isomorphism of $(E/\mathcal{K})\Lambda(\Omega_2)$ with $(E/\mathcal{K})\Lambda(\Omega_1)$.

In particular the group of bi-Lipschitz homeomorphisms of a Borel set Ω has automorphic actions on $E\Lambda(\Omega)$ and $(E/\mathcal{K})\Lambda(\Omega)$.

6.2. In view of 5.4 it is a natural question to ask, what is the center of $(E/\mathcal{K})\Lambda(\Omega)$? This question which appeared in the preprint version of this paper has now been answered in [4]. In the case of bounded Ω the center is the *C**-algebra generated by p(Z). Note that the answer to the Calkin-algebra analogue of this question, that is the determination of the center of the commutant of a separable commutative *C**-subalgebra of the Calkin algebra, is a particular case of our Calkin algebra bicommutant theorem ([24]).

6.3. $\mathcal{K}\Lambda(\Omega)$ as a Dirichlet algebra. The algebras $\mathcal{K}\Lambda(\Omega)$ are examples of Dirichlet algebras in the sense of non-commutative potential theory ([1], [10], [11]). The Dirichlet form can be described for instance via the construction of Dirichlet forms from derivations (Theorem 4.5 in [10] or Theorem 8.3 in [11]). This corresponds to working with the C^{*}-algebra of compact operators $\mathcal{K} = \mathcal{K}(L^2(\Omega, \lambda))$ and its trace Tr, which is densely defined, faithful, semifinite and lower semicontinuous. The Hilbert space $\mathcal{H} = \mathcal{C}_2 \oplus \mathcal{C}_2$, where $\mathcal{C}_2 = \mathcal{C}_2(L^2(\Omega, \lambda))$ is a $\mathcal{K} - \mathcal{K}$ -bimodule and $\mathcal{J}(x \oplus y) = x^* \oplus y^*$ is an isometric antilinear involution of \mathcal{H} exchanging the right and left actions of \mathcal{K} on \mathcal{H} . Clearly \mathcal{C}_2 identifies with $L^2(\mathcal{K}, Tr)$ and there is an L^2 -closable derivation ∂ of $\mathcal{K}\Lambda(\Omega) \cap \mathcal{C}_2 \to \mathcal{C}_2$. The definition in case Ω is bounded, is $\partial a = [X, a] \oplus [Y, a]$. In general the definition can be given in terms of he kernel $K(z_1, z_2)$ of an element $a \in \mathcal{K}\Lambda(\Omega) \cap \mathcal{C}_2$. Then the components of ∂a have kernels $(x_1 - x_2)K(z_1, z_2)$ and respectively $(y_1 - y_2)K(z_1, z_2)$, which are square integrable since $a \in \mathcal{K}\Lambda(\Omega)$. Also clearly viewed the domain of definition of ∂ as part of $L^2(\mathcal{K}, \mathrm{Tr})$, the map ∂ is L^2 -closed. Moreover ∂ satisfies the symmetry condition $\mathcal{J}\partial a = \partial a^*$. Then the Dirichlet form \mathcal{E} which is obtained as the closure $\mathcal{E}[a] = \|\partial a\|_{\mathcal{H}}^2$ is easily seen to be precisely square of the L^2 -norm of $(z_1 - z_2)K(z_1, z_2)$ which is the same as $(L(a))^2$ defined for $a \in \mathcal{K}\Lambda(\Omega)$. The Markovian semigroup T_t will then act on elements $a \in \mathcal{K}\Lambda(\Omega) \cap \mathcal{C}_2$ which have kernels $K(z_1, z_2)$ as a multiplier which produces the element with kernel $e^{-t|z_1-z_2|^2}K(z_1,z_2)$. In view of the Markovianity it is easy to see that T_t extends to a semigroup of completely positive contraction on $\mathcal{K}\Lambda(\Omega)$, $E\Lambda(\Omega)$ and also on \mathcal{K} and \mathcal{B} . Moreover T_t also induces a semigroup of completely positive contractions on $(E/\mathcal{K})\Lambda(\Omega)$.

6.4. Replacing C_2 by some other C_p . One may wonder about the consequences of replacing the Hilbert–Schmidt class C_2 by some other C_p -class in the definition of $E\Lambda(\Omega)$. This would mean to consider operators T so that $[T, M_f] \in C_p$ for all $f \in \Lambda(\Omega)$ with $\|Df\|_{\infty} \leq 1$. The questions about C_p -perturbations of normal operators are still covered by our results ([25], [29]), however the passage of multiplication operators by Lipschitz functions would require the use of more difficult results on commutators and functional calculus, like those in [2].

6.5. Perhaps the study of the *K*-theory of the $E\Lambda(\Omega)$ may benefit from more recent developments of bivariant *K*-theory beyond C^* -algebras (see [15]).

References

- S. Albeverio and R. Hoegh-Krohn, Dirichlet forms and Markovian semigroups on C*algebras, Comm. Math. Phys. 56 (1977), 173–187. Zbl 0384.46043 MR 461153
- [2] A. B. Aleksandrov, V. V. Peller, D. S. Potapov and F. A. Sukochev, *Functions of normal operators under perturbations*, Adv. Math. 226 (2011), no. 6, 5216–5251. Zbl 1220.47018 MR 2775899

- B. Blackadar, K-theory for operator algebras, Math. Sci. Res. Inst. Publ. 5, Spring, 1986. Zbl 0597.46072 MR 859867
- [4] J. Bourgain and D. V. Voiculescu, *The essential centre of the mod a diagonalization ideal commutant of an n-tuple of commuting hermitian operators*, preprint, arxiv:1309.1686, 2013.
- [5] L. G. Brown, *The determinant invariant for operators with compact self-commutators*, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer Verlag, 1973, 210–228. Zbl 0284.47016 MR 390830
- [6] L. G. Brown, Operator algebras and algebraic K-theory, Bull. Amer. Math. Soc. (1975), 1119–1121. Zbl 0332.46038 MR 383090
- [7] L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer Verlag, 1973, 58–127. Zbl 0277.46053 MR 380478
- [8] R. W. Carey and J. D. Pincus, An exponential formula for determining functions, Indiana Univ. Math. J. 23 (1974), 1155–1165. Zbl 0288.47021 MR 338829
- [9] R. W. Carey and J. D. Pincus, Commutators, symbols and determining functions, J. Functional Analysis 19 (1975), 50–80. Zbl 0309.47026 MR 442743
- [10] F. Cipriani, Dirichlet Forms on Non-commutative Spaces, in U. Franz, M. Schürmann (eds.), Quantum Potential Theory, Lecture Notes in Math. 1954, Springer Verlag 2008, 161–276. Zbl 1166.81028 MR 2463708
- [11] F. Cipriani and J.-L. Sauvageot, *Derivations and square roots of Dirichlet forms*, J. Funct. Anal. 13 (2003), no. 3, 521–545. Zbl 1043.53029 MR 1995798
- [12] K. F. Clancey, Seminormal operators, Lecture Notes in Math., vol. 742, Springer Verlag, 1979. Zbl 0435.47032 MR 548170
- [13] A. Connes, Non-commutative differential geometry, IHES Publ. Math. 62 (1985), 41– 144. Zbl 0592.46056
- [14] A. Connes, Non-commutative geometry, Academic Press (1994).
- [15] J. Cuntz and A. Thom, Algebraic K-theory and locally convex algebras, Math. Ann. 334 (2006), 339–371. Zbl 1095.19003 MR 2207702
- [16] J. Duncan and S. A. R. Hosseinium, *The second dual of a Banach algebra*, Proc. Roy. Soc. Edinburgh Sect. A. 84 (1979), no. 3–4, 309–325. Zbl 0427.46028 MR 559675
- [17] L. C. Evans and R. F. Gariepy, *Measure theory and fine properties of funtions* (Studies in Advanced Mathematics) 1992, CRC Press. Zbl 0804.28001 MR 1158660
- [18] J. W. Helton and R. Howe, *Integral operators: Commutators, traces, index and homology*, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer Verlag, 1973, 141–209. Zbl 0268.47054 MR 390829
- [19] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14(3) (1964), 299–320. Zbl 0143.36102 MR 159233
- [20] O. Lehto, Univalent functions and Teichmuller spaces, Graduate Texts in Mathematics 109, Springer Verlag, 1986. Zbl 0606.30001 MR 867407

- [21] M. Martin and M. Putinar, *Lectures on Hyponormal Operators*, Operator Theory: Advances and Applications, vol. 39, Birkhauser, 1989. Zbl 0684.47018 MR 1028066
- [22] W. L. Paschke, *K-theory for commutants in the Calkin algebra*, Pacific J. Math. 95, no. 2 (1981), 427–434. Zbl 0478.46056 MR 632196
- [23] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl 0207.13501 MR 290095
- [24] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures et Appl. 21 (1976), 97–113. Zbl an:0335.46039 MR 415338
- [25] D. V. Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators I., J. Operator Theory 2 (1979), 3–37. Zbl 0446.47003 MR 553861
- [26] D. V. Voiculescu, A note on quasitriangularity and trace-class self-commutators, Acta Sci. Math. (Szeged) 42 (1980), 195–199. Zbl 0441.47022 MR 576955
- [27] D. V. Voiculescu, Remarks on Hilbert–Schmidt perturbations of almost normal operators, in Topics in Modern Operator Theory, Birkhauser, 1981, 311–318. Zbl 0505.47012 MR 672831
- [28] D. V. Voiculescu, Almost normal operators modulo γ_p, in Linear and Complex Analysis Problem Book, editors V. P. Havin, S. V. Hruscev and N. K. Nikolski, Lecture Notes in Math., vol. 1043, Springer Verlag, 1984, 227–230.
- [29] D. Voiculescu, Perturbations of operators, connections with singular integrals, hyperbolicity and entropy, in Harmonic Analysis and Discrete Potential Theory (ed. M. A. Picardello) Plenum Press, 1992, 181–191. MR 1222457
- [30] N. Weaver, Lipschitz algebras, World Scientific, 1999. Zbl 0936.46002 MR 1832645

Received 09 February, 2012

D.-V. Voiculescu, Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720-3840

E-mail: dvv@math.berkeley.edu