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Almost normal operators mod Hilbert–Schmidt and the
K-theory of the algebras Eƒ.�/
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Abstract. Is there a mod Hilbert–Schmidt analogue of the BDF-theorem, with the Pincus g-
function playing the role of the index? We show that part of the question is about the K-theory
of certain Banach algebras. These Banach algebras, related to Lipschitz functions and Dirichlet
algebras have nice Banach-space duality properties. Moreover their corona algebras are C�-
algebras.
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1. Introduction

The BDF-theorem [7] classifies, up to unitary equivalence, the normal elements of
the Calkin algebra, by the spectrum and the index of the resolvent. If the ideal of
compact operators is replaced by the trace-class, for operators with trace-class self-
commutator, the Pincus g-function ([8], [9]) is an L1-function on C which extends
the index of the essential resolvent. The g-function has been related to algebraic K-
theory by L. G. Brown ([5], [6]) and in another direction, after work of J. W. Helton
and R. Howe ([18]), the distribution to which the g-function gives rise, has been
interpreted in terms of cyclic cohomology by A. Connes ([13]).

These developments around the g-function, were however not accompanied by a
corresponding BDF-type result. In ([28], [26], [27]) we formulated conjectures about
operators with trace-class self-commutator, an affirmative answer to which would
fill this gap. Besides the initial evidence in favor of these conjectures, there was no
further progress. The situation is roughly that the g-function viewed in the cyclic
cohomology framework covers the index part and our work on Hilbert–Schmidt
perturbations of normal operators ([25]) covers the part about trivial extensions,
while the rest is wide open. The absence on the technical side of a normal dilation
result which would correspond to the existence of inverses in Ext and which in
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the BDF context can be derived from the Choi–Effros completely positive lifting
theorem, is a noted difficulty.

Our aim here is to decouple the normal dilation from the rest by introducing the
algebras Eƒ.�/. In this way we are also able to bring K-theory to the study of this
problem since we are led to the K0-group of such an algebra.

The Banach �-algebras Eƒ.�/ are the natural framework to study operators
with trace-class self-commutator which are obtained from compressions of normal
operators to mod Hilbert–Schmidt reducing projections. Roughly Eƒ.�/, where �
is a Borel subset of C is an algebra of operators in L2.�; �/ with Hilbert–Schmidt
commutators with the multiplication operators by Lipschitz functions, a construction
reminiscent of Paschke-duality ([22]).

The algebras Eƒ.�/ have nice properties as Banach algebras. They resemble
the Lipschitz algebras of [30], up to the use of a Hilbert–Schmidt norm instead of
a uniform norm, which is a feature of the Dirichlet algebras of non-commutative
potential theory ([1], [10], [11]). Actually the ideal Kƒ.�/ of compact operators
in Eƒ.�/ is a Dirichlet algebra and we show that Eƒ.�/ can be viewed both as
the algebra of multipliers or as the bidual of Kƒ.�/, when � is bounded. Since all
this has the flavor of Banach algebra analogues of basic C �-algebras, it is perhaps
unexpected that the corona Eƒ.�/=Kƒ.�/ which is the analogue of the Calkin
algebra is really a C �-algebra. Note, however, that while the Dirichlet algebra
Kƒ.�/ has the same simpleK-theory as the algebra K.H/ of compact operators, the
K-theory ofEƒ.�/ and hence ofEƒ.�/=Kƒ.�/, which interests us in connection
with operators with trace-class self-commutator, is certainly richer.

On the technical side an essential ingredient is the existence of a bounded
approximate unit consisting of projections for Kƒ.�/, which is a consequence of
our work on norm-ideal perturbations of Hilbert-space operators ([25], [29]).

Concerning the relation of the operator theory problems to the K-theory of the
algebrasEƒ.�/, we should point out that while theK-theory problem is so to speak
the operator theory problem minus the dilation problem, actually certain outcomes
of the K-theory problem could provide a negative answer to the dilation problem. If
the K-theory of Eƒ.�/ exhibits some integrality property making K0 less rich this
would answer in the negative the dilation problem.

In addition to the first section, which is the introduction, the paper has five more
sections.

Section 2 contains background material about the conjectures about almost
normal operators modulo Hilbert–Schmidt. Details of certain connections between
these problems, left out previously, are included for the reader’s convenience.

Section 3 introduces the algebras Eƒ.�/ and some of their basic properties.
We also consider the ideal of compact operators Kƒ.�/ of Eƒ.�/ and the Banach
algebra Eƒ.C/0 which is the inductive limit of the Eƒ.�/ for bounded sets �.

In section 4 we look at theK-theory of the Banach algebras considered. We show
that the problem about a mod Hilbert–Schmidt BDF-type theorem for almost normal
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operators is equivalent to the normal dilation problem plus the problem whether the
K0-group ofEƒ.C/0 is isomorphic via the Pincus g-function to the groupL1re.C; �/
of real-valued L1-functions with bounded support.

Section 5 returns to the algebras Kƒ.�/, Eƒ.�/ and .E=K/ƒ.�/ and gives
results about duality, multipliers and the relation to C �-algebras.

Section 6 contains concluding remarks in several directions: the action of bi-
Lipschitz homeomorphisms on the algebras, the center of .E=K/ƒ.�/, the relation
to Dirichlet algebras and non-commutative potential theory, the possibility of similar
constructions with other Schatten–von Neumann classes Cp replacing the Hilbert–
Schmidt class.

I would like to thank Jesse Peterson for useful comments about a possible
connection to Dirichlet algebras.

2. Background

2.1. If H is a separable infinite-dimensional Hilbert space over C, then B.H/ will
denote the bounded operators on H and Cp.H/ the Schatten–von Neumann p-class.
The p-norm j � jp is jT jp D Tr.T �T /p=2. In particular, C1.H/ is the trace-class and
C2.H/ is the Hilbert–Schmidt class.

2.2. An operator T 2 B.H/ is almost normal if its self-commutator ŒT �; T � is in
C1.H/. Equivalently, if T D A C iB with A D A�, B D B� then ŒA; B� 2 C1
since 2iŒA;B� D ŒT �; T �. We shall denote by AN .H/ the set of almost operators.
Background material and references to the literature for many facts about operators
with trace-class self-commutator can be found in the books [12], [21].

2.3. If T D A C iB 2 AN .H/ and if Q;R 2 CŒX; Y � are polynomials in
two commuting indeterminates, then since QA; QB the class of A;B in B.H/=C1.H/
commute, we shall also write Q.A;B/, R.A;B/ for elements in B.H/ so that
CQ.A;B/ D Q. QA; QB/, CR.A;B/ D R. QA; QB/. Clearly these are only defined up to
a C1 perturbation. The Helton–Howe measure PT of T D AC iB 2 AN .H/ ([18])
is a compactly supported measure on R2 so that

TrŒQ.A;B/;R.A;B/� D .2�i/�1
Z

J .Q;R/dPT

where

J .Q;R/ D @Q

@X

@R

@Y
�
@Q

@Y

@R

@X
:

Then suppPT � �.T / and PT is absolutely continuous w.r.t. Lebesgue measure �
and the Radon–Nikodym derivative dPT

d�
D gT 2 L

1.R2/ is the Pincus principal
function of T (also called Pincus g-function).
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2.4. Let RC1 .H/ D fX 2 B.H/ W X finite rank, 0 � X � 1g, which is a directed
ordered set. Then the obstruction to the existence of quasicentral approximate units
relative to the Hilbert–Schmidt class ([25]) is

k2.T1; : : : ; Tn/ D lim inf
X2R

C

1
.H/

max
1�j�n

jŒTj ; X�j2:

In [28] we showed that: if T1; T2 2 AN .H/, k2.T1/ D 0 and T1 � T2 2 C2, then
PT1
D PT2

(or equivalently gT1
D gT2

a.e.).

2.5. We recall two of the conjectures about almost normal operators ([28] conjec-
tures 3 and 4). Note that the second of these is a consequence of the first.

Conjecture 3 in [28]. If T1; T2 2 AN .H/ are so that PT1
D PT2

then there is
a normal operator N 2 B.H/ and a unitary operator U 2 B.H ˚ H/ so that
T1 ˚N � U.T2 ˚N/U

� 2 C2.

If true, this statement would represent a kind of BDF-theorem with AN .H/ and
the Helton–Howe measure replacing the operators with compact self-commutator
and respectively the index-data. Note also that the unitary equivalence is mod C2
(not C1).

Conjecture 4 in [28]. If T 2 AN .H/ then there is S 2 AN .H/ and a normal
operator M 2 B.H˚H/ so that T ˚ S �M 2 C2.

This conjecture is an analogue of the existence of inverses in Ext in the analogue
of the “Ext is a group” part of the BDF theorem. Note that the analogue of the
results for trivial extensions (i.e., Weyl–von Neumann theorem part) is covered by
our results in [25]. For the derivation of Conjecture 4 from Conjecture 3 one also uses
the result of R. V. Carey and J. D. Pincus that every L1-function is the g-function of
some T 2 AN .H/ (see 4.9).

2.6. We would like to remark that Conjectures 3 and 4 in [28] don’t bring the
essential spectrum of the almost normal operators into the discussion. With
consideration of the essential spectrum �e.T /, one might ask if PT1

D PT2
and

�e.T1/ D �e.T2/ would imply T1 � UT2U � 2 C2, form some unitary U , when
Tj 2 AN .H/, j D 1; 2.

We didn’t discuss the possibility of such a strengthening, because it seems to
have to do also with phenomena of another kind involving perturbations of isolated
points in �.T /n�e.T /.

2.7. A consequence of Conjecture 4 and hence also of Conjecture 3 is the following
conjecture.

Conjecture 1 in [28]. If T 2 AN .H/ then k2.T / D 0.

The proof which was omitted in [28], involves using a result of [25], that
k2.N / D 0 for every normal operator N . Indeed, if Conjecture 4 holds for T ,
then T 2 AN .H/ is unitarily equivalent mod C2 to a compression PN j PH

conj:3
conj:4
conj:4
conj:3
conj:3
conj:4
conj:4
conj:3
conj:4
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where P D P � D P 2 is a projection, N is normal and ŒP;N � 2 C2. We infer
that k2.T / D k2.PN j PH/. On the other hand k2.N / D 0 implies there are
Xn 2 R

C
1 .H/, Xn " I as n!1, so that limn!1 jŒXn; N �j2 D 0. If Yn D PXnP

then Yn 2 RC1 and we have Yn " P as n!1. We have

jŒYn; PNP �j2 D jP ŒXn; PNP �P j2 � jP ŒXn; NP �P j2 C jŒI �Xn; ŒP;N �P �j2:

Since ŒP;N �P 2 C2 and I �Xn # 0 we have jŒI �Xn; ŒP;N �P �j2 ! 0 as n!1.
On the other hand

jP ŒXn; NP �P j2 � jP ŒI �Xn; N �P j2 C jP ŒN;P �.I �Xn/P j2

which converges to 0 as n!1. Thus, Conjecture 1 holds for T , i.e., k2.T / D 0.

2.8. We will also need to recall some of the results for normal operators which follow
from [25]. Since k2.N / D 0 for every normal operator N , we can use the kind of
non-commutative Weyl–von Neumann results in [25] to infer that: if N1 and N2 are
normal operators on H and �.N1/ D �.N2/ D �e.N1/ D �e.N2/ then there is a
unitary operator U so that UN1U � �N2 2 C2 and jUN1U � �N2j2 < " for a given
" > 0.

Also, if T 2 AN .H/ andN is a normal operator with �.N / D �e.T / then there
is a unitary operator U W H! H˚H so that .T ˚N/U �UT is Hilbert–Schmidt
and j.T ˚N/U � UT j2 < " for a given " > 0,

3. The Banach Algebras Eƒ.�/

3.1. We shall define here the algebras Eƒ.�/ and give a few of their basic
properties.

If � � C is a Borel set and f 2 L1.�; �/, with � denoting Lebesgue measure,
let Mf be the multiplication operator by f on L2.�; �/ and Df be the difference
quotient

Df.s; t/ D
f .s/ � f .t/

s � t
.s ¤ t /

which is the class up to null-sets of a Lebesgue-measurable function on � ��. Let
further

ƒ.�/ D ff 2 L1.�; �/ j Df 2 L1.� ��;�˝ �/

be the subalgebra of essentially Lipschitz functions. If T 2 B.L2.�; �// let L.T /
be given by

L.T / D supfjŒMf ; T �j2 j f 2 ƒ.�/; kDf k1 � 1g:

We define Eƒ.�/ to be the subalgebra of B.L2.�//

Eƒ.�/ D fT 2 B.L2.�; �// j L.T / <1g:

conj:1
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It is easily seen that Eƒ.�/ is a �-subalgebra of B.L2.�;�//. Even more, Eƒ.�/
is an involutive Banach algebra with respect to the norm kjT kj D kT k C L.T / and
the involution is isometric kjT kj D kjT �kj. The proof is along standard lines and
will be left to the reader.

3.2. If � is specified and w 2 C, let .e.w//.z/ D exp.i Re.zw// and let
U.w/ DMe.w/, which is a unitary operator on L2.�; �/. Also, if� is bounded, the
multiplication operators by the functions which at x C iy equal x C iy, x; y will be
denoted by Z;X; Y .

Proposition 3.3. If T 2 B.L2.�; �// and

L1.T / D supfjwj�1jŒT; U.w/�j2 j w 2 Cnf0gg

then we have L1.T / � L.T / � 2L1.T / and kjT kj1 D kT k C L1.T / is an
equivalent Banach algebra norm on Eƒ.�/.

If � is bounded then we have

L.T / D jŒT;Z�j2:

Proof. We first establish the assertions of the proposition in case T 2 C2. Then
T is given by a kernel K 2 L2.� � �;� ˝ �/ and the kernel of ŒMf ; T � is
.f .s/ � f .t//K.s; t/. The supremum of C2-norms of ŒMf ; T � over all f with
kDf k1 � 1 will then equal the L2-norm of .s � t /K.s; t/, which for bounded � is
the kernel of ŒZ; T �. On the other hand, if f D e.w/jwj�1 we have kDf k1 � 1,
so that L1.T / � L.T /. Further, taking w D "w0, for some w0 with jw0j D 1 and
letting " # 0, the supremum of L2-norms of the corresponding .f .s/� f .t//K.s; t/
will be the L2-norm of Re..s � t /w0/K.s; t/. The bound L.T / � 2L1.T / is then
obtained taking for instance w0 D 1 and w0 D i .

To deal with general T , we first take up the assertion that L.T / D jŒZ; T �j2
when � is bounded. Clearly it suffices to show that L.T / � jŒZ; T �j2 the opposite
inequality being obvious. By our results in [25], since Z is a normal operator, there
are finite rank projections Pn " I so that jŒPn; Z�j2 ! 0 as n ! 1. Then if f is
such that kDf k1 � 1, using the result for the Hilbert–Schmidt case, we have

jŒMf ; T �j2 � lim sup
n!1

jŒMf ; PnTPn�j2

� lim sup
n!1

jŒZ; PnTPn�j2

� lim sup
n!1

.2jŒZ; Pn�j2kT k C jŒZ; T �j2/

D jŒZ; T �j2:
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To prove the assertion about L1.T / for unbounded� and general T , we proceed
along similar lines, after showing that there exist finite rank projections Pn " 1 so
that

lim
n!1

 
sup

w2Cnf0g
jŒw�1U.w/; Pn�j2

!
D 0:

Let�m D fz 2 � j m � 1 � jzj < mg so that� is the disjoint union of the�m,
m 2 N. On L2.�m; �/ we can find, by our result from [25], finite rank projections
Pkm so that Pkm " I as k !1 and jŒPkm; Z�j2 � .k2m/�1. Observe that by the
result about jŒZ; T �j2 we proved, this gives L.Pkm/ � .k2m/�1. We then define
the projection Pm acting on L2.�; �/ D L2.�1; �/˚ L

2.�2; �/˚ : : : to be
Pm1 ˚ Pm2 ˚ � � � ˚ Pmm ˚ 0˚ 0˚ : : : so that Pm " I and L.Pm/ � L.Pm1/ C
� � � C L.Pmm/ � Cm

�1. Since kDw�1e.w/k1 � 1 we have jŒw�1U.w/; Pm�j2 �
Cm�1 which clearly converges to zero as m!1 uniformly for w 2 Cnf0g. We
then have for f 2 ƒ.�/ with kDf k1 � 1 and T 2 B.L2.�; �//

jŒMf ; T �j2 � lim sup
n!1

jŒMf ; PnTPn�j2

� lim sup
n!1

2L1.PnTPn/

� lim sup
n!1

.4L1.Pn/kT k C 2L1.T //

D 2L1.T /:

3.4. If � D C the proposition provides a characterization of the algebra Eƒ.�/
which translates well after Fourier transform. Let F W L2.C; �/! L2.C; �/ be the
unitary Fourier transform

.Ff /.w/ D c
Z
C
f .z/.e.�w//.z/d�.z/:

Then FU.w0/ D V.w0/F where .V .w0/g/.w/ D g.w � w0/ and we have the
following corollary.

Corollary 3.5. If
S; T 2 B.L2.C; �//

and
M.S/ D supfjw0j�1jS � V.w0/SV.w0/�j2 j w0 2 Cnf0gg

then we have

M.FTF�1/ D L1.T / and FEƒ.C/F�1 D fS 2 B.L2.C; �//jM.S/ <1g:
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3.6. If �1 � �2 let

i.�2; �1/ W B.L2.�1; �//! B.L2.�2; �//

be the inclusion homomorphism defined by i.�2; �1/.T / D T ˚ 0 with respect
to the decomposition L2.�2; �/ D L2.�1; �/ ˚ L2.�2n�1; �/. There is
also a conditional expectation ".�1; �2/ W B.L2.�2; �// ! B.L2.�1; �//,
".�1; �2/.S/ D MX�1

SMX�1
j L2.�1; �/ where X�1

is the indicator function
of the subset�1 of�2. It is easily checked that the Banach algebras Eƒ.�/ behave
well with respect to the i.�2; �1/ and ".�2; �1/.

Proposition 3.7. If �1 � �2 then we have

i.�2; �1/.Eƒ.�1// � Eƒ.�2/

and the inclusion is isometric with respect to the kj � kj-norms and also with
respect to the kj � kj1-norms and L.�/ and L1.�/ are preserved. We also have
".�1; �2/.Eƒ.�2// D Eƒ.�1/ and ".�1; �2/ is contractive both in the kj � kj-
norms and in the kj � kj1-norms and we have ".�1; �2/i.�2; �1/.T / D T .

3.8. We define the Banach subalgebra Eƒ.�/0 � Eƒ.�/ to be the closure in
Eƒ.�/ of

S
fi.�;�1/Eƒ.�1/ j �1 � �;�1bounded Borel setg: Equivalently

Eƒ.�/0 is the closure in Eƒ.�/ of
S
r>0 i.�;� \ rD/Eƒ.� \ rD/ where D is

the unit disk.

Proposition 3.9. Eƒ.�/0 is an ideal in Eƒ.�/. If X�\nD is the indicator function
of nD \ � as a subset of � and Mn D MX�\nD0 then .Mn/n�1 is an approximate
unit of Eƒ.�/0.

Proof. Since kjMnkj D kMnk D 1 and Mnx D xMn D x for any x 2S
fi.�;�1/Eƒ.�1/ j �1 � �;�1bounded Borelg as soon as n is large enough,

we clearly have that .Mn/n�1 is an approximate unit of Eƒ.�/0. To prove
that Eƒ.�/0 is a two-sided ideal in Eƒ.�/ it will suffice now to show that
TMn 2 Eƒ.�/0 and MnT 2 Eƒ.�/0. Actually since we deal with involutive
algebras it will suffice to show that TMn 2 Eƒ.�/0 and this in turn reduces
to checking that kj.I � Mm/TMnkj ! 0 as m ! C1. It is easily seen that
L.T / < 1 implies .I � MnC1/TMn 2 C2 and hence k.I � Mm/TMnk �

j.I �Mm/.I �MnC1/TMnj2 ! 0 as m!C1. Also if K.z1; z2/ is the kernel of
.I �MnC1/TMn then L..I �MnC1/TMn/ < 1 means .z1 � z2/K.z1; z2/ is in
L2.� � �;�˝ �/. Then if m > nC 1, L..I �Mm/TMn/ is the L2-norm of the
kernel

.1 � X�\mD.z1//.z1 � z2/K.z1; z2/

which converges to zero as m!C1.
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3.10. If � is bounded C2.L2.�; �// � Eƒ.�/ and kjXkj � .1 C d/jX j2
where d is the diameter of � when X 2 C2.L2.�; �//. If � is unbounded
the C2ƒ.�/ D C2.L2.�; �// \ Eƒ.�/ is only a subset of C2.L2.�; �//.
Similarly Rƒ.�/ will denote R.L2.�; �// \ Eƒ.�/ where R.H/ stands for
the finite rank operator on H. Remark also that if L2ƒ.�/ denotes functions
f 2 L2.�; �/ so that f .z/.1C jzj/ 2 L2 then the linear span of h�; f ig is
in Rƒ.�/ when f; g 2 L2ƒ.�/. Note also that if f 2 L1.�; �/ then
kjMf kj D kjMf kj1 D kf k1 D kMf k since L.Mf / D 0 and ML1.�/ D

fMf j f 2 L
1.�; �/g � Eƒ.�/.

The following lemma records a consequence of the diagonalizability mod C2 of
normal operators, which appeared in the last part of the proof of Proposition 3.3.

Lemma 3.11. In Eƒ.�/ there are finite rank projections Pn, so that Pn " I and

lim
n!1

L.Pn/ D 0:

Moreover we have Pn 2 i.�;�\ nD/Eƒ.�\ nD/ and ŒPn;MX�\mD � D 0 for all
m 2 N.

We will also find it useful to have the following technical lemma when � is
unbounded.

Lemma 3.12. LetMn DMXn
2ML1.�; �/ where Xn is the indicator function of

�\ nD as a subset of � and let T 2 Eƒ.�/. Then we have L.T �MnTMn/! 0

as n!1.

Proof. If �n D � \ nD, then we have MnTMn D i.�;�n/".�n; �/.T /. With
Tn denoting ".�n; �/.T / andXn denoting i.�;�n/.ŒZ; Tn�/we have the following
martingale properties. Ifm � n thenMnXmMn D Xn and jXnj2 D L.Tn/ � L.T /.
Hence, if X is a weak limit of some subsequence of the Xm’s as m ! 1 we will
have jX j2 <1 and Xn DMnXMn. Thus if m � n

L.MmTMm �MnTMn/ D L.".�m; �/.MmTMm �MnTMn//

D jŒZ; ".�m; �/.MmTMm �MnTMn/�j2

D jXm �Xnj2:

Since MmTMm converges weakly to T and Xm converges in 2-norm to X as
m!1, we infer

L.T �MnTMn/ � sup
m�n

L.MmTMm�MnTMn/ D sup
m�n
jXm�Xnj2 D jXm�Xnj2:

The assertion of the lemma follows from

jX �Xnj2 D jX �MnXMnj2 ! 0

as n!1.
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3.13. We define Kƒ.�/ D fT 2 Eƒ.�/ j T compactg: Clearly, Kƒ.�/ is a closed
ideal in Eƒ.�/.

Proposition 3.14. The ideal Kƒ.�/ of Eƒ.�/ has an approximate unit .Pn/n�1
where Pn’s are self-adjoint projections with the properties outlined in Lemma 3.11.
In particular

S
n�1 PnB.L2.�; �//Pn is a dense subalgebra in Kƒ.�/ in

kj � kj-norm.

Proof. If T 2 Kƒ.�/ then with the notation in Lemma 3.12 we actually have
kjT �MnTMnkj ! 0 as n ! 1 in view of the lemma and of the compactness
of T which gives kT �MnTMnk ! 0. In view of the involution, the proof reduces
to showing that kjT � PmT kj ! 0 as m ! 1 where Pm are the projections in
Lemma 3.11 and T 2 Kƒ.�/ satisfies T DMnTMn for some fixed n.

Clearly T being compact we have kT � PmT k ! 0 as m!1.
On the other hand if m � n, T � PmT D i.�;� \ nD/.T 0 � P 0mT 0/

where T 0 D ".� \ nD; �/.T / satisfies i.�;� \ nD/.T 0/ D T and P 0m D ".� \

nD; �/.Pm/ D ".� \ nD; �/.PmMn/ is a projection. We have

L.T � PmT / D L.T
0
� P 0mT

0/

D jŒZ; .I � P 0m/T
0�j2

� L.I � P 0m/kT k C j.I � P
0
m/ŒZ; T

0�j2 ! 0

since L.P 0m/ � L.Pm/! 0 and ŒZ; T 0� 2 C2, P 0m " I .
The remaining assertion follows from the fact that Pn is an approximate unit

once we remark that PnB.L2.�; �//Pn D PnEƒ.�/Pn D PnKƒ.�/Pn because
Pn DMnPnMn.

Proposition 3.15. The unit ball of Eƒ.�/ in kj � kj-norm or kj � kj1-norm is closed
in the weak operator topology and hence is weakly compact. Moreover, Eƒ.�/ is
inverse-closed as a subalgebra of B.L2.�// and also closed under C1-functional
calculus for normal elements. In particular if T 2 Eƒ.�/ has bounded inverse and
T D V jT j is its polar decomposition, then V; jT j are in Eƒ.�/.

The proof is an exercise along standard lines and will be omitted.

3.16. We shall denote by .E=K/ƒ.�/ the quotient-Banach algebraEƒ.�/=Kƒ.�/
and by p W Eƒ.�/! .E=K/ƒ.�/ the canonical surjection.

Remark also that we have Kƒ.�/ � Eƒ.�/0 since the dense subalgebra of
Kƒ.�/ appearing in Proposition 3.14 is inEƒ.�/0. The quotientEƒ.�/0=Kƒ.�/
will also be denoted .E0=K/ƒ.�/.
Proposition 3.17. Given n 2 N there are Uk 2 Eƒ.�/, 1 � k � n, such that
U W L2.�; �/ ! L2.�; �/ ˝ Cn defined by Uh D

P
k Ukh ˝ ek is a unitary

operator. In particular we have UEƒ.�/U � D Eƒ.�/ ˝Mn and T ! UT U �



Almost normal operators mod Hilbert–Schmidt 1133

is a spatial isomorphism of Eƒ.�/ and Eƒ.�/˝Mn. Additionally we also have
that

UEƒ.C/0U � D Eƒ.C/0 ˝Mn:

Proof. The existence ofU is a consequence of our results on normal operator mod C2
([25], 2.8). There will be some additional technicalities due to the fact that �
may be unbounded. From ([25], 2.8) we get the existence of unitary operators
Vm W L

2.�m; �/ ! L2.�m; �/ ˝ Cn, so that jVmZ � .Z ˝ In/Vmj2 < 2�m�1,
where �m D � \ ..m C 1/DnmD/. If Vmh D

P
k Vmkh ˝ ek , we have

jŒVmk; Z�j2 < 2�m�1 and hence L.Uk/ < 1 where Uk D
L
m�0 Vmk , so that if

Uh D
P
k Ukh˝ ek we will have that U is unitary and Uk 2 Eƒ.�/, 1 � k � n.

It follows that UEƒ.�/U � � Eƒ.�/˝Mn and U �.Eƒ.�/˝Mn/U � Eƒ.�/,
which implies that UEƒ.�/U � D Eƒ.�/˝Mn and that T ! UT U � is a spatial
isomorphism of Eƒ.�/ and Eƒ.�/˝Mn.

For the last assertion to be proved, note that the operatorU which we constructed,
satisfies

U.i.�;� \ nD//Eƒ.� \ nD//U � D .i.�;� \ nD/Eƒ.� \ nD//˝Mn:

The assertion then follows from the density of
S
n�1 i.�;�\ nD/Eƒ.�\ nD/ in

Eƒ.�/0.

3.18. Along similar lines with 3.17 one can show that Eƒ.�/ is a huge algebra. For
instance, sinceZ andZ˝IH are unitarily equivalent mod C2 and since I ˝B.H/ is
in the commutant of Z ˝ IH, (H a separable Hilbert space), one infers that Eƒ.�/
contains a subalgebra spatially isomorphic to I ˝ B.H/.

In the remainder of this section we exhibit a few special operators which are in
Eƒ.�/.

Proposition 3.19. Let� be a bounded open set and letA2.�/ be the Bergman space
of square-integrable analytic functions. Assume moreover that the rational functions
with poles in Cn� are dense in A2.�/. Then we have P� 2 Eƒ.�/, where P� is
the orthogonal projection of L2.�; �/ onto the subspace A2.�/.

Proof. This is a consequence of the Berger–Shaw inequality (see for instance [21,
p. 128, Theorem 1.3]). Indeed T D Z j A2.�/ is a subnormal operator and the
constant function 1 is a rationally cyclic vector for T . The Berger–Shaw inequality
then gives TrŒT �; T � <1. With the simplified notation P D P�, we have

TrŒPZ�P;PZP � <1:
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Since .I � P /ZP D 0 and ŒZ�; Z� D 0 this gives

ŒPZ�P;PZP � D PZ.I � P /Z�P

and hence
ŒP;Z� D PZ.I � P / 2 C2:

3.20. The Hilbert-transform singular integral operator on C ([20],[23])

Hf.�/ D lim
"#0

Z
jz�� j>"

f .z/

.� � z/2
d�.z/

is a bounded operator onL2.C; �/ and hence also its compressionH� toL2.�; d�/,
where � is bounded, is a bounded operator. Then also T� D ŒZ;H�� is a bounded
operator and

T�f .z/ D lim
"#0

Z
jz�� j>"

f .z/

� � z
d�.z/:

We have ŒZ; T�� D h�; 1i1 where 1 denotes the constant function equal to 1. Since
ŒZ; T�� is rank one, we have T� 2 Eƒ.�/. Since z�1 is not in L2.D; �/, T� is not
in C2. It can be shown that T� 2 CC2 (the ideal of compact operators with singular
numbers sn D O.n�1=2/). Also clearly the linear span of operators of the form
Mf T�Mg gives operators K in Eƒ.�/ which are in CC2 and the commutators of
which ŒZ;K� are dense in C2.L2.�; �//.

4. About the K-theory of Eƒ.�/

4.1. Passing via almost normal operators, the Pincus g-function gives a homomor-
phism of the K0-group of Eƒ.�/ to L1-functions. We shall prove that the Con-
jecture 3 about almost normal operators (see 2.5) implies that this homomorphism
completely determines the groupK0.Eƒ.C/0/. Conversely, assuming Conjecture 4,
we will show that such a result about theK-theory ofEƒ.C/0 implies Conjecture 3.

We begin with some technical facts.

Lemma 4.2. If F D F 2 2 Eƒ.�/ and P D P � D P 2 2 B.L2.�; �// is the
orthogonal projection onto F.L2.�; �// then P 2 Eƒ.�/ and P and F have the
same class in K0.

Proof. The orthogonal projection P is equal to  .FF �/ for some C1-function  .
HenceP 2 Eƒ.�/ is a consequence of Proposition 3.15 and tPC.1�t /F , t 2 Œ0; 1�
is a continuous path of projections, so ŒP �0 D ŒF �0.

conj:3
conj:4
conj:3
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Lemma 4.3. Let P 2 Eƒ.�/ be a self-adjoint projection, which is not finite rank
and assume � is bounded. Then we have

PZP 2 AN .L2.�; �/:

Proof. We have

ŒPZ�P;PZP � D PZ.I � P /Z�P � PZ�.I � P /ZP 2 C1
since .I�P /ZP D .I�P /ŒZ; P � 2 C2 andPZ.I�P / D ŒP;Z�.I�P / 2 C2.

Proposition 4.4. Assume � is bounded. For every ˛ 2 K0.Eƒ.�// there is a self-
adjoint projection P 2 Eƒ.�/, not of finite rank, so that ŒP �0 D ˛. The Pincus
g-function gPZP depends only on ˛ (i.e., not on the choice of P ). Moreover, the
map K0 ! L1.C; �/ which associates to a class ˛ the L1-function gPZP is a
homomorphism.

Proof. The existence of unitary “Cuntz n-tuples” U1; : : : ; Un in Eƒ.�/, which
was shown in Proposition 3.17, implies that ŒI �0 D 0 and that for a projection
Q 2Mn.Eƒ.�// there is a projection P 2 Eƒ.�/ with ŒP �0 D ŒQ�0 so that
�ŒQ�0 D ŒI�P �0. HenceK0.Eƒ.�// consists of classes of idempotents inEƒ.�/
and these can be chosen to be self-adjoint by Lemma 4.2.

Again using Proposition 3.15 and Proposition 3.17 the fact that the map
˛ ! gPZP is a well-defined homomorphism is a consequence of the following two
facts: a) if P 2 Eƒ.�/ is a self-adjoint projection andW 2 Eƒ.�/ is unitary, then
g.WPW �/Z.WPW �/ D gPZP and b) if P1; P2 2 Eƒ.�/ are self-adjoint projections
and P1P2 D 0, then gP1ZP1

C gP2ZP2
D g.P1CP2/Z.P1CP2/.

To show that a) holds, remark that gWPW �ZWPW � D gPW �ZWP by unitary
equivalence and PW �ZWP � PZP 2 C2. Moreover, in view of the argument in
2.7 we have k2.PZP / D 0, k2.PW �ZWP/ D 0 and we can then use 2.4 to get
that gPZP D gPW �ZWP .

Assertion b) is proved by the same kind of combination of facts. By the argument
of 2.7, we have

k2.P1ZP1/ D k2.P2ZP2/ D k2..P1 C P2/Z.P1 C P2// D 0:

We then remark that

P1ZP1 C P2ZP2 � .P1 C P2/Z.P1 C P2/ 2 C2
and we can then use 2.4 to get

g.P1CP2/Z.P1CP2/ D gP1ZP1CP2ZP2
D gP1ZP1

C gP2ZP2
;

where we used the fact that

k2.P1ZP1 C P2ZP2/ D k2.P1ZP1 ˚ P2ZP2/ D 0:
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4.5. The homomorphismK0.Eƒ.�//! L1rc.C; �/, constructed in Proposition 4.4,
will be denoted by �.�/ or simply � , when the bounded set � is not in doubt
.L1rc.C; �/ being the L1-space of real-valued functions with compact support).

We shall also denote by AND.H/ the almost normal operators for which
Conjecture 4 (see 2.5) holds. We shall call such almost-normal operators dilatable.
It is easily seen that this is equivalent to the fact that the almost-normal operator is a
Hilbert–Schmidt perturbation of an almost-normal operator which is a compression
PNP of a normal operator N by a projection P so that ŒP;N � 2 C2.

In 2.7 we showed that if T 2 AND.H/ then k2.T / D 0. Next we will give a
few simple facts about K-theory for some of the algebras related to Eƒ.�/ and get
some variants of the homomorphism � .

4.6. If �1 � �2 are bounded Borel sets, then it is immediate from the construction
of � that

�.�2/ ı .i.�2; �1//� D �.�1/:

In view of 3.8, Eƒ.C/0 is the inductive limit of the Eƒ.�/ with � bounded (the
inclusion will be denoted i0.C; �/). Then K0.Eƒ.C/0/ is the inductive limit of the
K0.Eƒ.�//, with bounded �, and there is a homomorphism

�1 W K0.Eƒ.C/0/! L1rc.C; �/

so that
�1 ı .i0.C; �//� D �.�/:

Lemma 4.7. We have K0.Kƒ.�// Š Z, K1.Kƒ.�// D 0, for any � (not of
measure 0), the isomorphism for K0 being given by the trace on B.L2.�; �//.
Moreover we have isomorphisms

K0.Eƒ.�//
p�
�! K0..E=K/ƒ.�//

K0.Eƒ.C/0/
p�
�! K0..E0=K/ƒ.C//:

Proof. The assertions about the K-theory of Kƒ.�/ are a consequence of the last
assertion in Proposition 3.14.

To get the isomorphisms between K0-groups of Eƒ.�/ and .E=K/ƒ.�/ and
respectivelyEƒ.C/0 and .E0=K/ƒ.C/we use the 6-termK-theory exact sequences
associated with

0! Kƒ.�/! Eƒ.�/! .E=K/ƒ.�/! 0

and
0! Kƒ.C/! Eƒ.C/0 ! .E0=K/ƒ.C/! 0:

Since K1.Kƒ.�// D 0 we have that the homomorphisms p� are surjective. The
injectivity of the p� means to show the connecting homomorphisms K1 ! K0

conj:4
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are surjective. This is easily seen to be the case if we can prove Eƒ.�/ and
Eƒ.C/0 C CI contain a Fredholm operator of index 1. If � is bounded, there is
a Fredholm operator of index 1, T 2 B.L2.�; �// so that ŒT;Z� 2 C2. This in turn
follows from the easily seen fact that Z is unitarily equivalent to Z ˚ �IH C K,
where H is some infinite-dimensional Hilbert space, � 2 �.Z/ and K 2 C2.
For Eƒ.C/0 C CI we can use the Fredholm operator T 2 Eƒ.�/ and consider
T ˚ IL2.Cn�;�/ 2 Eƒ.C/0 C CI .

4.8. In view of Lemma 4.7 we infer for bounded� the existence of homomorphisms

Q�.�/ W K0..E=K/ƒ.�//! L1rc.�; �/

and
Q�1 W K0..E0=K/ƒ.C//! L1rc.C; �/

so that
Q�.�/ ı p� D �.�/ and
Q�1 ı p� D �1:

Fact 4.9. The following assertions are equivalent.

(i) Conjecture 3 is true.

(ii) Conjecture 4 is true and �1 is an isomorphism.

(iii) Conjecture 4 is true and �1 is injective.

Proof. Since (ii)) (iii) it will be sufficient to show that (i)) (ii) and (iii)) (i).
(i) ) (ii). Remark first that Conjecture 3 implies Conjecture 4. Indeed, if

T 2 AN .H/ we can find S1 2 AN .H/ so that gS1
D �gT (see [21] for

instance). Then Conjecture 3 implies that there is a normal operator N1 so that
T ˚ S1 ˚ N1 � N 2 C2 where N is a normal operator. Thus we can take
S D S1 ˚ N1 and then S 2 AN and T ˚ S is equal N mod C2, which is the
assertion of Conjecture 4 for T .

To show �1 is surjective consider g 2 L1rc.C; �/. By the work of Carey–Pincus
there is T 2 AN .H1/ so that gT D g. By Conjecture 4 and the fact that it implies
Conjecture 1 we see that T can be chosen to be QN j QH where N is a normal
operator and Q an orthogonal projection, so that ŒQ;N � 2 C2. We may also assume
�.N / D nD for some n 2 N. Then by our results on normal operators mod C2, there
is a unitary operator U W H ! L2.nD; �/ so that ZU � UN 2 C2. Then taking
P D UQU �, we have PZP � UQNQU � 2 C2 and hence gPZP D gQNQ D g so
that �.nD/ŒP �0 D g. Clearly then �1.Œi0.C; nD/.P /�0/ D g.

conj:3
conj:4
conj:4
conj:3
conj:4
conj:3
conj:4
conj:4
conj:1
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To prove that assuming Conjecture 3 holds, �1 is injective, let ˛ 2 K0.Eƒ.C/0/
be so that �1.˛/ D 0. Using 4.6 and Proposition 4.4 there is a self-adjoint projection
P 2 Eƒ.nD/ for some n 2 N, so that .i0.C; nD//�ŒP �0 D ˛ and �.nD/.ŒP �0/ D
�1.˛/ D 0. Hence gPZP D 0. Then Conjecture 3 gives that there is m � n and
there are normal operators N and N1 with �.N / D �.N1/ D mD so that

N � PZ j PL2.nD; �/˚N1 2 C2:

Since we will use the operators Z in Eƒ.nD/ and Eƒ.mD/ simultaneously, we
shall denote them here by Zn and Zm. Clearly, we may use a unitary equivalence
and a C2-perturbation to choose N1. Similarly N can be chosen unitarily equivalent
to Zm. Thus, we get a unitary operator

U W PL2.nD; �/˚ L2.mD; �/! L2.mD; �/

so that ZmU � U.PZn j PL2.nD; �/ ˚ Zm/ 2 C2. This means that U gives
rise to a partial isometry W 2 B.L2.mD; �/ ˚ L2.mD; �// so that W �W D

i.mD; nD/.P /˚ I and WW � D 0˚ I with the property that ŒW;Zm˚Zm� 2 C2.
Then we have W 2 M2.Eƒ.mD//. This gives i.mD; nD/�ŒP �0 C ŒI �0 D ŒI �0
in K0.Eƒ.mD; �//, so that Œi.mD; nD/.P /�0 D 0. But then we must have
˛ D Œi0.C; nD/.P /�0 D i0.C; mD/�Œi.mD; nD/.P /�0 D 0.

(iii) ) (i). Assume (iii) holds and let T1; T2 2 AN .H/ with gT1
D gT2

.
Since Conjecture 4 is part of the assumption (iii) we have T1; T2 2 AND.H/.
This implies there are self-adjoint projection P1; P2 2 Eƒ.nD/ for some n 2 N,
so that Tj is unitarily equivalent to a C2-perturbation of PjZ j PjL2.nD; �/,
j D 1; 2. Moreover, we have �.nD/ŒP1�0 D �.nD/ŒP2�0 because gT1

D gT2
.

It follows that �1.Œi0.C; nD/.P1/�0/ D �1.Œi0.C; nD/.P2/�0/ so that by (iii) we
have i0.C; nD/�ŒP1�0 D i0.C; nD/ŒP2�0. Since Eƒ.C/0 is the inductive limit
of the Eƒ.mD/ we infer that Œi.mD; nD/.P1/�0 D Œi.mD; nD/.P2/�0 for some
m � n. Hence there is a unitary equivalence in MpCqC1.Eƒ.mD// between the
Qj D i.mD; nD/Pj ˚ I ˚� � �˚ I ˚0˚� � �˚0, j D 1; 2 (there are p summands I
and q summands 0). Indeed the equality of K0-classes implies there is an invertible
element intertwining Q1;Q2 and using Proposition 3.17 and Proposition 3.15 we
can pass to the unitary in the polar decomposition of this invertible element of
MpCqC1.Eƒ.nD//. This unitary will then commute with Z ˚ � � � ˚Z modulo C2
and hence will intertwine mod C2 the compressions Qj .Z ˚ � � � ˚Z/Qj , j D 1; 2.
These compressions are unitarily equivalent to

PjZ j PjL
2.nD; �/˚Nj

for some normal operators Nj , j D 1; 2. Thus Tj ˚ Nj , being unitarily equivalent
mod C2 to these compressions, will also be unitarily equivalent mod C2, which proves
(i) under the assumption (iii).

conj:3
conj:3
conj:4
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4.10. In view of Lemma 4.7 and of 4.8 we have that Fact 4.9 also holds with �1
replaced by Q�1.

5. Multipliers, Corona and Bidual of Kƒ.�/

5.1. We shall consider bounded multipliers M.Kƒ.�//, that is double centralizer
pairs .T 0; T 00/ of bounded linear mapsKƒ.�/! Kƒ.�/ so that T 0.x/y D xT 00.y/.

Proposition 5.2. We haveM.Kƒ.�// D Eƒ.�/, that is, if .T 0; T 00/ 2M.Kƒ.�//,
then there is T 2 Eƒ.�/ so that T 0.x/ D xT and T 00.x/ D T x.

Proof. Let .Pn/n�1 be the approximate unit provided by Proposition 3.14 and define
Kn D T

0.Pn/Pn D PnT
00.Pn/. Clearly, the norms kjKnkj will be bounded by some

constant C and if m > n we have

PnKmPn D PnT
0.Pm/PmPn

D PnT
0.Pm/Pn D PnPmT

00.Pn/

D PnT
00.Pn/ D Kn:

Hence the weak limit T of the Kn’s exists, and we shall have PnTPn D Kn. Also
L.T / � supn.L.Kn/ C 2kT kL.Pn// < 1, so that T 2 Eƒ.�/. Moreover, we
have

T 0.Pn/ D w � lim
m!1

T 0.Pn/Pm

D w � lim
m!1

PnT
00.Pm/

D w � lim
m!1

PnPmT
00.Pm/ D PnT

and similarly T 00.Pn/ D TPn. This gives PnT 00.x/ D T 0.Pn/x D PnT x if
x 2 Kƒ.�/ and hence

T 00.x/ D lim
n!1

PnT
00.x/ D lim

n!1
PnT x D T x:

Similarly T 0.x/Pn D xTPm and T .x/ D limn!1 T
0.x/Pn D xT .

Proposition 5.3. The involutive Banach algebra .E=K/ƒ.�/ is a C �-algebra.
Actually if x 2 Eƒ.�/ the norm of p.x/ in .E=K/ƒ.�/ is equal to the norm
of x C K in the Calkin algebra B=K. In particular .E=K/ƒ.�/ is isometrically
isomorphic to a C �-subalgebra of B=K.

Proof. It is easily seen that all assertions follow from the equality of the norm of
p.x/ with the norm of xCK in the Calkin algebra. This in turn will follow from the
fact that with .Pn/n�1 denoting the approximate unit of Kƒ.�/ in Proposition 3.14

lim
n!1

k.I � Pn/x.I � Pn/k
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equals the Calkin norm of x CK, if we will also show that

lim
n!1

L..I � Pn/x.I � Pn// D 0:

In case � is bounded we indeed have

L..I �Pn/x.I �Pn// � lim
n!1

.2kxk jŒI �Pn; z�j2Cj.I �Pn/ŒZ; x�.I �Pn/j2 D 0:

In case � is unbounded we use Lemma 3.12 and write x D x0 C x1 where
x0 DMmxMm with m chosen so that L.x1/ < ". We have

lim sup
n!1

L..I � Pn/x1.I � Pn// � L.x1/ < "

and since " > 0 can be chosen arbitrarily small it will suffice to show that

lim sup
n!1

L..I � Pn/x0.I � Pn// D 0:

This in turn can be seen as follows. Let Zk be the multiplication operator by
z.1 ^ kjzj�1/. Then for any y 2 Eƒ.�/ we have

L.y/ D lim sup
k!1

jŒZk; y�j2:

Moreover if k � m, ŒZk; x0� D ŒZm; x0�. Hence

L..I � Pn/x0.I � Pn// � 2kx0kL.I � Pn/C j.I � Pn/ŒZm; x0�.I � Pn/j2 ! 0

as n!1.

Remark 5.4. The C �-algebra

fp.Mf / 2 .E=K/ƒ.�/ j f 2 Cƒ.�/g;

where Cƒ.�/ denotes the norm closure of ƒ.�/ in L1.�; �/, is in the center of
.E=K/ƒ.�/.

Indeed, if f 2 ƒ.�/ then ŒMf ; x� 2 C2ƒ � Kƒ.�/ if x 2 Eƒ.�/ so that
p.Mf / is in the center of .E=K/ƒ.�/. Since kjMf kj D kMf k D kf k1 if
f 2 L1.�/ and the center is clearly norm-closed in .E=K/ƒ.�/, the assertion
follows.

5.5. We pass to describing the dual of Kƒ.�/ for bounded �. Throughout C1 and
C2 will stand for C1.L2.�; �// and respectively C2.L2.�; �//.
Proposition 5.6. Assuming � is bounded, the dual of Kƒ.�/ can be identified
isometrically with .C1 � C2/=N where

N D f.ŒZ;H�;H/ 2 C1 � C2 j H 2 C2 with ŒZ;H� 2 C1g

and the duality map Kƒ.�/ � .C1 � C2/! C is .T; .x; y// D Tr.T x C ŒZ; T �y/.
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Proof. Since T ! T ˚ ŒZ; T � identifies Kƒ.�/ isometrically with a closed
subspace of K˚ C2 endowed with the norm kK ˚Hk D kKk C jH j2, the dual of
which is C1 � C2, the proof will boil down to showing that N is the annihilator of

fT ˚ ŒZ; T � 2 K˚ C2 j T 2 Kƒ.�/g:

Since the set R of finite rank operators is dense in Kƒ.�/, it will be sufficient to
show that N is the annihilator of

fR˚ ŒZ;R� 2 K˚ C2 j R 2 Rg:

If R 2 R and .x; y/ 2 N we have

Tr.Rx C ŒZ;R�y/ D Tr.RŒZ; y�C ŒZ;R�y/ D Tr.ŒZ;Ry�/ D 0:

Conversely if .x; y/ 2 C1 � C2 is such that

Tr.Rx C ŒZ;R�y/ D 0 for all R 2 R;

then
Tr.R.x � ŒZ; y�// D 0 for allR 2 R

and hence x D ŒZ; y�, that is .x; y/ 2 N .

Lemma 5.7. Under the same assumptions and notations like in 5.6,

f.ŒZ;R�; R/ 2 C1 � C2 j R 2 Rg

is dense in N .

Proof. Let .x; y/ 2 N , that is y 2 C2 is such that x D ŒZ; y� 2 C1. Let .Pn/n�1 be
self-adjoint projections of finite rank so that Pn " I and jŒPn; Z�j2 ! 0. Then we
have jyPn � yj2 ! 0 and also

jŒZ; yPn� � ŒZ; y�j1 D jŒZ; y�Pn C yŒZ;Pn� � ŒZ; y�j1

� jyj2jŒZ; Pn�j2 C jŒZ; y�.I � Pn/j1 ! 0

as n!1.

Proposition 5.8. If� is bounded, with the same notations as in Proposition 5.6, the
dual of .C1 � C2/=N identifies with Eƒ.�/ via the duality map

.T; .x; y//! Tr.T x C ŒZ; T �y/:

In particular Eƒ.�/ identifies with the bidual of Kƒ.�/.
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Proof. The dual of .C1 � C2/=N is the orthogonal of N in B ˚ C2 D .C1 � C2/d
(the usual duality based on the trace). Since Lemma 5.7 provides a dense subset of
N , it suffices to show that fT ˚ ŒZ; T � 2 B ˚ C2 j T 2 Eƒ.�/g is the orthogonal
in B ˚ C2 of f.ŒZ;R�; R/ 2 C1 � C2 j R 2 Rg. Indeed, if T ˚H 2 B ˚ C2 is such
that Tr.T ŒZ;R�CHR/ D 0 for all R 2 R, then Tr..�ŒZ; T �CH/R/ D 0 for all
R 2 R and hence H D ŒZ; T �, which also implies T 2 Eƒ.�/. Clearly, also if
T 2 Eƒ.�/ and R 2 R we have

Tr.T ŒZ;R�C ŒZ; T �R/ D Tr.ŒZ; TR�/ D 0:

6. Concluding Remarks

6.1. Isomorphisms induced by bi-Lipschitz map. Let�1 and�2 be Borel subsets
of C and let F W �1 ! �2 be a map which is Lipschitz and has an inverse which
is also Lipschitz (i.e., F is bi-Lipschitz). Then if �j is the restriction of Lebesgue
measure to �j , the measures F��1 are �2 are mutually absolutely continuous with
bounded Radon–Nikodym derivatives and the same holds for .F �1/��2 and �1
([17]). This gives rise to a unitary operator

U.�2; �1/L
2.�1; �1/! L2.�2; �1/

which maps f 2 L2.�1; �1/ to .f ı F �1/ � .dF��1=d�2/1=2. If g 2 L1.�2; �2/
then

U.�2; �1/
�1MgU.�2; �1/ DMgıF :

The map g ! g ı F gives isomorphisms of L1.�2; �2/ with L1.�1; �1/ and of
ƒ.�2/ with ƒ.�1/. Further T ! U.�2; �1/

�1T U.�2; �1/ is an isomorphism of
Eƒ.�2/ and Eƒ.�1/. This is an isomorphism of Banach algebras with involution,
which however is not isometric, since its norm depends on the Lipschitz constants of
F and F �1. These isomorphisms preserve finite-rank operators and hence Kƒ.�2/
is mapped onto Kƒ.�/. This in turn implies there is an induced C �-algebra
isomorphism of .E=K/ƒ.�2/ with .E=K/ƒ.�1/.

In particular the group of bi-Lipschitz homeomorphisms of a Borel set � has
automorphic actions on Eƒ.�/ and .E=K/ƒ.�/.
6.2. In view of 5.4 it is a natural question to ask, what is the center of .E=K/ƒ.�/?
This question which appeared in the preprint version of this paper has now been
answered in [4]. In the case of bounded � the center is the C �-algebra generated by
p.Z/. Note that the answer to the Calkin-algebra analogue of this question, that
is the determination of the center of the commutant of a separable commutative
C �-subalgebra of the Calkin algebra, is a particular case of our Calkin algebra
bicommutant theorem ([24]).
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6.3. Kƒ.�/ as a Dirichlet algebra. The algebras Kƒ.�/ are examples of Dirichlet
algebras in the sense of non-commutative potential theory ([1], [10], [11]). The
Dirichlet form can be described for instance via the construction of Dirichlet forms
from derivations (Theorem 4.5 in [10] or Theorem 8.3 in [11]). This corresponds
to working with the C �-algebra of compact operators K D K.L2.�; �// and its
trace Tr, which is densely defined, faithful, semifinite and lower semicontinuous.
The Hilbert space H D C2 ˚ C2, where C2 D C2.L2.�; �// is a K � K-bimodule
and J .x ˚ y/ D x� ˚ y� is an isometric antilinear involution of H exchanging
the right and left actions of K on H. Clearly C2 identifies with L2.K;Tr/ and there
is an L2-closable derivation @ of Kƒ.�/ \ C2 ! C2. The definition in case � is
bounded, is @a D ŒX; a� ˚ ŒY; a�. In general the definition can be given in terms
of he kernel K.z1; z2/ of an element a 2 Kƒ.�/ \ C2. Then the components of
@a have kernels .x1 � x2/K.z1; z2/ and respectively .y1 � y2/K.z1; z2/, which
are square integrable since a 2 Kƒ.�/. Also clearly viewed the domain of
definition of @ as part of L2.K;Tr/, the map @ is L2-closed. Moreover @ satisfies
the symmetry condition J @a D @a�. Then the Dirichlet form E which is obtained
as the closure E Œa� D k@ak2H is easily seen to be precisely square of the L2-norm
of .z1 � z2/K.z1; z2/ which is the same as .L.a//2 defined for a 2 Kƒ.�/.
The Markovian semigroup Tt will then act on elements a 2 Kƒ.�/ \ C2 which
have kernels K.z1; z2/ as a multiplier which produces the element with kernel
e�t jz1�z2j

2
K.z1; z2/. In view of the Markovianity it is easy to see that Tt extends to

a semigroup of completely positive contraction on Kƒ.�/, Eƒ.�/ and also on K
and B. Moreover Tt also induces a semigroup of completely positive contractions
on .E=K/ƒ.�/.
6.4. Replacing C2 by some other Cp . One may wonder about the consequences
of replacing the Hilbert–Schmidt class C2 by some other Cp-class in the definition
of Eƒ.�/. This would mean to consider operators T so that ŒT;Mf � 2 Cp
for all f 2 ƒ.�/ with kDf k1 � 1. The questions about Cp-perturbations of
normal operators are still covered by our results ([25], [29]), however the passage
of multiplication operators by Lipschitz functions would require the use of more
difficult results on commutators and functional calculus, like those in [2].
6.5. Perhaps the study of the K-theory of the Eƒ.�/ may benefit from more recent
developments of bivariant K-theory beyond C �-algebras (see [15]).
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