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Abstract. A version of Kontsevich formality theorem is proven for smooth DG algebras. As an
application of this, it is proven that any quasiclassical datum of noncommutative unfolding of
an isolated surface singularity can be quantized.
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1. Introduction

An isolated hypersurface singularity is a polynomial f 2 kŒx1; : : : ; xn� for which
the Milnor number

�.f / D dim kŒx1; : : : ; xn�=.
@f

@x1
; : : :

@f

@xn
/

is finite.
An unfolding of a hypersurface singularity is a family of hypersurface sin-

gularities parametrized by an affine space. From algebraic point of view, the
description of unfoldings of f is nothing but the problem of deformations of the
kŒy�-algebra kŒx1; : : : ; xn�, with the algebra structure defined by the assignment
y D f .x1; : : : ; xn/.

In this paper we suggest studying non-commutative unfoldings of hypersurface
singularities, that is deformations of kŒy�-algebra A D kŒx1; : : : ; xn�, in the world
of associative algebras. In other words, we are interested in studying the Hochschild
cochain complex of A considered as kŒy�-algebra, having in mind Kontsevich
Formality theorem as a possible ideal answer.

Were A smooth as kŒy�-algebra, one could use the version of the Formality
theorem proven in [2] which would provide a weak equivalence of the Hochschild
complex to the algebra of polyvector fields. Our case is only slightly more general:
A is quasiisomorphic to a smooth dg algebra over kŒy�. Fortunately, the proof of
Formality theorem presented in [2] can be easily generalized to this setup. As
a result, we can replace the Hochschild cochain complex with a certain algebra
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of polyvector fields (which in our case is also a dg algebra). This considerably
simplifies the study of noncommutative unfoldings.

The paper consists of two parts. In the first part (Sections 2 and 3) we prove the
following version of the Formality theorem for smooth dg algebras.
Theorem 1.1. LetR � Q be a commutative ring and letA be a commutative smooth
dg R-algebra, that is non-positively graded, semifree over A0 which is smooth as R-
algebra. Then the Hochschild cochain complex of A over R is equivalent to the dg
algebra of polyvector fields as (homotopy) Gerstenhaber algebras.

Recall that for a smooth dg algebra A the algebra of polyvector fields is defined
as SA.T Œ�1�/ where T D DerR.A;A/ is the A-module of R-derivations of A; it is
cofibrant when A is as indicated above. The proof of the theorem is an adaptation
(and simplification) of the proof given in [2].

Since SA.T Œ�1�/ is a Gerstenhaber algebra, its Harrison chain complex
BCom?.SA.T Œ�1�// has a structure of dg Lie bialgebra. Homotopy Gerstenhaber
algebra structure on the Hochschild complex C.A/ can be also described via a dg
Lie bialgebra structure on F �Lie.C.A/Œ1�/, see [6, §6.2] or Subsection 2.3.1 below.

An equivalence between Gerstenhaber algebras of polyvector fields SA.T Œ�1�/
and the Hochschild complex C.A/ is presented on the level of these Lie bial-
gebra models: we present a dg Lie bialgebra �.A/ an two weak equivalences
�.A/! BCom?.SA.T Œ�1�// and �.A/! F �Lie.C.A//Œ1�/ of dg Lie bialgebras. The
proof of the first weak equivalence is straightforward; the second weak equivalence is
deduced from a dg version of Hochschild–Kostant–Rosenberg theorem; however, the
setup of dg smooth algebras makes this deduction quite nontrivial; this part presented
in Subsection 3.5 is our main deviation from the proof of [2].
1.2. In the second part of the paper we apply the formality theorem to studying
noncommutative unfoldings of hypersurface singularities.

The famous consequence of the Kontsevich formality theorem says that any
Poisson bracket on an affine space (or, more generally, on a C1 manifold) can be
extended to a star-product. Poisson bracket appears in this picture as a representative
of the first-order deformation extendable to a second-order deformation. Having this
in mind, we suggest the following.
Definition 1.2.1. A quasiclassical datum of quantization of a B-algebra A is its
deformation over kŒh�=.h2/ extendable to kŒh�=.h3/.

Thus, a quasiclassical datum for a quantization of the ring of smooth functions
on a manifold is precisely a Poisson bracket on the manifold.

Let f 2 kŒx1; : : : ; xn� define an isolated singular hypersurface and let W be a
vector subspace of kŒx1; : : : ; xn� complement to the ideal . @f

@x1
; : : : @f

@xn
/.

We prove (see Proposition 4.5.1) that the quasiclassical data for a NC unfolding
of an isolated singularity f 2 kŒx1; : : : ; xn� are given by pairs .p; S/ where p 2 W
and S is a Poisson vector field satisfying the condition Œf; S� D 0.

The main result of the second part of the paper is the following.
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Theorem 1.3. (see Corollary 4.6.2) Let f 2 kŒx; y; z� define an isolated surface
singularity. Then any quasiclassical datum of NC unfolding of f can can be
quantized to a noncommutative unfolding over kŒŒh��.

Acknowledgements. We are grateful to Martin Markl (who did this some 8 years
ago) and Michel Van den Bergh for having pointed out an error in the first version of
the manuscript.

2. Preliminaries

LetA be a commutative k-algebra and T a Lie algebroid overA. Then the symmetric
algebra SA.T Œ�1�/ has a natural structure of Gerstenhaber algebra (in what follows,
G-algebra): the commutative multiplication is that of the symmetric algebra and the
degree �1 Lie bracket is induced from the Lie bracket on T .

The G-algebra SA.T Œ�1�/ satisfies an obvious universal property: given a
G-algebra X , a map ˛ W A! X of commutative algebras and a map ˇ W T ! XŒ1�

of Lie algebras, so that ˇ is also a map of modules over ˛ and ˛ is a map of T -
modules via ˇ, there is a unique map of G-algebras SA.T Œ�1�/! X .

Recall that the Hochschild cochain complex C.A/ has a G-algebra structure
(however, in a weak sense, see 2.3 below).

Thus, we may try using the above universal property to construct a map
SA.T Œ�1�/ - C.A/ 1 of G-algebras: the pair of obvious maps

A D C 0.A/ - C.A/

T - Homk.A;A/ D C
1.A/ - C.A/Œ1�

should satisfy all necessary properties. This would give an exceptionally simple
proof of Kontsevich formality theorem. The main obstacle to this plan is that C.A/
is not a genuine G-algebra; it has only a structure of Gerstenhaber algebra up to
homotopy. This obstacle can be, however, overcome, with a bit of Koszul duality
and a standard homotopy theory for colored operads.

The proof presented below is a result of processing the proof by Dolgushev,
Tamarkin and Tsygan [2]. The main theorem of [2] is generalized to smooth (non-
positively graded) dg algebras over a commutative Q-algebra. We have slightly
streamlined the argument working with dg Lie bialgebras instead of G?-coalgebras.
On the other hand, the usage of HKR theorem has become more painful in our
generalized context of smooth dg algebras.

1Which has a good chance of being a quasiisomorphism by the Hochschild–Kostant–Rosenberg
theorem.
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2.1. Colored operads. The operads appearing in these notes have more than one2
color. Colored operads were introduced in [1] back in the 1970s, but are in much
less use than their colorless version.

A colored operad O has a set of colors (denoted ŒO�) and a collection of operations
O.c; d/ for any finite collection of colors c W I ! ŒO� and another color d 2 ŒO�.
There is an associative composition of operations, and unit elements in O.fcg; c/ for
all c 2 ŒO�.

The results of [5] about model category structure for operads and operad algebras
in complexes extend easily to the colored setup. In particular, for k � Q and for
any colored operad O in complexes over k, the category AlgO of O-algebras has a
model structure with quasiisomorphisms as weak equivalences and componentwise
surjections as fibrations. The category of colored operads with a fixed collection of
colors is itself the category of algebras over a certain colored operad, therefore a
model structure on operads in characteristic zero.

A map f W P! Q of operads induces a forgetful functor f � W AlgQ - AlgP
and its left adjoint fŠ W AlgP - AlgQ. This is a Quillen pair; it is a Quillen
equivalence if f W P! Q is a quasiisomorphism.

The above claims are proven for colorless operads in [5]. Their colored versions
can be found in [7].

2.2. Koszul duality. The material of this subsection is standard. The details can be
found in [3], [4], [6], [10], and [13].

2.2.1. Let us recall some standard notation connected to Koszul duality of operads.
Let k be a field of characteristic zero. Let O be a (possibly colored) Koszul operad
in graded vector spaces over k and O? the corresponding quadratic dual cooperad.

Any O-algebra X gives rise to a differential in the cofree O? coalgebra F �
O?
.X/.

Dually, any O?-coalgebra Y defines a differential on the free O-algebra FO.Y /.
These assignments define a pair of adjoint functors

�O W CoalgO?
-

� AlgO W BO? : (1)

A map of O-algebras is called weak equivalence if it is a quasiisomorphism. A
map of O?-coalgebras is called weak equivalence if the functor �O carries it to a
quasiisomorphism.

The unit and the counit of the adjunction are weak equivalences; in particular,
the map �O ı BO?.A/

- A is a quasiisomorpism.

2.2.2. O1-algebras. Here O is a colored Koszul operad. By definition, an O1-
algebra structure on a graded vector space X is just a differential on the graded

2Actually, two.
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O?-coalgebra F �
O?
.X/ converting it into a dg O?-coalgebra. This differential is

defined by a collection of maps

dn W F
�n
O?
.X/! XŒ1�

satisfying the condition expressing the property d2 D 0. The component d1 yields a
differential on X .

We use the notation BO?.X/ for the differential graded O?-coalgebra
.F �

O?
.X/; d/.

Any dg O-algebra X can be considered as a O1-algebra, so a canonical map

O1 - O (2)

of dg operads is defined. It is a quasiisomorphism.
There are two different notions of morphism of O1-algebras. The first is just

a morphism of algebras over the dg operad O1. This is a map of complexes
f W X ! Y preserving the O1-algebra structure. The second, more general, is
called an O1-morphism and it is defined as a morphism F W BO?.X/ ! BO?.Y /

of dg coalgebras. It is defined by its components Fn W F �nO?
.X/ - Y satisfying

some quadratic identities.
An O1-morphism F is called a weak equivalence if it is a weak equivalence

of the dg O?-coalgebras. One can easily check that F is a weak equivalence iff
F1 W X ! Y is a quasiisomorphism. If A is an O1-algebra, BO?.A/ is a dg O?-
coalgebra and one has an O1-weak equivalence

A - �O ı BO?.A/

whose first component is a quasiisomorphism of complexes described, if one
forgets the differential, as the composition of A D F �1

O?
.A/ ! F �

O?
.A/ with

BO?.A/ D F
1
O.BO?.A//! FO.BO?.A//.

2.2.3. Examples. The following operads are Koszul.
� O D Com; Ass; Lie with O? D Lie�f1g; Ass�f1g; Com�f1g.
� G, the operad for Gerstenhaber algebras, with G? D G�f2g.
� O D CM, the two-color operad governing pairs .A;M/ where A is a

commutative algebra and M is an A-module. Similarly, LM is the two-color
operad governing pairs .L;M/ where L is a Lie algebra and M is an L-
module. Both operads are Koszul with CM? D LM�f1g and LM? D CM�f1g.

� LA, the two-color for Lie algebroids. An LA-algebra is a pair .A; T / consisting
of a commutative algebra A and a Lie algebroid T . The operations include,
apart of the commutative multiplication on A and a Lie bracket on T ,
an A-module structure on T and a T -module structure on A. One has
LA? D LA�f1g. LA is a Koszul operad (see [13]), but we will not use this
fact.
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2.2.4. A slight generalization. LetR be a commutative k-algebra. Given an operad
O over k, it makes sense to talk about O-algebras with values in the category of
complexes dg.R/. The category of such algebras is denoted AlgO.dg.R//. If O is
Koszul, one still has an adjoint pair

�O W CoalgO?.dg.R//
-

� AlgO.dg.R// W BO? ; (3)

defined by the same formulas as for R D k but using the symmetric monoidal
category dg.R/ of complexes over R instead of that over k. The canonical map

�O ı BO?.A/! A

is still a weak equivalence for each A 2 AlgO.dg.R//.
The notions of O1-algebra and of O1-morphism extend without difficulty to

algebras in dg.R/.

2.3. Algebra structure on Hochschild cochain complex.

2.3.1. �B -algebras. Let X be a G-algebra. Then XŒ1� has a Lie algebra structure, so
that BCom?.X/Œ1� which is F �Lie.XŒ1�/ considered as a graded vector space, acquires
a dg Lie bialgebra structure. Vice versa, any dg Lie bialgebra structure on F �Lie.XŒ1�/
gives rise to a G1-structure on X . This leads to definition of another dg operad eB
whose action on a complex X is given by a dg Lie bialgebra structure F �Lie.XŒ1�/
extending the standard Lie coalgebra structure and the differential on X .

Since any G-algebra has a natural structure of eB-algebra, and any eB-algebra
structure on X extends to a G1-algebra, one has a decomposition

G1 - eB - G; (4)

of the canonical map G1 ! G.
The eB-structure on X is given by the collection of the following operations:

� `m;n W F
�m
Lie .XŒ1�/˝ F

�n
Lie.XŒ1�/! XŒ1�,

� dn W F
�n
Lie.XŒ1�/! XŒ2�,

defining the Lie bracket and the differential on F �Lie.XŒ1�/, subject to certain
relations which assure that d2 D 0, d is a derivation of the bracket, and the cocycle
condition connecting the bracket with the cobracket.

Note for book-keeping the degrees of `m;n and dn.

� `m;n W Lie.m/
� ˝ Lie.n/� - eB.mC n/1�m�n; m; n � 1,

� dn W Lie.n/
� - eB.n/2�n; n � 2.
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2.3.2. Lie bialgebras versus G-algebras. The operad G is Koszul, so we have a
standard Koszul duality pair of adjoint functors

�G W CoalgG?
-

� AlgG W BG? :

There is another pair of adjoint functors, a sort of “relative Koszul duality”, based
on the fact expressed in 2.3.1: if X 2 AlgG, the dg Lie coalgebra BCom?.X/Œ1� has
a structure of Lie bialgebra. Dually, given a dg Lie bialgebra Y , the commutative
algebra �Com.Y Œ�1�/ has a structure of G-algebra. This leads to the pair of adjoint
functors

�0Com W LBA
-

� AlgG W B
0

Com?
; (5)

where LBA denotes the category of dg Lie bialgebras and

B 0
Com?

.X/ D BCom?.X/Œ1� and �0Com.Y / D �Com.Y Œ�1�/:

As for the conventional Koszul duality (1) an arrow in LBA will be called a
weak equivalence iff its image under �0Com is a quasiisomorphism. We use the same
notation B 0

Com?
for the obvious extension of the functor to eB-algebras.

2.3.3. Deligne conjecture. Deligne conjecture asserts that the cohomological
Hochschild complex C.A/ of an associative algebra A has a structure of an algebra
over an operad of (chains of) little squares. Even though Deligne conjecture is very
much relevant for the Formality theorem, the version we need is extremely easy.

Define a B1-algebra structure on a graded vector space X as the structure of dg
bialgebra on the free associative coalgebra F �Ass.XŒ1�/. Similarly to eB-algebras, this
leads to a dg operad B1 governing such algebras. This operad is generated by the
operations

� mp;q W X
˝p ˝X˝q - XŒ1� p � q�, the components of the product, and

� mn W X
˝n - XŒ2 � n�; the components of the differential,

defining the associative multiplication and the differential on F �Ass.XŒ1�/, subject to
certain relations which assure that d2 D 0, d is a derivation of the bracket, and the
condition describing compatibility of the product with the coproduct.

The Hochschild complex C.A/ has a canonical B1-algebra structure defined by
the formulas:

� m2 is the cup-product.

� mk D 0 for k > 2.

� m1;l are the brace operations x0; : : : ; xl 7! x0fx1; : : : ; xlg having degree �l .

� mk;l D 0 for k > 1.
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The associative cup-product together with the brace operations generate an
operad Br called the operad of braces. Thus, the action of B1 on C.A/ factors
through Br whose action on C.A/ is more or less tautological.

It turns out that the operad Br is equivalent to the operad of small squares, so the
action of Br on C.A/ described above “solves” Deligne conjecture.

What is much more important for us is that there exists a canonical map of
operads eB - B1 (depending of a choice of associator) so that any B1-algebra
is endowed with a canonical eB-algebra structure. This remarkable result was proven
by Tamarkin in his 1998 paper on Kontsevich formality theorem; see [6], [11], [12].
The proof is based on Etingof–Kazhdan theory of quantization (and dequantization)
of Lie bialgebras.3

3. Equivalence of Lie bialgebra models

In this section we are working in the symmetric monoidal category of complexes
over a commutative ring R � Q.

A is a smooth dg algebra over R and C D C.A/ is the Hochschild cochain
complex of R-algebra A. All operads considered will live over Q; all our O-algebra
will be in AlgO.dg.R//.

3.1. According to the above, the Hochschild complex C D C.A/ admits aeB-algebra
structure expressible (in a very nontrivial way) via the cup product and the brace
operations on C . The corresponding dg Lie bialgebra structure on F �Lie.C Œ1�/ is
given by the collection of maps `m;n; dn described in (2.3.1), and together they
form a dg Lie bialgebra denoted B 0

Com?
.C /.

The algebra of polyvector fields SA.T Œ�1�/ is a (strict) G-algebra, so it leads to
dg Lie bialgebra B 0

Com?
.SA.T Œ�1�//. In order to prove the main theorem, we will

present a pair of weak equivalences

B 0
Com?

.SA.T Œ�1�// �
�

�.A/
~- B 0

Com?
.C.A// (6)

in the category of dg Lie bialgebras.
We will proceed as follows. First of all we identify a dg Lie coalgebra �.A/

which naturally maps to B 0
Com?

.SA.T Œ�1�//. We can easily check the map is a weak
equivalence, it is injective, and that its image is closed with respect to Lie bracket.
This endows �.A/ with a structure of Lie bialgebra.

On the other hand, we will see that the pair of obvious embeddings ˛ W A ! C

and ˇ W T ! C Œ1� induces a map of dg Lie bialgebras �.A/ ! B 0
Com?

.C.A//.
Finally, the fact that it is a weak equivalence follows from the Hochschild–Kostant–
Rosenberg theorem.

3We have no doubt that the mapseB ! B1 ! Br are quasiisomorphisms; unfortunately we were
unable to find a reference for this fact.
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3.2. There is a pair of adjoint functors

F W AlgCM
-

� AlgCom W G (7)

defined by the formulas

G.A/ D .A;AŒ1�/I F.A;M/ D SA.MŒ�1�/:4

On the Koszul-dual side, there is a pair of adjoint functors

f W CoalgCM?
-

� CoalgCom? W g (8)

defined by the formulas

g.C / D .C; C Œ1�/I f .C;N / D C ˚NŒ�1�;

with the cobracket on f .C;N / determined by the cobracket on C and the coaction
ı W N ! N ˝ C so that the value of the cobracket at x 2 MŒ�1� � f .C;N / is
ı.x/� � ı ı.x/ where � W C ˝NŒ�1�! NŒ�1�˝C is the standard commutativity
constraint.

The functors G and g commute with the Bar-construction, so that the composi-
tions BCM? ıG and g ıBCom? are naturally isomorphic. This yields the composition

f ı BCM?
- f ı BCM? ıG ı F D f ı g ı BCom? ı F

- BCom? ı F: (9)

To get a feeling for what is going on, let .A;M/ 2 AlgCM. The composition
BCom? ı F applied to .A;M/ gives the (shifted) dg Lie coalgebra Koszul dual to the
commutative algebra SA.MŒ�1�/which is graded by powers ofM . The composition
f ıBCM? applied to .A;M/ is the dg subcoalgebra of BCM?.SA.MŒ�1�// consisting
of the elements of degree � 1. In particular, the map (9) is injective.

3.3. We wish to apply the map of functors (9) to a Lie algebroid .A; T /. The functor
F applied to a Lie algebroid, yields a G-algebra, so we upgrade it to the functor

F 0 W AlgLA ! AlgG:

In the diagram below we draw the categories and the functors described above.
The arrows denoted # are forgetful functors (#Œ�1� is the composition of the forgetful
functor with a shift).

The diagram looks more symmetric if one adds an extra vertex which we denote
LCM. This is the category of CM?-coalgebrasX together with a Lie bialgebra structure
on f .X/Œ1�. One has a forgetful functor LCM ! CoalgCM? and an obvious functor
f 0 W LCM ! LBA. The functor B 0

CM?
is defined later on, see Lemma 3.3.1 and the

discussion after it.
4 The symmetric algebra SA.M/ D

L
n�0 S

n
A.M/ makes sense even if the commutative algebra

A has no unit. This is important as our operads are non-unital.
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AlgLA
F 0 - AlgG

AlgCM
F -�
G

#

-

6

B0
Com?

AlgCom

#

-

LCM

B0
CM?

?
f 0 - LBA

�0Com

?

CoalgCM?

�CM

6

B
CM?

? f -�
g

#

-

CoalgCom?

�Com

6

B
Com?

?

#Œ�
1�

-

(10)

Recall that the fuctors G and g (see the front face of the cube) commute with the
Bar-constructions, which leads to a canonical morphism of functors

f ı BCM?
- BCom? ı F:

Let now .A; T / be a Lie algebroid. We define �.A; T / D f .BCM?.A; T //Œ1�. By
definition, this is a dg Lie coalgebra and one has a canonical injective map

� W �.A; T / - BCom?.F.A; T //Œ1� D B
0

Com?
.F 0.A; T //: (11)

Recall that F 0.A; T / D SA.T Œ�1�/ is precisely what we need, so we have
constructed a dg Lie subcoalgebra �.A; T /. It is easy to check (see Lemma 3.3.1
below) that �.A; T / is also a Lie subalgebra, so that �.A; T / 2 LBA. But even before
doing this, let us check that the embedding � W �.A; T / ! BCom?.F.A; T //Œ1� is a
weak equivalence of dg Lie coalgebras.

In fact, one has a weak equivalence �CM ı BCM?.A; T / ! .A; T /. Applying the
functor F and we get a weak equivalence

F ı�CM ı BCM?.A; T /! F.A; T /: (12)
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Since the map �Com ı BCom?.F.A; T // ! F.A; T / is also a weak equivalence, the
commutative diagram

�Com ı f ı BCM?.A; T /
�Com.�/- �Com ı BCom? ı F.A; T /

F ı�CM ı BCM?.A; T /

wwwwwwwwww
- F.A; T /

?

(13)

asserts that � is a weak equivalence in CoalgCom? .

Lemma 3.3.1. The image of f .BCM?.A; T // in B 0
Com?

.F 0.A; T // is a Lie subalge-
bra.

Proof of the lemma. Denote V D F 0.A; T / D SA.T Œ�1�/ D ˚S
n
A.T Œ�1�/. The

Lie bialgebra B 0
Com?

.V / as a graded space is just

F �Lie.V Œ1�/ D
M
n�1

.Lie.n/� ˝ V ˝nŒn�/Sn :

The Lie bracket on it is extended from the Lie bracket on V Œ1�. The space
V is graded, and this grading induces a grading on F �Lie.V Œ1�/. The image of
f .BCM?.A; T // consists of elements having degree � 1. The Lie gracket has degree
�1 with respect to this grading; therefore, the image is closed with respect to the Lie
bracket.

3.4. From now on A is a smooth dg commutative algebra over R � Q and
T D DerR.A;A/. This means that A0 is a smooth commutative R-algebra and the
map A0 ! A is a finitely generated cofibration (that is, A is generated as a graded
A0-algebra by a finite number of free variables xi of negative degree).

In what follows we will write �.A/ instead of �.A; T /. According to 3.1 the
complex B 0

Com?
.C / D .F �Lie.C Œ1�/; d/ has a structure of dg Lie bialgebra. We

will present a Lie bialgebra map ~ W �.A/ ! B 0
Com?

.C / and prove it is a weak
equivalence.

Our plan is as follows. First of all we will present a map of dg Lie coalgebras
~ W �.A/ ! B 0

Com?
.C /, then we will check it is a Lie algebra homomorphism, and

after that we will check it is a weak equivalence of Lie bialgebras.
To present a map of dg Lie coalgebras, it suffices to have a map

BCM?.A; T /
- g.B 0

Com?
.C //:
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The latter is given by a pair of maps .˛; ˇ/ where

˛ W A - C (14)

is a map of Com1 algebras and

ˇ W T - C Œ1� (15)

is a map of Com1-modules over ˛. The maps are precisely the maps we were talking
about from the very beginning, ˛ W A ! C 0.A/ D A and ˇ W T ! Hom.A;A/ D
C.A/Œ1�0.

To check that ˛ induces a map of Com1-algebras, we need to check that the
map ˛ W A ! C induces a map of the Bar-constructions which commutes with
the differentials. This is equivalent to checking that the higher components of the
differential

dn W F
�n
Com?

.C /! C Œ1�; n > 3;

vanish on F �n
Com?

.A/ and d2 coincides with the multiplication in A.
Similarly, in order to check that ˇ is a map of Com1-modules over ˛, one needs

to verify that dn; n > 2 also vanish on the part of F �n
Com?

.C / having n�1 component
C 0 and one component C 1. Both statements are independent of A; they are verified
in Theorem 3 of [2]. Thus, we already know that ~ W �.A/! B 0

Com?
.C / is a map of

dg Lie coalgebras. To check it preserves the bracket, it suffices to compose ~ with
the projection to cogenerators C Œ1� of B 0

Com?
.C /.5

Since the projection itself is a Lie algebra homomorphism, we have to verify that
the composition

�.A/
~- B 0

Com?
.C / - C Œ1� (16)

is a Lie algebra homomorphism.
We can forget about the differentials. The inclusion �.A/! F �

Com?
.SA.T Œ�1�//

induces a grading on �.A/; the composition �.A/! C Œ1� is zero on all components
except for degree 1. Thus, it factors as

�.A/! A˚ T Œ�1�! C Œ1�;

so it remains to check that the obvious map

A˚ T Œ�1�! C Œ1� (17)

preserves the Lie bracket. This is obvious when C Œ1� is endowed with the
Gerstenhaber bracket. The rest follows from the following proposition.

5 Let us explain the last point. The bracket map X ˝X ! X in a Lie bialgebra is a coderivation,
for an appropriate notion of coderivation from a comodule to a Lie coalgebra. A composition of
a coderivation with a homomorphism of Lie coalgebras gives a coderivation. We have to compare
two coderivations into a cofree Lie coalgebra. It is sufficient to compare their corestrictions on the
cogenerators.
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Proposition 3.4.1. The Lie1-structure on C[1] defined by theeB-structure, coincides
with the (strict) Gerstenhaber bracket.

Proof. The claim is independent of A and is precisely Theorem 2 of [2].

The map ~ W �.A/! B 0
Com?

.C / is therefore a map of Lie bialgebras.

3.5. ~ is a weak equivalence. We have to verify that ~ W �.A/ ! B 0
Com?

.C / is a
weak equivalence, that is that the map

�Com.~/ W F ı�CM ı BCM?.A; T / D

�Com ı f ı BCM?.A; T /! �Com ı BCom?.C / (18)

is a quasiisomorphism. We will deduce this from a dg version of Hochschild–
Kostant–Rosenberg (HKR) theorem for smooth dg algebras.

Let A be as in 3.4. According to [9, §5.4.5.1], the homological HKR map
C�.A;A/ - SA.�AŒ1�/ is a quasiisomorphism. This is a map of cofibrant A-
modules, so it induces a quasiisomorphism of complexes

HKR W SA.T Œ�1�/ - C D Hom.C�.A;A/; A/: (19)

Note that the cohomology of HKR is compatible with the Gerstenhaber structures.
This immediately implies �Com.~/ is a quasiisomorpism in the case A has trivial

differential, for instance, when A is a (conventional) smooth algebra. In fact,
the map (18) induces in cohomology a Gerstenhaber algebra homomorphism from
SA.T Œ�1�/ to H.C/ which coincides with HKR on A and on T . Then by HKR
theorem it is a quasiisomorphism.

In general, H.C/ needs not be generated by H.T / over H.A/, so the above
reasoning does not work. It is still true that the maps �Com.~/ and HKR induce, after
some identification, the same map in cohomology. This will require, however, a
certain nontrivial effort.

It is convenient to replace�Com.~/ with a strict map of algebras over Com1. One
has a pair of adjoint functors

AlgCM1
F1-�
G1

AlgCom1

defined similarly to the pair .F;G/: G1.C / D .C; C Œ1�/, and F1 is left adjoint to
G1.

The pair .˛ W A! C; ˇ W T ! C Œ1�/ that defined the map ~ gives rise to a map
.A; T /! G1.C /, hence a map

~1 W F1.A; T / - C (20)

is defined. This is a strict map of Com1-algebras.
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Lemma 3.5.1. ~ is an equivalence iff ~1 is a quasiisomorphism.

Proof. Three lines of the diagram

AlgCM1
F1-�
G1

AlgCom1

CoalgCM?

B
CM?

? f-
�
g
CoalgCom?

B
Com?

?

AlgCM

�CM

? F -�
G

AlgCom

�Com

?

(21)

convert to the same pair of adjoint functors between the homotopy categories
Ho AlgCM and Ho AlgCom. Thus the maps ~1 and �Com.~/ represent isomorphic
arrows in the homotopy category.

3.5.2. It remains to verify ~1 is a quasiisomorphism.
The canonical projection � W Com1 ! Com induces a map  � W F1.A; T / !

F.A; T /which is a quasiisomorphism. We will prove that the maps ~1 and HKRı �
induce the same map in cohomology.

First of all, we need a generalization of the functor F1. Let P be a dg operad
and let PM be the operad governing pairs .A;M/ where A is a P-algebra andM is an
A-module. The canonical map PM! P of operads defines a pair of adjoint functors
FP W AlgPM ! AlgP and GP W AlgP ! AlgPM with GP.A/ D .A;AŒ1�/. We have
FCom1 D F1 and FCom D F .

Let now P be endowed with a pair of maps j W P ! Br and p W P ! Com. The
map p W P! Com defines a map PM! CM of colored operads, so the pair .A; T / can
be considered as an PM-algebra.

We will call the triple .P; j; p/ admissible if the map .˛; ˇ/ W .A; T /! .C; C Œ1�/

defined as in beginning of Section 2, is a map of PM-algebras. We know at least two
examples of admissible triples:

� P D Com1 with the obvious projection to Com and the map to Br defined as
the composition Com1 !eB! B1 ! Br.

� P D Ass with the obvious projection p W Ass ! Com and the map to Br
defined by the cup-product.

Moreover, given an admissible triple .P; j; p/ and a map of operads q W Q ! P, the
triple .Q; jq; pq/ is also admissible.

In this case one has a natural map  q W FQ.A; T /! q�.FP.A; T //:
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An admissible triple .P; j; p/ defines a map �P W FP.A; T / ! p�.C / of P-
algebras, so that for any q W Q! P one has

�Q D q
�.�P/ ı  q: (22)

Look at the diagram of operads

Ass1
� - Ass

Com1

q

?
- Br;

?

(23)

where � is the obvious projection, the bottom horisontal map is defined as the
composition Com1 ! eB ! B1 ! Br and the map q W Ass1 ! Com1 is
defined as follows. Recall that a Com1 structure on X is a structure of dg Lie
coalgebra on F �Lie.XŒ1�/. Having a dg Lie coalgebra, one can apply the “enveloping
coalgebra” functor to get a dg coalgebra structure on F �Ass.XŒ1�/ which is an Ass1-
algebra structure on X . This shows that any Com1-algebra X has a canonical Ass1
structure; whence, a map q W Ass1 ! Com1.

In Lemma 3.5.3 below we check that the diagram above is homotopy commuta-
tive.

The diagram of operads (23) gives rise to a diagram

FAss1.A; T /
 �- FAss.A; T /

FCom1.A; T /

 q

?
�Com1 - C:

�Ass

?

(24)

According to Lemma 3.5.4 below it is commutative in the derived category of R-
modules.
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The following diagram is obtained from (24) by passing to the cohomology and
adding an extra vertex H.F.A; T //.

H.FAss1.A; T //
�- H.FAss.A; T //

H.FCom1.A; T //

H. q/

?
�

H.�/
- H.F.A; T //

H. p/

?

H.C/

H
.�
Ass /

-

H.�Com1 /

-

(25)

Both convex quadrilaterals in (25) are commutative.
The HKR isomorphism is defined as the composition of H.�Ass/ with the

symmetrization map sym W H.F.A; T //! H.FAss.A; T // induced by the canonical
map from the symmetric algebra of T Œ�1� to its tensor algebra and splitting the
canonical projection H. p/.

Thus, if we define � W H.F.A; T // - H.C/ as the composition

� D H. Com1/ ıH.�/
�1;

One has � ıH. p/ D H.�Ass/, which implies � D HKR.
It remains to prove Lemmas 3.5.3 and 3.5.4.

Lemma 3.5.3. The diagram of operads (23) is homotopy commutative.

Proof. We will prove that the diagram

Ass1

Com1
?

- B1

-

(26)

is homotopy commutative—this will imply the homotopy commutativity of the
original diagram.

Now, the diagram (26) maps quasiisomorphically to the commutative diagram

Ass

Com
?

- G

-

(27)
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of its cohomology. This proves the claim since Ass1 is cofibrant.

Lemma 3.5.4. Let f0; f1 W P - Q be a pair of (left) homotopic maps of dg
operads. Let .A; T / 2 AlgPM and C 2 AlgQ. Assume a pair of maps ˛ W A ! C

and ˇ W T ! C Œ1� is compatible with both P-algebra structures on C defined by f0
and f1. Then two maps

FP.A; T /! C

induced by two different P-module structures on C defined by f0 and f1, determine
the same map in the derived category of complexes.

Proof. Let
P t P - eP �- P

be a cylinder object for P so that a map h W eP ! Q realizes the homotopy between
f and g. Replacing Q witheP and C with h�.C / we immediately reduce the claim to
the case Q DeP.

Choose a surjective quasiisomorphism C 0 ! C with cofibrant C 0 in AlgQ. The
map C 0 ! ���Š.C

0/ is a quasiisomorphism since � is a quasiisomorphism of
operads.

Without loss of generality we can assume the pair .A; T / is freely generated as a
PM-algebra by a sequence of elements

ai 2 A; i 2 I; ti 2 T; i 2 J;

such that d.ai / (resp., d.ti /) is expressed via generators with smaller indices (with
respect to a certain total order on I t J ).

One can easily see that the maps .A; T /! GP .f
�
i .C //; i D 0; 1; defined by the

pair .˛; ˇ/ (this is the same map for i D 0; 1 if considered as a map of complexes)
can be lifted to maps ji W .A; T /! GP .f

�
i .C

0// so that the compositions

.A; T /
ji- GP .f

�
i .C

0//
p- GP .f

�
i ı �

�.�Š.C
0/// D GP .�Š.C

0//

coincide. In fact, since .A; T / is freely generated by ai ; ti , two maps from .A; T /

to GP .�Š.C 0// coincide if they coincide on ai ; tj . We will lift the map .˛; ˇ/ W
.A; T / ! GP .f

�
i .C // to GP .f �i .C

0// by lifting the images of the generators one
by one. Thus, the values of two maps .A; T / ! GP .f

�
i .C

0// will coincide on the
generators. These will be two different maps to .C 0; C 0Œ1�/ but they will coincide at
the generators; the compositions of these maps with C 0 ! ��ı�Š.C

0/will coincide.
Passing to the adjoint maps, we get the diagram

f �i .C
0/

p- �Š.C
0/

FP .A; T / -

j i

-

f �i .C /

q

?

(28)
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where p and q are quasiisomorphisms. Since the compositions of j0; j1 with
p coincide in the derived category, j0 and j1 coincide in the derived category;
therefore, their compositions with q coincide as well.

4. Application: non-commutative unfolding

4.1. Let k be a field of characteristic zero and let f be a polynomial in
A D kŒx1 : : : ; xn�. We put B D kŒy� and we define a B-algebra structure on A
via y D f .x1; : : : ; xn/.

Denote P D BŒx1; : : : ; xn; e� the semifree B-algebra generated by xi in degree
0, e in degree �1, with the differential defined as

de D f .x1; : : : ; xn/ � y:

The obvious projection � W P ! A carrying xi to xi and e to 0, is a
quasiisomorphism. It is split as a homomorphism of k-algebras by � W A ! P

defined by �.xi / D xi .

Lemma 4.1.1. A is free as B-module.

Proof. It is a standard fact that there is an automorphism of A given by the formulas

xi 7! xi C x
Ni
n ; xn 7! xn; (29)

for suitable Ni , such that the image of f is a monic polynomial in xn with
coefficients in kŒx1; : : : ; xn�1�. This allows one to assume, without loss of generality,
that f is monic in xn. In this case the sequence of elements in A

x1; : : : ; xn�1; f

is regular and A is free over kŒx1; : : : ; xn�1; f �. This implies that A is also free as
B D kŒf �-module.

4.2. Comparison of Hochschild complexes. Let k be a commutative ring, A
and A0 two dg k-algebras cofibrant as complexes over k. We are going to show
that if A and A0 are quasiisomorphic, then their Hochschild cochain complexes are
quasiisomorphic as dg Lie algebras.

Note that according to a deep result of Keller [8] the Hochschild cochain
complexes C.A/ and C.A0/ should be equivalent as B1-algebras. We present below
a much more elementary result so as not to be compelled to extend [8] to dg setup.

Let A be a dg algebra over k. The Hochschild cochain complex C.A/

can be defined as follows. We endow a unital cofree dg associative coalgebra
A_ D ˚n�0A

˝nŒn� with a differential encoding the differential and multiplication
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in A. The (graded) coderivations of A_ form a dg Lie algebra which is precisely
C.A/Œ1�.

Let f W A! A0 be a surjective quasiisomorphism of dg algebras over k. Assume
furthermore that both A and A0 are cofibrant as complexes over k.

Let us show that the Hochschild complexes C.A/ and C.A0/ are equivalent as dg
Lie algebras.

The map f induces a map of dg coalgebras

f _ W A_ - A0_:

This yields the pair of maps � and  in the diagram

X
 0 - Coder.A_/

Coder.A0_/

�0

?
 - Coderf .A_; A0_/;

�

?

(30)

where Coderf is the collection of maps ı W A_ ! A0_ satisfying the condition

� ı ı D .ı ˝ f C f ˝ ı/ ı�:

Define X by the cartesian diagram above. Then X inherits the dg Lie algebra
structure. The maps � and  are both quasiisomorphisms and � is surjective, so
the maps �0 and  0 are quasiisomorphism of dg Lie algebras.

Corollary 4.2.1. Let A and A0 be two dg algebras over k which are cofibrant as
complexes. If A and A0 are quasiisomorphic, their Hochschild complexes C.A/Œ1�
and C.A0/Œ1� are quasiisomorphic as dg Lie algebras.

Proof. Any pair of quasiisomorphic algebras can be connected by a pair of surjective
quasiisomorphisms from a cofibrant algebra which is automatically cofibrant as a
complex of k-modules.

4.3. We are now back to our unfoldings. According to the above, the dg Lie
algebra governing deformations of B-algebra A, is the algebra of polyvector fields
SP .TP Œ�1�/Œ1� where TP D DerB.P /. In a more detail, TP is is a P -module freely
generated by the elements @i D @

@xi
of degee 0 and the element @e D @

@e
of degree

1, with the differentials given by the formula

d.@e/ D 0I d.@i / D
@f

@xi
@e: (31)

It is convenient to compare TP with a dg Lie algebroid T over A generated by the
same @i and @e over A, with the differential given by (31).
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Note the following lemma.

Lemma 4.3.1. The differential in T is inner, given by the formula

d.x/ D �Œf @e; x�:

The Lie algebroid TP can be described via T as follows.

Lemma 4.3.2. Let P be a commutative (dg) A-algebra, T a Lie algebroid over
A and let a map of Lie algebras and left A-modules ˛ W T ! Der.P / makes
commutative the following diagram

T
˛- Der.P /

Der.A/
?

- Der.A; P /;
?

(32)

where the maps to Der.A; P / are defined via composition with the algebra map
A! P . Then ˛ uniquely defines a structure of P -Lie algebroid on P ˝A T and a
map .A; T /! .P; P ˝A T / in AlgLA.

Proof. Straightforward.

The lemma identifies TP with P ˝A T and, in particular, defines a Lie algebra
map SA.T Œ�1�/ - SP .TP Œ�1�/. It is, obviously, a quasiisomorphism.

By Lemma 4.3.1 the differential in SA.T Œ�1�/ is also given by the formula
d.x/ D �adf @e .

4.4. Calculation. Denote g D SA.T Œ�1�/Œ1�. One has

g�1 D A;

g0 D
Ln
iD1A@i ;

g1 D A@e ˚
L
i;j A@i ^ @j ;

g2 D
L
i A@e ^ @i ˚

L
i;j;k @i ^ @j ^ @k :

(33)

Let .R;m/ be a local artinial k-algebra with the maximal ideal m.
Letw D p@eCS 2 m˝g1 with S 2

L
m˝A@i^@j . One has dwC 1

2
Œw;w� D

dS C Œp@e; S� C
1
2
ŒS; S�. The first two summands are divisible by @e whereas the

third summand is not. Thus, w satisfies Maurer–Cartan equation iff(
dS C Œp@e; S� D 0

ŒS; S� D 0
(34)
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or (taking into account that Œf @e; S� D 0 iff Œf; S� D 0)(
Œf � p; S� D 0

ŒS; S� D 0:
(35)

Let TA D Der.A;A/ D ˚A@i .
Note that the commutative algebra SA.TAŒ�1�/ endowed with the differential

d D adf identifies with the Koszul complex of A constructed on the sequence
.@1f; : : : ; @nf /.

From now on we assume that f is an isolated singularity, that is that @if form a
regular sequence. This implies that SA.T Œ�1�/; adf / is acyclic. Moreover, for any
artinian local .R;m/ and any p 2 m˝ A the complex .R ˝ SA.T Œ�1�/; adf �p/ is
also acyclic as a deformation of acyclic complex. Therefore, Œf � p; S� D 0 if and
only if there exists a trivector field T on A such that S D Œf � p; T �.

This proves the following result.

Proposition 4.4.1. Let f 2 A D kŒx1; : : : ; xn� define an isolated hypersurface
singularity. A solution of Maurer–Cartan equation for a noncommutative unfolding
is given by a pair .p; T / where p 2 m ˝ A and T 2 m ˝ ^3A.TA/ satisfying the
condition

ŒŒf � p; T �; Œf � p; T �� D 0: (36)

4.5. Quasiclassical data for NC unfoldings. Recall that quasiclassical datum is
defined as deformations of B-algebra A over kŒh�=.h2/ extendable to kŒh�=.h3/.

Deformations over kŒh�=.h2/ are described by the first cohomology of g.
Cocycles are given by pairs .ph; Sh/ with p 2 A; S 2 ˚A@i ^ @j satisfying
the condition Œf; S� D 0, pairs .p1h; S1h/ and .p2h; S2h/ being homologous iff
S1 D S2 and p1 � p2 2 .@1f; : : : ; @nf /.

Maurer–Cartan solutions over kŒh�=.h3/ are described by pair .p; S/ where
p D p1hC p2h

2 and S D S1h C S2h
2 satisfying (35). This imposes two extra

conditions on .p1; S1/:

1. ŒS1; S1� D 0:

2. There exists S2 such that Œp1; S1� D Œf; S2�.

Note that the second condition is equivalent to the condition Œf; Œp1; S1�� D 0 which
is always fulfilled as Œf; S1� D 0 and Œf; p1� D 0.

Choose a vector subspace W in kŒx1; : : : ; xn� such that

kŒx1; : : : ; xn� D W ˚ .@1; : : : ; @n/:
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We have proven

Proposition 4.5.1. Quasiclassical data for NC unfolding of an isolated hypersurface
singularity f 2 kŒx1; : : : ; xn� are given by pairs .p; S/ where

1. p 2 W .

2. S is a Poisson bivector field satisfying Œf; S� D 0.

4.6. Quantization. We doubt that any quasiclassical datum can be quantized in
general. This is, however, true for n D 3 (this case includes the classical ADE
singularities) as shown in the following lemma.

Lemma 4.6.1. Let A D kŒx1; x2; x3�. Any bivector field S satisfying Œf; S� D 0 is
Poisson.

Proof. Recall that the differential in the Koszul complex .SA.TAŒ�1�/; d/ is given
by the formula dx D Œf; x�. Let S D Œf; T � D dT . One has

ŒS; S� D ŒdT; dT � D dŒT; dT � D 0

as ŒT; dT � is a four-vector.

Corollary 4.6.2. Any quasiclassical datum for NC unfolding of a surface isolated
singularity can be quantized.
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