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Cyclic homology, tight crossed products, and small stabilizations

Guillermo Cortifias™

Abstract. In [1] we associated an algebra I'°°(2() to every bornological algebra 2 and an
ideal Igyy < I'®°(2() to every symmetric ideal S < £°°. We showed that Is(q) has K-
theoretical properties which are similar to those of the usual stabilization with respect to the
ideal Js < B of the algebra B of bounded operators in Hilbert space which corresponds
to S under Calkin’s correspondence. In the current article we compute the relative cyclic
homology HCy«(I'*°(2) : Is(qy). Using these calculations, and the results of loc. cit., we
prove that if 2 is a C *-algebra and c¢o the symmetric ideal of sequences vanishing at infinity,
then Ku«(I¢y(20) is homotopy invariant, and that if = > 0, it contains KPR as a direct
summand. This is a weak analogue of the Suslin—-Wodzicki theorem ([20]) that says that for
the ideal K = J., of compact operators and the C*-algebra tensor product A K, we
have K,(A®K) = K P(2). Similarly, we prove that if 2 is a unital Banach algebra and
€997 = Uy<oo 7, then K (Igoo—(qy)) is invariant under Holder continuous homotopies, and
that for * > 0 it contains KL¥ (20) as a direct summand. These K-theoretic results are obtained
from cyclic homology computations. We also compute the relative cyclic homology groups
HC.(T°°®) : Isey) in terms of HC,.(£2° () : S(A)) for general A and S. For A = C
and general S, we further compute the latter groups in terms of algebraic differential forms. We
prove that the map HC,, (I'*°(C) : Is(c)) = HCyr (B : Jg) is an isomorphism in many cases.
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1. Introduction

Let £2 = (?(N) be the Hilbert space of square-summable sequences of complex
numbers and B = B({?) the algebra of bounded operators. Calkin’s theorem in [3,
Theorem 1.6], as restated by Garling in [15, Theorem 1], establishes an isomorphism

S Jg
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between the lattice of proper symmetric ideals of the algebra £*° of bounded
sequences and that of proper two-sided ideals of the algebra B = B({?) of bounded
operators. In [1] we introduced a subalgebra I'*® C B and showed that the above
lattices are also isomorphic to the lattice of proper two-sided ideals of I'*°, via the
correspondence

St>Ig=JsgNI™.

More generally, we associated to each bornological algebra 2, an algebra ['°(2()
which contains an ideal /g(q) for each symmetric ideal S <1 £*°. We showed that
the algebra /g9 has K-theoretical properties which are analogous to those of the
usual stabilization with respect to Jg, at least when S is one of the following:

S € {co, 077, 09,49 (p < 00,9 < 0)}. (1.1)
Here cy is the ideal of sequences vanishing at infinity, £ consists of the g-summable

sequences, and
=, et = e

r<p s>q

We proved that for S as in (1.1), there is a long exact sequence:

KHy1(IUsy) —= HC, (T (R) = Isn)) (1.2)

|

KH,(Is@)) Kn(T® () : Isr)

Here HC is cyclic homology and K H is Weibel’s K -theory. If furthermore, S # ¢,
then KH.(Isw)) = KHx«(Iy1(q)). We proved that the functor K Hy(1coc)) is
invariant under arbitrary continuous homotopies of bornological algebras, and that
K H.(1y1g)) is invariant under Holder continuous homotopies. We also showed that
if * > 0 and either 2 is a C*-algebra and S = c¢¢ or 2 is a local Banach algebra
and S = ¢!, then K H.(Isqp)) contains K <P(2) as a direct summand. In the current
article we study the groups H C,(I'*°(2() : Ig(q()) for general S and 2. We show for
example that if 2( is a C *-algebra then /(g is H -unital and

HC (T Q) : Iy = 0.
It follows from this, excision, and the exact sequence (1.2), that the comparison map
Kx(Ieon)) = KHx(Ieo(a)) (1.3)

is an isomorphism. In particular, if 2 is a C *-algebra, then K (1. (2)) is homotopy
invariant, and if * > 0, it contains Ki(’p(Ql) as a direct summand. This again
shows that /. ) has properties analogous to those of J., = K, the ideal of
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compact operators. Indeed, the result above is a weak analogue of the Suslin—
Wodzicki theorem (Karoubi’s conjecture) which says that if 2 is a C *-algebra then
K.(ARK) = KyP(A). We also show that if 2 is a unital Banach algebra then
I goo— () is H -unital and

HC*(FOO(QD . I(oo—(g[)) =0.
Thus the comparison map
Ky (Igoo— () = KHy(Igoo— (1)) (1.4)

is an isomorphism. Again this is analogous to a similar property of stabilization
with respect to Jyeo— = | » LP, the union of all Schatten ideals (see [24, pp. 490],
[9, Theorem 8.2.5]). In [24], M. Wodzicki studied the relative cyclic homology
groups HC,(B : Js). For S as in (1.1), the following integer was computed by
Wodzicki in [24, Corollary to Theorem 8]

m=mg =min{n : HC,(B : Js) # 0}.
We prove in Proposition 7.1.7 that
m =min{n : HC,(T'*™ : Ig) # 0}, (1.5)
and that the natural map is an isomorphism for n = m:
HCp(T® : [5)—=> HCp(B - J). (1.6)

The techniques used in this article to establish the results above about H C(I'*° () :
Is(q) are similar to those used in [24] to study the relative cyclic homology of
stabilizations by Jg. We also obtain more results about the groups H Cx(I"*°(21) :
Is(2)) using a different technique, which involves a description of I'*® and /g as
crossed products, established in [1, Proposition 6.12]. The inverse monoid Emb of
all partially defined injections

NDdomeN.

acts on £*°(2l) by

oy if f(m)=n

Jel@)n =17 else. (1.7)

By definition, an ideal S <1 £°° is symmetric if the action above maps S to itself.
Observe that if A, B C N are disjoint then the inclusions p4 : A — N and pp :
B — N satisfy

(pauB)x = (pa)« + (PB)«
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In other words, the action above is tight in the sense of Exel [14]. Thus £>°(%) is a
module over the ring

[' = Z[Emb]/(pa + pp — paup : AN B = 0)

Let P C T be the subring generated by all the p4 with A C N. Note that P is
isomorphic to the subring of £°°(2() consisting of those sequences « : N — Z which
take finitely many distinct values. In particular (1.7) makes P into a I"-module.
Moreover £>°(2l) is a P-algebra, and the map

HCH>®@®) : SA) - HC((L>®E)/P: S))/P) (1.8)

is a quasi-isomorphism (see Example 6.3.3 and (6.6.5)). Furthermore the action of
Emb on £°°(2l) extends to a tight action on HC(£>° () : Is(x)), and we show that

HC(T®R) : Is) = Ho(T/P : HC((E*() - S@))/P)). (1.9)

Here the hyperhomology groups H, (I'/P, —) are the hyperderived functors of the
functor
' —Mod - Ab, M — Ho(I'*°/P,M) := M Qr P.

We show in Proposition 6.2.3 that

Ho(T/P,M) = M¢
= M/span{m — f.(m) :m € M, f € Emb such that dom f = N}. (1.10)

It follows from (1.8) and (1.9) that there is a first quadrant spectral sequence
Ejq = Hp(T/P HC,UX() : S@)) = HCpig (M) : Isa).
In particular
HCo((I(A) = Isy) = Ho(T'/P : £ (20) /[ () : SD)D).
Specializing to 2l = C and using (1.10) and [13, Theorem 5.12] we obtain
HCo(T'*® :Ig) =Se = HCo(B : Js) (1.11)

for every symmetric ideal S <1 £°°. Another application of (1.9) is that for 2 com-
mutative the groups H C,(I'°(2A) : Ig(qy) carry a natural Hodge decomposition.
Indeed, the usual Hodge decomposition of the cyclic chain complex [17] gives an
Emb-equivariant direct sum decomposition

HC((®@) : S@))/P) = @ HCP (€>@) : S@0)/P).

p=0
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Thus for
HCP(I®@) : Is@) = HT/P.HCP (E™Q) : S@))/P))

we have

HC,(T®@) : Is@) = P HCP (TPQ) : Isqa)- (1.12)
p=0

In Theorem 7.2.5 we obtain a description of H C,fp ) (I"'*° : Ig) in terms of differential
forms which we shall presently explain. Let 2400 be the de Rham complex of
absolute —i.e. Z-linear— algebraic differential forms. For p > 0 consider the
subcomplex

Sp—q+lg2‘1 p > q
F (S))? = £ —
(F(5)) { o, 4= p

We show in Theorem 7.2.5 that
HCP(T® : Is) = Hut p(T/P, Fp)(S)). (1.13)
It follows that there is a spectral sequence (Corollary 7.2.6)

pELn = Hao(T/P,S"H1QE™) = HCE), (T I5).

Using this spectral sequence, we obtain (Corollary 7.2.7)
HCIM(I™ 1 Is) = (S /d(S2QN),

for every symmetric ideal S <1 £°°. In the particular cases (1.1) we can say more
(see Proposition 7.3.3). We show, for example, that if p € Z, then

0 n<qg+p-1

HCO((T™®: Ip) = - _
) =N Qa1 Qe n=q 4 p— 1.

(1.14)

In particular, by (1.5) and (1.6) we have
HCypa(B:LP) = HCyp o (T 1 Igp) = HCILZ) (I 1 1) = L1

The rest of this paper is organized as follows. In Section 2 we recall some
material from [1], including, in particular, the crossed product decomposition
Isy = SEO)#pI (Proposition 2.2.11). This crossed product is just the tensor
product S(2) ®p I with multiplication twisted by the action of Emb on S(()

(att f)(b#g) = afu(b)#fg.

In particular
IR = Igooqy = L R)#pT.
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In Section 3 we show that every two-sided ideal of I"*° is flat (Proposition 3.6).
Furthermore, if S is closed under taking square roots of positive elements (e.g.
if § = ¢,£%°7) then Ig(y) is a flat ideal of I'°°(2) for every unital Banach
algebra 2 (Proposition 3.8). Section 4 concerns the algebra P. We show that P
is a filtering colimit of separable Z-algebras (Proposition 4.1) and that if k is a
field then P(k) = P ® k is von Neumann regular (Corollary 4.2). Hence if k is
a field then every P(k)-module is flat. Further, we show that for any unital ring R,
I'(R) = I ® R is flat as a module over P(R) (Proposition 4.3). The next section
concerns excision. We call a ring A K-excisive if it satisfies excision in algebraic
K-theory. It was proved by Suslin and Wodzicki [20] that a ring having a certain
triple factorization property (TFP) is K-excisive. We prove in Proposition 5.1 that if
20 is a bornological algebra and S <1 £°° is a symmetric ideal such that S(2() has the
TFP, then /g9 is K-excisive. This applies, for example, when 2l is a C *-algebra
and S = ¢ (Example 5.4), and also when 2l is a unital Banach algebraand S = £°°~
(Example 5.5). Section 6 is concerned with the homology of crossed products of the
form R#pI" where R is unital. The identity (1.10) is proved in Proposition 6.2.3.
The quasi-isomorphism (1.8) follows from the case k = Q of Example 6.3.3, which
says that if k is a field, A is a unital P(k)-algebra, and N is an A ® px) A°?-module,
then the map of Hochschild complexes

HH(A/k,N) — HH(A/P(k),N)

is a quasi-isomorphism. In Proposition 6.4.4 we compute the Hochschild homology
of a crossed product R#pI" with coefficients in a bimodule of the form M#,I". We
show that there is a quasi-isomorphism

H(T/P, HH(R/P(k), M)) > HH(R#pT /P (k), M#pT).

As an application, we obtain the isomorphism (1.11) in Corollary 6.5.3. Using this,
the calculations of [24] compute H Co(I'® : Is) for S € {£7,{*P} (Lemma 6.5.4).
Theorem 6.6.3 shows that if k is a field and R is unital then there is a quasi-
isomorphism

H(/P, HC(R/P(k))) —> HC(R#pT/k).

The identity (1.9) follows from this (Corollary 6.6.6). In the particular case when R
is a commutative (Q-algebra, we obtain (in Subsection 6.7) a Hodge decomposition

HC,(R#pT) = @ HCP (R#pT) = @ H,(T/P : HCP(R/P)).

p=0 p=0

The decomposition (1.12) follows from this. In Section 7 we study the groups
HC(I'*°(R) : I'sa). The identities (1.5) and (1.6) are proved in Proposition 7.1.7.
Theorem 7.1.9 proves that the comparison map (1.3) is an isomorphism when 2( is a
C*-algebra and that (1.4) is an isomorphism when 2l is a unital Banach algebra. The
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identity (1.13) is proved in Theorem 7.2.5. The latter is deduced from a computation
of HC ip )(€°° /S) (Theorem 7.2.4) which, we think, is of independent interest. The
identity (1.14) is included in Proposition 7.3.3, which considers also the case when
p ¢ Z and computes some of the groups HC,gq)(FOo yxp).

Acknowledgements. This article is part of an ongoing joint research project with
Beatriz Abadie. It was originally part of our joint paper [1], which we later decided
to split into two articles, to facilitate publication. Although she had important
contributions to the present article—particularly to Section 3—she insisted in not
being included as an author. I am indebted to her as well as to the Universidad de la
Republica for its hospitality during my many visits to Beatriz to collaborate in this
project over the last five years.

2. Preliminaries

2.1. Symmetric sequence ideals and the algebra ['>°(2(). Throughout this paper
we work in the setting of bornological spaces and bornological algebras; a quick
introduction to the subject is given in [12, Chapter 2]. Recall that a (complete,
convex) bornological vector space over the field C of complex numbers is a filtering
union V = UpVp of Banach spaces, indexed by the disks of V, such that the
inclusions Vp C Vp- are bounded. A subset of V is bounded if it is a bounded
subset of some V. Let X be anonempty set. Amap X — V is bounded if its image
is contained in a bounded subset. We write £>°(X, V) for the bornological vector
space of bounded maps X — V where B C £*°(X,V) is bounded if | Jpcp b(X)
is. The inverse monoid Emb(X) of partially defined embeddings X — X acts on
£%°(X, V) by means of the following action

fol@)s = Upi(yy IfXE .ran(f)
0 otherwise.

When X = NorV = C, we omit it from our notation; thus Emb = Emb(N),

£°(V) = £°N,V), £°(X) = £°(X,C) and £*° = (>*°(N,C). A subspace

S < £*° is called symmetric if it is stable under the action of Emb. If S C £

is a symmetric subspace and V is a bornological vector space, then

S(V) :={a € £°(V): @D)a(N) C Vp and ||e||p € S}

is a symmetric subspace of £>°(V).

We will often work with sequences indexed by infinite countable sets other
than N. A bijection ¥ : N — X gives rise to a bounded isomorphism o« >
au between £°(X,V) and £*°(V). If S C {£% is a symmetric subspace, we
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define S(X,V) = {su~! :s € S(V)}. Because S is symmetric by assumption, this
definition does not depend on the choice of u.

Recall a bornological algebra is a bornological vector space 2l with an associative
bounded multiplication. If 2( is a bornological algebra, then pointwise multiplication
makes £°°(2() into a bornological algebra, and if S <1 £*° is a symmetric ideal, then
S < £°°(2) is a symmetric two-sided ideal.

Let R be aringand 4 : N x N — R a countably infinite square matrix with
entries in R. For i, j € N, consider the following elements of Z U {oo}:

r,-(A) = #{] . Aij 75 0},6‘]'(/1) = #{i . Aij ;ﬁ O},
N(A) :=sup{ri(A),c;(A) : i € N}.

Let 2 be a bornological algebra, and S <1 £°°(2() an ideal. Following [1, Defini-
tion 3.5], we set

Is(g[) = {A = (Aij)i,jGN . {Aij} e S(NxN)and N(A) < OO} (2.1.1)
and FOO(Q[) = Igoo(gl)

2.2. Crossed products with I'. Let R be a ring. Karoubi’s cone of the ring R is
the ring

I'(R) ={A € Mn(R) : N(A) <ooand #{A; j : (i, j) € Nx N} < oo}.
We also consider the ring of all locally constant sequences
P(R) = {o € RN : #{a, : n € N} < 00}.

Observe that « € P(R) if and only if the diagonal matrix diag(w) € I'(R). We
shall identity P(R) with diag(P(R)) C I'(R). When R = Z we omit it from our
notation; we set

I =T), P="P).
By [8, Lemma 4.7.1] the map

¢: T @ R—T(R), ¢(A®x),-,j =A,-,jx (2.2.1)
is an isomorphism. By [1, Remark 6.8] the restriction of ¢ induces an isomorphism
P ® R— P(R). (2.2.2)

It follows from this that I" and P are flat Z-modules. There is a monoid
homomorphism

1 ifj € dom and ) =1
U:Emb—T, Us)iy =1, J Ot}(lfefr)wise.f (/) (2.2.3)
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Observe that the idempotent submonoid of Emb is isomorphic to the monoid 2N of
subsets of N with intersection of subsets as multiplication. If p> = p and A = Imp,
then U, = diag(y ) is a diagonal matrix. We will often identify p, U, and y 4. We
also consider the monoid rings Z[2] and Z[Emb], and the two-sided ideals

I ={{)auB—xa—x8:A.BCN, AnNB =0}) <z]2"], (2.2.4)
J ={{)auB—xa—xB:A BCN, AN B =0}) < Z[Emb]. (2.2.5)

The following lemma follows from [1, Lemma 5.4 and Remark 6.8].

Lemma 2.2.6. Let R be a ring. The maps (2.2.3), (2.2.1) and (2.2.2) induce the
following isomorphisms:

(i) P(R) = R2V]/R® I.

(i) T'(R) = R[Emb]/R ® J.
Remark 2.2.7. Given a monoid M and a unital ring R, a representation of M in
R-modules is the same thing as a module over the monoid algebra R[M]. In view of
Lemma 2.2.6, the modules over P(R) and I"(R) correspond to those representations

of the inverse monoids 2V and Emb which are tight in the sense of Exel (see [14,
Def. 13.1 and Prop. 11.9]).

Because Emb is a monoid, if A is a ring on which Emb acts by algebra
endomorphisms we can form the crossed product A#Emb. As an abelian group,
A#Emb = A ®y Z[Emb] with multiplication given by

(a# [)(b#g) = af«(b)#[g. (2.2.8)

Here # = ® and f.(b) denotes the action of f on Emb. Now assume that the Emb-
ring A is also a P-algebra, that is, it is a ring and a 7P-bimodule, and these operations
are compatible in the sense that

(ap)b = a(pb) (a,be A, peP).

Further assume that A is central as a P-bimodule, i.e. pa = ap (a € A, p € P),
and that

pa =p«a) (pe2).

Under all these conditions, we say that A is an Emb-bundle (cf. [2, Def. 2.1]). For
J <1 Z[Emb] as in (2.2.5), we have

A#Emb > A#J = span{r#j :r € A, j € J}and
A#Emb > L = span{rp#h —r#tph :r € A, p € P,h € Emb}.

Set
A#pI' = A#Emb/(L + A#J). (2.2.9)
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Thus, A#pI" = A ®p T as left P-modules, and the product is that induced by
(2.2.8); we have

(@#U p)(b#Uy) = afu(b)#U sy € AbipT. (2.2.10)

Proposition 2.2.11. ([1, Proposition 6.11]) Let 2 be a bornological algebra. The
map
(°)#pl — T @A), o#Uy — diag(a)Uy (2.2.12)

is an isomorphism of P-algebras. If S < £*° is a symmetric ideal, then (2.2.12)
sends S(R)#pI isomorphically onto Iy < T'°(21).

3. Flat ideals of I'*° and £*°

Proposition 3.1. Every finitely generated ideal of £*° is principal and projective.

Proof. The fact that the finitely generated ideals of £°° are projective follows from
[18, Corollary 2.4]. We will prove that they are principal. Given o € £°°, set

0, if a(n) =0
va(n) =3 o otherwise (3.2)
()]’ '

Notice that v, is the partial isometry in the polar decomposition of «. In fact, we
have
a = vylal, |of =veo.

It follows that, for any ideal / in £°°, « € [ if and only if |@| € /. Now let / be an
ideal of £°° generated by {«g, o1}, and set

p(n) = max{leg ()|, a1 (n)]}.

Fori = 0,1, let
1/2  if|ae(n)| = |ar(n)|
yvin) =49 1 iflei ()| > |e1—i(n)]
0 otherwise.

We have i = yolag| + y1]ar]; thus o € 1. Now set

0 if u(n) =0
Ti(n) = o;(n)

o) otherwise.

Then o; = 7;u, (i = 0,1). Notice that 7; € £°°, since |t;(n)| < 1 forall n € N,
i = 0, 1. Therefore, i generates /. The general case can now be proven by induction
on the number of generators. O



Cyclic homology, crossed products, and stabilizations 1201

Corollary 3.3. Every ideal of £° is flat.

Proposition 3.4. Let 2 be a unital Banach algebra and S <1 £%° a symmetric ideal.
Assume that

aeS = ]ules.
Then S(RL) <1 £°°() is flat both as a right and as a left £°° ()-module.

Proof. Consider the following homomorphism of £°°(2()-modules
PR @0 S — S, (o ® By = anpPhn.

We claim that p is an isomorphism. To prove it is surjective, for & € S(2{) let v, be
as in (3.2). Then v, € £°°(2A) and

@ = (e ® [|of]).
Thus p is surjective. To prove it is also injective, let
n . .
n= Za’ ® B € ker .
i=1

By Proposition 3.1, the ideal (8!,..., 8") <1 £ is principal. Let 8 be a generator;
we may and do choose it so that § = |B]. By bilinearity, we may rewrite 7 as a
single elementary tensor and we have

n=a®p, af =0.
But a8 = 0 implies oz\/E = 0, whence

n=a\/E®\/E=O.

Thus the claim is proved. It follows that S(2() is flat as a left £°°(2()-module, since it
is the scalar extension of S, which is a flat £°°-module by Corollary 3.3. The proof
that S(2l) is flat on the right is similar. O

Examples 3.5. The hypothesis of Proposition 3.4 are satisfied, for example, when S
is either of £%°7, ¢g.

Proposition 3.6. Every two-sided ideal of T'*° is flat both as a left and as a right
I'*°-module.

Proof. Let I <1 I'*°. By [1, Theorem 4.5] there is a symmetric ideal S such that
I = Ig. Observe that

]S=S®7>F=S®(oo£oo®przs®(ooroo

Thus Is®reo = S®y o is exact by Corollary 3.3. Hence [ is flat as a right module
and therefore also as a left module, since ['*° is a *-algebra. O
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Remark 3.7. By [1, Proposition 4.6], if k is a field, then Mook is the only proper
two-sided ideal of I'(k). Observe that M.k is projective both as a left and as a
right module, since it is isomorphic to an infinite sum of copies of the principal ideal
generated by the idempotent £ ;.

Proposition 3.8. Let 2 be a unital Banach algebra and S <1 £°° a symmetric ideal
as in Proposition 3.4. Then I is flat both as a left and as a right I"*° (()-module.

Proof. By Proposition 2.2.11 and the proof of Proposition 3.4 we have the following
canonical isomorphisms of right I'*°(2()-modules

Isqy = SR Rp T =8 ®po 600(220 Rp I =8 Qoo I RD).

This, together with Corollary 3.3, proves that /g(g) is flat as a right I"°° (2()-module.
The proof that it is also flat on the left is similar. O

4. Flatness properties of P

Let k be a commutative ring. Recall that a k-algebra A which is projective as an
A ®; A°P-module is called separable.

Proposition 4.1. The k-algebra P(k) is a filtering union of separable algebras.

Proof. We shall show that P is a filtering union of finite products of copies of Z,
indexed by the finite partitions of N. Here a finite partition of N is a finite set
mw ={A1,...,An} of subsets of N such that N = Ay U--- U A,. We say that a
partition p = {Bj,..., By} is finer than x if the following condition is satisfied:

(V1<i<m)3j) BiCA;.

Note that if 7 and 7/ are any two finite partitions, then

aAnr' ={BCN:@Aen, A en)B=4ANnA"}.
is a finite partition and is finer than each of them. Thus the set

Part(N) = {x finite partition of N }.
is a filtered partially ordered set. If 7 € Part(N) has n elements, put
n
P D Ry =(PZPy,.
i=1

Observe that R, = Z" and that P = | J,, R;. This proves the proposition in the case

k = Z. The general case follows from this using the isomorphism P ® k — P (k).
O
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Corollary 4.2. If k is a field, then P (k) is a von Neumann regular ring. In other
words, every P(k)-module is flat.

Proposition 4.3. Let R be a unital ring. Then I'(R) is flat, both as a left and as a
right P(R)-module.

Proof. We prove that I"(R) is flat as a right P(R)-module; the proof that it is also
flat on the left is similar. If M is a P(R)-module, then

T'(R)®pry M =T ® R®pgr M =T ®p M.

Hence it suffices to consider the case R = Z. In view of Proposition 4.1 and its
proof, we have
'®p M = colim I' ®g, M.
7 €Part(N)

Hence it suffices to show that I is flat as a module over R, for each = € Part(N).

We have
R, = PzPs.
Aenm

Hence
I ®r, M = EBFPA ® paM.
Aen

Thus it suffices to show that I'p 4 is flat as an abelian group. Since I'py4 is a direct
summand of I', we are reduced to showing that " is Z-flat. As said above, the
map (2.2.1) is an isomorphism for every ring; in particular this applies to show
that if M is any abelian group—regarded as a ring with trivial multiplication—then
@M =T (M). Since M — I'(M) is clearly exact, this conlcudes the proof. []

5. Excision

A ring A is called K-excisive if for every ideal embedding A < B the map
K«(A) —> K«(B : A) is an isomorphism. It was proved by Suslin and Wodzicki
[20, Theorem C] that if a ring A satisfies the following property then it is K-excisive.

Vn,VYa € A®" 3b € A®", ¢,d € A, such that @ = cdb and such that
O:gqd)y:={ved:dv=0}=(0:4cd),.

The right ideal (0 :4 d), is called the right annihilator of d in A. The property
above is the so-called left triple factorization property (TFP). A ring is K-excisive
if and only if its opposite ring A°” is ([20, Remark (1) pp 53]), so rings satisfying
the right TFP are excisive also. Further results of Wodzicki ([23, Theorems 1.1
and 3.1]) and of Suslin—Wodzicki ([20, Theorem B]) establish that a Q-algebra A is
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K-excisive if and only if it is excisive for cyclic homology, and that this happens if
and only if the bar complex (CP97 (4), ) is exact. Here

b - Crf—‘{z-’i(A) — A®n+2 — A®n+1 — Cnbar(A) (I’l > 0)
’ _ s i 7
b'(ap® - Qant1) = Z(—l) A @ ®aiai+1 Q- Qdny1.
i=0

The tensor products above are taken over Z or, equivalently, over QQ, since A4 is
assumed to be a Q-algebra. The (Q-algebras whose bar homology vanishes—that is,
the K-excisive ones—are also called H -unital.

Proposition 5.1. Let A be a bornological algebra and S <1 £%° a symmetric ideal.
Assume that S(21) has the (left or right) triple factorization property. Then I is
K-excisive.

Proof. Assume that S(2() has the left TFP. We have to prove that /g is H -unital.
Letn > Oandletz € C,{’“’(IS(Q[)) be a cycle. We may write

m
=Y diag@*)Uy,, ® -+ @ diag(@™)Uy, ,.
i=1

where supp(e/') = ran(f;;) for all i, j. By TFP, there are elements y, § and
BL,....B™in S(A) such that &®' = y§B (1 <i < m), and such that

(050 ¥8)r = (0 520 O)r- (5:2)
Now observe that if 6 € S(2() then, by our definition of /g (2.1.1), we have
(0 :7gq diag(®)), ={T € Iga : (Vj) Tx,j € (0 :sc21) 0)r}-
Hence, (5.2) implies that
(0 1750, diag(y8))r = (0 115y, diag(d))r. (5.3)

Put
y = Zdiag(ﬁ")ufo',. ® diag(a')Uy, , ® -+ @ diag(@™) Uy, ,.

1

Consider the following element of C,fi’l (Iscn))
w = diag(y) ® diag(d)y.

We have
b'(w) = z — diag(y) ® diag(8)b’(y).
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If n = 0 then b’(y) = 0, so this proves that z is a boundary. We have to show that
diag(§)b’(y) = 0if n > 1. Choose a basis {v;} of the Q-vector space C,f’f{(ls(m)).
Then y = ) ; T; ® v; for unique 7; € Ig(q), and

0= 0'(z) = diag(y§)b'(y) = ) _ diag(y§)T; ® .
l

Hence we must have diag(y8)T; = 0 for all /, and therefore diag(§)b’(y) = 0
by (5.3). O

Example 5.4. Any Banach algebra with a bounded left approximate unit satisfies
the Cohen-Hewitt factorization property; thus it has the left TFP ([6, Lemma 6.5.1]).
In particular, this applies to C *-algebras. If 2l is a C *-algebra then ¢ (2l) is again a
C*-algebra; hence /., (x) is K-excisive, by Proposition 5.1.

Example 5.5. If 2 is a unital Banach algebra then £°°~(2() has the TFP. To see this,
letal,...,a™ € £°~. Choose p such that o € {2 () for all i. For each n put

o Jyal? iy, £0

= max ||’ P =
Vn 15i5m|| all: B 0 otherwise.

Then ||B%|| < || |]'/? and therefore B¢ € €27 (). Similarly y/* € £47(21). One
checks that the factorization o = y'/4y1/4 1 satisfies the requirements of the TFP.

6. Homology of crossed products with I"

6.1. Homology of augmented algebras. In this subsection A and B will be unital
rings; furthermore, B will be an A-algebra, that is, B will be a ring together with a
unital ring homomorphism ¢ : A — B. Further assume that A is equipped with a left
B-module structure and a surjective B-module homomorphism 7 : B — A such
that 7wt = id 4. Observe that the triple (B, A, i) is an augmented ring in the sense of
Cartan-Eilenberg [4, Chapter VIIL§1]. Since in addition, B is an A-algebra, we call
the triple (B, A, ) an augmented algebra. Let M be a right B-module. Consider
the simplicial A-module L. (B/A, M) given in dimension n by

1, (B/A, M) =M ®4 B®4",
with face and degeneracy maps defined as follows (n > 0)
i tLny1 (B/A, M) - L, (B/A, M),

X0Q - QXiXit+1 -+ Q Xp+1 i<n

X0 ® - ® Xp 7 (Xp41) i=n+1
§i Ly (BJA, M) —L,s1 (BJA, M), (0<i <n)
§5i(xo®  ®Xp) =X0® QX @I R Xj41 @+ ® Xp.

0i(Xo ® Q@ Xpt1) =
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The homology of (B/A, M) relative to (A, B, ), denoted H«(B/A, M), is the
homotopy of the simplicial module L (B/A, M);

Hy«(B/A, M) = mu(L (B/A,M)) = H«(L (B/A, M), ).
Here
n+1 '
0= (=1)"; :Lnt1 (B/A, M) -1, (B/A, M)
i=0
is the alternating sum of the face maps. We have

Ho(B/A,M) =M ®p A.

Let P(B/A) =1L (B/A,B); = : P(B/A) — A is aresolution which is projective
relative to B/A, and 1. (B/A,N) = N ®p P(B/A). Hence if B is flat both as a
left and as a right A-module, then

H.(B/A,M) =Tor2(M, A).

Without flatness assumptions, we may regard the groups H«(B/A, M) as relative
Tor groups.

Lemma 6.1.1. Let N be a right B-module. Consider N> = N'*2 as a right module
over My B via the matrix product. View My B as an A & A-algebra through the
diagonal embedding (a1, az) — Ei1a1 + Exzas. Then the map

t:1 (B/JA,N) -1 (My(B)/A® A,N & N)
(X0 ® - ®xp) =E11X0 Q- ® E11xy
is a quasi-isomorphism.
Proof. Consider the maps
/' : P(B/A)**! - P(M,B/A?),
V(Ein(xo ® -+ ® xp)) = Ei1xo ® Enx1 ® -+ ® Ep1xn,
and p’ : P(M,B/A%) — P(B/A)**!,
P (EigiyXo ® -+ ® Ejy iy 1 Xn) = Eig1(Xo ® -+ ® xp).

One checks that both ¢ and p’ are M, B-linear chain homomorphisms, and that
p't' = 1. In particular 72%! : P(B/A)>! — A?*! is a projective resolution
relative to M, A/A?, whence

| = N1x2 ®MZB t/

is a quasi-isomorphism, as claimed. O
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6.2. The augmented algebra (I',P.¢;). Regarding the elements of 2V as se-
quences of zeros and ones, there is an obvious action Embx2N — 2N (£, p) = fi(p).
It agrees with the inner action; we have

fs(p) = fpft.
Thus Z[2"] is a Z[Emb]-module. Note that, if A, B C N are disjoint, then for
I C Z[2V] asin (2.2.4) and g € 2", we have

S«((pauB — P4 — PB)q)

(Pf((AuB)ndom(f)) ~ P sandom(y)) — Pf(Bmdom(f))> S(q) €1,

(f(pauB — pa—pB)g)x(q) = fx((pauB — pa — PB)«(g+(q)))
= f«((pauB — pa — pB) - 8g«(q)) € I.

Thus P is a [-module. Let f € Emb; put

€/(f) = pran(y) € Mo (f)=q(fhH = Pdom(f)-
Note that

1 ifn € f(dom(f) Nran(g))

&1(f2)1) = prancry () = AN = fele(@) ).

Thus the induced linear map ¢; : Z[Emb] — Z[2V] is a homomorphism of left
Z|Emb]-modules. In particular, if A, B C N are disjoint, we have

€1(f(pauB — pa—pB)g) = f«(pauB — pa— pBle(g) € 1.

Hence ¢; induces a homomorphism of left I'-modules
¢ : T = P.

Observe that the canonical inclusion P C I', which is an algebra homomorphism,
but not a I'-module homomorphism, is a section of €;. Thus we are in the augmented
algebra setting described above. Moreover I' is flat over P, by Proposition 4.3.
Hence

H,.(T/P,M) = TorL (M, P). (6.2.1)

Observe also that if k is any commutative ring and M is a ' (k)-module, then
C{/P,M)=C[k)/Pk),M).

In particular,

H.(T/P,M) = H«(I'(k)/P(k), M).
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In the next lemma and below we consider the following submonoids of Emb
EmbD> & ={f:domf =N} DE"  ={f €& :ran(f) = N}.
If M is a '-module and & € {&€, £*} we write
Mg = M/span{m — f.(m): f € G}.

Here the span is Z-linear.

Lemma 6.2.2. The kernel of ) : I' — P is generated, as a left P-module, by the
elements Uy — 1, f € E*.

Proof. Let K = ker(e;). It is clear that K is generated, as an abelian group, by
the elements Uy — prany, / € Emb. Assume that / € Emb but f ¢ £*. We
claim that we may choose a subset A C dom( f) such that B = N\ 4 is bijectable
to N\ f(A), and such that N\ (dom f N B) is bijectable to N\ f(dom f N B). Indeed
if N\dom f' is already bijectable to N\ran /', we may take A = dom f. Otherwise
dom f is infinite, so we may split it into two disjoint infinite pieces, and take A to be
one of them. Thus the claim is proved. For such A, there exist g, 2 € £* such that

gla = flaand h|dom(f)mB = f|dom(f)mB- We have

Pranf = Pf(4) + P fdomsnp) and
Ur=rrmUs, + Pf(dom(f)ﬂB)deom(f)mB = PrUs + P rdom(s)np)Un-

Thus
Ur —pranf = pr(Ug — 1) + P rdom rnp) (Un — D).
O
Proposition 6.2.3. Let M be a I'-module. Then
Ho(T/P,M) = Mg = Mg=.
Proof. Immediate from Lemma 6.2.2. 0

6.3. Hochschild homology. We recall the basic definitions for Hochschild homol-
ogy of algebras over a noncommutative base ring ([17, §1.2.11]). If N isa B ® B°P-
module, we write

[b, x] =bx — xb (be B,xeN),

n
[B.N]={) [bi.xi]:bi € B.x; € N.n = 1},
i=1

Ng =N/[B. N].
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Next let A — B be a unital ring homomorphism. Recall from [17, §1.2.11] that the
Hochschild homology of B relative to A with coefficients in N, HH«(B/A,N) =
7+«C(B/A, M), is the homotopy of the simplicial Z-module which is given in
dimension n by
C,(B/A,N)=(N ®4 B®An)A,
with the following face and degeneracy maps
Hi 2 Chy1(B/A,N) — C,(B/A,N),

X0® @ XiXi+1 Q-+ ® Xp+1 i<n

Xn+1X0 ® -+ Q@ Xy i=n+1

si : Ch(B/A,N) — C,+1(B/A,N), (0<i <n)

Hi(Xo ® -+ ® Xpq1) =

Si(X0® QX)) =X Q- ®Xi QL ®Xit1 @+ Q xp.

We write b for the alternating sum of the face maps, and HH(B/A, N) for the
resulting chain complex. Thus

HH.(B/A,N) = H.(HH(B/A,N))

is the Hochschild homology of B/A with coefficients N. If A is commutative and B
is central as an A-bimodule, then B ® 4 B°? is a ring. If furthermore, B happens to
be flat as a left A-module, then

HH.(B/A,N) = Tor3®48°” (B N).

Note this is the case, for example, if A4 is a field. We shall write HH.(B, N) for
HH.(B/Z,N).

Remark 6.3.1. If A and B are commutative and M is a central bimodule, then
C(B/A,M)=M ®p C(B/A, B).

Lemma 6.3.2. (¢f [17, Theorem 1.12.13]) Let k be a fieldt A — B a
homomorphism of unital k-algebras, and N a B ®j B°P-module. Assume that A is
a filtering colimit of separable k-algebras. Then

HH.(B/k,N) = HH.(B/A,N).

Proof. It suffices to show that B® 4 B?? is flat as a B®j B°?-module. By hypothesis
A = colim; A; is a filtering colimit of separable algebras. Hence B ® 4 B°? =
colim; B ® 4, B°?, so it suffices to prove that if Kk C A is separable then B ® 4 B is
flat over B ®; B°P, and this is well known. O

Example 6.3.3. If k is a field, A is a unital P(k)-algebra, and N is an A ®g
A% -module, then HH«(A/k,N) = HH.(A/P(k),N), by Proposition 4.1
and Lemma 6.3.2. If A D Q, then HH.(A,N) = HH.«(A/Q,N) and
HH.(A/P,N) = HH.(A/P(Q),N), whence we also have HH«(A, N) =
HH.(A/P,N).
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6.4. Hochschild homology of crossed products with I". In this subsection & is a
field and, as in (2.2.9), R is an Emb-bundle over k; that is, R is a k-algebra with a
k-linear action of Emb so that R is an Emb-bundle. We also fix an R-bimodule M,
central as a P-bimodule, together with a left action of Emb

Embx M — M, (f,m)+— f«(m).

We require that this action induce a I'-module structure on M which is covariant in
the sense that

fe(rms) = fu(r) fu(m) fx(s) (r,s € R,m e M). (6.4.1)

In this situation, we can form the crossed product M #51; this is the R#pI'-bimodule
consisting of M ®p I equipped with the following left and right actions of R#pI"

(a#U r)(m#Ug) = afu(m)#U 1g, (m#Ug)(a#U ) = mg«(a)#Ugy.

Observe that, as R is assumed to be a k-algebra, M#pI' = M#pq)I (k).
We are interested in the Hochschild homology of R#pI" with coefficients in
M#pT", which by Example 6.3.3 is computed by the simplicial P (k)-module
C(R#pT'/P(k), M#pT). On the other hand it is not hard to check, using (6.4.1)
and the definition of Emb-bundle, that the diagonal action of Emb on C(R/k)
descends to an action of I' on C(R/P(k)). Hence we may also consider the
bisimplicial module L (I'/P,C(R/P(k), M)) which results from applying the
functor L (I'/P, —) dimension-wise to the simplicial module C(R/P(k), M). The
diagonal of this bisimplicial module is

diag(L (I'/P, C(R/P (k). M)
=1" (T'/P,Ca(R/P(k). M)) = (M ®p REP®")  @p TEP",
with faces w;0; and degeneracies s;6;. The simplicial module
diag(L (T'/P.C(R/P(k). M)))

is a model for the hyperhomology of I' /P with C(R/P(k), M) coefficients. Hence,
if H(T'/P, C(R/P(k), M)) is any other such model, we have a quasi-isomorphism

H(T/P,C(R/P(k), M)) —=>diag(L (T/P,C(R/P(k), M)).

Observe that any element of diag(_L (I'/P,C(R/P(k), M))), can be written as a
sum of congruence classes of elementary tensors of the form

X=a®a1® - Q®ap® f1 Q@ ® fu. (6.4.2)
where ag € M, a; € R, and f; € Emb (i > 1) are such that

&(fi)=e(fi+1) (1=i=<n-1),
ajer(fi) =aj (0=j <n).
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Next we define a map
¢ : diag(L (T/P,C(R/P(k),M)) — C(R#p'/P(k), M#pT).
For x as in (6.4.2), we put

$(x]) = [ao#f1 ® £ (@) fa® - ® (fr-- f) (@) fi--- )] (6.43)

Here [] denotes congruence class.

Proposition 6.4.4. The assignment (6.4.3) gives a simplicial isomorphism
¢ : diag(L (I'/P,C(R/P(k), M))) = C(R#pl/P(k), M#pT).
In particular, we have a quasi-isomorphism
H(T/P,HH(R/P(k), M)) —=> HH(R#pT/P(k), M#pT).

Proof. First of all, we must check that (6.4.3) gives a well-defined simplicial
homomorphism. To do this, one checks first that formula (6.4.3) defines a simplicial
homomorphism

é : diag(L (Z[Emb], C(R, M))) — C(R#Emb, M#Emb).

Then one observes that it passes down to the quotient, inducing a map ¢ : diag(L
(AF/P, C(R/P(k),M))) — C(R#pI'/P(k), M#pT"). Next note that the image of
¢ is contained in the simplicial subgroup

S C C(R#Emb, M #Emb)
given in dimension n by
Sy = spanf{[ao# fo ® --- @ an# fn] - f; € Emb. a; € R, fo--- fn € 2"}
To prove that ¢ is surjective, we must show that
S — C(R#pI'/P(k), M#pT')

is surjective. Any element of C(R#pI'/P(k), M#pT') can be written as a linear
combination of classes of elementary tensors of the form

y =aotfo® - ®an#fu, (6.4.5)
such that the following conditions are satisfied for0 <i <n—1and0 < j < n:
&(f) =ea(fir), e(fn) =alfo) aj=aje(f)). (6.4.6)
Let f = fo--- fu; thendom( f) = ran(f) = ran( fo) = dom( f,,). Let
ND>A={xedom(f): f(x)=x}.
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If A = dom(f)then f € 2", and thus the element (6.4.5) belongs to S. Otherwise,
by Zorn’s Lemma, there exists @ # B C dom( f) maximal with the property that
f(B)N B =0. Clearly AN B = @; let C = dom(f)\(4A U B). Then f(B) C C,
f(C) C B, and pgom(r)y = P4+ PB + pc. Hence we have

] = [Pdom(s)YPdom(s)] = [Paypa]l = lao#go ® -+ Q antgn].

for g = (fu)a and g = (/i) fip1-fuay (0 < 1 < n —1). In particular
go - &n = pa. Thus ¢ is surjective. To prove it is injective, define a map

v 1 C(R#pT /P (k), M#»T) — diag(L (T'/P, C(R/P(k), M)))

as follows. For y as in (6.4.5) satisfying the conditions (6.4.6) and such that
for++ fn €2N, put

YD =lao® fola) @ ---® (fo-- fa-1)(an) ® fo @+ ® fu-].
One checks that ¥ is well-defined and that ¢ = id. O

Corollary 6.4.7. Assume that R is commutative and that M is a central R-bimodule.
Then
HHy(R#pD', M#pT") = Ms.

Proof. By Proposition 6.4.4,
HHy(R#p, M#pT) = Ho(T'/P, HHy(R, M)).

By our assumptions on R and M, HHo(R,M) = M. Finally we have
Hy(I'/P, M) = Mg, by Proposition 6.2.3. O

6.5. Comparing the 0’*-homology of (I'*°, I5) and that of (B : Js).

Proposition 6.5.1. Let S <1 £ be a symmetric ideal and let Js <\ B = B({?) be
the corresponding ideal of bounded operators in £>. Then the inclusion T® C B
induces an isomorphism

HHo (I, Is) —> HHy(B. Js).

Proof. By Proposition 2.2.11 Corollary 6.4.7, the inclusion diag : S — Ig descends
to a bijection -
Se —> HHy(I'®°, Ig). (6.5.2)

By [13, Theorem 5.12] the composite of (6.5.2) with the map induced by the
inclusion /s C Jg is an isomorphism. O

Corollary 6.5.3. The map HCo(I'*™® : Is) — HCo(B : Js) is an isomorphism.
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Proof. Tt follows from Proposition 6.5.1 and the fact that, if R is a unital ring and
I <1 R is an ideal then

HHo(R:1)= HCyo(R:1)=1/[R,I].

O
Lemma 6.5.4. Let p > 0. Then:
C p<l1
o, —
HCy(T .Izp+)—{0 P> 1
C p=<i1
oo . _) — —
HCy(T* : Iyp-) {O p>1
C p <1
HCy(IT*® : Iip)=3Co®V p=1
0 p > 1
Here 'V is a C-vector space of uncountable dimension.
Proof. It follows from Corollary 6.5.3 and [24, pp. 492-493]. O

6.6. Cyclic homology of R#pI'. Now we go back to the general situation of
Subsection 6.4. So k is a field and R is an Emb-bundle over k. Let M be a
right I'-module. Consider the simplicial module L (I'/P, M). Every element of
1, ('/P, M) can be written as a sum of elementary tensors

X=m® f1® - Q fu
withm € M, f; € Emb, and dom( f;) = ran(f;+1) (i < n). For x as above, put
w(x) = (=D"m(fi- )@ (i ) ® i@ ® fumi. (6.6.1)

One checks that the assignment (6.6.1) gives a well-defined endomorphism of
1, (T'/P, M), and that the cyclic identities [17, 2.5.1.1] hold. Thus the simplicial
(k-)module L (I'/P, M), equipped with the cyclic operators 7, (n > 0), is a
cyclic module. In general if C is any cyclic module, then we can equip C with
amap B : C — C[+1] called the Connes’ operator, which, together with the
usual boundary b : C — C[—1] given by the alternating sum of the face maps,
satisfy b2 = B2 = [b,B] = 0. When C =1 (I'/P,M), we write d and
B for the operators b and B. The Hochschild complex of a cyclic module C is
HH(C) = (C,b). The cyclic and negative cyclic complexes are the complexes
given in dimension n by HC(C), = D,,~¢Cn—2m and HN(C)» = [,,50 Cn+2m:
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they are equipped with the boundary » + B. Observe that HC(C) is also equipped
with a chain map S : HC(C) — HC(C)[-2] defined by the obvious projections
HC(C)y, - HC(C)p—2. If C is another chain complex equipped with a chain map
S : C — CJ[-2], then by a map of S-complexes C — HC(C) we understand a
chain map which commutes with S.

Proposition 6.6.2. There is a natural quasi-isomorphism of S-complexes (HC(L
(I'/P,M)),d) > (HC(L (I'/P.M)),d + B).

Proof. View C =L (I'/P, M) as a cyclic module. Consider the projection

7 HNC)n = [ | Catom = Cu = HH(C)n.

m=>0

Observe that w(b + B) = bm. Proceed as in [11, §3.1] to define a chain map
Y : HH(C) - HN(C) such that 7Y = 1. We have a chain map 6" : HN(C) —
HC(C)[2n] (n = 0) given by the composite

0" : HN(C)p = [ | Coram = €D Cpiom

m=>0 m=0

C @Cp+2(n—q) = HC(C)p+2n-

q=0
The map of the proposition is

> 6" (HC(C).9) = @ HH(C)[-2n] — (HC(C).b + B).

n=0 n>0
O

Theorem 6.6.3. Let k be a field and R an Emb-bundle over k. There is a natural
zig-zag of quasi-isomorphisms

H(T/P, HC(R/P(k))) —> HC(R#pT'/k).
Proof. Consider the bicyclic module
Cax : ([m], [n]) =Ly (T/P,Ch(R/P(k))). (6.6.4)
It follows from Proposition 6.6.2 that the total cyclic complex
T =(HC(Cxx4).b+0+ B+ DB)

is quasi-isomorphic to
(HC(Cs,x).b+ 0+ B),
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which in turn is a model for H(I'/P, HC(R/P(k))). By the cylindrical version of
the Eilenberg-Zilber theorem ([16, Theorem 3.1]), the complex T is S-equivalent
to the H C-complex of the diagonal A of (6.6.4). By Proposition (6.4.4), the map
(6.4.3) is an isomorphism of simplicial modules A =c (R#pI"/P(k)); one checks
that it is actually an isomorphism of cyclic modules. Finally, by Example 6.3.3, the
projection C(R#pI'/ k) — C(R#pI"/P(k)) induces a quasi-isomorphism

HC(R#pT/k) — HC(R#»T/P(k)). (6.6.5)
O

Corollary 6.6.6. Let 2 be a bornological algebra and S <1 £%° a symmetric ideal.
Then

HC () : Isy) = Ha(T/P : HC((E* () = S2))/P)).

Proof. By Proposition 2.2.11, we have I'°() = {®RD)#pI" and Ign) =
SO#p,". Now apply Theorem 6.6.3 and take fibers. O

6.7. Hodge decomposition. If R is a commutative (Q-algebra, then there are
defined Adams operations on C(R), and we have an eigenspace decomposition
[17, Theorems 4.5.10 and 4.6.7]

C(R) =P CcP (), (6.7.1)

p=0

called the Hodge decomposition. We have Cn(p ) = 0forn < p and each C? is a
graded R-submodule, closed under the Hochschild boundary map b. Thus, if M is
a central R-bimodule, for HH P (R, M) = M Qg (C P (R), b) we have

n
HH,(R.M) =P HH (R, M).
p=0

The Connes operator B sends C () to C®*+D_ Thus, we have a direct sum
decomposition of the cyclic complex

HC(R) =@ HCP(R)

p=0
where

HCP(R)y = P P (R).

n—2p
p=0
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Hence for HC{P(R) = H,(HC®(R)),

HCy(R) = @ HCP(R).

p=0

Let (2%, d) be the DGA of (absolute) Kéhler differential forms. There is a natural
map of mixed complexes

u:(C(R),b,B) — (Qg,0,d)
wxo ® - ® x,) = (1/nNxodxy A+ ANdxy. (6.7.2)

Let M be a central R-bimodule; the map p induces isomorphisms

HH™ (R, M) =M Qg Qb (6.7.3)
and HC"(R) = Q"% /d(Q"%571). (6.7.4)

We say that R is homologically smooth if (6.7.2) is a quasi-isomorphism.

Remark 6.7.5. If R happens to also be an algebra over P, then the Hodge
decomposition above induces a similar decomposition on HH(R/P, M) and
HC(R/P), so that HH® (R, M) — HH(R/P, M) and HH? (R, M) —
HH P)(R/P) are quasi-isomorphisms. Moreover Qg — Qz /P 18 an isomorphism.

Example 6.7.6. Let R be a unital commutative complex C *-algebra over C. It was
proved in [10, Thm. 8.2.6] that R, regarded as a Q-algebra, is homologically smooth.
In particular this applies when R = £°°. Moreover, by [10, proof of Prop. 5.2.2], £*°
is a filtering colimit of smooth C-algebras. It follows that 27, is a flat £>°-module
for every n. Hence

HH, (%, M) = M @ Qo

for every central bimodule M.

Now assume that the commutative QQ-algebra R is an Emb-bundle. Then by
Proposition 6.4.4, Theorem 6.6.3, and naturality of the Hodge decomposition, we
have quasi-isomorphisms

HH(R#pT, M#tpT) => @D H(T/P. HHP(R/P. M)) (6.7.7)
p=0
and HC(R#pT) = HH(T/P. HCP(R/P)). (6.7.8)
p=0
Put
HHP) (R#pT, M#pT) = H,(T/P, HHP(R/P, M)), (6.7.9)

HCP) (R#pT) = H,(T/P, HCP(R/P)).
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We have decompositions

n
HH,(R#pT. M#pT) = D HHP)(R#pT, M#pT),
p=0

n
HC,(R#pT) = @ HCP (R#pT).
p=0

If follows from (6.7.3), (6.7.4), and Proposition 6.2.3 that

HH™ (R#pT, M#tpT) = (M Qg Q7b)e. (6.7.10)
HC™ (R#pT) = (Qp/d ).

7. The relative cyclic homology H C,(I'*°(21) : Is(2))

7.1. The Quillen spectral sequence. Let R be a unital Q-algebraand I < R a
two-sided ideal, flat both as a right and as a left ideal. Then

19 ~ [",

Using the isomorphism above and flatness again we see that if P —>1 is a
projective bimodule resolution, then Q = P®r =5 [ g again a resolution. Hence
modding out Q by the commutator subspace [Q, R] we obtain a complex which
computes HH,.(R, ") and which has a natural action of Z/nZ via permutation
of factors. Following Quillen [19, pp. 210] we shall write HH«(R, "), for the
coinvariants of this action. Quillen introduced a first quadrant spectral sequence (see
[19, Proposition 2.16 and Theorem 4.3]),

HCy(R) p=0

HHy—p+1(R IP)g p =1, 1D

Ell),q =
which converges to HC y44(R/1). For example, every ideal J <1 B = B({?) of the
algebra of bounded operators is flat; M. Wodzicki has used this spectral sequence,
together with the results of [13], to study the relative cyclic homology groups
HC«(B : J). By Proposition 3.6, every ideal of I'*° is flat; by Proposition 3.8
and Examples 3.5, the same is true of I, and Iyeo—(g) for every unital Banach
algebra 2A. In this subsection we shall use Quillen’s spectral sequence to study the
cyclic homology groups HC,(I'* : Igs). Proposition 7.1.5 below will play a role
akin to that played by [24, Theorem 8] in the context of operator ideals. Let 2l and
B be Banach algebras, and let ® be the projective tensor product. We have maps

F®T > T(NxN), Ur @ Uy > Uy, (7.1.2)
X : L2 @ L°(B) - L°(Nx N, AXDB), (@ X B)mn = 0n®@PBm. (7.1.3)
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These two maps together induce

Q) ® I'°(B) —
I°(N x N, A®9) := £°(N x N, AB)#pnxm [ (N x N).

We write [*°(N x N) = '*°*(N x N, C). In particular we have a map
r*®r* —r*NxN). (7.1.4)

Proposition 7.1.5. (cf. [24, Theorem 8]) Let S, T <1 £°° be symmetric ideals, and
let B be a unital Banach algebra. Assume that
(1) The map (71.1.3) sends S @ T — T(N x N).
(i) Sg =0.
Then
HH, (P (B), Ir(m)) = 0.

Proof. Proceeding as in the proof of [1, Proposition 7.3.4], we obtain a commutative
diagram
' ® I'*°(B) —— M,I'*°(*B)

E‘J@_] /
' (8)

By hypothesis (i) this restricts to a commutative diagram

Is ® Ity — My I7()

EH@_T /

I ()

Now use hypothesis (ii), Morita invariance and the Kiinneth formula for Hochschild
homology ([13, Theorem 1.2.4] and [22, Proposition 9.4.1]), and induction, to
conclude that HH,(I'*° (), I7()) = 0. O

We shall need the following result of Dykema, Figiel, Weiss and Wodzicki, which
follows by combining [13, Theorem 5.11(ii) and Theorem 5.12].
Proposition 7.1.6. ([13]) Let S <1 £*° be a symmetric ideal and let ® = (1/n),>1
be the harmonic sequence. Then

Se=0 << oXS CSNxN).
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Proposition 7.1.7.

(i) HC«(I'*® : 1)) = HC«(B: J.,) = 0.

(ii) HCx(I'®® : Iyoo—) = HCx(B : Jygoo—) = 0.
(iii) Let0 < p < oo, S € {€P (P~ (PT),

m = min{n : HC,(I'*® : Ig) # 0},
and m' = min{n : HC,(B : Js) # 0}.

Then m = m' and the map HC,,(I'*® : Is) — HC,,(B : Js) is an isomorphism.

Proof. Consider the spectral sequence (7.1.1) in the cases R = I'*,B and
1 = Ig, Jg for each of the symmetric ideals S of the proposition. We have E(},* =0
since both I'*® and B are rings with infinite sums [1, §5]. In both (i) and (ii), we have
§? =SandwX S C S(N x N) whence E, , = 0, by Propositions 7.1.6 and 7.1.5
and [24, Theorem 8]. This gives (i) and (ii). In each of the cases considered in part
(iii), we have S X S C S(N x N). Since w € {7 if and only if p > 1 and since
P)" = £2/" we have HH. (T, I(gpyn) = HH(B,(LP)") = 0 for p/n > 1,
again by Propositions 7.1.6 and 7.1.5 and [24, Theorem 8]. The case S = {7 follows
from this and from Corollary 6.5.1. The remaining cases follow similarly. O

Remark 7.1.8. Proposition 7.3.3 below provides a more detailed computation of
HC,(I'*® : Is) for S as in case iii) of Proposition 7.1.7 above.

Theorem 7.1.9. The comparison map K«(Is)) — KHx«(Is()) is an isomorphism
in the following cases:

(1) S =coandUisa C*-algebra.

(i1) S = £°° and A is a unital Banach algebra.

Proof. By Proposition 5.1 and Examples 5.4 and 5.5, Ig(g) is H -unital in both cases.
Hence by (1.2) it suffices to show that HC«(I"*° () : Is)) = 0. As explained in
the proof of Proposition 7.1.7, Proposition 7.1.6 implies that S¢ = 0. Hence if 2
is unital we are done by Propositions 3.8 and 7.1.5; in particular, part (ii) is proved.
The nonunital case of (i) follows from the unital case using excision. ]

7.2. Computing HC (P)(I'*® : I5) in terms of differential forms. Let S <1 {*° be
an ideal. Consider the subcomplex

Fp(S) C Qe (7.2.1)

SPatiQl  p >y

FEps0T= 1" g0 T T2
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Write
DD (8), = (L /(F,(5)) (7.2.2)
LP(8)y = F,4,(S)/F,4(S). (7.2.3)

Note L®)(S) and DP)(S) are nonpositive chain complexes.

Theorem 7.2.4. Let S <1 £°° be a symmetric ideal. Then there are Emb-equivariant
quasi-isomorphisms

HH(p)(ﬁoo/S) e L(p)(S)[p]

HCP ((>®/8) = D@P)(S)[p].
Proof. Consider the skew-commutative graded algebra A = £°° @ S with grading
Ao = £%°, Ay = S. The inclusion S C £°° defines a homogeneous {*°-linear
derivation d : A — A[—1]. Thus A is a chain DGA, and the projection {>*° —
£%°/S defines a quasi-isomorphism of cyclic modules C(A, 3) —> C(£>°/S). By [7,
Thms. 2.6 and 3.3] and Proposition 3.1, there are quasi-isomorphisms C(A, 9) —>
D, L) (S)[p] and B(A, 9) = D, D®P)(S)[p]; by [21] they are compatible with
the Hodge decomposition. Finally, all these quasi-isomorphisms are natural, and thus
Emb-equivariant. O

Theorem 7.2.5.
HCP (I : Is) =Husp(T/P. F(p)(S))
HHP (T : Is) =Hyy pi1(T/P. L(p)(S)).

Proof. 1t follows from (6.7.9) using Theorem 7.2.4 and the fact that ['° is an infinite
sum ring ([1, §5]). L]

Corollary 7.2.6. There is a first quadrant homological spectral sequence
p B w = Ho(D/P,S™T1QE") = HCP), o (T 1 Is).

Proof. This is the spectral sequence associated to H(I'/P, F(,)(S)). It is located in
the first quadrant because as I"*° is an infinite sum ring,

HHY (™) = H,y,(T/P, Q%) = 0.

Corollary 7.2.7.
HC™ (™ : Ig) = (SQoo/d(S2Q05Y))e.

Proof. Tt follows from inspection of the second term of the spectral sequence of
Corollary 7.2.6, by using the fact that Ho(I'/P, —) = ( )¢ is right exact. O
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7.3. The cases S = (7, (P,
Lemma 7.3.1. Let S <1 £%° be a symmetric ideal. Then the map

c{/P, SQ‘ZOO) — C('(NuUN)/P(NUN),S(Nu N)Q‘ZOO(NUN))

induced by the inclusion N C N U N into the first copy, is a quasi-isomorphism.
Proof. Recall from Corollary 3.3 that every ideal of £°° is flat, and from Example
6.7.6 that wa is a flat £°°-module. It follows that the map S ®g wa —

S Q‘Zoo is an isomorphism for every ideal S. Now the proof is immediate from
[1, Lemma 7.3.1] and Lemma 6.1.1. ]

Lemma 7.3.2. Let 0 # S, 5S> C £ be symmetric ideals. Assume that (S1)e = 0
and that the map £*° ® £{*° — L°(N x N) sends S1 ® S — S»(N x N). Then
H.(T/P,8292]) =0 (p > 0).

Proof. The proof follows using Lemma 7.3.1 and the argument of the proof of
Proposition 7.1.5. O

Let p € R; the following notation is used in the proposition below.

[pl=max{n € Z:n < p}, |p] = p[;]1 5¢EZZ.

Proposition 7.3.3.
(i) Let p > 0 and let S}, be either £? or {P~. Then

HCO(T™: Is,) =
0 n<gq+|pl
(So/ o1+ P A (S (oL p1+2) R ™ N =g + |p).

In particular, the first nonzero group is

HCy (T 2 Is,) = HCP) (T 1 Is,) = HCo(I™ : Is

which was computed in Lemma 6.5.4.

(ii)

p/(LpJ+1))

HCO(T™® : [jpy) =

0 n<q+I[p]
(g(p/([p]+1))+Qz;[p]/d(g(p/([p]+2))+on—o[p]—l))g n=gq+|[p]

In particular, the first nonzero group is

HCypp) (T : Ipp) = HCZD (T 2 Iy )
= HCo(I'™® : 1) yqme1y+) =C
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Proof. This is a straightforward application of the spectral sequence of Corollary
7.2.6 together with Lemma 7.3.2 and Proposition 7.1.6. O
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