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Non-commutative resolutions and Grothendieck groups
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Abstract. Let R be a noetherian normal domain. We investigate when R admits a faithful
module whose endomorphism ring has finite global dimension. This can be viewed as a non-
commutative desingularization of Spec.R/. We show that the existence of such modules forces
stringent conditions on the Grothendieck group of finitely generated modules over R. In some
cases those conditions are enough to imply that Spec.R/ has only rational singularities.
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1. Introduction

The use of non-commutative algebras with finite global dimension was initiated by
M. Auslander in representation theory of Cohen–Macaulay rings, or more generally,
orders [1, 2, 37]. He introduced two important classes of non-commutative algebras
with finite global dimension called Auslander algebras and non-singular orders.
Auslander algebras are defined as the endomorphism algebras of additive generators
in the category of Cohen–Macaulay modules over representation-finite orders. Then
representation theory of representation-finite orders is encoded in the structure of
their Auslander algebras, and this picture was the starting point of Auslander–Reiten
theory. On the other hand, the representation theory of non-singular orders is most
basic since all Cohen–Macaulay modules are projective.

Recently, the study of such algebras have found striking applications in algebraic
geometry. Perhaps the most well-known example is Van den Bergh’s definition of
non-commutative crepant resolution, usually abbreviated by NCCR ([33]). We recall
Van den Bergh’s definition, in a slightly more general setting: A reflexive module
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M over a commutative noetherian normal domain R is said to give an NCCR of
Spec.R/ if ƒ D EndR.M/ is a non-singular R-order (i.e. ƒp is a maximal Cohen–
Macaulay Rp-module and gl: dimƒp D dimRp for any p 2 Spec.R/).

These non-commutative objects provide a particularly pleasant explanation of
the Bondal–Orlov conjecture on the derived equivalence of threefolds related by a
flop. Van den Bergh’s work has quickly generated a sizable body of research, see for
example the recent survey [17, 24].

In this note we study a weaker notion which is called a non-commutative
resolution (NCR).

Definition 1.1. A finitely generated module M over a commutative noetherian ring
R is said to give a NCR of Spec.R/ (or just R by abuse of notation) if M is faithful
and EndR.M/ has finite global dimension.

The assumption that M is faithful in Definition 1.1 is reasonable since, for
example, any simpleR-module k gives k D EndR.k/which always has finite global
dimension. Basic examples of NCRs appeared in representation theory: Auslander
algebras [1], higher Auslander algebras [19, 21] and NCCRs [33]. It is known that
NCRs exist when R is artinian, or reduced and one-dimensional (see [24]).

We shall try to give information on the following

Question 1.2. When does R have a NCR?

We give necessary conditions which focus on the Grothendieck group of the
category of finitely generated modules over R and its subcategories (see 2.1, 2.2,
2.5). Our results show that the existence of NCRs still implies strong constraints
on the singularities of R. For example, we prove that a standard graded Cohen–
Macaulay algebra R over C with only rational singularities outside the irrelevant
ideal has a NCR only if R has rational singularities (Theorem 3.11). Our proofs
utilize some non-trivial results from algebraic K-theory. For surface singularities
over an algebraically closed field, we observe that the existence of NCRs actually
characterizes rational singularities (Corollary 3.3). This adds a new member to a
long list of interesting equivalent conditions for rationality of surface singularities.

2. NCRs and Grothendieck groups

Throughout this note, we denote by R a commutative noetherian ring, and by modR
the category of finitely generatedR-modules. We denote by K0.R/ the Grothendieck
group of the abelian category modR. When R is a normal domain, we denote by
Cl.R/ the class group of R. Our main technical result (Theorem 2.5) given later
in this section relates the existence of NCRs and certain finiteness properties of
Grothendieck groups and class groups. The first application is the following, which
deals with NCRs over a normal domain.
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Corollary 2.1. Let R be a semilocal normal domain. If R has a NCR, then Cl.R/ is
a finitely generated abelian group.

A typical example of a ring which has an infinitely generated class group is
R WD CŒŒx; y; z��=.x3 C y3 C z3/, see 3.7. In particular, R has no faithful module
giving rise to a NCR by the above theorem. This gives an answer to a question by
Burban [5].

The second application of our main result is the following, which deals with
NCRs given by modules which are locally generators on the outside of a closed set
of dimension at most one.

Corollary 2.2. Let R be a semilocal ring. If M is an R-module which is locally
a generator outside a closed subscheme of Spec.R/ of dimension at most one and
gives a NCR, then K0.R/ is a finitely generated abelian group.

Let us now state and prove our key technical result. Let .�/� WD HomR.�; R/.
For an R-module M , let E WD EndR.M/ and we denote by

aM WM ˝E M
�
! R

the natural map sending m˝ f 2M ˝E M � to f .m/.

Definition 2.3. We define the non-generating locus NG.M/ of M as the support of
Cok.aM /.

ForM 2 modR, we denote by addRM D addM the full subcategory of modR
consisting of direct summands of direct sums of copies of M . Recall that M 2

modR is called a generator of modR if there exists a surjection from a direct sum of
copies of M to R, or equivalently, R 2 addM . The following observation explains
the name of NG.M/.

Proposition 2.4. NG.M/ is the set of prime ideals p such thatMp is not a generator
of modRp.

Proof. Let p be a prime ideal of R. Then Mp is a generator of modRp, if and
only if

P
f 2M�p

f .Mp/ D Rp, if and only if .aM /p is surjective, if and only if
.Cok aM /p D 0.

For a full subcategory C of modR, we denote by hC i the subgroup of K0.R/
generated by elements ŒX� with X 2 C . Our main result in this section is the
following:

Theorem 2.5. Let R be a semilocal ring and M give a NCR of R. Let CM be
the full subcategory of modR consisting of X satisfying suppX � NG.M/. Then
K0.R/=hCM i is a finitely generated abelian group.

First let us recall a well-known fact on Grothendieck groups. Let C be a Serre
subcategory of modR (i.e. C is closed under submodules, factor modules and
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extensions), and let .modR/=C be the quotient abelian category of modR [27]:
The objects of .modR/=C is the same as modR, and the morphism set is given by

Hom.modR/=C .X; Y / WD lim
�!
X 0;Y 0

HomR.X
0; Y=Y 0/

where X 0 and Y 0 run over all submodules of X and Y respectively such that X=X 0

and Y 0 belong to C . In this case we have the following observation.

Proposition 2.6. [15] K0..modR/=C / is isomorphic to K0.R/=hC i.

We need the following general observations on generators.

Lemma 2.7. Let M 2 modR be a generator and E WD EndR.M/. Then we have
the following properties.

(a) M � is a projective E-module.

(b) The natural map aM WM ˝E M � ! R is an isomorphism.

Proof. (a) Since R 2 addRM , we have M � 2 addE HomR.M;M/ D addE E.
(b) For any X 2 modR, we denote by bX W M ˝E HomR.M;X/ ! X the

natural map sending m˝ f to f .m/. This gives a natural transformation b WM ˝E
HomR.M;�/ ! 1mod R of additive functors modR ! modR. Since bM is clearly
an isomorphism, so is bX for any X 2 addRM . In particular, bR is an isomorphism.
Since aM D bR, we have the assertion.

Clearly CM is a Serre subcategory of modR. Let .modR/=CM be the quotient
abelian category of modR. We define a functor

F W modE
HomE.M

�;�/
���������! modR! .modR/=CM

where modR! .modR/=CM is a natural functor.

Lemma 2.8. F is an exact functor.

Proof. Let 0 ! X ! Y ! Z ! 0 be an exact sequence in modE. Applying
HomE .M

�;�/, we have an exact sequence

0! HomE .M
�; X/! HomE .M

�; Y /! HomE .M
�; Z/! Ext1E .M

�; X/

We only have to show Ext1E .M
�; X/ 2 CM . For any prime ideal p … NG.M/, we

have that M �p is a projective Ep-module by Lemma 2.7. Thus we have

Ext1E .M
�; X/p D Ext1Ep

.M �p ; Xp/ D 0;

and so supp Ext1E .M
�; X/ � NG.M/. Thus 0 ! FX ! FY ! FZ ! 0 is

exact.
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Next we show the following property of F .

Lemma 2.9. F is a dense functor.

Proof. For any X 2 modR, let Y WD HomR.M;X/ 2 modE. Then we have

F.Y / D HomE .M
�;HomR.M;X// Š HomR.M ˝E M

�; X/:

For any prime ideal p … NG.M/, we have that Mp is a generator of modRp.
Thus .aM /pW .M ˝E M �/p ! Rp is an isomorphism by Lemma 2.7(b). Hence the
natural map

HomR.aM ;�/ W X ! HomR.M ˝E M
�; X/ D F.Y /

induced by aM has the kernel and the cokernel in CM . Consequently X is
isomorphic to F.Y / in .modR/=CM .

By Lemma 2.8 and Proposition 2.6, we have a homomorphism

K0.E/! K0..modR/=CM / Š K0.R/=hCM i

of abelian groups. This is surjective by Lemma 2.9.

Lemma 2.10. Let R be a semilocal ring and E a module-finite R-algebra. If the
global dimension of E is finite, then K0.E/ is finitely generated.

Proof. Since the global dimension is finite, K0.E/ is generated by indecomposable
projective E-modules. Since R is semilocal, it follows from [11, Theorem 9] that
there exist only finitely many isomorphism classes of indecomposable projective E-
modules. Thus K0.E/ is finitely generated.

The above lemma completes the proof of Theorem 2.5.

Now we prove Corollary 2.1. We need the following fact, see [7].

Proposition 2.11. Let R be a normal domain and ˆ be the set of prime ideals of
R with height at least two. Let D be the full subcategory of modR consisting of X
satisfying suppX � ˆ. Then K0.R/=hDi is isomorphic to Z˚ Cl.R/.

Assume that M gives a NCR of R. Since R is a normal domain and M is a
faithful R-module, we have that Mp is a faithful Rp-module and hence Mp has a
non-zero free summand for any prime ideal p … ˆ. Thus we have NG.M/ � ˆ

and CM � D . By Theorem 2.5, we have that K0.R/=hDi is finitely generated. By
Proposition 2.11, we have the assertion.

Finally we prove Corollary 2.2. As R is semilocal and dim NG.M/ � 1, the
set NG.M/ is finite. Since hCM i is generated by R=p with p 2 NG.M/, it is
finitely generated. Since K0.R/=hCM i is finitely generated by Theorem 2.5, so is
K0.R/.
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3. NCRs and rational singularities

In this section let R be a normal domain containing a field k. We wish to discuss the
following:

Question 3.1. Suppose R has a NCR. When can we deduce that Spec.R/ has
rational singularities?

Recall that a variety Y is said to have rational singularities if for any (equiva-
lently, some) resolution of singularity f W X ! Y , we haveRif�OX D 0 for i > 0.
When Y D Spec.R/ this reduces toH i .X;OX / D 0 for i > 0 (see [31, Section 1]).

The above question is motivated by a beautiful result by Stafford and Van den
Bergh ([32, Theorem 4.2]):

Theorem 3.2. (Stafford–Van den Bergh) Let k be an algebraically closed field of
characteristic 0 and � be a prime affine k-algebra that is finitely generated as a
module over its center Z.�/. If � is a non-singular Z.�/-order then Z.�/ has
only rational singularities.

In particular, suppose R is a Gorenstein normal affine k-algebra. If R has an
NCCR, then Spec.R/ has only rational singularities.

In fact, at the end of their paper Stafford and Van den Bergh raised the question
of whether it is enough to only assume that we have a maximal Cohen–Macaulay
module giving a NCR but R is not necessarily Gorenstein ([32, Question 5.2]).

Our first result shows that having rational (isolated) singularity characterizes the
existence of NCRs for surface singularities. For a Cohen–Macaulay ring R, let
�CM.R/ denote the category of first syzygies of some maximal Cohen–Macaulay
modules. Thus �CM.R/ consists of all X 2 modR such that there exists an exact
sequence 0 ! X ! P ! Y ! 0 with a projective R-module P and a maximal
Cohen–Macaulay R-module Y .

Corollary 3.3. Let .R;m; k/ be a local normal domain of dimension two. Consider
the following:

(1) �CM.R/ is of finite type (that is, there exists M 2 mod.R/ such that
�CM.R/ D addM ).

(2) R has a NCR.

(3) Cl.R/ is a finitely generated abelian group.

(4) K0.R/˝Z Q is a finite dimensional Q-vector space (equivalently, Cl.R/ has a
finite rank).

(5) Spec.R/ has rational singularities.

Then .1/ ) .2/ ) .3/ ) .4/. If R is excellent, henselian and k is algebraically
closed, then .3/) .5/) .1/. If in addition k has characteristic 0 then .4/) .5/.
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Proof. The implication .1/ ) .2/ is [20, Theorem 2.10] and .2/ ) .3/ is
Corollary 2.1. The implication .3/ ) .4/ is trivial. The implication .3/ ) .5/

is essentially [25, 17.3]. The proof works almost the same, except for the crucial
Complement 11.3, where one needs to replace condition (2) of Theorem 1.7 in
[4] by the condition that the Picard group of the curve Z is finitely generated.
Similarly .4/ ) .5/ in characteristic 0. The statement .5/ ) .1/ follows from
the fact that there are only finitely many indecomposable special Cohen–Macaulay
modules (see [36], [20, Theorems 3.6 and 2.10]). Note that the result in [36] was
stated for singularities over complex numbers, but the proof also works for our
case, the extra information we need is the existence of a (minimal) desingularization
of SpecR, which is known (cf. [25, Theorem 4.1]). One can bypass the use
of Grauert-Riemenschneider vanishing used in Wunram’s proof by the discussion
before Theorem 5 in [13].

Example 3.4. The implication .3/ ) .5/ in Corollary 3.3 really requires all the
assumptions. It is not true when k is not algebraically closed (but R is complete):
Salmon ([30]) showed that k.u/ŒŒx; y; z��=.x2Cy3Cuz6/ is factorial for any field k.
The condition thatR is henselian is also crucial: the ringR D kŒx; y; z�.x;y;z/=.xrC
ys C zt / where r; s; t are pairwise prime, is factorial over any field k ([10, Corollary
10.17]).

Also, the implication .4/) .5/may fail in positive characteristics. In fact, when
k D Fp the class group will always be locally finite.

Now we discuss Question 3.1 in higher dimension. We may assume R is a
complete local ring to study Question 3.1 by the following:

Lemma 3.5. Suppose M gives a NCR of R and p 2 Spec.R/. Then Mp gives a
NCR of Rp. If .R;m/ is local then the completion OM of M gives a NCR of OR.

Proof. Let ƒ be a module-finite R-algebra. We denote by f: l: ƒ the category of
ƒ-modules of finite length. We only have to show gl: dim.S ˝R ƒ/ � gl: dimƒ for
S WD Rp or S WD OR.

When S D Rp (respectively, S D OR), there is an exact dense functor S ˝R � W
modƒ ! mod.S ˝R ƒ/ (respectively, S ˝R � W f: l: ƒ ! f: l:.S ˝R ƒ/). In
particular we have proj: dimS˝Rƒ

.S ˝R M/ � proj: dimƒM . Since gl: dimƒ D

supX2modƒfproj: dimƒXg D supX2f:l:ƒfproj: dimƒXg, the assertion follows.

The next result shows that NCRs also behave well under separable field
extensions.

Lemma 3.6. Let R be a commutative algebra over a fieldK and L a separable field
extension of K. If M gives a NCR of R, then L˝K M gives a NCR of L˝K R.

Proof. Let E WD EndR.M/. Clearly we have EndL˝KR.L˝KM/ D L˝K E. We
only have to show that L ˝K E has finite global dimension. For any X 2 modE,
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clearly the L˝K E-module L˝K X has finite projective dimension. It is enough to
show that any simple L˝K E-module S is a direct summand of L˝K X for some
X 2 modE.

We regard S as an E-module, and we take a simple E-submodule X of S . Then
we have LX D S , and we have a surjection L ˝K X ! S of L ˝K E-modules
sending l ˝ x ! lx. Since L is a separable extension of K, we have that L˝K X
is a semisimple L˝K E-module [8, Corollary 7.8(ii)]. Thus S is a direct summand
of L˝K X and we complete the proof.

For a scheme X let CHi .X/ denote the Chow group of algebraic cycles of
dimension i , CHi .X/Q D CHi .X/˝Z Q, and CH�.X/ the total Chow group. We
shall need the following well-known facts, see [14, Exercise II.6.3], [12] and [22]:

Theorem 3.7. Let A be the homogeneous coordinate ring of a projective variety X
over a field k and R be the local ring of A at the irrelevant ideal. Let h denote the
class in CH�.X/Q.

(1) There is an exact sequence

0! Z! Cl.X/! Cl.R/! 0

where the first map sends 1 to h.

(2) We have the following isomorphisms of Q-vector spaces:

CH�.X/Q=.h \ CH�.X/Q/ Š CH�.A/Q Š CH�.R/Q Š K0.R/Q

where the first two are graded isomorphisms.

The second isomorphism in Theorem 3.7(2) is [22, Lemma 4.1] and the first
isomorphism is only stated for X smooth in [22, Theorem 1.3]. However we
notice that the isomorphism holds without assuming X smooth, cf. the proof of
Proposition 3.10.

Before moving on we recall the definition of Serre’s conditions .Sn/. For a non-
negative integer n, M is said to satisfy .Sn/ if:

depthRp
Mp � minfn; dim.Rp/g 8p 2 Spec.R/:

Proposition 3.8. LetR be a normal local ring. LetM be a finitely generated faithful
R-module. Then NG.M/ is a closed subscheme of Spec.R/ of codimension at least
2. If in addition we assume that EndR.M/ is .S3/, thenM is locally free outside the
singular locus Sing.R/. In particular, NG.M/ � Sing.R/.

If moreover M gives a NCR and dim Sing.R/ � 1, then K0.R/ is a finitely
generated abelian group.
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Proof. The first assertion follows from the proof of Corollary 2.1. The last assertion
follows from Corollary 2.2. Assume now that EndR.M/ is .S3/. The assumption
implies that EndR.M/ is reflexive as anR-module. Thus EndR.M ��/ Š EndR.M/,
and we may assume thatM is reflexive. Now what we need to prove follows from the
fact that if R is a regular local ring and M is a reflexive R-module, then EndR.M/

is .S3/ if and only if M is free (see [16, Corollary 2.9]).

The following result is essentially due to Roitman [28]. We give a proof for
the sake of completeness. Given a variety X , CH0.X/Q is said to be supported in
dimension l if there exists an l-dimensional closed subvariety Z of X such that the
proper pushforward map CH0.Z/Q ! CH0.X/Q is surjective.

Lemma 3.9. Let X be a smooth projective variety over C. If CH0.X/Q is supported
in dimension l , then H i .X;OX / D 0 for all i > l .

Proof. By localization there is an l-dimensional subscheme j W Z ,! X such
that CH0.X � Z/Q D 0. Let d be the dimension of X over C. By a result of
Bloch-Srinivas on the decomposition of the diagonal [6, Proposition 1], there is a
decomposition �X D �1 C �2 2 CHd .X � X/Q. Here �X is the class of the
diagonal inside CHd .X �X/Q, �1 is a cycle supported on X �Z and �2 is a cycle
supported on D � X for some divisor D inside X . Let’s write f W eD ! D for
a resolution of singularities of D and g W eZ ! Z for a resolution of singularities
of Z. Then the contravariant actions of �1 and �2 on H i .X;Q/ are morphisms
of Hodge structures. The morphism ��1 W H

i .X;Q/ ! H i .X;Q/ factors through
j � W H i .X;Q/ ! H i .eZ;Q/ and the morphism ��2 W H

i .X;Q/ ! H i .X;Q/
factors through the Gysin morphism f� W H

i�2.eD;Q/ ! H i .X;Q/. In particular,
�1 acts trivially on H i .X;OX / for i > l . Now, since f� is a morphism of Hodge
structures of bidegree .1; 1/, it follows that the intersection of the image of f� with
H i .X;OX / D H 0;i .X/ is zero. Thus, if i > l and if ˛ is any cohomology class in
H i .X;OX /, we have

˛ D ��X˛ D �
�
1˛ C �

�
2˛ D 0;

i.e. H i .X;OX / D 0.

Proposition 3.10. Let k be a field, let R be a standard graded algebra over k,
i.e. a graded Noetherian ring with R0 D k and R D R0ŒR1�, of dimension at
least 3. Let m WD

L
i>0Ri , X D ProjR and let Z be a closed subscheme of

codimension at least 2 in SpecR. Let C be the subcategory of modR generated
by the finitely generated R-modules M with suppM � Z. Assume K0.R/=hC i is
finitely generated. Then CH0.X/Q is supported in codimension 1.

Proof. By Riemann–Roch [12, §18], we have an isomorphism �X W K0.R/Q !
CH�.R/Q which is covariant with respect to proper morphisms. The subgroup hC i
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of K0.R/ is included in the image of K0.Z/ inside K0.R/ and it follows that K0.R/
is generated by K0.Z/ via the natural inclusion Z ,! SpecR and by finitely many
classes. Thus CH1.R/Q is generated by CH1.Z/Q and by finitely many 1-cycles. Up
to adding finitely many components of codimension � 2 in SpecR to Z, we may
even assume that CH1.R/Q is supported on Z.

In the proof of [22, Theorem 1.3], Kurano establishes the existence of the
following exact sequence for v > 0 (see [22, (4.16)] and notice that no smoothness
assumption on X is necessary for (4.16) to hold):

CHv.X/! CHv�1.X/! CHv.R/! 0:

The map on the left is given by intersecting with h D c1.OX .1// and the second
map is the composite

CHv�1.X/
��

�! CHv.eX � ftg/ .j�/�1

�! CHv.eX/ k�

�! CHv.R/:

Here eX is the projective cone over X , ftg is the vertex of eX and SpecR D eX � X
is the affine cone over X . We refer to [22] for more details. Important to us is that
k W SpecR! eX and j W eX �ftg ! eX are open immersions and that � W eX �ftg !
X is a smooth A1

k
-bundle. In particular these three morphisms are flat. Let eZ be the

closure of Z inside eX and let Y be the image (closed by definition) in X of eZjeX�ftg
via �. By definition of flat pullbacks for Chow groups, we see that if CH1.R/Q is
supported on Z, then the composite map

CH0.Y /Q ! CH0.X/Q
k�.j�/�1��

�! CH1.R/Q

is surjective. It follows from the short exact sequence above that CH0.X/Q is
supported on the union of Y with a hyperplane section. It is obvious that each
component of Y has codimension at least one inside X . Therefore CH0.X/Q is
supported in codimension one.

Combining Proposition 3.8 and Lemma 3.9 with Theorem 2.5 and Proposition
3.10, we obtain:

Theorem 3.11. Let R be a normal, Cohen–Macaulay standard graded algebra over
a subfield k of C. Let m be the irrelevant ideal of R. Suppose that Spec.R/ � fmg
has only rational singularities. Suppose moreover that there exists an R-module M
giving a NCR. Then Spec.R/ has only rational singularities.

Proof. By Lemma 3.6 we can assume k D C. Let X D ProjR and d D dimX . By
[35, Theorem 2.2] we only need to show that Hd .X;OX .n// D 0 for n � 0. It is
actually enough to show that Hd .X;OX / D 0. Indeed, letting H be a hyperplane
section of X , we have a short exact sequence for any i :

0! OX .i � 1/! OX .i/! OH .i/! 0;
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whose long exact sequence of cohomology gives exact sequences

Hd .X;OX .i � 1//! Hd .X;OX .i//! Hd .X;OH .i// D 0

as dimH D d � 1. Induction on n shows that Hd .X;OX .n// D 0 for n � 0, as
desired.

Let’s therefore show that Hd .X;OX / D 0. By Proposition 3.8, NG.M/ is
contained in a closed subscheme of SpecR of codimension 2 by normality of R. By
Theorem 2.5 and Proposition 3.10, it follows that CH0.X/Q is supported on a divisor
D, i.e. CH0.X �D/Q D 0. Let f W eX ! X be a resolution of singularities of X
and let eD D f �1.D/. Up to adding some components toD, we may assume that f
induces an isomorphism eX�eD ! X�D. Also we still have CH0.X�D/Q D 0 and
it follows that CH0.eX � eD/Q D 0, i.e. that CH0.eX/Q is supported on a divisor. By
Lemma 3.9, we then haveHd .eX;OeX / D 0. Since X has only rational singularities,
we see from the Leray-Serre spectral sequence that Hd .X;OX / D 0.

A consequence of the first half of the proof of Theorem 3.11 and of Lemma 3.9
(applied in the case l D 0) is the following

Corollary 3.12. LetX be a smooth projective variety over C. If dimQ CH0.X/Q <1,
thenX admits an embedding into a projective space whose homogeneous coordinate
ring has only rational singularities.

In view of Proposition 3.8 and Theorem 3.7 we ask:

Question 3.13. Let .R;m; k/ be a Cohen–Macaulay complete local normal domain
with k an algebraically closed field. If K0.R/ is finitely generated, must Spec.R/
have only rational singularities?

Corollary 3.3 shows that the answer is yes in dimension 2. Of course, in higher
dimensions the existence of desingularizations is not known for positive or mixed
characteristics, so one may need to replace the condition of rational singularities
with suitable concepts such as being F -rational or pseudo-rational.

Our last example illustrates some subtlety involving Lemma 3.9.

Example 3.14. Lemma 3.9 might not be true over fields of characteristic 0 whose
transcendance degree over their prime subfield is not large enough. Indeed, consider
a K3-surface X over the algebraic closure of Q. Then, H 2.X;OX / is not zero but it
is expected (as part of the Bloch-Beilinson conjectures) that CH0.X/Q D Q.

Provided such an example exists, it could potentially yield a negative example
to Question 3.13. Note that CH.X/Q is a finite dimensional Q-vector space (it is
known that the rank of the Picard group of X is finite). We can use an very ample
line bundle onX to embedX into some projective space. LetR be the homogeneous
coordinate ring of such an embedding, thus dimQ CH.R/Q < 1. But if R has
rational singularities, then H 2.X;OX / D 0 (cf. [35, Theorem 2.2] and [34]).
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