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Presheaves of symmetric tensor categories and nets of
C*-algebras

Ezio Vasselli

Abstract. Motivated by algebraic quantum field theory, we study presheaves of symmetric
tensor categories defined over the base of a space, intended as a spacetime. Any section of a
presheaf (that is, any “superselection sector”, in the applications that we have in mind) defines a
holonomy representation whose triviality is measured by Cheeger–Chern–Simons characteristic
classes, and a non-abelian unitary cocycle defining a Lie group gerbe. We show that, given an
embedding in a presheaf of full subcategories of the one of Hilbert spaces, the section category
of a presheaf is a Tannaka-type dual of a locally constant group bundle (the “gauge group”),
which may not exist and in general is not unique. This leads to the notion of gerbe of C*-
algebras, defined on the given base.
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1. Introduction

LetM be a spacetime and� denote a base generating the topology ofM . The object
of interest in algebraic quantum field theory is a C*-precosheaf A defined over �,
that is, a family of C*-algebras fAogo2� with *-monomorphisms

|o0o W Ao ! Ao0 W |o00o0 ı |o0o D |o00o ; 8o � o
0
� o00 2 � ; (1.1)

where each fibre Ao is interpreted as the algebra of quantum observables localized
within o. This is what is usually called the observable net ([12, Chap.III]).

In the case of the Minkowski spacetime � is a directed poset (partially ordered
set) when ordered under inclusion, so we can define the inductive limit EA WD
limo�o0.Ao; |o0o/. This is an important property at the mathematical level, because it
implies that the set of sectors (the physically relevant Hilbert space representations of
A) can be realized as a semigroup T of *-endomorphisms of EA defining a symmetric
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tensor category with simple unit. This allows one to reconstruct the C*-algebra of
quantum fields, as a C*-crossed product

F WD EAo T ; (1.2)

and the gauge group G, realized as the group of automorphisms of F leaving EA
pointwise fixed. Then a net F of C*-subalgebras of F is constructed and interpreted
as the net of (not necessarily observable) quantum fields. The pair .F; G/ is unique
up to a suitable equivalence and T is characterized as the category of unitary
representations of G ([8, 9]).

A class of “universal models” of (1.2) is given by the representation of the Cuntz
algebra Od , d 2 N ([4]), as the crossed product

Od D OG ob� : (1.3)

In the previous expression OG � Od is the fixed-point C*-algebra under the
action of the compact group G, and b� is the semigroup generated by the canonical
endomorphism � 2 endOG carrying the structure of a symmetric tensor category,
see [6] and [7, Theorem 4.17]. The relation with (1.2) is given by the fact that for
any � 2 T there are mutually orthogonal partial isometries  1; : : : ;  d 2 F , that
induce � on EA in the sense that

�.t/ D
X
k

 kt 
�
k ; 8t 2 EA :

The C*-algebra F� � F generated by  1; : : : ;  d contains the C*-algebra O� � EA
generated by the elements of EA that intertwine powers of � , and there is an
isomorphism i W Od ! F� such that i.OG/ D O� and i ı�.t/ D � ı i.t/, 8t 2 OG .

Now, in conformal theory and general relativity we have spacetimes whose bases
are not directed under inclusion. This fact has consequences both at the level of the
C*-precosheaf A, on which the operation of inductive limit now is not defined, and
on the structure of the set of sectors.

A method to overcome the problem of the inductive limit has been given by
Fredenhagen, who defined a C*-algebra eA fulfilling the universal property of lifting
Hilbert space representations of A (see [10]). This construction has two limits: the
first is that eA does not contain the informations necessary to describe the sectors
affected by the topology ofM introduced by Brunetti and Ruzzi ([1]), and the second
is that in general it is not ensured that a C*-precosheaf can be faithfully represented
on a Hilbert space ([24, Example 5.8, Example A.9]).

Passing to the structure of sectors, one can define semigroups Ta � endAa,
a 2 �, with elements *-endomorphisms localized in some e � a (see Example 3.10,
[20, §27], [11, §3.3]). These semigroups form a precosheaf T encoding the tensor
structure but that, unfortunately, does not contain all the informations necessary to
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characterize the set of sectors (see [11, §3.3], [1, §5.1]). A different approach is
proposed in the paper [26], where we show that the Brunetti–Ruzzi superselection
structure S is the category of sections of a presheaf S of symmetric tensor categories
with simple units. The idea is that any fibre Sa of S, a 2 �, can be interpreted
as a superselection structure defined on Aa, which, unlike S , is not affected by
topological effects. Our program is to construct the field algebras as suitable crossed
products Fa D Aa o Sa, a 2 �, and then to construct structure morphisms of the
type (1.1) for the field algebras. This would yield the reconstruction of quantum
fields, that is currently an open problem ([1, §8]).

In the present paper we make the first steps in this direction at the mathematical
level. The first is the analysis of the presheaf S from the point of view of the Tannaka
duality, that allows us to understand which are the natural dual objects defined by S 1.
The second step is the study of the C*-net bundles 2 defined by sections of S, that
play a role analogous to the above-mentioned C*-algebra O� : in particular, we study
a version of (1.3) in the setting of C*-net bundles.

For what concerns the Tannaka duality, as a dual object we obtain (quite
naturally) a precosheaf of compact groups G acting on precosheaves of finite-
dimensional Hilbert spaces, see Theorem 5.6. Along this way, we prove that any
section % of S (that is, any Brunetti–Ruzzi sector in accord with [26]) defines a
compact Lie group G% � U.d/, d 2 N, and a holonomy representation

�% W �1.M/! NG%=G% ; (1.4)

where NG% is the normalizer of G% in U.d/. The morphism (1.4) is a complete
invariant of the presheaf defined by tensor powers of % (Theorem 5.3). We interpret
�% as a flat principal NG%=G%-bundle and assign to it Cheeger–Chern–Simons
classes living in the odd cohomology of M (see (5.9)). We point out that our duality
is a Tannaka duality, based on the use of an embedding I W S ! C, where C is a
presheaf of full subcategories of the one of Hilbert spaces. Existence and uniqueness
of I and, consequently, of G can be expressed in terms of liftse�% W �1.M/! NG% ; �% De�% modG% ;

and therefore are not ensured, see Theorem 5.7. As we shall see in a future paper,
existence and uniqueness of the dual object can be restored by considering gerbes
over posets in the sense of §6, that is, families of group isomorphisms fulfilling the
precosheaf relations up to inner automorphisms. This situation is analogous to the
one of [25], where similar results are proven for bundles of symmetric tensor C*-
categories, nevertheless motivations, techniques and results diverge, because now
our scenario is the “geometry of posets” of [22].

1 Passing to the dual poset �0 we can regard presheaves over � as precosheaves over �0 and vice
versa, so our results apply to precosheaves of symmetric tensor categories.

2A C*-net bundle is a C*-precosheaf such that the structure morphisms (1.1) are isomorphisms,
see [22].
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About the analogue of (1.3), we observe in Remark 5.4 that any section % of S
defines a C*-net bundle A% whose fibres are constructed in the same way as O� .
This leads us to study C*-net bundles A with fibre OG , and we classify them in
terms of holonomy representations � W �1.M/! NG=G, see Theorem 4.5. Any A
is endowed with a *-endomorphism %� 2 endA defining a presheaf b%� with fibres
isomorphic to b�, and we show that solutions of the problem of finding a C*-net
bundle F with fibre Od , that plays the role of a crossed product

F D Aob%� ; (1.5)

are in one-to-one correspondence with lifts of the holonomy � (Theorem 4.9); as
desired, any solution F determines a group precosheaf G such that FG D A.
Examples in which the pair .F;G/ does not exist or is not unique are given in §4.
We shall show in a future work that (1.5) has always a unique solution searching F
in the more general category of gerbes of C*-algebras in the sense of (6.4), and this
will determine a gerbe of compact groups rather than a group precosheaf ([27]).

The following sections are organized as follows.
In Section 3 we recall the notions of precosheaf (net bundle) and presheaf

(presheaf bundle) over a poset K with fibres in a category C (see [22]: as
for C*-precosheaves, the term bundle indicates that the structure morphisms are
isomorphisms). We illustrate the equivalence between the category of net bundles
with fibres in C and the one of representations on C of the homotopy group �1.K/,
realized by assigning to the given net bundle its holonomy representation (Theorem
3.5). Then we introduce the notion of gauge action of a group net bundle G on a
precosheaf, see (3.14). Finally, we consider presheaves of categories and prove that
for any presheaf S there is a canonical presheaf bundle with category of sections
isomorphic to the one of S (Prop.3.9).

In Section 4 we give the above-mentioned classification of C*-net bundles A
with fibre OG and characterize those that admit solutions F of (1.5). These results
are also stated in terms of duality between presheaves of symmetric tensor categories
and group net bundles.

In Section 5 we prove a Tannaka duality for the category of sections of S
(Theorem 5.6). Other results are those concerning the holonomy representation (1.4),
see Theorem 5.3, and the non-abelian cocycle defined by a section of S (Theorem
5.5).

The appendix contains an introduction to flat and locally constant bundles with
fibres in the category C, that form a non-full subcategory, denoted by lc.M;C/, of
the one of locally trivial bundles onM with fibres in C. Making use of the holonomy
representation, we illustrate how lc.M;C/ is equivalent to the category of net bundles
over � with fibres in C.
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2. Notation and background.

In the present paper we shall use notions arising from contexts as algebraic topology,
operator algebras and category theory, so to facilitate the reader we give some
definitions.

� autG is the automorphism group of the group G and adg 2 autG is the inner
automorphism induced by g 2 G;

� If K is a set of indices and B WD fBogo2K , B 0 WD fB 0ogo2K are families of
sets, then we define the fibred product B �K B 0 WD fBo � B 0ogo2K ;

Spaces. With the term space we mean a topological space. In particular, we denote
an arcwise connected, locally compact, Hausdorff space byM (that will play the role
of a spacetime in the applications). We say that a base � generating the topology of
M is good whenever any element of K is arcwise and simply connected.

Operator algebras and (pointed) dynamical systems ([5]). A C*-algebra is a
complex Banach *-algebra A such that the C*-identity kv�vk D kvk2 is fulfilled
for all v 2 A. In the present paper we shall work with unital C*-algebras, that is,
there is 1 2 A such that 1v D v1 D v, 8v 2 A, and we have the group of unitaries
UA WD fu 2 A W uu� D u�u D 1g. Any C*-algebra can be represented as a
norm-closed *-algebra of operators on a complex Hilbert space.

A �-morphism � W A ! A0 is a linear map such that �.v�w/ D �.v/��.w/,
8v;w 2 A. The terms �-endomorphism, �-automorphism shall be used with
the obvious meaning. We shall consider only unital *-morphisms, i.e. such that
�.1/ D 1.

A pair .A; �/, where A is a C*-algebra and � 2 endA a *-endomorphism, is
called C*-dynamical system. A morphism � W .A; �/ ! .A0; �0/ is a �-morphism
� W A ! A0 fulfilling the relation �0 ı � D � ı �. A pointed C*-dynamical system
is a triple .A; �; "/ � A�;", � 2 endA, " 2 A; a morphism of pointed C*-dynamical
systems � W A�;" ! A0�0;"0 is a morphism � W .A; �/! .A0; �0/ such that �."/ D "0.
The automorphism groups of .A; �/ and .A; �; "/ are denoted by aut�A, aut�;"A,
respectively. We shall use the notion of pointed C*-dynamical system having in
mind the case in which " is a symmetry operator in the sense of [8, §4].

Categories. We refer to [19] for notions of category theory, and to [7, §1] for the
notions of C*-category, direct sums and subobjects. Given a category C, we denote
the set of objects by obj C and the set of arrows by arr C. For any � 2 obj C,
we denote the group of invertible arrows in .�; �/ by aut� and the identity arrow by
1� 2 aut� .

For the notion of functor F W C ! D we refer to [19, §I.3], from which the
following definitions are taken. The functorF is said to be an isomorphism whenever
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it is bijective both on the set of objects and on the sets of arrows, so it has an inverse
functor, and, in particular, we say that F is an automorphism whenever C D D.
We say that F is an embedding whenever it is injective on the sets of arrows, and
that F is full whenever it is surjective on the sets of arrows. Finally, F is said
to be an equivalence whenever there is F 0 W D ! C such that F ı F 0 ' idD and
F 0ıF ' idC, where idC is the identity functor and' denotes a natural isomorphism
(see [19, §I.4]).

Many categories that are considered in the present paper are topological, that is:
(1) AnyX 2 obj C is a space; (2) Any set of arrows .X;X 0/ has elements continuous
maps from X to X 0 and is endowed with a suitable topology; (3) The composition
defines continuous maps on the sets of arrows.

The cases of interest are the following: (1) The category Ban with objects Banach
spaces and arrows bounded linear operators, endowed with the norm topology on
the objects and with the pointwise convergence topology on the sets of arrows. If
X 2 obj Ban, then autX is the group of invertible linear operators; (2) The category
C�alg with objects C*-algebras and arrows �-morphisms, with the topologies of
Ban. If A 2 obj C�alg, then autA is the *-automorphism group; (3) The category
Hilb with objects Hilbert spaces and arrows bounded linear operators, with the
topologies of Ban. If H 2 obj Hilb, then by definition autH WD UH , the
unitary group; (4) The category TopGr with objects topological groups and arrows
continuous maps, endowed with the pointwise convergence topology on the sets of
arrows. If G 2 obj TopGr, then homeoG is the homeomorphism group.

Symmetric tensor categories. Categories appear in algebraic quantum field theory
for questions related to the gauge group, under the form of superselection structures
([9]). In the present paper we use tensor C*-categories T , that means that the spaces
of arrows .�; �/, �; � 2 obj T , are Banach spaces with an involutive structure � W
.�; �/! .�; �/ satisfying the C*-identity kt�ıtk D ktk2, 8t 2 .�; �/, and endowed
with a *-bifunctor ˝ W T � T ! T , the tensor product, having identity object
� 2 obj T ; to be concise, we write �� WD � ˝ � for any �; � 2 obj T . We say that
T has a simple unit whenever .�; �/ ' C. A further structure is the one of symmetry,
that is defined by a family of unitary arrows " D f"�;� 2 .��; ��/g, fulfilling

.t 0 ˝ t / ı "�;�0 D "�;� 0 ı .t ˝ t
0/; 8t 2 .�; �/; t 0 2 .�0; � 0/; (2.1)

and

"�;� ı "�;� D 1�; "�;� D "�;� D 1�; "��;� D ."�;� ˝ 1� / ı .1� ˝ "�;� /; (2.2)

for all �; �; � 2 obj T . We denote a symmetric tensor C*-category by T˝;", and we
write autT˝;" to indicate the group of automorphisms preserving tensor product and
symmetry.

The category Hilb, duals of compact groups ([7, Example 1.2]) and symmetric
�-endomorphisms ([8, §5]) are the models that we have in mind for symmetric tensor
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C*-categories. For convenience we recall the definition of these last ones: given the
C �-algebraA, endA becomes a C*-category with sets of arrows given by the Banach
spaces

.�; �/ WD ft 2 A W t�.v/ D �.v/t;8v 2 Ag; 8�; � 2 endA; (2.3)

and composition of arrows defined by the product of A; the tensor product is given
by

�˝ � WD �� WD � ı �; t ˝ t 0 WD t�.t 0/;

8�; �; �0; � 0 2 endA; t 2 .�; �/; t 0 2 .�0; � 0/: (2.4)

If a tensor full subcategory of endA has symmetry ", then applying (2.1, 2.2)
to this context we obtain the notion of permutation symmetry for a semigroup of
*-endomorphisms of A (see [8, §5]).

Posets. Posets are sets endowed with an order relation �. Sometimes it is
convenient to regard a poset K as the category with objects elements of K and sets
of arrows defined by the order relation: .o; o0/, for all o; o0 2 K, has one arrow
when o � o0, otherwise it is the empty set. In the present paper, the motivation of
the notion of poset is given by good bases of manifolds endowed with the inclusion
relation.

As in [21, 22] we consider the simplicial set †� associated with K, which, at
lower degrees, is defined as follows. As a first step, we define the set of “points”
†0.K/ WD K. The set †1.K/ of 1–simplices is given by triples

b WD .@0b; @1bI jbj/ W @0b; @1b; jbj 2 †0.K/; @0b; @1b � jbj:

The 0–simplices @0b; @1b are called the faces of b, whilst jbj is called the support,
with the idea that b is a “line” from @1b to @0b. The set†2.K/ is given by quadruples
c WD .@0c; @1c; @2c; jcj/where each @kc, k D 0; 1; 2, is a 1-simplex with j@kcj � jcj
and such that

@hkc WD @h@kc D @k@hC1c; 8h � k: (2.5)

A path in K is a finite sequence

 D .bn; : : : ; b1/ W bi 2 †1.K/; @0bi D @1biC1;8i D 1 : : : ; nI

we define the ending and the starting points of  by @0 WD @0bn, @1 D @1b1,
respectively, and write  W @1 ! @0 . Given a; a0 2 K, we denote the set of paths
of the type  W a ! a0 by K.a; a0/ and, in particular, we write K.a/ WD K.a; a/.
For brevity we assume that posets are pathwise connected, that is, that for any pair
a; a0 there is a path  W a ! a0. Paths  D .bn; : : : ; b1/,  0 D .b0n; : : : ; b

0
1/ with

@1 D @0
0 can be composed in the obvious way:

 �  0 WD .bn; : : : ; b1; b
0
n; : : : ; b

0
1/ :
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There is a notion of deformation on elements of K.a; a0/ (see [23, §2.2]), which
yields an equivalence relation �. Thus we obtain the group �1.K/ WD K.a/= �

endowed with the operation of path composition, called the homotopy group based
on a.

The opposite poset of K is given by the set K 0 WD K endowed with the opposite
order relation o0 �0 o , o � o0. There is an isomorphism �1.K/ ' �1.K

0/,
realized by observing that, exchanging the role of supports and faces we pass from a
path in K to a path in K 0 ([22, §2]).

Let M be a space and � denote a good base of M . By [23, Theorem 2.18], for
each x 2M and a 2 K with x 2 a there is an isomorphism

�1.�/! �1.M/; p 7! ptop; (2.6)

where �1.M/ is the fundamental group with base point x 2 M and �1.�/ is the
homotopy group of � based on a. By definition, the homotopy class ptop has
elements curves with support contained in jpj WD [i jbi j, p WD .bn; : : : ; b1/.

Groups. Let …, G be groups. We denote the set of morphisms from … to G by
hom.…;G/. We say that �; �0 2 hom.…;G/ are equivalent whenever there is g 2 G
such that

�.p/ D g�0.p/g�1; 8p 2 …:

This defines an equivalence relation and we denote the set of equivalence classes by
hom.…;G/. Given a category C, we define the category hom.…;C/ in the following
way: the set of objects is defined by f� 2 hom.…; autX/ W X 2 obj Cg, and the set
of arrows .�; �0/, �; �0 2 hom.…; autX/, is given by the intertwiners

f 2 .X;X 0/ W �0.p/ ı f D f ı �.p/; 8p 2 …:

3. Nets and presheaves over posets.

Nets are a natural generalization of the notion of net of C*-algebras, in the sense
that generic categories are considered instead of C�alg and an abstract poset K
is considered instead of the base of double cones of the Minkowski space. The
correct term should be the one of precosheaf, nevertheless we prefer to maintain the
terminology used in algebraic quantum field theory. Unless otherwise stated we have
topological categories C, so any X 2 obj C is a space.

Nets. Let us consider a collection B WD fBogo2K of objects of C and a family
| WD f|o0og of arrows |o0o 2 .Bo; Bo0/, o � o0 2 K, fulfilling the net relations

|o00o D |o00o0 ı |o0o; 8o � o
0
� o00 2 K: (3.1)
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We call net the pair B WD .B; |/K ; the objects Bo, o 2 K, are called the fibres of B
and | is called the net structure. Note that if we regard K as a category, see §2, then
(3.1) says that B is a functor from K to C.

For any S � K, the restriction of B to S is given by the net BS obtained by
considering the families fBo; o 2 Sg, f|o0o; o; o0 2 Sg. In particular, given a 2 K
we set Ka WD fo 2 K W o � ag, Ka WD fo 2 K W a � og and B�a WD BKa ,
B�a WD BKa

.
Remark 3.1. In the present paper we assume that the maps |o0o are injective, so we
have �-monomorphisms when C D C�alg, isometries when C D Hilb and so on.

Let B0 WD .B 0; j 0/K be a net. A morphism � W B! B0 is given by a family of
arrows � WD f�o 2 .Bo; B 0o/g fulfilling

j 0o0o ı �o D �o0 ı |o0o; 8o � o
0: (3.2)

Note that, passing to the point of view that a net is a functor B W K ! C, we have
that � defines a natural transformation in the sense of [19, §I.4].

A morphism ˛ W B ! B0 is said to be an isomorphism whenever there is ˛0 W
B! B0 such that ˛0 ı ˛ D idB, ˛ ı ˛0 D idB0 . In this way, we have the category
net.K;C/, with objects nets having fibres in obj C and arrows the above defined
morphisms. Given a net B we write endB WD .B;B/.

Let B D .B; |/K be a net and A WD fAo � Bog a family stable under j , i.e.
|o0o.Ao/ � Ao0 , 8o � o0. Then defining { WD f|o0ojAo

g yields the net A D .A; {/K
and the inclusion morphism I 2 .A;B/. We say that A is a subnet of B.
Example 3.2. Let X 2 obj C. The constant net with fibre X is defined by B0 WD

.B0; |0/K , where B0 WD fBo � Xg and |0;o0o.v/ WD v, 8o � o0 2 K, v 2 Bo D X .
A net B is said to be trivial whenever there is an isomorphism ˛ 2 .B;B0/.
Example 3.3. Let M denote the Minkowski spacetime and �dc the base of double
cones generating the topology of M . Any net in the sense of [12, Chap.III] is a net
of C*-algebras over �dc in the sense of the present paper.
Example 3.4. Let K be a poset. Objects of net.K;Hilb/ are called nets of Hilbert
spaces and form in the natural way a symmetric tensor C*-category with direct
sums, subobjects and unit given by the constant net H0 WD .H0; |0/ with fibre C.
When K is connected H0 has a simple unit, that is, .H0;H0/ ' C. Nets of infinite-
dimensional Hilbert spaces appear in [1, §2].

Sections. A section of B is given by a family s WD fso 2 Bog such that |o0o.so/ D
so0 , 8o � o0. We denote the set of sections of B by eB. Note that eB inherits structure
from the category C, i.e. eB is a group, a Hilbert space, a C*-algebra whenever
C D TopGr, Hilb, C�alg. For example, when C D C�alg, at varying of o in K we
define

ksk WD sup
o
ksok ; .ss

0/o WD sos
0
o; .s C �s

0/o WD so C �s
0
o; s
�
o WD .so/

�;

where s; s0 2 eB, � 2 C.
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Since K is pathwise connected and since (in the cases of interest) any |o0o is
isometric, the above defined norm function is constant at varying of o in K.

Presheaves. A presheaf over K is given by a pair S D .S; r/K , where S is a
family of objects of a category C and r D fraa0 ; a � a0g, is a family of injective
arrows fulfilling the presheaf relations

raa0 ı ra0a00 D raa00 ; 8a � a
0
� a00 2 K:

Note that requiring the injectivity property for r makes presheaves over posets quite
different from those used in algebraic topology, where, in general, the restriction
maps are not injective. Rather, geometric counterparts of presheaves over posets
are locally constant presheaves in the sense of [2, §II.10,II.13], as it can be proven
reasoning as in Appendix A.

A section of S is given by a family % D f%o 2 So W roo0.%o0/ D %o;8o � o0g. A
presheaf morphism � W S! S0 is given by a family of arrows �a W Sa ! S 0a, a 2 K,
such that raa0 ı �a0 D �a ı raa0 , 8a � a0. This yields the category psheaf.K;C/ of
presheaves over K with coefficients in C. A presheaf can be regarded in the obvious
way as a net on the opposite poset K 0, and this yields isomorphisms

net.K;C/ ' psheaf.K 0;C/; net.K 0;C/ ' psheaf.K;C/:

Net bundles, flat connections and cocycles. We describe some results of [21, §3–
4] from a categorical viewpoint. The following considerations also hold for nets with
fibres that are objects of generic categories, as the category of small C*-categories
with arrows *-functors (which shall be used in the sequel).

A net B D .B; |/K is said to be a net bundle whenever |o0o is an isomorphism
for all o � o0, and in this case it is customary to fix a 2 K and define the standard
fibre X WD Ba. In the sequel, a net bundle with standard fibre X will be denoted by

B WD .B; j IX/K :

To be concise, when B is a net bundle we write |oo0 WD |�1o0o , o � o0. We
denote the full subcategory of net.K;C/ with objects net bundles by bun.K;C/;
in particular, we denote the set of net bundles with standard fibre X by bun.K;X/
and the associated set of isomorphism classes by bun.K;X/. Analogous notations
and terminology hold for presheaf bundles, which form the category pbun.K;C/.
Note that we have a further, canonical isomorphism

bun.K;C/! pbun.K;C/; .B; |/K 7! .B; r/K W roo0 WD |oo0 ; o � o0: (3.3)

The flat connection of the net bundle B D .B; |/K is given by the family Z of
isomorphisms

Z.b/ W B@1b ! B@0b; Z.b/ WD |@0b;jbj ı |jbj;@1b; b 2 †1.K/; (3.4)
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which, by (2.5), satisfies the 1–cocycle relations

Z.@0c/ ıZ.@2c/ D Z.@1c/; 8c 2 †2.K/: (3.5)

Fixing a family of isomorphisms io 2 .Bo; X/, o 2 K, yields the map

z W †1.K/! autX; z.b/ WD i@0b ıZ.b/ ı i
�1
@1b
; b 2 †1.K/: (3.6)

Clearly z satisfies (3.5), i.e. it is an autX -cocycle in the sense of [21, Eq.27]. We
now extend Z to generic paths: for any  WD bn � � � � � b1, we define

Z./ WD Z.bn/ ı � � � ıZ.b1/ W B@1b1
! B@0bn

: (3.7)

In particular, if @1 D @0 D a then Z yields the map

P� W K.a/! autX; P�./ WD Z./: (3.8)

Reasoning as in [23, Lemma 2.6] we can prove that P� induces a map � W �1.K/ !
autX , that we call the holonomy representation of B. The image of � is called
the holonomy group of B on a and is denoted by Ha.B/. By [21, Lemma 4.27],
a change a ! a0 of the standard fibre yields a holonomy group conjugated with
Ha.B/ in autX .

Let B0 D .B 0; j 0IX 0/K be a net bundle; we write the map

P�0 W K.a/! autX 0; P�0.p/ WD j 0@0bn;jbnj
ı j 0
jbnj;@1bn

ı � � � ı j 0@0b1;jb1j
ı j 0
jb1j;@1b1

;

defining the holonomy representation �0. If t 2 .B;B0/, then using (3.2) we find

ta ı P�./ D P�
0./ ı ta; 8 W a! a: (3.9)

Thus ta is an intertwiner from � to �0.

The equivalence with hom.�1.K/;C/. We are ready to illustrate the equivalence
between the category of net bundles and that of representations of �1.K/. For a
detailed proof see [21, Prop.3.11] and [22, Theorem 22(i)], anyway for convenience
we describe explicitly the involved maps.

Theorem 3.5. For any poset K and for any category C there is an equivalence

hom.�1.K/;C/! bun.K;C/; � 7! B�: (3.10)

Sketch of the proof. In the previous lines we defined a functor from bun.K;C/ to
hom.�1.K/;C/, assigning to any net bundle B its holonomy representation � and
to any morphism t 2 .B;B0/ the intertwiner ta 2 .�; �0/. To prove the theorem we
give, up to isomorphism, an inverse of this functor. To this end, using the fact thatK
is connected, given a 2 K we fix paths

ao W o! a; 8o 2 K:
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This operation is called a fixing of the path frame of K, see [1, §6]. Moreover, we
note that for any o � o0 the 1-simplex bo0o WD .o0; oI o0/ can be regarded as a path in
K.o; o0/. By elementary properties of deformations, we have the equivalence

bo00o0 � bo0o � bo00o; o � o0 � o00 (3.11)

(see [23, §2.2]). We now consider a group morphism � W �1.K/ ! autX , X 2
obj C, and construct an associated net bundle. For any o 2 K we define Bo WD X

and set B WD fBogo2K . To construct a net structure on B we define

|o0o WD �.ao0 � bo0o � 
�1
ao /; o � o0: (3.12)

By homotopy invariance of �, and using (3.11), we have |o00o0 ı |o0o D |o00o,
o � o0 � o00, and this yields the desired net bundle B� D .B; j IX/K .

LetG � autX be a subgroup. We say that the structure group of B 2 bun.K;X/
has a reduction to G whenever there is a holonomy representation associated to B
with image G. Clearly, B is trivial if, and only if, there is a reduction to the trivial
group.

Principal net bundles. Elements of bun.K;TopGr/ are called group net bundles.
An interesting subcategory of bun.K;TopGr/ is the one of principal net bundles,
that we define in the following way. Let G be a topological group and homeoG
denote the homeomorphism group ofG. ThenG acts on itself by right multiplication
and this yields an injective mapR W G ! homeoG. We say that P 2 bun.K;G/ is a
G-principal net bundle whenever it admits a holonomy representation � W �1.K/!
R.G/ ' G. To be concise, in the sequel we will identify G with R.G/. Let us
denote the set of G-principal net bundles by Pr.K;G/. By definition, there is a
one-to-one correspondence

hom.�1.K/;G/! Pr.K;G/; � 7! P�: (3.13)

We say that P;P0 2 Pr.K;G/ are equivalent as G-principal net bundles whenever
there is g 2 G such that �0.p/ D g�.p/g�1, 8p 2 �1.K/. We denote the set of
equivalence classes of G-principal net bundles by Pr.K;G/; by definition there is a
one-to-one correspondence

Pr.K;G/ ' hom.�1.K/;G/:

By Theorem 3.5, any net bundle B 2 bun.K;X/ has an associated principal net
bundle P 2 Pr.K; autX/, defined by the holonomy of B. For details on principal
net bundles see [22, §4].
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Gauge actions. Let G WD .Y; i IG/K be a group net bundle. A gauge G-action
on the net B is given by a family ˛o W Yo ! autBo, o 2 K, of continuous group
morphisms fulfilling the relations

f˛o0.io0o.y//g ı |o0o D |o0o ı ˛o.y/; 8y 2 Yo ' G; o � o0: (3.14)

This yields the map ˛ W Y �K B ! B , ˛.y; v/ WD f˛o.y/g.v/, 8o 2 K, y 2 Yo,
v 2 Bo. In the sequel we shall denote a gauge G-action by

˛ W G �K B! B:

We say that ˛ is faithful whenever ˛o is injective for any o 2 K. Any section g 2 eG
defines an automorphism

˛g 2 .B;B/; ˛g;o.v/ WD ˛.go; v/; v 2 Bo:

When G is trivial we have G ' eG and we say that ˛ is a global gauge action.
Clearly, a global gauge action defines group morphisms

˛ W G ! autB; ę W G ! auteB:
For example, if C D C�alg then ę is a strongly continuous action on the C*-
algebra eB.

The pair .B; ˛/ is called G-net. Let .B0; ˛0/ be a G-net and t 2 .B;B0/ a
morphism; we say that t is a G-morphism whenever

to ı ˛o.y/ D ˛
0
o.y/ ı to; 8o 2 K; y 2 Yo; (3.15)

and denote the set of G-morphisms by .B;B0/G. In this way we have the
subcategory netG.K;C/ of net.K;C/ with objects G-bundles and arrows G-
morphisms. Given the G-net .B; ˛/ and o 2 K we denote the space of fixed points
w.r.t. ˛o by B˛o ; it is easily verified that B˛ WD fB˛o g is stable under the net structure
j , and we denote its restriction to B˛ by j ˛ . This yields the fixed-point subnet
B˛ WD .B˛; j ˛/K .
Example 3.6. Let G D .Y; i IG/K be a group net bundle. Objects of bunG.K;Hilb/
are called G-Hilbert net bundles.

Locally trivial gauge actions. Let B D .B; j IX/ be a net bundle andG WD autX .
Then B defines the group net bundle

autB WD .autB; |�IG/K ; (3.16)

where autB WD fautBog and |�;o0o W autBo ! autBo0 , |�;o0o.u/ WD |o0o ı u ı |oo0 ,
8o � o0. If � 2 hom.�1.K/;G/ is the holonomy representation of B then autB
has holonomy representation

ad� W �1.K/! autG; fad�.p/g.ˇ/ WD �.p/ıˇ ı�.p/�1; p 2 �1.K/; ˇ 2 G:

(3.17)
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Any gauge G-action ˛ on B can be regarded, by (3.15), as a morphism ˛ 2

.G; autB/.

Example 3.7. Let H D .H; j ICd /K be a Hilbert net bundle. We denote the
associated net bundle of unitary automorphisms by UH WD .UH; |�IU.d//K . If
� 2 hom.�1.K/;U.d// is the holonomy representation of H, then UH has holonomy
representation ad� 2 hom.�1.K/; autU.d// defined by adjoint action.

Lemma 3.8. Let B D .B; j IX/K be a net bundle. Then faithful gauge actions on
B are in one-to-one correspondence with reductions of the structure group of B.

Proof. Let G be an automorphism group of X , NG denote the normalizer of G in
autX and � 2 hom.�1.K/;NG/ a reduction of the structure group of B. Defining
�0.p/ WD ad�.p/jG , p 2 �1.K/, yields a morphism �0 2 hom.�1.K/; autG/.
Clearly, the inclusion i W G ! autX fulfils the relation ad�.p/ ı i D i ı �0.p/,
8p 2 �1.K/, thus it defines an intertwiner i 2 .�0; ad�/. Applying Theorem 3.5
we obtain a group net bundle G 2 bun.K;G/ and the desired monomorphism i� 2

.G; autB/. On the converse, let G D .Y; i IG/K denote a group net bundle and
˛ 2 .G; autB/ a monomorphism. Fixing a 2 K we define Ga WD ˛a.Ya/ ' G and
autBa � autX . Now, we have |�;o0o ı ˛o.y/ D ˛o0 ı io0o.y/, y 2 Yo, o � o0, thus
|o0o.˛o.Yo// D ˛o0.Yo0/. This implies, evaluating over paths p 2 �1.K/,

fad�.p/g.g/ D �.p/ � g � �.p/�1 D g0 2 Ga; 8g 2 Ga:

In other terms, �.p/ 2 NGa, and we conclude that � takes values in NGa.

Nets and presheaves of C*-categories. The concept of net can be categorified, see
[20, §27]. A net of C*-categories is given by a pair C D .C; |/K , where C WD
fCo; o 2 Kg is a family of C*-categories and j WD f|o0o; o � o0g is a family of
embeddings fulfilling the relations |o00o0 ı |o0o D |o00o, o � o0 � o00. We say that C
is full whenever any |o0o, o � o0, is full, and that C is a net bundle whenever any |o0o
is an isomorphism. Any net of C*-categories C D .C; |/K defines the C*-category
of sections eC with objects families

% D f%o 2 obj Cogo2K W %o0 D |o0o%o; 8o � o0; (3.18)

sets of arrows

.%; &/ D ft WD fto 2 .%o; &o/go2K W to0 D |o0o.to/; 8o � o
0
g; %; & 2 obj eC;

and composition, C*-structure defined in the natural way (in particular, we define
the norm ktk WD supo ktok, t 2 .%; &/). For each �; � 2 obj eC, the net structure j
induces bounded linear maps

|o0o W .%o; &o/! .%o0 ; &o0/; o � o0; (3.19)
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defining a net of Banach spaces C%;& , thus elements of .%; &/ can be regarded as
sections of C%;& . A morphism from C to the net C0 D .C 0; j 0/K is given by a family
of *-functors � D f�o W Co ! C 0og such that �o0 ı |o0o D j 0o0o ı �o, o � o

0. The
morphism � induces the *-functor e� WeC!eC0, e�.%/ WD f�o.%o/g, e�.t/ WD f�o.to/g,
t 2 .%; &/.

Analogous properties hold for the notion of presheaf of categories C D .C; r/K

and we do not list them, limiting ourselves to observe that any raa0 W Ca0 ! Ca,
a � a0, is, by definition, an embedding. We denote the categories of nets, presheaves,
net bundles, presheaf bundles of C*-categories over K, respectively, by

net".K;C�cat/; psheaf".K;C�cat/; bun".K;C�cat/; pbun".K;C�cat/:

In particular, given the C*-category C we denote the set of net bundles (resp.
presheaf bundles) with fibres isomorphic to C by

bun".K;C/; pbun".K;C/:

The above notation should not give rise to confusion with bun.K;C/ which
indicates, instead, the category of net bundles whose fibres are objects of C. As
for ordinary nets, we have isomorphisms

psheaf".K;C�cat/ ' net".K 0;C�cat/; bun".K;C�cat/ ' pbun".K;C�cat/:

For future convenience the next results are expressed in terms of presheaves, but they
could be given as well in terms of nets.

Proposition 3.9 (The presheaf bundle trick). Let C WD .C; r/K be a presheaf of
C*-categories. Then there is a canonical morphism

P W ˇC ! C;

such that ˇC D .ˇC; ˇ r/K is a presheaf bundle and eP W f̌C!eC is an isomorphism.

Proof. To make r bijective on the arrows we select a suitable subpresheaf of C. To
this end we consider the C*-category eC�a of sections of the restriction C�a, a 2 K,
and note that there is an evaluation functor

�a WeC�a ! Ca; % 7! %a; t 7! ta; 8%; & 2 obj eC�a; t 2 .%; &/:
We set �Ca WD �a.eC�a/, 8a 2 K. Let e � a. By definition an arrow of �Ce is of
the type te 2 .%e; &e/, where %; & 2 obj eC�e and t 2 .%; &/. But te D rea.ta/ and by
definition ta 2 �.%a; &a/; this implies that rea is a surjection on �.%e; &e/, 8e � a
(note that rea is also injective by definition), and we define �rea as the restriction of
rea to �Ca. By construction the functor �rea is full and �C is a subpresheaf of C.
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The functors �rea may be not bijective on the objects, so we define ˇCa, a 2 K,
as the C*-category

obj ˇCa WD obj eC � fag 3 %a � .%; a/; ˇ .%
a; &a/ WD �.%a; &a/:

Then we add the presheaf structure

ˇ raa0 W ˇCa0 ! ˇCa; ˇ raa0%
a0
WD %a; ˇ raa0.f / WD raa0.f /;

8a � a0; f 2 ˇ .%
a0 ; &a

0

/:

By definition ˇ raa0 is bijective on the objects, and any

ˇ raa0 W ˇ .%
a0 ; &a

0

/! ˇ .%
a; &a/; a � a0;

is bijective because raa0 is bijective on �.%a; &a/ D ˇ .%
a; &a/. This proves that ˇC

is a presheaf bundle. We now define the presheaf morphism

P W ˇC! C; Pa.%
a/ WD %a; Pa.f / WD f;

8%a 2 obj ˇCa; f 2 ˇ .%
a; &a/; a 2 K;

inducing the *-functor eP W f̌C ! eC. Now, sections e% 2 obj f̌C are of the typee%a D %a, 8a 2 K, for some fixed % 2 obj eC, so eP is bijective on the objects. Passing
to arrows, we note that if t 2 .%; &/, %; & 2 obj eC, then ta 2 �.%a; &a/ D .%; &/a for
all a 2 K, so eP is an isomorphism as desired.

We add further structure. We say that a presheaf T D .T; r/K of tensor C*-
categories .To/˝o

, o 2 K, is a tensor presheaf whenever

roo0 ı ˝o0 D ˝o ı .roo0 � roo0/; 8o � o
0:

We say that T has simple units whenever .�o; �o/ ' C for all o 2 K, where �o 2
obj To is the identity object of To. The tensor structure shall be emphasized with the
notation T˝ and morphisms � W T! T0 such that �o ı˝o D ˝0o ı .�o��o/, o 2 K,
are denoted by � W T˝ ! T0

˝0
.

The following example is motivated by the analysis of superselection structures
in algebraic quantum field theory on generic spacetimes.

Example 3.10. Nets of tensor categories defined by nets of C*-algebras, [20,
§27]. Let R D .R; |/K be a net of C*-algebras on the Hilbert space H , that is, any
Ro � B.H/ is a unital C*-algebra and any |o0o, o � o0, is the inclusion map. For
any a 2 K we consider the C*-algebra

Ra WD C �fRo W o > ag � B.H/
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(note that Ra � Ra) and, given �; � 2 endRa, the space .�; �/ � Ra defined as in
(2.3). We define the tensor category

Ta WD

(
obj Ta WD f� 2 endRa W �.Ro/ � Ro;8o > ag;
arrTa WD f.�; �/a WD Ra \ .�; �/;8�; � 2 obj Tag;

endowed with the tensor product (2). If a � a0 then Ra
0

� Ra and any
� 2 obj Ta restricts to an endomorphism |a0a� 2 obj Ta0 . Moreover there are
obvious inclusions

|a0a W .�; �/a ! .|a0a�; |a0a�/a0 ; �; � 2 obj Ta;

and this yields the net T D .T; |/K . It is easily seen that | preserves the tensor
structure, so T˝ is a tensor net. The identity of Ta is the identity automorphism
�a 2 endRa and .�a; �a/a D Ra \ .Ra/0.

We say that the tensor presheaf T˝ is symmetric whenever any .To/˝o
has

symmetry �o, and

�o.roo0%o0 ; roo0&o0/ D roo0.�o0.%o0 ; &o0//; 8o � o
0; %o 2 obj To; &o 2 obj To:

(3.20)
The symmetry structure is emphasized with the notation T˝;� . Morphisms � W
T˝ ! T0

˝0
such that T0 has symmetry � 0 and �o.�.%o; &o// D � 0.�o%o; �o&o/,

for all o 2 K,%o; &o 2 obj To, are denoted by � W T˝;� ! T0
˝0;�0

.

Remark 3.11. Let us define, for any %; & 2 obj eT,

�%&;o WD �o.%o; &o/; 8o 2 K:

Then (3.20) implies that �%& 2 arr eT and this makes eT a symmetric tensor C*-
category (endowed with the obvious tensor structure). Prop. 3.9 applies with the
further property that ˇT˝;� is a symmetric tensor presheaf bundle.

Applying Theorem 3.5 to the category T with objects small symmetric tensor
C*-categories and arrows symmetric tensor *-functors, we obtain an equivalence
hom.�1.K/;T/ ' bun".K;T/ from which it follows, given the symmetric tensor
category T˝;", the one-to-one correspondence

hom.�1.K/; autT˝;"/ ' bun".K; T˝;"/: (3.21)

Hilbert presheaves. Hilbert presheaves are, by definition, symmetric tensor full
presheaves with fibres full symmetric tensor subcategories of Hilb 3. If C˝;# D
.C;R;˝; #/K is a Hilbert presheaf then any h 2 obj Ca, a 2 K, is a Hilbert space

3Note that we assume, in particular, that all the fibres of a Hilbert presheaf are endowed with the
standard symmetry given by the flip operators #h˝h0.v˝ v

0/ WD v0 ˝ v, v 2 h, v0 2 h0.
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and, in particular, we have the identity object �a � C. We have canonical, bijective
linear maps

h! .�a; h/; v 7! v� W v�.�/ WD �v; v 2 H; � 2 C;

with inverses .�a; h/ ! h, f 7! f� WD f .1/ (so v�� D v for all v 2 h). Let
~ 2 obj eC. Since C is full, for any a � a0 the functor Raa0 defines a bijective,
isometric linear map Raa0 W .�a0 ; ~a0/! .�a; ~a/, so we have the unitary operator

R~aa0 W ~a0 ! ~a W R
~
aa0v

0
WD .Raa0.v

0
�//�; 8v

0
2 ~a0 : (3.22)

Since R fulfils the presheaf relations, the family R~ WD fR~aa0g fulfils the presheaf
relations. For convenience we set R~a0a WD .R~aa0/

�1, 8a � a0, so R~a00a0 ı R
~
a0a D

R~a00a, 8a � a0 � a00, and H~ D .~;R
~/K is a Hilbert net bundle.

Let now ~; ~ 0 2 obj eC and a � a0. Since R preserves tensor products, by (3.22)
we find

R~˝~
0

aa0 D R
~
aa0 ˝R

~0

aa0 : (3.23)

Let f 0 2 .~a0 ; ~ 0a0/ (so f 0 is a linear map from ~a0 to ~ 0a0); then for any v 2 ~a we
find

fRaa0.f
0/gv D fRaa0.f

0/g.Raa0.R
~
a0av/�/

D Raa0.f
0
ı .R~a0av/�/

D Raa0.ff
0
ıR~a0agv/�

D fR~
0

aa0 ı f
0
ıR~a0agv;

that is,
Raa0.f

0/ D R~
0

aa0 ı f
0
ıR~a0a; 8a � a

0: (3.24)

If t 2 .~; ~ 0/ then

ta D Raa0.ta0/
.3:24/
D R~

0

aa0 ı ta0 ıR
~
a0a; 8a � a

0:

The previous equalities show that t 2 .~; ~ 0/ if, and only if, t 2 .H~ ;H~0/, and we
conclude that eC! bun.K;Hilb/; ~ 7! H~ ; t 7! t; (3.25)

is an embedding. Simple computations show that (3.25) preserves tensor product
and symmetry.

4. Nets of C*-algebras and group duals.

In the present section we focus on C*-net bundles ([1, 24]). In particular, we give
examples of group actions ˛ W G ! autF such that there are C*-net bundles A with
fibre F ˛ that do not uniquely determine, or do not determine at all, a C*-net bundle
with fibre F having A as fixed-point net. The basic ingredient of our constructions
is the Cuntz algebra ([4]).
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Nets of C*-dynamical systems. Let .A; �/ be a C*-dynamical system. Then we
have a tensor C*-category b� defined as the full tensor C*-subcategory of endA with
objects the tensor powers �r WD �ı: : :ı�, r 2 N (see (2)). We say that � is symmetric
whenever b� has symmetry " (see §2 or [6, Eq.4.5–4.7]), and in this case we say that
.A; �; "/ is a symmetric C*-dynamical system. Using elementary combinatorics one
can prove that any "�r ;�s , r; s 2 N, is the product of elements of the type �s."�2;�2/,
s D 0; 1; : : : . Thus " is determined by "�2;�2 2 .�2; �2/ (see [6, Eq.2.6, Eq.4.8]),
and, with an abuse of notation, we write " � "�2;�2 2 UA. If ˛ 2 aut�;"A then, for
all r; s 2 N and t 2 .�r ; �s/, t 0 2 .�r

0

; �s
0

/, we have8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

˛ ı �r D �r ı ˛;

˛.t/�r.v/ D ˛.t � �r ı ˛�1.v// D ˛.�s ı ˛�1.v/ � t / D �s.v/ � ˛.t/

) ˛.t/ 2 .�r ; �s/;

˛.t ˝ t 0/ D ˛.t�r.t 0// D ˛.t/�r.˛.t 0// D ˛.t/˝ ˛.t 0/;

˛ ı �r."/ D �r."/) ˛."�r ;�s / D "�r ;�s :

The previous equalities say that ˛ defines a symmetric tensor automorphism b̨ of
.b�;˝; "/. We have the following result, whose proof is given in [25, Theorem 1]:

Proposition 4.1. Let A be a C*-algebra and � 2 endA with symmetry ". If the
vector space generated by [rs.�r ; �s/ is dense in A in the norm topology, then every
ˇ 2 aut.b�;˝; "/ is of the type ˇ D b̨, ˛ 2 aut�;"A.

As a consequence of the previous proposition and (3.21), when A is generated by
[rs.�

r ; �s/ we have the one-to-one correspondence

bun".K;b�˝;"/ ' hom.�1.K/; aut�;"A/ : (4.1)

We now interpret the r.h.s. of (4.1) in terms of C*-net bundles. To this end, let
A D .A; |/K be a C*-net bundle and % 2 endA; then any %a 2 endAa, a 2 K,
defines the tensor category b%a of tensor powers of %a, and using the relations

|a0a ı %a ı |aa0 D %a0 ; 8a � a
0; (4.2)

we conclude that defining for all a � a0b|a0a.%ra/ WD %ra0 ; b|a0a.t/ WD |a0a.t/; 8r; s 2 N; t 2 .%ra; %
s
a/; (4.3)

yields tensor isomorphisms b|a0a W b%a ! b%a0 and the net bundle of tensor C*-
categories .b%;b|;˝/K . By (4.2,4.3), % is a section of b%. For the symmetry structure
we prove the following result.

Theorem 4.2. Let .A�; �; "/ be a pointed C*-dynamical system. Given a C*-net
bundle A D .A; j IA�/K , the following are equivalent: (1) There are % 2 endA and
� 2 eA such that %a D �, �a D "; (2) The structure group of A admits a reduction
� W �1.K/! aut�;"A�.
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Proof. (1)) (2): By (3.4, 3.6, 3.8), we have the map

P�./ WD |@0bn;jbnj ı |jbnj;@1bn
ı � � � ı |@0b1;jb1j

ı |jb1j;@1b1
;

 WD bn � � � � � b1 2 K.a/, which yields the holonomy representation of A. Since �
preserves the net structure, recalling that @1b1 D a we find

|jb1j;@1b1
ı � D �jb1j

ı |jb1j;@1b1
; |@0b1;jb1j

ı �jb1j
D �@1b2

ı |@0b1;jb1j
:

Iterating the above identities for all the 1–simplices of  , we conclude that P�./ı� D
� ı P�./. In the same way, if � 2 eA is such that �a D ", then

|jb1j;@1b1
."/ D ".jb1j/; |@0b1;jb1j

ı ".jb1j/ D ".@1b2/;

and we conclude that f P�./g."/ D ". (2) ) (1): We make the identification
A� � Aa, so � 2 endAa, " 2 Aa. By hypothesis, for any path  WD bn � � � � � b1 2
K.a/ we find

P�./ ı � D � ı P�./; f P�./g."/ D "; (4.4)

where P�./ 2 autA� is defined by (3.8). So, if 1; 2 2 K.a; o/, then P�.�12 � 1/ ı
� D � ı P�.�12 � 1/ and f P�.�12 � 1/g."/ D ". This implies, recalling (3.7), that

Z.1/ ı � ıZ.1/
�1
D Z.2/ ı � ıZ.2/

�1; fZ.1/g."/ D fZ.2/g."/:

The previous equalities imply that the following maps are well-defined, as they do
not depend on the choice of  W a! o:

%o WD Z./ ı � ıZ./
�1; �o WD fZ./g."/; o 2 K:

Now, for each o � o0 we compute

%o0 ı |o0o D Z./ ı � ıZ./
�1
ı |o0o D |o0o ıZ.

0/ ı � ıZ. 0/�1 D |o0o ı %o;

where  0 WD  � bo0o 2 K.a; o
0/ (the notation bo0o is the one used in (3.11)). This

proves that % WD f%og is a well-defined endomorphism of A. In the same way we
prove that � 2 eA.

Applying the previous theorem with �o � 1 we have that there is % 2 endA if,
and only if, A has holonomy in aut�A�. We call pointed dynamical C*-net bundle
the triple .A; %; �/; to be concise, sometimes in the sequel we will write A%;� . There
is an obvious notion of morphism of pointed dynamical C*-net bundles:

� W A%;� ! A0%0;�0 , � 2 .A;A0/; �o ı %o D %
0
o ı �o; �o.�o/ D �

0
o; 8o 2 K:

We denote the set of pointed dynamical C*-net bundles with fibre .A�; �; "/ by
bun.KIA�; �; "/ and the associated set of isomorphism classes by bun.KIA�; �; "/.
We can now return on the question of symmetry of .b%;b|;˝/K .
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Corollary 4.3. Let .A�; �; "/ be a symmetric C*-dynamical system such that A�
is generated by [rs.�r ; �s/. Then for any A%;� 2 bun.KIA�; �; "/ the tensor net
bundle .b%;b|;˝; �/K is symmetric and has holonomy coinciding with the one of A%;� ,
having used the identification of Prop.4.1. There are one-to-one correspondences

hom.�1.K/; aut�;"A�/ ' bun.KIA�; �; "/ ' bun".K;b�˝;"/ : (4.5)

Proof. The first bijection in (4.5) is a consequence of Theorem 4.2, so we prove that
there is a bijection hom.�1.K/; aut�;"A�/ ' bun".K;b�˝;"/. To this end, we note
that if � W �1.K/! aut�;"A� is the holonomy of A%;� then we have f�.p/g."/ D "
for all p 2 �1.K/. So, considering the induced *-isomorphisms Z./ W Aa ! Ao,
 W a ! o (see (3.7)), we define �o WD fZ./g."/, 8o 2 K. Using (4.2) we
conclude that � is a section of A and that �o fulfils (2.1, 2.2) for any o 2 K, so
we have the desired symmetric tensor net bundle .b%;b|;˝; �/K . On the other side, if
.b%;b|;˝; �/K 2 bun".K;b�˝;"/ then (4.1) implies thatb% has holonomy � W �1.K/!
aut�;"A�, which determines the net bundle A%;� .

Cuntz algebras. We call symmetric C*-net bundle a pointed dynamical C*-net
bundle of the type considered in the previous corollary. In the following paragraphs
we study a “universal” class of symmetric C*-net bundles, defined by means of the
Cuntz algebras Od , d 2 N. We start recalling that Od is the universal C*-algebra
generated by d orthogonal isometries  1; : : : ;  d with total support the identity, that
is

 �h k D ıhk1;
X
k

 k 
�
k D 1;

where ı is the Kronecker symbol ([4]). Od has a well-known structure of symmetric
C*-dynamical system,

� 2 endOd ; �.t/ WD
X
k

 kt 
�
k ; 8t 2 Od ; � WD

X
hk

 h k 
�
h 
�
k 2 .�

2; �2/

(see [6, §2]), and is endowed with the action

U.d/! autOd ; u 7!bu W bu. h/ WDX
k

uhk k; (4.6)

where uhk 2 C, h; k D 1; : : : ; d , are the matrix elements of u ([6, §1]). Clearly, the
action (4.6) restricts to any subgroupG � U.d/. Since buı� D � ıbu and bu.�/ D � ,
8u 2 U.d/, we have that the fixed point algebra OG � Od defines the symmetric
C*-dynamical system

.OG ; �; �/; � WD � jOG
:

Let now NG � U.d/ denote the normalizer of G in U.d/; we consider the quotient

q W NG ! QG WD NG=G

and define autGOd WD f˛ 2 aut�;�Od W ˛jOG
2 aut�;�OGg.
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Lemma 4.4. Let u 2 U.d/. Then u 2 NG if, and only if, bu 2 autGOd . If v 2 NG,
then bujOG

DbvjOG
if, and only if, q.u/ D q.v/.

Proof. If u 2 NG then g0 WD ugu� 2 G for all g 2 G and bu.t/ D bu ıbg.t/ Dbu.t/ D bg0 ıbu.t/ for all t 2 OG . Since every g0 2 G is of the type g0 D ugu�

for some g 2 G, we conclude that bu.t/ 2 OG and bu 2 autGOd . On the converse,
if bu 2 autGOd then bu�1.t/ 2 OG for all t 2 OG and, defining g0 WD ugu� for
each g 2 G, we find bg0.t/ D bu ıbg ıbu�1.t/ D bu ıbu�1.t/ D t . Thus we conclude
that bg0 is in the stabilizer of OG in autOd , so that, by [6, Corollary 3.3], g0 2 G
i.e. u 2 NG. Finally, again by [6, Corollary 3.3] we have that bujOG

DbvjOG
if, and

only if, uv� 2 G, i.e. q.u/ D q.v/.

Thus the map (4.6) defines a monomorphism NG ! autGOd , which yields the
monomorphism

QG ! aut�;�OG ; y 7!by: (4.7)

By [25, Def.4–Theorem 7], the map (4.7) is an isomorphism when G � SU.d/ or
G D T � U.d/ acts on Cd by scalar multiplication; in particular, for G D f1g we
have the isomorphism

U.d/! aut�;�Od ; u 7!bu: (4.8)

To simplify the proofs of the following results we give a categorical version of (4.8).
Let Hilb�1 denote the category with objects finite dimensional Hilbert spaces and
arrows the sets .H;H 0/�1 of unitary operators from H to H 0; by [7, §4], there is a
*-functor

Hilb�1 ! C�alg; H 7! OH ; u 7!bu; (4.9)

where OH is isomorphic to the Cuntz algebra of order the dimension of H , andbu W OH ! OH 0 is the isomorphism defined by bu. h/ WD P
k uhk 

0
k

, where f hg,
f 0
k
g are the sets of isometries generating OH , OH 0 respectively. By the previous

considerations, if we denote the canonical endomorphism of OH and the symmetry
operator respectively by �H and �H , then bu ı �H D �H 0 ıbu and bu.�H / D �H 0 , so
(4.9) takes values in the category of symmetric C*-dynamical systems.

Given G � U.d/, we consider the defining representation

�G W G ! U.d/

and the tensor C*-category b�G with objects the tensor powers �rG , r 2 N, and
arrows the intertwiner spaces. b�G has the symmetry ' inherited from Hilb (see
[6, §1]), so we write b�GI˝;' to emphasize the symmetric tensor structure. Let now
u 2 U.d/. Then u defines a symmetric tensor automorphism of the category of
tensor powers of H WD Cd ,

bu.H r/ WD H r ; bu.t/ WD us ı t ı ur;�; 8r; s 2 N; t 2 .H r ;H s/; (4.10)

where ur 2 UH r is the r-fold tensor power.
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Since the only unitaries inducing the identity automorphism of b�G are the elements
of G ([6, Corollary 3.3]), reasoning as in Lemma 4.4 we have(

u 2 NG ,bu.t/ 2 .�rG ; �sG/; 8t 2 .�rG ; �sG/;bujb�G
Dbvjb�G

, q.u/ D q.v/; 8u; v 2 NG:
(4.11)

Theorem 4.5. Let G � U.d/. Then there are maps8<:hom.�1.K/;QG/
.�/
! bun.KIOG ; �; �/; � 7! A�I%;# ;

hom.�1.K/;QG/
.��/
! bun".K;b�˝;� / .���/! bun".K;b�GI˝;'/: (4.12)

The map .� � �/ is always an isomorphism, whilst .�/, .��/ are isomorphisms when
G � SU.d/ or G D T � U.d/.

Proof. (4.12.1) is a direct consequence of (4.5) and the fact that (4.7) is an
isomorphism when G � SU.d/ or G D T � U.d/ ([25, Def.4–Theorem 7]).
About (4.12.2), we note that OG is generated by [rs.�r ; �s/ (see [6, §1, §3]), and
that there is an isomorphism b�˝;� ' b�GI˝;' (see [6, Theorem 3.5]), so the proof
follows by (4.12.1) and Corollary 4.3.

Proposition 4.6. Let d 2 N and H D .H; j ICd /K a Hilbert net bundle. Then H
defines a symmetric C*-net bundle

OH D .OH ;bj IOd /K ; .OH; &; #/ 2 bun.KIOd ; �; �/:

The symmetric tensor net bundle .b&;b|;˝; #/K has fibre the full subcategory of Hilb
of tensor powers of Cd . Moreover, H;H0 are isomorphic if and only if the there is an
isomorphism OHI&;# ' OH0I& 0;# 0 .

Proof. If � W �1.K/ ! U.d/ is the holonomy of H, then composing � with (4.8)
we obtain the desired OHI&;# . Since (4.8) is an isomorphism we conclude that H;H0

are isomorphic if and only if OHI&;# , OH0I& 0;# 0 are isomorphic. The assertion about
.b&;b|;˝; #/K follows by applying Theorem 4.5 to the trivial group G D f1g.

Let UH D .UH; |�IU.d//K denote the net bundle of unitary automorphisms
of H. The family SUH WD fu 2 UHa W detu D 1ga is stable under |�, thus we
have a group net subbundle of UH that we denote by SUH 2 bun.K;SU.d//. Let
G D .Y; i IG/K be a group net bundle and .H; ˛/ a G-Hilbert net bundle; then we
may regard ˛ as a morphism ˛ 2 .G;UH/, and the equalities

|�;o0o ı ˛o.Yo/ D ˛o0 ı io0o.Yo/ D ˛o0.Yo0/; o � o0;

imply that the set ˛.Y / � UH is stable under |�. Thus any gauge action on H
defines a group net subbundle G˛ of UH. In the sequel we consider exclusively
gauge actions induced by net subbundles of UH. An immediate consequence of
Lemma 3.8 is the following:
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Lemma 4.7. Let H 2 bun.K;Cd /. Group net subbundles of UH with fibre
G � U.d/ are in one-to-one correspondence with reductions to NG of the structure
group of H.

Proposition 4.8. Let H D .H; |/K 2 bun.K;Cd / a Hilbert net bundle and

G � UH; G D .Y; |�/K ;

a group net subbundle. Then there is a gauge action G �K OH ! OH and a closed
groupG � U.d/ such that the fixed-point net bundle OG

H � OH yields the symmetric
C*-net bundle

OG
HI%;# 2 bun.KIOG ; �; �/:

If � W �1.K/! NG is the holonomy representation of H defined in Lemma 4.7, then
OG

H has holonomy representation induced by

q ı � W �1.K/! QG:

Finally, q ı � is the holonomy of the symmetric tensor net bundle .b%;b|;˝; #/K 2
bun".K;b�GI˝;'/, which is a subbundle of .b&;b|;˝; #/K .

Proof. Writing (3.14) for the action G�KH! H we have |a0aıy D j�Ia0a.y/ı|a0a,
8y 2 Ya, a � a0, so the desired gauge action is defined by composition with the
functor (4.9), i.e. b|a0a ıby Db|�Ia0a.y/ ıb|a0a;
with b|a0a W OH;a ! OH;a0 , by 2 autOH;a, and b|�Ia0a.y/ 2 autOH;a0 . Since all the
above maps are isomorphisms of symmetric C*-dynamical systems, the fixed-point
net OG

H D .OY ;b|/K acquires the structure of dynamical C*-net bundle .OG
H ; %; #/,

%a WD &ajOY;a
2 endOY;a, a 2 K. Fixing a standard fibre G WD Ya, a 2 K,

yields OG
HI%;#

2 bun.KIOG ; �; �/ as desired. Now, by Lemma 4.7 G yields a
reduction � W �1.K/ ! NG of the structure group of H such that G has holonomy
ad� W �1.K/! autG and OH has holonomy b� W �1.K/! aut�;�Od (obtained by
composition with (4.9)). By (4.7), any automorphism

fb�.p/gjOG
2 aut�;�OG ; p 2 �1.K/;

is determined by the coset q ı �.p/ 2 QG, so OG
HI%;#

has holonomy q ı �. Finally,
.b%;b|;˝; #/K has holonomy q ı � by Corollary 4.3, and since we have the inclusion
OG

HI%;#
� OHI&;# we also find that .b%;b|;˝; #/K is a subbundle of .b&;b|;˝; #/K .

It is natural to ask whether every element of bun.KIOG ; �; �/ is of the type
OG

HI%;#
for some Hilbert net bundle H and G � UH. In the following result we show

that this question is equivalent to a lifting problem.
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Theorem 4.9. Let G � U.d/, � 2 hom.�1.K/;QG/ and

.A�; �; �/ 2 bun.KIOG ; �; �/

be the associated symmetric C*-net bundle. Then the following are equivalent:
(1) There is G 2 bun.K;G/ and a G-Hilbert net bundle H with an isomorphism

.A�; �; �/ ' .OG
H ; %; #/:

(2) There is a lift e� W �1.K/! NG W q ıe� D �: (4.13)

(3) There is a monomorphism

.b�;b|;˝; �/K ,! .b&;b|;˝; #/K
of symmetric tensor net bundles, where any b&a, a 2 K, is isomorphic to the full
subcategory of Hilb of tensor powers of Cd .

Proof. (1) ) (2): By Lemma 4.7 the Hilbert net bundle H has a reduction e�0 2
hom.�1.K/;NG/; moreover, Prop. 4.8 implies that OG

H has holonomy �0 WD q ıe�0.
Using (4.12) and the isomorphism A�I�;� ' OG

HI%;#
we find y 2 QG such that

�0.p/ D y�.p/y�1; 8p 2 �1.K/:

Thus picking some u 2 q�1.y/ and defining e�.p/ WD u�1e�0.p/u, p 2 �1.K/,
yields the desired lift. (2) ) (1): We regard NG as a subgroup of U.d/ and
consider the Hilbert net bundle H 2 bun.K;Cd / with holonomy representatione�. By Lemma 4.7 there is a group net subbundle G of UH, and Prop. 4.8 implies
that .OG

H ; %; #/ has holonomy representation �. Thus A� and OG
H have the same

holonomy � 2 hom.�1.K/;QG/, and by (4.12) we obtain the desired isomorphism.
(3)) (2): Since b� is a symmetric tensor net subbundle of b& , the holonomy

� W �1.K/! autb&aI˝;� ' aut�;�Od ' U.d/

restricts to a holonomy with values in the automorphism group of the subcategoryb�aI˝;� � b&aI˝;� . By Prop. 4.1, these automorphisms yields automorphisms in
aut�;�OG , and this is equivalent to say, by Lemma 4.4, that �.p/ 2 autGOd
for all p 2 �1.K/. But, again by Lemma 4.4, this means that H has holonomy
u W �1.K/! NG such that �.p/ D bu.p/, 8p 2 �1.K/. (1)) (3): The isomor-
phism A�I�;� ' OG

HI%;#
yields an isomorphism .b�;b|;˝; �/K ' .b%;b|;˝; #/K , and

this last is a symmetric tensor net subbundle of .b&;b|;˝; #/K . The fact that b& has
the desired fibre follows by Prop. 4.6.

With the notation of the previous theorem, we say G is a gauge group of A�I%;� .
In the following lines we give examples in which G is not uniquely determined by
A�I%;� , and in which G does not exist at all.
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The case G D SU.d/ and non-uniqueness of the gauge group. Let d 2 N
and H 2 bun.K;Cd / be a rank d Hilbert net bundle. By Theorem 3.5 there is
a holonomy representation � W �1.K/ ! U.d/ identifying H up to isomorphism.
Composing � with the determinant yields a morphism

c1.H/ 2 hom.�1.K/;T/; (4.14)

called the first Chern class of H. In particular, if M is a manifold and � is a
good base of M , then (2.6) and the Hurewicz theorem imply that hom.�1.�/;T/ is
isomorphic to the singular cohomology group H 1.M;T/, and we may regard c1.H/
as an element of H 1.M;T/. This yields the characteristic class

c1 W bun.�;Hilb/! H 1.M;T/ W c1.H˚ H0/ D c1.H/ � c1.H
0/;

which, in essence, is the first Cheeger–Chern–Simons class (see [3, Example 1.5])
of the flat Hermitian vector bundle E !M associated with H in the sense of §A.

Let G D SU.d/. Then NG D U.d/, QG D T and q W U.d/ ! T is the
determinant. Thus we have the one-to-one correspondence

hom.�1.K/;T/! bun.KIOSU.d/; �; �/; � 7! .A�; �; �/:

Now, the determinant map q W U.d/ ! T admits left inverses s W T ! U.d/,
q ı s D idT (for example, we may define s.z/, z 2 T, as the diagonal matrix with
entries .z; 1; : : : ; 1/). Thus every � 2 hom.�1.K/;T/ has a lift e� WD s ı �, and the
map

q� W hom.�1.K/;U.d//! hom.�1.K/;T/

is surjective. Applying Theorem 3.5 to the category of Hilbert spaces we find
that every morphism � 2 hom.�1.K/;U.d// defines the Hilbert net bundle H� 2
bun.K;Cd /. Since q� is induced by the determinant, by definition of first Chern
class (see (4.14)) we find c1.H�/ D q�.�/. Thus we proved:

Proposition 4.10. Let � 2 hom.�1.K/;T/ and A�I�;� 2 bun.KIOSU.d/; �; �/

denote the associated symmetric C*-net bundle. Then for any H 2 bun.K;Cd /
we have

c1.H/ D �, .OSUH
H ; %; #/ ' .A�; �; �/:

Remark 4.11. Examples of Hilbert net bundles H;H0 with non-isomorphic special
unitary bundles but such that c1.H/ D c1.H

0/ can be easily constructed (see below).
By Prop. 4.6 we conclude that despite SUH and SUH0 are not isomorphic, there can
be an isomorphism

.OSUH
H ; %; #/ ' .OSUH0

H0 ; %0; # 0/ :

Let us consider the case �1.K/ D Z. This occurs in interesting examples in
whichK is a good base for the topology of the 1–sphere S1, anti-de Sitter spacetimes
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adSn ' S1 � Rn�1, n > 1, and de Sitter spacetime dS2 ' S1 � R. Now, any
� 2 hom.Z;T/ is uniquely determined by �.1/ 2 T and we find

bun.KIOSU.d/; �; �/ ' hom.Z;T/ ' T:

On the other hand, any � 2 hom.Z;U.d// has a decomposition � D ˚d
k
�k , where

�k 2 hom.Z;T/. Clearly, changing the order of the �k does not change the class of
� in hom.Z;U.d//; thus, applying (4.12) with G D f1g, we conclude that

bun.KIOd ; �; �/ ' hom.Z;U.d// ' Td=Pd ;

where Td=Pd is the quotient of the torus Td under the action of the permutation
group Pd . Hence the first Chern class is given by the (not injective!) epimorphism

c1 W Td=Pd ! T; c1Œz1; : : : ; zd � WD
Y
k

zk :

Absence of the lift. Let G ' T be the torus acting on the Hilbert space H of
dimension d > 1, so that NG D U.d/ and QG D PU.d/, the projective unitary
group. We consider a finite group � with nontrivial cohomology H 2.�;T/ (for
example, the permutation group Pn, n � 4, see [14, Theorem 2.9]) and a projective
representation � W � ! PU.d/ with nontrivial class ı� 2 H 2.�;T/, so that
we cannot find a lift e� W � ! U.d/. By the Eilenberg–McLane construction
([13, §1.B]), there are a space M with �1.M/ D � and a good base � of M
([13, Prop. A.4]). Using the isomorphism � D �1.�/ ' �1.M/, we obtain the
desired class of examples by means of the one-to-one correspondence

hom.�;PU.d//! bun.�IOG ; �; �/; � 7! .A�; �; �/:

5. Symmetric tensor presheaves: invariants and Tannaka duality.

In this section we study symmetric tensor presheaves T with simple units. As a
first step we show that any section % 2 obj eT defines a holonomy representation
�% W �1.K/ ! QG% WD NG%=G% describing the category of tensor powers of %,
where G% � U.d/ is a suitable compact Lie group. When K is a base, applying
the equivalence with the category of flat bundles (§A) we assign to % Cheeger–
Chern–Simons classes describing the obstruction to �% being trivial in geometric
terms. The second step is our main result, in which we prove that any embedding
of T defines a “gauge” group net bundle, the analogue of the dual group of Tannaka
duality. Existence and uniqueness of the embedding are not ensured due to the lifting
problem for the holonomies �%, % 2 obj eT, and we describe this situation in terms
of a non-abelian 1–cocycle with coefficients in the crossed module G% ! NG%.
Clearly, passing to the opposite poset our results apply to symmetric tensor nets with
simple units.
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Presheaves of tensor C*-categories and their invariants. The following notion
is a categorical counterpart of the one of conjugate representation of a compact
group ([7, §1]), and is motivated by the correspondence particle-antiparticle ([9,
Eq.3.21–3.22]): we say that a tensor C*-category T˝ has conjugates whenever for
any � 2 obj T there is � 2 obj T and R 2 .�; ��/, R 2 .�; ��/ solving the conjugate
equations

.R
�
˝ 1�/ ı .1� ˝R/ D 1�; .R� ˝ 1�/ ı .1� ˝R/ D 1�; (5.1)

where � is the identity object of T .
A symmetric tensor C*-categoryD˝;" with simple unit having conjugates, direct

sums and subobjects is called a DR-category. By [7, Theorem 6.9] there is a
symmetric tensor embedding J W D˝;" ! Hilb, unique up to unitary tensor natural
transformations, such that J.D˝;"/ is the dual of a compact group G (that is, the
subcategory of Hilb with arrows G-equivariant linear operators).
Definition 5.1. Let T D .T; r;˝; �/K be a symmetric tensor presheaf with simple
units. We say that T is a DR-presheaf whenever the section category eT is a DR-
category.

By Prop. 3.9, if T is a DR-presheaf then the associated presheaf bundle ˇT is a
DR-presheaf.
Lemma 5.2. Let T be a DR-presheaf and ˇF WD ˇTa denote the standard fibre of
ˇT. Then there are, unique up to isomorphisms, a compact groupG and a symmetric
tensor embedding

I W ˇF ! Hilb;
such that I.ˇF / is a full subcategory of the dual of G.

Proof. We already know that ˇF is a symmetric tensor C*-category with simple
unit, so, as a first step, we prove that ˇF has conjugates. To this end we note that,
given %a 2 obj ˇF (that is, % 2 obj eT), by hypothesis there is a triple % 2 obj eT,
R 2 .i; %%/, R 2 .i; %%/ solving (5.1) in eT, so the triple %a, Ra, Ra solves (5.1)
in ˇF . This proves that ˇF has conjugates. Moreover ˇF has direct sums, in fact
given %a; &a 2 obj ˇF there is a direct sum � 2 obj eT with orthogonal isometries
V% 2 .%; �/, V& 2 .&; �/, so considering the evaluations V%;a, V&;a we have that
�a is a direct sum of %a; &a 2 obj ˇF . In general ˇF may be not closed under
subobjects: so we pass to its closure ˇF , having objects projections of ˇ .%a; &a/,
8%a; &a 2 obj ˇF . Routine computations ([18, Theorem 2.4]) show that ˇF has
conjugates (besides direct sums and subobjects), so it is a DR-category and we get
the desired compact groupG and embedding I . Their uniqueness follows by the fact
that ˇF is unique up to isomorphism.

We now consider the subpresheaf bundle ˇb% of ˇT with fibres the full subcate-
gories ˇb%o � ˇTo, o 2 K, of tensor powers of %o 2 obj ˇTo. Before to give the
following result, we recall the reader to the notation of Theorem 4.5.
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Theorem 5.3 (Holonomy). Let T D .T; r;˝; �/K be a DR-presheaf. Then for any
section % 2 obj eT there are a compact Lie group G% � U.d/ such that ˇb% 2
pbun".K;b�G%I˝;� /, and a morphism �% W �1.K/ ! QG% WD NG%=G% such that
ˇb% has holonomy �%.

Proof. We maintain the notation of the previous Lemma and that of Prop. 3.9. Let
% 2 obj eT. By the previous Lemma there are a G-Hilbert space H% and a compact
Lie groupG%, the image ofG under theG-action onH%, such that f 2 ˇ .%a;r ; %a;s/,
r; s 2 N, if and only if I.f / is a G%-invariant operator from the tensor power H r

% to
H s
% , that is, we have an isomorphism ˇb%a˝;� ' b�G%I˝;� . If  2 K.a/ then we define

Z 2 autˇF˝;",

Z WD ˇ ra;jbnj ı ˇ rjbnj;@1bn
ı : : : ı ˇ r@0b1;jb1j

ı ˇ rjb1j;a; (5.2)

where  WD .bn; : : : ; b1/. For any &a 2 obj ˇF we have

Z .%
a/ D %a; Z .f / 2 ˇ .%

a; &a/ � .%a; &a/; 8f 2 ˇ .%
a; &a/: (5.3)

By [7, Theorem 6.9] there is a unitary, tensor natural transformation u./ 2 .I; I ı
Z /, defining unitaries u%./ 2 UH%, 8%a 2 obj ˇF , such that

fI ıZg.f / D u� ./ ı I.f / ı u%./; 8f 2 ˇ .%
a; &a/: (5.4)

In particular,

fI ıZg.f / Dbu%./ ı I.f /; f 2 ˇ .%
a;r ; %a;s/; r; s 2 N; (5.5)

where bu%./ is the automorphism defined by (4.10). Now, the l.h.s. of (5.5) is a
symmetric tensor isomorphism from ˇb%a to b�G%

, so bu%./ restricts to a symmetric
tensor automorphism of b�G%

and by (4.11) we have u%./ 2 NG, 8 2 K.a/. On
the other side, the l.h.s. of (5.5) preserves the composition of paths and does not
depend on the choice of  2 K.a/ in its homotopy class, thus the map

�1.K/! autb�G%I˝;� ; Œ� 7!bu%./jb�G%
; (5.6)

is well-defined and yields (up to the isomorphism with b�G%
) a holonomy for ˇb%.

Applying (4.11) we obtain the desired holonomy

�% W �1.K/! QG% W �%./ WD q.u%.//; 8 2 K.a/: (5.7)

Clearly changing the standard fibre yields a group G0% isomorphic to G% and an
equivalent holonomy.

Remark 5.4. Let % 2 obj eT denote a section of the DR-presheaf T. For any o 2 K
we consider the Doplicher–Roberts C*-algebra A%;o generated by the arrows of ˇb%o,
see [7, §4]. By Lemma 5.2 we have that the operation of tensoring on the right by
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1%o is faithful on arrows of ˇb%o, in fact it is faithful on arrows of Hilb. So we apply
[7, Theorem 4.3, Theorem 4.4] and conclude that there are

%o;� 2 endA%;o; "o;� 2 UA%;o \ .%
2
o;�; %

2
o;�/;

with a canonical tensor *-functor ˇb%o ! b%o;�. By functoriality of the Doplicher–
Roberts algebra, see [7, Theorem 5.1], any symmetric tensor isomorphism ˇ ro0o W

ˇb%o ! ˇb%o0 , o � o0, induces an isomorphism of pointed C*-dynamical systems

|o0o W .A%;o; %o;�; "o;�/! .A%;o0 ; %o0;�; "o0;�/;

defining the pointed dynamical C*-net bundle A% D .A%; |/K , .A% ; %� ; "�/. The
unitary "o;� makes %o;� a symmetric endomorphism whenever %o is special in the
sense of [7, §3], see [7, Corollary 4.7]. Special objects play a crucial role for the
duality theorem [7, Theorem 6.1], and generate the underlying symmetric tensor
category in a suitable sense, see [7, Theorem 3.4]; if %o is special, then it is trivially
verified that any %e , e 2 K, is special, and in this case we say that % is special.
Fixing a 2 K and applying [7, Theorem 4.17], we have isomorphisms

.ˇb%a;˝a; �a/ ' .b%a;�;˝a; "a;�/ ' .b�G%
;˝; '/; .A%;a; %a;�; "a;�/ ' .OG%

; �; �/:

Since the *-morphisms |o0o, o � o0, are induced by ˇ ro0o, see [7, Theorem 5.1],
we have the isomorphism of symmetric tensor presheaves ˇb%˝;� ' b%�I˝;"� . Thus
.A% ; %� ; "�/ 2 bun.KIOG%

; �; �/ and it has the holonomy �% of (5.7), by applying
Corollary 4.3. Applying Theorem 4.9, we have a characterization of those special
sections % 2 obj eT such that ˇb% can be embedded in a presheaf bundle with fibre a
full subcategory of Hilb: this happens if, and only if, �% has a lift to NG%. We shall
prove this result for generic %, in Theorem 5.7.

Cohomological aspects of holonomy. We say that % 2 obj eT is liftable whenever
�% has a lift to NG%. In the following result we show that lifts of �� can be
characterized in terms of a non-abelian 1–cocycle with values in the crossed module
G% ! NG% (see [25, §4]).

Theorem 5.5 (Gerbes). Any section % of a DR-presheaf defines the cochain

u% W †1.K/! NG% W du%.c/ WD u%.@0c/u%.@2c/u%.@1c/� 2 G%; 8c 2 †2.K/:

(Eventual) lifts of �� are in one-to-one correspondence with pairs .v; g/,
v W †0.K/! NG%, g W †1.K/! G%, such that

z.b/ WD v.@0b/g.b/u%.b/v.@1b/� 2 NG%; 8b 2 †1.K/; (5.8)

is a cocycle, i.e. dz.c/ D 1, 8c 2 †2.K/.



Presheaves and nets 151

Proof. For any b 2 †1.K/ we define b as the 1-simplex @0b D @1b, @1b D @0b,
jbj D jbj. We note that any c 2 †2.K/ defines the path c WD .@0c; @2c; @1c/,
c W @00c ! @00c, and then take a path frame a D fao W o! ag. Then we define

u%.b/ WD u%.a@0b � b � 
�1
a@1b

/; 8b 2 †1.K/;

where u% W K.a/! NG% is the map defined by (5.4). We have

du%.c/ D u%.ec/; ec WD a@00c � c � 
�1
a@00c
I

since c is homotopic to the trivial path �@00c 2 K.@00c/, we conclude that ec is
homotopic to the trivial path �a. Since bu%jb�G%

W K.a/! autb�G%
factorizes through

�1.K/, this implies that bu%.a@00c � c � 
�1
a@00c

/ restricts to the identity of b�G%
, i.e.

by (4.11), du%.c/ D u%.ec/ 2 G% as desired. Let now .v; g/ be a pair such that the
cochain z of (5.8) is a cocycle. Then we have

q ı u%./ D q.v.a// � q ı z./ � q.v.a// 2 QG%; 8 W a! a;

so �% has lift e�%./ WD v.a/�z./v.a/ as desired. On the converse, if �% has lift e�%
then by the equivalence of Theorem 3.5 and (3.6) there is a cocycle z.b/ 2 NG%,
b 2 †1.K/, such that there is w W †0.K/ ! QG% with q ı u%.b/ D w.@0b/ � q ı

z.b/ �w.@1b/
�. For any a 2 K we pick v.a/ 2 NG% such that q.v.a/�/ D w.a/, so

q ı u%.b/ D q.v.@0b/� � z.b/ � v.@1b//; 8b 2 †1.K/;

This proves that there is g W †1.K/! G% such that (5.8) holds, as desired.

NG%-cocycles z; z0 fulfilling (5.8) are not necessarily cohomologous, in fact
they may define inequivalent NG%-holonomies as in the case G% D SU.d/ (see
Prop. 4.10 and following remarks). It is easy to verify that a change a ! a0 of the
standard fibre (or of the path frame a) yields a cochain u0% W †1.K/ ! NG0% with
an isomorphism ˇ W NG% ! NG0% such that u0% D ˇ ı u%.

Cheeger–Chern–Simons classes. By (3.13), the map (5.7) yields a principal net
QG%-bundle that we denote by P%.

Let now M be a manifold and � denote a good base of M ; we consider a DR-
presheaf T over � and % 2 obj eT. In this setting, P% defines the flat principal
QG%-bundle P% ! M , see (A.3), and characteristic classes arise, in the way that
we explain in the following lines.

Let � 2 RŒx1; : : : ; xd � be a QG%-invariant polynomial of degree k 2 N (here
d is the rank of the Lie algebra of QG%). Then � defines a characteristic class
assigning to any principal QG%-bundle a closed 2k-form,

c� W Pr.M;QG%/! Z2kdeRham.M/
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(see [17, Vol.2, §XII.1]). We say that c� has periods in K D Z;Q whenever for any
P 2 Pr.M;QG%/ it turns outZ

�

c�.P/ 2 K; 8� 2 Z2k.M/;

where Z2k.M/ is the set of singular 2k-cycles. We denote the set of QG%-invariant
polynomials of degree k defining a class with periods in K by I k.QG%IK/. Now,
Cheeger and Simons proved that for any � 2 I k.QG%IK/ there is a singular .2k �
1/-cochain c"� .P/ with coefficients in R=K, such thatD

c
"

� .P/; @`
E
D

Z
`

c�.P/ modK; 8` 2 C2k.M/;

where C2k.M/ is the set of singular 2k-chains and @ W C2k.M/! Z2k�1.M/ is the
boundary. When P is flat c�.P/ D 0 ([17, Vol.2, §XII.1]), and the previous equality
says that c"� .P/ vanishes on @C2k.M/. So c"� .P/ is a cocycle, whose cohomology
class

Œc
"

� .P/� 2 H
2k�1.M;R=K/

is called the Cheeger–Chern–Simons secondary class defined by � (see [3, Theo-
rem 1.1]). Returning to % 2 obj eT, for any � 2 I k.QG%IK/ we define

c�.%/ WD Œc
"

� .P%/� 2 H
2k�1.M;R=K/: (5.9)

By construction c� vanishes when �% is trivial, so we can measure the holonomy of
% in geometric terms.

Duality theory. We now prove a Tannaka duality for presheaves of symmetric
tensor C*-categories. Before to proceed we give the following notion: an embedding
is a morphism of symmetric tensor presheaves with simple units

I W T˝;� ! C˝;# ;

where C D .C;R;˝; #/K is a Hilbert presheaf and Io is an embedding for any
o 2 K. Composing the induced functor eI W eT˝;� ! eC˝;# with (3.25) we have that
any % 2 obj eT defines the Hilbert net bundle H% D .H%; R

%/K , where H%;a WD
Ia.%a/, a 2 K, and R%a0a W H%;a ! H%;a0 , a � a0, is defined as in (3.22). Moreover,
any t 2 .%; &/ defines the morphism eI .t/ 2 .H%;H& /. Let now %; & 2 obj eT
and f 0 2 ˇ .%

a0 ; &a
0

/ � .%a0 ; &a0/. Defining f WD ˇ raa0.f
0/ we find Ia.f / D

Raa0 ı Ia0.f
0/, so applying (3.24) we have

R
&
a0a ı Ia.f / ıR

%
aa0 D Ia0.f

0/: (5.10)
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We now consider the groups of unitary tensor natural transformations Ga, a 2 K,
having elements families ua WD fua% 2 UH%;ag%2obj eT such that

Ia.f / ı u
a
% D u

a
& ı Ia.f /; ua% ˝a u

a
& D u

a
%& ; 8f 2 ˇ .%

a; &a/: (5.11)

By construction any Ga, a 2 K, is the Tannaka dual of Ia.ˇTa/ ([7, Remarks after
Lemma 6.2]), so it is a compact group.
Theorem 5.6 (Tannaka duality). Let T D .T; r;˝; �/K be a symmetric tensor
presheaf with simple units and I W T˝;� ! C˝;# an embedding. Then there is
a group net bundle G D .G; i/K and a full symmetric tensor embedding eT !
bunG.K;Hilb/.

Proof. For any a � a0 we define the family of group isomorphisms

adR%aa0 W UH%;a0 ! UH%;a; u 7! R
%
aa0 ı u ıR

%
a0a; % 2 obj eT:

Let %; & 2 obj eT. Then, with the notation of Prop. 3.9, for any a � a0 2 K and
f 2 ˇ .%

a; &a/ there is a unique f 0 2 ˇ .%
a0 ; &a

0

/ such that f D raa0.f
0/, i.e.

f 0 D ˇ ra0a.f /, where ˇ ra0a WD ˇ r
�1
aa0 . For any ua 2 Ga, we find

Ia0.f
0/ ı fadR%a0a.u

a
%/g D Ia0.ˇ ra0a.f // ı fadR%a0a.u

a
%/g

.5:10/
D fR

&
a0a ı Ia.f / ıR

%
aa0g ı adR%a0a.u

a
%/

D R
&
a0a ı Ia.f / ı u

a
% ıR

%
aa0

.5:11/
D R

&
a0a ı u

a
& ı Ia.f / ıR

%
aa0

D fadR&a0a.u
a
& /g ı fR

&
a0a ı Ia.f / ıR

%
aa0g

D fadR&a0a.u
a
& /g ı Ia0.f

0/;

and, applying (3.23),

fadR%a0a.u
a
%/g ˝a0 fadR&a0a.u

a
& /g D adR%&a0a.u

a
%& /:

The previous computations say that ia0aua WD fadR%a0a.u
a
%/g% belongs to Ga0 so,

since i WD fia0ag fulfils the net relations and is one-to-one, we have the group
net bundle G D .G; i/K . For each % 2 obj eT we define the family ˛% of unitary
representations

˛%;o W Go ! UH%;o; uo 7! u%oI

since

f˛%;o0 ı io0o.u
o/g ıR

%
o0o D adR%o0o.u

o
%/ ıR

%
o0o D R

%
o0o ı u

o
% D R

%
o0o ı ˛%;o.u

o/;

we have that (3.14) is fulfilled, so ˛ is a gauge action of G on H%. This means that
H% 2 obj bunG.K;Hilb/. At the level of arrows, if t 2 .%; &/ then I.t/ 2 .H%;H& /
and ta 2 ˇ .%a; &a/ for all a 2 K; by definition of Ga we have

Ia.ˇ .%
a; &a// D .H%;a;H&;a/Ga

; 8a 2 K; (5.12)
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so Ia.ta/ 2 .H%;a;H&a
/Ga

, and I.t/ 2 .H%;H& /G. Finally, if T 2 .H%;H& /G and
o 2 K then by (5.12) we have To D Io.to/ for a unique to 2 ˇ .%

o; &o/; applying
(5.10) and using the fact that, by definition, To0 D R

&
o0o ıTo ıR

%
oo0 , 8o � o

0, we find

Io0.to0/ D To0 D R
&
o0o ı To ıR

%
oo0 D R

&
o0o ı Io.to/ ıR

%
oo0 D Io0 ı ro0o.to/:

By injectivity of Io0 we conclude that to0 D ro0o.to/ for all o � o0, thus t WD ftog
belongs to .%; &/. We conclude that .H%;H& /G D eI .%; &/ and this proves the
theorem.

The following result gives a necessary condition to the existence of embeddings.
Theorem 5.7. If a DR-presheaf T has an embedding then every % 2 obj eT is liftable.

Proof. Let % 2 obj eT. We define Z ,  2 K.a/, as in (5.2) and consider the
holonomy of H%,

z%./ WD R
%

a;jbnj
ıR

%

jbnj;@0bn
� � �R

%

@0b1;jb1j
ıR

%

jb1j;a
;  WD bn � � � � � b1 2 K.a/:

(5.13)
Applying repeatedly (5.10) we find

fIa ıZg.f / Dbz%./ ı Ia.f /; 8f 2 ˇ .%a;r ; &a;s/; r; s 2 N;

where bz%./ is the automorphism of the category of tensor powers of H%;a defined
as in (4.10). Comparing with (5.5) and recalling (5.7) we conclude thatbz%./ jb�G%

D b�%./; 8 W a! a;

and by (4.11) this happens if, and only if, z% takes values in NG% and �% D q ı z%.

A comment to the previous theorem. As we know, any % 2 obj eT defines
the symmetric tensor net subbundle ˇb% of ˇT˝;� . We have seen in the proof of
Theorem 5.3 that any fibre ˇb%a, a 2 K, is isomorphic to the category b�G%

of tensor
powers of the defining representation �G%

W G% ! U.d/, so by Theorem 4.5 and
Theorem 4.9 there is an embedding I% W ˇb%˝;� ! C˝;# if, and only if, % is liftable.
Thus, the examples of §4 show that in general we cannot expect that existence and
uniqueness of I hold.

6. The gerbe perspective.

In this section we explain what we mean by a gerbe over a poset, and show how this
enters in the game in the scenario of section categories. Given the group G and the
poset K, a G-gerbe over K is a pair LG D .i; ı/K , such that

i W †1.K/! autG; ı W †2.K/! G W adıc ı i@1c D i@0c ı i@2c ; 8c 2 †2.K/:

(6.1)
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The map ı encodes the obstruction to constructing the net bundle G WD .fYa �

Gg; i/K , that is well-defined when ıc � 1. In precise terms, .i; ı/K is a non-abelian
1-cocycle with values in the crossed module G ! autG (see [25, §4] and related
references).

In this paper we already have encountered group gerbes. If % is a section of
the DR-presheaf T then, applying the adjoint action to the cochain u% W †1.K/ !
NG% � U.d/ of Theorem 5.5, we find that (6.1) is fulfilled by

ib WD adu%.b/jG%
; ıc WD du%.c/; 8b 2 †1.K/; c 2 †2.K/: (6.2)

Let us now define the sets

N1.K/ WD fb D fb0 � jbj 2 Kgg; N2.K/ WD fc D fc0 � c1 � jcj 2 KggI

as remarked in [22, §2.2], there are inclusions N1.K/ � †1.K/, N2.K/ � †2.K/.
A LG-gerbe of C*-algebras is a triple LF D .F; | ; ˛/K , where F D fFog is a family of
C*-algebras with actions ˛o W G ! autFo, o 2 K, and | D f|o0o W Fo ! Fo0go�o0

is a family of *-monomorphisms such that, for any b 2 N1.K/, c 2 N2.K/, g 2 G,

|jcjc1
ı |c1c0

D ˛jcj.ıc/ ı |jcjc0
; |jbjb0

ı ˛b0
.g/ D ˛jbj.ib.g// ı |jbjb0

: (6.3)

The first of (6.3) generalizes in a natural way the precosheaf relations (1.1), whilst
the second one is analogous to (3.14). The previous equalities imply that the fixed
point family A D .A; |/K , Aa WD FGa , a 2 K, is a net of C*-algebras. When ı � 1,
we have that LG collapses to a group net bundle, written G, making LF a G-net of
C*-algebras.

We now illustrate the construction motivating the above notions. Take the G%-
gerbe LG% D .i; ı/K defined by (6.2). Then consider the constant family of C*-
algebras F WD fFo WD Od g and set

|jbjb0
WDbu%.b/ W Fb0

! Fjbj; ˛o.g/ WDbg 2 autFo;
8b 2 N1.K/; o 2 K; g 2 G%; (6.4)

where bu%.b/ is defined by applying (4.9) to u%.b/ 2 NG% � U.d/ and bg 2 autOd
is given by (4.6). As we shall see in [27], it turns out that LF% D .F; | ; ˛/K is
a LG%-gerbe of C*-algebras, whose fixed-point net is isomorphic to the net A% of
Remark 5.4.

Acknowledgements. The author would like to thank J. E. Roberts for his interest
in (an old version of) this preprint, and G. Ruzzi for fruitful discussions.

A. Locally constant bundles

In this section we describe the equivalence between the category of locally constant
bundles on the manifold M and that of net bundles over a good base � of M .
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Bundles. Given the topological category C, a C-bundle is given by a continuous
surjective map p W B!M such that each fibre Bx WD p�1.x/, x 2M , is an object
of C. A morphism T 2 .B;B0/ is given by a continuous map f W B ! B0 such
that: (1) p0 ı f D p (this implies that f restricts to maps fx W Bx ! B 0x , x 2 M );
(2) Each fx , x 2M , is an arrow in .Bx; B 0x/.

In this way we have the category bun.M;C/, with objects bundles on M with
fibres in obj C and arrows the above defined morphisms.

The constant bundle is given by the projection p WM �X !M ,X 2 obj C. Let
U � M ; we define the restriction pU W BU WD p�1.U / ! U , BU 2 bun.U;C/,
and say that B is locally trivial whenever for each x 2 M there is a neighborhood
U 3 x such that there is an isomorphism ˛ 2 .BU ; U � X/. We denote the set
of isomorphism classes of locally trivial bundles with fibre X (X -bundles, to be
concise) by bun.M;X/, X 2 obj C.

Example A.1. When C D Hilb the above construction yields Hermitian vector
bundles. When C D C�alg we obtain locally trivial bundles of C*-algebras, whose
algebras of sections are continuous fields in the sense of [5, Chap. X]. When
C D TopGr we have group bundles (see [15, §4]).

Transition maps and locally constant bundles. Now, autX is a topological group;
if we consider a cover fYig with local charts pi W p�1i .Yi /! Yi � X , then defining
.x; uij;x.v// WD pi ı p

�1
j .x; v/, x 2 Yij WD Yi \ Yj , v 2 X , yields transition maps

uij W Yij ! autX satisfying the cocycle relations

uij .x/ � ujk.x/ D uik.x/; 8x 2 Yi \ Yj \ Yk :

A locally constant bundle is a pair .B; Y /, where B is an X -bundle and Y WD fYig is
an open cover ofM with local charts pi W p�1i .Yi /! Yi�X such that the associated
transition maps uij W Yij ! autX are locally constant. Given the locally constant
bundle .B0; Y 0/, a morphism f 2 .B;B0/ is said to be locally constant whenever any
map

fil W Yi \ Y
0
l ! .X;X 0/; fil.x/ WD p

0
l ı f ı p

�1
i .x/;

is locally constant. This yields a non-full subcategory of bun.M;C/, denoted by
lc.M;C/. Sometimes we will not mention the locally constant structure and will
write B instead of .B; Y /.

We stress that locally constant bundles .B; Y /; .B0; Y 0/ may be isomorphic in
bun.M;C/ but not in lc.M;C/. GivenX 2 obj C, we denote the set of isomorphism
classes of locally constant X -bundles by lc.M;X/.
The equivalence between locally constant bundles onM and net bundles over�
has been proved in [22, Prop. 33] using a cohomological language. The same result
can proved using the notion of holonomy: if B ! M is a locally constant bundle
with fibreX , then the monodromy � 2 autX of a loop  W Œ0; 1�!M is homotopy
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invariant (this does not happen for the holonomy of generic bundles), so it induces a
representation � W �1.M/! autX . This yields an equivalence

lc.M;C/! hom.�1.M/;C/; (A.1)

whose inverse (up to isomorphism) is given by the operation of assigning to � 2
hom.�1.M/; autX/, X 2 obj C, the induced bundle B WD fM �� X , where fM is
the universal cover of M regarded as a right �1.M/-space (see [16, §I.2]).

Example A.2. The case C D TopGr yields the category of locally constant group
bundles. In particular, as in (3.13), for any compact Lie group G we may consider
the right translation action G ! homeoG. Locally constant bundles G 2 lc.M;G/
that admit a holonomy representation �1.M/ ! G ' R.G/ are called locally
constant principal bundles. We denote the category of locally constant principal
bundles by lcPr.M;G/. When M is a manifold and G is a Lie group, a principal
G-bundle is locally constant if, and only if, it is flat, i.e., it admits a connection with
vanishing curvature (see [16, Prop.I.2.6]). In the case C D Hilb we have locally
constant Hilbert bundles, which are flat Hermitian bundles when the fibre is finite-
dimensional ([16, Chap.I]). In this case it is easily proved that (A.1) preserves direct
sums and tensor products.

Combining (A.1) and Theorem 3.5 we obtain:

Theorem A.3. Let M be a space, � denote a good base of M and G a topological
group. Then for any category C there are equivalences

bun.�;C/! lc.M;C/; B 7! .B; Y /; (A.2)

Pr.�;G/! lcPr.M;G/; P 7! .P ; Y /: (A.3)
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