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The Dolbeault dga of the formal neighborhood of the diagonal
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Abstract. A well-known theorem of Kapranov states that the Atiyah class of the tangent
bundle TX of a complex manifold X makes the shifted tangent bundle TXŒ�1� into a Lie
algebra object in the derived category D.X/. Moreover, he showed that there is an L1-
algebra structure on the shifted Dolbeault resolution .A��1

X
.TX/; @/ of TX and wrote down the

structure maps explicitly in the case whenX is Kähler. The corresponding Chevalley–Eilenberg
complex is isomorphic to the Dolbeault resolution .A0;�

X
.J1

X
/; @/ of the jet bundle J1

X
via

the construction of the holomorphic exponential map of the Kähler manifold. In this paper,
we show that .A0;�

X
.J1

X
/; @/ is naturally isomorphic to the Dolbeault dga .A�.X .1/

X�X
/; @/

associated to the formal neighborhood of the diagonal of X � X which we introduced in [15].
We also give an alternative proof of Kapranov’s theorem by obtaining an explicit formula for
the pullback of functions via the holomorphic exponential map, which allows us to study the
general case of an arbitrary embedding later.
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1. Introduction

In this paper, we continue the study of the Dolbeault differential graded algebra
(dga) of the formal neighborhood of a closed embedding of complex manifolds
introduced in [15]. One of initial motivations of the overall project is to give a
concrete description of this Dolbeault dga in terms of the differential geometry of
the embedding. As a starting point, the current paper provides a reformulation of the
work of Kapranov [10] on diagonal embeddings. Our new perspective will allow us
to deal with the general case later elsewhere.

In [15] we defined, for the formal neighborhood OY of a closed embedding of
complex manifolds i W X ! Y , a Dolbeault dga A D .A�. OY /; @/. Following
�This research was partially supported by the grant DMS1101382 from the National Science

Foundation.
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the work of Block [4], we assigned to A a dg-category PA and proved that, in the
case when X is compact, PA serves as a dg-enhancement of the derived category
Db
coh
. OY / of coherent sheaves over the formal neighborhood OY .

In order to construct explicitly certain objects we are interested in and compute
the hom complexes between them in the dg-category PA (see the introductory part
of [15]), it is necessary to have a geometric description of the Dolbeault dga and,
in particular, its differential. This is the problem that we shall study here and in
subsequent papers.

In [10], Kapranov considered the case of a diagonal embedding� W X ,! X�X .
He argued that the holomorphic structure of the formal neighborhood X .1/

X�X of the
diagonal is encoded in the Dolbeault resolution .A0;�.J1X /; @/ of the jet bundle J1X .
In [15], we generalized this observation to an arbitrary closed embedding i W X ,! Y

and defined a general notion of the Dolbeault complex (or dga) .A�. OY /; @/ of the
formal neighborhood OY . We shall show in Section 2.2 that our general definition
indeed gives the Dolbeault resolution of the jet bundle when specialized to the case
of a diagonal embedding.

Under the assumption that X is Kähler, Kapranov used the Levi-Civita connec-
tion to construct a fiberwise holomorphic exponential map

exp W X .1/

TX ! X .1/

X�X (1.1)

between X .1/

TX , the formal neighborhood of the zero section in the holomorphic
tangent bundle TX , and X .1/

X�X , regarded as nonlinear fiber bundles over X .
However, the exopnential map is not a biholomorphism and Kapranov described
the pullback of holomorphic structure on X .1/

X�X to X .1/

TX via exp using the Atiyah
class of TX . Algebraically, the pullback map via exp gives rise to an ismorphism of
dgas

exp� W .A0;�X .J1X /; @/! .A0;�X . OS.T �X//;D/; (1.2)

where OS.T �X/ is the completed symmetric algebra of the cotangent bundle T �X
and can be thought of as the pushforward of O

X
.1/
TX

via the natural projection

X .1/

TX ! X . The differential D encodes the pulled back holomorphic structure
on TX and it is not the same as the ordinary @ on OS.T �X/ induced from that of
T �X . Kapranov showed that one has to correct the usual @ by the curvature and its
higher covariant derivatives. Let r be the .1; 0/-part of the Levi-Civita connection
and define

R2 D R D Œ@;r� 2 A1X .Hom.S2TX; TX//

and
Rn D r

n�2R 2 A0;1X .Hom.SnTX; TX//; n � 2;

so that R2 D R is a Dolbeault representative of the Atiyah class ˛TX 2

Ext1X .S
2TX; TX/ of the tangent bundle ([2]). Kapranov obtained an explicit
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formula for D:
D D @C

X
n�2

QRn; (1.3)

where QRn is the derivation on A0;�. OS.T �X// induced by Rn, regarded now as
elements in A0;1.Hom.T �X;SnT �X//.

Kapranov’s construction of the exponential map and proof of the formula (1.3)
for the differential D is based on the formal geometry developed by Gelfand,
Kazhdan and Fuchs (see [8], [9]). Nevertheless, we will give a very simple formula
(3.8) for the pullback map exp� in Section 3.2 and we will use it to give an algebraic
proof of Kapranov’s theorem. This formula is handy for explict computation and
later generalization to the case of general embeddings.

As an interesting application of our formula for exp� (with slight adjustment), we
will show in Section 3.3 that the Atiyah class is the only obstruction for the existence
of an isomorphism between the OX -sheaves J1X and OS.T �X/ respecting the natural
filtrations on both sides (Theorem 3.3), for an arbitrary complex manifoldX without
the Kähler assumption. Note that it is not even obvious from Kapranov’s formula
(1.3) ofD in the Kähler case, since the curvature R does not necessarily vanishes on
the nose even when its corresponding cohomology class ˛TX 2 Ext1X .S

2TX; TX/

is zero.
This little yet somewhat surprising fact has intimate connection with the work

of Arinkin and Căldăraru [1] and Calaque, Căldăraru and Tu [6], which is best
understood in the language of derived algebraic geometry in the sense of Lurie [13].
We would also like to mention the recent work of [7] of Chen, Stiénon and Xu and
the work of Calaque [5]. They considered the general case of a inclusion of Lie
algebroids A � L, which is specialized to our case when L D TX ˝ C is the
complexified tangent bundle of a complex manifold X and A D T 0;1X is the .0; 1/-
part of L. In particular, Theorem 3.3 can be regarded as the ’Koszul dual’ of the
Theorem 1.1 in [5]. However, we will not explore in details these relations in this
paper.

To get ride of the Kähler assumption, Kapranov introduced the bundle Xexp of
formal exponential maps on X (which he denoted as ˆ.X/). Any smooth section �
of Xexp gives a exponential map of the form (1.1) and the corresponding pullback
map (1.2), where the differentialD can be characterized by a formula similar to (1.3)
containing analogues of Rn which measure the failure of � to be holomorphic. We
will review in Section 4 the construction of Xexp and show that it can be naturally
identified with another bundle Xconn of jets of holomorphic connections which are
flat and torsion-free, which is more related to our formula for the pullback map
exp�. The discussion will make it clear that our construction of the exponential map
is equivalent to Kapranov’s construction in the Kähler case.

The paper is organized as follows. In Section 2, we review the definitions and
basic properties of the Dolbeault dga from [15] and show that, in the case of a
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diagonal embedding, the Dolbeault dga is isomorphic to the Dolbeault resolution
of the jet bundle considered in [10]. In Section 3, we state and prove our version
of Kapranov’s theorem. We will discuss the application mentioned above and make
more comments about its relation with other works. Section 4 is devoted to setting
up the language of formal geometry adopted in the paper. We mainly follow the nice
approach of Bezrukavnikov and Kaledin [3]. At the end, we argue that our version
of the holomorphic exponential map coincides with Kapranov’s original one.

Acknowledgements. We would like to thank Jonathan Block, Damien Calaque,
Andrei Căldăraru, Nigel Higson, Mathieu Stiénon, Junwu Tu and Ping Xu for helpful
discussions.

2. Dolbeault dga of a formal neighborhood

2.1. Definitions and notations. Let Y be a complex manifold and X be a closed
complex submanifold in Y . We denote by i W X ,! Y the embedding, by OX and
OY the structure sheaf of germs of holomorphic functions overX and Y respectively,
by I the ideal sheaf of OY of holomorphic functions vanishing along X . Then we
can define the r-th formal neighborhood OY .r/ of the embedding as the ringed space
.X;O OY .r// of which the structure sheaf is

O OY .r/ D OY =I
rC1:

The (complete) formal neighborhood OY D OY .1/ is defined to be the ringed space
.X;O OY / where

O OY D lim
 �
r

O OY .r/ D lim
 �
r

OX=I
rC1:

We will also write X .1/

Y and X .r/

Y instead of OY and OY .r/ to emphasize the
submanifolds in question.

We review the notion of Dolbeault differential graded algebra (dga) of the
embedding i W X ,! Y from [15]. Let .A0;�.Y /; @/ D .^��

0;1
Y ; @/ denote the

Dolbeault dga of Y , with multiplication being the wedge product and the differential

@ W A0;�.Y /! A0;�C1.Y /

being the .0; 1/-part of the de Rham differential. For each nonnegative integer r ,
we set a�r to be the graded ideal of A0;�.Y / consisting of those forms ! 2 A0;�.Y /
satisfying

i�.LV1
LV2
� � �LVl

!/ D 0; 8 1 � j � l; (2.1)

for any collection of smooth .1; 0/-vector fields V1; V2; : : : ; Vl over Y , where
0 � l � r .
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Proposition 2.1 ([15]). The ideal a�r is invariant under the action of @, hence is a
dg-ideal of .A0;�.Y /; @/.

Definition 2.2. The Dolbeault dga of OY .r/ is the quotient dga

A�. OY .r// WD A0;�.Y /=a�r :

In particular, A�. OY .0// D A0;�.X/. Moreover, there is a descending filtration of
dg-ideals

a�0 � a�1 � a�2 � � � � ;

which induces an inverse system of dgas with surjective connecting morphisms

A0;�.X/ D A�. OY .0// A�. OY .1// A�. OY .2// � � � :

The Dolbeault dga of OY is defined to be the inverse limit

A�. OY / D A�. OY .1// WD lim
 �
r

A�. OY .r//:

We will write A. OY / D A0. OY / and A. OY .r// D A0. OY .r// for the zeroth components
of the Dolbeault dgas.

By Remark 2.4., [15], we have the following alternative description of .A�. OY /; @/.

Proposition 2.3. The natural map

A0;�.Y /
. \
r2N

a�r ! A�. OY / (2.2)

induced by the quotient maps

A0;�.Y /! A�. OY .r//; r 2 N;

is an isomorphism of dgas.

In [15], we sheafified the Dolbeault dgas A�. OY .r// and A�. OY / to obtain sheaves
of dgas A �. OY .r// and A �. OY / respectively over X . Similarly, a�r induces a sheaf
of dg-ideals ea�r . Moreover, there are natural inclusions of sheaves of algebras
O OY .r/ ,! A . OY .r// and O OY ,! A . OY /. The following result was proved in [15].

Theorem 2.4. For any nonnegative integer r or r D1, the complex of sheaves

0! O OY .r/ ! A 0
OY .r/

@
�! A 1

OY .r/

@
�! � � �

@
�! A m

OY .r/
! 0

is exact, where m D dimX . In other words, .A �
OY .r/
; @/ is a fine resolution of O OY .r/ .
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As the completion of A0;�.Y / with respect to the filtration a�r , the dga A�. OY / is
itself filtered and its associated graded dga is

grA�. OY / ' .A0;�.Y /=a�0/˚
1M
rD0

a�r=a
�
rC1:

Note that A0;�.X/ ' A0;�.Y /=a�0 and a�r=a
�
rC1 are dg-modules over .A0;�.X/; @/.

We define, for each r � 0, a ‘cosymbol map’ of complexes

�r W .a
�
r=a
�
rC1/! A0;�X .S rC1N_/; (2.3)

where S rC1N_ is the .r C 1/-fold symmetric tensor of the conormal bundle N_

of the embedding. Given any .r C 1/-tuple of smooth sections �1; : : : ; �rC1 of
N , we lift them to smooth sections of T Y jX and extend to smooth .1; 0/-tangent
vector fields Q�1; : : : ; Q�rC1 on Y (defined near X ). We then define the image of
! C a�rC1 2 a�r=a

�
rC1 under � for any ! 2 a�r , thought of as linear functionals on

.N /˝.rC1/, by the formula

�r.! C a�rC1/.�1 ˝ � � � ˝ �rC1/ D i
�L Q�1

L Q�2
� � �L Q�rC1

!: (2.4)

The map �r is well-defined and is independent of the choice of the representative !
and Q�j ’s. Moreover, the tensor part of �r.! C a�rC1/ is indeed symmetric.

Proposition 2.5. The map �r in (2.3) is an isomorphism of dg-modules over
.A0;�.X/; @/.
Corollary 2.6. We have a natural isomorphism of dgas

grA�. OY / '
1M
nD0

A0;�X .SnN_/:

Remark 2.7. Since O OY is defined as an inverse limit sheaf, it has a natural
descending filtration and so OY should be regarded not only as a ringed space but
also as a topologically ringed space. Similarly, defined as an inverse limit, the
Dolbeault dga A�. OY / is a filtered dga. Moreover, since A0;�.Y / is a Fréchet dga
and all ideals a�r are closed, the inverse limit A�. OY / can be made into a Fréchet
dga equipped with the initial topology (which concides with the quotient Fréchet
topology via the quotient map (2.2)). One can recover the formal neighborhood OY
from the topological dga A�. OY /. The topology or the filtration would matter when
one wants to consider morphisms between two such dgas or dg-modules over the
Dolbeault dgas (see [15]). However, these are not among the topics of the current
paper. The reader only needs to keep in mind that in this paper every morphism
between two filtered dgas will preserve the filtrations.
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2.2. Diagonal embeddings and jet bundles. We consider the case of diagonal
embeddings. Let X be a complex manifold and let � W X ,! X � X be the
diagonal map. For convenience, the associated formal neighborhoods are denoted
as �.1/ D X .1/

X�X and �.r/ D X
.r/
X�X throughout this section. We denote by

pr1; pr2 W X � X ! X the projections onto the first and second component of
X � X respectively. From the algebraic perspective, the jet bundle J r

X of order r
(r � 0) can be viewed as the sheaf of algebras

J r
X D pr1�O�.r/ ;

and similarly for the jet bundle J1X of infinite order,

J1X D pr1�O�.1/ :

Moreover, they are sheaves of OX -modules where the OX -actions are induced from
the projection pr1. Analytically, the OX -modules J r

X can be regarded as finite
dimensional holomorphic vector bundles, while J1X is a holomorphic vector bundle
of infinite dimension and is the projective limit of J r

X ’s. Fiber of J r
X (resp. J1X ) at

each point x 2 X can be naturally identified with the algebra of holomorphic r-jets
(resp.1-jets) of functions at x. Thus we can form the sheaf of Dolbeault complexes
of J r

X ,
.A 0;�.J r

X /; @/ D .J r
X ˝OX

A 0;�
X ; 1˝ @/;

where .A 0;�
X ; @/ is the sheaf of Dolbeault complexes overX . Moreover, .A 0;�.J r

X /; @/

is also a sheaf of dgas, such that the multiplication is induced by that of J r
X and the

wedge product of forms. The sheaf of Dolbeault complexes of J1X is defined to be

A 0;�.J1X / D lim
 �
r

A 0;�.J r
X / D lim

 �
r

A 0;�
X ˝OX

J r
X ;

which is also a sheaf of dgas. We also denote the global sections of the sheaves by

A0;�.J r
X / D �.X;A

0;�.J r
X //; A0;�.J1X / D �.X;A 0;�.J1X //:

The Dolbeault dga .A�.�.r//; @/ is also an .A0;�.X/; @/-dga. The A0;�.X/-
action is given by the compositions of homomorphisms of dgas

A0;�.X/
pr�

1
��! A0;�.X �X/! A�.�.r//:

Similarly, we have natural homomorphisms of dgas

.A0;�.X/; @/! .A�.�.1//; @/;

.A 0;�
X ; @/! .A �

�.1/ ; @/; .A 0;�
X ; @/! .A �

�.r/ ; @/;
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which are all induced by pr1. The natural inclusion O�.r/ ,! A�.r/ can be regarded
as the OX -linear morphism

J r
X ,! A�.r/ ;

which extends to an .A 0;�
X ; @/-linear morphism of sheaves of dgas

Ir W A
0;�.J r

X / D A 0;�
X ˝OX

J r
X ! A �

�.r/ : (2.5)

By letting r vary and passing to the inverse limit, we obtain an .A 0;�
X ; @/-morphism

of sheaves of dgas
I1 W A

0;�.J1X /! A �
�.1/ : (2.6)

We use the same notations for maps induced by Ir and I1 on the global sections.

Proposition 2.8. The homomorphisms

Ir WA0;�.J r
X /
'
�! A�.�.r//

and I1 WA0;�.J1X /
'
�! A�.�.1//:

are isomorphisms of .A0;�.X/; @/-dgas. Similar results hold for the corresponding
sheaves.

Proof. We prove the proposition by induction on r � 0. When r D 0, both
A0;�.J 0

X / and A�.�.0// can be identified with A0;�.X/ and I0 is an isomorphism.
Now assume that Ir is an isomorphism. We have for any k � 0 a natural
isomorphism I k=I kC1 ' SkT �X of sheaves of OX -modules similar to �r in
(2.3) and hence a short exact sequence

0! SkT �X ! J k
X ! J k�1

X ! 0:

Now there is a commutative diagram

0 > A0;�.S rC1T �X/ > A0;�.J rC1
X / > A0;�.J r

X / > 0

0 > a�r=a
�
rC1

��1r
_

> A�.�.rC1//

IrC1
_

> A�.�.r//

Ir
_

> 0

of two rows of short exact sequences. The leftmost vertical map is exactly the inverse
of �r in (2.3), where the conormal bundle of the diagonal is identified with the
cotangent bundle of X . The rightmost vertical map is Ir , which is an isomorphism
by the inductive hypothesis. Therefore, by the five lemma, IrC1 in the middle is also
an isomorphism.
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3. Kapranov’s theorem revisited

3.1. Conventions on the symmetric algebra. We recall a basic yet useful observ-
ation from [1]. Let V be a finite dimensional vector space. The free coalgebra
T c.V / D ˚k�0V

˝k generated by V is equipped with a commutative algebra
structure, give by the shuffle product

.v1 ˝ � � � ˝ vp/ � .vpC1 ˝ � � � ˝ vpC1/ D
X

�2Sh.p;q/

v�.1/ ˝ � � � ˝ v�.pCq/;

where Sh.p; q/ is the set of all .p; q/-shuffles.
The symmetric algebra S.V / D ˚k�0SkV is naturally a subalgebra and quotient

algebra of T c.V / via the inclusion

S.V /! T c.V /; v1v2 � � � vk 7!
X
�2†k

v�.1/ ˝ v�.2/ ˝ � � � ˝ v�.k/ (3.1)

and the surjection

T c.V /! S.V /; v1 ˝ v2 ˝ � � � ˝ vk 7!
1

kŠ
v1v2 � � � vk : (3.2)

Both are homomorphism of commutative algebras and moreover the composition

S.V /! T c.V /! S.V /

is the identity. The same discussion applies to the completions OT c.V / and OS.V /
with respect to the natural gradings. From now on, we will always think of OS.V / as
a subalgebra of T c.V / via the inclusion defined above.

3.2. Kapranov’s theorem and holomorphic exponential map. We now refor-
mulate and provide an alternative proof of Kapranov’s theorem on the concrete
description of the formal neighborhood of a diagonal embedding in terms of the
Atiyah class. Suppose that X is equipped with a Kähler metric h. Let r be the
canonical .1; 0/-connection in TX associated with h, so that

Œr;r� D 0 in A2;0X .End.TX//: (3.3)

and it is torsion-free, which is equivalent to the condition for h to be Kähler.
Set er D r C @, where @ is the .0; 1/-connection defining the complex structure.

The curvature of er is

R D Œ@;r� 2 A1;1X .End.TX// D A0;1X .Hom.TX ˝ TX; TX//: (3.4)

In fact, by the torsion-freeness we have

R 2 A0;1X .Hom.S2TX; TX//:
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We have the Bianchi identity

@R D 0 in A0;2X .Hom.S2TX; TX//:

Thus R defines a cohomology class in Ext1OX
.S2TX; TX/, which is the Atiyah

class ˛TX of the tangent bundle ([2]). It is the obstruction for the existence of a
holomorphic .1; 0/-connection on TX .

Now define tensor fields Rn, n � 2, as higher covariant derivatives of the
curvature:

Rn 2 A0;1X .Hom.S2TX ˝ TX˝.n�2/; TX//; R2 WD R; RiC1 D rRi : (3.5)

In fact Rn is totally symmetric, i.e.,

Rn 2 A0;1X .Hom.SnTX; TX// D A0;1X .Hom.T �X;SnT �X//

by the flatness of r (3.3). Note that if we think of r as the induced connection on
the cotangent bundle, the same formulas (3.4) and (3.5) give �Rn.

Kapranov observed that one can define a differential

D D @C
X
n�2

QRn (3.6)

on the graded algebraA0;�X . OS.T �X//, where QRn is the odd derivation ofA0;�X . OS.T �X//

induced by Rn 2 A0;1X .Hom.T �X;SnT �X//. (Note that in [10] Kapranov used the
notation QR�n.) By purely algebraic properties of Rn’s, it was shown that D2 D 0. In
other words, .A0;�X . OS.T �X/;D/ is a dga. Kapranov gave a geometric intepretation
of this dga (following the suggestion by Ginzburg). Namely, he constructed a
‘holomorphic exponential map’

exp W X .1/

TX ! X .1/

X�X

using the Levi-Civita connection of X , where X .1/

TX is the formal neighborhood of
X (regarded as the zero section) in the total space of TX . The exponential exp is
a fiberwise holomorphic morphism between (nonlinear) holomorphic fiber bundles,
but it is not holomorphic when the base point on X moves around. If we think of
OS.T �X/ as sheaves of functions on X .1/

TX , then D2 D 0 means that D defines a
new holomorphic structure on X .1/

TX , which is exactly the holomorphic structure on
X .1/

X�X pushed forward via exp. In other words, the pullback map via exp induces an
isomorphism of dgas

exp� W .A0;�X .J1X /; @/! .A0;�X . OS.T �X//;D/: (3.7)

As mentioned in the Introduction, we will provide an alternative proof of
Kapranov’s theorem by writing down directly a formula for the pullback map exp�.
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The reason why it coincides with Kapranov’s original construction of the exponential
map will be clear in Section 4.

Since we have shown in Section 2.2 that our Dolbeault dga .A�.X .1/

X�X /; @/ is
isomorphic to .A0;�X .J1X /; @/, we can work with the former. Define

exp� W A�.X .1/

X�X /
'
�! A0;�X . OS.T �X//

by
exp�.Œ��1/ D .���;��r�;��r2�; � � � ; ��rn�; � � � /; (3.8)

where � 2 A0;�.X �X/ and Œ��1 is its image in A�.X .1/

X�X /. Here r is understood
as the pullback of the original r of T �X to X � X via pr2 W X � X ! X .
In other words, it is now a constant family of connections on the trivial fiber bundle
pr1 W X �X ! X which act only in the direction of the fibers (i.e. the second factor
of X � X ). By r� we mean the .1; 0/-differential @2� of � in the direction of the
second factor of X �X and rn� D rn�1@2�.

The map exp� is an isomorphism of filtrated graded algebras since it induces the
identity map on the associated graded algebras (both equal to A0;�X .S.T �X//).

Remark 3.1. The reader might think that we should add the factor 1=kŠ in each
component of the formula (3.8) so that it will look the same as the usual Taylor
expansion. Yet what is really going on here is that a priori .��rk�/k�0 belongs
to A0;�X . OT c.T �X//, then by the torsion-freeness and flatness of r we know it
actually lies in the symmetic part of A0;�X . OT c.T �X//. To extract it as an element
in A0;�X . OS.T �X// we apply the quotient map (3.2) in Section 3.1 to OT c.T �X/ part
and the factors 1=kŠ arise exactly from there. In particular, when X D Cn with the
flat Kähler metric, we get the usual Taylor expansions. We will not repeat this point
when similar situations appear later.

Theorem 3.2 (compare with Theorem 2.8.2, [10]). Assume that X is Kähler. The
map

exp� W .A�.X .1/

X�X /; @/! .A0;�X . OS.T �X//;D/

is an isomorphism of dgas, where D is as defined in (3.6). In particular, D2 D 0.

Proof. We need to show that

@ ı exp�� exp� ı @ D �.
X
n�2

QRn/ ı exp� : (3.9)

Let
‡ D Œ@;r� 2 A0;1X�X .Hom.pr�2 T

�X;Sn.pr�2 T
�X///

and e‡ 2 A0;1X�X .Hom. OS�.pr�2 T
�X/; OS�C1.pr�2 T

�X///
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the derivation on A0;�X�X . OS�.pr�2 T
�X// induced by ‡ which increases the degree

on OS� by 1. Here again by r we mean the pullback pr�2 r acting on the cotangent
bundle. But it is constant in the direction of the first factor of X � X . So if we
decompose @ D @1 C @2 according to the product X �X , we get

‡ D Œ@;r� D Œ@2;r� D pr�2.�R/:

For any Œ��1 2 A�.X .1/

X�X /, we have

r
n@� D @rn� �

X
iCjDn�2

r
i
ı e‡ ı rj�:

By evaluating e‡ and expanding the action of ri via the Leibniz rule, we find

r
n@� D @rn� �

n�1X
kD0

A
r
k‡ ı rn�k�1�;

where Ark‡ is the derivation induced by rk‡ . Finally by applying�� on both sides
we obtain (3.9), since ��rk‡ D �� pr�2.�Rk/ D �Rk .

3.3. An application. As an application of the formula (3.8) (yet in a more general
context), we prove the following result claiming essentially that the Atiyah class
is the only obstruction for the existence of a biholomorphism between X .1/

X�X and
X .1/

TX , which might look surprising at first sight.

Theorem 3.3. Let X be an arbitrary complex manifold (not necessarily Kähler).
Then there exists an .A0;�.X/; @/-linear isomorphism of dgas

.A�.X .1/

X�X /; @/
'
�! .A0;�X . OS.T �X//; @/

preserving the natural filtrations on both sides and inducing the identity map on the
associated graded algebras (both equal to A0;�X .S.T �X//), if and only if the Atiyah
class ˛TX of TX vanishes.

Proof. Assume such an isomorphism exists. In particular, it gives a holomorphic
splitting of the short exact sequence

0! S2T �X ! J 2
X ! J 1

X ! 0

and hence a holomorphic splitting for

0! S2T �X ! I =I 3
! I =I 2

D T �X ! 0;

where I � OX�X is the ideal sheaf of functions vanishing along the diagonal.
Therefore the Atiyah class vanishes by Proposition 2.2.1., [10].
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On the other hand, if the Atiyah class of TX , or equivalently, of T �X vanishes,
then there exists a holomorphic connection r on T �X (cf. [2]). We define a
map from A�.X .1/

X�X / to the Dolbeault resolution of the sheaf of completed free
coalgebras OT c.T �X/ D

Q
k�0.T

�X/˝k ,

I W A�.X .1/

X�X /! A0;�X . OT c.T �X//

by the formula

I.Œ��1/ D .�
�
r
k�/k�0 2 A0;�X . OT c.T �X//

which is similar to (3.8) and r here is again understood as acting on the second
factor of X � X , etc. I is a morphism of graded commutative algebras if we equip
OT c.T �X/ with the shuffle product. Moreover, it commutes with the @-derivation on

both sides since Œ@;r� D 0. Thus I is a morphism of dgas.
The image of I is no longer guaranteed to lie in the symmetric algebra since we

do not have additional assumption on r as before. Yet we can compose I with the
quotient map (3.2) to get another morphism of graded algebras

QI W A�.X .1/

X�X /
I
�! A0;�X . OT c.T �X//! A0;�X . OS.T �X//:

Since the quotient map T c.T �X/ ! OS.T �X/ is essentially the symmetrization
map, it commutes with the @-derivations on both sides induced by that of T �X and
hence QI is a morphism of dgas. It also preserves the filtrations and its induced map
on the associated graded algebras is the identity map, since symmetrization does not
affect the symbols of the differential operators rk . Therefore QI fullfills the required
conditions.

Digression. The result of Theorem 3.3 is parallel to the work of Arinkin and
Căldăraru [1]. They showed there that, for a closed embedding i W X ,! Y of
schemes, there exists an isomorphism

i�i�OX '
M
k

^
kN_Œk�

of algebra objects in the derived category D.X/ of X , where N_ is the conormal
bundle, if and only if a certain class ˛N 2 Ext2X .^

2N;N/ D Ext1X .S
2.N Œ�1�/; N Œ�1�/

(which they called the HKR class) of the embedding vanishes. ˛N can be thought
of as a relative version of Atiyah class of the tangent complex of the embedding,
which is NŒ�1�. Moreover, they showed that ˛N is the obstruction class for the
existence of a holomorphic extension of the normal bundleN to the first-order formal
neighborhood X .1/

Y . From the viewpoint of derived algebraic geometry (in the sense
of Lurie [13]), i�i�OX can be regarded as the structure complex of the derived self-
intersection X �RY X .
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In the context of Theorem 3.3, the corresponding morphism of spaces behind
the scene is X ! XdR. XdR D .X;��X / is the de Rham space of X , which is X
equipped with the sheaf of de Rham complex ��X , regarded as a dg-manifold. The
canonical map X ! XdR arises from the quotient map ��X ! OX . The derived
fiber product X �RXdR

X is exactly X .1/

X�X . The candidate for the ’first-order formal
neighborhood’ in this case seems to beX 0

dR
D .X;��1X /, where��1X is the truncated

de Rham complex OX
d
�! �1X . The tangent complex of the map X ! XdR is

nothing but TX and the existence of an extension of the vector bundle TX to X 0
dR

is clearly equivalent to the existence of a holomorphic connection of TX and hence
equivalent to the vanishing to the usual Atiyah class of TX .

The comparison between these two situations suggests that there should be an
alternative proof of Theorem 3.3 which is parallel to that in [1]. This was done
in the paper of Calaque [5] in a more general context of an inclusion A � L of
sheaves of Lie algebroids over a space X with a sheaf of algebras R, first considered
by Chen, Stiénon and Xu [7]. The Chen-Stiénon-Xu class ˛L=A 2 Ext1A..L=A/˝R
.L=A/;L=A/ defined in [7] recovers in particular the Atiyah class whenL D TXR˝

C is (the sheaf of smooth sections of) the complexified tangent bundle of a complex
manifold X and A D T 0;1X . Calaque then defined for such an inclusion the first
formal neighborhood A.1/ as certain quotient of the free algebroid FR.L/ generated
byL (after Kapranov [11]), and showed that the following statements are equivalent:

(1) The Chen–Stienon–Xu class ˛L=A for .L;A/ vanishes.

(2) The A-module structure L=A lifts to an A.1/-module structure.

(3) U.L/=U.L/A is isomorphic, as a filtrated A-module, to SR.L=A/, where U.L/
is the universal enveloping algebra of L and SR.L=A/ is the sheaf of symmetric
algebras generated by L=A.

In our situation where R D OX , L D TXR ˝ C and A D T 0;1X , the sheaf
U.L/=U.L/A in the third condition above is nothing but the universal enveloping
algebra U.T 1;0X/ D U.TX/ of the Lie algebroid T 1;0X D TX of smooth
.1; 0/-vector fields, with the A-module structure being the one induced by the
holomorphic structure. Since J1X ' HomOX

.U.TX/;OX / and OS.TX/ '
HomOX

.S.TX/;OX /, the equivalence between conditions (1) and (3) is essentially
the same as our Theorem 3.3. Also one can think formally of the first formal
neighborhood A.1/ in this case as the ‘Koszul dual’ of the somewhat naive dga��1X .

4. Formal geometry

In this section, we will review basics of formal geometry developed by Gelfand,
Kazhdan and Fuchs (see [8], [9]). We will follow [3] and base our constructions of
various jet bundles by applying Borel construction to the bundle Xcoor of formal
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coordinates (which also appears in the context of deformation quantization, see,
e.g., [12], [3], [14]), thought as a torsor over some proalgebraic group G.1/. In
particular, we obtain the bundle Xexp of formal exponential maps used in [10] and
show that it can be naturally identified with a new defined bundle Xconn of jets of
holomorphic connections that are flat and torison-free. This reinterpretation of Xexp
gives a geometric meaning of the formula (3.8) in 3.2, which is close to Kapranov’s
original approach, and allow us to work in general without the Kähler assumption.

We should mention that this section overlaps a lot with the corresponding
discussions in [10], though we are working in the Dolbeault picture, and we claim
no novelty except for the definition of Xconn.

4.1. Differential geometry of formal discs. Fix a complex vector space V of
dimension n. Consider the formal power series algebra

F D CJV �K D OS.V �/ D
Y
i�0

S iV �;

that is, the function algebra of the formal neighborhood of 0 in V . It is a complete
regular local algebra with a unique maximal ideal m consisting of formal power
series with vanishing constant term. The associated graded algebra with respect to
the m-filtration is the (uncompleted) symmetric algebra

grF D S.V �/ D
M
i�0

S iV �:

Since we are in the complex analytic situation, we endow F with the canonical
Fréchet topology . In algebraic setting, one need to use the m-adic topology on F .
However, the associated groups and spaces in question remain the same, though the
topologies on them will be different. Since our arguments work for both Fréchet and
m-adic settings, the topology will not be mentioned explicitly unless necessary. We
also use bV D Spf F to denote the formal polydisc, either as a formal analytic space
or a formal scheme.

Following the notations in [10], we denote byG.1/ D G.1/.V / the proalgebraic
group of automorphisms of the formal space bV , and by J .1/ D J .1/.V / the normal
subgroup consisting of those � 2 G.1/ with tangent map d0� D Id at 0. In other
words, J .1/.V / is the kernel of d0 W G.1/ ! GLn.V /. Let g.1/ D g.1/.V / and
j.1/ D j.1/.V / be the corresponding Lie algebras. The Lie algebra g.1/ can also be
interpreted as the Lie algebra of formal vector fields vanishing at 0, while j.1/ is the
Lie subalgebra of formal vector fields with vanishing constant and linear terms. We
have decompositions

g.1/
D

Y
i�1

V ˝ S iV � D
Y
i�1

Hom.V �; S iV �/
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and
j.1/
D

Y
i�2

V ˝ S iV � D
Y
i�2

Hom.V �; S iV �/:

Elements of g.1/ and j.1/ acts on F D
Q
i�0 S

iV � as derivations in the obvious
manner.

There is an exact sequence of proalgebraic groups

1! J .1/
! G.1/

! GLn.V /! 1 (4.1)

which canonically splits if we regard elements of GLn D GLn.V / as jets of linear
transformations on bV . In other words, G.1/ is a semidirect product:

G.1/
D J .1/ o GLn:

So we have a canonical bijection between sets

q W J .1/
'
�! G.1/=GLn: (4.2)

Moreover, there is a natural left G.1/-action on J .1/ given by

.�; T /�' D �ıT ı'ıT �1; 8 .�; T / 2 J .1/oGLn D G.1/; 8 ' 2 J .1/; (4.3)

or equivalently,

 � ' D  ı ' ı .d0 /
�1; 8  2 G.1/; 8 ' 2 J .1/; (4.4)

which makes q into a G.1/-equivariant map. Moreover, an automorphism ' in J .1/

can also be interpreted as a bijective morphism ' W bT0V ! bV , where bT0V is the
completion of the tangent space T0V at the origin, which is naturally identified withbV itself. In addition, ' should induce the identity map on tangent spaces of two
formal spaces at the origins (which are both equal to V ). We call such a map ' as a
formal exponential map since it satisfies analogous properties of exponential maps in
classical Riemannian geometry. The above G.1/-action on J .1/ then has a clearer
meaning: think of  2 G.1/ as a change of formal coordinates on bV and the image
of ' under this transformation is ' composed with  W bV ! bV and precomposed
with the inverse of the linearization of  on bT0V . In other words, J .1/ is the set
of all formal exponential maps ' W bT0V ! bV , on which the action of G.1/ comes
from those on bV and bT0V with the latter being induced from the ‘linearlization map’
G.1/ ! GLn.

To avoid confusion, we denote by

FT WD OS..T0V /�/ D OS.V �/

the algebra of functions on bT0V and by mT its maximal ideal, though it is just another
copy of F . Having a formal exponential map ' W bT0V ! bV is the same as having
an isomorphism of algebras

'� W F ! FT (4.5)
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whose induced isomorphism between the associated graded algebras, which are both
equal to S.V �/, is the identity. As before, we want to set the G.1/-action on
FT as the one induced from the linear action of GLn on FT and the projection
G.1/ ! GLn.

Now we give a another interpretation of J .1/ as a G.1/-space. Define Conn to
be the space of all flat torsion-free connections on bV ,

r W TbV ! T �bV ˝ObV TbV D V � ˝ TbV ;
where TbV D OS.V �/ ˝ V and T �bV D OS.V �/ ˝ V � are (sections of) the tangent
bundle and cotangent bundle of bV respectively. Most of time we also write r for the
induced connections on the cotangent bundle and its tensor bundles, e.g.,

r W T �bV ! T �bV ˝ObV T �bV :
We identify T �bV ˝ObV T �bV with OS.V �/˝V �˝V �, of the latter the first and second

V � come from the first and second T �bV of the former respectively. For any complex
vector space V , there is a standard Euclidean connection rE on bV (acting on T �bV /

rE W

Y
n�0

SnV � ˝ V � !
Y
n�1

Sn�1V � ˝ V � ˝ V �;

determined by its components

.rE/n W S
nV � ˝ V � ! Sn�1V � ˝ V � ˝ V �

defined by

.rE/n.v1v2 � � � vn ˝ u/ D

nX
iD1

v1 � � � Ovi � � � vn ˝ vi ˝ u:

Using rE we can rewrite the components of f in the decomposition F DQ
i�0 S

iV � as

f D .rkEf j0/k�0 D .f .0/;rEf j0;r
2
Ef j0; � � � / 2 F ; (4.6)

whererEf D df 2 T
�bV is the usual differential of functions andrkEf D r

k�1
E df

(k � 2) while j0 means restriction of the tensors at the origin.
As in classical differential geometry, for each connectionr 2 Conn on the formal

space bV we can assign an formal exponential map expr W bT0V ! bV , which is
defined to be the unique map in J .1/ such that it pulls back r into the Euclidean
connection rE on the completed tangent space, i.e.,

exp�r r D rE: (4.7)
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To be more explicit, we define expr by defining its pullback map of functions exp�
r
W

F ! FT :

exp�r.f / D .r
if j0/i�0 D .f .0/;rf j0;r

2f j0; � � � / 2
Y
i�0

S i .T0V /
�
D FT

(4.8)
which is analogous to (4.6). Here again rf D df and rif D ri�1df for i � 2.
Note that to make sure the terms in the expression lie in symmetric tensors one has
to resort to the torsion-freeness and flatness of r.

On the other hand, any � 2 J .1/ pushs forward the Euclidean connection rE

on bT0V to a flat torsion-free connection r D ��rE on bV . Thus by the discussion
above we obtain a bijection

exp W Conn
'
�! J .1/: (4.9)

Note that G.1/ naturally acts on Conn from left by pushing forward connections via
automorphisms of bV . Recall that we also have a G.1/ action on J .1/ defined by
(4.4).

Lemma 4.1. The map exp W Conn! J .1/ defined above is G.1/-equivariant.

Proof. One only needs to notice the following commutative diagram of spaces
equipped with connections

.bT0V ; @/ d0'> .bT0V ; @/

.bV ;r/expr
_

'
> .bV ; '�r/

exp'�r_

which corresponds exactly to (4.4).

All the arguments remain valid for V .r/ D Spf F=mr , the r-th order formal
neighborhood of V , where m is the maximal ideal of the local algebra F . One can
also define G.r/, J .r/, etc., and state similar results about them.

4.2. Bundle of formal coordinates and connections. We now introduce the
bundle of formal coordinate systems p W Xcoor ! X of a smooth complex manifold
X . By definition (§4.4., [10]), for x 2 X the fiber Xcoord;x is the space of infinite
jets of biholomorphisms ' W V ' Cn ! X with '.0/ D x. HenceXcoor is a natural
a holomorphic principal G.1/-bundle (or a G.1/-torsor).

We have a canonical isomorphism between sheaves of algebras

Xcoor �X J1X ' Xcoor �F : (4.10)

over Xcoor . Thus Xcoor can also be characterized by the following universal
property (see [3], [14]): given any complex space S , a morphism � W S ! X and an
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isomorphism � W ��J1X ' OS Ő F of sheaves of topological algebras over S , there
is a unique morphism �0 W S ! Xcoor such that � D p ı �0 and � is induced from
the isomorphism (4.10). Note that such � does not necessarily exist for arbitrary
� W S ! X , but always does for those S which are Stein.

One can obtain various canonical jet bundles on X by applying the associated
bundle construction on principal G.1/-bundle Xcoor . For example, F is naturally a
left G.1/-module and the corresponding sheaf of algebras associated to the G.1/-
torsor Xcoor coincides with the jet bundle of holomorphic functions J1X :

Xcoor �G.1/ F ' J1X
To get the natural flat connection on J1X , one could adopt the language of Harish-
Chandra torsors as in [3]. We omit it since this connection will not be used in this
paper. Other jet bundles, such as J1TX , the jet bundle of the tangent bundle, and
J1T �X , the jet bundle of cotangent bundle, can be obtained in a similar way. Again
we refer interested readers to [3].

Another related space which is at the very core of our discussions is the bundle
of formal exponential maps introduced in [10], which we denote by Xexp (some
literatures use the notation Xaff ). Each fiber Xexp;x of Xexp at x 2 X is the space
of jets of holomorphic maps � W TxX ! X such that �.0/ D x, d0� D Id. We have
a map

Xcoor ! Xexp; � 7! � ı .d0�/
�1

which induce a biholomorphism

Xcoor=GLn ' Xexp (4.11)

On the other hand, we can define the bundle of jets of flat torsion-free connection

Xconn D Xcoor �G.1/ Conn

whose fiber at a given point x 2 X consists of all flat torsion-free connections on
the formal neighborhood of x. By combining the G.1/-equivariant bijections (4.2),
(4.9) and (4.11), we get

Xconn ' Xcoor �G.1/ J .1/
' Xcoor �G.1/ G.1/=GLn ' Xexp: (4.12)

In other words, we can naturally identify jet bundle of flat torsion-free connections
with the jet bundle of formal exponential maps. From now on, we will not distinguish
between these two jet bundles and denote both byXconn, though both interpretations
will be adopted in the rest of the paper.

4.3. Tautological exponential map. By definition of Xconn, there is a tautological
flat and torsion-free connection over Xconn,

rtau W �
�J1T �X ! ��J1T �X ˝��J1

X
��J1T �X;
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which is OXcoor
-linear yet satisfies the Leibniz rule with respect to the differentialed .1/

W ��J1X ! ��J1T �X

that is the pullback of
d .1/

W J1X ! J1T �X:
Here d .1/ is the OX -linear differential obtained by applying the Borel construction
with Xcoor and the differential d W ObV ! T �bV on the formal disc.

On the other hand, since Xconn can also be interpreted as the bundle of formal
exponential maps, we have a tautological isomorphism between sheaves of algebras
over Xconn,

Exp� W ��.Xcoor �G.1/ F/! ��.Xcoor �G.1/ FT /; (4.13)

induced from exp� in (4.8) via the Borel construction. The domain of Exp� is
identified with ��J1X or ��O

X
.1/
X�X

, while for the codomain we have

Xcoor �G.1/ FT ' Xcoor �G.1/ GLn �GLn
FT ' Xcoor=J .1/

�GLn
FT

by our definition of the G.1/-action on FT . But the principal GLn-bundle
Xcoor=J

.1/ is exactly the bundle of (0th-order) frames on X , so

Xcoor=J
.1/
�GLn

V ' TX:

Since the GLn action respects the decomposition FT D
Q
i�0 S

iV �, we get

Xcoor=J
.1/
�GLn

FT '
Y
i�0

S iT �X D OS.T �X/;

which is the structure sheaf of X .1/

TX , the formal neighborhood of the zero section of
TX . In short, we have a tautological exponential map

Exp W Xconn �X X .1/

TX ! Xconn �X X
.1/

X�X

or equivalently, an isomorphism of bundles of topological algebras

Exp� W ��O
X

.1/
X�X

! ��O
X

.1/
TX

:

which we might call as the tautological Taylor expansion map. Moreover, the map
induced by Exp� between associated bundle of graded algebras

gr Exp� W �� gr O
X

.1/
X�X

D ��S.T �X/! ��S.T �X/

is the identity map. In virtue of (4.8), Exp� can be written in terms of rtau:

Exp�.f / D .ritauf j0/i�0 D .f .0/;rtauf j0;r
2
tauf j0; � � � / 2 �

� OS.T �X/

(4.14)
where the ’restriction to the origin’ map ��S iJ1T �X ! ��S iT �X comes from
the local restriction map T �bV ! T �0

bV D V � by applying Borel construction with
Xcoor and then pulling back to Xconn via � . Again rtauf means d .1/f and so on.
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Remark 4.2. Note that there is no natural G.1/- or J .1/-action on Xexp D Xcoor .
Yet it is a torsor over the proalgebraic group bundle J .1/.TX/, whose fiber over
x 2 X is the group of jets of biholomorphisms ' W TxX ! TxX with '.0/ D 0,
d0' D Id. Indeed, consider the proalgebraic group Aut0 bT0V of automorphisms of
bT0V whose tangent maps are the identity. Aut0 bT0V can be identified with J .1/ as
sets, yet we endow it with a different G.1/-action which is the conjugation of the
one on bT0V induced from G.1/ ! GLn. Aut0 bT0V acts on J .1/ from right by
precomposition and the action is compatible with the G.1/-actions. Finally, notice
that

J .1/.TX/ ' Xcoor �G.1/ Aut0 bT0V :
Let j.1/.TX/ be the bundle of Lie algebras associated to J .1/.TX/. We have a
natural splitting

j.1/.TX/ D
Y
i�2

Hom.S iTX; TX/ D
Y
i�2

Hom.T �X;S iT �X/: (4.15)

Remark 4.3. All the jet bundles we are discussing here are holomorphic and
although in general they might not admit global holomorphic sections, there always
exist global smooth sections. For example, let us consider the fiber bundle �n W
X
.n/
exp.X/ ! X of ‘n-th order exponential maps’, cf. §4.2., [10]. By definition, for

each x 2 X the fiber X .n/exp;x is the space of n-th order jets of holomorphic maps
� W TxX ! X such that �.0/ D x, d0� D Id. Thus we we have a chain of
projections

X  X .2/exp  X .3/exp  � � � : (4.16)

Each X .nC1/exp is an affine bundle over X .n/exp whose associated vector bundle is

��n Hom.SnC1TX; TX/;

so any section of X .n/exp can be lifted to a smooth section of the next bundle in the
diagram. The inverse limit of the diagram is exactly the bundle � W Xexp ! X . Thus
Xexp admits global smooth sections. Note that in picture of connections, X .2/exp D
X
.2/
conn can be regarded as the bundle of torsion-free connections (see Section 2.2.,

[10]).

4.4. Kapranov’s theorem revisited. We now show how to implement the formal
analysis from previous sections to prove Kapranov’s theorem, in a more general
form. Given any smooth section � of Xconn, it induces a smooth homomorphism
via the tautological Taylor expansion map Exp�:

exp�� W J1X ! OS.T �X/;

between Fréchet bundles of algebras over X . It is holomorphic if and only if �
is holomorphic. Conversely, Xconn satisfies the universal property similar to that
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of Xcoor . Namely, given a holomorphic (resp. smooth) map � W S ! X , any
holomorphic (resp. smooth) isomorphism � W ��J1X ! �� OS.T �X/ of sheaves of
OS -modules, which induces the identity map on the associated graded algebras

grJ1X D S.T �X/ D gr OS.T �X/;

arises from Exp� and a unique holomorphic (resp. smooth) section �0 W S ! Xconn
such that � D � ı �0.

In particular, global smooth sections ofXconn correspond in a 1�1manner to all
possible smooth isomorphisms between J1X and OS.T �X/ which induce the identity
map on the associated graded algebras. As a holomorphic principle J .1/.TX/-
bundle (see Remark 4.2), Xconn carries a flat .0; 1/-connection d , such that for any
given smooth section � of Xconn, its anti-holomorphic differential

!� WD d� 2 A0;1.j.1/.TX// (4.17)

is well defined and satisfies the Maurer–Cartan equation

@!� C
1

2
Œ!� ; !� � D 0: (4.18)

Decompose ! as in (4.15), we get .0; 1/-forms

˛n� 2 A0;1X .Hom.SnTX; TX// D A0;1X .Hom.T �X;SnT �X//:

Moreover, one can extend the map exp�� linearly with respect to the A0;�.X/-actions
to a homomorphism between graded algebras

exp�� W A
0;�
X .J1X /! A0;�X . OS.T �X//: (4.19)

In light of Proposition 2.8, we abuse our notations and still use exp�� for the
composition exp�� ı.I1/

�1, so that we have

exp�� W A�.X
.1/

X�X /! A0;�X . OS.T �X//: (4.20)

However, the map (4.20) does not need to commute with the @-differentials on both
sides. The deficiency is measured exactly by !� , that is,

!� D .@ exp�� / ı .exp�� /
�1; (4.21)

where @ exp�� D Œ@; exp�� �. This suggests that we can correct the usual holomorphic
structure on OS.T �X/ to make exp�� into a map of dgas. Let e! and ęn� be the odd
derivations of the graded algebra A0;�. OS.T �X// induced by ! and ˛n� respectively.
Define a new differential D� D @ � e! D @ �

P
n�2 ęn� , then D2

� D 0, which
is equivalent to then the Maurer–Cartan equation (4.18). We have the following
generalization of Theorem 3.2:
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Proposition 4.4. The Taylor expansion map with respect to any given smooth section
� of Xconn

exp�� W .A�.X
.1/

X�X /; @/! .A0;�. OS.T �X//;D� /
is an isomorphism of dgas.

If we denote the value of � at each point x 2 X as rx , where rx is a flat
torsion-free connection of T �X on the formal neighborhood of x inX , then the map
exp�� regarded as a homomorphism between sheaves of smooth sections of J1X and
OS.T �X/ can be formally expressed as

exp�.Œf �1/jx D .f jx; .@f /jx; .r2xf /jx; � � � ; .r
n
xf /jx; � � � /; (4.22)

where jx means taking the value at x of the formal tensors fields on the formal
neighborhood of x. We can also write down formula for each ˛n� of similar form
as that of Rn in Theorem 3.2. Namely, if we regard � as a section of the affine
bundle X .2/conn via the projection Xconn ! X

.2/
conn, then ˛2 D @� and the values of

˛n .n > 2/ at each point x is given by

˛njx D .r
n�2
x ˛2/jx :

Remark 4.5. If X is Kähler, we can take � to be the holomorphic jets of the
canonical .1; 0/-connection r. The resulting map exp�� from (4.22) is exactly the
pullback map of Kapranov’s exponential map. One should compare (4.22) with
(3.8) which we used to prove Theorem 3.2 and notice that the symbols r in these
two formulae have different meanings! The r in the former means the holomorphic
jets of the actual connection, which are holomorphic on the formal neighborhood
of each point x 2 X , while in the latter the actual connection is used but it is not
holomorphic. In fact, however, (3.8) only cares about the holomorphic jets of the
actual connection r, since it is a .1; 0/-connection! So the two pullback maps exp�

are the same, yet not for the wrong reason that they look like the same.
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[6] D. Calaque, A. Căldăraru, and J. Tu. Pbw for an inclusion of Lie algebras.
arXiv:1010.0985, 2011.

[7] Z. Chen, M. Stiénon, and P. Xu. From Atiyah classes to homotopy Leibniz algebras.
arXiv:1204.1075v2 [math.DG], 2012.

[8] I. M. Gelfand and D. A. Kazhdan. Certain questions of differential geometry and the
computation of the cohomologies of the Lie algebras of vector fields. Soviet Math. Dokl.
12 (1971), 1367–1370. Zbl 0238.58001 MR 287566

[9] I. M. Gelfand, D. A. Kazhdan, and D. B. Fuks. Actions of infinite-dimensional Lie
algebras. Funct. Anal. Appl. 6 (1972), no. 1, 9–13. Zbl 0267.18023 MR 301767

[10] M. Kapranov. Rozansky–Witten invariants via Atiyah classes. Compositio Math. 115
(1999), no. 1, 71–113. Zbl 0993.53026 MR 1671737

[11] M. Kapranov. Free Lie algebroids and the space of paths. Selecta Math. (N.S.) 13 (2007),
no. 2, 277–319. Zbl 1149.14003 MR 2361096

[12] M. Kontsevich. Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66
(2003), no. 3, 157–216. Zbl 1058.53065 MR 2062626

[13] J. Lurie. Derived algebraic geometry. http://www.math.harvard.edu/lurie/.

[14] A. Yekutieli. Deformation quantization in algebraic geometry. Adv. Math. 198 (2005),
no. 1, 383–432. Zbl 1085.53081 MR 2183259

[15] S. Yu. Dolbeault dga of a formal neighborhood. arXiv:1206.5155 [math.AG], 2012.

Received 16 November, 2012

S. Yu, Department of Mathematics, University of Pennsylvania, PA 19104-6395, USA
E-mail: shilinyu@math.upenn.edu

https://zbmath.org/?q=an:06329756
http://www.ams.org/mathscinet-getitem?mr=MR3217749
http://arxiv.org/abs/1010.0985
http://arxiv.org/abs/1204.1075v2
https://zbmath.org/?q=an:0238.58001
http://www.ams.org/mathscinet-getitem?mr=MR0287566
https://zbmath.org/?q=an:0267.18023
http://www.ams.org/mathscinet-getitem?mr=MR0301767
https://zbmath.org/?q=an:0993.53026
http://www.ams.org/mathscinet-getitem?mr=MR1671737
https://zbmath.org/?q=an:1149.14003
http://www.ams.org/mathscinet-getitem?mr=MR2361096
https://zbmath.org/?q=an:1058.53065
http://www.ams.org/mathscinet-getitem?mr=MR2062626
http://www.math.harvard.edu/ lurie/
https://zbmath.org/?q=an:1085.53081
http://www.ams.org/mathscinet-getitem?mr=MR2183259
http://arxiv.org/abs/1206.5155
mailto:shilinyu@math.upenn.edu

	Introduction
	Dolbeault dga of a formal neighborhood
	Definitions and notations
	Diagonal embeddings and jet bundles

	Kapranov's theorem revisited
	Conventions on the symmetric algebra
	Kapranov's theorem and holomorphic exponential map
	An application

	Formal geometry
	Differential geometry of formal discs
	Bundle of formal coordinates and connections
	Tautological exponential map
	Kapranov's theorem revisited


