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Bivariant cyclic cohomology and Connes’ bilinear pairings in
noncommutative motives
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Abstract. In this article we further the study of noncommutative motives. We prove that the
bivariant cohomology and the bivariant Chern character of any additive invariant E become
representable in the category of noncommutative motives. This applies in particular to bivariant
cyclic cohomology and its variants. WhenE is moreover symmetric monoidal we prove that the
associated Chern character is multiplicative and characterize it by a precise universal property.
In the particular case of bivariant cyclic cohomology the associated Chern character becomes
the universal lift of the Dennis trace map. Then, we prove that under the above representability
result, the composition operation in the category of noncommutative motives identifies with
Connes’ bilinear pairings. As an application, we obtain a simple model, given by Karoubi’s
infinite matrices, for the (de)suspension of these bivariant cohomology theories.
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1. Introduction and statement of results

1.1. Noncommutative motives. A differential graded (=dg) category, over a
commutative base ring k, is a category enriched over complexes of k-modules
(morphisms sets are complexes) in such a way that composition fulfills the Leibniz
rule : d.f ı g/ D d.f / ı g C .�1/deg.f /f ı d.g/. Dg categories enhance
and solve many of the technical problems inherent to triangulated categories; see
Keller’s ICM address [25]. In noncommutative algebraic geometry in the sense
of Bondal, Drinfeld, Kaledin, Kapranov, Kontsevich, Van den Bergh, and others,
dg categories are considered as dg-enhancements of bounded derived categories of
(quasi-)coherent sheaves on a hypothetic noncommutative space; see [4, 5, 11, 12,
21, 27, 28, 29].
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All the classical invariants such as cyclic homology (and its variants), algebraic
K-theory, and even topological cyclic homology, extend naturally from k-algebras
to dg categories. In order to study all these invariants simultaneously the author
introduced in [36, §15] the notion of additive invariant. This notion makes use of
the language of Grothendieck derivators (see §2.4), a formalism which allows us to
state and prove precise universal properties. LetE W HO.dgcat/! D be a morphism
of derivators, from the derivator associated to the derived Morita model structure on
dg categories (see §2.2), to a triangulated derivator. We say that E is an additive
invariant if it preserves filtered homotopy colimits and sends split exact sequences
of dg categories (see [36, §13]) to direct sums in the base category D.e/

0 // A // Buu
// Cuu

// 0 7! E.A/˚E.C/ ' E.B/ :
(1.1)

Thanks to the work of Keller, Thomason–Trobaugh, Blumberg–Mandell, and others,
(see [3, 26, 41, 42]) all the mentioned invariants give rise to additive invariants. In
[36, §15] the universal additive invariant U W HO.dgcat/ ! M was constructed.
Given any triangulated derivator D we have an induced equivalence of categories

U � W HomŠ.M;D/
�
! Homadd.HO.dgcat/;D/ ; (1.2)

where the left-hand side denotes the category of homotopy colimit preserving
morphisms of derivators, and the right-hand side denotes the category of additive
invariants. Because of this universality property, which is reminiscent of motives,
M is called the additive motivator, and its base triangulated category M.e/ the
category of noncommutative motives. By construction, the additive motivator admits
a stable Quillen model M (see [34]) and the universal additive invariant is induced
by a functor U W dgcat ! M. The same holds for all the above additive
invariants. Among many important applications, the category of noncommutative
motives has allowed a streamlined construction of the Chern characters, a unified
and conceptual proof of the fundamental theorem, and even a description of
the fundamental isomorphism conjecture in terms of the classical Farrell–Jones
isomorphism conjecture; see [2, 38, 40].

A fundamental problem in the theory of noncommutative motives is the compu-
tation of morphisms in M.e/ and the description of its composition operation. In
[36] an important step towards the solution of this problem was taken: let A be a
finite dg cell (the dg categorical analogue of a finite CW-complex); see §2.3. Then,
for any dg category B we have natural isomorphisms

HomM.e/.U.A/; U.B/Œ�n�/ ' Knrep.A;B/ n 2 Z ; (1.3)

where K denotes algebraic K-theory and rep.�;�/ the internal Hom-functor in
the homotopy category of dg categories (see §2.2). The composition operation
is induced by the tensor product of bimodules. In particular, when A is the dg
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category k associated to the base ring k (with one object and k as the dg algebra of
endomorphisms) we obtain

HomM.e/.U.k/; U.B/Œ�n�/ ' Kn.B/ n 2 Z : (1.4)

At this point it is natural to ask the following motivational questions :

Question A: Which (further) invariants of dg categories can be expressed in terms
of morphism sets in the category of noncommutative motives ?

Question B: How to explicitly describe the composition operation in these cases ?

Roughly speaking, our answer is “Bivariant cohomology, with the composition
operation given by a bilinear pairing with algebraic K-theory”.

1.2. Bivariant (cyclic) cohomology. Let N be a Quillen model category and E W
dgcat! N a functor. We say that E is an additive functor if it sends derived Morita
equivalences (see §2.2) to weak equivalences, preserves filtered homotopy colimits,
and sends split exact sequences of dg categories to direct sums in the homotopy
category Ho.N /. Such a functor gives rise to an additive invariantE W HO.dgcat/!
HO.N / and hence by (1.2) to a homotopy colimit preserving morphism Eadd WM!
HO.N / such that E D Eadd ı U . As a consequence, one obtains a well-defined
triangulated functor

Eadd WM.e/ �! Ho.N / : (1.5)

The bivariant cohomology E�.�;�/ associated to E is by definition the bifunctor

dgcatop
� dgcat �! GrZ.Ab/ .B; C/ 7! HomHo.N /.E.B/Œ���; E.C//

with values in Z-graded abelian groups. For example the bivariant cohomology
U�.�;�/ associated to U W dgcat ! M agrees with K��rep.�;�/ when the first
entry is a finite dg cell. The triangulated functor (1.5) gives then rise to a natural
transformation between bifunctors

U�.�;�/) E�.�;�/ (1.6)

which we call the bivariant Chern character associated to E. Our answer to the
above Question A is the following:

Theorem 1.7. Let E be an additive functor as above. Then:

(i) the associated triangulated functor (1.5) admits a right adjoint functor RE ;

(ii) the following isomorphism

HomM.e/.U.B/Œ���; T E .U.C/// ' E�.B; C/ (1.8)

holds for any two dg categories B and C, with T E WD RE ıEadd;
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(iii) under the isomorphism (1.8), the bivariant Chern character (1.6) is represented
by the unit �E W Id) T E of the adjunction .Eadd; R

E /.

Intuitively speaking, Theorem 1.7 shows us that the bivariant cohomology, as
well as the bivariant Chern character, associated to an additive functor can be
represented inside the triangulated category of noncommutative motives.

The tensor product extends naturally from k-algebras to dg categories, giving rise
to a (derived) symmetric monoidal structure � ˝L � on HO.dgcat/ with ˝-unit k;
see §2.2. In [7] this symmetric monoidal structure was extended to M in a universal
way, i.e. U becomes symmetric monoidal and (1.2) admits a˝-sharpening

U � W Hom˝
Š
.M;D/

�
�! Hom˝add.HO.dgcat/;D/ : (1.9)

Given a symmetric monoidal stable Quillen model category .N ;˝; 1/ and a
symmetric monoidal additive functor E, the functor (1.5) becomes then symmetric
monoidal and so (1.6) restricts to a natural transformation between functors

chE W K0.�/ ' U0.k;�/) E0.k;�/ WD HomHo.N /.1; E.�// (1.10)

which we call the Chern character associated to E. Note that the symmetric
monoidal structures of M.e/ and Ho.N / give rise to bilinear pairings

K0.A/˝Z K0.B/! K0.A˝ B/ E0.k;A/˝Z E
0.k;B/! E0.k;A˝ B/ :

(1.11)
In particular, when A D B D A, with A a (dg) commutative k-algebra, the abelian
groups K0.A/ and E0.k; A/ become endowed with a ring structure.

Theorem 1.12. Let E be a symmetric monoidal additive functor as above. Then:

(i) the associated Chern character (1.10) is multiplicative;

(ii) we have a natural isomorphism of abelian groups

Nat.K0.�/; E0.k;�//
�
�! HomM.e/.U.k/; T

E .U.k/// ; (1.13)

where Nat.�;�/ stands for the abelian group of all natural transformations.
Moreover, under the isomorphism (1.13) the Chern character (1.10) corre-
sponds to the evaluation of the unit �E W Id) T E at U.k/.

Informally speaking, item (i) shows us that the multiplicativity of the Chern
character is a consequence of the fact that E is symmetric monoidal. Item (ii)
characterizes the Chern character among all possible natural transformations as the
evaluation of the unit of the adjunction at the˝-unit of M.e/.

Jones and Kassel, by drawing inspiration from Kasparov’s KK-theory [23],
introduced in [20] the bivariant cyclic cohomology theory of unital associative
k-algebras. One of the fundamental properties of this bivariant theory is the
fact that it simultaneously extends both negative cyclic homology as well as
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cyclic cohomology. Bivariant cyclic cohomology HC �.�;�/, as well as bivariant
Hochschild cohomology HH�.�;�/ [30, §5.5], extend naturally from k-algebras
to dg categories. They are the bivariant cohomologies associated to the symmetric
monoidal additive functors

HH W dgcat �! C.k/ C W dgcat �! C.ƒ/ ; (1.14)

where C denotes the mixed complex construction and C.ƒ/ the category of mixed
complexes; see [7, Examples 7.9 and 7.10]. By Theorem 1.7 we obtain then
triangulated functors THH ; T C WM.e/!M.e/ and natural isomorphisms

HomM.e/.U.B/Œ���; THH .U.C/// ' HH�.B; C/ (1.15)

HomM.e/.U.B/Œ���; T C .U.C/// ' HC �.B; C/ : (1.16)

Recall from [30, §5.5.1] and [20] that HH�.B; k/ ' HH�.B/, HC �.B; k/ '
HC �.B/, HH�.k; C/ ' HH��.C/, and HC �.k; C/ ' HC���.C/. Therefore, if in
(1.15)–(1.16) we replace C by k we observe that the cohomology theories HH�.�/
andHC �.�/ become representable in M.e/ by THH .U.k// and T C .U.k//; consult
the proof of Theorem 1.7(iii) for the construction of these noncommutative motives.
On the other hand, if we replace B by k we obtain Chern characters chHH W

K0.�/ ) HH0.�/ and chC W K0.�/ ) HC�0 .�/, which by Theorem 1.12(ii)
correspond to the morphisms �HH .U.k// W U.k/ ! THH .U.k// and �C .U.k// W
U.k/! T C .U.k//. The natural map from bivariant cyclic cohomology to bivariant
cyclic homology is induced by the forgetful functor ˆ W C.ƒ/ ! C.k/. Since
ˆıC D HH we have an induced natural transformationˆ W T C ) THH verifying
the equality ˆ ı �C D �HH .

Theorem 1.17. (i) The natural transformations chHH and chC agree with the
Dennis trace map and the Chern character ch� (see [30, §8]).

(ii) The morphism �C .U.k// can be characterized as the unique morphism from
U.k/ to T C .U.k// making the following diagram commute

T C .U.k//

ˆ.U.k//

��

U.k/
�HH .U.k//

//

�C .U.k//

66

THH .U.k// :

(1.18)

Note that by combining item (i) of Theorems 1.17 and 1.12 we recover the
multiplicativity of the Dennis trace map and of the Chern character ch�. On
the other hand, by combining item (ii) of these theorems we obtain a conceptual
characterization of the Chern character ch� as the universal lift of the Dennis trace
map; found originally by Goodwillie [14].
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In what concerns bivariant periodic cyclic cohomology there exist two definitions
in the literature. On one hand, Jones and Kassel [20] defined HP �.�;�/ by
inverting the S -operation on HC �.�;�/. On the other hand, Cuntz and Quillen [9,
10] considered towers of supercomplexes (calculating periodic cyclic homology)
and appropriate mapping supercomplexes between them. Cuntz–Quillen’s approach
satisfies excision, while Kassel–Jones’ approach does not. Since the construction
of the towers of supercomplexes (see [9, §2]) is not well-behaved with respect to
filtered (homotopy) colimits, Cuntz–Quillen’s approach does not fit in the framework
of Theorem 1.7. In contrast, the following result holds:
Theorem 1.19. There exists a triangulated functor THP W M.e/! M.e/ such that
for any two dg categories B and C, with B a finite dg cell, we have

HomM.e/.U.B/Œ���; THP .U.C/// ' HP �.B; C/ : (1.20)

Connes’ bilinear pairings. In his foundational work on noncommutative geometry,
in the early eighties, Connes [8] discovered bilinear pairings

h�;�i W K0.B/ �HC 2j .B/ �! k j � 0 (1.21)

relating the Grothendieck group with the even part of cyclic cohomology. These
bilinear pairings, which were the main motivation behind the development of a
cyclic theory, consist roughly on the evaluation of a cyclic cochain at an idempotent
representing a finitely generated projective module over B.

Now, the above isomorphisms (1.3)–(1.4) and (1.8) show us that both algebraic
K-theory as well as the different bivariant cohomologies can be expressed in terms
of morphism sets in the category of noncommutative motives. Therefore, given dg
categories A, B and C, with A a finite dg cell, the composition operation in the
category M.e/, combined with these isomorphisms, furnish us bilinear pairings

Knrep.A;B/ �Em.B; C/ �! Em�n.A; C/ : (1.22)

In particular, using (1.15)–(1.16) and (1.20), we obtain:

Knrep.A;B/ �HHm.B; C/ �! HHm�n.A; C/ (1.23)

Knrep.A;B/ �HCm.B; C/ �! HCm�n.A; C/ (1.24)

Knrep.A;B/ �HPm.B; C/ �! HPm�n.A; C/ (1.25)

Our answer to Question B is the above pairing (1.22) and the following result:
Theorem 1.26. The bilinear pairing (1.24), with n D 0, A D C D k and m D 2j ,
corresponds to Connes’ original bilinear pairing (1.21).

Theorem 1.26 supports the Grothendieckian belief that all classical constructions
in (noncommutative) geometry should become conceptually clear in the correct
category of (noncommutative) motives. The above pairings (1.23)–(1.25), which
correspond to the composition operation in the category of noncommutative motives,
can therefore be considered as an extension of Connes’ foundational work.
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Localizing invariants. By replacing (1.1) with the condition that exact sequences
of dg categories are mapped to distinguished triangles in the base category D.e/

0! A! B! C ! 0 7! E.A/! E.B/! E.C/! E.A/Œ1�

one obtains the notion of localizing invariant; see [36, §10]. As in the additive case,
there exists also a universal localizing invariant Ul W HO.dgcat/ ! Ml inducing
equivalences analogous to (1.2) and (1.9); see [7]. Isomorphism (1.3) holds also but
in this case K-theory is replaced by nonconnective K-theory and A is assumed to
be saturated in the sense of Kontsevich [27, 28], i.e. its complexes of morphisms
are perfect and A is perfect as a bimodule over itself; see [6][7, Thm. 9.2]. In what
concerns Theorems 1.7 and 1.12 the same results hold. The proof that the functor
(1.5) admits a right adjoint functor RE is different and so we have incorporated it in
the proof of Theorem 1.7(i). The functors (1.14) are not only additive but moreover
localizing and so isomorphisms (1.15)–(1.16) hold also. Finally, Theorems 1.17,
1.19 and 1.26 and isomorphisms (1.22)–(1.25) are similar, with B assumed to be a
saturated dg category in (1.20) and (1.22)–(1.25).

2. Preliminaries

Throughout the article k will denote a commutative base ring with unit 1. Given
a (dg) k-algebra A, we will denote by A the associated dg category with a single
object andA as the (dg) k-algebra of endomorphisms. Adjunctions will be displayed
vertically with the left (resp. right) adjoint on the left- (resp. right-) hand-side.

2.1. Quillen model categories. We will use freely the language of Quillen model
categories; see [16, 17, 34]. Given a model category N , we will denote by Ho.N /
its homotopy category and by MapN .�;�/ its homotopy function complex; see [16,
Def. 17.4.1]. Recall from [7, Def. 4.2] that an object X 2 N is called homotopically
finitely presented if for any filtered system of objects fYj gj2J , the induced map

hocolimj2J MapN .X; Yj /! MapN .X; hocolimj2J Yj /

is a weak equivalence of pointed simplicial sets.

2.2. Dg categories. Let C.k/ be the category of (unbounded) complexes of k-
modules. A differential graded (=dg) category is a category enriched over C.k/
and a dg functor is a functor enriched over C.k/; consult Keller’s survey [25]. The
category of dg categories will be denoted by dgcat.

Given dg categories A and B their tensor product A˝B is defined as follows: the
set of objects is the cartesian product and given objects .x; z/ and .y; w/ in A˝ B,
we set .A˝ B/..x; z/; .y; w// WD A.x; y/˝ B.z; w/.
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A dg functor F W A ! B is a called a derived Morita equivalence if it induces
an equivalence D.A/ �! D.B/ between the associated derived categories. Thanks
to [37, Thm. 5.3] the category dgcat carries a (cofibrantly generated) Quillen model
structure [34] whose weak equivalences are the derived Morita equivalences. We
denote by Hmo the homotopy category hence obtained.

The tensor product of dg categories can be derived into a bifunctor � ˝L � on
Hmo. Moreover, this bifunctor admits an internal Hom-functor rep.�;�/. Given dg
categories A and B, rep.A;B/ is the full triangulated subcategory of D.Aop ˝L B/
spanned by the A-B-bimodules X such that for every object x in A the right B-
moduleX.�; x/ is a compact object (see [33, Def. 4.2.7]) in the triangulated category
D.B/; see [7, §2.4]. Let C.A;B/ be the category of A-B-bimodules and R.A;B/
the subcategory which has the same objects as rep.A;B/ and whose morphisms
are the quasi-isomorphisms. As explained in [25, §4], there is a canonical weak
equivalence of pointed simplicial sets between Mapdgcat.A;B/ and the nerve of
R.A;B/.

2.3. Finite dg cells. For n 2 Z, let Sn be the complex kŒn� (with k concentrated in
degree n) and let Dn be the mapping cone on the identity of Sn�1. We denote
by S.n/ the dg category with two objects 1 and 2 such that S.n/.1; 1/ D k,
S.n/.2; 2/ D k; S.n/.2; 1/ D 0, S.n/.1; 2/ D Sn and composition given by
multiplication. We denote by D.n/ the dg category with two objects 3 and 4 such
that D.n/.3; 3/ D k ; D.n/.4; 4/ D k ; D.n/.4; 3/ D 0 ; D.n/.3; 4/ D Dn and
with composition given by multiplication. Finally, let �.n/ W S.n�1/! D.n/ be the
dg functor that sends 1 to 3, 2 to 4 and Sn�1 intoDn via the map incl W Sn�1 ! Dn

which is the identity on k in degree n � 1 :

S.n � 1/
�.n/

// D.n/

1

k

��

Sn�1

��

� // 3

k

��

Dn

��

incl //

2

k

DD
� // 4

k

DD

where

Sn�1
incl // Dn

0 //

��

0

��

0 //

��

k
id��

k
id //

��

k

��

.degree n�1/

0 // 0

We denote by I the set consisting of the dg functors f�.n/gn2Z and the dg functor
; ! k (where the empty dg category ; is the initial one). A dg category A is called
a finite dg cell if it is obtained from ; by a finite number of pushouts along the dg
functors of the set I . The (small) category of finite dg cells will be denoted by cells.
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2.4. Grothendieck derivators. Derivators allow us to state and prove precise
universal properties and to dispense with many of the technical problems one faces
in using Quillen model categories; consult Grothendieck’s original manuscript [15].
Given a Quillen model category N , we will denote by HO.N / its associated
derivator. In order to simplify the exposition, a morphism of derivators and its value
at the base category e (which has one object and one morphism) will be denoted by
the same symbol. It will be clear from the context to which situation we are referring.

3. Proof of Theorem 1.7

Proof. We start with item (i). Recall from [36, Def. 15.1] that the stable Quillen
model M of the additive motivator M (denoted by Madd

dg in loc. cit.) is constructed
in four steps:

(i) First, we restrict ourselves to the category cells � dgcat of finite dg cells.

(ii) Then, we consider the category bcells of presheaves of pointed simplicial sets on
cells. This category carries a projective model structure and comes equipped
with the Yoneda functor

h.�/ W dgcat �! bcells A 7! N:R.�;A/jcells ;

where N:R agrees with the homotopy function complex of dgcat; see §2.2.

(iii) We then perform a left Bousfield localization Lbcells of bcells so that the functor
h.�/ sends derived Morita equivalences to weak equivalences, preserves
filtered (homotopy) colimits, and sends split exact sequences of dg categories
to homotopy fiber sequences.

(iv) Finally, we take the associated category of spectra Sp.Lbcells/ in the sense
of Hovey [18]. The associated homotopy category Ho.Sp.Lbcells// is the
triangulated category M.e/ of noncommutative motives.

The functor U W dgcat!M is given by the composition

U W dgcat
h.�/
�! bcells

L.�/
�! Lbcells

†1.�/
�! Sp.Lbcells/ :

Given a finite dg cell B and any object F of bcells, i.e. any presheaf of pointed
simplicial sets on cells, we have the identification Mapccells.h.B/; F / ' F.B/ of
pointed simplicial sets. Since (homotopy) colimits in bcells are computed objectwise
we then conclude that the set fh.B/ jB 2 cellsg satisfies the following two
conditions:

(a) If Mapccells.h.B/; F / ' � for every finite dg cell B, then F is the trivial presheaf.

(b) The objects h.B/, with B a finite dg cell, are homotopy finitely presented in
bcells; see §2.1.
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The left Bousfield localization in step (iii) is performed with respect to a set
of morphisms between homotopically finitely presented objects. Hence, by [36,
Lemma 7.1] we conclude that the set f.Lıh/.B/ jB 2 cellsg of objects inLbcells also
satisfies the above conditions (a)–(b). Lemma 8.2 of [36] allows us then to conclude
that the set of noncommutative motives

fU.B/Œ�m� jB 2 cells; m 2 Zg (3.1)

is a set of compact generators (in the sense of [33, §8]) for the triangulated category
M.e/. Hence, M.e/ is compactly generated in the sense of Neeman and so by [33,
Thm. 8.3.3] it satisfies the representability theorem. The triangulated functor (1.5)
is obtained via (1.2) and so it preserves arbitrary sums. Therefore, by applying [33,
Thm. 8.4.4] to the functor (1.5) we obtain the searched right adjoint functor RE .

Let us now prove the analogous result in the localizing case. Recall from [36,
Def. 10.2] that the Quillen model Ml of the localizing motivator Ml (denoted by
Mloc

dg in loc. cit.) is constructed in five steps:

(i), (ii) These two steps are similar.

(iii) We perform a left Bousfield localization L1bcells of bcells so that the functor
h.�/ preserves filtered (homotopy) colimits and sends derived Morita equiva-
lences to weak equivalences.

(iv) Then, we take the associated category of spectra Sp.L1bcells/.
(v) Finally, we perform a left Bousfield localizationL2.Sp.L1bcells// so that exact

sequences of dg categories are mapped to distinguished triangles.

The functor Ul W dgcat!Ml is given by the composition

Ul W dgcat
h.�/
�! bcells

L1.�/
�! L1bcells

†1.�/
�! Sp.L1bcells/

L2.�/
�! L2.Sp.L1bcells// :

The left Bousfield localization in step (v) is performed with respect to a set of
morphisms between objects which are not homotopically finitely presented. As a
consequence the objectsUl.B/Œ�m�, with B a finite dg cell, generate the triangulated
category Ml.e/ but are not compact. Hence, the argument used in the additive case
does not apply.

Recall from [13, §2][35, §3] that a Quillen model category N is called
combinatorial (in the sense of Smith) if it is cofibrantly generated and the underlying
category is locally presentable. On one hand, the notion of a cofibrantly generated
Quillen model is standard and can be found in [17, Def. 2.1.17]. on the other hand,
the notion of local presentability can be found in [1, §1.B][13, Def. 2.2]. Concretely,
it means that N is co-complete and that there exists a regular cardinal � and a set of
objects O in N such that:

(LP1) every object in O is small with respect to �-filtered colimits;

(LP2) every object in N can be expressed as a �-filtered colimit of elements of O.
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Standard examples of locally presented categories include simplicial sets, spectra,
and categories of presheaves on them (over a small category); see [35, Ex-
ample 3.6][32, A.2.8.2]. By construction the Quillen model category Ml D

L2Sp.L1bcells/ is cofibrantly generated. Since the underlying category identifies
with the category of presheaves of spectra on cells, we conclude that Ml is in fact
combinatorial. By [35, Prop. 6.10] the associated homotopy category Ml.e/ is then
well-generated in the sense of Neeman. Hence, by [33, Prop. 8.4.2] it satisfies the
representability theorem. Therefore, by applying [33, Thm. 8.4.4] to the functor (1.5)
(which preserves arbitrary sums) we obtain then the searched right adjoint functor
RE .

Item (ii) follows from the equality E D Eadd ı U and from the following
adjunction isomorphism

HomM.e/.U.B/Œ���; T E .U.C/// ' HomHo.N /.E.B/Œ���; E.C// D E�.B; C/ :

In what concerns item (iii), the adjunction .Eadd; R
E / combined with the equality

E D Eadd ı U show us that the Chern character U�.B; C/ ! E�.B; C/ identifies
(under (1.8)) with the morphism

HomM.e/.U.B/Œ���; U.C// �! HomM.e/.U.B/Œ���; T E .U.C///

induced by �E .U.C//. Hence, we conclude that the bivariant that the bivariant Chern
character (1.10) is represented by the unit �E W Id) T E of the adjunction.

? ? ?

Given a dg category C, let us now describe (following [33, §8.2]) the noncommuta-
tive motive T E .U.C// as well as the unit mapU.C/! T E .U.C//. The construction
of T E .U.C// is inductive.
Starting step: let U0 be the indexing set

S
.B;m/

Em.B; C/, with B 2 cells and m 2 Z.

Note that an element of U0 consists of a triple .B; m; ˛/, with ˛ 2 Em.B; C/. Under
this notation, let T E0 .U.C// be the noncommutative motive

L
.B;m;˛/

U.B/Œ�m�. Note

that we have a canonical map U.C/ ! T E0 .U.C// corresponding to the factor with
B D C, n D 0 and ˛ D id. Now, consider the composed functor

‚ WM.e/
Eadd
�! Ho.N /

HomHo.N /.�;E.C//
�! Ab :

SinceEadd preserves arbitrary sums,‚ sends sums to products. Hence,‚.T E0 .U.C///
identifies with

Q
.B;m;˛/

Em.B; C/. As a consequence, ‚.T E0 .U.C/// carries a

canonical element (given by ˛ in the factor corresponding to .B; m; ˛/) and so
we obtain a well-defined natural transformation HomM.e/.�; T

E
0 .U.C/// ) ‚.
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Inductive step: suppose now that we have constructed a noncommutative motive
T Ei .U.C// and a natural transformation

HomM.e/.�; T
E
i .U.C///) ‚ : (3.2)

Let

UiC1 WD
[
.B;m/

KerfHomM.e/.U.B/Œ�m�; T Ei .U.C///� Em.B; C/g :

An element of UiC1 consists of a triple .B; m; f /, where f is a map form U.B/Œ�m�
to T Ei .U.C//. Let KiC1 be the noncommutative motive

L
.B;m;f /

U.B/Œ�m� and

KiC1 ! T Ei .U.C// the map which is f on the factor corresponding to .B; m; f /.
This data allows us to construct the distinguished triangle

KiC1 �! T Ei .U.C// �! T EiC1.U.C// �! KiC1Œ1� :

Since ‚ sends triangles to long exact sequences the natural transformation (3.2)
can be extended to a natural transformation HomM.e/.�; T

E
iC1.U.C/// ) ‚. As a

consequence, we obtain a well-defined sequence of maps

U.C/ �! T E0 .U.C// �! � � � �! T Ei .U.C// �! T EiC1.U.C// �! � � � : (3.3)

The searched noncommutative motive T E .U.C// is then the homotopy colimit of
(3.3) (see [33, Def. 1.6.4]) and the unit map U.C/ ! T E .U.C// is the (transfinite)
composition (3.3).

4. Proof of Theorem 1.12

Proof. In what concerns item (i), one needs to show that the diagram

K0.A/˝Z K0.B/ //

chE˝chE

��

K0.A˝ B/

chE

��

E0.k;A/˝Z E
0.k;B/ // E0.k;A˝ B/

(4.1)

is commutative, where the horizontal maps are the bilinear pairings (1.11). Recall
that we have the following commutative diagram

dgcat
U ��

E // N // Ho.N /

M
��

M.e/

Eadd

99

:
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Since by hypothesis E is symmetric monoidal, one concludes from the equivalence
(1.9) that Eadd is also symmetric monoidal. Therefore, for any two dg categories A
and B the following diagram commutes (we have omitted the subscripts M.e/ and
Ho.N / in order to simplify the exposition)

Hom.U.k/; U.A//˝Z Hom.U.k/; U.B// //

Eadd˝Eadd
��

Hom.U.k/; U.A/˝ U.B//
Eadd
��

Hom.1; E.A//˝Z Hom.1; E.B// // Hom.1; E.A/˝E.B// ;
(4.2)

where the horizontal maps are induced by the symmetric monoidal structures of
M.e/ and Ho.N /. Since the functors U andE are symmetric monoidal we conclude
that (4.1) agrees with (4.2) and so the proof is finished.

Let us now prove item (ii). Since by hypothesis E is symmetric monoidal, k is
mapped to 1 and so the functor E0.k;�/ is given by the composition

dgcat
E
�! N �! Ho.N /

HomHo.N /.1;�/
�! Ab :

Hence, since E is additive, E0.k;�/ sends derived Morita equivalences to isomor-
phisms and split exact sequences of dg categories to direct sums of abelian groups.
On the other hand, by (1.4) the functor K0.�/ is given by the composition

dgcat
U
�!M �!M.e/

HomM.e/.U.k/;�/
�! Ab :

Therefore, since U is an additive functor, K0.�/ sends also derived Morita
equivalence to isomorphisms and split exact sequences of dg categories to direct
sums of abelian groups. By [38, Prop. 4.1] we obtain then the natural isomorphism

Nat.K0.�/; E0.k;�//
�
�! E0.k; k/ � 7! �.k/.Œk�/ ; (4.3)

where Œk� stands for the class of k (as a module over itself) in the Grothendieck group
K0.k/ D K0.k/. The searched isomorphism (1.13) is then obtained by combining
(4.3) with the adjunction isomorphism E0.k; k/ ' HomM.e/.U.k/; T

E .U.k///.
Recall that the evaluation of the Chern character (1.10) at k is given by the
homomorphism

K0.k/ ' HomM.e/.U.k/; U.k// �! HomHo.N /.E.k/; E.k//

induced by the functor (1.5). Under the isomorphismK0.k/ ' HomM.e/.U.k/; U.k//

the class Œk� of k corresponds to the identity morphism idU.k/ 2 HomM.e/.U.k/; U.k//.
As a consequence, the image of the Chern character (1.10) under (4.3) is the
identity morphism idE.k/ 2 HomHo.N /.E.k/; E.k// D E0.k; k/. By the adjunc-
tion .Eadd; R

E /, this identity morphism idE.k/ corresponds to the unit morphism
�E .U.k// W U.k/! T E .U.k// and so the proof is finished.
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5. Proof of Theorem 1.17

Proof. We start with item (i). By applying the above natural isomorphism (4.3) to
E D HH and E D C we obtain

Nat.K0.�/;HH0.�//
�
! HH 0.k; k/ Nat.K0.�/;HC�0 .�//

�
! HC 0.k; k/ :

These isomorphisms combined with

HH 0.k; k/ ' HH0.k/
 0
! k HC 0.k; k/ ' HC�0 .k/

 �

! k ; (5.1)

where the isomorphisms  0 and  � are described in [38, §3], give rise to

Nat.K0.�/;HH0.�// ' k Nat.K0.�/;HC�0 .�// ' k : (5.2)

Since the identity morphisms idHH.k/ 2 HomD.k/.HH.k/;HH.k// and idHC.k/ 2
HomD.ƒ/.HC.k/;HC.k// are mapped under (5.1) to 1 2 k, we conclude that the
Chern character chHH and chC are mapped under (5.2) to 1 2 k. By construction,
the isomorphisms (5.2) agree with the isomorphism (1.4)–(1.5) of [38, Thm. 1.3]. In
loc. cit. the Dennis trace map and the Chern character ch� were characterized as the
unique natural transformations which are mapped to 1 2 k under (5.2). Therefore,
we conclude that chHH and with chC agree respectively with the Dennis trace map
and the Chern character ch�.

Let us now prove item (ii). Thanks to the adjunction .Cadd; R
C / we have the

identification HomM.e/.U.k/; T
C .U.k/// ' HomD.ƒ/.C.k/; C.k// with �C .U.k//

corresponding to idC.k/. Similarly, the adjunction .HHadd; R
HH / gives rise to

the identification HomM.e/.U.k/; T
HH .U.k/// ' HomD.k/.HH.k/;HH.k// with

�HH .U.k// corresponding to idHH.k/. Moreover, the commutativity of the diagram
(1.18) is equivalent to the fact that the morphism

HomD.ƒ/.C.k/; C.k// �! HomD.k/.HH.k/;HH.k// ; (5.3)

induced by the forgetful functorˆ W D.ƒ/! D.k/, sends idC.k/ to idHH.k/. Recall
from the proof of item (i) that, under the isomorphisms

HomD.ƒ/.C.k/; C.k// ' k HomD.k/.HH.k/;HH.k// ' k ;

idC.k/ and idHH.k/ correspond to the unit 1 2 k. As a consequence we
conclude that (5.3) is an isomorphism. Therefore, there exists a unique element
in HomD.ƒ/.C.k/; C.k// which is mapped by (5.3) to idHH.k/ 2 HomD.k/.HH.k/;

HH.k//. Equivalently, there exists a unique morphism � from U.k/ to T C .U.k//
making the following diagram commutative

T C .U.k//

ˆ.U.k//

��

U.k/

�

66

�HH .U.k//
// THH .U.k// :
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Since ˆ ı �C D �HH this morphism � is necessarily the evaluation �C .U.k// of the
unit at U.k/ and so the proof is finished.

6. Proof of Theorem 1.19

Proof. As explained in [20, §1], we have a periodicity map S in Ext2ƒ.M;M/ '

HomD.ƒ/.M;MŒ2�/ for every M in D.ƒ/. As a consequence we obtain an induced
natural transformation of triangulated functors

S W T C D .RC ı Cadd/) .RC ı .�Œ2�/ ı Cadd/ DW T
C Œ2�

and hence the following diagram of natural transformations of triangulated functors

T C
S
) T C Œ2�

S
) � � �

S
) T C Œ2r�

S
) � � � : (6.1)

Let us denote by THP the homotopy colimit (see [33, Def. 1.6.4]) of (6.1). Given
dg categories B and C, with B 2 cells, the following isomorphisms hold :

HomM.e/.U.B/Œ���;T P .U.C///
D HomM.e/.U.B/Œ���; hocolimr T

C Œ2r�.U.C///
' hocolimr HomM.e/.U.B/Œ���; T C Œ2r�.U.C/// (6.2)

' hocolimr HomM.e/.U.B/Œ���; T C .U.C//Œ2r�/ (6.3)

' hocolimr HomM.e/.U.B/Œ� � �2r�; T C .U.C///
' hocolimr HC

�C2r.B; C/ (6.4)

D HP �.B; C/ : (6.5)

Isomorphism (6.2) follows from the compactness of U.B/ in the triangulated
category M.e/; see the proof of Theorem 1.7(i). Isomorphism (6.3) follows from
the natural equivalence of triangulated functors

T C Œ2r� WD .RC ı .�Œ2r�/ ı Cadd/ ' .R
C
ı Cadd/Œ2r� :

Isomorphism (6.4) follows from the isomorphism (1.16). Finally, equality (6.5)
follows from the definition of bivariant periodic cyclic cohomology; see [20,
Def. 8.1].

7. Proof of Theorem 1.26

Proof. Recall from [30, §8.3.10] that Connes’ bilinear pairings (1.21) can be
expressed as the following compositions

h�;�i W K0.B/ �HC 2j .B/
ch2j�id
�! HC2j .B/ �HC 2j .B/

ev
�! k j � 0 ;

(7.1)
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where ch2j is the Chern character map (see [30, §8.3]) and ev is induced by the
evaluation of cyclic cochains on cyclic chains. Thanks to the adjunction

D.ƒ/

RC

��

M.e/

Cadd

OO

we obtain a commutative square (where we have omitted the subscripts M.e/ and
D.ƒ/ in order to simplify the exposition)

Hom.U.k/; U.B// � Hom.U.B/Œ�2j �; T C .U.k/// comp
//

Cloc�'

��

HomM.e/.U.k/Œ�2j �; T
C .U.k///

'�

��

Hom.C.k/; C.B// � Hom.C.B/Œ�2j �; C.k// comp
// HomD.ƒ/.C.k/Œ�2j �; C.k// ;

where ' is the natural isomorphism given by the adjunction and the horizontal maps
are the composition operations in M.e/ and D.ƒ/. Theorem 1.17(i) combined
with isomorphisms (1.3) and (1.16) show us that the above commutative square
corresponds to the following diagram

K0.B/ �HC 2j .B/ //

ch�.B/�id
��

HC 2j .k/ ' k

HC�0 .B/ �HC 2j .B/ comp
// HC 2j .k/ ' k ;

(7.2)

where the upper horizontal map is the pairing (1.24) (with n D 0, A D C D k and
m D 2j ). Now, recall from [30, §5.1.8] that there exist natural maps

Uj W HC
�
0 .B/ �! HC2j .B/ j � 0

such that Uj ı ch�.B/ D ch2j .B/. Thanks to the description of the composition
operation in D.ƒ/ given in [20, Thm. 5.1] we have the following diagram

HC�0 .B/ �HC 2j .B/
comp

//

Uj�id
��

k

HC2j .B/ �HC 2j .B/ ev
// k :

(7.3)

Finally, by combining diagram (7.2) with diagram (7.3) we conclude that the pairing
(1.24) (with n D 0, A D C D k and m D 2j ) identifies with the above composition
(7.1), and so with Connes’ original bilinear pairing (1.21). This achieves the proof.
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8. An application : (de)suspension of bivariant cohomology theories

In [39] it was shown that Karoubi’s infinite matrices [22] provide a simple model for
the suspension in the triangulated category of noncommutative motives. Consider
the k-algebra � of N � N-matrices A which satisfy the following two conditions :
the set fAi;j j i; j 2 Ng is finite and there exists a natural number nA such that each
row and each column has at most nA non-zero entries. Let† be the quotient of � by
the two-sided ideal consisting of those matrices with finitely many non-zero entries;
see [39, §3]. Alternatively, consider the (left) localization of � with respect to the
matrices In; n � 0, with entries .In/i;j D 1 for i D j > n and 0 otherwise. Then,
for any dg category A we have a canonical isomorphism

U.†.A// ��! U.A/Œ1� (8.1)

in M.e/, where †.A/ D A ˝ †. By combining isomorphism (8.1) with
isomorphisms (1.8), (1.15)–(1.16) and (1.20) we obtain the following result.

Theorem 8.2. Given dg categories B and C, we have the following isomorphisms

E�C1.†.B/; C/ ' E�.B; C/ E��1.B; †.C// ' E�.B; C/
HH�C1.†.B/; C/ ' HH�.B; C/ HH��1.B; †.C// ' HH�.B; C/ (8.3)

HC �C1.†.B/; C/ ' HC �.B; C/ HC ��1.B; †.C// ' HC �.B; C/ (8.4)

HP �C1.†.B/; C/ ' HP �.B; C/ HP ��1.B; †.C// ' HP �.B; C/ ; (8.5)

whereE is an additive functor and (8.5) holds under the assumption that B is a finite
dg cell.

Theorem 8.2 extends Kassel’s previous work [24, §III Thm. 3.1] on bivariant
cyclic cohomology on ordinary algebras defined over a field to dg categories defined
over a general commutative base ring. Hence, it can now be applied to schemes.
Given a (quasi-compact and quasi-separated) k-scheme X , it is well-known that the
category of perfect complexes of OX -modules admits a dg-enhancement perfdg.X/;
see for instance [31] or [7, Example 4.5]. Moreover, given a pair .X; Y / of k-
schemes, the bivariant Hochschild, cyclic, and periodic, homology of .X; Y / can
be obtained from the pair of dg categories .perfdg.X/; perfdg.Y // by applying the
corresponding bivariant theory. Therefore, when B D perfdg.X/ and C D perfdg.Y /,
the above isomorphisms (8.3)–(8.5) reduce to the corresponding isomorphisms
associated to the schemes X and Y .
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