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Abstract. We study actions of the Grothendieck–Teichmüller group GRT on Poisson coho-
mologies of Poisson manifolds, and prove some “go” and “no-go” theorems associated with
these actions.
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1. Introduction

It is proven in [15, 17] that the Grothendieck–Teichmüller group, GRT1, acts up to
homotopy on the set, f�g, of Poisson structures (depending on a formal parameter
„) on an arbitrary smooth manifold. Universal formulae for such an action can
be represented as sums over Feynman graphs with weights given by integrals over
compactified configuration spaces introduced in [11, 13].

Any Poisson structure makes the algebra of polyvector fields, .Tpoly.M/ŒŒ„��;^/

into a Poisson complex, more precisely, into a differential graded (dg, for short)
associative algebra with the differential d� D Œ�; �S , where Œ ; �S is the Schouten
bracket. The cohomology of this complex is sometimes denoted by H �.M; �/ and
is called the Poisson cohomology of .M; �/. The dg algebra .Tpoly.M/ŒŒ„��;^; d�/

is of special type — both operations ^ and d� respect the Schouten bracket in the
sense of dg Gerstenhaber algebra. The main purpose of our paper is to study

� a class of universal Ass1 structures on Tpoly.Rd / which are consistent
with the Schouten bracket in the sense of strong homotopy non-commutative
Gerstenhaber (ncG1, for short) algebras;

� universal actions of the group GRT1 on this class,
and then use these technical gadgets to give a constructive proof of the following
Main Theorem. Let � be a Poisson structure on M , 
 an arbitrary element of
GRT1, and let 
.�/ be the Poisson structure on M obtained from � by an action of

 . Then there exists a morphism,

F 
 W H �.M; �/ �! H �.M; 
.�//; (1.1)

of associative algebras.
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The morphism (1.1) is, in general, highly non-trivial. In one of the simplest
cases, when � is a linear Poisson structure on an affine manifold M D Rd (which
is equivalent to the structure of a Lie algebra on the dual vector space g WD .Rd /�),
the morphism F 
 becomes an algebra automorphism of the Chevalley–Eilenberg
cohomology of the g-moduleˇ�g WD ˚n�0 ˇn g,

H �.Rd ; �/ D H �.Rd ; 
.�// D H �.g;ˇ�g/;

and its restriction to H 0.g;ˇ�g/ D .ˇ�g/g coincides precisely with Kontsevich’s
generalization of the classical Duflo map (see Theorems 7 and 8 in §4.8 of [8]).
Thus in this special case our main theorem extends Kontsevich’s action of GRT1 on
.ˇ�g/g to the full cohomologyH �.g;ˇ�g/, and also gives explicit formulae for that
extension.

The existence of the algebra morphism (1.1) is far from obvious. We prove in
this paper a kind of “no-go” theorem which says that there does not exist a universal
(i.e. given by formulae applicable to any Poisson structure) Ass1-morphism of dg
associative algebras,�

Tpoly.M/ŒŒ„��;^; d�
�
�!

�
Tpoly.M/ŒŒ„��;^; d
.�/

�
:

Hence the algebra morphism (1.1) can not be lifted to the level of the associated
Poisson complexes in such a way that the wedge multiplication is respected in the
strong homotopy sense.

Our main technical tool is the deformation theory of universal ncG1-structures
on polyvector fields. This is governed by the mapping cone of a natural morphism of
graph complexes introduced and studied by Thomas Willwacher in [17]. Using some
of his results we show that there exists an exotic universal GRT1-deformation of the
standard the dg associative algebra .Tpoly.M/;^; d
.�// into an Ass1-algebra,�

Tpoly.M/ŒŒ„��; �
� D f�


ngn�1

�
; 
 2 GRT1;

whose differential �
1 is independent of 
 and equals d� , while the higher homotopy
operations �
n�2 are independent of � and are fully determined by ^ and 
 .
This universal Ass1- algebra structure on Tpoly.M/ is homotopy equivalent to
.Tpoly.M/;^; d
.�//, i.e. there exists a universal continuous Ass1 isomorphism,

F

W
�
Tpoly.M/ŒŒ„��; �
�

�
�!

�
Tpoly.M/ŒŒ„��;^; d
.�/

�
(1.2)

which on cohomology induces the map (1.1) and hence proves the main theorem.
The above mentioned deformation,

�
Tpoly.M/ŒŒ„��; �



�

�
, of the standard dg

algebra structure on the space of polyvector fields on a Poisson manifold is of a
special type — it respects the Schouten bracket. Omitting reference to a particular
Poisson structure � on M , we can say that we study in this paper universal
deformations of the standard Gerstenhaber algebra structure on polyvector fields
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in the class of ncG1-algebras (rather than in the class of G1-algebras). The 2-
coloured operad ncG1 is a minimal resolution of the 2-coloured Koszul operad,
ncG, of non-commutative Gerstenhaber algebras, and, moreover, it admits a very
natural geometric realization via configuration spaces of points in the pair, R � C,
consisting of the complex plane C and a line R drawn in the plane [1]. We prove
that, up to ncG1-isomorphisms there are only two universal ncG1-structures on
polyvector fields, the one which comes from the standard Gerstenhaber algebra
structure, and the exotic one which was introduced in [1] in terms of a de Rham
field theory on a certain operad of compactified configuration spaces.

1.1. Some notation. The set f1; 2; : : : ; ng is abbreviated to Œn�; its group of
automorphisms is denoted by Sn. The cardinality of a finite set A is denoted by
#A. If V D ˚i2ZV i is a graded vector space, then V Œk� stands for the graded vector
space with V Œk�i WD V iCk and and sk for the associated isomorphism V ! V Œk�;
for v 2 V i we set jvj WD i . For a pair of graded vector spaces V1 and V2, the
symbol Homi .V1; V2/ stands for the space of homogeneous linear maps of degree
i , and Hom.V1; V2/ WD

L
i2Z Homi .V1; V2/; for example, sk 2 Hom�k.V; V Œk�/.

For an operad P we denote by Pfkg the unique operad which has the following
property: for any graded vector space V there is a one-to-one correspondence
between representations of Pfkg in V and representations of P in V Œ�k�; in
particular, EndV fkg D EndV Œk�.

Acknowledgements. It is a great pleasure to thank Thomas Willwacher for many
very useful discussions and correspondences.

2. Compactified configuration spaces of points in the flag R � C

2.1. Lie1-algebras. For a finite set A let ConfA.C/ stand for the set of all
injections, fA ,! Cg. For #A � 2 the orbit space

CA.C/ WD
fA ,! Cg

z ! RCz C C
;

is naturally a real .2#A � 3/-dimensional manifold (if A D Œn�, we use the
notations Cn.C/). Its Fulton–MacPherson compactification, CA.C/, can be made
into a compact smooth manifold with corners [7] (or into a compact semialgebraic
manifold). Moreover, the collection

C.C/ D fCA.C/g#A�2

has a natural structure of a non-unital pseudo-operad in the category of oriented
smooth manifolds with corners. The associated operad of chains, Chains.C .C//,
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contains a suboperad of fundamental chains, FChains.C .C//, which is precisely
the operad, L1f1g, of degree shifted L1-algebras (see [12] for a review).

2.2. OCHA versus strong homotopy non-commutative Gerstenhaber algebras.
For arbitrary finite sets A and B consider the space of injections,

ConfA;B.C/ WD fA t B ,! C; B ,! R � Cg;

and, for 2#AC #B � 2, consider the quotient space,

CA;B.C/ WD
ConfA;B.C/
z ! RCz C R

;

by the affine group RC nR. As C n R D H tH�, where H (resp. H�) is the upper
(resp., lower) half-plane, we can consider subspaces,

ConfA;B.H/ WD fA ,! H; B ,! Rg � ConfA;B.C/

and

CA;B.H/ WD
ConfA;B.H/
z ! RCz C R

� CA;B.C/

ı
x1

ı
x2

�

�

z1

z2
�

z3

�
z5 �

z4

� i

//

OO

ı
x1

ı
x2

�

�

z1

z2
�
z3

�
zn �

z4

� i

//

OO

C5;2.C/ C5;2.H/

The Fulton–MacPherson compactification, CA;B.H/, of CA;B.H/ was intro-
duced in [7]. The fundamental chain complex, FChains.C .H//, of the disjoint
union,

C.H/ WD C �.C/
G
C �;�.H/;

is a dg quasi-free 2-coloured operad [5] generated by

(i) degree 3 � 2n corollas,

: : :
1 2 3 n�1 n

� D

: : :
�.1/ �.2/ �.n/

� ; 8� 2 Sn; n � 2 (2.1)

representing C n.C/, and
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(ii) degree 2 � 2n �m corollas,

H
:::

1 2 n
:::

NmN2N1

D
H

:::
�.1/ �.2/ �.n/

:::
NmN2N1

; 2nCm � 2;8 � 2 Sn (2.2)

representing C n;m.H/.
The differential in FChains.C .H// is given on the generators by [7, 5]

@
: : :

1 2 3 n�1 n

�
D

X
A Œn�
#A�2

�

:::

: : :„ ƒ‚ …
Œn�nA

�„ƒ‚…
A

(2.3)

@ H
:::

1 2 n
:::

NmN2N1

D �

X
A Œn�
#A�2

H
::: :::

NmN2N1„ƒ‚…
A

„ƒ‚…
Œn�nA

�

:::
(2.4)

C

X
k;l;Œn�DI1tI2
2#I1Cm�lC1
2#I2Cl�2

.�1/kCl.n�k�l/
H

:::
N1 Nk kClC1 m

kC1 kCl

::: :::

„ƒ‚…
I2

„ ƒ‚ …
I1

H

::::::

Representations of .FChains.C .H//; @/ in a pair of dg vector spaces .A; g/
were called in [5] open-closed homotopy algebras or OCHAs for short. Such a
representation, �, is uniquely determined by its values on the generators,

�n WD �

 
: : :

1 2 3 n�1 n

�

!
2 Hom.gˇn; g/Œ3 � 2n�; n � 2;

�n;m WD �

 
H

:::
1 2 n

:::
NmN2N1

!
2 Hom.gˇn ˝ A˝m; A/Œ2 � 2n �m�;

2nCm � 2;

which satisfy quadratic relations given by the above formulae for the differential @
and give us, therefore, the following list of algebraic structures in .A; g/:

(i) an L1f1g-algebra structure, �� D f�n W ˇng! gŒ3 � 2n�gn�1, in g;

(ii) an A1-algebra structure, �� D f�0;m W ˝mA ! AŒ2 � m�gm�1, in A; if
Œ ; �G stands for the standard Gerstenhaber bracket on the Hochschild cochains
C.A;A/ D

Q
n�0 Hom.A˝n; A/Œ1 � n�/,then �� defines a differential on

C.A;A/, d� WD Œ��; �G ;

(iii) an L1-morphism, F , from the L1-algebra .g; �/ to the dg Lie algebra
.C.A;A/; Œ ; �G ; d�/.
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If � is an arbitrary representation of .FChains.C .H//; @/ and 
 2 g is an
arbitrary Maurer–Cartan element1,X

n�0

1

nŠ
�n.


˝n/ D 0; j
 j D 2;

of the associated L1-algebra .g; ��/, then the maps

�m W ˝mA �! AŒŒ„��Œ2 �m�; m � 0;

x1 ˝ : : : xm �!
P
n�1

„n

nŠ
�n;m.


˝n ˝ x1 ˝ : : : xm/

make the topological (with respect to the adic topology) vector space AŒŒ„�� into a
topological, non-flat (in general) A1-algebra (here „ is a formal parameter, and
AŒŒ„� WD A ˝ KŒŒ„��). Non-flatness originates from the generators (2.2) with
m D 0, n � 1, which correspond to the boundary strata in C.H/ that are given
by groups of points in the upper half plane collapsing to a point on the real line. It
is clear how to get rid of such strata — one should allow configurations of points
everywhere in C, and hence consider the Fulton–MacPherson compactifications [1]
of the configuration spaces CA;B.C/ rather than CA;B.H/. The disjoint union

CF .C/ WD C �.C/
G
C �;�.C/;

has a natural structure of a dg quasi-free 2-coloured operad in the category of
compact manifolds with corners. This operad is free in the category of sets. The
suboperad,

ncG1 WD FChains.CF .C//;
of the associated chain operad Chains.CF .C// generated by fundamental chains is
free in the category of graded vector spaces and is canonically isomorphic as a dg
operad to the quotient operad

ncG1 WD FChains.C .H//=I;
where I is the (differential) ideal generated by corollas (2.2) with m D 0, n � 1.
The notation ncG1 stems from the fact [1, 4] that this operad is a minimal resolution
of a 2-coloured quadratic operad which governs the type of algebras introduced in
[3] under the name of Leibniz pairs. Let us compare this quadratic operad with the
operad, G, of Gerstenhaber algebras. The latter is a 1-coloured quadratic operad

generated by commutative associative product in degree 0, ı
21
D ı

12
and

Lie bracket of degree �1, �
21
D �

12
, satisfying the compatibility condition

�
ı1

2 3

D
ı
� 3
21

C
ı
�2

1 3

(2.5)

1We tacitly assume here that the L1-algebra .Xc; ��/ is appropriately filtered so that the MC
equation makes sense. In our applications below �n�3 D 0 so that one has no problems with convergence
of the infinite sum.
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This condition satisfies the distributive law so that the 1-coloured operad G is
Koszul. In fact, this condition makes sense even if we assume that the associative
product is not commutative so that one might attempt to define an operad of non-
commutative Gerstenhaber algebras as a 1-coloured operad generated by associative

non-commutative product product of degree 0, ı
21
¤ ı

12
, and Lie bracket

of degree �1, �
21
D �

12
, formally satisfying the same relations as the ones

in the operad G. However, the compatibility condition (2.5) now fails to obey the
distributive law (there are new unwanted relations already for graphs with three
vertices, see Remark 1.7 in [10]), and the resulting 1-coloured operad fails to be
Koszul. However, this problem with non-Koszulness disappears if we think of the
generating operations as living in two different (say, dashed and straight) colours,

ı
21

¤ ı
12

; �
21

D �
12

:

To make sense of the Gerstenhaber compatibility condition (2.5) in two colours,

we can notice that the generator �
21

plays a two-fold role in the compatibility

conditions of the operad G: it represents a Lie algebra structure, and also a morphism
from that Lie algebra into the Lie algebra of derivations of the associative algebra

represented by ı
21

. In the two coloured version we have to assign these two

roles to two different actors, that is, we have to introduce a new degree �1 generator,
�
21

, for the role of the morphism, and then substitute (2.5) with the following

two relations,

�
ı1

2 3

D
ı
� 3
21

C
ı
�2

1 3

;
�
� 3
21

D
�
�1

2 3

C
�
�2

1 3

(2.6)

The 2-coloured operad generated by binary operations ı
21

¤ ı
12

, �
21

D

�
12

and �
21

,

ı
ı1
2 3

D
ı
ı 3
21

; (2.7)

Jacobi relations for the Lie brackets,

�
� 3
21

C
�
� 2
13

C
�
� 1
32

D 0; (2.8)

and the compatibility relations (2.6) was introduced in [3] (with slightly different
grading conventions which in two colours are irrelevant) under the name of the
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operad of Leibniz pairs. However algebras over the operad of Leibniz pairs have
nothing to do with pairs of Leibniz algebras. We prefer to call this quadratic operad
the 2-coloured operad of noncommutative Gerstenhaber algebras (ncG for short)
as this name specifies its structure non-ambiguously; this is the only natural way
to generalize the notion of Gerstenhaber algebras to the case of a non-commutative
product while keeping the Koszulness property. Moreover, any Gerstenhaber algebra
is automatically an algebra over ncG. In particular, for any smooth manifold M
the associated space of polyvector fields, Tpoly.M/ equipped with the Schouten
bracket Œ ; �S and the wedge product ^ is an ncG-algebra. It was proven in [15]
that .Tpoly.Rd /; Œ ; �S ;^/ is rigid as a G1 algebra. It follows from Willwacher’s
proof [17] of the Furusho theorem that .Tpoly.Rd /; Œ ; �S ;^/ admits a unique (up to
homotopy and rescalings) universal ncG1 deformation whose explicit structure is
described in [1] (see also (4.3) below for its explicit graph representation).

2.3. Configuration space model for the 4-coloured operad of morphisms of
ncG1-algebras. A geometric model for the 4-coloured operad of morphisms
of OCHA algebras was given in [12]. The same ideas work for the operad,
Mor.ncG/1, of morphisms of ncG1-algebras provided one replaces everywhere
in §6 of [12] the upper-plane H with the full complex plane C.

3. T. Willwacher’s theorems

3.1. Universal deformations of the Schouten bracket. The deformation complex
of the graded Lie algebra .Tpoly.Rd /; Œ ; �S / is the graded Lie algebra,

CoDer

0BB@ˇ�.Tpoly.Rd /Œ2�/„ ƒ‚ …
standard coalgebra

structure

1CCA DY
n�0

Hom.ˇnTpoly.Rd /;Tpoly.Rd //Œ2 � 2n�

of coderivations of the graded-cocommutative coalgebraˇ�.Tpoly.Rd /Œ2�/ equipped
with the differential, ı, given by

ı.D/ WD Œ ; �S ıD � .�1/
jDjD ı Œ ; �S ; 8D 2 CoDer

�
ˇ
�.Tpoly.Rd /Œ2�/

�
:

Here ı stands for the composition of coderivations. There is a universal (i.e.
independent of the dimension d ) version of this deformation complex, GC2, which
was introduced by Kontsevich in [6] and studied in detail in [17]. In this subsection
we recall some ideas, results and notations of [17] which we later use to prove our
main theorem.
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3.2. Operad Gra. To define Kontsevich’s dg Lie algebra GC2 it is easiest to start
by defining a certain operad of graphs. For arbitrary integers n � 1 and l � 0 let Gn;l
stand for the set of graphs f�g with n vertices and l edges such that (i) the vertices of
� are labelled by elements of Œn� WD f1; : : : ; ng, (ii) the set of edges, E.�/, is totally
ordered up to an even permutation (that is, oriented); it has at most two different
orientations. For � 2 Gn;l we denote by �opp the oppositely oriented graph. Let
KhGn;li be the vector space over a field K spanned by isomorphism classes, Œ��,
of elements of Gn;l modulo the relation2 �opp D �� , and consider the Z-graded
Sn-module,

Gra.n/ WD
1M
lD0

KhGn;liŒl �:

For example, 1 2
� � is a degree �1 element in Gra.2/. The S-module, Gra WD

fGra.n/gn�1, is naturally an operad with the operadic compositions given by

ıi W Gra.n/˝ Gra.m/ �! Gra.mC n � 1/
�1 ˝ �2 �!

P
�2Gi

�1;�2

.�1/��� (3.1)

where Gi�1;�2 is the subset of GnCm�1;#E.�1/C#E.�2/ consisting of graphs, � ,
satisfying the condition: the full subgraph of � spanned by the vertices labeled by
the set fi; i C 1; : : : ; i Cm � 1g is isomorphic to �2 and the quotient graph, �=�2,
obtained by contracting that subgraph to a single vertex, is isomorphic to �1 (see §2
in [17] or §7 in [12] for examples). The sign .�1/�� is determined by the equality
^e2E.�/e D .�1/�� .^e02E.�1/e

0/ ^ .^e002E.�2/e
00/ where the edge products over

the sets E.�1/ and E.�1/ are taken in accordance with the given orientations. The
unique element in G1;0 serves as the unit element in the operad Gra.

3.3. A canonical representation of Gra in Tpoly.Rd /. The operad Gra has a
natural representation in the vector space Tpoly.Rd /Œ2� for any dimension d ,

� W Gra.n/ �! EndTpoly.Rd /.n/ D Hom.Tpoly.Rd /˝n;Tpoly.Rd //
� �! ˆ�

(3.2)

given by the formula,

ˆ�.
1; : : : ; 
n/

WD �

0@ Y
e2E.�/

�e
�

1.x.1/;  .1//˝ 
2.x.2/;  .2//˝ : : :˝ 
n.x.n/;  .n//

�1A
2Abusing notations we identify from now an equivalence class Œ�� with any of its representative � .
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where, for an edge e connecting vertices labeled by integers i and j ,

�e D

nX
aD1

@

@xa
.i/

˝
@

@ .j /a
C

@

 .i/a
˝

@

@xa
.j /

and � is the multiplication map,

� W Tpoly.Rd /˝n �! Tpoly.Rd /

1 ˝ 
2 ˝ : : :˝ 
n �! 
1 ^ 
2 ^ � � � ^ 
n:

Here we used a coordinate identification, Tpoly.Rd / D C1.x1; : : : ; xd /Œ 1; : : : ;  d �,
where C1.x1; : : : ; xd / is the ring of smooth functions of coordinates x1; : : : ; xd on
Rd , and  a are formal variables of degree one symbolizing @=@xa.

3.4. Kontsevich graph complex. There is a morphism of operads [18]

G �! Gra

given on the generators of the operad of Gerstenhaber algebras by

ı
21
�!

1 2
� � (3.3)

�
21

�!
1 2
� � (3.4)

The latter map also gives us a canonical morphism of operads

i W Lief1g �! Gra:

The full Kontsevich graph complex fGC2 is, by definition, the deformation complex
controlling deformations of the morphism i ,

fGC2 WD Def.Lief1g ! Gra/

There are several explicit constructions of deformation complexes of (pr)operadic
morphisms given, for example, in [14]. To construct Def.Lief1g ! Gra/ one has
to replace Lief1g by its the minimal resolution, Lief1g1, which is a quasi-free dg
operad generated by the S-module

E D fE.n/ WD 11nŒ2n � 3�g :

Then, as a Z-graded vector space,

Def.Lief1g ! Gra/ � Def.Lief1g1 ! Gra/ WD
Y
n�0

HomSn.E.n/;Gra.n//Œ�1�

D

Y
n�0

Gra.n/Sn Œ2 � 2n�;
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i.e. an element of fGC2 can be understood as an Sn-symmetrization a of graph from
Gn;l to which we assign the degree 2n � l � 2, for example

1 2
� � C

2 1
� � DW � �

is a degree 1 element in fGC2. As labelling of vertices of elements from fGC2 by
integers is symmetrized, we often represent such elements as a single graph with
vertices unlabelled, e.g.

� �;
� �

�

�

One should not forget, however, that such a graph is in reality a symmetrization sum
of some labelled graph from Gn;l .

The Lie algebra structure in fGC2 D Def.Lief1g1 ! Gra/ is completely
determined by the differential on Lief1g1 [14]. It is an elementary exercise to
see that the Lie brackets in fGC2 can expressed in terms of operadic composition in
Gra as follows,

Œ�; � 0� WD Sym.� ı1 �
0
� .�1/j�jj�

0j� ı1 �/;

where Sym stands for the symmetrization of vertex labels. The usefulness of this
Lie algebra structure on fGC2 WD Def.Lief1g1 ! Gra/ stems from the fact [14]
that the set of its Maurer–Cartan elements is in one-to-one correspondence with
morphisms of operads Lief1g1 ! Gra. It is easy to check that the element � � is
Maurer–Cartan,

Œ� �; � �� D 0:

It corresponds precisely to the morphism (3.4). This element makes fGC2 into a
complex with the differential

ı� � WD Œ� �; �:

This dg Lie algebra contains a dg Lie subalgebra, GC2, spanned by connected
graphs with at least trivalent vertices and no tadpoles; this subalgebra is precisely
the original (odd) Kontsevich graph complex [6, 17]. One of the main theorems of
[17] asserts an isomorphism of Lie algebras,

H 0.GC2; ı� � / ' grt1;

where grt1 stands for the Grothendieck–Teichmüller Lie algebra and H 0 for
cohomology in degree zero.

Note that the canonical representation (3.2) induces a morphism of dg Lie
algebras,

�ind W fGC2 D Def .Lief1g1 ! Gra/ �! Def
�
Lief1g1 ! EndTpoly.Rd /

�
D CoDer

�
ˇ
�.Tpoly.Rd /Œ2�/

�
:
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The image of this map consists of coderivations of the coalgebra ˇ�.Tpoly.Rd /Œ2�
which are universal i.e. make sense in any dimension. In particular, �.� �/ is
precisely the Schouten bracket in Tpoly.Rd /. Therefore, one can say that the graph
complex fGC2 (or GC2) describes universal deformations of the Schouten bracket.
T. Willwacher’s theorem gives us universal homotopy actions of the Grothendieck–
Teichmüller group GRT1 D exp.grt1/ on Tpoly.Rd / by Lie1 automorphisms of
the Schouten bracket.

3.5. T. Willwacher’s twisted operad f Graphs	. For any operad P and mor-
phism of operads, Liefkg1 ! P , there is an associated operad Tw.P/ whose
representations, �tw W Tw.P/ ! EndV , can be obtained from representations,
� W P ! EndV , of P by “twisting" � by Maurer–Cartan elements of the
associated (via the map Liefkg1 ! P) Liefkg1 structure on V . Omitting general
construction (see [17] for its details), we shall describe explicitly the dg operad
f Graphs	 WD Tw.Gra/ obtained from Gra by twisting the morphism (3.4). For
arbitrary integers m � 1, n � 0 and l � 0 we denote by Gm;nIl a set of graphs f�g
withmwhite vertices, n black vertices are and l edges such that (i) the white vertices
of � are labelled by elements of Œm�, (ii) the black vertices of � are at least trivalent
and are labelled by elements of Œ Nn� D fN1; : : : ; Nng, (iii) and the set of edges, E.�/,
is totally ordered up to an even permutation. The set of black (respectively, white)
vertices of � will be denoted by V�.�/ (resp. Vı.�/).

Let KhGm;nIli be the vector space over a field K spanned by isomorphism classes,
Œ��, of elements of Gm;nIl modulo the relation �opp D �� , and consider the Z-
graded Sm-module,

f Graphs	.m/ WD
1Y
nD0

1M
lD0

KhGm;nIliSn Œl � 2n�;

where invariants are taken with respect to the permutations of Œ Nn�-labellings of black
vertices. For example, 1ı � is a degree 1 element in f Graphs	.1/ and 1 2

ı ı is a
degree 0 element in f Graphs	.2/. The operadic composition, � ıi � 0, in

f Graphs	 D
˚
f Graphs	.m/

	
is defined by substitution of the graph � 0 2 KhGm0;n0IliSn0 into the i -th white vertex
v of � 2 KhGm;nIliSn , reconnecting all edges of � incident to v in all possible ways
to vertices of � 0 (in a full analogy to the case of Gra), and finally symmetrizing over
labellings of the nC n0 black vertices. Consider linear maps,

ı� �� WD �.�1/
j�jSym

�
� ı N1 � �

�
and

ıı �� WD Sym

0@1ı � ı1 � � .�1/j�j
X
v2V.ı/

� ıv
1
ı �

1A
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where Sym stands for the symmetrization of black vertex labellings. Note that in this
case ı2

� �
¤ 0 and ı2

ı �
¤ 0 in general, but their sum ıı � C ı� � makes f Graphs	

into an operad of complexes [17].
The dg suboperad of f Graphs	 consisting of graphs � which have no connected

component consisting solely of black vertices is denoted in [17] by Graphs	. The
inclusions of the suboperads of graphs without tadpoles, f Graphs and Graphs,
into f Graphs	 and, respectively, Graphs	, are quasi-isomorphisms. [17] Hence
we may without loss of generality replace the operads f Graphs	 and Graphs	 by
these suboperads f Graphs and Graphs.

There is a morphism of dg operads [19]

Ass1 �! Ass �! Graphs

where the first arrow is a natural projection and the second map is given on the
generators of the operad Ass by

ı
21

�!
1 2
ı ı

The standard construction [14] gives us a dg Lie algebra, Def.Ass ! Graphs/,
whose elements, � , are linear combinations of graphs from KhGm;nIliSn ,m; n; l � 0,
equipped with a total order on the set of white vertices of � (so that in pictures we
can depict vertices of such graphs as lying on a line) and with degree 2nCm� l �1.
The differential on Def.Ass1 ! f Graphs/ is a sum,

ı D ııı C ıı � C ı� � ; (3.5)

where

ııı� WD
�
.
1 2
ı ı/ ı1 � C .

1 2
ı ı/ ı2 �

�
� .�1/j�j

X
v2V.ı/

� ıv .
1 2
ı ı/

The first cohomology group of this deformation complex was computed in appendix
E of [17],

H i .Def.Ass1!Graphs// D

8<: grt1 ˚ RŒ�1� for i D 1;
RŒS2� for i D 0;
0 for i � �1;

(3.6)

where the summand RŒ�1� in H 1 .Def.Ass1!Graphs// is generated by the
following graphX

�2S3

.�1/�

�.2/�.1/ �.3/
ı ı ı

�

2 Def.Ass1!Graphs/: (3.7)

and H 0 .Def.Ass1!Graphs// is generated by 1 2
ı ı.
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Lemma 3.5.1. H 1 .Def.Ass1!f Graphs// D grt1 ˚ RŒ�1�:

Proof. As a complex Def.Ass1! f Graphs/ is isomorphic to the tensor product
of complexes

Def.Ass1!Graphs/˝ˇ��0.GC2Œ�2�/

so that

H 1 .Def.Ass1!f Graphs// D
X
i2Z

H i .Def.Ass1!Graphs//

˝H�i�1.ˇ��0GC2/

D H 1 .Def.Ass1!Graphs// ;

because H��1.GC2/ D 0 and H��1..Def.Ass1!Graphs// D 0 according to
Thomas Willwacher [17, 19].

Note that in general the inclusion map of complexes,

Def.Ass1!Graphs/ �! Def.Ass1!f Graphs/;

induces an injection on cohomology,

H i .Def.Ass1!Graphs// ,! H i .Def.Ass1!f Graphs//

since Def.Ass1!Graphs/ is direct summand of Def.Ass1!f Graphs/.

3.6. A mapping cone of the Willwacher map. It was proven in [17] that there is
a degree 1 morphism of complexes,

W W
�
GC2; ı� �

�
�! .Def.Ass1!f Graphs/; ı/:

which induces an injection on cohomology [17, 19]

ŒW� W H i .GC2/ �! H i .Def.Ass1!f Graphs// :

The map W sends a graph 
 2 GC2 (with, say, n black vertices) to a linear
combination of graphs with n black vertices and one white vertex,

W.
/ WD
1

#V.
/Š

X
v2V.
/ 1

v



ı

�
DW

1




ı

� (3.8)

where
1



v

ı

� stands for the graph obtained by attaching ı to the vertex v of 
 ; the

set of edges of W.
/ is ordered by putting the new edge after the edges of 
 . Let
MaC.W/ be the mapping cone of the map W, that is, the direct sum (without the
standard degree shift as the map W has degreeC1)

MaC.W/ D Def.Ass1!f Graphs/˚ GC2
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equipped with the differential

d W Def.Ass1!f Graphs/˚ GC2 �! Def.Ass1!f Graphs/˚ GC2
.�; 
/ �! .ı� CW.
/; ı� �
/:

There is a natural representation [17] of the Lie algebra GC2 on the vector space
Def.Ass1 ! f Graphs/,

ı W GC2 � Def.Ass1!f Graphs/ �! Def.Ass1!f Graphs/
.
; �/ �! � � 
 WD

P
v2Vblack.�/

� ıv 


given by substitution of the graph 
 into black vertices of the graph � . This action
can be used to make MaC.W/ into a Lie algebra with the brackets,

Œ.�1; 
1/; .�2; 
2/� WD
�
Œ�1; �2�C �1 � 
2 � .�1/

j�2jj
1j�2 � 
1; Œ
1; 
2�
�
: (3.9)

The differential d respects these brackets so that

.MaC.W/; Œ ; �; d / (3.10)

is a differential graded Lie algebra. For future reference we need the following
Lemma 3.6.1. H 1.MaC.W/; d/ D RŒ�1�.

Proof. There is a short exact sequence of dg Lie algebras,

0 �! Def.Ass1!f Graphs/
˛
�! MaC.W/

ˇ
�! GC2 �! 0

where

˛ W Def.Ass1!Graphs/ �! Def.Ass1!f Graphs/˚ GC2
� �! .�; 0/

and
ˇ W Def.Ass1!f Graphs/˚ GC2 �! GC2

.�; 
/ �! 


are the natural maps. We have, therefore, a piece of the associated long exact
sequence of cohomology groups,

H i.GC2/
ŒW�
! H iC1.Def.Ass1!f Graphs//

Œ˛�
! H iC1.MaC.W//

Œˇ�
! H iC1.GC2/

ŒW�
! H iC2.Def.Ass1!f Graphs//

As the map ŒW� is injective, we obtain

H iC1.MaC.W// D
H iC1.Def.Ass1!f Graphs//

ŒW�.H i.GC2//
:

SinceH 0.GC2/ D grt1 andH 1.Def.Ass1!f Graphs// D grt1˚RŒ�1� the claim
follows.
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4. Universal ncG1 deformations of the standard Gerstenhaber algebra
structure in Tpoly.Rd /

4.1. Two-coloured version of Gra. Let Gra D fGra.n/gn�1 be the operad defined
in §3.2; from now one we assume that vertices of graphs from Gra are coloured in
black. For arbitrary integers m � 1, n � 0 and l � 0 we denote by G0

m;nIl
the set of

tadpoles-free graphs f�g with m white vertices, n black vertices and l edges, such
that

(i) the set of white vertices, Vı.�/, of � is equipped with a total order (so that in
our pictures white vertices will depicted as lying on a line),

(ii) there is a bijection Vı.�/ ! Œm� (which does not, in general, respect total
orders),

(iii) there is a bijection from the set, V�.�/, of black vertices of � to the set Œ Nn� D
fN1; : : : ; Nng,

(iv) the black vertices of � are at least trivalent,

(v) the set of edges, E.�/, is equipped with an orientation, i.e. it is totally ordered
up to an even permutation.

Note that graphs from G0
m;nIl

can have connected components consisting of graphs
with solely black vertices. Let KhG0

m;nIl
i be the vector space over a field K spanned

by isomorphism classes, Œ��, of elements of Gm;nIl modulo the relation �opp D �� ,
where the graph �opp is identical to � except that it has the opposite orientation.
Consider the following collection of Z-graded S-modules,

Graı� WD

8<: M
NDmCn

IndSm�S Nn
SN

(
Gra.m; n/ WD

1M
lD0

KhG0m;nIliŒl �

)
m�1;n�0

; fGra.n/gn�1

9=; :
It has a structure of a 2-coloured operad with compositions

ıi W Gra.m1; n1/˝ Gra.m2; n2/ �! Gra.m1 Cm2 � 1; n1 C n2/; i 2 Œm1�

ıi W Gra.m; n1/˝ Gra.n2/ �! Gra.m; n1 C n2 � 1/; i 2 Œn1�

ıi W Gra.n1/˝ Gra.n2/ �! Gra.n1 C n2 � 1/; i 2 Œn1�;

given by graph substitutions as in the case of Gra.

Proposition 4.1.1. There is a morphism of operads

f W ncG �! Graı�

given on generators as follows,

ı
21

�!
1 2
ı ı; �

21
�!

1 2
� �; �

21
�!

1

2

�

ı
(4.1)
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Proof. We have to check that the map f respects relations (2.7), (2.8) and (2.6). For
example,

f

�
�
ı1

2 3

�
ı
� 3
21

� ı
�2

1 3

�
D

1

2

�

ı
ı2

1 2
ı ı �

1 2
ı ı ı1

1

2

�

ı
� 1 2
ı ı ı2

1

2

�

ı

D

1

2 3

�

ı ı
C

1

32

�

ıı
�

1

2 3

�

ı ı
�

1

32

�

ıı

D 0:

Analogously one checks all other relations.

Theorem 4.1.2. The deformation complex, Def.ncG1 ! Graı�/, of the morphism

fo W ncG1
proj
���! ncG

f
��! Graı�

is isomorphic as a dg Lie algebra to MaC.W/.

Proof. As a graded vector space Def.ncG1 ! Graı�/ is identical to the space of
homomorphisms, HomS.E;Graı�/Œ�1�, of S-modules, where E D fE.N/g is the
S-module of generators of ncG1. The latter S-module splits as a direct sum,

E.N/ D E1.N /˚E2.N /;

where E1.N / is spanned as a vector space by corollas (2.1) and hence is given by

E1.N / D sgnN Œ2n � 3�

where sgnN is the the one-dimensional sign representation of SN . The SN -module
E2.N / is spanned by corollas (2.2) and hence equals

E2.N / D
M

NDmCn
m�1;n�0

IndSm�Sn
SN KŒSm�˝ sgnnŒ2nCm � 2�:

Therefore, we have an isomorphism of graded vector spaces

Def.ncG1 ! Graı�/ D
Y
N

HomS
�
E2.N /;Graı�.N /

�
Œ�1�

˚

Y
N

HomS
�
E1.N /;Graı�.N /

�
Œ�1�

D Def.Ass1!f Graphs/˚ GC2
D MaC.W/

One reads the Lie algebra structure in Def.ncG1 ! Graı�/ from the differential
(2.3) and (2.4) and easily concludes that it is given precisely by the Lie bracket Œ ; �
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given in (3.9). Next, there is a 1-1 correspondence between Maurer–Cartan elements,
� ,

Œ�; �� D 0;

and morphisms of operads ncG1 ! Graı� (cf. [14]). The morphism f0 is
represented by the following Maurer–Cartan element,

�0 D

�
ı ı C

�

ı ; � �

�
(4.2)

so that the differential in Def.ncG1 ! Graı�/ is given by Œ�0; � and hence
coincides precisely with the differential d in MaC.W/. The theorem is proven.

4.2. A canonical representations of Graı� in polyvector fields and an exotic
ncG1 structure. There is a representation of the two-coloured operad Graı� in
the two-coloured endomorphism operad, EndTpoly.Rd /;Tpoly.Rd /, of two copies of
the space Tpoly.Rd / given by formulae which are completely analogous to (3.2).
Hence there is an induced of morphism of dg Lie algebras

MaC.W/ D Def.ncG1 ! Graı�/ �! Def.ncG1 ! EndTpoly.Rd /;Tpoly.Rd //:

The dg Lie algebra Def.ncG1 ! EnvTpoly.Rd /;Tpoly.Rd // describes ncG1 defor-
mation of the standard Gerstenhaber algebra structure on Tpoly.Rd /. The dg Lie
algebra MaC.W/ controls, therefore, universal deformations of this structure, i.e
the ones which make sense in any dimension d .

In particular any Maurer–Cartan element,

d� C
1

2
Œ�; �� D 0

in the dg Lie algebra MaC.W/ gives us a universal ncG1-structure in Tpoly.Rd /.
Such a structure can be viewed as a deformation of the standard Gerstenhaber algebra
structure (corresponding to the graph (4.2)) as the above equation can be rewritten
as

Œ�0 C �; �0 C �� D 0:

The dg Lie algebra MaC.W/ is naturally filtered by the number of black and white
vertices. We assume from now on that MaC.W/ is completed with respect to this
filtration. Then there is a well-defined action of degree zero elements, g, of MaC.W/

on the set of Maurer–Cartan elements,

Ă �! �g WD eadgĂ �
eadg � 1

adg
dg:

The orbits of this action are ncG1-isomorphism classes of universal ncG1 struc-
tures on polyvector fields.
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Infinitesimal homotopy non-trivial ncG1 deformations of the standard Gersten-
haber algebra structure on polyvector fields are classified by the cohomology group
H 1.MaC.W//. Lemma 3.6.1 says that there exists at most one homotopy non-
trivial universal ncG1 deformation of the standard Gerstenhaber algebra structure
on polyvector fields. The associated Maurer–Cartan element in MaC.W/ was
given explicitly in [1] in term of periods over the compactified configuration spaces
C �;�.C/,

�0 C � D

0B@ X
m�1;n�0

X
�2G00

m;nI2nCm�2

Z
Cm;n.C/

�� �; � �

1CA (4.3)

where

� G00m;nI2nCm�2 is the set of equivalence classes of graphs from G0m;nI2nCm�2
which are linearly independent in the space KhG0m;nI2nCm�2i and have no
tadpoles;

� �� WD
V
e2Edges.�/ �

�
e .!/ ,

� for an edge e 2 Edges.�/ beginning at a vertex (of any colour) labelled
by i and ending at a vertex (of any colour) labelled by j , pe is the natural
surjection

�e W Cn;m.C/ �! C2.C/ D S1
.z1; : : : ; zi ; : : : ; zj ; : : : ; znCm/ �!

zi�zj
jzi�zj j

:

� The 1-form ! WD 1
2�
dArg.zi �zj / is the standard homogenous volume form

on S1 normalized so that
R
S1
! D 1.

The lowest (in total number of vertices) term in � is given by the graph (3.7) whose
weight is equal to 1=24. Hence Lemma 3.6.1 and [1] imply the following theorem.

Theorem 4.2.1. Up to ncG1 isomorphisms, there are only two different universal
ncG1 structures on polyvector fields, the standard Gerstenhaber one corresponding
to the Maurer–Cartan element (4.2) and the exotic one given by (4.3).

5. No-Go Theorem

5.1. A class of universal Ass1 structures on Poisson manifolds. For any
degree 2 element „� in Tpoly.Rd /ŒŒ„�� the operad f Graphs admits a canonical
representation

�� W f Graphs �! End contTpoly.Rd /ŒŒ„��



204 J. Alm and S. Merkulov

of graded operads, which sends a graph � from Graphs with, say, m white vertices
and n black vertices into a continuous (in the „-adic topology) operator �.�/ 2
Hom.˝mTpoly.Rd /;Tpoly.Rd /ŒŒŒ„�� which is constructed exactly as in the formula
(3.2) except that black vertices are decorated by the element „� . (From now on
we take our operad f Graphs to be completed with respect to the filtration by the
number of black vertices; hence we need to use a degree zero formal parameter „ to
ensure convergence of operators �.�/ in the „-adic topology.) The representation ��

is a representation of dg operads if � is Poisson and we equip the space of polyvector
fields with the Poisson-Lichnerowitz differential.

The Lie algebra GC2 acts (on the right) on the operad f Graphs,

R W f Graphs � GC2 �! f Graphs
.�; 
/ �! � � 


by operadic derivations, where � � 
 is obtained from � by inserting 
 into black
vertices [17]. Let I 0

� �
be the operadic ideal in f Graphs generated by graphs of the

form � � � � . There is natural projection map of operads,

f Graphs �! f Graphs0 WD f Graphs=I 0
� �
;

and, for � being a (graded) Poisson structure on Rd , that is, for � satisfying
Œ�; ��S D 0, the canonical representation �� factors through this projection,

�� W f Graphs �! f Graphs0 �! EndTpoly.Rd /:

The induced representation f Graphs0 ! EndTpoly.Rd / we denote by the same
letter �� . It induces in turn a map of Lie algebras,

Def.Ass1!f Graphs/ �! Def.Ass1!f Graphs0/
�! Def.Ass1!EndTpoly.Rd // D CoDer.˝��1.Tpoly.Rd /Œ1�/

where

CoDer.˝��1.Tpoly.Rd /Œ1�/ D
Y
m�1

Hom.˝mTpoly.Rd /;Tpoly.Rd //Œ1 �m�

is the Gerstenhaber Lie algebra of coderivations of the tensor coalgebra
˝��1.Tpoly.Rd /Œ1�/. Hence any Maurer–Cartan element � ,

Œ�; �� D 0;

in the Lie algebra Def.Ass1!f Graphs0/ induces, for any fixed Poisson structure
on Rd , a universal Ass1 algebra structure on Tpoly.Rd /. Moreover, two such
universal Ass1 structures, �1 and �2, are universally Ass1 isomorphic if and only
if there exists a degree zero element h 2 Def.Ass1!f Graphs0/ such that

�2 D e
adh�1;
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where adh stands for the adjoint action. Note that, due to the filtrations of the Lie
algebra Def.Ass1!f Graphs0/ by the numbers of white and black vertices, there
is no convergence problem in taking the exponent of adh.

It is easy to see that
�0 D ıı C ı �

is a Maurer–Cartan element in Def.Ass1!f Graphs0/ (but not in Def.Ass1!
f Graphs/Š/, and the associated Ass1 structure in .Tpoly.Rd /; �/ is the standard
structure of a Poisson complex, that is, a wedge product ^ (corresponding to the
graph ıı) and the differential d� D Œ„�; �S (corresponding to the graph ı �). Hence
�0 makes Def.Ass1!f Graphs0/ into a complex with the differential d WD Œ�0; �.
It is clear that the natural projection of Lie algebras

p W Def.Ass1!f Graphs/ �! Def.Ass1!f Graphs0/

is compatible with the differentials.
Let 
 be a degree zero cycle in the graph complex GC2, representing some

cohomology class from grt1. Then

�


0 WD �0 � e



D ıı C ı � C



�

ı
C
1

2Š


 �

�

ı
C : : :

is again a Maurer–Cartan element in Def.Ass1 ! f Graphs0/. The associated
Ass1 structure in .Tpoly.Rd /; �/ consists of the standard wedge product ^
(corresponding to the graph ıı) and the differential dg.�/ D Œg.„�/; �S, where
g D exp.
/ is the element of the group GRT1 corresponding to 
 . The element
in the difference �
0 � �0 with lowest number of vertices is



�

ı

It defines a cycle in both complexes Def.Ass1 ! f Graphs/ and Def.Ass1 !
f Graphs0/. It is shown in [17] that



�

ı
is not a coboundary in Def.Ass1 !

f Graphs/, it therefore defines a non-trivial cohomology class in H 1.Def.Ass1!
f Graphs//.

5.1.1. Lemma. For any Œ
� 2 grt1 an associated cycle


�

ı
is not a coboundary

in Def.Ass1! f Graphs0/, that is, it defines a non-trivial cohomology class in
H 1.Def.Ass1!f Graphs0//. In fact the natural map

Œp� W H 1.Def.Ass1!f Graphs// �! H 1.Def.Ass1!f Graphs0//

is an injection.
Let us first prove the following corollary to this lemma, and then the lemma itself.
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5.1.2. No-go theorem. For any Œ
� 2 grt1, the Maurer–Cartan elements �0 and �
0
are not gauge equivalent in the Lie algebra Def.Ass1!f Graphs0/. Equivalently,
the universal Ass1 structures in Tpoly.Rd /ŒŒ„�� corresponding to these elements
are not universally Ass1 isomorphic.

Proof. Comparing the terms with the same number of black and white vertices in
the equation

�


0 D e

adh�0;

we immediately see that



�

ı
D Œh0; ıı C ı � � D �dh

0

for some summand h0 in h. This contradicts Lemma 5.1.1.

To prove Lemma 5.1.1 we need the following

5.1.3. Lemma. For any Œ
� 2 grt1, an associated cycle


�

ı
in the complex

Def.Ass1 ! f Graphs/ is cohomologous to an element 
w which has no black
vertices.

Proof. Let us represent the total differential ı in Def.Ass1!f Graphs/ as a sum
of two differentials (see (3.5))

ı D ııı C ı
0:

The cohomology of the complex .Def.Ass1 ! Graphs/; ı0/ (which contains

elements of the form


�

ı
and is a direct summand of the full complex .Def.Ass1!

f Graphs/; ı0/ was computed in [9] (see also Proposition 5 in [17]). We need from
that computation only the following fact: any ı0-cocycle in Def.Ass1!Graphs/
which contains at least one black vertex is ı0-exact. As

ı


�

ı
D ııı



�

ı
D 0;

we conclude that ı0


�

ı
D 0 and hence



�

ı
D �ı0
ı for some degree zero graph 
ı

in Def.Ass1!Graphs/; in fact, it is easy to see that 
ı is 
 with every black vertex
labelled by, say, 1 made white (remember that 
 is symmetrized over numerical
labellings of vertices so that nothing depends on the choice of a particular label in
this construction of 
ı). We can, therefore, write,



�

ı
D �.ııı C ı

0/
ı C ııı
ı:
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If ııı
ı contains black vertices, then again

ı ııı
ı D ı
0.ııı
ı/ D 0 ) ııı
ı D �ı

0
ıı

and hence


�

ı
D �ı.
0 C 
ıı /C ııı
ıı :

Continuing this process we finally obtain an equality



�

ı
D �ı.
0 C 
ıı C : : :C 


max
ı:::ı /C ııı
ı:::ı (5.1)

where 
w WD ııı
maxı:::ı has no black vertices.

Proof of Lemma 5.1.1. Since

H 1.Def.Ass1!f Graphs// D H 1.Def.Ass1!Graphs//

and since Def.Ass1!Graphs0/ is a direct summand of Def.Ass1!f Graphs0/,
it is enough to study the natural projection map

p W Def.Ass1!Graphs/ �! Def.Ass1!Graphs0/:

Consider the following direct summands, C and C 0, of both complexes of the form

Ker d
\
fSubspace of graphs with no black verticesg

As the ideal used to construct the quotient operad Graphs0 out of Graphs consists
of graphs with at least two black vertices, we conclude that the map p sends C
isomorphically to C 0. Then Lemma 5.1.3 (and its obvious analogue for the graph
(3.7)) implies the required result.

5.2. Quotient mapping cone. Let I� � be the ideal in the operad Gra generated by
the graph 1 2

� �, let Gra0 WD Gra=I� � , and let

GC02 WD Def
�
Lief1g1

0
! Gra0

�
be the deformation complex of the zero map (this is just a Lie algebra). There is an
induced Willwacher map

W0 W GC02 �! Def.Ass1!Graphs0/

and hence an associated Lie algebra structure on the quotient mapping cone,

MaC.W0/ WD Def.Ass1!Graphs0/ ˚ GC02:
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There is a natural surjection of Lie algebras,

S W MaC.W/ �! MaC.W0/: (5.2)

For future reference we make an evident observation that our class of universal
Ass1 structures on polyvector fields can be identified with a class of Maurer–Cartan
elements of the quotient mapping cone MaC.W0/ which have the form .�; 0/ for
some � 2 Def.Ass1!Graphs0/.

6. Proof of the main theorem

6.1. ncG1 isomorphisms of ncG1 algebras. As the two-coloured operad Graı�
has a canonical representation in the space of polyvector fields Tpoly.Rd /, any
morphism of operads

F W ncG1 �! Graı�

induces a universal ncG1 structure in Tpoly.Rd /. On the other hand, we proved
in the previous section that there is a one-to-one correspondence between such
morphisms F and degree 1 elements,

Ă D .�; 
/

in the Lie algebra MaC.W/ D Def.Ass1 ! f Graphs/ ˚ GC2 satisfying the
Maurer–Cartan condition

ŒĂ;Ă� D .Œ�; ��C 2� ı 
; Œ
; 
�/ D 0:

Two universal ncG1 structures corresponding to Maurer–Cartan elements Ă and Ă0
are ncG1-isomorphic if and only if the Maurer–Cartan elements Ă and Ă0 are gauge
equivalent, that is,

Ă0 D eadHĂ (6.1)

for some degree zero element H D .H; h/ in MaC.W/.

6.2. ncG1 structures versus Ass1 structures on (affine) Poisson manifolds.
Let us denote by MC the set of all Maurer–Cartan elements in the Lie algebra
MaC.W/. By Theorem 4.2.1, any element � 2 MC is gauge equivalent either to
(4.2) or to (4.3). Both these Maurer–Cartan elements belong to the subset MCAss �

MC consisting of elements of the form .�; � �/ for some � 2 Def.Ass1 !
f Graphs/. As projection (5.2) sends such and element into a Maurer–Cartan
element in MaC.W0/ of the form .�; 0/, the subset MCAss � MC gives us
universal Ass1 structures on polyvector fields. We are interested now in the
gauge transformations of the set MC which preserve the subset MCAss , as such
transformations can sometimes induce (via the surjection (5.2)) Ass1 isomorphisms
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of our class of universal Ass1 structures on polyvector fields. It is clear that the
gauge transformation (6.1) associated to a degree zero element

H D .H 2 Def.Ass1 ! f Graphs/; h 2 GC2/

preserves the subset MCAss �MC if and only if ı� �h D 0, i.e. if h is a cycle in
the Kontsevich graph complex. In this case one has

eadH.�; � �/ D
�
e

ad
.Hıeh/.� ı .e�h//C : : : ; � �

�
where ead

.aıeh/ is computed with respect to the Lie bracket in Def.Ass1!Graphs/
and, for an element A 2 Def.Ass1!Graphs/ and an element 
 2 GC2 we set

A ı .e
 / WD

1X
nD0

1

nŠ
.: : : ..A ı 
/ ı 
/ : : : ı 
/„ ƒ‚ …

n

2 Def.Ass1!f Graphs/

It is clear from these formulae that gauge transformations of the set MCAss
associated with degree zero elements in MaC.W/ of the form

H D .H; 0/

will induce — via the projection(5.2)) — Ass1 isomorphisms of Ass1 structures
associated to elements of MCAss .

6.3. A naive action of GRT1 on MCAss . For any Œ
� 2 grt1 an associated degree
zero element H
 D .0; 
/ 2 MaC.W/ gives us a gauge transformation of MC which
preserves the subset MCAss . For example, in the case of the standard Gerstenhaber
algebra structure (4.2) one has

Ă0


WD eadH
 Ă0 D

0@ı ı C g
�

ı ; � �

1A (6.2)

where g D exp.�
/ 2 GRT1. The associated (via the projection (5.2)) Ass1
structure on polyvector fields is precisely the standard differential Gerstenhaber
algebra structure in which the differential is twisted by the action of g on the Poisson
structure (see Main Theorem in the introduction).

To construct a less naive action of GRT1 on MCAss we need some technical
preparations.

6.4. Splitting of the Lie algebra MaC.W/. The natural epimorphism of differen-
tial Lie algebras,

MaC.W/ �! GC2;

has a section in the category of non-differential Lie algebras given explicitly in the
following proposition.
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Proposition 6.4.1. There is a morphism of Lie algebras s W GC2 ! MaC.W/ given
by

s W GC2 �! Def.Ass1!f Graphs/˚ GC2

 �! .
ı; 
/

where

ı WD

X
v2V.
/


v!ı

and 
v!ı stands for the graph 
 whose (black) vertex v is made white .

Proof. Denoting " WD j
1jj
2j, we have

s.Œ
1; 
2�/ D

0@ X
v2V.Œ
1;
2�/

Œ
1; 
2�v!ı ; Œ
1; 
2�

1A
D

0@ X
w2V.
1/

0@ X
v2V.
2/


1 ıw .
2/v!ı C
X

v2fV.
1/nwg

.
1/v!ı ıw 
2

1A
�.�1/".1$ 2/ ; Œ
1; 
2�

!

D

0BB@ X
w2V.
1/

v2V.
2/


1 ıw .
2/v!ı � .�1/
"

X
w2V.
2/

v2V.
1/


2 ıw .
1/v!ı C .
1/ı ı 
2

�.�1/".
2/ı ı 
1 ; Œ
1; 
2�

!
D .Œ.
1/ı; .
2/ı�C .
1/ı ı 
2 � .�1/

".
2/ı ı 
1 ; Œ
1; 
2�/

D Œs.
1/; s.
2/� :

Corollary 6.4.2. There is an isomorphism of Lie algebras

s W MaC.W/ �! Def.Ass1!Graphs/˚ GC2
.a; 
/ �! .a � 
ı; 
/:

and hence an isomorphism of gauge groups,

eMaC.W/0
' eDef.Ass1!f Graphs/0

� eGC0
2 :
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Consider now an action of GRT1 on �0 2MCAss via the morphism s,

eads.
/Ă0 D

�
ı ı C

�

ı C

�

ı; ı ı C

�

ı

�
C 
ı ı � � �

�

ı ı 
 CO.
2/ ; � �
�

D

0@ı ı C �ı � ııı
ı C


�

ı �



�

ı CO.
2/ ; � �

1A
D

�
ı ı C

�

ı � ııı
ı CO.
2/ ; � �
�

As terms of the form



�

ı cancel out, the Ass1 structure on polyvector fields

corresponding to eads.
/Ă0 has the differential,
�

ı, unchanged by the action of GRT1
at the price of adding higher homotopies to the standard wedge product. This
rather unusual universal Ass1 structure is Ass1 isomorphic to the naive GRT1
deformation (6.2) since

eads.
/Ă0 D e
ads.
/e�adH
 Ă
0

and eads.
/e�adH
 is of the form eadH for some H D .H 2 Def.Ass1 !

f Graphs/; 0/. However this fact does not prove our Main Theorem as the
multiplication operation in the Ass1 algebra corresponding to eads.
/Ă0 is given
by the graph

ı ı � ııı
ı CO.
2/

and hence is not equal to the standard wedge product. However it is now clear how
to achieve a GRT1 deformation of the standard dg algebra structure on polyvector
fields in such a way that the differential and the wedge product stay unchanged. In
the notations of Lemma 5.1.3, consider a degree zero map, given by

Os W GC2 �! Def.Ass1!f Graphs/˚ GC2

 �! .
ı C 
ıı C : : :C 


max
ı:::ı ; 
/:

Then, for 
 a cycle in GC2 representing some cohomology class Œ
� 2 grt1, we have

ead Os.
/Ă0 D

�
ı ı C

�

ı � ııı
ı CO.
2/ ; � �
�

(6.3)

so that the first corrections to the standard wedge multiplication, ıı , in polyvector
fields is given by the following graph

ı ı � ııı

max
ı:::ı CO.
2/
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As 
maxı:::ı has at least four white vertices, we conclude that the universal Ass1
structure corresponding to ead Os.
/Ă0 has operations�1 and�2 unchanged at the price
of non-trivial higher homotopy operations ���4 ¤ 0. We have

ead Os.
/Ă0 D e
ad Os.
/e�adH
 Ă
0 D e

�ad.H;0/Ă
0

for some H 2 Def.Ass1 ! f Graphs/. Thus the universal Ass1 structures
corresponding to Maurer–Cartan elements (6.2) and (6.3) are Ass1 isomorphic.
This proves our Main Theorem for the case M D Rd , the affine space.

6.4.1. Globalization to any Poisson manifold. Let M be a finite-dimensional
smooth manifold. A torsion-free affine connection on M defines an isomorphism
of sheaves of algebras between the sheaf of jets of functions, J1C1M , and the
completed symmetric bundle OS.T �M / of the cotangent bundle. Similarly, the sheaf
of jets of polyvector fields, J1.S.TM Œ�1�//, becomes isomorphic to the sheaf
T WD OS.T �M ˚ TM Œ�1�/. The canonical jet bundle connection defines, via this
isomorphism, a Maurer–Cartan element B 2 �.M;T/ of the dg Lie algebra of
differential forms on M with values in T. Taking jets (with respect to the affine
connection) is a quasi-isomorphism

j W .Tpoly.M/;^; Œ ; �S / ,! .�.M;T/; ddR C ŒB; �S ;^; Œ ; �S /

of Gerstenhaber algebras. The space on the right was used, e.g., in [2], to
globalize Kontsevich’s formality morphism. The action of degree 0 cocycles of
Kontsevich’s graph complex GC2 by Lie1-derivations of the polyvector fields
on affine Rd defines (essentially, because of equivariance with respect to linear
coordinate changes) Lie1-derivations of the dg Lie algebra .�.M;T/; ddR; Œ ; �S /.
Let now � be a Poisson bivector on M . The jet j.�/ is then a Maurer–Cartan
element of �.M;T/ and, because Lie1 morphisms can be twisted by Maurer–
Cartan elements, any degree 0 graph cocycle 
 will define a Lie1 morphism

e
 W .�.M;T/; ddR C Œj.�/C B; �S ; Œ ; �S /

! .�.M;T/; ddR C Œ
.j.�/C B/; �S ; Œ ; �S /:

Define ı WD ddRC ŒB; �S . Because 
.j.�/CB/ D j.
.�//CB , the 
 on the right
referring to the globalized automorphism of polyvector fields on M (see [2] for the
arguments), the above is a morphism

.�.M;T/; ı C dj.�/; Œ ; �S /! .�.M;T/; ı C dj.
.�//; Œ ; �S /:

Our formula for the morphism of associative Poisson cohomology algebras defines
a morphism of associative algebras

F 
 W H..�.M;T/; ı;^/; dj.�//! H..�.M;T/; ı;^/; dj.
.�///:
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Since taking jets is a quasi-isomorphism of associative algebras,

.Tpoly.M/; d� ;^/! .�.M;T/; ı C dj.�/;^; /;

this shows that the morphism F 
 globalizes.
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