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Duality functors for quantum groupoids
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Abstract. We present a formal algebraic language to deal with quantum deformations of
Lie–Rinehart algebras — or Lie algebroids, in a geometrical setting. In particular, extending
the ice-breaking ideas introduced by Xu in [34], we provide suitable notions of “quantum
groupoids”. For these objects, we detail somewhat in depth the formalism of linear duality; this
yields several fundamental antiequivalences among (the categories of) the two basic kinds of
“quantum groupoids”. On the other hand, we develop a suitable version of a “quantum duality
principle” for quantum groupoids, which extends the one for quantum groups — dealing with
Hopf algebras — originally introduced by Drinfeld (cf. [8], §7) and later detailed in [12].
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1. Introduction

The classical theory of Lie groups, or of algebraic groups, has a quantum counterpart
in the theory of “quantum groups”. In Drinfeld’s language, quantum groups are
suitable topological Hopf algebras which are formal deformations either of the
algebra of functions on a formal group, or of the universal enveloping algebras of
a Lie algebra. These deformations add further structure on the classical object: the
formal group inherits a structure of Poisson formal group, and the Lie algebra a
structure of Lie bialgebra. Linear duality for topological Hopf algebras reasonably
adapts to quantum groups, lifting the analogous duality for their semiclassical limits.
On the other hand, Drinfeld revealed a more surprising feature of quantum groups,
later named “quantum duality”, which somehow lifts the Poisson duality among
Poisson (formal) groups. Namely, there exists an equivalence of categories between
quantized enveloping algebras and quantized formal groups, which shifts from a
quantization of a given Lie bialgebra L to one of the dual Lie bialgebra L�.

Another extension of Lie group theory is that of Lie–Rinehart algebras (some-
times loosely called “Lie algebroids”), developed by Rinehart, Huebschmann and
others. The notion of Lie–Rinehart algebra

�
L; Œ ; �; !

�
over a commutative ring A

lies inbetweenA–Lie algebras and k–Lie algebras of derivations of the form Der.A/.
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Well-known examples come from geometry, such as the global sections of a Lie
algebroid, for example the 1–forms over a Poisson manifold (cf. [7], [15], [10]).

The natural algebraic gadgets attached with a Lie–Rinehart algebra are its
universal enveloping algebra V `.L/ and its algebra of jets J r.L/, which are in
linear duality with each other. Any Lie–Rinehart algebra L can also be seen as a
right Lie–Rinehart algebra: thus one can also consider its right enveloping algebra,
call it V r.L/, anti-isomorphic to V `.L/, and its dual J `.L/.

All these algebraic objects — V `.L/, V r.L/, J r.L/ and J `.L/— are (topologi-
cal) bialgebroid — left ones when a superscript “`” occurs, and right when “r” does.
Indeed, they also have an additional property, about their Hopf–Galois map, such that
these left/right bialgebroids are actually left or right Hopf left/right bialgebroids —
an important generalization of Hopf algebras.

Linear duality for (left/right) bialgebroids is twofold: any (left/right) bialgebroid
U is naturally a left A–module and a right A–module, thus one may consider its left
dual U� as well as its right dual U �. Under mild conditions, U � and U� are naturally
(right/left) bialgebroids (see [17]). The

�
V `.L/; J r.L/

�
is tied together by such a

linear duality, and similarly for
�
V r.L/; J `.L/

�
.

When looking for quantizations of Lie–Rinehart algebras, one should consider
formal deformations of either V `=r.L/ or J r=`.L/, among left/right (topological)
bialgebroids: these deformations automatically inherit from their semiclassical limits
the additional property of being left/right Hopf left/right bialgebroids. We shall
loosely call such deformations “quantum groupoids”.

The first step in this direction was made by Ping Xu (cf. [34]): he introduced
a notion of quantization of V `.L/, called quantum universal enveloping algebroid
(LQUEAd in short). Then he noticed that any such quantization endows L with a
richer structure of Lie–Rinehart bialgebra. This is a direct extension of the notion
of Lie bialgebra, in particular, it is a self-dual notion, so if L is a Lie–Rinehart
bialgebra then its dual L� is a Lie–Rinehart bialgebra as well (see [20]). Finally,
Xu also provided an example of construction of a non-trivial LQUEAd DX ŒŒh��F ,
by “twisting” the trivial deformation DX ŒŒh�� of DX WD V `

�
�.TX/

�
, where X is a

Poisson manifold.

The purpose of this paper is to move some further steps in the theory of “quantum
groupoids”. After recalling some basics of the theory of Lie–Rinehart algebras and
bialgebras (Sec. 2), we introduce also some basics of the theory of bialgebroids
(Sec. 3): in particular, we dwell on the relevant examples, i.e. universal enveloping
algebras and jet spaces for Lie–Rinehart algebras.

We then introduce “quantum groupoids” (Sec. 4). Besides Xu’s original notion
of LQUEAd, we introduce its right counterpart (in short RQUEAd): a topological
right bialgebroid which is a formal deformation of some V r.L/. Similarly, we
introduce quantizations of jet spaces; a topological right bialgebroid which is a
formal deformation of some J r.L/ will be called a right quantum formal series
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algebroid (RQFSAd in short); similarly, the left-handed version of this notion gives
rise to the definition of left quantum formal series algebroid (LQFSAd in short).
Altogether, this gives us four kinds of quantum groupoids; each one of these induces
a Lie–Rinehart bialgebra structures on the original Lie–Rinehart algebra one deals
with, extending what happens with LQUEAd’s.

As a next step, we discuss linear duality for quantum groupoids (Sec. 5). The
natural language is that of linear duality for bialgebroids, with some precisions. First,
by infinite rank reasons we are lead to consider topological duals. Second, both left
and right duals are available, thus taking duals might cause a proliferation of objects.
Nevertheless, we can keep this phenomenon under control, so eventually we can
bound ourselves to deal with only a handful of duality functors.

In the end, our main result on the subject claims the following: our duality func-
tors provide (well-defined) anti-equivalences between the category of all LQUEAd’s
and the category of all RQFSAd’s (on a same, fixed ring Ah), and similarly also
anti-equivalences between the category of all RQUEAd’s and the category of all
LQFSAd’s (on Ah again). In addition, if one starts with a given quantum groupoid,
which induces a specific (Lie–Rinehart) bialgebra structure on the underlying Lie–
Rinehart algebra, then the dual quantization yields the same or the coopposite Lie–
Rinehart bialgebra structure — see Theorems 5.1.5 and 5.2.2 for further precisions.

Finally (Sec. 6), we develop a suitable “Quantum Duality Principle” for quantum
groupoids. Indeed, we introduce functors “à la Drinfeld”, denoted by . /_ and
. /0, which turns (L/R)QFSAd’s into (L/R)QUEAd’s and viceversa, so to provide an
equivalence between the category of LQFSAd’s and that of LQUEAd’s, and a similar
equivalence between RQFSAd’s and RQUEAd’s. In addition, if one starts with a
quantization of some Lie–Rinehart bialgebra L, then the (appropriate) Drinfeld’s
functor gets out of it a quantization of the dual Lie–Rinehart bialgebra L�.

For the functor . /_, Drinfeld’s original definition for quantum groups can be
easily extended to quantum groupoids. Instead, this is not the case for the functor
. /0: therefore we have resort to a different characterization (for quantum groups) of
it, and adopt that as a definition (for quantum groupoids): this requires linear duality,
which sets a strong link with the first part of the paper.

It is worth remarking that linear duality for quantum groupoids interchanges
“left” and “right”; instead, quantum duality takes either one to itself: at the end of the
day, this means that if one aims to have both linear duality and quantum duality then
he/she is forced to deal with all four types of quantum groupoids that we introduced
— none of them can be left apart.

At the end (Sec. 7) we present an example, just to illustrate some of our main
results on a single — and simple, yet significant enough — toy model.

Acknowledgements. The authors thank Niels Kowalzig for his valuable comments
and hints.
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2. Lie–Rinehart algebras and bialgebras

Throughout this paper, k will be a field and A will be a unital, associative k–
algebra; we assume k to have characteristic zero (though for most definitions and
constructions this is not necessary). Moreover, for all objects defined in this section
we assume in addition that A is also commutative.

2.1. Lie–Rinehart algebras. To begin with, we introduce the notion of (left) Lie–
Rinehart algebra ( or “Lie algebroid”).

Definition 2.1.1. A (left) Lie–Rinehart algebra (see [30]) is a triple .A;L; !/where:
L is a k–Lie algebra, L is an A–module, and ! is an A–linear morphism of
Lie k–algebras from L to Der.A/, called anchor (map), such that the following
compatibility relation holds:

8D;D0 2 L; 8f 2 A;
�
D;fD0

�
D !.D/.f /D0 C f

�
D;D0

�
In particular, if L is finitely generated projective as an A–module, then .A;L; !/
will be called a finite projective Lie–Rinehart algebra.

Notation. When there is no ambiguity, the Lie–Rinehart algebra .A;L; !/ will be
written L.

Examples 2.1.2. Any Lie algebra over A is a Lie–Rinehart algebra whose anchor
map ! is 0 (and conversely). On the other hand,

�
A;Der.A/; id

�
is a Lie–Rinehart

algebra too. Another example is the A–module DA of Kähler differentials on any
Poisson algebra A (see [15]).

In the setup of differential geometry, natural examples of Lie–Rinehart algebras
arise as spaces of global sections of Lie algebroids; for instance, such an example
(of Lie algebroid) is given by the vector bundle �1P of differential forms of degree 1
on a Poisson manifold P (see, e.g., [7]).

2.1.3. Differentials for Lie–Rinehart algebras. Given a finite projective Lie–
Rinehart algebra .A;L; !/, it is known that

V
AL
� D ˚n

Vn
AL
� admits a

differential dL that makes it into a differential algebra. Here dL W
Vn
AL
� �!VnC1

A L� is defined as follows: for all � 2
Vn
AL
� and for all .X1; X2; : : : ; XnC1/ 2

LnC1, one has

.dL�/.X1; : : : ; XnC1/ D

nC1X
iD1

.�1/iC1!.Xi /
�
�.X1; : : : ;cXi ; : : : ; XnC1�

C

X
i<j

.�1/iCj�
�
ŒXi ; Xj �; X1; : : : ;cXi ; : : : ;cXj ; : : : ; XnC1�

In the case where L D TX , the differential dL coincides with the de Rham
differential.
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Definition 2.1.4. Let .A;L; !/ be a (left) Lie–Rinehart algebra. The (left) universal
enveloping algebra of L is the k–algebra V `.L/ WD TC

k
.A ˚ L/

ı
I where

TC
k
.A˚ L/ is the positive part of the tensor k–algebra over A ˚ L and I is the

two-sided ideal in TC
k
.A˚ L/ generated by the elements

a˝ b � ab; a˝ � � a�; � ˝ � � �˝ � � Œ�; ��; � ˝ a � a˝ � � !.�/.a/

8a; b 2 A; �; � 2 L:

Remarks 2.1.5. (a) Note that V `.L/ is a filtered ring, its (increasing) filtration˚
V `n .L/

	
n2N being defined by V `0 .L/ WD A, V `nC1.L/ WD V

`
n .L/CV

`
n .L/�L (n 2 N).

We denote by Gr
�
V `.L/

�
the associated graded algebra. It is known (cf. [30])

that if L is projective as an A–module, then Gr
�
V `.L/

�
Š SA.L/. Moreover,

�A W A �! V `.L/ and �L W L �! V `.L/ are monomorphisms.
(b) The Lie–Rinehart algebrasL D

�
L;A; Œ ; �; !

�
andLop WD

�
L;A;�Œ ; �;�!

�
are isomorphic via the isomorphims F defined by F.D/ WD �D for all D 2 L and
F.a/ WD a for all a 2 A .

(c) If X is a (smooth) manifold and A D C1.X/, then V `
�
Der.A/

�
for the Lie–

Rinehart algebra
�
A;Der.A/; id

�
is the k–algebra of global differential operators

on X .

2.1.6. From a finite projective Lie–Rinehart algebra to a free Lie–Rinehart
algebra. Most of the time, we will work with finite projective Lie–Rinehart algebras.
This is a reasonable hypothesis as Lie–Rinehart algebras coming from the geometry
are finite projective. Several times in this article, we will prove results for (finite)
free Lie–Rinehart algebra and then extend them to finite projective Lie–Rinehart
algebras. We now explain the key step for this.

Let L be a finite projective Lie–Rinehart algebra. There exist a finite projective
A–module Q such that F D L ˚ Q is a finite rank free A–module. We can
endow F with the following Lie–Rinehart algebra structure: for all D;D1;D2 2 L,
E;E1; E2 2 Q, we set

!F .D CE/ WD !L.D/; ŒD1 CE1;D2 CE2� WD ŒD1;D2�

that is, the structure of L is extended trivially to F D L ˚ Q. Then V `.F / D
V `.L/˝A S.Q/.

The A–module LQ WD L ˚Q ˚ L ˚Q ˚ � � � D F ˚ F ˚ F ˚ � � � is a free
A–module. Define R D Q˚L˚Q˚L˚� � � ; then R is a free A–module such that
LQ D L˚R is a free A–module (cf. [14]). We set on LQ the Lie–Rinehart algebra
structure (for all D;D1;D2 2 L;B;B1; B2 2 R)

!LQ.D C B/ WD !L.D/; ŒD1 C B1;D2 C B2� WD ŒD1;D2�

in other words, the Lie–Rinehart algebra structure of L is extended trivially to
LQ D L˚R.
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Definition 2.1.7. Let anA–basis fb1; : : : ; bng of F be given. Then one can construct
a basis fvtgt2T of R and an A–basis fetgt2T of LQ both indexed by T WD N �
f1; : : : ; ng. Any such basis for LQ will be called a good basis. For later use, if
i D .i1; i2/ 2 T we set $.ei / WD i1.

We set Y D ˚niD1kbi andZ D ˚t2T kvt ' Y ˚ Y ˚ Y � � � so that F D A˝kY
and R D A˝k Z. We have then V `.LQ/ D V `.L/˝k S.Z/.

2.1.8. Right Lie–Rinehart algebras. For the sake of completeness, we have to
mention that one can also, in a symmetric way, consider the notion of right Lie–
Rinehart algebra, as follows:

Definition 2.1.9. A right Lie–Rinehart algebra is a triple .A;L; !/ where L is a k–
Lie algebra,L is a rightA–module, and! is anA–linear morphism of Lie k–algebras
from L to Der.A/, called anchor (map), such that the following compatibility
relation holds:

8D;D0 2 L; 8f 2 A;
�
D;D0 � f

�
D D0 � !.D/.f /C

�
D;D0

�
� f

Remark 2.1.10. As A is commutative, a Lie–Rinehart algebra can be considered as
a right Lie–Rinehart algebra and viceversa. However, the enveloping algebra defined
by the notion of right Lie–Rinehart algebra is different from that defined by a (left)
Lie–Rinehart algebra.

Definition 2.1.11. Let .A;L; !/ be a right Lie–Rinehart algebra. The (right)
universal enveloping algebra of L is the k–algebra V r.L/ WD TC

k
.A˚L/

ı
I where

TC
k
.A ˚ L/ is the positive part of the tensor k–algebra over A ˚ L and I is the

two-sided ideal in TC
k
.A˚ L/ generated by the elements

a˝ b � ab; � ˝ a� � � a; � ˝ �� �˝ � � Œ�; ��; � ˝ a� a˝ � �!.�/.a/

8a; b 2 A; �; � 2 L:

Next result clarifies the link between left and right enveloping algebras of a single
Lie–Rinehart algebra L. Hereafter, Lop denotes the “opposite” Lie–Rinehart algebra
to L — cf. Remarks 2.1.5 — while Aop denotes the opposite of any (associative)
algebra A.

Proposition 2.1.12. For any Lie–Rinehart algebra L, the algebras V r.L/op and
V `.Lop/ are equal, and there is an algebra isomorphism „ W V `.L/ ��!V r.L/op,
a 7! a, D 7! �D (for all a 2A, D 2L).
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2.2. Lie–Rinehart bialgebras. We are now ready to introduce the notion of Lie–
Rinehart bialgebra (cf. [26], [20], [16]).
Definition 2.2.1. A Lie–Rinehart bialgebra is a pair

�
L1; L2

�
of finitely generated

projective A–modules in duality — that is, L1 Š L�2 and L2 Š L�1 — each of them
being endowed with Lie–Rinehart algebra structures such that the differential d1 onV
AL1 arising from the Lie–Rinehart structure on L2 Š L�1 is a derivation of the Lie

bracket of L1, that is

d1
�
ŒX; Y �

�
D
�
d1.X/; Y

�
C
�
X; d1.Y /

�
for all X; Y 2 L1:

In general, if L is a finitely generated projective A–module, then its linear dual
L� (as an A–module) is finitely generated projective as well: in this case, in the
following we shall say that “L is a Lie–Rinehart bialgebra” to mean that

�
L;L�

�
has

a structure of Lie–Rinehart bialgebra, and we shall denote the differential of
V
AL

mentioned above by dL� or ıL.

Remarks 2.2.2. (a) The conditions of Definition 2.2.1 do not change if one switches
L1 and L2 (cf. [20]).

(b) It follows from the definition that the differential ıL of L in a Lie–Rinehart
bialgebra

�
L;L�

�
is uniquely determined by its restriction toA andL— the degree 0

and degree 1 pieces of
V
AL.

(c) If
�
L;L�

�
is a Lie–Rinehart bialgebra, we can read off the explicit relation

between the Lie–Rinehart structure of L� — its anchor map !L� and its Lie bracket
Œ ; �L� — and the differential ıL of L as follows: if D�; E� 2 L�, X 2 L, a 2 A,
then

!L�.D
�/.a/ D

˝
ıL.a/;D

�
˛
;˝

X; ŒD�; E��L�
˛
C
˝
ıL.X/;D

�
^E�

˛
D !L�.D

�/
�
hX;E�i

�
� !L�.E

�/
�
hX;D�i

�
;

where h ; i denotes the natural pairing between L and L�. Indeed, one can use these
formulas either to deduce !L� and Œ ; �L� from ıL, or to deduce the latter from !L�

and Œ ; �L�
(d) Let

�
L;L�

�
be a Lie–Rinehart bialgebra. Denote by d the differential onV

AL
� arising from the Lie–Rinehart structure on L and d�.D ıL/ the differential

on
V
AL coming from the Lie–Rinehart structure on L�. Then A inherits a Poisson

algebra structure by ff; gg WD
˝
df; d�g

˛
for all f; g 2 A. (see [20], [33]); moreover,

one has Œdf; dg� D dff; gg and d�ff; gg D �Œd�f; d�g�.
(e) If

�
L;L�

�
is a Lie–Rinehart bialgebra, then

�
Lop; L�

�
,
�
L; .L�/op� and�

Lop; .L�/op� are Lie–Rinehart bialgebras too. Identifying any Lie–Rinehart bial-
gebra, as a pair, with the left-hand of the pair, say L �

�
L;L�

�
, we write

Lop �
�
Lop; L�

�
— the “opposite” to L;

�
L; .L�/op�

� Lcoop — the “coopposite”;
and Lop

coop �
�
Lop; .L�/op� — the “opposite-coopposite”.

(f) By means of the so called r–matrices one can introduce the class of
coboundary Lie–Rinehart bialgebras, and among them the triangular ones: we refer
the interested readers to [34].
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3. Left and right bialgebroids

Let again k be a field, andA a unital, associative k–algebra. We defineAe WD A˝k Aop.

3.1. A–rings, A–corings. We begin this section introducing the notions of A–
ring and A–coring, which are direct generalizations of the notions of algebra and
coalgebra over a commutative ring.
Definition 3.1.1. Let A be a k–algebra as above. An A–ring is a triple .H;mH ; �/
whereH is an Ae–module,mH W H ˝AH �! H and � W A �! H are Ae–module
morphisms such that

mH ı.mH˝idH / D mH ı.idH˝mH /; mH ı.�˝idH / D idH D mH ı.idH˝�/

where in the second set of identities we make the identifications H ˝A A Š H and
A˝A H Š H .

It is well known (see [4]) that A–rings H correspond bijectively to k–algebra
homomorphisms � W A �! H . With this characterization, the Ae–module structure
on H can be expressed as follows: a � h � b D �.a/h�.b/ for a; b 2 A, h 2 H . The
dual notion (“A–coring”) is the following:
Definition 3.1.2. An A–coring is a triple .C;�; �/ where C is an Ae–module (with
left action LA and right action RA), � W C �! C ˝A C and � W C �! A are
Ae–module morphisms such that

.�˝ idC /ı� D .idC ˝�/ı�; LA ı .�˝ idC /ı� D idC D RA ı .idC ˝�/ı�

As usual, we adopt Sweedler’s †–notation �.c/ D c.1/˝ c.2/ or �.c/ D c.1/˝
c.2/ for c 2 C .

Let A be as above, and consider now Ae as base k–algebra. An Ae–ring H
can be described by a k–algebra morphism � W Ae �! H . Let us consider its
restrictions s` WD �.–˝k 1H / W A �! H , t` WD �.1

H
˝k –/ W A �! H , which are

called respectively source and target maps. Thus an Ae–ringH carries two (left) A–
module structures and two (right) Aop–module structures: for all a; a0 2 A, h 2 H ,
we write

a F h G Qa WD s`.a/t`. Qa/h; a I h J Qa WD ht`.a/s`. Qa/

As usual, the tensor product ofH with itself (as an A–bimodule, i.e. an Ae–module)
is defined as

HG˝
A
FH WD H ˝k H

ı˚�
u G a

�
˝ u0 � u˝

�
a F u0

�	
a2A;u;u02H

Now we define the left Takeuchi product (of the Ae–ring H with itself)
HG�

A
FH � HG˝

A
FH

HG�
A
FH WD

nP
iui˝u

0
i 2 HG˝

A
FH

ˇ̌̌P
i

�
a I ui

�
˝Au

0
i D

P
iui˝

�
u0i J a

�
; 8a 2 A

o
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By construction, HG�
A
FH has a natural structure of Ae–module, induced by that

of HG˝
A
FH . Even more, HG�

A
FH is an Ae–ring, via factorwise multiplication, with

unit element 1
H
˝ 1

H
and with �HG�

A
FH .a ˝ Qa/ WD s`.a/ ˝ t`. Qa/. Note that this

instead is not the case for HG˝
A
FH .

3.2. Left bialgebroids. We introduce now the notion of left bialgebroid, as well
as some related items (see [32], [25], [34], [4] and [22], Chapter 2, for a detailed
history of this notion). We begin with the very definition:

Definition 3.2.1. A left A–bialgebroid is a k–module H that carries simultaneously
a structure of an Ae–ring .H; s`; t`/ and of an A–coring .H;�`; �/ subject to the
following compatibility relations:

(i) TheAe–module structure on the A-coring .H;�`; �/ is that of FHG, namely
(for all a; Qa 2 A, h 2 H ) a F h G Qa WD s`.a/t`. Qa/h.

(ii) The coproduct map �` is a unital k–algebra morphism taking values in
HG�

A
FH .

(iii) The (left) counit map � has the following property: for a; Qa 2 A, u; u0 2 H ,
one has

�
�
s`.a/t`. Qa/u

�
D a�.u/ Qa;

�.uu0/ D �
�
us`

�
�.u0/

��
D �

�
ut`
�
�.u0/

��
;

�.1/ D 1:

Remarks 3.2.2. A left bialgebroidH overA has the following properties (for a 2 A,
u 2 H ):

(a) �`.a F u G Qa/ D .a F u.1//˝ .u.2/ G Qa/;

�`
�
a I u J Qa

�
D .u.1/ J Qa/˝ .a I u.2//

(using †–notation �.u/ D u.1/ ˝ u.2/ as usual, cf. Definition 3.1.2)

(b) H acts on A on the left (cf. [22]) by u:a WD �
�
us`.a/

�
D �

�
ut`.a/

�
; we

shall also use the notation u.a/ WD u:a, and call this the left anchor of the
left bialgebroid H (cf. [34]).

(c) t`
�
�.x/

�
˝ 1 D t`

�
�
�
x.1/

��
˝ s`

�
�
�
x.2/

��
D 1˝ s`

�
�.x/

�
for all x 2 H .

(d) as a matter of notation, if
�
H;A; s`; t`; �; �

�
is a left bialgebroid, we set

HC WD Ker.�/.

Definition 3.2.3. Let H D
�
H;A; s`; t`; �; �

�
and OH D

�
OH; OA; Os`; Ot`; O�; O�

�
be two

left bialgebroids. A morphism of left bialgebroids from H to OH is a pair .f; F /
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where f W A �! OA is a morphism of algebras, F W H �! OH is a morphism of
rings and of corings, and F ı s` D Os` ı f , F ı t` D Ot` ı f .

We denote by (LBialg) the category of left bialgebroids, whose objects are
left bialgebroids and morphisms are defined as above. Inside it, (LBialgA) is the
subcategory whose objects are all the left bialgebroids overA, and whose morphisms
are all the morphisms in (LBialg) of the form .id; F /.

3.2.4. Twistors of left bialgebroids. Let H be a left bialgebroid. Given F DP
i xi ˝ yi 2 HG˝

A
FH (with xi ; yi 2 H ), define s`F W A �! H by s`F .a/ WDP

is
`
�
xi .a/

�
yi and t`F W A �! H by t`F .a/ D

P
i t
`
�
yi .a/

�
xi . Moreover, for any

a; b 2 A set a �F b WD s`F .a/.b/ D
P
ixi .a/yi .b/.

Proposition 3.2.5. (cf. [34]) Assume that F 2 H˝
A
H satisfies the following

conditions:

(i) .�˝ id/.F/ �F1;2 D .id˝�/.F/ �F2;3 inside H ˝
A
H ˝

A
H

(ii) m
�
.� ˝ id/.F/

�
D 1

H
; m

�
.id˝ �/F

�
D 1

H

where F1;2 D F˝1
H
2 H˝

A
H˝

A
H and F2;3 D 1H ˝F 2 H˝

A
H˝

A
H .

Then one has F �
�
t`F .a/˝1H �1H ˝ s

`
F .a/

�
D 0 insideH ˝

A
H (for all a 2 A).

Moreover, if F satisfies (i) and (ii) above, then

(a) .A;�F / is an associative algebra, denoted AF , and a �F 1 D a D 1 �F a for all
a 2 A;

(b) s`F W AF �! H is an algebra morphism and t`F W AF �! H is an algebra
antimorphism.

Now let M be a module over H (as an algebra): then M has also a naturalAe–
module structure. If F is a twistor of H , then M has also a natural AeF–module
structure. Consequently, if M1 and M2 are two H–modules, the tensor products
M1G˝

A
FM2 and M1G˝

AF
FM2 are well defined.

Corollary 3.2.6. (cf. [34]) Let M1 and M2 be two left H–modules. Then there
exists a well defined k–linear map F# W M1G˝

AF

FM2 ��! M1G˝
A
FM2 given by

m1 ˝m2 7! F � .m1 ˝m2/.
We say that F is invertible if F# is a k–vector space isomorphism for any choice

of M1 and M2. In this case, taking M1 D M2 D H we get a k–linear isomorphism
F# W H ˝

AF
H �! H ˝

A
H .

Definition 3.2.7. An element F 2 H˝
A
H is called a twistor (of H ) if it satisfies

equations (i) and (ii) in Proposition 3.2.5 and it is invertible (in the just explained
sense).
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Let now F be a twistor ofH . Then we may define a new coproduct�F W H �!

H ˝
AF
H of H by the formula �F .x/ WD

�
F#
��1�

�.x/ �F
�
. The key result is then

the following (see [34]):
Theorem 3.2.8. Let

�
H;A; s`; t`; m;�; �

�
be a left bialgebroid.

Then
�
H;AF ; s

`
F ; t

`
F ; m;�F ; �

�
is a left bialgebroid as well.

3.2.9. Left bialgebroid structures on universal enveloping algebras V `.L/.
Given a Lie–Rinehart algebra L, there is a standard left bialgebroid structure on
V `.L/.

Source and target maps are equal and given by �A W A �! V `.L/. Then the
Ae–module structure FV `.L/G is given by a F u G Qa WD a Qau. The coproduct �` W
V `.L/ �! V `.L/G˝

A
FV

`.L/ and the counit map � W V `.L/ �! A are determined

by

�`.a/ D a˝ 1; �`.X/ D X ˝ 1C 1˝X; �.a/ D a; �.X/ D 0

8a 2 A; X 2 L:

Note that the anchor map ! endows A with an obvious left V `.L/–module structure,
given by u:a WD !.u/.a/ for u2V `.L/, a2A, that coincides with the anchor of the
left bialgebroid V `.L/; cf. Remarks 3.2.2(b).

More in general, left V `.L/–module structures on A correspond to left bialge-
broid structures on V `.L/ over A (see [22]). Finally, one can recover the anchor of
L from the left bialgebroid structure of V `.L/ as follows: !L.X/.a/ D �V`.L/.Xa/
for all X 2 L, a 2 A.
Remark 3.2.10. Let .A;L/ and .A0; L0/ be two Lie–Rinehart algebras. Endow
V `.L/ and V `.L0/ with their standard left bialgebroid structure. A Lie–Rinehart
algebra morphism from .A;L/ to .A0; L0/ as it was defined in [15] — see also
“morphisms of Lie pseudo-algebras” as they are defined in [13] — gives rise to a
left bialgebroid morphism from V `.L/ to V `.L0/.

Our next theorem is a suitable version for left bialgebroids of the well-known
Cartier–Milnor–Moore theorem (for Hopf algebras). A similar result is given in
[28], yet in this paper we do need (later on) that kind of result exactly as stated here
below.
Theorem 3.2.11. Assume that A is a unital commutative algebra over the field k.

(a) Let .U;A; s`; t`; �`; �/ be a left bialgebroid such that s` D t`. Set

P `.U / WD
˚
u 2 U

ˇ̌
�`.u/ D u˝ 1C 1˝ u

	
(the set of “left primitive elements” of U ). Then the pair

�
A;P `.U /

�
is a Lie–

Rinehart algebra.
(b) Assume in addition thatP `.U / is projective as anA–module, and thatP `.U /

and s`.A/ generate U as an algebra. Then U is isomorphic to V `
�
P `.U /

�
as a left

bialgebroid.
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Proof. (a) On P `.U / we set the following A–module structure: a � D WD s`.a/D

for all a 2 A, D 2 P `.U /. Moreover, if D;D0 2 P `.U / then
�
D;D0

�
WD D �D0 �

D0 �D 2 P `.U /, by direct check: this defines a Lie bracket on P `.U /. Finally, we

define ! W P `.U / ��! Der.A/ by D 7!
�
b
!.D/
���!�.Ds`.b//

�
. It is proved in [22]

(Proposition 4.2.1) that
�
A;P `.U /; !

�
is a Lie–Rinehart algebra.

(b) By assumption, the natural algebra morphism from Tk
�
A˚ P `.U /

�
to U is

surjective and it induces a surjective algebra morphism f W V `
�
P `.U /

�
! U . As

P `.U / and s`.A/ generates V `
�
P `.U /

�
as an algebra, this map is also a morphism

of corings. By the same argument as in [27], Lemma 5.3.3, one shows that f is also
injective because f

ˇ̌
P `.U /

is injective (which is obvious).

3.3. Right bialgebroids. Just like for left bialgebroids, one can consider the notion
of right bialgebroids (cf. [17] and [4]). We will need a second type of “Takeuchi
product”. In order to distinguish it from the previous one, we shall now denote the
base k–algebra by B instead of A. Hereafter, B is a (unital, associative) k–algebra,
and we use notations as in § 3.1. LetH be aBe–ring given by a k–algebra morphism
�r W Be �! H , a source map sr WD �r.–˝1/ and a target map t r WD �r.1˝–/. We
consider now the rightBe–module structure onH given by h�.b˝ Qb/ WD h��r.b˝ Qb/,
for b; Qb 2 B , h 2 H . Then the tensor product of H with itself (as a B–bimodule,
i.e. a Be–module) is defined as

HJ˝
B

IH WD H ˝k H
ı˚
.u J b/˝ u0 � u˝ .b I u0/

	
b2B;u;u02H

Now we define the right Takeuchi product (of theBe–ringH with itself)HJ�
B
IH �

HJ˝
B

IH

HJ�
B
IH WD

nP
iui ˝ u

0
i 2 HJ

B
˝IH

ˇ̌̌P
i .a F ui /˝ u

0
i D

P
iui ˝ .u

0
i G a/

o
Definition 3.3.1. A right B–bialgebroid is a k–module H that carries simultane-
ously a structure of a Be–ring .H; sr ; t r/ and of a B–coring .H;�r ; @/ subject to
the following compatibility relations:

(i) The Be–module structure on the B–coring .H; sr ; t r/ is that of IHJ, namely
(for all b; Qb 2 B , h 2 H;) b I h J Qb WD hsr. Qb/t r.b/ D h�. Qb ˝ b/.

(ii) The coproduct map �r is a unital k–algebra morphism taking values in

HJ
B
�IH .
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(iii) The (right) counit map @ has the following property: for all b; Qb 2 B ,
u; u0 2 H , one has

@
�
usr

�
Qb
�
t r.b/

�
D b@.u/ Qb;

@.uu0/ D @
�
sr
�
@.u/

�
u0
�
D @

�
t r
�
@.u/

�
u0
�
;

@.1/ D 1

Remarks 3.3.2. (a) The definition of a right bialgebroid is obtained from the
definition of a left bialgebroid by exchanging the role of black triangles (I, J)
and white triangles (F;G). Consequently, the properties of a right bialgebroid are
obtained from those of a left bialgebroid — see Remarks 3.2.2 — by exchanging the
roles of black triangles and white triangles.

(b) (cf. [22]) The “opposite” of a left bialgebroid U D
�
U;A; s`; t`; �`; �

�
is

defined asU op WD
�
U op; A; t`; s`; �`; �

�
: this can be shown to be a right bialgebroid.

The “coopposite” is given by Ucoop WD
�
U;Aop; t`; s`; �

coop
`
; �
�

with �coop
`
W U �!

FU ˝Aop UG, u 7! u.2/˝u.1/; this is still a left bialgebroid. As a consequence,U op
coop

is a right bialgebroid.

The definition of a right bialgebroid morphism is analogous to that of a left bial-
gebroid morphism. We denote by (RBialg) the category of right bialgebroids, whose
objects are right bialgebroids and morphisms are defined mimicking Definition 3.2.3.
Inside it, (RBialg)A is the subcategory whose objects are all the right bialgebroids
over A and whose morphisms are all those in (RBialg) of the form .id; F /.

3.3.3. Right bialgebroid structures on universal enveloping algebras V r.L/.
Given a Lie–Rinehart algebra L, now considered as a right one, its right universal
enveloping algebra V r.L/ bears a natural structure of right bialgebroid over A
obtained by pulling-back the left bialgebroid structure of V `.L/ via the isomorphism
V r.L/ Š V `.L/

op
. More explicitly, the Ae–module structure IV

r.L/J is given by
a I u J Qa WD ua Qa; the coproduct �r W V r.L/ �! V r.L/J˝

A
IV

r.L/ and the

counit @ W V r.L/ �! A are determined by

�r.a/ D a˝ 1; �r.X/ D X ˝ 1C 1˝X; @.a/ D a; @.X/ D 0

8a 2 A; X 2 L:

Finally, one can recover the anchor map of L from the right bialgebroid structure
of V r.L/ as !L.X/.a/ D �@Vr.L/.aX/ for all X 2 L, a 2 A.
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We also have an analogue for right bialgebroids of Theorem 3.2.11 (with similar
proof):

Theorem 3.3.4. Assume that A is a unital commutative algebra over the field k.
(a) Let .W;A; sr ; t r ; �r ; @/ be a right bialgebroid such that sr D t r . Set

P r.W / WD
˚
w 2 W

ˇ̌
�r.w/ D w ˝ 1C 1˝ w

	
(the set of “right primitive elements” of W ). Then the pair

�
A;P r.W /

�
is a right

Lie–Rinehart algebra for the following right action and anchor map

w:a WD wsr.a/; !.D/.a/ WD �@
�
sr.a/D

�
; 8w 2 W;8D 2 P r.W /;8a 2 A

(b) Assume in addition that P r.W / is projective as an A–module, and that P r.W /
and sr.A/ generate W as an algebra. Then W is isomorphic to V r

�
P r.W /

�
as a

right bialgebroid.

Remark 3.3.5. The previous result improves a bit as follows.
Let

�
W;A; sr ; t r ; �r ; @

�
be a right bialgebroid for which A is commutative and

sr D t r . Let Q � P r.U / be a right Lie–Rinehart subalgebra of P r.W / such that
(i) Q is a projective A–module and (ii) Q and A generate W as an algebra. Then W
is isomorphic to V r.Q/ as a right bialgebroid, and Q D P r.W /.

An entirely similar remark also applies to Theorem 3.2.11.

3.4. Duals of bialgebroids. We shall now consider left and right dual of (left and
right) bialgebroids, and investigate their main properties. We begin with dual of left
bialgebroids, then we pass on to dual of right ones.

Definition 3.4.1. (a) Let U be a left A–bialgebroid, with structure maps as before.
The left dual and the right dual of U respectively are the spaces

U� W D
˚
� W U �! A

ˇ̌
�.u0 C u00/ D �.u0/C �.u00/; �

�
s`.a/u

�
D a�.u/

	
D HomA

�
FU;AA

�
U � W D

˚
� W U �! A

ˇ̌
�.u0 C u00/ D �.u0/C �.u00/; �

�
t`.a/u

�
D �.u/a

	
D HomA

�
UG; AA

�
(b) Let W be a right A–bialgebroid, with structure maps as before. The left dual

and the right dual of W respectively are the spaces

�W W D
˚
 W W �! A

ˇ̌
 .w0 C w00/ D  .w0/C  .w00/;  

�
wt r.a/

�
D a .w/

	
D HomA

�
IW;AA

�
�W W D

˚
 W W �! A

ˇ̌
 .w0 C w00/ D  .w0/C  .w00/;  

�
wsr.a/

�
D  .w/a

	
D HomA

�
WJ; AA

�
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3.4.2. Bialgebroid structures on dual spaces. Let U be a left A–bialgebroid as
above. We shall now introduce on its dual spaces U� and U � a structure of right
A–bialgebroid; most of the structure is well-defined in general, but for the coproduct
we need an additional assumption, namely U as an A–module (on the left, or the
right, see below) has to be projective.

Product structure. First we recall (see [17], and also [22]) that U� and U � can
be equipped with a product, for which the counit map � is a two-sided unit. For
�; �0 2 U�,  ; 0 2 U �, u 2 U , set�

��0
�
.u/ � mU�

�
� ˝ �0

�
.u/ WD �0

�
mU op

�
id˝ .t` ı �/

��
�`.u/

��
D �0

�
t`.�.u.2/// � u.1/

��
  0

�
.u/ � mU�

�
 ˝  0

�
.u/ WD  0

�
mU

�
.s` ı  /˝ id

��
�`.u/

��
D  0

�
s`. .u.1/// � u.2/

�
A–module structures. For the left dual space U�, the left dual source map sr� W
A �! U� and the right dual target map t r� W A �! U� are defined as follows:�
sr�.a/

�
.u/ WD �

�
t`.a/u

�
D �.u/a;

�
t r�.a/

�
.u/ WD �

�
ut`.a/

�
8a 2 A; u 2 U:

Then one has, in the usual way, two left and two right actions of A on U�, given by

.a F �/.u/ WD
�
sr�.a/�

�
.u/ D �

�
t`.a/u

�
;

.� G a/.u/ WD
�
t r�.a/�

�
.u/ D �

�
ut`.a/

�
.a I �/.u/ WD

�
�t r�.a/

�
.u/ D �

�
us`.a/

�
;

.� J a/.u/ WD
�
�sr�.a/

�
.u/ D �.u/a

Similarly, for the right dual U � the source s�r W A �! U � and the target
t�r W A �! U � are�
s�r .a/

�
.u/ WD �

�
us`.a/

�
;

�
t�r .a/

�
.u/ WD �

�
s`.a/u

�
D a�.u/ 8a 2 A; u 2 U:

Then one has, like before, two left and two right A–actions on U �, given by

.a F  /.u/ WD
�
s�r .a/ 

�
.u/ D  

�
us`.a/

�
;

. G a/.u/ WD
�
t�r .a/ 

�
.u/ D  

�
s`.a/u

�
.a I  /.u/ WD

�
 t�r .a/

�
.u/ D a .u/;

. J a/.u/ WD
�
 s�r .a/

�
.u/ D  

�
ut`.a/

�
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Coproduct structure. Now assume that FU as an A–module be projective. Then
we now endow the left dual U� with a coproduct�r which, eventually, makes it into
a right bialgebroid.

Consider the injective map � W U�J˝ IU� �! Hom.A;�/
�
F.UJ˝ FU/;AA

�
given by

� ˝ �0 7! �
�
� ˝ �0

��
u˝ u0 7! �

�
� ˝ �0

��
u˝ u0

�
WD �0

�
us`.�.u0//

��
Now, if U is finite projective (as an A–module) then the previous map is even an
isomorphism. If instead U is projective but not finite, one can endow U�J˝ IU�
with a suitable topology (typically, the “weak” one), and denote by U�Je̋IU� the
corresponding completion: then the above map extends — by continuity, using
the notion of basis for a projective module (cf. [2]) — to an isomorphism from
U�Je̋IU� to Hom.A;�/

�
F.UJ˝ FU/;AA

�
. This allows us to define a coproduct

�r on U� as the transpose of the multiplication on U , namely

�r W U� ��! Hom.A;�/
�
F.UJ˝ FU/;AA

�
Š
��1

U�Je̋IU�;

� 7! �r.�/
�
u˝ u0 7! �

�
uu0

��
This coproduct makes U� into a (topological) A–coring, with counit �� W U� �! A,
��.�/ WD �.1/. Similarly, if UG as an A–module is projective, then for its right dual
U � a coproduct is defined as follows. Consider the injective map # W U �J˝IU

� �!

Hom.�;A/
�
.UG˝ IU/G; AA

�
given by

 ˝  0 7! #
�
 ˝  0

��
u˝ u0 7! #

�
 ˝  0

��
u˝ u0

�
WD  

�
u0t`. 0.u//

��
Again, if U is finite projective (as an A–module) then this map is an isomorphism.
If instead U is projective but not finite, one can endow U �J ˝ IU

� with a
suitable topology (like the weak one), and denote by U �Je̋IU

� the corresponding
completion: then the above map extends — by continuity — to an isomorphism e#
from U �Je̋IU

� to Hom.�;A/
�
.UG˝ IU/G; AA

�
. Thus we can define a coproduct

�r on U � as the transpose of the opposite multiplication on U , namely

�r W U
�
��! Hom.�;A/

�
.UG˝ IU/G; AA

�
Š
Q#�1

U �Je̋IU
�;

 7! �r. /
�
u˝ u0 7!  

�
u0u

��
This makes U � into a (topological) A–coring, with counit @� W U � �! A given by
@�. / WD  .1/.

Conclusion. IfU is any left bialgebroid overA, projective as anA–module, thenU�
andU � with the structures introduced above are both (topological) right bialgebroids
over A.
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Similarly, we consider the case of a right A–bialgebroid W , and we introduce
canonical structures of (topological) left A–bialgebroids on its left and right dual
spaces �W and �W : indeed, everything is strictly similar to what occurs in the
previous case for U , so we skip details.

Notation. In the following, if v is an element of some (left or right) A–module, and
� is an element of the (left or right) dual of that module, we shall write

˝
�; v

˛
WD �.v/

or
˝
v; �

˛
WD �.v/.

Remark 3.4.3. If U is a left bialgebroid which is projective of finite type as an A–
module, then it is isomorphic to �.U�/ and to �.U �/ — as a left bialgebroid. This
follows from the equalities

˝
u; �sr�.a/

˛
D
˝
u; �

˛
a;

˝
u; t�r .a/

˛
D a

˝
u; 

˛
8a 2 A; u 2 U; � 2 U�;  2 U

�

We introduce now the natural vocabulary of “pairings”, which we shall use in
computations.

Definition 3.4.4. (a) Let
�
U; s`; t`

�
and

�
W; sr ; t r

�
be two Ae–modules. An Ae–left

pairing is a k–bilinear map
˝
;
˛
W U �W �! A such that, for any u 2 U , w 2 W

and a 2 A, one has

˝
u; a F w

˛
D
˝
u; sr.a/w

˛
D
˝
t`.a/u;w

˛
D
˝
u G a;w

˛
˝
u;w G a

˛
D
˝
u; t r.a/w

˛
D
˝
ut`.a/; w

˛
D
˝
a I u;w

˛
˝
u; a I w

˛
D
˝
u;wt r.a/

˛
D
˝
us`.a/; w

˛
D
˝
u J a;w

˛
˝
u;w J a

˛
D
˝
u;wsr.a/

˛
D
˝
u;w

˛
a˝

a F u;w
˛
D
˝
s`.a/u;w

˛
D a

˝
u;w

˛
Then there exist natural morphisms of Ae–modules W �! U� and U �! �W .

The pairing is non degenerate if the left and right kernels of this pairing are trivial,
that is to say

˝
u;w

˛
D 0; 8w 2 W DH) u D 0;

˝
u;w

˛
D 0; 8u 2 U DH) w D 0

In other words, the pairing is non degenerate if and only if the above mapsW �! U�
and U �! �W (which are morphisms of Ae–modules) are injective.
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(b) Let
�
U; s`; t`

�
and

�
W; sr ; tr

�
be two Ae–modules. An Ae–right pairing is a

k–bilinear map
˝
;
˛
W U �W �! A such that, for any u 2 U , w 2 W and a 2 A,

one has ˝
u;w G a

˛
D
˝
u; tr.a/w

˛
D
˝
s`.a/u;w

˛
D
˝
a F u;w

˛
˝
u; a F w

˛
D
˝
u; sr.a/w

˛
D
˝
us`.a/; w

˛
D
˝
u J a;w

˛
˝
u;w J a

˛
D
˝
u;wsr.a/

˛
D
˝
ut`.a/; w

˛
D
˝
a I u;w

˛
˝
u; a I w

˛
D
˝
u;wtr.a/

˛
D a

˝
u;w

˛
˝
u G a;w

˛
D
˝
t`.a/u;w

˛
D
˝
u;w

˛
a

Then there exist natural morphisms of Ae–modules W �! U � and U �! �W .
The pairing is non degenerate if the left and right kernels of this pairing are trivial,
that is to say˝

u;w
˛
D 0; 8w 2 W DH) u D 0;

˝
u;w

˛
D 0; 8u 2 U DH) w D 0

In other words, the pairing is non degenerate if and only if the above maps
W �! U � and U �! �W (which are morphisms of Ae–modules) are injective.

Definition 3.4.5. (a) Let
�
U; s`; t`; �; �

�
be a leftA–bialgebroid and

�
W; sr ; t r ; �; �

�
be a right A–bialgebroid. A bialgebroid left pairing is a non degenerateAe–left
pairing

˝
;
˛
W U �W �! A such that˝

uu0; w
˛
D

D
u;w.2/t

r
�˝
u0; w.1/

˛�E
D

D
us`

�˝
u0; w.1/

˛�
; w.2/

E
;

˝
1;w

˛
D �.w/˝

u;ww0
˛
D

D
t`
�˝
u.2/; w

˛�
u.1/; w

0
E
D

D
u.1/; sr

�˝
u.2/; w

˛�
w0
E
;

˝
u; 1

˛
D �.u/

for any u, u0 2 U and any w, w0 2 W . In other words, the natural mapsW ��! U�
and U ��! �W are (injective) morphisms of right and left bialgebroids respec-
tively.

(b) Let
�
U; s`; t`; �; �

�
be a leftA–bialgebroid and

�
W; sr ; tr ; �; �

�
be a rightA–

bialgebroid. A bialgebroid right pairing is a non degenerateAe–right pairing
˝
;
˛
W

U �W �! A such that˝
uu0; w

˛
D

D
ut`
�˝
u0; w.2/

˛�
; w.1/

E
D

D
u;w.1/s

r
�˝
u0; w.2/

˛�E
;

˝
1;w

˛
D �.w/˝

u;ww0
˛
D

D
s`
�˝
u.1/; w

˛�
u.2/; w

0
E
D

D
u.2/; tr

�˝
u.1/; w

˛�
w0
E
;

˝
u; 1

˛
D �.u/

for any u, u0 2 U and anyw,w0 2 W . In other words, the natural mapsW ��! U �

and U ��! �W are (injective) morphisms of right and left bialgebroids respec-
tively.
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Remarks 3.4.6. (a) If U is a left bialgebroid, then the couple
�
U;U �

�
bears a

bialgebroid right pairing, whereas
�
U;U�

�
bears a bialgebroid left pairing.

(b) Let U be a left bialgebroid. Then the left bialgebroids .U �/op
coop and �.U

op
coop/

are isomorphic: indeed, the right Ae–pairings between U and U � and between
�

�
U

op
coop

�
andU op

coop give rise to the same formulas. Similarly, the left bialgebroids
.U�/

op
coop and �

�
U

op
coop

�
are isomorphic.

3.5. The jet space(s) of a Lie–Rinehart algebra.
3.5.1. Bialgebroids of jets: the right version. Let .L;A/ be a Lie–Rinehart
algebra, projective as an A–module. Consider its enveloping algebra V `.L/

endowed with its standard left bialgebroid structure and define the right jet space
of the Lie–Rinehart algebra L as

J r.L/ WD V `.L/
�
D Hom.�;A/

�
V `.L/G; AA

�
As in §3.4.2, a multiplication in J r.L/ can be given by

�
��0

�
.u/ D �

�
u.1/

�
�0
�
u.2/

�
for �, �0 2 J r.L/, u 2 V `.L/. In particular, this multiplication is commutative, and
the counit map of V `.L/ is the unit element of J r.L/. Also, the map @ D @Jr .L/ W

J r.L/ �! A, � 7! @.�/ WD �.1
V`.L/

/, will play the role of counit map of J r.L/;
hereafter, we write JJr .L/ WD Ker.@Jr .L//. Moreover, we have a structure ofAe–ring
on J r.L/, whose source and target maps are given — for all a 2 A, u 2 V `.L/ —
by the formulas

�
sr.a/

�
.u/ WD �

�
us`.a/

�
,
�
t r.a/

�
.u/ WD �

�
s`.a/u

�
D a�.u/. Note

that J r.L/ is complete for the JJr .L/-adic topology.
To define a coproduct on J r.L/ WD V `.L/

�
we adapt the construction in §3.4.2

(cf. also [22], [24], [6]). Consider the injective map # W J r.L/J ˝I J
r.L/ D

V `.L/
�

J ˝I V
`.L/

�
�!

�
V `.L/G˝IV

`.L/
��

given (as in §3.4.2) by  ˝  0 7!

#
�
 ˝  0

��
u˝ u0 7! #

�
 ˝  0

��
u˝ u0

�
WD  

�
u0t`. 0.u//

��
.

Consider in J r.L/J˝I J
r.L/ the J˝–adic filtration, with J˝ WD JJr.L/ ˝

J r.L/ C J r.L/ ˝ JJr.L/ D Ker
�
@Jr .L/ ˝ @Jr .L/

�
, and the corresponding topology

defined by it in J r.L/J ˝I J
r.L/; then denote by J r.L/Je̋IJ

r.L/ the J˝–adic
completion of J r.L/J˝IJ

r.L/. The completion of # ,e# W J r.L/Je̋IJ
r.L/ �!�

V `.L/G˝IV
`.L/

��
, is an isomorphism. Therefore, we can complete the procedure

explained in §3.4.2 and define a coproduct � W J r.L/ ��! J r.L/Je̋IJ
r.L/

on J r.L/ WD V `.L/
�

as � WD e#�1 ı r where r W J r.L/ WD V `.L/
�
�!�

V `.L/G˝IV
`.L/

��
is given by r W  7! r. /

�
u ˝ u0 7!  

�
u0u

��
for all

 2 J r.L/, u; u0 2 V `.L/. As an outcome, we have

�. / D  .1/ ˝  .2/ 2 J
r.L/Je̋IJ

r.L/ with  .1/
�
ut`
�
 .2/.u

0/
��
D  

�
uu0

�
This � makes J r.L/ into a (topological) A–coring, with counit map @ D @Jr.L/ W

J r.L/ �! A given as above by � 7! @.�/ WD �.1
V .̀L/

/. All in all, this makes
J r.L/ into a right bialgebroid over A.
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Remarks 3.5.2. We have to mention some extra features of the right bialgebroid
J r.L/ WD V `.L/

�
, namely the following:

(a) as J r.L/ is commutative, it is equal to J r.L/op hence it is also a left bialgebroid;

(b) it is known that J r.L/ is a Hopf algebroid (see [22], [6], [29]): in particular,
there exists a standard right bialgebroid isomorphism — called the “antipode”
— from J r.L/ to J r.L/coop.

3.5.3. Bialgebroids of jets: the left version. Let again L be a Lie–Rinehart algebra
over A, again projective as an A–module. Considering now L as a right A–module,
we look at its right enveloping algebra V r.L/, endowed with its natural structure of
right bialgebroid (cf. §3.3.3).

We define the left jet space of the Lie–Rinehart algebra L as the left dual space

J `.L/ WD �V
r.L/ D Hom.�;A/

�
V r.L/J; AA

�
Again from §3.4.2 we have a multiplication in J `.L/ given (for  ,  0 2 J `.L/,

u 2 V r.L/) by
�
  0

�
.u/ D  

�
u.1/

�
 0
�
u.2/

�
; in particular this multiplication is

commutative in J `.L/, and the unit element of J `.L/ is the counit map of V r.L/.
Moreover, the map � D �

J`.L/
W J `.L/ �! A,  7! �. / WD  .1Vr.L//, works as

counit map of J `.L/; in the sequel we write J
J`.L/

WD Ker.�
J`.L/

/.
Still from §3.4.2 we get a structure of Ae–ring on J `.L/, with source and target

maps given by
�
s`.a/

�
.u/ WD @

�
au
�
;
�
t`.a/

�
.u/ WD @.u/a, — for all a 2 A, u 2

V r.L/.
Finally, we can also endow J `.L/ with a suitable (topological) coproduct,

just adapting the recipe given in §3.4.2. Eventually, all this makes J `.L/ into a
(topological) left bialgebroid.

Remark 3.5.4. As J `.L/ D J r.Lop/op
coop, it follows from Remarks 3.5.2 (b) that our

J `.L/ WD �V
r.L/ is also a Hopf algebroid: in particular, there exists a standard right

bialgebroid isomorphism — the “antipode” of J `.L/ — from J `.L/ to J `.L/coop.

3.5.5. Further jet spaces, and comparison. Besides the jet spaces J r.L/ and
J `.L/, further possibilities exist. All in all we can consider four different types of
“jet bialgebroids”, namely

V `.L/
�
DW J r.L/; �V

r.L/ DW J `.L/; V `.L/� DW
rJ.L/; �V r.L/ DW `J.L/

One can also establish some relevant links among all these bialgebroids of jets:
for instance, we have already noticed that that J `.L/ Š J r.Lop/op

coop Š J
r.Lop/coop

(cf. also Remark 3.4.6). We also saw above that V `.L/� D
�
V `.L/

��
coop D

J r.L/coop Š J r
�
L
�

(cf. Remarks 3.5.2) and �V r.L/ D
�
�V

r.L/
�

coop D

J `.L/coop Š J `
�
L
�

(cf. Remark 3.5.4). Thus, in the end, jet bialgebroids of type
J r.L/ or J `.L/ are enough to consider all possible situations, for every possible L.
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We introduce now suitable “topological duals” for jet bialgebroids J r.L/ and
J `.L/:

Definition 3.5.6. Let K D J r.L/ be a right jet bialgebroid, for some Lie–Rinehart
algebra L. Set I WD

˚
� 2 J r.L/

ˇ̌
h1; �i D 0

	
D Ker

�
@Jr .L/

�
— which is a (two-

sided) ideal in J r.L/, as one easily sees. Then we introduce the following subsets
of �K and �K:

?K WD
˚
u 2 �K

ˇ̌
u
�
I n
�
D 08n� 0

	
; ?K WD

˚
u 2 �K

ˇ̌
u
�
I n
�
D 08n� 0

	
Similarly, if K WD J `.L/ is a left jet bialgebroid, and I WD Ker

�
@
J`.L/

�
, we define

K? WD
˚
u 2 K�

ˇ̌
u
�
I n
�
D 08n� 0

	
; K? WD

˚
u 2 K�

ˇ̌
u
�
I n
�
D 08n� 0

	
It should be clear by the very definition that, in the first case, ?K, resp. ?K, is

nothing but the subset of those functions in �K, resp. in �K, which are continuous
with respect to the I–adic topology in �K, resp. in �K, and the discrete topology in
A. Similarly for K? and K? in the second case. The key reason of interest for these
objects lies in the following, well-known result:

Theorem 3.5.7. Let L be a Lie–Rinehart algebra which, as an A–module, is finite
projective.

(a) Consider the right bialgebroid J r.L/ WD V `.L/
�
. Then ?J

r.L/, as
a left bialgebroid, is isomorphic to V `.L/: more precisely, the canonical map
V `.L/ ��! ?

�
V `.L/

��
D ?J

r.L/ given by evaluation is an isomorphism of left
bialgebroids.

Similarly, replacing J r.L/ WD V `.L/
�

with the right bialgebroid V `.L/� one
has a corresponding isomorphism of left bialgebroids V `.L/ ��!

?�
V `.L/�

�
still

given by evaluation.
(b) Consider the left bialgebroid J `.L/ WD �V

r.L/. Then J `.L/
?
, as a

right bialgebroid, is isomorphic to V r.L/: more precisely, the canonical map
V r.L/ ��!

�
�V

r.L/
�?
D J `.L/

?
given by evaluation is an isomorphism of right

bialgebroids.
Similarly, replacing J `.L/ WD �V

r.L/ with the left bialgebroid �V r.L/ one
has a corresponding isomorphism of right bialgebroids V r.L/ ��!

�
�V r.L/

�
?

still
given by evaluation.

Remark 3.5.8. The standard isomorphism between J r.L/ WD V `.L/
�

and J r.L/coop

D V `.L/� (see Remarks 3.5.2 (b)) induces an isomorphism ?
��
V `.L/

��
Š V `.L/.

Similarly, we have also an analogous isomorphism
�
�V

r.L/
�
?
Š V r.L/.

Remark 3.5.9. Let L be a finite projective Lie–Rinehart algebra and Q be a (finite
projective) A–module such that L ˚ Q D F is a finite rank free A–module. We
resume notation of §2.1.6: so we take an A–basis fb1; : : : ; bng of F , and we set
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Y D kb1 ˚ � � � ˚ kbn, so that F D A˝k Y ; moreover, LQ D L˚ .A˝k Z/ is a
Lie–Rinehart algebra with Z D Y ˚ Y ˚ Y ˚ � � � . One has S.Y /˝1 WD S.Z/ D

S.Y / ˝ S.Y / ˝ � � � (recall that elements of an infinite tensor product of algebras
are sums of tensor products with only finitely many factors different from 1). For
T 2 fY;Zg, we let � W S.T / �! k — the counit map of S.T / — be the unique
k-algebra morphism given by S.t/ WD 0 for t 2 T , and we set S.T /C WD Ker.�/.

For any n, denote by J r
f;n
.LQ/ � V `.LQ/

�

f;n the subset of V `.LQ/
�

whose

elements are all the � 2 V `.LQ/
�

such that �
ˇ̌
V `.L/˝S.Y /˝n˝S.Z/C

D 0 and set

J r
f
.LQ/ � V `.LQ/

�

f WD
S
n2N J

r
f;n
.LQ/. Then one can describe J r

f;n
.LQ/ as

J r
f;n
.LQ/ D J r.L/e̋eS.Y �/e̋n e̋1e̋1e̋ � � � , where eS�Y �� denotes the completion

of S
�
Y �
�

with respect to the weak topology; so we have also

J rf .LQ/ Š
P
n2NJ

r
f;n.LQ/ D

P
n2NJ

r.L/ e̋ eS.Y �/e̋n e̋1e̋1e̋ � � �
This J r

f
.LQ/ is a sub-bialgebroid of J r.LQ/: indeed, its right bialgebroid structure

is described by

sr W A �! J rf .LQ/; a 7! sr.a/˝ 1; tr W A �! J rf .LQ/; a 7! tr.a/˝ 1

.� ˝ s/
�
�0 ˝ s0

�
WD ��0 ˝ ss0; �.� ˝ s/ WD

�
�.1/ ˝ s.1/

�
˝
�
�.2/ ˝ s.2/

�
;

@.� ˝ s/ WD @.�/�.s/

for all a 2 A, �; �0 2 J r.L/, s; s0 2
P
n2N

eS.Y �/e̋n e̋1e̋1e̋ � � � .n 2 N/.
Last, let ?fJ r

f
.LQ/ be the subset of all ı 2?J r

f
.LQ/ such that

ı
ˇ̌
J r .L/e̋S.Y �/e̋ne̋S.Z�/C D 0

for n� 0. It is easy to see that ?fJ r
f
.LQ/ is a left sub-bialgebroid of ?J r

f
.LQ/,

isomorphic to V `.LQ/.

4. Quantum groupoids

In this section we introduce quantum groupoids — i.e. topological bialgebroids
which are formal deformations of those attached to Lie–Rinehart algebras. Then
we show that taking suitable “(linear) duals” we get an antiequivalence among the
categories of objects of these two types.

4.0.10. The h–adic topology. If V is any kŒŒh��–module, it is endowed with the
following decreasing filtration: V � hV � h2V � � � � � hnV � hnC1V � � � � �.
Then V is also endowed with the h–adic topology, which is the unique one for which
V is a topological kŒŒh��–module in which

˚
hmV

	
m2N is a basis of neighborhoods
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of 0. Indeed, V is then a pseudo-metric space, as the h–adic topology is the one
induced by the following pseudo-metric:

d.x; y/ WD kx � yk D 2�m with m WD sup
˚
s 2 N

ˇ̌
.x � y/ 2 hsV

	
8x; y 2 V:

The topological space V is Hausdorff if and only if the pseudo-metric d is a metric:
in turn, this occurs if and only if

T
m2N h

mV D f0g, which means that each point in
V forms a closed subset.

4.1. Quantum groupoids. In this subsection we introduce the notion of “quantum
groupoids”: these are special “quantum bialgebroids”, namely (topological) bialge-
broids which are formal deformations of those of type V `.L/, V r.L/, J r.L/ or
J `.L/. We begin with the ones associated with the first two cases:

Definition 4.1.1. A left quantum universal enveloping algebroid (=LQUEAd) is a
topological left bialgebroid

�
Hh; Ah; s

`
h
; t`
h
; mh; �h; �h

�
over a topological kŒŒh��–

algebra Ah such that:

(i) Ah is isomorphic to AŒŒh�� as a topological kŒŒh��–module, for some k–
algebra A, and this isomorphism induces an algebra isomorphism Ah

ı
hAh Š

AŒŒh��
ı
hAŒŒh�� Š A;

(ii) Hh is isomorphic to V `.L/ŒŒh�� as a topological kŒŒh��–module where V `.L/
is the left bialgebroid associated with some Lie–Rinehart A–algebra L, as in
§3.2.9;

(iii) Hh
ı
hHh Š V `.L/ŒŒh��

ı
hV `.L/ŒŒh�� is isomorphic to V `.L/ as a left A–

bialgebroid via the isomorphism Ah
ı
hAh Š AŒŒh��

ı
hAŒŒh�� Š A mentioned

in (i);

(iv) denote byHhG b̋
Ah
FHh the completion ofHhG˝

Ah
FHh with respect to the h–adic

topology, and define the (h–adically completed) Takeuchi product as

HhGb�
Ah
FHh WDnP
iui ˝ u

0
i 2 HhG b̋

Ah
FHh

ˇ̌̌P
i .a I ui /˝ u

0
i D

P
iui ˝

�
u0i J a/

o
then the coproduct �h of Hh takes values in HhG b̋

Ah
FHh.

In this setting, we shall say that Hh is a quantization, or a quantum deformation,
of V `.L/; we shall resume it in short using notation V `.L/h WD Hh.

In a similar, parallel way, we define the notion of right quantum universal
enveloping algebroid (=RQUEAd) as well, just replacing “left” with “right” and
V `.L/ with V r.L/, cf. §3.3.3.
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We define morphisms among left, resp. right, quantum universal envelop-
ing algebroids like in Definition 3.2.3; moreover, we use notation (LQUEAd),
resp. RQUEAd, to denote the category of all left, resp. right, quantum universal
enveloping algebroids. If Ah is a fixed ground kŒŒh��–algebra, then we write
(LQUEAd)Ah , resp. (RQUEAd)Ah , to denote the subcategory — in (LQUEAd),
resp. (RQUEAd) — whose objects are all the left, resp. right, quantum universal
enveloping algebroids over Ah, and whose morphisms are selected as in Defini-
tion 3.2.3.

Remarks 4.1.2. (a) U is a LQUEAd ” U
op
coop is a RQUEAd ” U op is a

RQUEAd.
(b) If

�
V `.L/h; Ah; s

`
h
; t`
h
; mh; �h; �h

�
is any LQUEAd, thenAh is a deformation

of the algebra A: then, as usual, one can define a Poisson structure on the base
algebra A as follows:

ff; gg WD
f 0 �h g

0 � g0 �h f
0

h
mod hAh 8f; g 2 A

where f 0 2 Ah and g0 2 Ah are such that f 0 mod hAh D f and g0 mod hAh D g.
The same observations makes sense if one has to do with a RQUEAd V r.L/h.

(c) The definitions given so far make sense for any Lie–Rinehart algebra L.
However, from now on we shall assume in addition that L, as an A–module, is
finitely generated projective.

The following theorem is proved in [34] (Theorem 5.16):

Theorem 4.1.3. Let
�
V `.L/h; Ah; s

`
h
; t`
h
; mh; �h; �h

�
be a LQUEAd. Define

ı.a/ WD
t`
h

�
a0
�
� s`

h

�
a0
�

h
mod hV `.L/h 8a 2 A

ı.X/ WD �Œ1�.X/2;1 ��
Œ1�.X/ 2 V `.L/˝

A
V `.L/ 8X 2 L

with �Œ1�.X/ WD
�h
�
X 0
�
�X 0 ˝ 1 � 1˝X 0

h
mod h

�
V `.L/h b̋

Ah

V `.L/h

�
and �Œ1�.X/2;1 WD

P
ŒX�XŒ2� ˝XŒ1� if �Œ1�.X/ D

P
ŒX�XŒ1� ˝XŒ2�

where X 0 2 V `.L/h is any lift of X (i.e. X 0 mod hV `.L/h D X ) and a0 2 Ah is
any lift of a.

Then ı.a/ 2 L and ı.X/ 2
V2
AL; this gives to L the structure of a Lie–Rinehart

bialgebra. Also, the Poisson structure on A induced by this Lie–Rinehart bialgebra
(cf. Remarks 2.2.2 (c)) coincides with the one obtained as the classical limit of the
base�–algebra Ah (cf. Remarks 4.1.2 (b)).

Remark 4.1.4. In the above statement, we took formulas opposite to those in [34]:
indeed, this allows us to deduce the very last claim.
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Example 4.1.5. (cf. [34]) Let P be a smooth manifold, D the algebra of global
differential operators on P and A WD C1.P /. Let DŒŒh�� be the trivial deformation
of D. Let

F D 1˝ 1C hB1 C � � � 2
�
D ˝A D

�
ŒŒh�� Š DŒŒh��b̋AŒŒh��DŒŒh��

be a formal series of bidifferential operators. It is easy to see that F is a twistor
(cf. Definition 3.2.7) iff the multiplication on AŒŒh�� defined by f �h g D F.f; g/
for all f , g 2 AŒŒh��, is associative, with identity being the constant function 1, i.e. iff
�h is a star product on P . The twisted bialgebroid structure onDh WD DŒŒh�� can be
easily described: Ah D AŒŒh�� has the star product defined above, s`

h
W Ah �! Dh

and t`
h
W Ah �! Dh are given by s`

h
.f /g D f �h g, t`

h
.f /g D g �h f , for f ,

g 2 A, the coproduct �h W Dh �! Dhb̋AhDh is �h.x/ WD F#�1
�
�.x/ � F

�
for

x 2 Dh.
In Section 7 later on we shall explicitly provide a specific example of this kind.

Theorem 4.1.3 has a natural counterpart for RQUEAd’s as follows:

Theorem 4.1.6. Let
�
V r.L/h; Ah; s

r
h
; t r
h
; mh; �h; �h

�
be a RQUEAd. Define

ı.a/ WD
sr
h
.a/ � t r

h
.a/

h
mod hV r.L/h 8a 2 A

ı.X/ WD �Œ1�.X/2;1 ��
Œ1�.X/ 2 V r.L/˝

A
V r.L/ 8X 2 L

with �Œ1�.X/ WD
�h
�
X 0
�
�X 0 ˝ 1 � 1˝X 0

h
mod h

�
V r.L/h b̋

Ah

V r.L/h

�
and �Œ1�.X/2;1 WD

P
ŒX�XŒ2� ˝XŒ1� if �Œ1�.X/ D

P
ŒX�XŒ1� ˝XŒ2�

where X 0 2 V r.L/h is any lift of X (i.e. X 0 mod hV r.L/h D X ) and a0 2 Ah is
any lift of a.

Then ı.a/ 2 L and ı.X/ 2
V2
AL; this gives to L the structure of a Lie–

Rinehart bialgebra. Moreover, the Poisson structure induced on A by this Lie–
Rinehart bialgebra structure is opposite to the one obtained as the classical limit
of the base �–algebra Ah (cf. Remarks 4.1.2 (b)).

Remark 4.1.7. The previous result can be proved just like Theorem 4.1.3 in
[34]. Otherwise, one can deduce Theorem 4.1.6 from Theorem 4.1.3 applied to
V `.L/h WD V

r.L/
op
h

, which is a LQUEAd — cf. Remarks 4.1.2 (a). In particular, the
Lie–Rinehart bialgebra structure induced on L by the RQUEAd V r.L/h is opposite
to that induced by the LQUEAd V `.L/h WD V

r.L/
op
h

.

We introduce now a second type of “quantum bialgebroids”, namely quantiza-
tions of jets:
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Definition 4.1.8. A right quantum formal series algebroid (=RQFSAd) is a topolog-
ical right bialgebroid

�
Kh; Ah; s

r
h
; t r
h
; mh; �h; @h

�
over a topological kŒŒh��–algebra

Ah such that:
(i) Ah is isomorphic to AŒŒh�� as a topological kŒŒh��–module, for some k–

algebra A, and this isomorphism induces an algebra isomorphism Ah
ı
hAh Š

AŒŒh��
ı
hAŒŒh�� Š A;

(ii) Kh is isomorphic to J r.L/ŒŒh�� as a topological kŒŒh��–module where J r.L/
is the right bialgebroid of jets associated with some finite projective Lie–Rinehart
A–algebra L as in §3.5.1;

(iii) Kh
ı
hKh Š J r.L/ŒŒh��

ı
hJ r.L/ŒŒh�� is isomorphic to J r.L/ as a right A–

bialgebroid via the isomorphism Ah
ı
hAh Š AŒŒh��

ı
hAŒŒh�� Š A mentioned in (i);

(iv) letting Ih WD
˚
 2 Kh

ˇ̌
@. / 2 hAh

	
— which is easily seen to be a two-

sided ideal in Kh — we have that Kh is complete in the Ih–adic topology;
(v) denote by KhJ e̋

Ah
IKh the completion of KhJ˝

Ah
IKh with respect to the

topology defined by the filtration

0@ X
pCqDn

I
p

h
˝ I

q

h

1A
n2N

; also, define the Takeuchi

product as

KhJe�
Ah

IKh WD
nP

iui ˝u
0
i 2 KhJ e̋

Ah
IKh

ˇ̌̌P
i .a Fui /˝u

0
i D

P
iui ˝

�
u0i G a/

o
then the coproduct �h of Kh takes values in KhJe�

Ah
IKh.

In this setting, we shall say that Kh is a quantization, or a quantum deformation,
of J r.L/; we shall resume it in short using notation J r.L/h WD Kh.

In a similar, parallel way, we define the notion of left formal series algebroid
(=LQFSAd) as well, just replacing “left” with “right” and J r.L/ with J `.L/.

We define morphisms among right, resp. left, quantum formal series algebroids
like in Definition 3.2.3; moreover, we use notation (RQFSAd), resp. LQFSAd,
to denote the category of all right, resp. left, quantum formal series algebroids.
If Ah is a fixed ground (topological) kŒŒh��–algebra, then we write (RQFSAd)Ah ,
resp. (LQFSAd)Ah , to denote the subcategory — in (RQFSAd), resp. (LQFSAd) —
whose objects are all the right, resp. left, quantum formal series algebroids over Ah,
and whose morphisms are selected as in Definition 3.2.3.
Remarks 4.1.9. (a) From the analysis in §3.5.5 we can argue that one could define a
RQFSAd also as a deformation of the right bialgebroid V `.L/�, and a LQFSAd as a
deformation of the left bialgebroid �V r.L/. On the other hand, the very conclusion
of §3.5.5 itself also tells us that it is enough to consider the notions of RQFSAd and
LQFSAd introduced in Definition 4.1.8 above.

(b) Khis a LQFSAd ”
�
K

op
h

�
coop is a RQFSAd ” K

op
h

is a RQFSAd.
4.1.10. Further “half Hopf” structures on quantum groupoids. By construction,
our quantum groupoids are just (left or right) bialgebroids, namely deformations of
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such (left or right) bialgebroids as V `=r.L/ and J `=r.L/. However, V `=r.L/ and
J `=r.L/ actually bear further structure, which “automatically inheriteld” by their
quantizations too. To explain it, we fix some terminology.

Let

IU˝
Aop
UG WD U ˝

k
U
ı

Span
�˚
.a I u/˝ v � u˝ .v G a/

	a2A
u;v2U

�
for some left bialgebroid U over A; then define a “Hopf–Galois” map

IU˝
Aop
UG

˛`
��!UG˝

A
FU; u˝ v 7! u.1/ ˝ u.2/v:

Similarly, one can consider an analogous tensor product FU˝
Aop
UJ and a correspond-

ing “Hopf–Galois” map FU˝
Aop
UJ

˛r
��!UG˝

A
FU; u ˝ v 7! v.1/u ˝ v.2/. On the

other hand, for a right bialgebroid W over B one consider suitable tensor products

IW˝
Bop
WG and FW˝

Bop
WJ and Hopf–Galois maps IW˝

Bop
WG

ˇ`
��!WJ˝

B
IW and

FW˝
Bop
WJ

ˇr
��!WJ˝

B
IW involving them. Then U is called a left, resp. a right,

Hopf left bialgebroid iff the map ˛`, resp. ˛r , is a bijection; similarly, W is called a
left Hopf right bialgebroid, respectively a left, resp. a right, Hopf right bialgebroid,
iff the map ˇ`, resp. ˇr , is a bijection (cf. [4], [22], [24], [23]).

It is known that V `.L/, resp. V r.L/, is both a left and right Hopf left, resp.
right, bialgebroid. The same holds for J `.L/ and J r.L/ too — actually because
they have even stronger properties, namely they are Hopf algebroids, in the sense of
Böhm–Szlachányi (cf. [5], [3], [25], [19], [22]).

Any quantum groupoid has its own Hopf–Galois maps, whose semiclassical
specialization are the analogous maps for its semiclassical limit: e.g., the Hopf–
Galois map ˛` for any V `.L/h yields by specialization the same name Hopf–
Galois map for V `.L/. The latter map is bijective (since V `.L/ is a left Hopf
left bialgebroid) hence, by a standard argument, its deformation — the map ˛` for
V `.L/h — is bijective too: thus in turn V `.L/h is a left Hopf left bialgebroid as
well! With similar reasonings, looking all types of quantum groupoids we find that
any V `.L/h and any J `.L/h are both right and left Hopf left bialgebroids, while any
V r.L/h and any J r.L/h are both left and right Hopf right bialgebroids.

4.1.11. Liftings in a (R/L)QFSAd. Let L be a Lie–Rinehart algebra which is finite
projective (as anA–module). Set JJr .L/ WD Ker

�
@Jr .L/

�
: then JJr .L/

ı
J2
Jr .L/

Š L�as
A–modules, by definitions. Given ˆ 2 L�, we shall call a lift of ˆ in J r.L/ any
� 2 JJr .L/ such that through the above isomorphism one has � mod J2

Jr .L/
D ˆ.

Now let Kh D J r.L/h be a RQFSAd, deformation of J r.L/. For any ˆ 2 L�, we
shall call a lift ofˆ in J r.L/h any element �0 2 J r.L/h such that �0 mod hJ r.L/h
is a lift of ˆ in J r.L/. In short, this means ˆ �

�
�0 mod hJ r.L/h

�
mod J2

Jr .L/
.
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Also, if a 2 A we call a lift of a in Ah any a0 2 Ah such that a0 mod hAh D a.

Changing “right” into “left”, similar remarks and terminology apply for defining
“lifts” of elements of J `.L/ in some associated LQFSAd, say J `.L/h.

The next result introduces semiclassical structures induced on a Lie–Rinehart
algebra L by quantizations of the form J r.L/ or J `.L/. Indeed, this is the dual
counterpart of Theorem 4.1.3.

Theorem 4.1.12. Let J r.L/h be a RQFSAd, namely a deformation of J r.L/ as
above. Then L inherits from this quantization a structure of Lie–Rinehart bialgebra,
namely the unique one such that the Lie bracket and the anchor map of L� are given
(notation as above) by

Œˆ;‰� WD

�
�0 0 �  0�0

h
mod hJ r.L/h

�
mod J2

Jr .L/

!.ˆ/.a/ WD

 
�0r

�
a0
�
� r

�
a0
�
�0

h
mod hJ r.L/h

!
mod JJr.L/

D @

 
�0r

�
a0
�
� r

�
a0
�
�0

h

!
mod hAh

for all ˆ;‰ 2 L� and a 2 A, where �0 and  0 are liftings in J r.L/h of ˆ and ‰
respectively, a0 is a lifting in Ah of a 2 A, and finally r

�
a0
�

stands for either sr
h

�
a0
�

or t r
h

�
a0
�
.

Proof. First, it is easy to see that the maps Œ ; � and ! as given in the statement
are well-defined, i.e. they do not depend on the choice of liftings, nor of the choice
of either of sr

h

�
a0
�

or t r
h

�
a0
�

acting as r
�
a0
�
. Moreover, by construction we have

Œˆ;‰� 2 JJr .L/
ı
J2
Jr .L/

Š L�. Also, again by construction we have !.ˆ/.a/ 2
J r.L/

ı
JJr .L/; now the latter space identifies with @

�
J r.L/

�
D A, thus !.ˆ/.a/ 2

A via these identifications, so that !.ˆ/ is a k–linear endomorphism of A.
Now, the definition of both Œ ; � and ! is made via a commutator in J r.L/h. As

the commutator — in any associative k–algebra — is a k–bilinear Lie bracket and
satisfies the Leibniz identity (involving the associative product), one can easily argue
at once from definitions that L� with the given bracket and anchor map is indeed a
Lie–Rinehart algebra (over A).

What is more demanding is to prove that with this structure the pair
�
L;L�

�
of Lie–Rinehart A–algebras fulfills all constraints to be a Lie–Rinehart bialgebra.
Indeed, we shall not provide a direct proof for that: instead, we have recourse to a
duality argument, using the notions and results of Subsec. 5.1 later on. Indeed, there
we shall see that ?J r.L/h is a LQUEAd, hence by Theorem 4.1.3 we know that�
L;L�

�
is a Lie–Rinehart bialgebra.



Duality functors for quantum groupoids 315

The analogue of Theorem 4.1.12 for LQFSAd’s (with essentially the same proof)
is the following:

Theorem 4.1.13. Let J `.L/h be a LQFSAd, namely a deformation of J `.L/. Then
L inherits from this quantization a structure of Lie–Rinehart bialgebra, namely the
unique one for which the Lie bracket and the anchor map of L� are given (notation
as above) by

Œˆ;‰� WD

�
�0 0 �  0�0

h
mod hJ `.L/h

�
mod J2

Jr .L/

!.ˆ/.a/ WD

 
�0r

�
a0
�
� r

�
a0
�
�0

h
mod hJ `.L/h

!
mod JJr .L/

for all ˆ;‰ 2 L� and a 2 A, where �0 and  0 are liftings in J `.L/h of ˆ and ‰
respectively, a0 is a lifting in Ah of a 2 A, and finally r

�
a0
�

stands for either sr
h

�
a0
�

or t r
h

�
a0
�
.

Remark 4.1.14. The result above can be proved like its analogue for RQFSAd’s,
i.e. Theorem 4.1.12. Otherwise, one can get the former from the latter applied to
J r.L/h WD J

`.L/
op
h , which is a RQFSAd — cf. Remarks 4.1.9(c). In particular, the

Lie–Rinehart bialgebra structure induced on L by the LQFSAd J `.L/h is opposite-
coopposite to that induced by the RQFSAd J r.L/h WD J

`.L/
op
h .

4.2. Extending quantizations: from the finite projective to the free case. Let L
be a Lie–Rinehart algebra overAwhich is finite projective as anA–module. With the
procedure presented in §2.1.6, we can find a projective A–moduleQ (a complement
of L in a finite free A–module F ) and use it to build a new Lie–Rinehart algebra
LQ WD L ˚

�
Q ˚ L ˚ Q ˚ L ˚ � � �

�
D L ˚ R, which as an A–module is free.

Then we fix an A–basis fb1; : : : ; bng of F from which we construct a good basis

feigi2T of LQ and a good basis fvtgt2T of R. Set Y WD
n
˚
iD1

kbi so that F DA˝kY ,

T WD N�f1; : : : ; ng,Z WD ˚
t2T
kvt , henceRD A̋ k.Y˚Y˚� � � / D A̋ kZ. Moreover,

one has also V `.LQ/ D V `.L/˝k S.Z/ with S.Z/ D S.Y /˝ S.Y /˝ � � � .

4.2.1. Extending QUEAd’s. Let L be a finite projective Lie–Rinehart algebra, for
which we consider for it all the objects and constructions mentioned just above.
Let V `.L/h 2 (LQUEAd)Ah be a (left) quantization of the left bialgebroid V `.L/.
Consider

V `.L/h;Y WD h–adic completion of V `.L/h˝kS.Y /˝kS.Y /˝� � � DW V
`.L/hb̋kS.Z/

In order to describe it, for d 2 T .N/ we set ed WD
Q
t2T e

d.t/
t and $

�
d
�
WD

max
˚
$.et /

ˇ̌
d.t/ ¤ 0

	
(cf. Definition 2.1.7);
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Proposition 4.2.2. Any element of V `.L/h;Y can be written in a unique way as

X
d2T .N/

t`
�
ad
�
ed D lim

n!C1

X
d2T.N/

jd jC$.d/�n

t`
�
ad
�
ed

with lim
jd jC$.d/!C1

ad D 0 (notation of § 4.0.10).

Proof. It is obvious that any element of the given lies in V.L/hY . Conversely, let
u 2 V.L/hY . Write u D u0 C hu1 C � � � C h

nun C � � � with ui 2 V.LQ/ for all i .
Now, for all i 2 N, each ui can be written as ui D

P
˛2N.T / t

`
�
u
˛

i

�
e˛ where all but

a finite number of the u˛i ’s are zero. Set u˛ WD
P
i h
iu
˛

i , so u D
P
˛ u˛e

˛; we show
that lim

j˛jC$.˛/!C1

u˛ D 0. Pick n0 2 N; choosing A > max
˚
j ˛ j C!.˛/

ˇ̌
9i �

n0 W u
˛

i 6D 0
	
, for any j˛j C !.˛/ > A we have

u˛ < 2�n0 .

Now, there exists a unique left bialgebroid structure on V `.L/h;Y given as
follows:

tY` W Ah �! V `.L/h;Y ; a 7! t`.a/˝ 1; sY` W Ah �! V `.L/h;Y ; a 7! s`.a/˝ 1

�V `.L/h;Y .a˝ s/ WD
�
a.1/ ˝ s.1/

�
˝
�
a.2/ ˝ s.2/

�
if �h.a/ D a.1/ ˝ a.2/; �S.Z/.s/ D s.1/ ˝ s.2/

�h.a˝ s/ WD �h.a/�.s/; .a˝ s/
�
a0 ˝ s0

�
WD aa0 ˝ ss0

where the right-hand side factor map � above is just the standard counit map
� W S.Z/ �! k of the Hopf k–algebra S.Z/, uniquely determined by �.z/ D 0

for every z 2 Z. It is easy to see that

(a) V `.L/h;Y is a quantization of the left bialgebroid V `.LQ/;

(b) �Y WD idV `.L/h;Yb̋k� W V `.L/h;Y WD V `.L/hb̋kS.Z/ ! V `.L/h is an
epimorphism of left bialgebroids.

A similar construction is possible if we take a RQUEAd V r.L/h instead of the
LQUEAd V `.L/h.

4.2.3. Extending QFSAd’s. Let L be a finite projective Lie–Rinehart algebra, and
adopt again notations as before. Recall also that in Remark 3.5.9 we have introduced
J r
f
.LQ/ WD V

`.LQ/
�f .

Let J r.L/h 2 (RQFSAd)Ah be a quantization of J r.L/. Keeping notation as in
§4.2.1, consider

J r.L/h;Y WD h–adic completion of
P
n2NJ

r.L/he̋kS.Y �/e̋n ˝ 1˝ 1˝ 1 � � �
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where J r.L/he̋S.Y �/e̋n˝ 1˝ 1˝ � � � is the
��
S.Y �/˝n

�C
˝ 1˝ 1˝ 1 � � �

�
–adic

completion of J r.L/h ˝ S.Y �/
˝n
˝ 1 ˝ 1 ˝ 1 � � � . There exists a unique right

bialgebroid structure on J r.L/h;Y

tYr W A �! J r.L/h;Y ; a 7! tr.a/˝ 1; sYr W Ah �! J r.L/h;Y ; a 7! sr.a/˝ 1

.a˝ s/.a0 ˝ s0/ WD aa0 ˝ ss0; �.a˝ s/ WD
�
a.1/ ˝ s.1/

�
˝
�
a.2/ ˝ s.2/

�
;

@h.a˝ s/ WD @h.a/�
�.s/

Then one easily sees that

(a) J r.L/h;Y is a quantization of the right bialgebroid J r
f
.LQ/;

(b) �Y WD idJ r .L/h;Y˝k �
� W J r.L/h;Y ! J r.L/h is an epimorphism of right

bialgebroids.

An entirely similar construction is possible if J r.L/h is replaced with a LQFSAd
J `.L/h.

Remark 4.2.4. Let V `.L/h 2 (LQUEAd)Ah be a quantization of V `.L/. We have
seen in §4.2.1 that V `.L/h;Y WD V `.L/hb̋kS.Z/ is a LQUEAd which quantizes
V `.LQ/. If n 2 N, let S.Z/C WD Ker

�
� W S.Z/ �! k

�
be the kernel of the counit

of S.Z/, and let V `.L/
�f;n

h;Y be the subspace of V `.L/
�

h;Y given by V `.L/
�f;n

h;Y WD˚
� 2 V `.L/

�

h;Y

ˇ̌
�
�
V `.L/h ˝k S.Y /

˝n
˝k S.Z/

C
�
D 0

	
. Then set

V `.L/
�f

h;Y WD h–adic completion of
P
n2NV

`.L/
�f;n

h;Y

Then V `.L/
�f

h;Y is a right subbialgebroid of V `.L/
�

h;Y , which is isomorphic to

the right bialgebroid
�
V `.L/

�

h

�
Y

. Note also that V `.L/
�f;n

h;Y is isomorphic to

V `.L/
�

h
e̋kS.Y �/e̋n ˝k 1˝k 1˝k 1 � � � .

In a similar way, one can define also the right bialgebroid
�
V `.L/h;Y

�
�f

:

this is a right subbialgebroid of
�
V `.L/h;Y

�
�

isomorphic to the right bialgebroid��
V `.L/h

�
�

�
Y

.
Parallel “right-handed versions” of the previous constructions and results also

make sense if one starts with some V r.L/h 2 (RQUEAd)Ah instead of V `.L/h 2
(LQUEAd)Ah : in a nutshell, one still finds that “extension commutes with dualiza-
tion”. Details are left to the reader.

5. Linear duality for quantum groupoids

In this section we explore the relationship among quantum groupoids ruled by linear
duality (i.e., by taking left or right duals). We shall see that the “(left/right) full
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dual” and the “(left/right) continuous dual” altogether provide category antiequiv-
alences between (LQUEAd)Ah and (RQFSAd)Ah and between (RQUEAd)Ah and
(LQFSAd)Ah .

Essentially, we implement the construction of “dual bialgebroids” presented in
Subsection 3.4, but still we need to make sure that several technical aspects do turn
round.

5.1. Linear duality for QUEAd’s. We begin with the construction of duals for
(L/R)QUEAD’s. In this case, we consider “full duals” (versus topological ones,
cf. Subsection 5.2 later on. Before giving the main result, we need a couple of
auxiliary, technical lemmas.

Lemma 5.1.1. Let V `.L/h 2 (LQUEAd)Ah and u 2 V `.L/h. For any r 2 N, there

exists tr 2 N such that �tr .u/ D ı0 C hı1 C h
2ı2 C � � � C h

r�1ır�1 C h
rır

�
2

V `.L/
b̋tr
h

�
and, for any i D 0; : : : ; r�1, each homogeneous tensor in an expansion

of ıi has at least r factors equal to 1.

Proof. For any w 2 V `.L/
˝s

h , we denote by w the coset of w modulo hV `.L/
˝s

h .
We expand the given u as u D u0 C hu1 C � � � C hrur C � � � . Then there exists

t 00 2 N such that (each homogeneous tensor in) �t
0
0.u0/ contains at least r terms

equal to 1. We lift�t
0
0.u0/ to some ı00 2 V

`.L/
b̋t 0
0

h
containing (i.e., its homogeneous

tensors contain) at least r terms equal to 1. Then�t
0
0.u/ D ı00Chı

0
1Ch

2ı02C� � �C

hrı0r C � � � for suitable elements ı01 ; : : : ; ı
0
r 2 V

`.L/
b̋t 0
0

h
.

Now we can find t 01 2 N such that
�
idt
0
0
�1
˝�t

0
1

�
.ı01/ contains at least r

terms equal to 1. We lift
�
idt
0
0
�1
˝�t

0
1

�
.ı00/ and

�
idt
0
0
�1
˝�t

0
1

�
.ı01/ to elements

ı10 ; ı
1
1 2 V `.L/

b̋t 0
0
Ct 0
1

h
which both contain at least r terms equal to 1. Thus we

find �t
0
0
Ct 0
1.u/ D ı10 C hı

1
1 C h

2ı12 C � � � C h
rı1r C � � � for suitable ı12 ; : : : ; ı

1
r 2

V `.L/
b̋t 0
0
Ct 0
1

h
. Iterating finitely many times, we complete the proof.

Notation 5.1.2. Before the next lemma, we need some more notation: given
V `.L/h 2 (LQUEAd)Ah , consider Kh WD V `.L/

�

h and its subset IKh WD
˚
� 2

Kh
ˇ̌˝
1V `.L/h ; �

˛
2 hAh

	
.

Remark 5.1.3. As V `.L/h is a left bialgebroid, by §3.4.2 we know that its right
dual Kh WD V `.L/

�

h has a canonical structure of Ae–ring; then, with respect to this
structure, one easily sees that IKh is a two-sided ideal of Kh. Moreover �.Ih/ �
IKh ˝Kh CKh ˝ IKh : Indeed, given any � 2 IKh , we write �.�/ D �.1/ ˝ �.2/
— a formal series (in †–notation) — convergent in the IKhe̋Kh–adic topology of
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Khe̋Kh. Writing �.1/ and �.2/ as

�.1/ D �
Cs
.1/
C sr

�
@h
�
�.1/

��
; with �

Cs
.1/
WD �.1/ � s

r
�
@h
�
�.1/

��
2 IKh

�.2/ D �
Ct
.2/
C t r

�
@h
�
�.2/

��
; with �

Ct
.2/
WD �.2/ � t

r
�
@h
�
�.2/

��
2 IKh

we can expand �.�/ D �.1/ ˝ �.2/ as

�.�/ D �
Cs
.1/
˝ �.2/ C s

r
�
@h
�
�.1/

��
˝ �

Ct
.2/
C sr

�
@h.�/

�
˝ 1

2
�
IKh e̋AhKh CKhe̋AhIKh C hsr.Ah/e̋Ah1�

where we took into account the identity sr
�
@h
�
�.1/

��
˝ t r

�
@h
�
�.2/

��
D sr

�
@h.�/

�
˝ 1,

due to Remarks 3.3.2, and the fact that @h.�/ 2 hAh, since � 2 IKh by assumption.

Lemma 5.1.4. Given V `.L/h 2 (LQUEAd)Ah and Kh WD V `.L/
�

h, consider the
two-sided ideal IKh WD

˚
� 2 Kh

ˇ̌˝
1V `.L/h ; �

˛
2 hAh

	
of Kh, as well as its powers

I nKh
.n 2 N/. Then, for every u 2 V `.L/h and every r 2 N, there exists tr 2 N such

that
˝
u; I

tr
Kh

˛
2 hrAh.

The same property holds if one considers the left dual Kh WD
�
V `.L/h

�
�

of
V `.L/h.

Proof. Thanks to the previous lemma, there exists tr 2 N such that

�tr .u/ D ı0 C hı1 C h
2ı2 C � � � C h

r�1ır�1 C h
rır

for some elements ı0; : : : ; ır 2 V `.L/
b̋tr
h such that ı0; : : : ; ır�1 contain at least r

terms equal to 1. From this fact and the properties of the natural pairing
˝
;
˛
between

V `.L/h and its right dual Kh WD V `.L/
�

h it is easy to see that
˝
�; u

˛
2 hrAh for all

� 2 I
tr
Kh

, whence the claim.

We are now ready for our first important result about linear duality of “quantum
groupoids”. In a nutshell, it claims that the left and the right dual of a left, resp. right,
quantum universal enveloping algebroid are both right, resp. left, quantum formal
series algebroids.

Theorem 5.1.5. (a) If V `.L/h 2 (LQUEAd)Ah , then V `.L/
�

h; V
`.L/h� 2 (RQFSAd)Ah ,

with semiclassical limits (cf. §3.5.5)

V `.L/
�

h

ı
hV `.L/

�

h Š V
`.L/

�
DW J r.L/

and V `.L/h�
ı
hV `.L/h� Š V

`.L/� Š J
r.L/:

Therefore V `.L/
�

h and V `.L/h� are quantizations of J r.L/.
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Moreover, the structure of Lie–Rinehart algebra induced on L� by the quantiza-
tion V `.L/

�

h of J r.L/— according to Theorem 4.1.12 — is the same as that induced
by the quantization V `.L/h of V `.L/ — according to Theorem 4.1.3; therefore, the
structure of Lie–Rinehart bialgebra induced on L is the same in either case.

On the other hand, the structure of Lie–Rinehart algebra induced on L�

by the quantization V `.L/h� of V `.L/� Š J r.L/ is opposite to that induced
by the quantization V `.L/h of V `.L/. Thus the structures of Lie–Rinehart
bialgebra induced on L in the two cases are coopposite to each other: V `.L/h
provides a quantization of the Lie–Rinehart bialgebra L, while V `.L/h� provides
a quantization of the coopposite Lie–Rinehart bialgebra Lcoop — cf. Remarks 2.2.2
(e).

(b) If V r.L/h 2 (RQUEAd)Ah , then �V r.L/h;
�V r.L/h 2 (LQFSAd)Ah , with

semiclassical limits (cf. §3.5.5)

�V
r.L/h

ı
h�V

r.L/h Š �V
r.L/ WD J `.L/

and �V r.L/h
ı
h �V r.L/h Š

�V r.L/ Š J `.L/

Therefore �V r.L/h and �V r.L/h are quantizations of J `.L/ WD �V r.L/.
Moreover, the structures of Lie–Rinehart algebra induced on L� by the quan-

tization �V r.L/h of J `.L/ — according to Theorem 4.1.13 — is the same as that
induced by the quantization V r.L/h of V r.L/ — according to Theorem 4.1.6.

On the other hand, the structure of a Lie–Rinehart algebra induced on L�

by the quantization �V r.L/h of �V r.L/ Š J `.L/ is opposite to that induced
by the quantization V r.L/h of V r.L/. Thus the structures of Lie–Rinehart
bialgebra induced on L in the two cases are coopposite to each other: V `.L/h
provides a quantization of the Lie–Rinehart bialgebra L, while �V r.L/h provides a
quantization of the coopposite Lie–Rinehart bialgebraLcoop — cf. Remarks 2.2.2 (e).

Proof. (a) We shall start by proving that if V `.L/h 2 (LQUEAd)Ah , then
V `.L/

�

h2 (RQFSAd)Ah .

As we saw in §5.1.2, the right dual Kh WD V `.L/
�

h of V `.L/h has a canonical
structure ofAe–ring. Moreover, it is endowed with a map @h W V `.L/

�

h �! Ah
�
� 7!˝

1V `.L/h ; �
˛�

, which has all the properties of a “counit” in a right bialgebroid and
defines the two-sided ideal IKh WD @

�1
h

�
hAh

�
. What we still have to prove is that

� Kh WD V
`.L/

�

h is complete for the IKh–adic topology;
� there exists a suitable coproduct �h W Kh WD V `.L/

�

h ! Khe̋AhKh D
V `.L/

�

h
e̋AhV `.L/�h, which makes Kh WD V `.L/

�

h into a topological right
bialgebroid;

� Kh
ı
hKh D V `.L/

�

h

ı
hV `.L/

�

h is isomorphic to V `.L/
�

as topological right
bialgebroid.
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We begin by looking for an isomorphism V `.L/
�

h

ı
hV `.L/

�

h Š V `.L/
�
. For

this, we distinguish two cases, the free one and the general one.
Free case:L is a free A–module of finite type.
In this case, let us fix an A–basis fe1; : : : ; eng of the A–module L; then we lift

each ei to some ei 2 V `.L/h. Then any element of V `.L/h can be written as the
h–adic limit of elements of the form

P
.a1;:::;an/2Nn tl.ca1;:::;an/e

a1
1 � � � e

an
n in which

almost all ca1;:::;an’s are zero.
For a given � 2 V `.L/

�
, set ˛a1;:::;an WD �

�
e
a1
1 � � � e

an
n

�
2 A for all a WD

.a1; : : : ; an/ 2 Nn. We lift each ˛a1;:::;an to some ˛a1;:::;an 2 Ah, with the
assumption that if ˛a1;:::;an D 0 then we choose ˛a1;:::;an D 0. Now we set

ƒ
�P

.a1;:::;an/2Nn tl.ca1;:::;an/e
a1
1 � � � e

an
n

�
WD
P
.a1;:::;an/2Nnca1;:::;an˛a1;:::;an

This defines a map ƒ from the right Ah–submodule of V `.L/h spanned by
all the monomials ea11 � � � e

an
n to Ah: as the h–adic completion of this submodule

is nothing but V `.L/h, this map uniquely extends (by continuity) to a map ƒ W
V `.L/h �! Ah. By construction, we have ƒ 2 V `.L/

�

h, and ƒ is a lifting
of �, that is ƒ mod hV `.L/

�

h D �. This guarantees that the canonical map
V `.L/

�

h

ı
hV `.L/

�

h ��! V `.L/
�
, which is obviously injective, is also surjective.

General case:L is a projective A–module of finite type.
As in §2.1.6, we introduce a projective A–module Q such that L ˚ Q D F

is a finite free A–module. Fix an A–basis fb1; : : : ; bng of F , and set Y D kb1 ˚

kb2 � � �˚kbn, so that F D A˝k Y . The basis fb1; : : : ; bng also defines a good basis
feigi2T WDN�f1;:::;ng of LQ.

Now let � 2 V.L/�. We extend � to some �0 2 V.LQ/
� by setting

�0
ˇ̌
V.L/˝S.Z/C

WD 0. Now we can adapt the arguments of the free case to construct
a lifting ƒ0 2 V.L/h;Y

� of �0. Then ƒ WD ƒ0
ˇ̌
V.L/h

2 V.L/�h is a lifting of � as
required.

Thus one sees again that the canonical map V `.L/
�

h

ı
hV `.L/

�

h �! V `.L/
�

is a
bijection.

On V `.L/
�

h we have already considered an algebraic structure of “Ae–ring with
counit”: the same structure then is inherited by its quotient V `.L/

�

h

ı
hV `.L/

�

h. On
the other hand, V `.L/

�
is a right bialgebroid, hence in particular it is an “Ae–ring

with counit” as well. The canonical bijection V `.L/
�

h

ı
hV `.L/

�

h�! V `.L/
�

above
is clearly compatible with this additional structure. In particular, this implies that
Ker.@h/ mod hKh Š Ker.@V `.L// DW JV `.L/� .

Now consider IKh WD @�1
h

�
hAh

�
, which can be written as IKh D Ker.@h/ C

hKh. As we know that V `.L/
�

is J
V `.L/

�–adically complete (cf. §3.5.1), from
Ker.@h/ mod hKh Š J

V `.L/
� and IKh D Ker.@h/C hKh we can easily argue that

Kh WD V
`.L/

�

h is IKh–adically complete.
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Now we look for a suitable coproduct. To this end, we shall show that the
natural “coproduct” given by the recipe in §3.4.2 does the job. The problem
is to prove the existence of an isomorphism from V `.L/

�

hJe̋IV
`.L/

�

h — the
completion of V `.L/

�

h ˝ V `.L/
�

h with respect to the topology defined by the

filtration

0@ X
pCqDn

I
p

h
˝ I

q

h

1A
n2N

— to Hom.�;Ah/
��
V `.L/hG˝IV

`.L/h
�
G
; Ah

�
.

More precisely, there exists (cf. §3.4.2) a natural map � from V `.L/
�

h ˝ V
`.L/

�

h to
Hom.�;Ah/

��
V `.L/hG˝IV

`.L/h
�
G
; Ah

�
; we now show that this � actually extends

to a (continuous) map — which we still denote by � — from V `.L/
�

hJe̋IV
`.L/

�

h

to Hom.�;Ah/
��
V `.L/hG˝IV

`.L/h
�
G
; Ah

�
.

To begin with, fix u 2 V `.L/h. For every r 2 N, there exists tr 2 N such that
�tr .u/ expands as �tr .u/ D ı0 C hı1 C h

2ı2 C � � � C h
rır as in Lemma 5.1.1: in

particular, every ıi 2 V `.L/
˝tr
h with 0 � i � r � 1 contains at least r terms equal

to 1. As the canonical evaluation pairing between V `.L/h and Kh WD V `.L/
�

h is a
bialgebroid right pairing — in the sense of Definition 3.4.5 — the formulas for such
pairings imply at once (by induction) that

˝
u; I tKh

˛
� hrAh for all t � tr . By the

same arguments, given v;w 2 V `.L/h we see that, for every r 2 N, one has˝
v ˝ w; I t

0

Kh
˝ I t

00

Kh

˛
� hrAh for all t 0 C t 00 � 0 .5:1/

Now let ƒ 2 V `.L/
�

hJe̋IV
`.L/

�

h. Then ƒ is the limit of a sequence .ƒn/n2N
— with ƒn 2 V `.L/

�

hJ˝IV
`.L/

�

h for all n — for the topology defined by the

filtration

0@ X
pCqDn

I
p

h
˝ I

q

h

1A
n2N

; in particular, for each t 2 N one has

�
ƒn0 �ƒn00

�
2

P
t 0Ct 00Dt

I t
0

Kh
˝ I t

00

Kh
for all n0; n00 � 0 .5:2/

By (5.1) and (5.2) together we get that for all r 2 N one has�
�.ƒn0/��.ƒn00/

�
.v˝w/ D �

�
ƒn0�ƒn00

�
.v˝w/ WD

˝
v˝w;ƒn0�ƒn00

˛
� hrAh

for all n0; n00 � 0; in other words,
˚
�.ƒn

�
.v ˝ w/

	
n2N is a Cauchy sequence for

the h–adic topology in Ah; as the latter is h–adically complete (and separated), there
exists a unique, well-defined limit lim

n!1
�.ƒn

�
.v˝w/ 2 Ah. In the end, we can set

�
�
ƒ
�
.v˝w/ WD lim

n!1
�.ƒn

�
.v˝w/; this defines a (continuous) map extending the

original one, namely

� W V `.L/
�

hJe̋IV
`.L/

�

h ��! Hom.�;Ah/
��
V `.L/hG˝IV

`.L/h
�
G
; Ah

�
.5:3/

To complete our argument, we need a few more steps. In order to ease the
notation, we shall write X

ˇ̌
hD0
WD X

ı
hX for every kŒŒh��–module X .
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First, with the same arguments used to prove that Hom.�;Ah/
�
V `.L/h; Ah

�ˇ̌̌
hD0
D

V `.L/
�

h

ˇ̌̌
hD0

has a canonical bijection with Hom.�;A/
�
V `.L/; A

�
DW V `.L/

�
we can

also prove that

Hom.�;Ah/
��
V `.L/hG˝IV

`.L/h
�
G
; Ah

�ˇ̌̌
hD0
Š Hom.�;A/

�
V `.L/˝ V `.L/; A

�
.5:4/

Similarly, the same arguments once more can be adapted to prove that

V `.L/
�

hJe̋IV
`.L/

�

h

ˇ̌̌
hD0
Š V `.L/

�e̋V `.L/� �
D J r.L/e̋J r.L/; cf. §3.5.1

�
.5:5/

Finally, by construction the reduction modulo h of the map � in (5.3), call it �,
is nothing but the mape# W J r.L/Je̋IJ

r.L/ D V `.L/
�

Je̋IV
`.L/

�
��!

�
V `.L/G˝IV

`.L/
��

considered in §3.5.1. Therefore — since Hom.�;A/
�
V `.L/ ˝ V `.L/; A

�
DW�

V `.L/G˝IV
`.L/

��
, and taking into account the isomorphisms in (5.4–5) — as

� D e# is a k–linear isomorphism we can deduce that � is an isomorphism as well.
The outcome now is that Kh WD V `.L/

�

h endowed with the previously
constructed structure — including the coproduct map given by the recipe in §3.4.2 —
is a topological right bialgebroid, complete with respect to the IKh–adic topology. In
addition, the bijection V `.L/

�

h

ı
hV `.L/

�

h �! V `.L/
�

found above by construction
happens to be a right bialgebroid isomorphism.

Our next task is the following. Denote by
�
L�; Œ ; �0; !0

�
and

�
L�; Œ ; �00; !00

�
the

structures of Lie–Rinehart bialgebras induced onL� respectively by Theorem 4.1.12
— for J r.L/ WD V `.L/

�

h — and by Theorem 4.1.3 — applied to V `.L/h. We must
prove that !0 D !00 and Œ ; �0 D Œ ; �00. To this end, recall that, by Remarks 2.2.2(b),
!00 and Œ ; �00 are uniquely determined by the conditions

!00.ˆ/.a/ D
˝
ıL.a/;ˆ

˛
;˝

‚; Œˆ;‰�00
˛
D !00.ˆ/

�
h‚;‰i

�
� !00.‰/

�
h‚;ˆi

�
�
˝
ıL.‚/;ˆ˝‰

˛
(for allˆ;‰ 2 L�, ‚ 2 L, a 2 A), where ıL.a/ and ıL.‚/ are defined by the
formula for ı in Theorem 4.1.3. Therefore, it is enough for us to prove that (for
allˆ;‰ 2 L�, ‚ 2 L, a 2 A)

!0.ˆ/.a/ D
˝
ıL.a/;ˆ

˛
;˝

‚; Œˆ;‰�0
˛
D !00.ˆ/

�
h‚;‰i

�
� !00.‰/

�
h‚;ˆi

�
�
˝
ıL.‚/;ˆ˝‰

˛
.5:6/

In order to prove (5.6), we choose liftings �0;  0 2 J r.L/h WD V `.L/
�

h, with
the additional condition that �0;  0 2 JJr .L/h WD Ker

�
@J r .L/h

�
(such a choice is
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always possible), a lifting � 2 V `.L/h of ‚ and a lifting a0 2 Ah of a. Now direct
computation gives

!0.ˆ/.a/ D

D

��
h�1

�
�0tr

�
a0
�
� tr

�
a0
�
�0
��

mod hJ r.L/h
�

mod JJ.L/

D @J.L/h

�
�0tr

�
a0
�
� tr

�
a0
�
�0

h

�
mod hAh

D

�
1;
�0tr

�
a0
�
� tr

�
a0
�
�0

h

�
mod hAh D

a0
˝
1; �0

˛
�
˝
1; tr

�
a0
�
�0
˛

h
mod hAh

D

˝
1; �0

˛
a0 �

˝
1; tr

�
a0
�
�0
˛

h
mod hAh D

˝
t`
�
a0
�
; �0
˛
�
˝
s`
�
a0
�
; �0
˛

h
mod hAh

D

�
t`
�
a0
�
� s`

�
a0
�

h
; �0
�

mod hAh D
˝
ıL.a/;ˆ

˛
where

˝
;
˛

denotes the natural evaluation pairing between V `.L/h and its right
dual V `.L/

�

h, we exploited the fact that this pairing is a right bialgebroid pairing
(cf. Definitions 3.4.4 and 3.4.5) and the fact that

˝
1
V`.L/h

; �0
˛
DW @J r .L/h

�
�0
�
D 0

because �0 2 JJr .L/h WD Ker
�
@J r .L/h

�
by assumption. Thus the first identity in

(5.6) is verified.
As to the second identity, we write �.�/ D �.1/˝ �.2/ as �.�/ D � ˝ 1C 1˝ � C
h
P
Œ�� �Œ1�˝�Œ2�, so that

�P
Œ�� �Œ1�˝�Œ2�

�
mod hV `.L/hG�

A
FV

`.L/h DW �
Œ1�.‚/

— notation of Definition 4.1.3. Then by direct computation we find

D
‚; Œˆ;‰�0

E
D

D

�
�;
�0 0 �  0�0

h

�
mod hAh D h�1

�̋
�; �0 0

˛
�
˝
�;  0�0

˛�
mod hAh

D h�1
�̋
1; tr

�˝
�; �0

˛�
 0
˛
�
˝
1; tr

�˝
�;  0

˛�
�0
˛�

mod hAh

C
P
Œ��

�˝
�Œ2�; tr

�˝
�Œ1�; �

0
˛�
 0
˛
�
˝
�Œ2�; tr

�˝
�Œ1�;  

0
˛�
�0
˛�

mod hAh

D h�1
�̋
s`
�˝
�; �0

˛�
;  0

˛
�
˝
s`
�˝
�;  0

˛�
; �0
˛�

mod hAh

C
P
Œ��

�˝
s`
�˝
�Œ1�; �

0
˛�
�Œ2�;  

0
˛
�
˝
s`
�˝
�Œ1�;  

0
˛�
�Œ2�; �

0
˛�

mod hAh

D

�
h�1

D
s`
�˝
�; �0

˛�
� t`

�˝
�; �0

˛�
;  0

E
� h�1

D
s`
�˝
�;  0

˛�
� t`

�˝
�;  0

˛�
; �0
E�

mod hAh

C
P
Œ��

�˝
t`
�˝
�Œ1�; �

0
˛�
�Œ2�;  

0
˛
�
˝
t`
�˝
�Œ1�;  

0
˛�
�Œ2�; �

0
˛�

mod hAh
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D

��
s`
�˝
�; �0

˛�
� t`

�˝
�; �0

˛�
h

; 0
�
�

�
s`
�˝
�;  0

˛�
� t`

�˝
�;  0

˛�
h

; �0
��

mod hAh

C
P
Œ��

�˝
�Œ2�;  

0
˛˝
�Œ1�; �

0
˛
�
˝
�Œ2�; �

0
˛˝
�Œ1�;  

0
˛�

mod hAh

D �
˝
ıL
�˝
‚;ˆ

˛�
; ‰
˛
C
˝
ıL
�˝
‚;‰

˛�
; ˆ
˛
C
˝
�Œ1�.‚/ ��Œ1�.‚/2;1; ˆ˝‰

˛
D !00.ˆ/

�̋
‚;‰

�̨
� !00.‰/

�̋
‚;ˆ

�̨
�
˝
ıL.‚/;ˆ˝‰

˛
where we exploited the properties of a right bialgebroid pairing — in particular, the
identity

˝
t`.˛/; �0

˛
D
˝
1; �0

˛
˛ — the fact that

˝
1; �0

˛
D @Jr .L/h

�
�0
�
D 0,

˝
1;  0

˛
D

@Jr .L/h
�
 0
�
D 0, the fact that s`.�/ � t`.�/ mod hV `.L/h and the fact (already

proved) that !00 D !0. This proves the second identity in (5.6).
Finally, we have to deal with V `.L/h�. Acting much like for V `.L/

�

h, one proves
that V `.L/h� is indeed a topological right bialgebroid, whose specialization modulo
h is just V `.L/� Š J `.L/, hence we can claim that V `.L/h� 2 (RQFSAd)Ah is a
quantization of J `.L/.

As to the last part of claim (a), concerning the two Lie–Rinehart algebra
structures induced on L�, we can again proceed like for V `.L/

�

h: the difference in
the outcome — a minus sign — now is due to the fact that the natural pairing (given
by evaluation) among the left bialgebroid V `.L/h and the right bialgebroid V `.L/h�
is a left bialgebroid pairing (cf. Definitions 3.4.4 and 3.4.5) — whereas in the case
of V `.L/h and V `.L/

�

h it is a right bialgebroid pairing. Full detail computations are
left to the reader.

(b) The proof given for claim (a) clearly adapts to claim (b) as well, by the
same arguments. Otherwise, one can deduce claim (b) directly from claim (a) using
general isomorphisms such as �

�
U

op
coop

�
Š .U �/

op
coop and �

�
U

op
coop

�
Š .U�/

op
coop (see

Remark 3.4.6).

5.2. Linear duality for QFSAd’s. Much like for their classical counterparts, the
duals for QFSAD’s have to be meant in topological sense. Indeed, we introduce now
a suitable definition of “continuous” dual of a (R/L)QFSAd:

Definition 5.2.1. Let Kh 2 (RQFSAd)Ah . Let Ih WD
˚
� 2 Kh

ˇ̌
@h.�/ 2 hAh

	
.

We denote by ?Kh the kŒŒh��–submodule of �Kh of all (left Ah–linear) maps
fromKh to Ah which are continuous for the Ih–adic topology onKh and the h–adic
topology on Ah.

We denote by ?Kh the kŒŒh��–submodule of �Kh of all (right Ah–linear) maps
fromKh to Ah which are continuous for the Ih–adic topology onKh and the h–adic
topology on Ah.

In a similar way, we define also “continuous dual” objects Kh?
�
� Kh�

�
and

K?
h

�
� K�

h

�
for every Kh 2 (LQFSAd)Ah .
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It is time for our second result about linear duality of “quantum groupoids”.
In short, it claims that the left and the right continuous dual of a left, resp. right,
quantum formal series algebroid are both right, resp. left, quantum universal
enveloping algebroids.

Theorem 5.2.2. (a) If J r.L/h 2 (RQFSAd)Ah , then ?J r.L/h;
?J r.L/h 2 (LQUEAd)Ah ,

with semiclassical limits (cf. Remark 3.5.8)

?J
r.L/h

ı
h?J

r.L/h Š ?J
r.L/ D V `.L/

and ?J r.L/h
ı
h?J r.L/h Š

?J r.L/ Š V `
�
L
�

Therefore ?J r.L/h and ?J r.L/h are quantizations of V `.L/ D ?J
r.L/.

Moreover, the structure of Lie–Rinehart bialgebra induced on L by the quantiza-
tion ?J r.L/h of V `.L/— according to Theorem 4.1.3 — is the same as that induced
by the quantization J r.L/h of J r.L/ — according to Theorem 4.1.12.

On the other hand, the structure of Lie–Rinehart algebra induced on L� by
the quantization ?J r.L/h of V `

�
L
�

is opposite to that induced by the quantization
J r.L/h of J r.L/. Therefore, the structures of Lie–Rinehart bialgebra induced on
L in the two cases are coopposite to each other: in short, J r.L/h provides a
quantization of the Lie–Rinehart bialgebraL, while ?J r.L/h provides a quantization
of the coopposite Lie–Rinehart bialgebra Lcoop — cf. Remarks 2.2.2 (e).

(b) If J `.L/h 2 (LQFSAd)Ah , then J `.L/
?

h; J
`.L/h? 2 (RQUEAd)Ah , with

semiclassical limits (cf. Remark 3.5.8)

J `.L/
?

h

ı
hJ `.L/

?

h Š J
`.L/

?
D V r.L/

and J `.L/h?

ı
hJ `.L/h? Š J

`.L/? Š V
r
�
L
�

Therefore J `.L/
?

h and J `.L/h? are quantizations of V r.L/ D J `.L/
?
.

Moreover, the structure of Lie–Rinehart bialgebra induced on L by the quantiza-
tion J `.L/

?

h of V r.L/ — according to Theorem 4.1.6 — is the same as that induced
by the quantization J `.L/h of J `.L/ — according to Theorem 4.1.13.

On the other hand, the structure of Lie–Rinehart algebra induced on L� by
the quantization J `.L/h? of V r

�
L
�

is opposite to that induced by the quantization
J `.L/h of J `.L/. Therefore, the structures of Lie–Rinehart bialgebra induced on L
in the two cases are coopposite to each other: in short, J `.L/h provides a quantiza-
tion of the Lie–Rinehart bialgebra L, while J `.L/h? provides a quantization of the
coopposite Lie–Rinehart bialgebra Lcoop — cf. Remarks 2.2.2 (e).

Proof. (a) To simplify notation set Kh WD J r.L/h. We begin dealing with ?Kh, in
several steps.

The main point in the proof is the following. By definition, ?Kh is contained
in �Kh: by the recipe in §3.4, the latter is “almost” a left bialgebroid over Ah, as it
has a natural structure ofAe

h
–ring with “counit”, and also a “candidate” as coproduct.
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Then the natural pairing among �Kh andKh (given by evaluation), hereafter denoted
h ; i, is an Ae

h
–right pairing (cf. Definition 3.4.4), and also a bialgebroid right pairing

(cf. Definition 3.4.5) — as far as this makes sense. Basing on this, we shall presently
show that this structure on �Kh — which makes it anAe

h
–ring and even “almost a left

Ae
h
–bialgebroid”, actually does restrict to ?Kh, making it into a left Ae

h
–bialgebroid.

Also, the evaluation will then provide a natural bialgebroid right pairing between
?Kh and Kh.

Along the way, we shall prove also that ?Kh has semiclassical limit V `.L/, and
finally that the Lie–Rinehart bialgebra structure on L induced by it is the same as
that induced by Kh WD J r.L/h.

(1) First we prove that the source and target maps of �Kh (as given in §3.4)
actually map into ?Kh, that is s`�.Ah/ � ?Kh and t`�.Ah/ � ?Kh. We shall prove it
by showing that, for any a 2 Ah, one has

˝
s`�.a/; I

n
h

˛
� hnAh,

˝
t`�.a/; I

n
h

˛
� hnAh,

for all n 2 N.
For t`�, if � 2 Ih, then

˝
t`�.a/; �

˛
D
˝
1; �

˛
a 2 hAh D h1Ah; thus

˝
t`�.a/; I

1
h

˛
�

h1Ah.
Now assume by induction that

˝
t`�.a/; I

m
h

˛
� hmAh. Let  2 Im

h
and � 2 Ih;

then ˝
t`�.a/;  �

˛
D
˝
1;  �

˛
a D

˝
s`�
�
h1;  i

�
1; �

˛
a

thus by the induction hypothesis and the case m D 1 we see that
˝
t`�.a/;  �

˛
2

hmC1Ah.
The case of s`� — being totally similar — is left to the reader.
(2) Let us show that if !;!0 2 ?Kh, then !!0 2 ?Kh. Given n 2 N, let p; q 2 N

be such that
˝
!; I

p

h

˛
2 hnAh and

˝
!0; I

q

h

˛
2 hnAh. Now take � 2 IpCq

h
. Then the

identity ˝
!!0; �

˛
D
˝
!t`�

�˝
!0; �.2/

˛�
; �.1/

˛
D
˝
!; �.1/sr

�˝
!0; �.2/

˛�˛
taking into account that �

�
I
pCq

h

�
�

P
rCsDpCq

I r
h
˝
Ah
I s
h

because �.Ih/ � Kh ˝Ah

IhC Ih˝Ah
Kh, proves that

˝
!!0; I

pCq

h

˛
2 hnAh. Thus ?Kh is a subring of �Kh —

even an Ae
h
–subring, by (1).

(3) Let us show that ?Kh is topologically free. First we prove that it is complete
for the h–adic topology. Indeed, as Kh is topologically free (for its own h–
adic topology), so is HomkŒŒh��.Kh; Ah/ as well. Now let .�n/n2N be a Cauchy
sequence of elements in ?Kh; then this sequence converges to a unique limit
� 2 HomkŒŒh��.Kh; Ah/. Then it is easy to see that � 2 HomAh.Kh; Ah/.

Now we show that � 2 ?Kh. Given n 2 N, there exists n1 2 N such that
�n1 � � takes values in hnAh. As �n1 2 ?Kh, there exists n2 2 N such that˝
�n1 ; I

n2
h

˛
2 hnAh. But then we have

˝
�; I

n2
h

˛
2 hnAh and so we conclude that

� 2 ?Kh.
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Finally, as ?Kh is complete for the h–adic topology and without torsion, it is
topologically free.

(4) Now we show that ?Kh
ı
h?Kh D ?

�
Kh
ı
hKh

�
D ?J

r.L/ D V `.L/.
Let � 2 ?Kh, so that � as a map from Kh (with the Ih–adic topology) to

Ah (with the h–adic topology) is continuous. Then � induces (modulo h) a map
� W J r.L/ �! A which is 0 on Jn for n � 0, where J WD Ker

�
@Jr .L/

�
. We

claim that the kernel of the map � W � 7! � is h?Kh: indeed, it is obvious
that h?Kh � Ker.�/, and the inverse inclusion follows from the fact that Ah
is topologically free. Therefore we have an injective map � W ?Kh

ı
h?Kh �!

?

�
Kh
ı
hKh

�
D ?J

r.L/ D V `.L/ induced by � (modulo h), and we are left to show
that � is surjective too.

We distinguish two cases:
Finite free case: Assume that L as an A–module is free of finite type. Let

fe1; : : : ; eng be an A–basis of L. Then
˚
e˛ WD e

˛1
1 � � � e

˛n
n

ˇ̌
˛ WD .˛1; : : : ; ˛n/ 2 Nn

	
is a basis of V `.L/, by the Poincaré–Birkhoff–Witt theorem. Define � i 2 K WD
J r.L/ by

˝
� i ; e

˛1
1 � � � e

˛n
n

˛
D
Qn
jD1 ı˛j ;ıi;j .

Let �i 2 Kh be a lifting of � i such that @h.�i / D 0. We denote (ordered)
monomials in the � i ’s or in the �i ’s by �

˛
WD �

˛1
1 � � � �

˛n

n and �˛ WD �
˛1
1 � � � �

˛n
n

respectively. Note that �˛ 2 I j˛j
h

, where j˛j WD
Pn
iD1 ˛i . Let � 2 ?

�
Kh
ı
hKh

�
D

?J
r.L/ D V `.L/ be given: we write Na˛ WD

˝
�; �

˛˛
2 A, and note that all but finitely

many of the Na˛’s are zero. Let a˛ 2 Ah be any lifting of Na˛ (for all ˛ 2 Nn), with
the condition that whenever Na˛ D 0 we take also a˛ D 0. Now we define ƒ 2 �Kh
by setting

˝
ƒ; �˛

˛
WD a˛ . As Im

h
D

P
j˛jCs�m

hs�˛tr.Ah/, it is easy to check that if

n 2 N then
˝
ƒ; Im

h

˛
� hnAh for m� 0. Hence ƒ 2 ?Kh, and by construction �

�
ƒ

mod h?Kh
�
D �, so that the map � is onto, q.e.d.

General case: By our overall assumption, L as an A–module is projective of
finite type. Then we resume the setup and notation of in §2.1.6: there exists a finitely
generated projective A–module Q such that L˚Q D F is a finite free A–module,
and we consider the freeA–moduleLQ WD L˚

�
A˝kZ

�
withZ WD Y˚Y˚Y˚� � � .

From an A–basis fb1; : : : ; bng of Y we get a “good basis” of elements Net indexed by
T WD N � f1; : : : ; ng, i.e. LQ D ˚

t2T
k Net . Fixing on T any total order, the PBW

theorem yields
˚
Ne˛ WD

Q
t2T Ne

˛t
t

ˇ̌
˛ D .˛t /t2T 2 T

.N/	 is an A–basis of V `.LQ/.
Let �j be the element of J r

f
.LQ/ defined by

˝
�j ; Ne

˛
˛
D 1 if ˛ D .˛t D ıt;j /t2T ,˝

N�j ; Ne
˛
˛
D 0 otherwise. If A

��
fXtgt2T

��
f
WD

S
i1<���<in

AŒŒXi1 ; : : : ; Xin ��, then one has

J r
f
.LQ/ D A

��˚
� t
	
t2T

��
f

.
Now consider the quantizationKh;Y of J r

f
.LQ/— cf. §4.2.3. Recall (cf. §4.2.3)

that

Kh;Y WD h–adic completion of
P
n2NKhe̋kS.Y �/e̋n ˝ 1˝ 1˝ 1 � � �
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whereKhe̋kS.Y �/e̋n˝1˝1 � � � is the
��
S.Y �/˝n

�C
˝1˝1 � � �

�
–adic completion

of Kh ˝k S.Y �/
˝n
˝ 1 ˝ 1 � � � . By construction, every � i belongs to some

K e̋kS.Y �/e̋ni ˝k 1 ˝k 1 ˝k � � � (ni 2 N). Let �i be any lifting of � i in
Khe̋kS.Y �/e̋ni ˝k 1˝k 1˝k � � � such that

�
@h˝ �S.Z�/

�
.�i / D 0. Given a 2 Ah,

we denote again by a the element t r.a/ 2 t r.Ah/ � Kh. Let also � W A ,�! Ah be a
section of the natural projection map from Ah to A, let Jh;Y WD Ker.@h/ D @�1h

�
f0g
�

and Ih;Y WD @�1
h

�
hAh

�
: taking into account that t r.A/ D Aop and t r.Ah/ D A

op
h

,
one has

Kh;Y D
nP

n2Nh
nP �n

�
�
�ˇ̌̌
Pn 2

��
fXtgt2T

��
f
Aop

o
D

nP
n2Nh

nPn
�
�
�ˇ̌̌
Pn 2

��
fXtgt2T

��
f
A

op
h

o
Ih;Y D

�
h; f�tgt2T

�
;

Jh;Y D
P
t2T �tKh;Y

where round braces stand for “two-sided ideal generated by”, and
��
fXtgt2T

��
f
A,

respectively
��
fXtgt2T

��
f
Ah, denotes the ring of formal power series with coeffi-

cients on the right chosen in A, respectively in Ah, each one involving only finitely
many indeterminates Xt .

Now, LQ as an A–module is free but not finite; however, J r
f
.LQ/ and its

quantization Kh;Y have enough “finiteness” behavior as to let the arguments for the
finite free case apply again. In other words, the analysis we carried on for the finite
free case can be applied again in the present, general context working with Kh;Y .
Indeed, let us remark that

Ih;Y WD h–adic completion of�P
n2N

Ihe̋
k

S.Y �/e̋kn˝
k

1˝
k

� � � C
P
n2NC

Khe̋
k

�
S.Y �/

e̋kn�C˝
k

1˝
k

� � �

�
while on the other hand V `.LQ/ D V `.L/˚

�
V `.L/˝k S.Z/

C
�
. Now let K WD

J r.L/ and � 2 ?K. As J r
f
.LQ/ D K˚

P
n2NCK

e̋k�S.Y �/e̋n�C˝k 1˝k � � � , we
can extend � to an element � 2 ?J rf .LQ/ by �

ˇ̌P
n2NCKe̋k.S.Y �/˝n/C˝k1˝k ��� WD 0

and �
ˇ̌
K
WD �. By the arguments used in the finite free case, � can be lifted to an

element M 2 ?fKh;Y ; then ƒ D M
ˇ̌
Kh
2 ?Kh is a lift of �. So the (injective) map

� W ?Kh
ı
h?Kh �! ?

�
Kh
ı
hKh

�
D ?J

r.L/ D V `.L/ is surjective.
(5) Let us now show that �

�
?Kh

�
� ?Khb̋Ah?Kh for the “coproduct map” �

given by the transpose map of the multiplication in Kh.
Let ƒ 2 ?Kh. We know that modulo h one has �.ƒ/ 2 ?K ˝A ?K. Now

write �.ƒ/ D
P
�.1/ ˝ �.2/ (a finite sum) with �.1/; �.2/ 2 ?K, and let ƒ.1/

h
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and ƒ.2/
h

in ?Kh be liftings of �.1/ and �.2/, i.e. ƒ.1/
h
D �.1/ and ƒ.2/

h
D �.2/: then

�.ƒh/�
P
ƒ
.1/

h
˝ƒ

.2/

h
2 h

�
�Khb̋Ah�Kh�, so that h�1

�
�.ƒh/�

P
ƒ
.1/

h
˝ƒ

.2/

h

�
2

�Khb̋Ah�Kh. In addition, whenever p C q � 0 one has also
˝
�.ƒh/ �

P
ƒ
.1/

h
˝

ƒ
.2/

h
; I
p

h
˝ I

q

h

˛
2 h2Ah; therefore we find that

h�1
�
�.ƒh/ �

X
ƒ
.1/

h
˝ƒ

.2/

h

�
2 ?K ˝A?K

We can carry on this argument and eventually show that �.ƒh/ 2 ?Khb̋Ah?Kh,
q.e.d.

(6) Altogether, the steps (1)–(5) above prove that ?Kh is a LQUEAd (over Ah),
whose semiclassical limit ?Kh

ı
h?Kh is exactly isomorphic (as a left bialgebroid

over A) to V `.L/. Now we show that the structure of Lie–Rinehart bialgebra
induced on L by the quantization ?Kh of V `.L/ is the same as that induced by
the quantization Kh of J r.L/. To this end, let Œ ; �0, !0, be the Lie bracket and the
anchor map on L� induced by ?Kh, and Œ ; �00, !00, those induced by Kh.

We proceed like in the proof of Theorem 5.1.5. Our goal is to prove that !0 D !00

and Œ ; �0 D Œ ; �00; thus recall that (cf. Remarks 2.2.2 (b)) !0 and Œ ; �0 are uniquely
determined by

!0.ˆ/.a/ D
˝
ıL.a/;ˆ

˛
;˝

‚; Œˆ;‰�0
˛
D !0.ˆ/

�
h‚;‰i

�
� !0.‰/

�
h‚;ˆi

�
�
˝
ıL.‚/;ˆ˝‰

˛
(for all ˆ;‰ 2 L�, ‚ 2 L, a 2 A), where ıL.a/ and ıL.‚/ are defined by the
formula for ı in Theorem 4.1.3. Thus it is enough to prove that (for all ˆ;‰ 2 L�,
‚ 2 L, a 2 A)

!00.ˆ/.a/ D
˝
ıL.a/;ˆ

˛
;˝

‚; Œˆ;‰�00
˛
D !0.ˆ/

�
h‚;‰i

�
� !0.‰/

�
h‚;ˆi

�
�
˝
ıL.‚/;ˆ˝‰

˛
.5:7/

To prove (5.7), choose liftings �0;  0 2 J r.L/h DW Kh, with the additional
condition that �0;  0 2 JJr .L/h WD Ker

�
@J r .L/h

�
(this is always possible), a lifting

� 2 V `.L/h WD ?J
r.L/h of ‚ and a lifting a0 2 Ah of a. Now direct computation

gives

!0.ˆ/.a/ D
˝
ıL.a/;ˆ

˛
D h�1

˝
t`�
�
a0
�
� s`�

�
a0
�
; �0
˛

mod hAh
D h�1

˝
1; �0sr

�
a0
�
� sr

�
a0
�
�0
˛

mod hAh

D

�
�0sr

�
a0
�
� sr

�
a0
�
�0

h
mod hKh

�
mod JJr .L/

D !00.ˆ/.a/
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where we exploited the fact that the involved pairing a right bialgebroid pairing
(cf. Definitions 3.4.4 and 3.4.5). Thus the first identity in (5.7) is verified.

As to the rest, we write�.�/ D �.1/˝�.2/ as�.�/ D �˝1C1˝�Ch�Œ1�˝�Œ2�,
so that

�
�Œ1� ˝ �Œ2�

�
mod hV `.L/hG�

A
FV

`.L/h DW �
Œ1�.‚/, as in Definition 4.1.3.

Moreover, let us set � WD �0 mod hJ r.L/h,  WD  0 mod hJ r.L/h, which are lifts
of ˆ and ‰ in J r.L/, and actually belong to JJr .L/. Then direct computation gives

D
‚; Œˆ;‰�00

E
D
˝
‚; f�; g

˛
D

�
�;
�0 0 �  0�0

h

�
mod hAh

Now, in the proof of Theorem 5.1.5 — namely, to prove the second part of (5.6) —
we saw that�
�;
�0 0 �  0�0

h

�
mod hAh D !0.ˆ/

�̋
‚;‰

�̨
� !0.‰/

�̋
‚;ˆ

�̨
�
˝
ıL.‚/;ˆ˝‰

˛
so that the second identity in (5.7) is proved.

At last, let now cope with the case of ?Kh. Clearly, we can proceed much like
for ?Kh: one proves that ?Kh D ?J r.L/h is a topological left bialgebroid, whose
specialization modulo h is ?J r.L/ Š V `.L/, hence we can claim that ?J r.L/h 2
(LQUEAd)Ah is a quantization of V `.L/.

A difference arises about the last part of claim (a), concerning the two Lie–
Rinehart algebra structures induced on L�: indeed, the difference in the outcome
— a minus sign — is due to the fact that the natural pairing (given by evaluation)
among the left bialgebroid ?J r.L/h and the right bialgebroid J r.L/h is now a
left bialgebroid pairing (cf. Definitions 3.4.4 and 3.4.5) — while for ?J r.L/h and
J r.L/h it is a right one. Explicit computations are (again) much like those in the
proof of Theorem 5.1.5 (for the very last part of claim (a)), just as it occurs for
?Kh D ?J

r.L/h.

(b) The arguments used to prove claim (a) clearly adapt to claim (b) as well.
Otherwise, one can deduce (b) directly from claim (a) using general isomorphisms
such as ?

�
U

op
coop

�
Š .U ?/

op
coop and ?

�
U

op
coop

�
Š .U?/

op
coop — see Remark 3.4.6.

5.3. Functoriality of linear duality for quantum groupoids. The results in
Sections 5.1 and 5.2 about the duality constructions for quantum bialgebroids can be
improved. Indeed, they can be cast in the following, functorial version (cf. Definition
4.1.1 and 4.1.8 for notation), which is the main outcome of this section:



332 S. Chemla and F. Gavarini

Theorem 5.3.1. Left and right duals yield pairs of well-defined contravariant
functors

.LQUEAd/Ah�! (RQFSAd)Ah ; Hh 7! H�h ;

(RQFSAd)Ah�! (LQUEAd)Ah ; Kh 7! ?Kh

(LQUEAd)Ah�! (RQFSAd)Ah ; Hh 7! Hh� ;

(RQFSAd)Ah�! (LQUEAd)Ah ; Kh 7!
?Kh

(RQUEAd)Ah�! (LQFSAd)Ah ; Hh 7!
�Hh;

(LQFSAd)Ah�! (RQUEAd)Ah ; Kh 7! Kh?

(RQUEAd)Ah�! (LQFSAd)Ah ; Hh 7! �Hh;

(LQFSAd)Ah�! (RQUEAd)Ah ; Kh 7! K?h

which are (pairwise) inverse to each other, hence yield pairs of antiequivalences of
categories.

Proof. It is clearly enough to present the proof for just one pair of functors, say those
in first line.

Let Hh D V `.L/h 2 (LQUEAd)Ah . For any � 2 H�
h

and any � 2 Hh, let
ev�.�/ WD �.�/, and consider the map Hh �! ?

�
H�
h

�
given by � 7! ev�; note that

a priori this map takes values in �
�
H�
h

�
, but Lemma 5.1.4 actually proves that every

ev� belongs to ?.H�/.
Now, this map is an isomorphism in (LQUEAd)Ah because it is an isomorphism

modulo h. The other points can also be proved, by standard arguments, in a similar
way.

6. Drinfeld’s functors and quantum duality

In this section we present the main new contribution in this paper, namely the
definition of Drinfeld’s functors and the equivalences — instead of antiequivalences!
— of categories established via them among (left or right) QUEAd’s and QFSAd’s.

6.1. The Drinfeld’s functor . /_.

Definition 6.1.1. Let Kh 2 (RQFSAd)Ah . We set Ih WD @�1
h
.hAh/ and

Jh WD Ker.@h/, where @h is the counit of Kh; then one has Ih D Jh C hKh.
We define

K�h WD s
r.Ah/C

P
n2NC

h�nI nh D s
r.Ah/C

P
n2NC

h�nsr.Ah/J
n
h;
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which is a kŒŒh��–submodule of KF WD k..h// ˝
kŒŒh��

Kh, and we denote by K_
h

the

h–adic completion of the kŒŒh��–module K�
h

.
Moreover, in an entirely similar way we define K_

h
for any Kh 2 (LQFSAd)Ah .

Remarks 6.1.2. (a) Note that Jh is not an .Ah; Ah/–subbimodule ofKh, in general.
Indeed, if a 2 Ah and  2 Jh, it is clear (from the properties of the counit of a right
bialgebroid) that  sr.a/;  tr.a/ in Jh; but we cannot prove in general that sr.a/ 
and tr.a/ belong to Jh. On the other hand, one has that Ih instead is definitely an
.Ah; Ah/–subbimodule. For this reason, it is better to (define and) describe K�

h
and

K_
h

using Ih than using Jh.
(b) Let K be a LQFSAd, respectively a RQFSAd. Then .Kh/

op
coop is a RQFSAd,

respectively a LQFSAd. It easily follows from definitions that
�
.Kh/

op
coop

�_
D�

K_
h

�op
coop.

6.1.3. Description of K_
h

. Directly from its very definition, we can find out a
description of K_

h
. This is very neat in the case when the Lie–Rinehart algebra

L — such that Kh is a quantization of J r.L/ or J `.L/ — is of finite free type (as
an A–module), and can be reduced somehow to that case when L instead is just of
finite projective type. Thus we distinguish these two cases.

(a) Finite free case: Let us assume thatL (as anA–module, of finite type) is free.
Then we can explicitly describe K_

h
, as follows. Fix an A–basis fe1; : : : ; eng of L,

and let N�i be the element of Hom
�
V `.L/; A

�
D V `.L/

�
D J r.L/ defined (using

standard multiindex notation) by˝
� i ; e

˛
˛
D
˝
� i ; e

˛1
1 � � � e

˛n
n

˛
WD ı˛1;0 � � � ı˛i ;1 � � � ı˛n;0 8˛ D .˛1; : : : ; ˛n/ 2 Nn

Let �i be an element of Kh lifting N�i and such that @h.�i / D 0. If a 2 Ah, we shall
write again a to denote the element t r.a/ 2 Kh. We have the following descriptions

Kh D
˚P

d2Nn�
d1
1 � � � �

dn
n ad

ˇ̌
ad 2 A

op
h
;8d 2 Nn

	
Š AŒŒX1; : : : ; Xn��ŒŒh��

Ih D
�
h; �1; : : : ; �n

�
;

Jh D
Pn
iD1�iKh

where the first line item is a (right) Aop
h

–module of formal power series (convergent
in the Ih–adic topology) and the last isomorphism is one of topological k–modules,
while round braces in second line stand once again for “two-sided ideal generated
by”. By this and the very definition it follows that, writing L�i WD h�1�i , one has (the
last isomorphism being one of topological k–modules)

K_h D
nP

b2NnC1h
b0 L�

b1
1 � � �

L�bnn ab

ˇ̌̌
ab 2 A

op
h
;8b

o
Š A

�
LX1; : : : ; LXn

�
ŒŒh��

where the sum denotes formal series which are convergent in the h–adic topology,
and then also

J_h WD h
�1Jh D

Pn
iD1
L�iK
_
h D right ideal of K_h generated by the L�i ’s
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(b) Finite projective case: Assume now that L (as an A–module) is just
finite projective (as usual in this work). Like in Subsection 4.2, we fix a finite
projective A–module Q such that L ˚ Q D F is a finite free A–module, we
write F D A˝k Y where Y is the k–span of an A–basis of F , and we construct
the (infinite dimensional) Lie–Rinehart algebra LQ D L ˚

�
A ˝k Z

�
with

Z D Y ˚ Y ˚ Y ˚ � � �. Then, for J r.L/h WD Kh, we can introduce the right
bialgebroid Kh;Y WD J r.L/h;Y as in §4.2.3: namely (with notation as in §4.2.3),
we recall that

Kh;Y WD h–adic completion of
P
n2NKhe̋kS.Y �/e̋n ˝ 1˝ 1˝ 1 � � ��

S.Y �/˝n
�C

being the kernel of the natural counit map of S.Y �/˝n andKhe̋kS.Y �/e̋n
˝1 � � � the

��
S.Y �/˝n

�C
˝1˝1 � � �

�
–adic completion ofKh˝kS.Y �/

˝n
˝1˝1 � � � .

Furthermore, let @h be the counit ofKh;Y , and Ih;Y WD @�1h
�
hAh

�
. Then we have

also

Ih;Y WD h–adic completion of P
r2N
Ih e̋

k
S.Y �/

e̋r
˝ 1˝ � � � C

P
s2N
Kh e̋

k

�
S.Y �/

e̋s�C
˝ 1˝ � � �

!
Basing upon these remarks, we can define K_

h;Y
and describe it as above: namely,

one has

K_h;Y D h–adic completion of
P
n;m

P
rCsDn

h�nJrhe̋k��S.Y �/e̋m�C�s ˝ 1˝ 1˝ � � �
D K_h b̋kS.Z�f /

where Z�f D Y � ˚ Y � ˚ Y � ˚ � � � .
Let now fetgt2T WDN�f1;:::;ng be a good basis of the A–module LQ. From the

proof of Theorem 5.2.2 (step (4) for the general case) we can select elements �t 2
Kh;Y .t 2 T / such that

Kh;Y D
nP

n2Nh
nPn

�˚
�t
	
t2T

�ˇ̌̌
Pn 2

��
fXtgt2T

��
f
A

op
h

o
Š A

��
fXtgt2T

��
f
ŒŒh��

Ih;Y D
�
h; f�tgt2T

�
;

Jh;Y D
P
t2T �tKh;Y

where
��
fXtgt2T

��
f
Ah is the ring of formal power series with coefficients on the

right chosen in Ah involving only finitely many indeterminates Xt . One easily finds,
letting L�t WD h�1�t , that

K_h;Y D
nP

n2Nh
nPn

�˚
L�t
	
t2T

�ˇ̌̌
Pn 2

�˚
L�
	
t2T

�
A

op
h
;8n 2 N

o
Š A

�˚
LXt
	
t2T

�
ŒŒh��
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where the sum denotes formal series convergent in the h–adic topology, and�
fXtgt2T

�
A

op
h

denotes the ring of polynomials with coefficients on the right chosen
in Aop

h
. We find also

J_h;Y WD h
�1Jh;Y D

P
t2T
L�tK
_
h;Y D right ideal of K_h;Y generated by the L�t ’s }

It is time for the main result of this subsection. In short, it claims that the
construction Kh 7! K_

h
, starting from a quantization of L — of type J r=`.L/ —

provides a quantization of the dual Lie–Rinehart bialgebra L� — of type V r=`.L�/;
moreover, this construction is functorial.

Theorem 6.1.4. (a) Let J r.L/h 2 (RQFSAd)Ah , whereL is a Lie–Rinehart algebra
which, as an A–module, is projective of finite type. Then:

a.1 J r.L/_h 2 (RQUEAd)Ah , with semiclassical limit J r.L/_h
ı
hJ r.L/_h Š

V r.L�/. Moreover, the structure of Lie–Rinehart bialgebra induced on L� by the
quantization J r.L/_h of V r.L�/— as in Theorem 4.1.6 — is dual to that induced on
L by the quantization J r.L/h of J r.L/ — as in Theorem 4.1.12;

a.2 the definition of J r.L/h 7! J r.L/_h extends to morphisms in (RQFSAd),
so that we have a well defined (covariant) functor . /_ W (RQFSAd) �! (RQUEAd).

(b) Let J `.L/h 2 (LQFSAd)Ah , where L is a Lie–Rinehart algebra which, as an
A–module, is projective of finite type. Then:

b.1 J `.L/_h 2 (LQUEAd)Ah , with semiclassical limit J `.L/
_

h

ı
hJ `.L/

_

h Š

V `.L�/. Moreover, the structure of Lie–Rinehart bialgebra induced on L� by the
quantization J `.L/

_

h of V `.L�/— as in Theorem 4.1.3 — is dual to that induced on
L by the quantization J `.L/h of J `.L/ — as in Theorem 4.1.13;

b.2 the definition of J `.L/h 7! J `.L/
_

h extends to morphisms in (LQFSAd),
so that we have a well defined (covariant) functor . /_ W (LQFSAd) �! (LQUEAd).

Proof. (a) In order to ease notation, let us write Kh WD J r.L/h.
By definition, K�

h
is the unital kŒŒh��–subalgebra of

�
Kh
�
F
WD k..h//˝kŒŒh��Kh

generated by h�1Ih and sr.Ah/: thus it is automatically a unital kŒŒh��–algebra.
It follows that K_

h
is a unital kŒŒh��–algebra too, complete in the h–adic topology.

Moreover, Ih is an .Ah; Ah/–subbimodule of Kh: this implies at once that K�
h

and K_
h

are .Ah; Ah/–bimodules too. As
�
Kh
�
F

is torsionless, so are K�
h

and its
completion K_

h
; also, K_

h
is separated and complete, so it is topologically free.

Let us now see that the coproduct in Kh induces a coproduct — in a suitable, h–
adical sense — forK_

h
as well. Given any � 2 Ih, we write�.�/ D �.1/˝�.2/ — a

formal series (in †–notation) — convergent in the Ih–adic topology of Kh. Writing
�.1/ and �.2/ as

�.1/ D �
Cs
.1/
C sr

�
@h
�
�.1/

��
; �.2/ D �

Ct
.2/
C t r

�
@h
�
�.2/

��
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we have seen that �.�/ D �Cs
.1/
˝ �.2/ C s

r
�
@h
�
�.1/

��
˝ �

Ct
.2/
C sr

�
@h.�/

�
˝ 1 be-

longs to the space
�
Ihe̋AhKh C Khe̋Ah Ih C hsr.Ah/e̋Ah1�. All this implies

�
�
h�1�

�
2 K_

h
e̋AhK_h :

In addition, we must observe the following. Every � 2 Ih expands as an
Ih–adically convergent series � D

P
n2NC �n with �n 2 I n

h
for all n 2 NC;

but then �n 2 I n
h
D hn.h�1Ih/

n for every n and so h�1� expands as a series
h�1� D

P
n2NC h

n�1.h�1Ih/
n which is convergent in the h–adic topology of K_

h
.

As a byproduct of this analysis, we can apply the same argument to �
�
h�1�

�
and

thus realize that it is actually a well defined element of K_
h
b̋AhK_h , the h–adic

completion of K_
h
˝Ah K

_
h

. Finally, it is clear that in fact �
�
h�1�

�
even belongs to

the Takeuchi product inside K_
h
˝Ah K

_
h

, as the parallel property is true for �.�/
inside Khe̋AhKh.

As K� is generated — as an algebra — by h�1Ih and sr.Ah/, and K_
h

is its
h–adic completion, we finally conclude that the coproduct ofKh does provide a well
defined coproduct for K_

h
, making it into a (topological) right bialgebroid over Ah.

Moreover, by construction K_
h

is isomorphic (as a kŒŒh��–module) to�
K_
h

ı
hK_

h

�
ŒŒh��.

What we are left to prove — for claim (a.1) — is that K_
h
WD K_

h

ı
hK_

h
be

isomorphic to V r.L0/ for some Lie–Rinehart bialgebra, and that such L0 — with
its structure of (Lie–Rinehart) bialgebra induced by this very quantization — is
isomorphic to L� with its structure of Lie–Rinehart bialgebra dual to that induced
on L by the quantization Kh WD J r.L/h we started from.

We follow the strategy in [12] and [9]. So far we saw that K_
h

is a deformation
of the right bialgebroid K_

h

ı
hK_

h
: then we shall apply Proposition 3.3.4 (and the

remarks after it) to show that the latter is indeed of the form V r.L0/, with L0 Š L�.
For computations hereafter we fix some notation: Jh WD Ker.@h/, K WD Kh

ı
hKh

and J WD Ker.@/ for @ WD @K . Also, from Theorem 5.2.2 (a) we consider V `.L/h WD
?Kh D ?J

r.L/h 2 (LQUEAd)Ah so that J r.L/h D V
`.L/

�

h.

We proceed in several steps.

� For all a 2 Ah, we have sr.a/ � tr.a/ mod hK_
h

. Indeed, one has
�
sr.a/�

t r.a/
�
2 Jh � Ih D hh

�1Ih � hK
_
h

, whence the claim.

� The set P r
�
K_
h

�
of (right) primitive elements of K_

h
WD K_

h

ı
hK_

h
—

cf. Proposition 3.3.4 — has a natural structure of right Lie–Rinehart algebra, induced
by specialization from K_

h
.

Indeed, this is entirely standard. Both the Lie bracket Œ ; � and the anchor
map ! are recovered as semiclassical limits of commutators from the multiplicative
structure and source/target structure of the “quantum right bialgebroid”K_

h
. Namely,

for any x; y 2 P r
�
K_
h

�
and a 2 A, choose any lifts x0; y0 2 K_

h
and a0 2 Ah of
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them: then defining

a:x WD x0sr.a0/ mod hK_h ; Œx; y� WD x0y0 � y0x0 mod hK_h
!.x/.a/ WD @h

�
x0sr.a0/ � sr.a0/x0

�
mod hAh

it is a routine matter to check that P r
�
K_
h

�
is made into a Lie–Rinehart algebra over

A.
� Set J_

h
WD h�1Jh

�
� K_

h

�
and J_

h
WD J_

h
mod hK_

h
; then J_

h
is a Lie–

Rinehart subalgebra of P r
�
K_
h

�
.

Indeed, let � 2 Jh, and set �_ WD h�1� 2 J_
h

. Then acting as in the first part of
the proof (with notation introduced therein) we get

�.�/ D � ˝ 1C 1˝ � C �
Cs
.1/
˝ �

Ct
.2/
2 � ˝ 1C 1˝ � C Jhe̋AhJh

thanks to the assumption � 2 Jh (and to several identities holding true in any right
bialgebroid). As Jh D hh�1Jh D hJ_h � hK

_
h

, we end up with�
�
�_
�
D �_˝1C

1 ˝ �_ C h
�
K_
h
b̋AhK_h �, so that �_ WD �_ mod hK_

h
is primitive in K_

h
. This

proves that J_
h
� P r

�
K_
h

�
.

Finally, J_
h

is a Lie–Rinehart subalgebra of P r
�
K_
h

�
if and only if it is a (right)

A–submodule, closed for the Lie bracket. Now, by definition Jh is a right ideal in
Kh, and this implies — by construction — that J_

h
is a (right) A–submodule. As to

the Lie bracket, if x; y 2 J_
h

we have by definition Œx; y� WD x0y0 � y0x0 mod hK_
h

for any choice of liftings x0; y0 2 K_
h

of x and y. On the other hand, we can clearly
choose x0; y0 2 J_

h
, so that x0 D h�1�, y0 D h�1�, for some �; � 2 Jh; then we

have

x0y0 � y0x0 D h�2.�� � ��/ 2 h�2
�
Jh
T
hKh

�
D h�2hJh D h

�1Jh DW J
_
h

since Jh is a right ideal and Kh
ı
hKh Š J r.L/ is commutative. It follows that

Œx; y� 2 J_
h

, q.e.d.
�We will now show that J_

h

T
hK_

h
D Jh C J_

h
Jh D hJ

_
h
C h

�
J_
h

�2.
Indeed, the second identity in the claim is a trivial consequence of J_

h
WD h�1Jh.

As to the first one, as Kh D J r.L/h, we distinguish two cases: either L is free (as
an A–module), or not.

If L is free, then the identity J_
h

T
hK_

h
D Jh C J_

h
Jh is an easy, direct

consequence of the description of J_
h

given in §6.1.3 here above in the free case
— i.e. part (a).

If insteadL is not free, then we proceed as follows. First considerKh;Y and Jh;Y ,
and construct from themK_

h;Y
and J_

h;Y
. In this case, the description of J_

h;Y
given in

§6.1.3, part (b), implies again easily the identity J_
h;Y

T
hK_

h;Y
D Jh;Y C J_

h;Y
Jh;Y .

Now consider the map �Y W Kh;Y �! Kh, introduced in §4.2.3 (b), for J r.L/h WD
Kh and J r.L/h;Y WD Kh;Y : this is a an epimorphism of right bialgebroids, thus
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in particular �Y
�
Jh;Y

�
D Jh. Then it follows at once that �Y canonically induces

another epimorphism of right bialgebroids L�Y W K_
h;Y
�! K_

h
such that L�Y

�
J_
h;Y

�
D

J_
h

. But then, using �Y and L�Y and the identity J_
h;Y

T
hK_

h;Y
D Jh;Y C J_

h;Y
Jh;Y

we easily deduce the identity J_
h

T
hK_

h
D Jh C J_

h
Jh we were looking for.

� There exists an A–linear isomorphism  W J_
h

ı�
hJ_
h
C h

�
J_
h

�2�
Š J_

h
—

hence hereafter we shall identify J_
h

and J_
h

ı�
hJ_
h
C h

�
J_
h

�2� via  and  �1.

Indeed, the natural projection map K_
h
�� K_

h
WD K_

h

ı
hK_

h
, whose kernel is

hK_
h

, yields by restriction a similar map J_
h
�� J_

h
WD J_

h

ı�
J_
h

T
hK_

h

�
whose

kernel is
�
J_
h

T
hK_

h

�
. By the previous step, we have J_

h

T
hK_

h
D hJ_

h
C h

�
J_
h

�2,
whence we get an A–linear isomorphism.

� There exists an A–linear isomorphism � W J_
h
Š J_

h

ı�
hJ_
h
C h

�
J_
h

�2�
Š

J
ı
J2 DW L�, where J � JJ r .L/ WD Ker

�
@Jr .L/

�
, given by h�1y 7! �

�
h�1y

�
WD y

mod J2.
Indeed, there exists a natural projection map � 00 W Jh �� Jh

ı
hJh D J ��

J
ı
J2 DW L�, whose kernel is

�
hJh C J2

h

�
. Then � 0 W J_

h
WD h�1Jh �� J

ı
J2 DW

L�
�
h�1y 7! � 0

�
h�1y

�
WD � 00.y/

�
is a well defined k–linear map, whose kernel is�

Jh C h
�1J2

h

�
D

�
hJ_
h
C h

�
J_
h

�2�. Therefore � 0 canonically induces a k–linear

isomorphism � W J_
h
Š J_

h

ı�
hJ_
h
C h

�
J_
h

�2� Š

,���J
ı
J2 DW L� given by h�1y 7!

�
�
h�1y

�
WD � 00.y/; also, it is straightforward to check that this is A–linear too.

�We have K_
h
2 (RQUEAd)Ah , namely K_

h
Š V r

�
L0
�

for the Lie–Rinehart
A–algebra L0 WD J_

h
(with the Lie–Rinehart structure mentioned above).

Indeed, what we proved so far shows that L0 WD J_
h

is a Lie–Rinehart subalgebra
of P r

�
K_
h

�
, which together with A generates K_

h
(as an algebra) and is finite

projective as an A–module (since it is isomorphic, as an A–module, to L�, see
above). Therefore, all conditions in Remark 3.3.5 are fulfilled, so it applies and
gives K_

h
Š V r

�
L0
�

for L0 WD J_
h
D P r

�
K_
h

�
.

� There exists on the Lie–Rinehart algebra L0 a unique structure of Lie–
Rinehart bialgebra, canonically induced from the quantization K_

h
of V r

�
L0
�
.

In fact, this is just a direct consequence of Theorem 4.1.6.

� The A–linear isomorphism � W J_
h
Š J_

h

ı�
hJ_
h
C h

�
J_
h

�2�
Š J

ı
J2 DW L�

is actually an isomorphism of Lie–Rinehart bialgebras over A.
In order to prove this, we must show that � preserves the Lie bracket, the anchor

map and the differential ı (cf. Definition 2.2.1) on either side.
For the Lie bracket, let x; y 2 J_

h
: given �; � 2 Jh such that x D h�1�, y D

h�1�, we have

Œx; y� D h�2.�� � ��/ mod hK_h D h
�2h� mod hK_h D h

�1� mod hK_h
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for some � 2 Jh. But then also � WD � mod hKh DW
˚
�; �

	
— where ˛ WD

˛ mod hKh for all ˛ 2 Kh — by Theorem 4.1.12. Now the Poisson bracket of
Kh
ı
hKh restricted to Jh pushes down to the Lie bracket of Jh

ı
J2
h
DW L�; thus

setting X WD � mod J2, Y WD � mod J2
�
2 J

ı
J2 DW L�

�
, we have ŒX; Y � D˚

�; �
	

mod J2 D Z. Now, by construction we have X D �.x/, Y D �.y/, and the
previous analysis eventually gives also �

�
Œx; y�

�
D Z D ŒX; Y � D

�
�.x/; �.y/

�
.

For the anchor map, let x 2 J_
h

, � 2 Jh, X 2 J
ı
J2 D L� as above, and take

a 2 A and a0 2 Ah such that a0 mod hAh D a. Then direct computations give

!.x/.a/ D @h
�
h�1�sr.a0/ � sr.a0/h�1�

�
mod hAh

D @
�
h�1

�
�sr.a0/ � sr.a0/�

�
mod hKh

�
D !.X/.a/

which means !.x/ D !.X/ D !
�
�.x/

�
, that is � preserves the anchor, q.e.d.

Finally, in order to compare the two differentials on J_
h

and L�, respectively
denoted ı0 and ı00, recall that in any Lie–Rinehart bialgebra

�
L;A

�
— in the present

case .L�; A/— the differential ıL is related with the Lie bracket and the anchor map
by the identities ˝

f; ıL.a/
˛
D !L�.�/.a/;

hf˝ �; ıL.x/i D !L�.f/
�
hm; xi

�
� !L�.m/

�
hf; xi

�
�
˝
Œf;m�L� ; x

˛
for all x 2 L, f;m 2 L�, a 2 A — see Remarks 2.2.2 (b). We apply this to�
L;A

�
D .L�; A/.

For the differential on A, we must prove that �
�
ı0.a/

�
D ı00.a/ for all a 2

A, which amounts to showing that
˝
f; �

�
ı0.a/

�˛
D
˝
f; ı00.a/

˛
for all a 2 A and all

f 2 L. For this comparison, recall that V `.L/h WD ?J
r.L/h 2 (LQUEAd)Ah is a

quantization of V `.L/, by Theorem 5.2.2 (a); moreover, the natural pairing between
V `.L/h and J r.L/h (given by evaluation) is a right bialgebroid pairing. Now choose
a lifting a0 2 Ah of a 2 A and a lifting f 0 2 V `.L/h of f 2 L: more precisely, we
choose f 0 2 Ker

�
�
V`.L/h

�
. Then direct computation gives˝

f; �
�
ı0.a/

�˛
D h �

˝
f 0; ı0.a/

˛
mod hAh D

˝
f 0; sr

�
a0
�
� t r

�
a0
�˛

mod hAh

D
˝
f 0s`

�
a0
�
� s`

�
a0
�
f 0; 1

˛
mod hAh

D
˝
f 0s`

�
a0
�
� t`

�
a0
�
f 0; 1

˛
mod hAh

D
˝
f 0s`

�
a0
�
; 1
˛

mod hAh
D �

V`.L/
.fa/ D !L.f/.a/ D

˝
f; ı00.a/

˛
(cf. §3.2.9 for the last but one identity). This proves that �

�
ı0.a/

�
D ı00.a/ for all

a 2 A.
For the differential on L�, consider x WD �_ D h�1� 2 J_

h
, with � 2 Jh;

then we have �.x/ WD � mod J2 DW X 2 J
ı
J2 D L�. Our goal is to prove that

.� ˝ �/
�
ı0.x/

�
D ı00

�
�.x/

�
.
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Write �.�/ D �.1/ ˝ �.2/ as �.�/ D � ˝ 1 C 1 ˝ � C
P
Œ�� �Œ1� ˝ �Œ2�;

then we have �
�
�_
�
D �_ ˝ 1 C 1 ˝ �_ C h

P
Œ�� �

_
Œ1�
˝ �_

Œ2�
— where �_

Œi�
WD

h�1�Œi�, for i 2 f1; 2g — so that ı0.x/ WD �
P
Œ�� xŒ1� ˝ xŒ2� C

P
Œ�� xŒ2� ˝ xŒ1�

with xŒi� WD �_
Œi�

for i 2 f1; 2g. In all this, �_ WD h�1� is a lifting of x 2 L0 in
V r.L0/h WD J

r.L/_h , and � is a lifting of X WD �.x/ in J r.L/h; in addition, we can
assume that @h.�/ D 0. We adopt similar remarks, and notation, for xŒi�, �Œi� and
XŒi� WD �.xŒi�/ with i 2 f1; 2g. Now for f;m 2 L and liftings f 0; m0 2 V `.L/h of
them, direct calculation yields˝

f˝m; ı00
�
�.x/

�˛
D
˝
f˝m; ı00.X/

˛
D !00L.f/

�
hm; Xi

�
� !00L.m/

�
hf; Xi

�
�
˝
Œf;m�00L; X

˛
D �

V`.L/

�
fhm; Xi

�
� �

V`.L/

�
mhf; Xi

�
�
˝
fm �mf; X

˛
D

�˝
f 0 � t`

�
hm0; �i

�
; 1
˛
�
˝
m0 � t`

�
hf 0; �i

�
; 1
˛

�
˝
f 0m0 �m0f 0; �

˛�
mod hAh

D

�˝
f 0 � t`

�
hm0; �i

�
; 1
˛
�
˝
m0 � t`

�
hf 0; �i

�
; 1
˛

�
˝
f 0 � t`

�
hf 0; �.2/i

�
; �.1/

˛
C
˝
m0 � t`

�
hf 0; �.2/i

�
; �.1/

˛�
mod hAh

D

�˝
m0 � t`

�
hf 0; �Œ2�i

�
; �Œ1�

˛
�
˝
f 0 � t`

�
hm0; �Œ2�i

�
; �Œ1�

˛�
mod hAh

D

�˝
m0; �Œ1�s

r
�
hf 0; �Œ2�i

�˛
�
˝
f 0; �Œ1�s

r
�
hm0; �Œ2�

˛�˛�
mod hAh

D

�˝
m0; �Œ1�t

r
�
hf 0; �Œ2�i

�˛
�
˝
f 0; �Œ1�t

r
�
hm0; �Œ2�

˛�˛�
mod hAh

D

�˝
m0; �Œ1�

˛
hf 0; �Œ2�i �

˝
f 0; �Œ1�

˛
hm0; �Œ2�

˛�
mod hAh

D
˝
m; �

�
xŒ1�

�˛
hf; �

�
xŒ2�

�
i �

˝
f; �

�
xŒ1�

�˛
hm; �

�
xŒ2�

�˛
D
˝
f˝m; .� ˝ �/

�
�Œ1�.x/2;1 ��

Œ1�.x/
�˛

D
˝
f˝m; .� ˝ �/

�
ı0.x/

�˛
Here above we used the fact that sr

� ˝
f 0; �Œ2�

˛ �
� t r

� ˝
m0; �Œ2�

˛ �
belongs to Jh, so

that we have �Œ1�
�
sr
�˝
f 0; �Œ2�

˛�
� t r

�˝
f 0; �Œ2�

˛��
2 J2

h
and

˝
m0; �Œ1�

�
sr
�˝
f 0; �Œ2�

˛�
�

t r
�˝
f 0; �Œ2�

˛��˛
D 0 mod hAh. Thus

˝
f˝m; ı00

�
�.x/

�˛
D
˝
f˝m;

�
� ˝ �

��
ı0.x/

�˛
for f;m 2 L, so ı00

�
�.x/

�
D
�
� ˝ �

��
ı0.x/

�
.

In the end, all the above eventually completes the proof of claim (a.1).
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As to claim (a.2), let
�
Kh; Ah; s

r
Kh
; t rKh

; �; @Kh
�

and
�
�h; Bh; s

r
�h
; t r�h

; �; @�h
�

be two RQFSAd’s, and let .f; �/ W Kh �! �h be a morphism between them
in (RQFSAd). The very definition of morphism in (RQFSAd) imply at once that
�
�
srKh
.Ah/

�
� sr�h

.Bh/ — because � ı srKh D sr�h
ı f — and �

�
IKh

�
� I�h

— because @�h ı � D @Kh — hence also �
�
h�1IKh

�
� h�1I�h for the natural

k..h//�linear extension of � W Kh �! �h to �� W .Kh/F �! .�h/F . By construc-
tion, this implies that �� defines by restriction a morphism �� W K�

h
�! � �

h
, and

this in turn extends by h–adic continuity to a well defined morphism �_ W K_
h
�! � _

h

in the category (RQUEAd).
(b) A direct proof of (b) can be given mimicking that of (a). Otherwise, it can be

deduced from (a) (and, clearly, the rôles of the two results in this deduction can be
reversed) as follows.

If �h WD J `.L/h 2 (LQFSAd)Ah , then .�h/
op
coop 2 (RQFSAd)Ah ; thus by claim

(a) we have that
�
.�h/

op
coop

�_
2 (RQUEAd)Ah . Now, by construction

�
.�h/

op
coop

�_
D�

� _
h

�op
coop, hence we deduce that � _

h
2 (LQUEAd)Ah . All other aspects of the claim

also follow from this argument.

6.2. The Drinfeld’s functor(s) . /0 D 0. /. We introduce now a second type of
Drinfeld’s functor, denoted H 7! H 0. Just like for the functor H 7! H_, this also
is inspired by the similar notion introduced for “quantum” Hopf algebras (see [12]);
nevertheless, in this case we must be more careful, as we shall presently explain.

Let Hh be a left (or a right) bialgebroid. If s`
h
D t`

h
DW �`

h
, then we can define

H 0 as in the “classical” framework of quantum Hopf algebra deformations. Let us
shortly recall it. Set ın D .idH � s` ı �/

˝n
ı �n, where .idH � s` ı �/

˝n
is the

projection of H˝n onto J˝n defined by the decomposition H D J ˚ s`.A/, with
J WD Ker.�/: then we define

H 0 WD
˚
a 2 H

ˇ̌
ın.a/ 2 h

nHn
8n 2 N

	
� H:

If instead s` and t` do not coincide, then the projection of H˝n onto J˝n is
not defined, because the

�
Ah ˝ A

op
h

�
–module Jh does not have a complement in

Hh. Therefore, as s` and t` do not necessarily coincide, we adopt the following
definition:

Definition 6.2.1. As above, we use notation .Hh/F WD k..h//˝kŒŒh�� Hh.
(a) If Hh 2 (LQUEAd)Ah , we define

H 0h WD
˚
� 2 .Hh/F

ˇ̌˝
�; .H�h /

�
˛
2 Ah

	
; 0Hh WD

˚
� 2 .Hh/F

ˇ̌˝
�; ..Hh/�/

�
˛
2 Ah

	
(b) If Hh 2 (RQUEAd)Ah , we define

H 0h WD
˚
� 2 .Hh/F

ˇ̌˝
�; .�Hh/

�
˛
2 Ah

	
; 0Hh WD

˚
� 2 .Hh/F

ˇ̌˝
�; .�.Hh//

�
˛
2 Ah
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Proposition 6.2.2. Let Hh 2 (LQUEAd)Ah . Then

(a) H 0h � Hh;
0Hh � Hh

H 0h D �
�
.H�h /

�
�
D �

�
.H�h /

_
�
; 0Hh D

�
�
.Hh/�

�
�
D
�
�
.Hh/�

_
�

H 0h D
˚
� W H�h! Ah

ˇ̌
�.uC u0/ D �.u/C �.u0/;

�.ut r.a// D a�.u/; �
�
I n
H�
h

�
� hnAh8n

	
0Hh D

˚
� W Hh�! Ah

ˇ̌
�.uC u0/ D �.u/C �.u0/;

�.usr.a// D �.u/a; �
�
I nHh�

�
� hnAh8n

	
(b) The analogous results hold if Hh 2 (RQUEAd)Ah .

Proof. The proof is the same as in [12], hence we do not need to reproduce it.

Remark 6.2.3. If Hh 2 (LQUEAd)Ah , then
�
.Hh/

op
coop

�0
D
�
0Hh

�op
coop. This follows

from the following three remarks:

— if U is any left bialgebroid, then .U�/
op
coop Š

�.U
op
coop/ as left bialgebroids;

— ifW is any right bialgebroid, then .�W /op
coop Š

�
W

op
coop

�
�

as right bialgebroids;

— the functor . /_ commutes with the functor . /op
coop.

Similarly, one has 0
�
.Hh/

op
coop

�
D .H 0

h
/

op
coop. Finally, in the same way one finds also

the parallel identities
�
.Hh/

op
coop

�0
D
�
0Hh

�op
coop and 0

�
.Hh/

op
coop

�
D .H 0

h
/

op
coop for every

Hh 2 (RQUEAd)Ah .

6.2.4. Explicit description of 0Hh. For a given Hh 2 (LQUEAd)Ah , we can
describe 0Hh quite explicitly. Write Hh D Jh ˚ s`.Ah/, and let �s be the projection
of Hh onto Jh: this is not a morphism of

�
Ah ˝ A

op
h

�
–modules. We need another

lemma, whose proof is left to the reader:

Lemma 6.2.5. For any u 2 Hh and a 2 Ah, one has �s
�
s`.a/u

�
D s`.a/�s.u/.

If in addition t`.a/ � s`.a/ D hj for some j 2 Jh, then �s
�
t`.a/u

�
D

s`.a/�s.u/C h�s.ju/.

The operator �˝ns is not defined onHh˝AhHh˝Ah � � �˝AhHh. If u1˝� � �˝un 2
Hh ˝Ah Hh ˝Ah � � � ˝Ah Hh, then �s.u1/˝ � � � ˝ �s.un/ depends on the way of
writing of u1 ˝ � � � ˝ un. We will say that the component of

P
u1 ˝ � � � ˝ un

in J˝n
h

is defined up to hnJ˝n
h

if
P
u1 ˝ � � � ˝ un D

P
v1 ˝ � � � ˝ vn impliesP

�s.u1/˝ � � � ˝ �s.un/ �
P
�s.v1/˝ � � � ˝ �s.vn/ 2 h

nJ˝n
h

.

Lemma 6.2.6. Let u 2 Hh and n 2 NC. If the component of�n.u/ in J˝n
h

is defined
up to hnJ˝n

h
and belongs to hnJ˝n

h
, then the component of�nC1.u/ is defined up to

hnC1J˝.nC1/
h

— hence it makes sense to say that it belongs to hnC1J˝.nC1/
h

.
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Proof. If the component of �n.u/ in J˝n
h

belongs to hnJ˝n
h

, then �n.u/ can be
written as

�n.u/ D
P
hn�1 ˝ � � � ˝ �n C other terms

where all the �i ’s are in Jh and “other terms” stands for a sum of homogeneous
tensors containing (as tensor factors) elements of s`.Ah/ which do not occur in the
computation of the component of �nC1.u/ in JnC1

h
. Assume that �nC1.u/ can be

written, for some a 2 A, as

�nC1.u/ D
P
hn�1 ˝ � � � ˝ t

`.a/�i ˝ �iC1 ˝ � � � ˝ �nC1 C other terms

or �nC1.u/ D
P
hn�1 ˝ � � � ˝ �i ˝ s

`.a/�iC1 ˝ � � � ˝ �nC1 C other terms

and let us compute �˝.nC1/s

�
�nC1.u/

�
in both cases.

In the second case, �˝.nC1/s

�
�nC1.u/

�
can be written as

�˝.nC1/s

�
�nC1.u/

�
D
P
hn�s.�1/˝� � �˝�s.�i /˝s`.a/�s.�iC1/˝� � �˝�s.�nC1/

In the first case, if we write t`.a/ � s`.a/ D hj (with j 2 Jh) and use the previous
lemma, we get

�˝.nC1/s

�
�nC1.u/

�
D
P
hn�s.�1/˝� � �˝t

`.a/�s.�i /˝�s.�iC1/˝� � �˝�s.�nC1/

C
P
hn�s.�1/˝� � �˝�s.�i�1/˝h

�
�j�s.�i /C�s.j�i /

�
˝�s.�iC1/ � � �˝�s.�nC1/

Taking the difference between the two computations we find

hn�s.�1/˝ � � � ˝�s.�i�1/˝ h
�
� j�s.�i /C�s.j�i /

�
˝�s.�iC1/ � � � ˝�s.�nC1/

which does belong to hnC1J˝.nC1/, q.e.d.

Notation. If the component of �n.u/ in J˝n
h

is defined up to hnJ˝n, we shall write
it as ıns .u/. Then the condition ıns .u/ 2 h

nJ˝n perfectly makes sense. Hereafter we
shall write ıns .u/ 2 h

nJ˝n to mean that ıns .u/ is well defined — i.e., the component
of �n.u/ in J˝n is well defined — up to hnJ˝n and it belongs to hnJ˝n. For the
rest of the discussion, we introduce the notation

ıs.Hh/ WD
˚
u 2 Hh

ˇ̌
ıns .u/ 2 h

nJ˝n
h
8n 2 NC

	
We need again a couple of technical results:

Proposition 6.2.7. Let u 2 ıs.Hh/. Then �.u/ can be written as

�.u/ D u˝ 1C
P
u0.1/ ˝ u

0
.2/ with u0.1/ 2 ıs.Hh/ and u0.2/ 2 hJh
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Proof. First case: L is a finite free as an A–module.
Let

˚
e1; e2; : : : ; en

	
be a basis of the A–module L: we lift each ei to an element

ei 2 Hh such that �.ei / D 0. Let u 2 ıs.Hh/. We write �.u/ as

�.u/ D u0 ˝ 1C
P
˛2Nnnf0gu˛ ˝ e

˛ with lim
j˛j!C1

jj u˛ jjD 0:

for suitable u0; u˛ 2 Hh. The relation mHh
�
.s` ı �/˝ id

��
�.u/

�
D u gives u0 D u.

Thus we have
�.u/ D u˝ 1C

P
˛2Nnnf0gu˛ ˝ e

˛

The relation mHh
�
.s` ı �/˝ id/

�
�.u/

�
D u yields the identityP

˛2Nnnf0gs
`
�
�.u˛/

�
e˛ D u � s`

�
�.u/

�
As u 2 ıs.Hh/, one has u � s`

�
�.u/

�
2 hJh, which implies that s`

�
�.u˛/

�
2 hHh;

hence s`
�
�.u˛/

�
D s`

�
�.u˛/

�
D 0 2 Hh

ı
hHh. As s` is injective, we get

�.u˛/ D 0, i.e. �.u˛/ 2 hAh.
If n > 1, one has

ıns .u/ D
P
˛2Nnı

n�1
s .u˛/˝ e

˛
2 hnJ˝n

which implies ın�1s .u˛/ 2 hnJ˝.n�1/ and u˛ 2 ıs.Hh/. Let eu˛ D �s.u˛/ D

u˛ � s
`
�
�.u˛/

�
. For all n � 1, one has ıns .eu˛/ D ıns .u˛/ 2 h

nC1Jn. In particular
for n D 1 we geteu˛ D hw˛ for some w˛ 2 ıs.Hh/. The element u˛ can be written
as u˛ D h

�
w˛ C s

`
�
h�1�.u˛/

��
2 hıs.Hh/.

Second case: L is finite projective as an A–module.
Just as in Subsection 4.2, we fix a finite projective A–module Q such that

L˚Q D F is a finite free A–module. We fix an A–basis B WD fe1; : : : ; eng of
F : then we call Y the k–span of B , so that we can write F D A˝k Y . Moreover,
we construct the (infinite dimensional) Lie–Rinehart algebra LQ D L˚

�
A˝k Z

�
,

withZ D Y ˚Y ˚Y ˚� � � , which has a good basis feigi2T WDN�f1;:::;ng defined byB .
And as in §4.2.1, we can define Hh;Y and ıs.Hh;Y/. Now given u 2 ıs.Hh;Y/, we
can write �.u/ as follows:

�.u/ D u˝ 1C
P
˛2T .N/nf0gu˛ ˝ e

˛ with lim
j˛jC$.˛/!C1

u˛ D 0
Then the same reasoning as above shows that the proposition is true for Hh;Y in the
rôle of Hh.

Recall (cf. §4.2.1) that Hh;Y D Hh ˚
�
Hhb̋kS.Z/C� where Hhb̋kS.Z/C

is the h–adic completion of Hh ˝k S.Z/
C, with Z D Y ˚ Y ˚ Y ˚ � � � ; the

natural projection �Y W Hh;Y �� Hh is then a morpism of left bialgebroids.
Moreover, if Jh;Y is the kernel of the counit of Hh;Y , we have Jh;Y D Jh ˚�
Hhb̋kS.Z/C�. Now it is easy to see that, if v 2 ıs.Hh;Y /, then �Y .v/ 2 ıs.Hh/.
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Now let u 2 ıs.Hh/. By the result for Hh;Y , we know that �.u/ can be written
as

�.u/ D u˝ 1C
P
u0.1/ ˝ u

0
.2/ with u0.1/ 2 ıs.Hh;Y / and u0.2/ 2 hJh;Y

As �Y .u/ D u, applying �Y ˝ �Y to the previous identity we get

�.u/ D u˝ 1C
P
�Y .u

0
.1//˝ �Y .u

0
.2//

with �Y .u0.1// 2 �Y
�
ıs.Hh;Y /

�
D ıs.Hh/ and �Y .u.2// 2 h�Y

�
Jh;Y /

�
D hJh.

Lemma 6.2.8. s`.Ah/ � ıs.Hh/ � ıs.Hh/ and t`.Ah/ � ıs.Hh/ � ıs.Hh/.

Proof. Let u 2 ıs.Hh/ and a 2 Ah. The properties s`.a/u 2 ıs.Hh/ follows
from the following properties: �s

�
s`.a/u

�
D s`.a/�s.u/ and �n

�
s`.a/

�
D

s`.a/ ˝ 1 ˝ � � � ˝ 1. Let us now show that ıns
�
t`.a/u

�
2 hnJ˝n for all n 2 N.

Write t`.a/ � s`.a/ D hj with j 2 Jh.
For n D 1, by Lemma 6.2.5 we have �s

�
t`.a/u

�
D s`.a/�s.u/Ch�s

�
ju
�
2 hJ.

For n > 1, let us show that ıns
�
t`.a/

�
2 hnJ˝n. Set�.u/ D u˝ 1C u0

.1/
˝ u0

.2/

with u0
.1/
2 ıs.Hh/, u0.2/ 2 hJh (cf. Proposition 6.2.7). Then �

�
t`.a/u

�
D u ˝

t`.a/Cu0
.1/
˝ t`.a/u0

.2/
, hence ıns

�
t`.a/u

�
D ın�1s .u/˝�s

�
t`.a/

�
C ın�1s .u0

.1/
/˝

�s
�
t`.a/u0

.2/

�
, thus ıns

�
t`.a/u

�
2 hnJ˝n.

We are now ready for the first key result of this subsection:

Theorem 6.2.9. With assumptions and notation as above, we have

0Hh D
˚
u 2 Hh

ˇ̌
ıns .u/ 2 h

nJ˝n
h
8n 2 NC

	
DW ıs.Hh/

Proof. To begin with, we show that ıs.Hh/ � 0Hh. To this end, we prove that for
any u 2 ıs.H/ we have

˝
u; I n

.Hh/�

˛
� hnAh for all n 2 NC, using induction on n.

Take n D 1. As u 2 ıs.H/, note that ı1.u/ 2 hJh implies u D hj C s`
�
�.u/

�
with j 2 Jh. Then one has˝

u; IHh�
˛
D h

˝
j; IHh�

˛
C �.u/

˝
1; IHh�

˛
2 hAh

Now assume n > 1. For our u 2 ıs.H/, set �.u/ D u ˝ 1 C u0
.1/
˝ u0

.2/
with

u0
.1/
2 ıs.Hh/ and u0

.2/
2 hJh as in Proposition 6.2.7. Let ˛ 2 I nHh� be of the form

˛ D ˛1˛2 with ˛1 2 IHh� and ˛2 2 I n�1Hh�
: then, as the pairing h ; i between Hh

and Hh� is a left bialgebroid pairing, we have˝
u; ˛1˛2

˛
D
˝
t`
�
hu0.2/; ˛1i

�
u0.1/; ˛2

˛
C
˝
t`
�
h1; ˛1

˛�
u; ˛2

˛
2 hnAh

by the induction hypothesis and the case n D 1 (also using the two previous lemmas).
Conversely, let us now show that 0Hh � ıs.Hh/. To this end, we prove (by

induction on n) that for any u 2 0Hh one has ıns .u/ 2 h
nJ˝n
h

for all n 2 N.
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For n D 1. As u 2 0Hh we have
˝
u; IHh�

˛
� hAh; on the other hand, ı1s .u/ D

u � s`
�
�.u/

�
by definition. Then we have

˝
ı1s .u/; �

˛
2 hAh, if � 2 IHh� because˝

u � s`
�
�.u/

�
; �
˛
D
˝
u; �

˛
�
˝
s`
�
�.u/

�
; �
˛
D
˝
u; �

˛
� �.u/

˝
1; �

˛
D
˝
u; �

˛
� �.u/@.�/ 2 hAh

On the other hand, clearly ı1s .u/ D u�s
`
�
�.u/

�
2 Jh, hence ı1s .u/ 2 Jh \ hHh D hJh.

Let now n > 1, and assume by induction that ın�1s .u0/ 2 hn�1J˝.n�1/ for all
u0 2 0Hh. For our u 2 0Hh, write �.u/ D u.1/ ˝ u.2/ with u.1/, u.2/ 2 0H . As
�n.u/ D �n�1

�
u.1/

�
˝ u.2/, we get ıns .u/ D ın�1s

�
u.1/

�
˝ ı1s

�
u.2/

�
2 hnJ˝n by

the induction hypothesis and the case n D 1.

6.2.10. Explicit description ofH 0
h
. We shall now give an explicit description ofH 0

h
:

this will be entirely similar to that for 0Hh, thus we shall only outline the main steps,
without dwelling into details — which can be easily filled in by the reader.

WriteHh D Jh˚ t`.Ah/, and let �t be the projection ofHh onto Jh: once again,
this is not a morphism of

�
Ah ˝ A

op
h

�
–modules. The operator �˝nt is not defined on

Hh˝AhHh˝Ah � � �˝AhHh: indeed, if u1˝� � �˝un 2 Hh˝AhHh˝Ah � � �˝AhHh,
then �t .u1/˝� � �˝�t .un/ depends on the way of writing u1˝� � �˝un. We say that
the component of

P
u1˝� � �˝un in J˝n

h
is defined up to hnJ˝n

h
if
P
u1˝� � �˝un DP

v1˝� � �˝vn yields
P
�t .u1/˝� � �˝�t .un/�

P
�t .v1/˝� � �˝�t .vn/ 2 h

nJ˝n
h

.
The following lemma is the parallel of Lemma 6.2.6, with similar proof. Note

that the statement is formally the same, but actually the “components” to which one
refers in the two claims are defined with respect to different projectors — namely
�˝ns or �˝nt — in the two cases.

Lemma 6.2.11. Let u 2 Hh. If the component of �n.u/ in J˝n
h

is defined up
to hnJ˝n

h
and belongs to hnJ˝n

h
, then the component of �nC1.u/ is defined up to

hnC1J˝.nC1/
h

— hence it makes sense to say that it belongs to hnC1J˝.nC1/
h

.

Notation. If the component of �n.u/ in J˝n
h

is defined up to hnJ˝n (in the above
sense), we shall write it as ınt .u/. Then the condition ınt .u/ 2 hnJ˝n perfectly
makes sense. Thus we shall write ınt .u/ 2 h

nJ˝n to mean that ınt .u/ is well defined
(i.e., the component of �n.u/ in J˝n, in the above sense, is well defined) up to
hnJ˝nand it belongs to hnJ˝n. Also, we set

ıt .Hh/ WD
˚
u 2 Hh

ˇ̌
ınt .u/ 2 h

nJ˝n
h
8n 2 NC

	
Arguing as for 0Hh, we can then prove the following, analogous characterization

of H 0
h
:

Theorem 6.2.12. With assumptions and notation as above, we have

H 0h D
˚
u 2 Hh

ˇ̌
ınt .u/ 2 h

nJ˝n
h
8n 2 NC

	
DW ıt .Hh/
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Remark 6.2.13. The study of 0Hh and H 0
h

we have done for LQUEAd holds for
RQUEAd as well. One can check it directly (via the same arguments) or, by deducing
the results for RQUEAd’s from those for LQUEAd’s in force of the general identities�
H 0
h

�op
coop D

0
�
.Hh/

op
coop

�
.

Thanks to the characterizations in Theorem 6.2.9 and Theorem 6.2.12 we can
eventually prove the following remarkable result:

Theorem 6.2.14. Let Hh be a LQUEAd or a RQUEAd. Then H 0
h
D 0Hh.

Proof. We begin withHh being an LQUEAd. We show, that for any u 2 ıs.Hh/ we
have ınt .u/ 2 h

nJ˝n for all n 2 N, by induction on n.
For n D 1, one has

ı1t .u/ D u � tl
�
�.u/

�
D u � s`

�
�.u/

�
C s`

�
�.u/

�
� t`

�
�.u/

�
As s`� t` D 0 mod h, one has s`

�
�.u/

�
� t`

�
�.u/

�
2 hAh. Moreover, we have also

�
�
s`
�
�.u/

�
� t`

�
�.u/

��
D 0, so that s`

�
�.u/

�
� t`

�
�.u/

�
belongs to Jh\hAh D hJh.

Thus ı1t .u/ 2 hJh, q.e.d.
For n > 1, let us write �.u/ D u ˝ 1 C u0

.1/
˝ u0

.2/
with u0

.1/
2 ıs.Hh/ and

u0
.2/
2 hJh as in Proposition 6.2.7. Then one has ınt .u/ D ın�1t

�
u0
.1/

�
˝ ı1t

�
u0
.2/

�
,

which is an element of hnJ˝n thanks to the induction hypothesis.
By the above we have proved the inclusion ıs.Hh/ � ıt .Hh/; the reverse

inclusion can be shown in the same way, so to give ıs.Hh/ D ıt .Hh/. By
Theorem 6.2.9 — giving 0Hh D ıt .Hh/ — and Theorem 6.2.12 — giving H 0

h
D

ıs.Hh/ — this eventually implies H 0
h
D 0Hh.

For Hh a RQUEAd, we can provide a direct proof by the same arguments used
for a LQUEAd; otherwise, we can deduce the result for RQUEAd’s from that for
LQUEAd’s, as follows.

If Hh is a RQUEAd, then .Hh/
op
coop is a LQUEAd; then we have the chain of

identities .H 0
h
/

op
coop D

0
�
.Hh/

op
coop

�
D
�
.Hh/

op
coop

�0
D
�
0Hh

�op
coop, whence 0Hh D H 0

h

follows too.

We are now ready for the main result of this subsection. In short, it claims that
the construction Hh 7! 0Hh D H 0

h
, starting from a quantization of L — of type

V `=r.L/ — provides a quantization of the dual Lie–Rinehart bialgebra L� — of
type J `=r.L�/; moreover, this construction is functorial.

Theorem 6.2.15. (a) Let V `.L/h 2 (LQUEAd)Ah , where L is a Lie–Rinehart
algebra which, as an A–module, is projective of finite type. Then:

(a.1) 0V `.L/h D V `.L/
0

h 2 (LQFSAd)Ah , with semiclassical limit V `.L/
0

h

ı
hV `.L/

0

h

Š J `.L�/. Moreover, the structure of Lie–Rinehart bialgebra induced on L� by the
quantization V `.L/

0

h of J `.L�/ is dual to that on L by the quantization V `.L/h of
V `.L/;
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(a.2) the definition of V `.L/h 7!
0V `.L/h D V `.L/

0

h extends to morphisms
in (LQUEAd), so that we have a well defined (covariant) functor 0. / D . /0 W

(LQUEAd) �! (LQFSAd).
(b) Let V r.L/h 2 (RQUEAd)Ah , where L is a Lie–Rinehart algebra which, as

an A–module, is projective of finite type. Then:
(b.1) 0V r.L/h D V r.L/0h 2 (RQFSAd)Ah , with semiclassical limit

V r.L/0h
ı
hV r.L/0h Š J

r.L�/. Moreover, the structure of Lie–Rinehart bialgebra
induced on L� by the quantization V r.L/0h of J r.L�/ is dual to that on L by the
quantization V r.L/h of V r.L/;

(b.2) the definition of V r.L/h 7!
0V r.L/h D V r.L/0h extends to morphisms

in (RQUEAd), so that we have a well defined (covariant) functor 0. / D . /0 W

(RQUEAd) �! (RQFSAd).

Proof. (a) Given V `.L/h 2 (LQUEAd)Ah , we know that J r.L/h WD V `.L/
�

h 2

(RQFSAd)Ah , by Theorem 5.1.5(a); then V r.L�/h WD J r.L/_h 2 (RQUEAd)Ah is
a quantization of V r.L�/, by Theorem 6.1.4. By Proposition 6.2.2,

�
V `.L/h

�0
D

�

�
J r.L/_h

�
is a quantization of J `.L�/, by Theorem 5.1.5. In all this, L� stands for

the A–module dual to L endowed with the Lie–Rinehart bialgebra structure dual to
that defined on L by the quantization V `.L/h — according to Theorem 4.1.3. This
completes the proof of (a.1).

As to (a.2), let Hh D V `
�
LA
�
h

be a LQUEAd over Ah and �h D V `
�
LB
�
h

a
LQUEAd over Bh, and let � WD .f; F / be a morphism of left bialgebroids among
them. Set JHh WD Ker.�Hh/ and J�h WD Ker.��h/. Then F

�
JHh

�
� J�h by

the property ��h ı F D f ı �Hh of a morphism of bialgebroids. Similarly, one
has F˝n ı �n

Hh
D �˝n�h ı F and F ı s`

Hh
D s`

�h
; from this, one easily sees that

ıns
�
F.u/

�
D F˝n

�
ıns .u/

�
. From all this we get F.H 0

h
/ � � 0

h
, so the restriction

of the morphism .f; F / between Hh and �h provides a morphism in (LQFSAd)
between H 0

h
and � 0

h
.

(b) A direct proof for claim (b) can be given by the same arguments used for (a).
Otherwise, we can deduce (b) from (a) as follows.

If Hh 2 (RQUEAd), then .Hh/
op
coop 2 (LQUEAd) and

�
.Hh/

op
coop

�0
D
�
0Hh

�op
coop,

so that H 0
h
D 0Hh D

��
.Hh/

op
coop

�0�op

coop
. From this we can easily deduce claim (b)

from claim (a).

6.2.16. Description of V `.L/0h when L is a (finite type) free A–module. Let L be
a Lie–Rinehart algebra which, as an A–module, is free of finite type. Let V `.L/h 2
(LQUEAd)Ah be a quantization of V `.L/; by the freeness of L, we can provide an
explicit description of V `.L/

0

h, much like that given in [12] for the similar case of
quantum universal enveloping algebras.

First of all, consider Kh WD V `.L/
�

h � J r.L/h 2 (RQFSAd)Ah , which
(cf. Theorem 5.1.5) is a quantization of J r.L/. From Proposition 6.2.2 we have
V `.L/

0

h Š �

�
K_
h

�
.
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Let feigi2f1;:::;ng be a basis of the free A–module L. Then (by the Poincaré–
Birkhoff–Witt theorem) the set of ordered monomials

˚
e˛
	
˛2Nn is an A–basis of

V `.L/, where e˛ WD e˛11 � � � e
˛n
n .

Let � i 2 Hom
�
V `.L/; A

�
Š 2SA.L�/ be defined by

˝
� i ; e

˛
1

˛
D ı˛1;0 � � � ı˛i ;1 � � �

ı˛n;0. Then the ordered monomials 1
˛Š
�
˛

(with ˛Š WD ˛1Š � � �˛nŠ) is a pseudobasis —
i.e., a basis in topological sense — of the A–module J r.L/ dual to the PBW basis˚
e˛
	
˛2Nn .

Lift f� igi2f1;:::;ng to a subset f�igi2f1;:::;ng in J r.L/h D Kh such that @h.�i / D 0;
then

˚
1
˛Š
�˛
	
˛2Nn is a topological pseudo-basis of J r.L/h D Kh. Let

˚
�˛
	
˛2Nn be

the topological basis of V `.L/h dual to
˚
1
˛Š
�˛
	
˛2Nn

; then
˚
�˛
	
˛2Nn is a lift of the

PBW basis
˚
e˛
	
˛2Nn of V `.L/. Using these tools, a straightforward analysis shows

that
V `.L/

0

h D
˚P

˛t
`.a˛/h

j˛j�˛
ˇ̌
a˛ 2 Ah

	
where the summation symbol denotes h–adically convergent series.

6.3. Quantum duality for quantum groupoids. We consider now the composition
of two Drinfeld’s functors. We shall prove that the functors . /_ and . /0 D 0. /

are actually inverse to each other, so that they establish equivalences of categories
(RQFSAd) Š (RQUEAd) and (LQFSAd) Š (LQUEAd). Our result reads as
follows:

Theorem 6.3.1.

(a) If Kh 2 (RQFSAd), then
�
K_
h

�0
D Kh D

0
�
K_
h

�
.

(b) If Kh 2 (LQFSAd), then
�
K_
h

�0
D Kh D

0
�
K_
h

�
.

(c) If Hh 2 (LQUEAd), then
�
H 0
h

�_
D Hh D

�
0Hh

�_.

(d) If Hh 2 (RQUEAd), then
�
H 0
h

�_
D Hh D

�
0Hh

�_.

(e) The functors . /_ W (RQFSAd)! (RQUEAd) and . /0 D 0. / W (RQUEAd)!
(RQFSAd) are inverse to each other, hence they are equivalences of cate-
gories. Similarly for the functors . /_ W (LQFSAd) �! (LQUEAd) and
. /0 D 0. / W (LQUEAd) �! (LQFSAd).

Proof. Clearly, claim (e) is just a consequence of the previous items in the statement.
We begin by focusing on claim (a): we assume thatKh 2 (RQFSAd)Ah and we shall
prove that

�
K_
h

�0
D Kh.

Let us show that Kh �
�
K_
h

�0.
Given � is inKh, consider its n–th iterated coproduct�n.�/ D �.1/˝� � �˝�.n/;

if we write every �.i/ as �.i/ D �0.i/ C �
00
.i/

with �0
.i/
WD �.i/ � s

r
h

�
@.�.i//

�
2 Jh WD

Ker
�
@Kh

�
and �00

.i/
WD sr

h

�
@.�.i//

�
2 sr

h
.Ah/, then expanding again �n.�/ we can
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write it as a sum�n.�/ D
P
�ı
.1/
˝ � � �˝�ı

.n/
in which �ıi 2 Jh or �ıi 2 s

r
h
.Ah/ for

every i D 1; : : : ; n.
Now let ˛1; : : : ; ˛n 2 I

�.K
_
h
/ WD �

�1

�.K
_
h
/

�
hAh

�
. As every ˛j belongs to�

�
K_
h

�
, it

defines a map from Jh to hAh. Hence
˝
˛i ; �j

˛
2 hAh and one has

˝
˛1 � � �˛n; �

˛
2

hnAh. Thus, for any n 2 N, we have that � defines a map ƒn W h�nI n
�.K
_
h
/
�! Ah.

Clearly all these ƒn’s match together to define an element ƒ 2
��
�

�
K_
h

��_��
D�

K_
h

�0; thus we end up with a natural map Kh �!
�
K_
h

�0�
� 7! ƒ

�
, which is clearly

injective. This yields the inclusion Kh �
�
K_
h

�0.
To prove the converse inclusion Kh �

�
K_
h

�0, one proceeds exactly like in [12]
— we leave the details to the reader. Similarly, we leave to the reader the proof of
(b), analogous to that of (a).

To prove claim (c), consider Hh 2 (LQUEAd). We have Kh WD H�
h
2

(RQFSAd), and H 0
h
D �

��
H�
h

�_�
D �

�
K_
h

�
by Proposition 6.2.2 (a). Now

�h WD K_
h
2 (RQUEAd) by Theorem 6.1.4, and then 0�h D

�
.��h/

_
�� by

Proposition 6.2.2 (b), which implies ?
�
0�h
�
D ?

��
.��h/

_
���
D .��h/

_. Altogether
— also exploiting claim (a) — this gives�
H 0h
�_
D
�
�

�
K_h

��_
D .��h/

_
D ?

�
0�h
�
D ?

�
� 0h
�
D

D ?

��
K_h

�0�
D ?Kh D ?

�
H�h

�
D Hh

This proves (c), and the proof of (d) is entirely similar again.

7. An example

In this last section we apply the main construction of the paper — duality functors
and Drinfeld’s functors — to a toy model, namely a simple (yet non trivial!) quantum
groupoid.

We consider the two dimensional Lie k–algebra g D ke1˚ ke2 with Lie bracket
Œe1; e2� D e1. It is known that g� is a Poisson manifold: we consider e1 and e2 as
coordinates on g�, denoting them by x1 and x2 respectively. The Poisson structure
on g� is determined by fx1; x2g D Œe1; e2� D e1.

Let us introduce the Lie kŒŒh��–algebra gh WD kŒŒh��e1 ˚ kŒŒh��e2 with non-zero
Lie bracket Œe1; e2�h WD he1. The h-adic completion of the enveloping algebra of
gh, namely Ah WD 1U.gh/, is a quantization of the Poisson algebra of polynomial
functions on g�, namely A D S.g/.

We write D for the ring of polynomial differential operators on g�, with

@i WD
@

@xi
, i D 1; 2. It is the enveloping algebra of the Lie–Rinehart algebra
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S.g/;Der

�
S.g/

�
; id
�
. We endow it with the standard left algebroid stucture and

denote by DŒŒh�� the trivial deformation of this structure.

Proposition 7.0.2. Fix notation �1 WDx1@1. Then

F WD
1X
nD0

hn

nŠ2n

�
�1˝ @2 � @2˝ �1

�n
is a twistor — cf. Definition 3.2.7 — for DŒŒh��.

Proof. It is a straightforward computation.

We will now denote by Dh the twist of DŒŒh�� by F . As an algebra, Dh is
isomorphic to

�
S.g/ ˝ S.g�/

�
ŒŒh��. The deformation of A D S.g/ defined by F

is Ah D 1U.gh/, the h–adic completion of the universal enveloping algebra U.gh/ of
gh. The source map s`F (an algebra morphism) is determined by

s`F .x1/ D
1P
nD0

1

nŠ

hn

2n
x1@

n
2; s`F .x2/ D x2 � hx1@1

The target t`F (an algebra antimorphism) the coproduct �F and the counit � are
determined by

t`F .x1/ D

1X
nD0

.�1/n

nŠ

hn

2n
x1@

n
2; t`F .x2/ D x2 C hx1@1

�F .X/ D F#�1��.X/ �F�; �
�
x
˛1
1 x

˛2
2 @

ˇ1
1 @

ˇ2
2

�
D x

˛1
1 x

˛2
2 @

ˇ1
1 @

ˇ2
2 .1/

(cf. Theorem 3.2.8). Explicitly, F can be lifted to an element eF 2 �D ˝k D�ŒŒh��
defined by

eF D exp
�
h

2

�
�1 ˝

@

@x2
�

@

@x2
˝ �1

��
D

1P
nD0

1

nŠ

hn

2n

�
�1 ˝

@

@x2
�

@

@x2
˝ �1

�n
2 D ˝k DŒŒh��

this element eF is invertible in
�
D ˝k D

�
ŒŒh�� and one has

eF�1 D exp
�
�
h

2

�
�1 ˝

@

@x2
�

@

@x2
˝ �1

��
2
�
D ˝k D

�
ŒŒh��

In turn, the element eF�1 defines an element G 2 DŒŒh��b̋AFDŒŒh��, namely

G D
1P
nD0

.�1/n
hn

2nnŠ

�
�1 ˝

@

@x2
�

@

@x2
˝ �1

�n
2 DŒŒh��b̋AFDŒŒh��
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Now the map

F#
W DŒŒh��b̋AFDŒŒh�� �! DŒŒh��b̋ADŒŒh��; h1 ˝ h2 7! F � .h1 ˝ h2/

is indeed invertible, its inverse being

F#�1
W DŒŒh��b̋ADŒŒh�� �! DŒŒh��b̋AFDŒŒh��; h1 ˝ h2 7! G � .h1 ˝ h2/

We will compute now the dual bialgebroids
�
Dh
�
�

and
�
Dh
��.

Computation of
�
Dh

�
�
. We shall use the isomorphism

.Dh/� �! Hom.D; A/ŒŒh��; � 7!
�
@a1@

b
2 7!

˝
�; @a1@

b
2

˛�
Let de1; de2 2

�
Dh
�
�

be such that˝
de1; @

a
1@
b
2

˛
D ı1;aı0;b;

˝
de2; @

a
1@
b
2

˛
D ı0;aı1;b:

Similarly, let e1; e2 2
�
Dh
�
�

be such that˝
e1; @

a
1@
b
2

˛
D x1ı0;aı0;b;

˝
e2; @

a
1@
b
2

˛
D x2ı0;aı0;b:

A direct computation shows that

˝
de1 �h de2; @

a
1@
b
2

˛
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if a � 2 or b � 2

1 if a D 1 and b D 1

�
h

2
if a D 1 and b D 0

0 if a D 0 and b D 1

Similarly

˝
de2 �h de1; @

a
1@
b
2

˛
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if a � 2 or b � 2

1 if a D 1 and b D 1
h

2
if a D 1 and b D 0

0 if a D 0 and b D 1

Hence de1 �h de2 � de2 �h de1 D �hde1. Set Ldei WD h�1dei . This equality can be
written as

Lde1 �h Lde2 � Lde2 �h Lde1 D � Lde1

Similarly, the following equalities can be established:

Lde1 �h e2 � e2 � Lde1 D �e1; e1 � e2 � e2 �h e1 D he1;

Lde1 �h e1 D e1 �h Lde1; Lde2 �h e2 D e2 �h Lde2; Lde2 �h e1 � e1 �h Lde2 D e1;

sr�.ei / D ei ; t r�.ei / D ei C h
Ldei
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From the properties of the coproduct, one gets �.ei / D 1 ˝ ei , �.ei C h Ldei / D
.eiCh Ldei /˝1, from which we deduce�. Ldei / D Ldei˝1C1˝ Ldei . The coproduct
on
�
.Dh/�

�_ is now determined.

Let us also point out the counit of
�
.Dh/�

�_: it is given by @. Ldei / D 0 and
@.ei / D ei .

Remark 7.0.3. Let us introduce the Lie algebra g1 such that g1 Š g D k Lde1˚k Lde2
(as a k–vector space) and Œ ; �1 WD �Œ ; �g. Then g1 acts on gh D kŒŒh��e1˚kŒŒh��e2
by derivations, via

g �! Der.gh/; Lde1 7!

(
e1 7! 0

e2 7! �e1
; Lde2 7!

(
e2 7! 0

e1 7! e1
:

We may perform the semi direct product g1 n gh and
�
.Dh/�

�_ is isomorphic to
U.g1 n gh/ as an algebra but not as a bialgebroid.

Let us now compute 0Dh. We proceed in several steps.
� Let us show that h@2 2 0Dh.
We shall show that

˝
h@2; de

a1
1 de

a2
2

˛
D 0 if .a1; a2/ ¤ .0; 1/. We have three

cases:
First case: a2 D 0. In this case it is obvious that

˝
@2; de

a1
1

˛
D 0.

Second case: a2 D 1. In this case we have
˝
@2; de

a1
1 de2

˛
D

(
0 if a1 ¤ 0

1 if a1 D 0
:

Third case: a2 > 1. In this case the summands in �F
�
@2
�

that might bring a
non zero contribution to

˝
@2; de

a1
1 de

a2
2

˛
are those of the form

@
a2
2 ˝ �

a0
2
Ca00

2

1

.�1/a
00
2

a02Ša
00
2Š

ha2�1

2a2�1
with a02 C a

00
2 D a2 � 1I

but
X

a0
2
Ca00

2
Da2�1

@
a2
2 ˝ �

a0
2
Ca00

2

1

.�1/a
00
2

a02Ša
00
2Š

ha2�1

2a2�1
D 0;

so we find again
˝
h@2; de

a1
1 de

a2
2

˛
D 0.

� Let us show that h@1 2 0Dh. We will show that
˝
h@1; de

a1
1 de

a2
2

˛
2 ha1Ca2Ah.

We start by computing
˝
�1; de

a1
1 de

a2
2

˛
.

First case: a2 D 0. It is easy to check that
˝
�1; .de1/

a1
˛
D

(
x1 if a1 D 1

0 otherwise
:

Second case: a2 � 1. The summands in �F
�
@2
�

that might bring a non zero
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contribution
˝
�1; de

a1
1 de

a2
2

˛
are those of the form

@
a2
2 ˝ �

a0
2
Ca00

2
C1

1

.�1/a
00
2

a02Ša
00
2Š

ha2

2a2
with a02 C a

00
2 D a2I

but
X

a0
2
Ca00

2
Da2

@
a2
2 ˝ �

a0
2
Ca00

2
C1

1

.�1/a
00
2

a02Ša
00
2Š

ha2

2a2
D 0;

hence in the end
˝
�1; .de1/

a1.de2/
a2
˛
D 0.

In conclusion, we find
˝
�1; .de1/

a1.de2/
a2
˛
D

(
x1 if .a1; a2/ D .1; 0/

0 otherwise
:

Let us now compute
˝
@1; de

a1
1 de

a2
2

˛
. Again we have several cases to consider.

First case: a2 D 0. It is easy to check that
˝
@1; .de1/

a1
˛
D

(
1 if a1 D 1

0 otherwise
:

Second case: a2 � 1. In this case one has

0 D
˝
�1; .de1/

a1.de2/
a2
˛
D

�
s`F .x1/@1 �

C1P
nD1

�1
hn

2nnŠ
@n2; .de1/

a1.de2/
a2

�
D x1

D
@1; .de1/

a1.de2/
a2
E
�

a2�1P
nD1

�
�1

hn

2nnŠ
@n2; .de1/

a1.de2/
a2

�
C

�
�1

ha2

2a2a2Š
@
a2
2 ; .de1/

a1.de2/
a2

�
:

For 1 � n � a2 � 1, the unique summands in �F
�
�1@

n
2

�
that may bring a non zero

contribution to
˝
�1@

n
2; .de1/

a1.de2/
a2
˛

are those of the form

@
a2
2 ˝ �

a2�nC1
1

ha2�n

2a2�n
.�1/c2

c1Šc2Š
with c1 C c2 D a2 � nI

but
X

c1Cc2Da2�n

@
a2
2 ˝ �

a2�nC1
1

ha2�n

2a2�n
.�1/c2

c1Šc2Š
D 0 ;

hence
a2�1P
nD1

�
�1

hn

2nnŠ
@n2; .de1/

a1.de2/
a2

�
D 0.

Finally, we remark that
˝
�1@

a2
2 ; .de1/

a1.de2/
a2
˛

is zero if a1 ¤ 1. Hence, in any

case, we have
�
�1@

a2
2

ha2

2a2a2Š
; .de1/

a1.de2/
a2

�
2 ha1Ca2�1Ah.

In conclusion, we find that in all cases one has
˝
@1; .de1/

a1.de2/
a2
˛
2 ha1Ca2�1Ah.

Now denote by
˚
�a;b

	
.a;b/2N2 the topological basis of Dh dual to the basis(

dea1
aŠ

deb2
bŠ

)
.a;b/2N2

:
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We know that 0Dh D
n P

.a;b/2N2s
`
F.˛a;b/h

aCb�a;b

ˇ̌̌
˛a;b 2 Ah

o
. As haCb�a;b D

haCb@a1@
b
2 modulo h0Dh; we have

0Dh D
n P

.a;b/2N2s
`
F.˛a;b/h

aCb@a1@
b
2

ˇ̌̌
˛a;b 2 Ah

o
:

Computation of .Dh/
�. We shall compute .Dh/�, using the isomorphism

.Dh/� �! Hom.D; A/ŒŒh�� ; � 7!
�
@a1@

b
2 7!

˝
�; @a1@

b
2

˛�
Let de1; de2 2 .Dh/� be such that˝

de1; @
a
1@
b
2

˛
D ı1;aı0;b ;

˝
de2; @

a
1@
b
2

˛
D ı0;aı1;b :

Similarly, let e1; e2 2 .Dh/� be such that˝
e1; @

a
1@
b
2

˛
D x1ı0;aı0;b ;

˝
e2; @

a
1@
b
2

˛
D x2ı0;aı0;b :

Now set Ldei WD h�1dei for i D 1; 2. Then the following equalities can be
established:

e1 � e2 � e2 �h e1 D �he1; Lde1 �h Lde2 � Lde2 �h Lde1 D Lde1

Lde1 �h e2 � e2 � Lde1 D e1 ; Lde1 �h e1 D e1 �h Lde1

Lde2 �h e2 D e2 �h Lde2 ; Lde2 �h e1 � e1 �h Lde2 D �e1

Moreover, source and target are

s�r .xi / D ei C h
Ldei ; t�r .xi / D ei :

From the properties of the coproduct, one has also

�.ei / D ei ˝ 1 ; �. Ldei / D Ldei ˝ 1C 1˝ Ldei :

Finally, the counit of ..Dh/�/_ is given by the formulas

@
�
Ldei
�
D 0 ; @

�
ei
�
D ei :

A right bialgebroid isomorphism
�
.Dh/�

�_
Š

�
.Dh/

�
�_. From the above

analysis, one sees that there exists a unique isomorphism of right bialgebroids
� W

�
.Dh/�

�_
��!

�
.Dh/�

�_ determined by �.ei / D eiCh Ldei and �. Ldei / D � Ldei .
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