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Measured quantum groupoids associated to proper dynamical
quantum groups
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Abstract. Dynamical quantum groups were introduced by Etingof and Varchenko in connection
with the dynamical quantum Yang–Baxter equation, and measured quantum groupoids were
introduced by Enock, Lesieur and Vallin in their study of inclusions of type II1 factors. In this
article, we associate to suitable dynamical quantum groups, which are purely algebraic objects,
Hopf C�-bimodules and measured quantum groupoids on the level of von Neumann algebras.
Assuming invariant integrals on the dynamical quantum group, we first construct a fundamental
unitary which yields Hopf bimodules on the level of C�-algebras and von Neumann algebras.
Next, we assume properness of the dynamical quantum group and lift the integrals to the
operator algebras. In a subsequent article, this construction shall be applied to the dynamical
SUq.2/ studied by Koelink and Rosengren.
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1. Introduction

Dynamical quantum groups were introduced by Etingof and Varchenko as an
algebraic framework for the study of the dynamical quantum Yang–Baxter equation
[6, 7, 8], a variant of the Yang–Baxter equation arising in statistical mechanics. Every
(rigid) solution of this equation has a naturally associated tensor category of repre-
sentations which turns out to be equivalent to the category of representations of some
dynamical quantum group. In the case of the basic rational or basic trigonometric
solution, this dynamical quantum group can be regarded as a quantization of the
function algebra on some Poisson-Lie-groupoid. In general, it can be regarded as a
quantum groupoid and fits into the theory of Hopf algebroids developed by Böhm
and others [1].

Measured quantum groupoids were introduced by Enock, Lesieur and Vallin [2,
13] to capture generalized Galois symmetries of certain inclusions of type II1 factors
[3, 4, 15]. Apart from this fundamental example in von Neumann algebra theory,
�Supported by the SFB 878 “Groups, geometry and actions” funded by the DFG.



36 T. Timmermann

which was also considered in the algebraic setting [9, 19], and from the finite case,
only few measured quantum groupoids have been constructed and investigated yet
[13, 29].

Up to now, connections between algebraic and operator-algebraic approaches to
quantum groupoids have only been explored in the finite case [14, 17, 28] and in the
form of a few examples and constructions that exist on both levels. The situation
is very different in the area of quantum groups, where Woronowicz’s theory of
compact quantum groups [35] and van Daele’s theory of multiplier Hopf algebras
with integrals [12, 31] form a bridge between the algebraic and operator-algebraic
approaches, combining the computational convenience of the former with the power
and richness of the latter.

Another approach to quantum groupoids which is equivalent to the algebraic and
operator algebraic one, at least in finite dimensions, is via fusion categories [5, 19].

In this article, we associate to suitable dynamical quantum groups, which are
purely algebraic objects, Hopf C �-bimodules and measured quantum groupoids on
the level of von Neumann algebras. The main example of a dynamical group we have
in mind for application is the dynamical SUq.2/ studied by Koelink and Rosengren
[10], and in a subsequent article, we want to study the construction for this example
in detail.

On the dynamical quantum groups, we have to impose several assumptions.
First, we need a left- and a right-invariant integral, which correspond to fiber-wise

integration on a groupoid, and a weight on the basis that is suitably quasi-invariant,
such that the resulting total integrals are faithful, positive, and coincide. In the case
of the dynamical SUq.2/, the left- and right-invariant integrals can be obtained from
a Peter–Weyl decomposition due to Koelink and Rosengren [10], while the quasi-
invariant weight on the basis can be chosen quite freely.

Second, we assume the dynamical quantum group to be proper, which is the
natural analogue of compactness and unitality for quantum groupoids, and to possess
a specific approximate unit in the base algebra. The dynamical SUq.2/ mentioned
above even is compact and thus satisfies this second assumption.

In particular, the dynamical quantum group need not be a Hopf algebroid, but
only a multiplier Hopf algebroid in the sense of [25]. The latter are closely related to
the weak multiplier Hopf algebras that were recently introduced by Van Daele and
Wang [33, 34].

Third, we assume that the quasi-invariant weight on the basis admits a bounded
GNS-construction. Like the first condition, this one is very natural. In the case of
the dynamical SUq.2/, the base algebra is formed by all meromorphic functions on
the plane and does not admit any non-trivial bounded representations. To apply our
construction, one therefore has to change the base and check that the Peter–Weyl
decomposition persists.

Given these assumptions, the measured quantum groupoid is constructed as
follows.
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The algebraic GNS-construction, applied to the total integral on the dynamical
quantum group, yields a Hilbert space of square-integrable functions on the dy-
namical quantum group together with a natural representation by densely defined
multiplication operators. To obtain a C �-algebra or von Neumann algebra, one
has to show that these multiplication operators are bounded. To prove this and
to lift the comultiplication to the resulting C �-algebra and von Neumann algebra,
we proceed as in the case of quantum groups [23] and construct a fundamental
unitary which is pseudo-multiplicative on the level of von Neumann algebras and
C �-algebras in the sense of [27] and [24], respectively. The general theory of these
unitaries then yields completions of the dynamical quantum group in the form a Hopf
C �-bimodule and a Hopf von-Neumann bimodule, and simultaneously a Pontrjagin
dual in the same form. Finally, we extend the invariant integrals to the level of
operator algebras, using properness of the dynamical quantum group and standard
von Neumann algebra techniques.

This article is organized as follows.
Section 2 provides the algebraic basics on dynamical quantum groups and

integration that are needed for the construction in Section 3. We first generalize
the definition of a dynamical quantum group or h-Hopf algebroid, allowing the base
to be non-unital, then consider left- and right-invariant integrals on the total algebra
and quasi-invariant weights on the basis, and finally construct a �-algebra related to
the Pontrjagin dual. The main result of this section is the existence of a modular
automorphism for the total integral, which follows from a strong invariance property
similarly as in the setting of multiplier Hopf algebras [31].

Section 3 presents the construction of the measured quantum groupoid outlined
above. It uses Connes spatial theory, in particular the relative tensor product of
Hilbert modules, and the C �-algebraic analogue of that construction [22], and
introduces the necessary concepts along the way when they are needed.

We use standard notation and adopt the following conventions. All algebras will
be over the ground field C and we do not assume the existence of a unit element.
Given a vector space V with a subset X � V , we denote by hXi � V the linear
span and, if V is normed, by ŒX� � V the closed linear span of X . Inner products
on Hilbert spaces will be linear in the second and anti-linear in the first variable.

2. Dynamical quantum groups with integrals on the algebraic level

This section summarizes and develops the basics on dynamical quantum groups and
integration used in this article. Before turning to details, let us outline the main
concepts.

A dynamical quantum group is a special quantum groupoid and as such consists
of an algebra B called the basis, an algebra A, an embedding r WB ! A and
an anti-homomorphic embedding sWB ! A whose images commute, and a
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comultiplication, antipode and counit. What makes it special is that the basis B
is commutative, that r.B/ and s.B/ are central in A up to a twist which is controlled
by an action of a group � on B and a bigrading of A by � , and that the target of the
comultiplication is a well-behaved monoidal product A Q̋ A.

Integration on a quantum groupoid involves several ingredients. The analogue of
the left- or right-invariance property of Haar measures on groups, Haar systems on
groupoids, and Haar weights on quantum groups can be formulated for conditional
expectations from A to r.B/ or s.B/, respectively. To obtain a total integration on
A, such a partial integral has to be composed with a suitable functional on B that is
quasi-invariant with respect to the action of � .

Let us now turn to details. We proceed as follows.
From the beginning, we assume all our algebras to possess an involution but not

necessarily a unit. We first recall terminology concerning non-unital algebras (§2.1),
then describe the monoidal product A Q̋ A (§2.2), and define dynamical quantum
groups or, more precisely, multiplier .B; �/-Hopf �-algebroids (§2.3). Afterwards,
we introduce and study integrals (§2.4–§2.6) and prove the existence of a modular
automorphism that controls the deviation of the total integral from being a trace.
Using integration, we finally construct the dual �-algebra of a multiplier .B; �/-
Hopf �-algebroid (§2.7).

2.1. Preliminaries on non-unital algebras. To handle non-unital algebras, we use
extra non-degeneracy assumptions and multiplier algebras [30, appendix] which are
recalled below.

Let R be an algebra, not necessarily unital. Given a left R-module M , we say
that R has local units for M if for each finite subset F � M , there exists some
r 2 R such that rm D m for all m 2 F [32]. The corresponding notion for right
R-modules is defined similarly. We say that R has local units if it has local units for
R, regarded as a left and as a right R-module.

Let R and S be algebras with local units, let N be an R-S -bimodule and assume
that R and S have local units for N . A multiplier of N is a pair T D .T�; T�/,
where T�WR ! N is a left R-module map and T�WS ! N a right S -module map
satisfying T�.r/s D rT�.s/ for all r 2 R; s 2 S . Given such a multiplier, we write
rT WD T�.r/ and T s WD T�.s/ for all r 2 R, s 2 S . We denote the set of all
multipliers of N by M.N/. Clearly, N embeds into M.N/ and M.N/ carries a
natural structure of an R-S -bimodule that is compatible with this embedding.

RegardingR as anR-R-bimodule,M.R/ becomes an algebra via T T 0 D .T 0� ı T�;
T� ı T

0
�
/, and R embeds into M.R/ as an essential ideal. If R is a �-algebra, then

so is M.R/, where the adjoint of a multiplier T D .T�; T�/ 2 M.R/ is the pair
T � D .T �� ; T

�
�
/ given by T �� .r/ D .T�.r

�//� and T �
�
.r/ D .T�.r

�//� for all r 2 R.
The bimodule N is an M.R/-M.S/-bimodule via T .rns/T 0 WD T�.r/nT

0
�.s/

for all T 2 M.R/, r 2 R, n 2 N , s 2 S , T 0 2 M.S/, and M.N/ is an M.R/-
M.S/-bimodule via T T 0T 00 WD .T 00� ı T

0
� ı T�, T� ı T 0� ı T

00
�
/ for all T 2 M.R/,

T 0 2M.N/, T 00 2M.S/.
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A homomorphism � WR ! M.S/ is non-degenerate if h�.R/Si D S D

hS�.R/i; in that case, it extends uniquely to a homomorphism M.R/ ! M.S/

which is again denoted by � (see [30]).

2.2. The category of .B; �/ev-algebras. Let B be a commutative �-algebra with
local units, let � be a group that acts on B on the left, and let e 2 � be the unit.

A .B; �/-module is a �-graded B-bimodule V D
L

2� V
 for which B has

local units, where each V
 is a B-bimodule and vb D 
.b/v for all v 2 V
 ,
b 2 B; 
 2 � . A morphism of .B; �/-modules V andW is a morphism of �-graded
B-bimodules.

A .B; �/-algebra is a �-graded �-algebra A D
L

2� A
 which has local units

in Ae and is equipped with a �-homomorphism B ! M.A/ that turns A into a
.B; �/-module. Such a .B; �/-algebra is proper if B maps into A.

Given a .B; �/-algebraA and 
 2 � , we denote byM.A/
 �M.A/ the space of
all multipliers T 2M.A/ satisfying TA
 0 � A

 0 and A
 0T � A
 0
 for all 
 0 2 � .

A morphism of .B; �/-algebras A and C is a non-degenerate, B-linear
�-homomorphism � WA ! M.C/ satisfying �.A
 / � M.C/
 for all 
 2 � . Such
a morphism is proper if it maps A into C .

Using the extension of non-degenerate homomorphisms to multipliers, one
defines the composition of morphisms and checks that .B; �/-algebras form a
category.

The tensor product B ˝ B is a �-algebra with local units and a natural action of
� �� . Replacing .B; �/ by .B; �/ev WD .B˝B;� ��/ in the definition above, we
obtain the category of all .B; �/ev-algebras.

Let A be a .B; �/ev-algebra. We call an element x 2 A homogeneous and write
@x D 
 , N@x D 
 0 if x 2 A
;
 0 for some 
; 
 0 2 � . Thus, @x@y D @xy , N@x N@y D N@xy
and @x� D @�1x , N@x� D N@�1x for all homogeneous x; y 2 A. Define r D rAWB !

M.A/ and s D sAWB ! M.A/ by r.b/a D .b ˝ 1/a and s.b/a D .1˝ b/a for all
a 2 A, b 2 B . We write rA;Ar ; sA;As if we consider A as a B-module via left or
right multiplication via r or s, respectively.

Clearly, B is a .B; �/-algebra and B ˝ B is a .B; �/ev-algebra with respect to
the trivial gradings. Every .B; �/-algebra A can be regarded as a .B; �/ev-algebra,
where A.
;
/ D A
 and A.
;
 0/ D 0 whenever 
 ¤ 
 0, and .b ˝ b0/a D bb0a for
all b; b0 2 B , a 2 A. Conversely, every .B; �/ev-algebra A can be considered as
a .B; �/-algebra via r WB ! M.A/ and the grading given by A
 WD

L

 0 A
;
 0 , or

via sWB ! M.A/ and the grading given by A
 0 WD
L

 A
;
 0 . We write .A; r/ and

.A; s/, respectively, to denote the resulting .B; �/-algebras.
Denote by B o � the crossed product for the action of � on B , that is, the

universal algebra containing B and � such that e D 1B and b
 � b0
 0 D b
.b0/

 0

for all b; b0 2 B , 
; 
 0 2 � . This is a .B; �/-algebra with respect to the natural
inclusion B ! B o � and the involution and grading given by .b
/� D 
�1b� and
.B o �/
 D B
 for all b 2 B , 
 2 � .
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The fiber product of .B; �/ev-algebras A and C is defined as follows. The
subalgebra

A
�
˝ C WD

X

;
 0;
 002�

A
;
 0 ˝ C
 0;
 00 � A˝ C

is a .B; �/ev-algebra, where .A
�
˝ C/
;
 00 D

P

 0 A
;
 0 ˝ C
 0;
 00 for all 
; 
 00 2 �

and .r � s/.b ˝ b0/ D rA.b/˝ sC .b0/ for all b; b0 2 B . Let I �M.A
�
˝ C/ be the

ideal generated by fsA.b/˝ 1 � 1˝ rC .b/ W b 2 Bg. Then the quotient

A Q̋ C WD A
�
˝ C=.I.A

�
˝ C//

is a .B; �/ev-algebra again, called the fiber product of A and C . Write a Q̋ c for the
image of an element a˝ c in A Q̋ C .

The assignment .A; C / 7! A Q̋ C is functorial, associative and unital. Indeed,
for all morphisms of .B; �/ev-algebras �1WA1 ! C 1, �2WA2 ! C 2, there exists a
morphism

�1 Q̋ �2WA1 Q̋ A2 ! C 1 Q̋ C 2; a1 Q̋ a2 7! �1.a1/ Q̋ �
2.a2/I (2.1)

for all .B; �/ev-algebras A;C;D, there exists an isomorphism

.A Q̋ C/ Q̋D ! A Q̋ .C Q̋D/; .a Q̋ c/ Q̋ d 7! a Q̋ .c Q̋ d/; (2.2)

and for each .B; �/ev-algebra A, there exist isomorphisms

.B o �/ Q̋ A! A; b
 Q̋ a 7! r.b/a; A Q̋ .B o �/! A; a Q̋ b
 7! s.b/a:

(2.3)

These isomorphisms are compatible in a natural sense and endow the category of
.B; �/ev-algebras with a monoidal structure. From now on, we shall use them
without further notice.

The category of .B; �/ev-algebras carries automorphisms .�/op and .�/co such
that for each .B; �/-algebra A and each morphism �WA! C , we have Aco D A as
an algebra, Aop is the opposite �-algebra of A, that is, the same vector space with the
same involution and reversed multiplication, and

.Aop/
;
 0 D A
�1;
 0�1 for all 
; 
 0 2 �; rAop D rA; sAop D sA; �op
D �;

(2.4)

.Aco/
;
 0 D A
 0;
 for all 
; 
 0 2 �; rAco D sA; sAco D rA; �co
D �:

(2.5)

These automorphisms are involutive and commute, that is,

.�/op
ı .�/op

D id; .�/co
ı .�/co

D id; .�/op
ı .�/co

D .�/co
ı .�/op:
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Furthermore, they are compatible with the monoidal structure as follows. Given
.B; �/-algebras A;C , there exist isomorphisms .A Q̋ C/op ! Aop Q̋ C op and
.A Q̋ C/co ! C co Q̋ Aco given by a Q̋ c 7! a Q̋ c and a Q̋ c 7! c Q̋ a, respectively.
Moreover, .B o �/co D B o � , there exists an isomorphism SBo� WB o � !

.B o �/op, b
 7! 
�1b, and all of these isomorphisms and the isomorphisms in
(2.2) and (2.3) are compatible in a natural sense.

2.3. Multiplier .B; �/-Hopf �-algebroids. We shall work with variants of the
h-Hopf algebroids and .B; �/-Hopf �-algebroids considered in [7, 10] and [21],
respectively, where the basis need no longer be unital. These variants consist
of a .B; �/ev-algebra and a comultiplication, counit and antipode, which will be
introduced one after the other. To quickly proceed to the main part of this article, we
postulate all the usual properties of these maps as axioms and leave a study of the
axiomatics for later.

Given a .B; �/ev-algebra A, we denote by QM.A Q̋ A/ � M.A Q̋ A/ the set of all
T 2M.A Q̋ A/ for which all products of the form

T .x Q̋ 1M.A//; .x Q̋ 1M.A//T; T .1M.A/ Q̋ y/; .1M.A/ Q̋ y/T

where x 2 A
;e; y 2 Ae;
 ; 
 2 � , lie in A Q̋ A. Evidently, QM.A Q̋ A/ is a
�-subalgebra of M.A Q̋ A/.

Definition 2.3.1. A comultiplication on a .B; �/ev-algebra A is a morphism �

from A to A Q̋ A satisfying �.A/ � QM.A Q̋ A/ and .� Q̋ id/ ı � D .id Q̋ �/ ı �.
A (proper) multiplier .B; �/-�-bialgebroid is a (proper) .B; �/ev-algebra with
a comultiplication. A morphism of multiplier .B; �/-�-bialgebroids .A;�A/,
.B;�B/ is a morphism � from A to B satisfying �B ı � D .� Q̋ �/ ı�A.

Let .A;�/ be a multiplier .B; �/-�-bialgebroid.

We shall need to form products of the form �.x/.1˝ y/ or .y ˝ 1/�.x/ when
@y ¤ e or N@y ¤ e, respectively, which are defined as follows. Let x; y 2 A. The
multiplication on A ˝ A induces a canonical A Q̋ A-A ˝ A-bimodule structure on
sA˝

B
rA and a canonical A˝ A-A Q̋ A-bimodule structure on As ˝

B
Ar . Using the

natural maps sM.A/˝
B
rM.A/!M.sA˝

B
rA/ andM.A/s˝

B
M.A/r !M.As˝

B
Ar/,

we define multipliers 1˝
B
y; x˝

B
1 2M.sA˝

B
rA/ and x˝

B
1; 1˝

B
y 2M.As˝

B
Ar/.

Regarding M.sA˝
B
rA/ as an M.A Q̋ A/-M.A˝ A/-bimodule and M.As ˝

B
Ar/ as

anM.A˝A/-M.A Q̋ A/-bimodule (see §2.1), we can then multiply these multipliers
with �.x/ or �.y/, respectively.
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Lemma 2.3.2. The following linear maps are well defined:

T1WAs ˝
B
sA! sA˝

B
rA; x ˝

B
y 7! �.x/.1˝

B
y/;

T2WAr ˝
B
rA! As ˝

B
Ar ; x ˝

B
y 7! .x ˝

B
1/�.y/;

T3W sA˝
B
As ! As ˝

B
Ar ; x ˝

B
y 7! .1˝

B
y/�.x/;

T4W rA˝
B
Ar ! sA˝

B
rA; x ˝

B
y 7! �.y/.x ˝

B
1/:

Proof. We only prove the assertion concerning T1, the cases of T2; : : : ; T4 being
similar. Using the explanations above, we obtain a linear mapA˝A!M.sA˝

B
rA/,

x ˝ y 7! �.x/.1 ˝
B
y/. This map factorizes through the quotient map A ˝ A !

As˝
B
sA because�.xs.b// D �.x/.1 Q̋ s.b// for all x 2 A; b 2 B , and takes values

in sA˝
B
rA because �.A/ is contained in QM.A Q̋ A/.

We adopt the Sweedler notation and write �.x/ D
P
x.1/ Q̋ x.2/ for x 2 A. This

notation requires extra care because�.x/ need not lie inA Q̋ A but only in QM.A Q̋ A/,
so that x.1/ and x.2/ do not simply represent elements ofA. In this notation, the maps
introduced above take the form

T1W x ˝
B
y 7!

X
x.1/ ˝

B
x.2/y; T2W x ˝

B
y 7!

X
xy.1/ ˝

B
y.2/;

T3W x ˝
B
y 7!

X
x.1/ ˝

B
yx.2/; T4W x ˝

B
y 7!

X
y.1/x ˝

B
y.2/:

We shall almost exclusively use the Sweedler notation for products as above. A
detailed explanation of this notation in the context of multiplier Hopf algebras is
given in [30, 32]. Apart from the fact that we use tensor products of B-modules
instead of tensor products of vector spaces, this explanation carries over easily. As in
the theory of (multiplier) Hopf algebras, we extend the Sweedler notation to iterated
applications of �, writing

.� Q̋ id/.�.x// D
X

x.1/ Q̋ x.2/ Q̋ x.3/ D .id Q̋ �/.�.x//

for x 2 A, and to iterated applications of the maps T1; : : : ; T4, writing, for example,

.T2 ˝
B

id/..id˝
B
T1/.x ˝

B
y ˝
B
z// D

X
xy.1/ ˝

B
y.2/ ˝

B
y.3/z

D .id˝
B
T1/..T2 ˝

B
id/.x ˝

B
y ˝
B
z//

for all x; y; z 2 A.
Definition 2.3.3. A counit for a multiplier .B; �/-�-bialgebroid .A;�/ is a proper
morphism of .B; �/ev-algebras �WA ! B o � satisfying .� Q̋ id/ ı � D idA D
.id Q̋ �/ ı�.
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Let .A;�/ be a multiplier .B; �/-�-bialgebroid with counit �. Using the linear
maps

]WB o � ! B;
X



b

 7!
X



b
 ; [WB o � ! B;
X




b
 7!
X



b
 ;

we define �]; �[WA! B by �] WD ] ı � and �[ WD [ ı �. Define mr WAr ˝
B
rA! A

and msWAs ˝
B
sA! A by

P
i xi ˝

B
yi 7!

P
i xiyi .

Remarks 2.3.4.
i) Clearly, �.A
;
 0/ � .B o �/
;
 0 D 0 whenever 
; 
 0 2 � and 
 ¤ 
 0.

ii) If �0 is a counit as well, then � D � ı .id Q̋ �0/ ı� D �0 ı .� Q̋ id/ ı� D �0.
iii) The condition .� Q̋ id/ ı� D idA D .id Q̋ �/ ı� is equivalent to the relationsX

r.�].x.1///x.2/y D xy D
X

xy.1/s.�
[.y.2/// for all x; y 2 A;

and hence to commutativity of the diagrams

sA˝
B
rA

�]˝
B

id

''
As ˝

B
sA

T1 77

ms
// A;

As ˝
B
Ar id˝

B
�[

''
Ar ˝

B
rA

T2 77

mr
// A:

Furthermore, this condition is equivalent to the relationsX
xy.2/r.�

[.y.1/// D xy D
X

s.�].x.2///x.1/y for all x; y 2 A:

The definition of the antipode involves the isomorphism

�A;AW .A Q̋ A/
co;op
! Aco;op Q̋ Aco;op; x Q̋ y 7! y Q̋ x:

Definition 2.3.5. An antipode for a multiplier .B; �/-�-bialgebroid .A;�/ with
counit � is an isomorphism S WA ! Aco;op of .B; �/ev-algebras that makes the
following diagrams commute:

As ˝
B
sA

T1 //

�[˝
B

id
��

sA˝
B
rA

S˝
B

id
��

A Ar ˝
B
rAmr

oo

; Ar ˝
B
rA

T2 //

id˝
B
�]

��

As ˝
B
Ar

id˝
B
S

��
A As ˝

B
sAms

oo

;

A
S //

� ��

Aco;op

�co;op
��

A Q̋ A
S Q̋ S // Aco;op Q̋ Aco;op .A Q̋ A/co;op:

�A;Aoo

A multiplier .B; �/-Hopf �-algebroid is a multiplier .B; �/-�-bialgebroid with
counit and antipode.
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Examples 2.3.6.

i) The tensor product B ˝ B is a multiplier .B; �/-Hopf �-algebroid, where
�.b˝ b0/ D .b˝ 1/ Q̋ .1˝ b0/, �.b˝ b0/ D bb0, S.b˝ b0/ D b0 ˝ b for all
b; b0 2 B .

ii) The crossed product B o � is a multiplier .B; �/-Hopf �-algebroid, where
�.b
/ D b
 Q̋ 
 D 
 Q̋ b
 , � D id and S.
b/ D b
�1 for all b 2 B; 
 2 � .

Given an antipode S on a multiplier .B; �/-�-bialgebroid .A;�/ and an element
a 2 A, we shall henceforth always regard S.a/ as an element of A and not of Aco;op.

Remarks 2.3.7. Let .A;�; �; S/ be a multiplier .B; �/-Hopf �-algebroid.

i) In Sweedler notation, commutativity of the diagrams in Definition 2.3.5
amount toX

S.x.1//x.2/y D s.�
[.x//y;

X
xy.1/S.y.2// D xr.�

].y//

for all x; y 2 A;
(2.6)X

S.x.1// Q̋ S.x.2// D
X

S.x/.2/ Q̋ S.x/.1/ for all x 2 A: (2.7)

ii) If S 0 is an antipode as well, then S 0 D S because for all x; y; z 2 A,

xS.y/z D S.yS�1.x//z D
X

S.s.�].y.2///y.1/S
�1.x//z

D

X
S.y.2/S

�1.x//r.�].y.2///z

D

X
S.y.1/S

�1.x//y.2/S
0.S 0�1.z/y.3//

D xS 0.y/z:

For every multiplier .B; �/-Hopf �-algebroid, the maps T1; : : : ; T4 defined above
are bijections.

Proposition 2.3.8. Let .A;�/ be a multiplier .B; �/-�-bialgebroid. If .A;�/ has
a counit � and an antipode S , then the maps T1; : : : ; T4 are bijective and for all
x; y 2 A,

T �11 .x ˝
B
y/ D

X
x.1/ ˝

B
S.S�1.y/x.2//;

T �12 .x ˝
B
y/ D

X
S.y.1/S

�1.x//˝
B
y.2/;

T �13 .x ˝
B
y/ D

X
x.1/ ˝

B
S�1.x.2/S.y//;

T �14 .x ˝
B
y/ D

X
S�1.S.x/y.1//˝

B
y.2/:
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Proof. We only prove the assertion concerning T1. One first checks that the formula
given for T �11 yields a well-defined map T 01W sA˝

B
rA! As ˝

B
sA, and then that for

all x; y 2 A and u; v 2 Ae;e ,

.u˝ v/ � .T1 ı T
0
1/.x ˝

B
y/ D

X
ux.1/ ˝

B
vx.2/S.S

�1.y/x.3//

D

X
ux.1/ ˝

B
vx.2/S.x.3//y

D

X
ux.1/ ˝

B
vr.�].x.2///y

D

X
us.�].x.2///x.1/ ˝

B
vy D ux ˝

B
vy;

.u˝ v/ � .T 01 ı T1/.x ˝
B
y/ D

X
ux.1/ ˝

B
vS.S�1.x.3/y/x.2//

D

X
ux.1/ ˝

B
vS.x.2//x.3/y

D

X
ux.1/ ˝

B
vs.�[.x.2///y

D

X
ux.1/s.�

[.x.2///˝
B
vy D ux ˝

B
vy:

2.4. Bi-measured multiplier .B; �/-�-bialgebroids. We now introduce the main
objects of this article — multiplier .B; �/-Hopf �-algebroids equipped with certain
integrals. In §3, we shall construct completions of such objects in the form of
measured quantum groupoids.

As on a groupoid, integration on a multiplier .B; �/-�-bialgebroid .A;�/

proceeds in stages. First, one needs partial integrals �; WA ! B with suitable
left or right invariance properties, and second a suitable weight �WB ! C that
is compatible with the action of � . The results in [10] suggest that dynamical
quantum groups that are compact in a suitable sense even possess a bi-invariant
integral hWA ! B ˝ B that can be obtained from a Peter–Weyl decomposition
of A.

We first focus on the weight � and the bi-integral h, and discuss left and right
integrals in the next subsection.

Let us briefly recall some terminology. Let C be a �-algebra with local units.
A linear map �WC ! C is faithful if �.Cc/ D 0 implies c D 0, and positive if
�.c�c/ � 0 for all c 2 C . Assume that � is positive. Then � is �-linear, because
positivity of �..bCc/�.bCc// and �..bCic/�.bCic// implies �.b�c/ D �.c�b/
for all b; c 2 C , and faithful as soon as �.c�c/ ¤ 0 whenever c ¤ 0.

Definition 2.4.1. A weight for .B; �/ is a faithful, positive linear map �WB ! C
that is quasi-invariant with respect to � in the sense that for each 
 2 � , there exists
some D
 2M.B/ such that �.
.bD
 // D �.b/ for all b 2 B .
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Remark 2.4.2. Let � be a weight for .B; �/. Then

i) each D
 is uniquely determined and self-adjoint,

ii) D

 0 D 
 0�1.D
 /D
 0 and 1 D 
�1.D
�1/D
 for all 
; 
 0 2 � ,

iii) �.
�1.b/c/ D �.b
.c/D�1

�1

/// D �.b
.cD
 // for all b; c 2 B; 
 2 � .

Indeed, i) and ii) follow easily from the fact that � is faithful and the relations
�.
.bD�
 // D �.
.D
b�// D �.b�/ D �.b/ and �.
.
 0.bD

 0/// D �.b/ D

�.
 0.bD
 0// D �.
.

0.bD
 0/D
 //.

We henceforth call the family .D
 /
2� the Radon–Nikodym cocycle of �.

The following definition is inspired by the notion of a Haar functional introduced
in [10].

Definition 2.4.3. A bi-integral on .A;�/ is a morphism of .B; �/ev-modules hWA!
B˝B satisfying�.ker h/.1 Q̋ Ae;e/ � ker h Q̋ A and�.ker h/.Ae;e Q̋ 1/ � A Q̋ ker h.
If .A;�/ is proper and h.r.b/s.b0// D b ˝ b0 for all b; b0 2 B , we call such a bi-
integral normalized.

Lemma 2.4.4. Let .A;�/ be proper and let h be a normalized bi-integral on .A;�/.

i) .id Q̋ mB ı h/ ı� D h D .mB ı h Q̋ id/ ı�, wheremB WB˝B ! B denotes
the multiplication.

ii) If h0 is a normalized bi-integral on .A;�/, then h0 D h.

iii) If .A;�; �; S/ is a proper multiplier .B; �/-Hopf �-algebroid, then h ı S D
�B ı h, where �B WB ˝ B ! B ˝ B denotes the flip b ˝ c 7! c ˝ b.

Proof. i) We only prove the first equation. Let !W .A; r/ ! B be a morphism of
.B; �/-modules sending I WD ker h to 0. Then

.id Q̋ !/.�.I //Ae;e D .id˝
B
!/.�.I /.Ae;e Q̋ 1// � .id˝

B
!/.A˝

B
I / D 0

and hence .id Q̋ !/.�.I // D 0. Moreover, if b; b0; b00 2 B and u 2 Ae;e , then

.id Q̋ !/.�.r.b/s.b0///s.b00/u D .id˝
B
!/.r.b/s.b00/u˝

B
s.b0//

D r.b/s.!.s.b0/r.b00///u:

For ! D mB ı h, these calculations imply for all a 2 I and b; b0 2 B

.id Q̋ mB ı h/.�.a// D 0 D h.a/;

.id Q̋ mB ı h/.�.r.b/s.b0/// D r.b/s.b0/ D h.r.b/s.b0//:

Since A D I C r.B/s.B/, we can conclude .id Q̋ mB ı h/ ı� D h.
ii) Let x 2 ker h and choose u; u0 2 B ˝ B such that u.1 ˝ mB.u0//h0.x/ D

h0.x/. Then

h0.x/ D h.uh0.x/s.mB.u
0/// D

X
h.ux.1/s.mB.h

0.x.2/u
0//// D 0
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because
P
ux.1/ ˝ x.2/u

0 2 u.ker h/˝
B
A. Thus, ker h � ker h0. Since h and h0 are

normalized and ker hC B ˝ B D A, we can conclude h D h0.
iii) One easily verifies that �B ıhıS is a normalized bi-integral. By ii), it equals

h.

Definition 2.4.5. A proper multiplier .B; �/-�-bialgebroid .A;�/ is bi-measured if
it is equipped with a normalized bi-integral hWA! B˝B and a weight � for .B; �/
such that � WD .�˝ �/ ı h is faithful and positive.

Remark 2.4.6. Given a bi-measured proper multiplier .B; �/-Hopf �-algebroid
as above, h is evidently faithful, and also �-linear. To see this, note that .� ˝
�/.h.a�/.b˝c// D �.a�r.b/s.c// D �.s.c�/r.b�/a/ D .�˝ �/..b ˝ c/�h.a// D

.�˝ �/.h.a/�.b ˝ c// for all a 2 A; b; c 2 B .

2.5. Left and right integrals. For large parts of this article, the multiplier .B; �/-
Hopf �-algebroids under consideration need not be equipped with a bi-integral, but
only with left and right integrals �; . The definition of these integrals involves slice
maps of the following form.

Let .A;�/ be a multiplier .B; �/-�-bialgebroid and let �W .A; r/! B be a mor-
phism of .B; �/-modules. Then there exists a unique linear map id Q̋ �W QM.A Q̋ A/!

M.A/ such that

..id Q̋ �/.T //a D .id˝
B
�/.T .a˝ 1//; a..id Q̋ �/.T // D .id˝

B
�/..a˝ 1/T /

for all T 2 QM.A Q̋ A/ and a 2 A, where we regard T .a ˝ 1/ and .a ˝ 1/T as
elements of sA ˝

B
rA and As ˝

B
Ar , respectively. In the case T D �.x/ for some

x 2 A,

.id Q̋ �/.�.x//a D
X

s.�.x.2///x.1/a; a.id Q̋ �/.�.x// D
X

ax.1/s.�.x.2///:

(2.8)

Likewise, every morphism  W .A; s/ ! B yields a slice map  Q̋ idW QM.A Q̋ A/ !

M.A/.

Definition 2.5.1. A left integral on .A;�/ is a morphism �W .A; r/ ! B satisfying
.id Q̋ �/ ı � D r ı �. A right integral on .A;�/ is a morphism  W .A; s/ ! B

satisfying . Q̋ id/ ı� D s ı  .

Remarks 2.5.2.
i) In Sweedler notation, the invariance conditions on � and  becomeX

s.�.x.2///x.1/a D r.�.x//a;
X

ax.2/r. .x.1/// D as. .x//

for all a; x 2 A:
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ii) If .A;�; �; S/ is a .B; �/-Hopf �-algebroid, then the map � 7! � ı S gives a
bijection between left and right integrals on .A;�/. This follows easily from
(2.7).

iii) If � is a left integral, then �.�s.b// is also a left integral for each b 2 B .
Likewise, if  is a right integral, then also  .�r.b// is a right integral for
each b 2 B .

We shall frequently use the following strong invariance relations:

Proposition 2.5.3. Assume that .A;�; �; S/ is a .B; �/-Hopf �-algebroid. Then

i) .id˝
B
�/..1 Q̋ z/�.x// D S..id˝

B
�/.�.z/.1 Q̋ x/// for every left integral �

and all x; z 2 A;

ii) . ˝
B

id/.�.x/.z Q̋ 1// D S.. ˝
B

id/..x Q̋ 1/�.z// for every right integral  

and all x; z 2 A.

Proof. Using Sweedler notation, we calculateX
x.1/s.�.zx.2/// D

X
x.1/s.�.z.2/r.�

[.z.1///x.2///

D

X
s.�[.z.1///x.1/s.�.z.2/x.2///

D

X
S.z.1//z.2/x.1/s.�.z.3/x.2/// D

X
S.z.1//r.�.z.2/x//

andX
r. .x.1/z//x.2/ D

X
r. .x.1/s.�

].z.2///z.1///x.2/

D

X
r. .x.1/z.1///x.2/r.�

].z.2///

D

X
r. .x.1/z.1///x.2/z.2/S.z.3// D s. .xz.1///S.z.2//:

Normalized bi-integrals yield left and right integrals as follows:

Lemma 2.5.4. Assume that .A;�/ is proper, h is a normalized bi-integral on .A;�/,
and �WB ! C is linear. Then � WD .id˝�/ ı h and  WD .�˝ id/ ı h are a left
and a right integral, respectively, and � ı S˙1 D  .

Proof. Repeating the proof of Lemma 2.4.4 i) with ! WD � D .id˝�/ ı h, we find

.id Q̋ �/.�.a// D 0 D r.�.a//;

.id Q̋ �/.�.r.b/s.b0/// D r.b�.b0// D �.r.b/s.b0//

for all a 2 ker h and b; b0 2 B . Since A D .ker h/ C r.B/s.B/, we can conclude
.id Q̋ �/ ı � D r ı �. The assertion on  follows similarly, and the last equation
follows from Lemma 2.4.4 iii).
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2.6. Measured multiplier .B; �/-�-bialgebroids. Much of the ensuing material
applies not only to bi-measured proper multiplier .B; �/-Hopf �-algebroids but also
to the following class of objects.

Definition 2.6.1. A multiplier .B; �/-�-bialgebroid .A;�/ is measured if it is
equipped with a left integral �, a right integral  , and a weight � for .B; �/
such that � WD � ı � and ��1 WD � ı  are faithful, positive, and coincide, and
 .A/ D B D �.A/.

Remarks 2.6.2.
i) Given a measured multiplier .B; �/-Hopf �-algebroid as above, the maps �

and  are �-linear. This can be seen from a similar argument as in Remark
2.4.6.

ii) If .A;�; �; S; h; �/ is a bi-measured proper multiplier .B; �/-Hopf �-algebroid
and � D .id˝�/ ı h and  D .� ˝ id/ ı h, then .A;�; �; S; �;  ; �/ is a
measured multiplier .B; �/-Hopf �-algebroid by Lemma 2.5.4. In that case,
� ı S˙1 D  and � ı S D � by Lemma 2.4.4 iii).

Till the end of this subsection, let .A;�; �; S; �;  ; �/ be a measured multiplier
.B; �/-Hopf �-algebroid and let .D
 /
 be the Radon–Nikodym cocycle for �.
Define D; NDWA! A by

D.a/ D r.D@�1a /a D ar.D
�1
@a
/; ND.a/ D s.DN@�1a

/a D as.D�1N@a
/ (2.9)

for all homogeneous a 2 A.

Lemma 2.6.3. D and ND both are algebra and .B; �/ev-module automorphisms of
A, and satisfy

.D Q̋ id/ ı� D � ıD; .id Q̋ ND/ ı� D � ı ND; . ND Q̋ id/ ı� D .id Q̋D/ ı�;

D ı ND D ND ıD; S ıD D ND�1 ı S; S ı ND D D�1 ı S;

� ıD D D�1 ı �; � ı ND D ND�1 ı �:

Proof. The maps D and ND are bijective because D
 is invertible for each 
 2 � .
The remaining assertions follow from straightforward calculations, for example,

D.xy/ D r.D@�1xy /xy D r.D@�1x @x.D@�1y //xy D r.D@�1x /xr.D@�1y /y D D.x/D.y/;

S.D.x// D S.r.D�1@x /x/ D S.x/s.DN@S.x/
/ D ND�1.S.x//;

D.x/� D x�r.D�
@�1x
/ D x�r.D@x� / D D

�1.x�/ for all x; y 2 A:

Lemma 2.6.4. Let ! 2 f�; ; �g.

i) !.A
;
 0/ D 0 whenever .
; 
 0/ ¤ .e; e/.

ii) !.r.b/s.b0/a/ D !.ar.b/s.b0// for all a 2 A, b; b0 2 B .
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iii) !.D.a/a0/ D !.aD�1.a0// and !. ND.a/a0/ D !.a ND�1.a0// for all a; a0 2
A.

Proof. i) For ! D �, the assertion follows from the relation ker� C ker � ker �.
To obtain the assertion for ! D �; , use the fact that � is faithful.

ii) Let a 2 A and b; b0 2 B . Then �.r.b/a/ D �.b�.a// D �.�.a/b/ D

�.ar.b// and similarly �.s.b0/a/ D �.as.b0//. To obtain the assertion for! D �; ,
use the fact that � is faithful again.

iii) This follows immediately from equation (2.9) and i).

We shall now show that � D �ı� has a modular automorphism and thus satisfies
an algebraic variant of the KMS-condition. Let us briefly recall this concept.

Let C be a �-algebra with local units and a faithful, positive, linear map
!WC ! C. A modular automorphism for ! is a bijection �! WC ! C satisfying
!.cc0/ D !.c0�!.c// for all c; c0 2 C . If it exists, a modular automorphism �! for
! is uniquely determined, an algebra automorphism, and satisfies ! ı �! D ! and
�! ı � ı �! ı � D idC . This follows easily from the relations

!.z�!.xy// D !.xyz/ D !.yz�!.x// D !.z�!.x/�!.y//;

!.yx/ D !.x�y�/ D !.y��!.x�// D !.�!.x
�/�y/ D !.y�!.�!.x

�/�//;

where x; y; z 2 C .
As before, let .A;�; �; S; �;  ; �/ be a measured multiplier .B; �/-Hopf �-

algebroid.

Theorem 2.6.5. Let .A;�; �; S; �;  ; �/ be a measured multiplier .B; �/-Hopf �-
algebroid and let � D � ı � D � ı  .

i) There exists a modular automorphism � for �.

ii) � is a .B; �/ev-module automorphism of A.

iii) If � ı S D �, then � ı S D S ı ��1.

Proof. i) The proof repeatedly uses strong invariance of � and , and closely follows
[31], where the corresponding result was obtained for multiplier Hopf algebras. We
proceed in three steps.
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Step 1. Repeatedly using Remark 2.4.2 iii), we find that for all homogeneous
x; x0; y; y0 2 A,

N@x0 D N@
�1
y0 ) ��1.ys. .xx0//y0/ D �. .yy0/N@�1y0 . .xx

0///

D �. .xx0/N@y0. .yy
0/DN@y0

//

D ��1.xs. .yy0// ND.x0//; (2.10)
N@x D @y0 ) �.yr. .xx0//y0/ D �.�.yy0/@�1y0 . .xx

0///

D �.@y0.�.yy
0/D@y0 / .xx

0//

D ��1.xs.�.D.y/y0//x0/; (2.11)

@x D @
�1
y ) �.yr.�.xx0//y0/ D �.@y.�.xx

0//�.yy0//

D �.@�1y .�.yy
0/D@�1y /�.xx

0//

D �.xr.�.D.y/y0//x0/: (2.12)

Step 2. Let c; d 2 A be homogeneous and let

a D
X
ND.s. .dS.c.2////c.1// 2 A; a0 D

X
d.2/r.�.D.S.d.1/// ND.c/// 2 A:

(2.13)

Then the equations above and Proposition 2.5.3 imply

�.za/ D
X

�.z ND.s. .dS.c.2////c.1///

D

X
�.ds. .zc.1///S.c.2/// (Equation (2.10))

D

X
�.dr. .z.1/c//z.2// (Proposition 2.5.3)

D

X
�.z.1/s.�.D.d/z.2///c/ (Equation (2.11))

D

X
�.S.D.d.1///r.�.d.2/z//c/ (Proposition 2.5.3)

D

X
�.S.d.1//r.�.d.2/z// ND.c// (use S ıD D ND�1 ı S

and 2.6.4 iii))

D

X
�.d.2/r.�.D.S.d.1/// ND.c///z/ D �.a

0z/: (Equation 2.12)

Step 3. Using bijectivity of the maps ND;S; T1 and the relation hs. .A//Ai D A,
one finds that all elements of the form like a in (2.13) span A. A similar argument
shows that the same is true for elements of the form like a0. Hence, there exists a
bijection � WA ! A such that �.az/ D �.z�.a// for all a 2 A, and uniqueness of
such a bijection follows from faithfulness of �.

ii) We first show that � respects the grading. Let c; d 2 A be homogeneous. Then
the element a in (2.13) is homogeneous as well, with grading given by @a D @c and
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N@a D N@d because  .dS.c.2/// D 0 unless N@d D @c.2/ D
N@c.1/ , and similarly a0

in (2.13) is homogeneous with the same degree like a. To see that � is B ˝ B-
linear, use the relation �.y�.r.b/s.b0/x// D �.r.b/s.b0/xy/ D �.xyr.b/s.b0// D

�.yr.b/s.b0/�.x//, where x; y 2 A and b; b0 2 B , and faithfulness of �.
iii) If � ı S D �, then we have �.y�.S.x/// D �.S.x/y/ D �.S�1.y/x/ D

�.��1.x/S�1.y// D �.yS.��1.x/// for all x; y 2 A.

Define �D; � ND; �D; NDWA! A by

�D WD � ıD
�1
D D�1 ı �;

� ND WD � ı
ND�1 D ND�1 ı �;

�D; ND WD � ıD
�1
ı ND�1:

Proposition 2.6.6. Let x; y 2 A be homogeneous. Then

i) � ı � D � and �.xy/ D @x.�.y�D.x///;

ii)  ı � D  and  .xy/ D N@x. .y� ND.x///;

iii) hı� D h and h.xy/ D .@x˝ N@x/.h.y�D; ND.x/// if h is a bi-invariant integral
and � D .�˝ �/ ı h.

Proof. Assertion i) follows from the fact that � is faithful and that for all homoge-
neous x; y 2 A and all b 2 B ,

�.b�.�.x/// D �.r.b/�.x// D �.�.r.b/x// D �.r.b/x/ D �.b�.x//;

�.b�.y�.x/// D �.r.b/y�.x// D �.xr.b/y/

D �.r.@x.bD@x //xr.D
�1
@x
/y/

D �.@x.bD@x /�.D.x/y// D �.b@
�1
x .�.D.x/y///:

Assertions ii) and iii) follow similarly.

Recall that a B-module N is called flat if the functor N ˝
B
� on the category of

B-modules is exact or, equivalently, preserves injectivity of morphisms.

Proposition 2.6.7. Assume thatAs is a flatB-module. Then�ı�D D .S2 Q̋ �D/ı�.
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Proof. Let x; y 2 A be homogeneous. Using Sweedler notation, we calculateX
�D.x/.1/s.�.y�D.x/.2/// D

X
S.s.�.y.2/�D.x///y.1// (Prop. 2.5.3)

D

X
S.s.@�1x .�.xy.2////y.1// (Prop. 2.6.6)

D

X
S.y.1/s.�.xy.2////

D

X
S2.s.�.x.2/y//x.1// (Prop. 2.5.3)

D

X
S2.s.@x.2/.�.y�D.x.2/////x.1// (Prop. 2.6.6)

D

X
S2.x.1//s.�.y�D.x.2////:

Since As is a flat B-module and maps of the form a 7! �.ya/, where y 2 A is
homogeneous, separate the points of A, we can concludeX

�D.x/.1/ Q̋ �D.x/.2/ D
X

S2.x.1// Q̋ �D.x.2//:

2.7. The dual �-algebra. Let .A;�; �; S; �;  ; �/ be a measured multiplier
.B; �/-Hopf �-algebroid. Denote by M.A/0 the dual vector space of M.A/ and
let

OA WD f�.x�/ W x 2 Ag �M.A/0:

Then OA D f�.�x/ W x 2 Ag by Theorem 2.6.5 and for each ! 2 OA, there exist
unique B-module maps r!W rM.A/ ! B , !r WM.A/r ! B , s!W sM.A/ ! B ,
!sWM.A/s ! B whose compositions with � are equal to !, because � D � ı � D

� ı  and � is faithful. Using either of these B-module maps, one can equip OA
with the structure of a �-algebra. We shall choose an approach that fits well with the
duality on the operator-algebraic level in the next section.

First, we define an abstract Fourier transform

A! OA; x 7! Ox WD �.S.x/�/;

which is a linear bijection because � is faithful. Evidently, Oxs D  .S.x/�/ and Oxr D
�.S.x/�/, and by Proposition 2.6.6, s Ox D  .��.S.x/// and r Ox D �.��.S.x///.
For all x; a 2 A, we define a right convolution

a � Ox WD
X

a.2/r. Oxs.a.1/// D
X

a.2/r. .S.x/a.1/// 2 A: (2.14)

Remark 2.7.1. One could also work with the transform A ! OA, x 7! Lx WD

�.�S.x//, and the left convolution defined by

Lx � a WD
X

s.r Lx.a.2///a.1/ D
X

s.�.a.2/S.x///a.1/ 2 A for all x; a 2 A:
(2.15)
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If � ı S D  , for example, if we are in the bi-measured case (see Remark 2.6.2 ii)),
then

zS.x/ � S.a/ D
X

s.�.S.a/.2/S
2.x///S.a/.1/ D S.a.2/r. .S.x/a.1//// D S.a � Ox/

for all a; x 2 A:

We collect a few useful formulas. First, for all a; x 2 A,

a � Ox D
X

r. .a.1/� ND.x///a.2/; .Proposition 2.6.6/ (2.16)

a � Ox D
X

S�1.r. .S.x/.1/a//S.x/.2//

D

X
x.1/s. .S.x.2//a// .Proposition 2.5.3/ (2.17)

Next, for all a; x; y 2 A, b 2 B , 
; 
 0; ı; ı0 2 � ,

r.b/a � Ox D a �1s.b/x; ar.b/ � Ox D a �1xs.b/;
s.b/a � Ox D s.b/.a � Ox/; as.b/ � Ox D .a � Ox/s.b/;

(2.18)

.a � Ox/ � Oy D
X

a.3/r. .S.y/a.2/r. .S.x/a.1/////

D

X
a.2/r. .S.y/x.1/s. .S.x.2//a.1/////

D

X
a.2/r. .S.x.2/r. .S.y/x.1////a.1/// D a �2.x � Oy/;

(2.19)

A
;
 0 � bAı;ı0 �
X

 00

s. .Aı0�1;ı�1A
;
 00//A
 00;
 0 � ı
;ı0Aı;
 0 ; (2.20)

where we used Lemma 2.6.4 in the last line. Finally, note that the surjectivity of T2
(Proposition 2.3.8) and of  imply

hA � OAi D . ˝
B

id/.T2.Ar ˝
B
rA// D hAr. .A//i D hAr.B/i D A: (2.21)

The .B; �/ev-algebra structure on A induces the following structure on OA:

Proposition 2.7.2.

i) OA carries the structure of a non-degenerate �-algebra, where Oy Ox D 1x � Oy
and Ox� D 1S.x/� for all x; y 2 A.

ii) There exist non-degenerate �-homomorphisms Or; OsWB !M. OA/ such that

Or.b/ Ox D 1xr.b/; Ox Or.b/ D 1xs.b/; Os.b/ Ox D 1r.b/x; Ox Os.b/ D 1s.b/x
for all x 2 A; b 2 B . The images of Or and Os commute.

iii) Let OA
;

0

D 2.A
;
 0/ for all 
; 
 0 2 � . Then OA D
L

;
 02�

OA
;

0

as a vector
space and

OA
;

0
OAı;ı
0

� ı
 0;ı OA

;ı0 ; . OA
;


0

/� D OA

0;
 ; Or.B/Os.B/ OA
;


0

� OA
;

0

for all 
; 
 0; ı; ı0 2 � .
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Furthermore, for all 
; 
 0; ı; ı0 2 � , Oa 2 OA
;

0

, b; b0 2 B ,

Or.b/Os.b0/ Oa D Or.
�1.b0//Os.
.b// Oa and Oa Or.b/Os.b0/ D Oa Or.
 0�1.b0//Os.
 0.b//:

Proof. i) The multiplication is associative and turns OA into a non-degenerate algebra
by (2.19) and (2.21). The �-operation is involutive because � ı S is involutive, and
anti-multiplicative because

S.y � Ox/� D
X

S.y.2/r. .S.x/y.1////
�

D

X
S.y.2//

�s. .y�.1/S.x/
�//

D

X
S.y/�.1/s. .S.S.y/

�
.2//S.x/

�// D S.x/� � 1S.y/�:

ii) For each b 2 B , the formulas above define multipliers Or.b/; Os.b/ 2 M. OA/
because

Oy. Or.b/ Ox/ D .xr.b/ � Oy/bD .x �1ys.b//bD . Oy Or.b// Ox
and similarly Oy.Os.b/ Ox/ D . Oy Os.b// Ox for all x; y 2 A by (2.18). The maps Or; OsWB !
M. OA/ are non-degenerate homomorphisms because r; sWB ! M.A/ have the same
properties, their images evidently commute, and they are involutive because

. Ox Or.b//� D .1xs.b//� D .S.xs.b//�/bD .S.x/�r.b�//bD Or.b�/ Ox�
and similarly . Ox Os.b//� D Os.b�/ Ox� for all x 2 A, b 2 B .

iii) All of these assertions follow easily from the definitions and relation (2.20),
for example, Or.b/ Ox D 1xr.b/ D .r.
.b//x/b D Os.
.b//bx for all 
; 
 0 2 �;

x 2 A
;
 0 ; b 2 B .

3. Construction of associated measured quantum groupoids

In this section, we fix a measured multiplier .B; �/-Hopf �-algebroid .A;�; �; S; �;
�;  / and construct operator-algebraic completions of this algebraic object in the
form of a Hopf C �-bimodule, Hopf–von Neumann bimodule and a measured quan-
tum groupoid. Along the way, we shall impose further assumptions on B;�;�;A
which were mentioned already in the introduction, most notably properness.

The basic idea is to use the GNS-representations for the weight � on the basis B
and the functional � on the total algebra A, respectively. Naturally, some restrictions
have to be made on B;�;�. To show that � admits a bounded GNS-representation
and to lift the comultiplication to the level of operator algebras, we use a fundamental
unitary. To take full advantage of this unitary, we describe its domain and range as
relative tensor products, and show that it is a pseudo-multiplicative unitary in the
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sense of [24] and [27]. The necessary modules are introduced in §3.2, and the unitary
itself is constructed in §3.3. This part uses Connes’ spatial theory [20], and the
relative tensor product of Hilbert spaces over C �-algebras which was introduced in
[22]. The fundamental unitary then gives rise to completions of A and OA in the form
of Hopf C �-bimodules and two Hopf–von Neumann bimodules; see §3.4–§3.6.To
obtain the full structure of a measured quantum groupoid, we finally extend the
integrals �; to the level of von Neumann algebras and show that these extensions
are left- or right-invariant again in §3.7.

Before we turn to details, let us briefly sketch the construction of the fundamental
unitary, which we denote by W . Its domain and range can be described as separated
completions of the relative tensor products sA˝

B
rA and rA˝

B
Ar with respect to the

sesquilinear forms given by

hx ˝
B
yjx0 ˝

B
y0i.sA˝

B
rA/ D �.x

�s.@y.�.y
�y0///x0/;

hx ˝
B
y/jx0 ˝

B
y0i.rA˝

B
Ar / D �.x

�r.�.y�y0//x0/
(3.1)

for all x; y 2 A, where y is assumed to be homogeneous in the upper line. Note that
positivity of these forms is not evident because � is not assumed to be completely
positive in any sense. Given that positivity, the map

T4W rA˝
B
Ar ! sA˝

B
rA; x ˝

B
y 7! �.y/.x ˝

B
1/ D

X
y.1/x ˝

B
y.2/;

extends to a unitary on the respective completions because it is surjective by
Proposition 2.3.8 and isometric as shown by the calculationX
hy.1/x ˝

B
y.2/jy

0
.1/x

0
˝
B
y0.2/i.sA˝

B
rA/ D

X
�.x�y�.1/s.@y.2/.�.y

�
.2/y

0
.2////y

0
.1/x

0/

D

X
�.x�s.�.y�.2/y

0
.2///y

�
.1/y

0
.1/x

0/

D �.x�r.�.y�y0//x0/

D hx ˝
B
yjx0 ˝

B
y0i.rA˝

B
Ar /; (3.2)

where y.2/ is assumed to be homogeneous without loss of generality. The adjoint of
this extension is the fundamental unitary W .

Similarly, one can construct and employ another unitary V which is an extension
of the map T1WAs ˝

B
sA ! sA ˝

B
rA, x ˝

B
y 7! �.x/.1 ˝

B
y/. We shall focus on

W because this unitary is given preference in the theory of locally compact quantum
groups and measured quantum groupoids.

3.1. Preparations concerning the base. We define an inner product on B by
hbjb0i WD �.b�b0/ for all b; b0 2 B , and denote by K the Hilbert space obtained
by completion, and by ƒ� W B ! K the canonical inclusion.
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From now on, we assume:

(A1) The weight � admits a GNS-representation via bounded operators in the
sense that the following equivalent conditions hold:

i) for each b 2 B , there is a � > 0 such that �.c�b�bc/ � ��.c�c/ for
all c 2 B;

ii) the formula ��.b/ƒ�.c/ D ƒ�.bc/ defines a �-homomorphism
��WB ! L.K/.

Remarks 3.1.1.

i) Assumption (A1) holds if B is a pre-C �-algebra since then �.c�b�bc/ �
�.c�kb�bkc/ D kb�bk�.c�c/ for all b; c 2 B . Conversely, if (A1) holds,
then B can be regarded as a pre-C �-algebra with respect to the norm given by
b 7! k��.b/k.

ii) To apply the constructions below, it may be useful to first perform a base
change, similarly as described in [21, §2], to replace B by a pre-C �-algebra
of the form Cc.�/, where � is a locally compact space with an action of
� . For example, one can take � to be the set of all �-homomorphisms
�WB ! C, equipped with the weakest topology that makes the function
� ! C, � 7! �.b/, continuous for each b 2 B , and perform a base change
along the canonical map B ! M.Cc.�//. Note, however, that such a base
change can not simply be applied to left and right integrals, but only to bi-
integrals.

Recall that a Hilbert algebra is a �-algebra with an inner product such that left
multiplication by each element is bounded, the resulting �-representation is non-
degenerate, and the involution is pre-closed with respect to the norm induced by
the inner product. Since B is commutative, the map ƒ�.B/ ! ƒ�.B/ given
by ƒ�.b/ 7! ƒ�.b

�/ extends to an anti-unitary operator J� on K, and hence
ƒ�.B/ � K together with the �-algebra structure inherited from B is a Hilbert
algebra. We thus obtain

� a von Neumann algebra N WD ��.B/00 � L.K/,

� a n.s.f. weight Q� on N such that Q�.��.b�b// D hƒ�.b/jƒ�.b/i D �.b�b/

for all b 2 B ,

� a left ideal N Q� WD fx 2 N W Q�.x�x/ < 1g � N of square-integrable
elements,

� a closed map ƒ Q�WN Q� ! K such that .K;ƒ Q�; idN / is a GNS-representation
for Q�; this is the closure of the map ��.B/! K given by ��.b/! ƒ�.b/.
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3.2. Various module structures. We define an inner product on A by haja0i WD
�.a�a0/ for all a; a0 2 A and denote byH the Hilbert space obtained by completion.
We call the canonical inclusion of A intoH the GNS-map for � and denote it byƒ� .

Lemma 3.2.1. There exist maps ƒ� ; ƒ ; ƒ
�
� ; ƒ

�
 WA ! L.K;H/ such that for all

x; y 2 A, b 2 B ,

ƒ�.x/ƒ�.b/ D ƒ�.xr.b//;

ƒ�.x/
�ƒ�.y/ D ƒ�.�.x

�y//; ƒ�.x/
�ƒ�.y/ D ��.�.x

�y//;

ƒ .x/ƒ�.b/ D ƒ�.xs.b//;

ƒ .x/
�ƒ�.y/ D ƒ�. .x

�y//; ƒ .x/
�ƒ .y/ D ��. .x

�y//;

ƒ
�
�.x/ƒ�.b/ D ƒ�.r.b/x/;

ƒ
�
�.x/

�ƒ�.y/ D ƒ�.�.y�.x
�///; ƒ

�
�.x/

�ƒ
�
�.y/ D ��.�.y�.x

�///;

ƒ
�
 .x/ƒ�.b/ D ƒ�.s.b/x/;

ƒ
�
 .x/

�ƒ�.y/ D ƒ�. .y�.x
�///; ƒ

�
 .x/

�ƒ
�
 .y/ D ��. .y�.x

�///:

Proof. We only prove the assertions concerning ƒ� and ƒ�� . They follow from the
relations

kƒ�.xr.b//k
2
D �.r.b/�x�xr.b// D �.b��.x�x/b/ � k��.�.x

�x//kkƒ�.b/k
2;

hƒ�.y/jƒ�.xr.b//i D �.y
�xr.b// D �.�.y�x/b/ D hƒ�.�.x

�y//jƒ�.b/i

and

kƒ�.r.b/x/k
2
D �.x�r.b�b/x/ D �.��1.x/x�r.b�b//

D �.�.��1.x/x�/b�b/

� kƒ�.b/k
2
k��.�

�1.x/x�/k;

hƒ�.y/jƒ�.r.b/x/i D �.y
�r.b/x/ D �.��1.x/y�r.b//

D �.�.��1.x/y�/b/

D hƒ�.�.y�.x
�///jƒ�.b/i;

which hold for all x; y 2 A and b 2 B .

The maps introduced above yield various module structures onH as follows. Let

E� WD Œƒ�.A/�; E WD Œƒ .A/�; E
�
� WD Œƒ

�
�.A/�; E

�
 WD Œƒ

�
 .A/�: (3.3)

We shall use the following concepts introduced in [22, 24]. A C �-b-module,
where b D .K; Œ��.B/�; Œ��.B/�/, consists of a Hilbert space L and a closed subset
E � L.K;L/ such that ŒEK� D L, ŒE��.B/� D E, ŒE�E� D Œ��.B/�. Each
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such C �-b-module gives rise to a normal, faithful, non-degenerate representation
�E WN D ��.B/

00 ! L.L/ such that �E .x/� D �x for all x 2 N , � 2 E. A C �-
.b; b/-module is a triple .L;E; F / such that .L;E/ and .L; F / are C �-b-modules
and Œ�E .��.B//F � D F and Œ�F .��.B//E� D ŒE�.

Lemma 3.2.2. The Hilbert space H is a C �-.b; b/-module with respect to either
two of the spaces E� ; E ; E

�
� ; E

�
 . The representations ˛ WD �

E
�
�

, ˇ WD �
E
�
 

,b̨ WD �E , b̌ WD �E� of N on H are given by

˛.��.b//ƒ�.a/ D ƒ�.r.b/a/; ˇ.��.b//ƒ�.a/ D ƒ�.s.b/a/;b̌.��.b//ƒ�.a/ D ƒ�.ar.b//; b̨.��.b//ƒ�.a/ D ƒ�.as.b// (3.4)

for all b 2 B; a 2 A.

Proof. Let E;F be any two of the spaces listed above. Then ŒEH� D H and
ŒE��.B/� D E because hr.B/s.B/Ar.B/s.B/i D A, and ŒE�E� D Œ��.B/�

because �.A/ D B D  .A/. Thus, .H;E/ is a C �-b-module. The formulas
for the associated representations are easily verified. Using these formulas and the
relation hr.B/s.B/Ar.B/s.B/i D A, one easily checks that Œ�E .��.B//F � D F

and Œ�F .��.B//E� D E.

Recall that a vector � in a Hilbert space L is bounded with respect to a normal,
non-degenerate representation �WN ! L.L/ and the weight Q� if the following
equivalent conditions hold:

i) there exists a K � 0 such that k�.x/�k � K Q�.x�x/ for all x 2 N Q�;

ii) there exists an operator R�; Q�
�
2 L.K;L/ such that R�; Q�

�
ƒ�.x/ D �.x/� for

all x 2 N Q�.

The set of all such bounded vectors is denoted by D.L�; Q�/. This spaces carries
an N -valued inner product h�j�i�; Q�, given by h�j�0i�; Q� D .R

�; Q�

�
/�R

�; Q�

� 0
for all

�; �0 2 D.L�; Q�/, and �.N /0D.L�; Q�/ D D.L�; Q�/ and

ƒ Q�.h�j�
0
i�; Q�/ D .R

�; Q�

�
/��0; R

�; Q�

T �
D TR

�; Q�

�
for all T 2 �.N /0; �; �0 2 D.L�; Q�/:

(3.5)

Lemma 3.2.3. ƒ�.A/ � D.H˛; Q�/ \D.Hˇ ; Q�/ \D.Hb̨; Q�/ \D.Hb̌; Q�/ and for
all x; y 2 A,

R
˛; Q�

ƒ�.x/
D ƒ

�
�.x/; R

ˇ; Q�

ƒ�.x/
D ƒ

�
 .x/; R

b̨; Q�
ƒ�.x/

D ƒ .x/; R
b̌; Q�
ƒ�.x/

D ƒ�.x/:

Proof. We shall only prove the assertion concerning ˛. Let a 2 A. Then
ƒ
�
�.a/ƒ Q�.��.b// D ƒ�.r.b/a/ D ˛.��.b//ƒ�.a/ for all b 2 B , and since ��.B/

is a core for ƒ Q�, we can conclude ƒ��.a/ƒ Q�.x/ D ˛.x/ƒ�.a/ for all x 2 N Q�.
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The preceding result and Lemma 3.2.1 imply that for all x; y 2 A,

hƒ�.x/jƒ�.y/i˛; Q� D ��.�.y�.x
�///; hƒ�.x/jƒ�.y/iˇ; Q� D ��. .y�.x

�///;

hƒ�.x/jƒ�.y/i Ǫ ; Q� D ��. .x
�y//; hƒ�.x/jƒ�.y/i Ǒ; Q� D ��.�.x

�y//:

(3.6)

3.3. The fundamental unitary. To define the domain and the range of the
fundamental unitary, we use Connes’ relative tensor product of Hilbert modules
and the module structures introduced above. Connes’ original manuscript on the
construction remained unpublished; we therefore refer to [20] and [23] for details.

The relative tensor productHˇ˝
Q�
˛H is the separated completion of the algebraic

tensor productD.Hˇ ; Q�/˝K˝D.H˛; Q�/with respect to the sesquilinear form given
by

h� ˝ � ˝ �j� 0 ˝ �0 ˝ �0i D h�jh�j� 0iˇ; Q�h�j�
0
i˛; Q��

0
i: (3.7)

This Hilbert space can naturally be identified with the separated completions of the
algebraic tensor products D.Hˇ ; Q�/ ˝ H and H ˝ D.H˛; Q�/ with respect to the
sesquilinear forms given by

h� ˝ �j� 0 ˝ �0i D h�j˛.h�j� 0iˇ; Q�/�
0
i and h� ˝ �j� 0 ˝ �0i D h�jˇ.h�j�0i˛; Q�/�

0
i;

(3.8)

respectively, via

� ˝R
˛; Q�

�
� � � ˝ � ˝ � � R

ˇ; Q�

�
� ˝ �; (3.9)

and we shall use these identifications without further notice. Replacing the
representations ˇ; ˛ by ˛; b̌ or b̨; ˇ, respectively, one obtains the relative tensor
products H˛˝

Q�
b̌H and Hb̨˝

Q�
ˇH .

To proceed, we impose the following simplifying assumption:
(A2) The Radon–Nikodym cocycle .D
 /
 of � has a positive square root inM.B/

in the sense that there exists a family .D
1
2

 /
2� in M.B/ such that for all


; 
 0 2 � , c 2 B ,

D
1
2
e D 1; .D

1
2

 /
�
D D

1
2

 ; .D

1
2

 /
2
D D
 ;

D
1
2



 0 D 

0�1.D

1
2

 /D

1
2


 0 ; �.c�D
1
2

 c/ � 0:

Clearly, this condition implies the existence of a unitary representation U W� !
L.K/ such that

U
ƒ�.c/ D ƒ�.
.cD
1
2

 //; U
��.b/U

�

 D ��.
.b// for all b; c 2 B; 
 2 �:

(3.10)
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Similarly as in (2.9), we define linear maps D
1
2 ; ND

1
2 WA! A by

D
1
2 .a/ D r.D

1
2

@�1a
/a D ar.D

� 12
@a
/; ND

1
2 .a/ D s.D

1
2

N@�1a
/a D as.D

� 12
N@a
/

for all homogeneous a 2 A. These maps share all the properties of the maps D; ND
listed in Lemma 2.6.3. Short calculations show that for all homogeneous x; y 2 A,

ƒ�.x/U@�1x D ƒ
�
�.D

1
2 .x//; hƒ�.D

1
2 .x//jƒ�.D

1
2 .y//i˛; Q� D ��.@x.�.x

�y///;

(3.11)

ƒ .x/UN@�1x
D ƒ

�
 .
ND
1
2 .x//; hƒ�. ND

1
2 .x//jƒ�. ND

1
2 .y//iˇ; Q� D ��.N@x. .x

�y///:

(3.12)

Indeed, for all homogeneous x; y 2 A and b 2 B ,

ƒ�.x/U@�1x ƒ�.b/ D ƒ�.xr.@
�1
x .bD

1
2

@�1x
//

D ƒ�.r.bD
1
2

@�1x
/x/ D ƒ

�
�.D

1
2 .x//ƒ�.b/;

ƒ
�
�.D

1
2 .x//�ƒ

�
�.D

1
2 .y// D U �

@�1x
ƒ�.x/

�ƒ�.y/U@�1y

D U@x��.�.x
�y//U@�1y D ��.@x.�.x

�y///:

Lemma 3.3.1. The sesquilinear forms on sA˝
B
rA and rA˝

B
Ar defined in (3.1) are

positive. Denote by sA˝
B
rA and rA˝

B
Ar the respective separated completions.

Then there exist isomorphisms

ƒW rA˝
B
Ar ! H˛˝

Q�
b̌H; x ˝

B
y 7! ƒ�.x/˝

Q�
ƒ�.y/;

ƒ0W sA˝
B
rA! Hˇ˝

Q�
˛H; x ˝

B
y 7! ƒ�.x/˝

Q�
ƒ�.D

1
2 .y//:

Proof. The maps ƒ;ƒ0 are surjective because ƒ�.A/ � H is dense, and they are
well-defined and isometric because (3.8), (3.6) and (3.11) imply for all homogeneous
x; y 2 A

hƒ.x ˝ y/jƒ.x0 ˝ y0/i D �.x�s.�.y�y0//x0/;

hƒ0.x ˝ y/jƒ0.x0 ˝ y0/i D �.x�r.@y.�.y
�y0///x0/:
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Proposition 3.3.2. There exists a unitary W WHˇ˝
Q�
˛H ! H˛˝

Q�
b̌H such that

W � ıƒ D ƒ0 ı T4 as maps from rA˝
B
Ar toHˇ˝

Q�
˛H , that is, for all homogeneous

x; y 2 A,

W �.ƒ�.x/˝
Q�
ƒ�.y// D

X
ƒ�. ND

1
2 .y.1//x/˝

Q�
ƒ�.y.2//

D

X
ƒ�.y.1/x/˝

Q�
ƒ�.D

1
2 .y.2///;

W.ƒ�.x/˝
Q�
ƒ�.y// D

X
ƒ�.S

�1.D�
1
2 .y.1///x/˝

Q�
ƒ�.y.2//

D

X
ƒ�. ND

1
2 .S�1.y.1///x/˝

Q�
ƒ�.y.2//:

Proof. Calculation (3.2) and Lemma 3.3.1 imply that the map ƒ�.x/ ˝
Q�
ƒ�.y/ 7!P

ƒ�.y.1/x/ ˝
Q�
ƒ�.D

1
2 .y.2/// extends to an isometry H˛˝

Q�
b̌H ! Hˇ˝

Q�
˛H .

Bijectivity of this isometry and the formula for W follow from Proposition 2.3.8
and Lemma 2.6.3.

Similarly, the map T1 yields a second fundamental unitary:

Proposition 3.3.3. There exists a unitary V WHb̨˝
Q�
ˇH ! Hˇ˝

Q�
˛H such that for

all homogeneous x; y 2 A,

V.ƒ�.x/˝
Q�
ƒ�.y// D

X
ƒ�. ND

1
2 .x.1///˝

Q�
ƒ�.x.2/y/

D

X
ƒ�.x.1//˝

Q�
ƒ�.D

1
2 .x.2//y/;

V �.ƒ�.x/˝
Q�
ƒ�.y// D

X
ƒ�.x.1//˝

Q�
ƒ�.S. ND

� 12 .x.2///y/

D

X
ƒ�.x.1//˝

Q�
ƒ�.D

1
2 .S.x.2///y/:

Proof. The formula above defines an isometry V . Indeed, (3.8), (3.6) and (3.12)
implyX
hƒ�. ND

1
2 .x.1///˝

Q�
ƒ�.x.2/y/jƒ�. ND

1
2 .x0.1///˝

Q�
ƒ�.x

0
.2/y

0/i.Hˇ˝
Q�
˛H/

D

X
�.y�x�.2/r.

N@x.1/. .x
�
.1/x

0
.1////x

0
.2/y

0/

D

X
�.y�x�.2/x

0
.2/r. .x

�
.1/x

0
.1///y

0/;

hƒ�.x/˝
Q�
ƒ�.y/jƒ�.x

0/˝
Q�
ƒ�.y

0/i.Hb̨˝Q�ˇH/ D �.y�s. .x�x0//y0/
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for all homogeneous x; x0; y; y0 2 A, where x.1/ is assumed to be homogeneous
without loss of generality, and by right-invariance of  (see Remark 2.5.2 i)), the
expressions above coincide. Bijectivity of V and the inversion formula follow from
Proposition 2.3.8.

3.4. Boundedness of the canonical representations. The first application of the
fundamental unitaryW is to show that left multiplication on A and right convolution
by OA extend to representations on the Hilbert space H .

The proof of Theorem 3.4.2 involves operators and slice maps of the following
form. For each � 2 D.Hˇ ; Q�/ and � 2 D.H˛; Q�/, there exist bounded linear
operators

�
ˇ;˛

�
WH ! Hˇ˝

Q�
˛H; �

0
7! � ˝

Q�
�0; �ˇ;˛� WH ! Hˇ˝

Q�
˛H; �

0
7! � 0 ˝

Q�
�;

(3.13)

whose adjoints are given by

.�
ˇ;˛

�
/�.� 0 ˝ �0/ D ˛.h�j� 0iˇ; Q�/�

0; .�ˇ;˛� /�.� 0 ˝ �0/ D ˇ.h�j�0i˛; Q�/�
0
I (3.14)

see also [4]. Likewise, there exist operators �˛;b̌
�
; �
˛;b̌
� WH ! H˛˝

Q�
b̌H for all � 2

D.H˛; Q�/ and � 2 D.Hb̌; Q�/ which are defined similarly. Using these operators,
one defines slice maps

!�;�0 � idWL.H˛˝
Q�
b̌H;Hˇ˝

Q�
˛H/! L.H/; T 7! .�

ˇ;˛

�
/�T �

˛;b̌
�0
;

id�!�;�0 WL.H˛˝
Q�
b̌H;Hˇ˝

Q�
˛H/! L.H/; T 7! .�ˇ;˛� /�T�

˛;b̌
�0

for all � 2 D.Hˇ ; Q�/, � 0 2 D.H˛; Q�/, � 2 D.H˛; Q�/, �0 2 D.Hb̌; Q�/; see [3].

Lemma 3.4.1. Let x; x0; y; y0 2 A. Then

.id�!ƒ�.y/;ƒ�.y0//.W
�/ƒ�.x/ D ƒ�.ax/; where a D

X
ND�

1
2 .y0.1/s.�.y

�y0.2////;

.!ƒ�.x/;ƒ�.x0/ � id/.W �/ƒ�.y/ D ƒ�.y � Oc/; where c D S�1. ND
1
2 .��1.x0/x�//:
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Proof. Without loss of generality, we may assume y to be homogeneous. Then

.�
ˇ;˛

ƒ�.y/
/�W ��

˛;b̌
ƒ�.y0/

ƒ�.x/

D

X
.�
ˇ;˛

ƒ�.y/
/�.ƒ�.y

0
.1/x/˝

Q�
ƒ�.D

1
2 .y0.2////

D

X
ˇ.hƒ�.y/jƒ�.D

1
2 .y0.2///i˛; Q�/ƒ�.y

0
.1/x/ .Eqn. (3.14)/

D

X
ƒ�.s.@y.�.D

� 12 .y/�y0.2////y
0
.1/x/ .Eqn. (3.11)/

D

X
ƒ�.y

0
.1/s.�.y

�D�
1
2 .y0.2////x/ .Lem. 2.6.3/

D

X
ƒ�. ND

� 12 .y0.1/s.�.y
�y0.2////x/; .Lem. 2.6.3/;

.�
ˇ;˛

ƒ�.x/
/�W ��

˛;b̌
ƒ�.x0/

ƒ�.y/

D

X
.�
ˇ;˛

ƒ�.x/
/�.ƒ�. ND

1
2 .y.1//x

0/˝
Q�
ƒ�.y.2///

D

X
˛.hƒ�.x/jƒ�. ND

1
2 .y.1//x

0/iˇ; Q�/ƒ�.y.2// .Eqn. (3.14)/

D

X
ƒ�.r. . ND

1
2 .y.1//x

0�.x�///y.2// .Eqn. (3.6)/

D

X
ƒ�.r. .y.1/ ND

� 12 .x0�.x�////y.2// .Lem. 2.6.3/

D

X
ƒ�.y.2/r. . ND

1
2 .��1.x0/x�/y.1////: .Eqn. (2.16)/

Theorem 3.4.2. Let .A;�; �; S; �; �;  / be a measured multiplier .B; �/-Hopf
�-algebroid such that � admits a GNS-representation via bounded operators
.K;ƒ�; ��/ and its Radon–Nikodym cocycle has a positive square root in M.B/.
Denote by ƒ� WA ! L.H/ the GNS-map for � D � ı � D � ı  . Then there exist
non-degenerate �-homomorphisms �� WA! L.H/ and �W OA! L.H/ such that

��.x/ƒ�.y/ D ƒ�.xy/ and �.!/ƒ�.y/ D ƒ�.y � !/ (3.15)

for all x; y 2 A;! 2 OA:

Proof of Theorem 3.4.2. For elements a and c of the form in Lemma 3.4.1, the
maps ƒ�.y/ 7! ƒ�.ay/ and ƒ�.x/ 7! ƒ�.x � Oc/ coincide with compositions of
bounded operators and therefore are bounded. Since elements of this form span A,
we obtain maps �� WA ! L.H/ and �W OA ! L.H/ as in (3.15). Evidently, �� is a
�-homomorphism. The map � is multiplicative by (2.19) and Proposition 2.7.2, and
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it is involutive because by (2.17) and Proposition 2.7.2,

h�. Ox/�ƒ�.z/jƒ�.y/i D h�.1S.x/�/ƒ�.z/jƒ�.y/i
D

X
hƒ�.S.x/

�
.1/s. .S.S.x/

�
.2//z///jƒ�.y/i

D �.s. .z�x.1///S.x.2//y/

D �.z�x.1/s. .S.x.2//y/// D hƒ�.z/j�. Ox/ƒ�.y/i:

Finally, �� and � are non-degenerate because hAAi D A and hA � OAi D A

(see (2.21)).

Remark 3.4.3. Lemma 3.4.1, Theorem 3.4.2 and self-adjointness of ��.A/ and �. OA/
imply

��.A/ D spanf.id�!ƒ�.y/;ƒ�.y0//.W
�/jy; y0 2 Ag

D spanf.id�!ƒ�.y/;ƒ�.y0//.W /jy; y
0
2 Ag;

�. OA/ D spanf.!ƒ�.x/;ƒ�.x0/ � id/.W �/jx; x0 2 Ag

D spanf.!ƒ�.x/;ƒ�.x0/ � id/.W /jx; x0 2 Ag:

For later use, we calculate the slices of V , which are defined similarly as those
of W �.

Lemma 3.4.4. Let x; x0; y; y0 2 A. Then

.!ƒ�.x/;ƒ�.x0/ � id/.V /ƒ�.y/ D ƒ�.ay/; where a D
X

D�
1
2 .x0.2/r. .x

�x0.1////;

.id�!ƒ�.y/;ƒ�.y0//.V /ƒ�.x/ D ƒ�. Lc � x/; where c D S�1.D�
1
2 .y0�.y�///:

Proof. Without loss of generality, we assume x to be homogeneous. Proceeding as
in the proof of Lemma 3.4.1, we then find

.�
ˇ;˛

ƒ�.x/
/�V �

b̨;ˇ
ƒ�.x0/

ƒ�.y/

D

X
.�
ˇ;˛

ƒ�.x/
/�.ƒ�. ND

1
2 .x0.1///˝

Q�
ƒ�.x

0
.2/y// .Def. of V /

D

X
˛.hƒ�.x/jƒ�. ND

1
2 .x0.1///iˇ; Q�/ƒ�.x

0
.2/y/

D

X
ƒ�.r.N@x. . ND

� 12 .x/�x0.1////x
0
.2/y/ (Eqn. (3.12))

D

X
ƒ�.D

� 12 .x0.2/r. .x
�x0.1////y/;
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.�
ˇ;˛

ƒ�.y/
/�V �

b̨;ˇ
ƒ�.y0/

ƒ�.x/

D

X
.�
ˇ;˛

ƒ�.y/
/�.ƒ�.x.1//˝

Q�
ƒ�.D

1
2 .x.2//y

0// .Def. of V /

D

X
ˇ.hƒ�.y/jƒ�.D

1
2 .x.2//y

0/i˛; Q�/ƒ�.x.1//

D

X
ƒ�.s.�.D

1
2 .x.2//y

0�.y�///x.1// (Eqn. (3.6))

D

X
ƒ�.s.�.x.2/D

� 12 .y0�.y�////x.1//:

3.5. The Hopf–von Neumann bimodules. We next show that the fundamental
unitary W is pseudo-multiplicative in the sense of [27] and therefore yields two
Hopf–von Neumann bimodules, which are completions of A and OA, respectively.
First, we need further preliminaries.

The relative tensor product is functorial so that there exist bounded linear
operators S ˝

Q�
T 2 L.Hˇ˝

Q�
˛H/ for all S 2 ˇ.N /0; T 2 ˛.N /0, as well as

S ˝
Q�
T 2 L.H˛˝

Q�
b̌H/ for all S 2 ˛.N /0; T 2 b̌.N /0, both times given by

� ˝
Q�
� 7! S� ˝

Q�
T �.

In particular, the commuting representations ˛; ˇ;b̨; b̌ yield six representations
˛ ˝
Q�

id, b̨˝
Q�

id, b̌˝
Q�

id, id˝
Q�
ˇ, id˝

Q�
b̨, id˝

Q�

b̌ of N on Hˇ˝
Q�
˛H , and further six

representations of N on H˛˝
Q�
b̌H .

Lemma 3.5.1. The following relations hold for all x 2 N :

W.id˝
Q�

b̌.x// D .ˇ.x/˝
Q�

id/W; W.b̨.x/˝
Q�

id/ D .b̨.x/˝
Q�

id/W;

W.b̌.x/˝
Q�

id/ D .b̌.x/˝
Q�

id/W; W.˛.x/˝
Q�

id/ D .id˝
Q�
˛.x//W;

W.id˝
Q�
ˇ.x// D .id˝

Q�
ˇ.x//W; W.id˝

Q�
b̨.x// D .id˝

Q�
b̨.x//W:

Proof. This follows immediately from the fact that ��.B/ � N is weakly dense,
the definition of W , and the formulas for ˛; ˇ;b̨; b̌ given in Lemma 3.2.2.

The relative tensor product is associative in a natural sense. The intertwining
relations for W obtained above imply that all operators in the diagram below are
well defined,
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Hˇ˝
Q�
˛Hˇ˝

Q�
˛H

W12 //

W23
��

H˛˝
Q�
b̌Hˇ˝

Q�
˛H

W23 // H˛˝
Q�
b̌H˛˝

Q�
b̌H;

Hˇ ˝
Q�
.id˝
Q�
˛/.H˛˝

Q�
b̌H/ W13 // .Hˇ˝

Q�
˛H/.˛˝

Q�
id/ ˝
Q�
b̌H

W12

OO

(3.16)

where W12 D W ˝
Q�

id, W23 D id˝
Q�
W , and W13 acts on the first and third tensor

factor; see [27] for details.

Lemma 3.5.2. Diagram (3.16) commutes, that is, W23W12 D W12W13W23.

Proof. A short calculation shows that the adjoints of both compositions are given by

ƒ�.x/˝
Q�
ƒ�.y/˝

Q�
ƒ�.z/

7!

X
ƒ�.z.1/y.1/x/˝

Q�
ƒ�.D

1
2 .z.2/y.2///˝

Q�
ƒ�.D

1
2 .z.3///:

Theorem 3.5.3. Let .A;�; �; S; �; �;  / be a measured multiplier .B; �/-Hopf
�-algebroid such that � admits a GNS-representation via bounded operators
.K;ƒ�; ��/ and its Radon–Nikodym cocycle has a positive square root in M.B/.
Let Q� be the weight on N D ��.B/

00 associated to the Hilbert algebra ƒ�.B/,
let ƒ� WA ! L.H/ be the GNS-map for � D � ı � D � ı  , and define
˛; ˇ; ǑWN ! L.H/ as in (3.4). Then the unitaries W WHˇ˝

Q�
˛H ! H˛˝

Q�
b̌H

and V WHb̨˝
Q�
ˇH ! Hˇ˝

Q�
˛H defined in Proposition 3.3.2 and 3.3.3 are pseudo-

multiplicative in the sense of [27].

Proof. The assertion on W is just Lemma 3.5.1 and Lemma 3.5.2. For V , the proof
is similar.

Definition 3.5.4. Let .A;�; �; S; �; �;  /, W and V as in Theorem 3.5.3. Then we
callW and V the left and the right pseudo-multiplicative unitary of .A;�; �; S; �; �;  /,
respectively.

Recall from [26] that a Hopf–von Neumann bimodule over .N; Q�/ is a von
Neumann algebra M acting on a Hilbert space L together with faithful, non-
degenerate, commuting normal representations 
; ıWN ! M and a non-degenerate,
normal �-homomorphism �M WM ! M ı�

Q�

M such that �M ı 
 D 
 ˝

Q�
id,

�M ı ı D id˝
Q�
ı and .�M �

Q�
id/ ı �M D .id �

Q�
�M /, where M ı�

Q�

M D .M 0 ˝

Q�

M 0/0 � L.Lı ˝
Q�

L/, and �M �

Q�
id and id �

Q�
�M are suitably defined [16].
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Lemma 3.5.5. The following relations hold:

˛.N / [ ˇ.N / � ��.A/
00
� b̌.N /0 \ b̨.N /0;

Ǒ.N / [ ˛.N / � �. OA/00 � ˇ.N /0 \ b̨.N /0 (3.17)

and

��.A/
0
D fS 2 ˇ.N /0 \ ˛.N /0 j .S˛˝

Q�
b̌1/W D W.Sˇ˝

Q�
˛1/g;

�. OA/0 D fT 2 ˛.N /0 \ Ǒ.N /0 j .1˛˝
Q�
b̌T /W D W.1ˇ˝

Q�
˛T /g:

(3.18)

Proof. The inclusions in (3.17) follow from Lemma 3.2.2, non-degeneracy of ��.A/
and �. OA/ and equation (2.18). The equations (3.18) follow from (3.17) and Remark
3.4.3.

Using (3.17) and (3.18) and slightly abusing notation, we define faithful, normal,
non-degenerate �-homomorphisms

�W��.A/
00
! L.Hˇ˝

Q�
˛H/; x 7! W �.id˝

Q�
x/W;

O�W �. OA/00 ! L.H˛˝
Q�
b̌H/; y 7! †W.y ˝

Q�
id/W �†:

(3.19)

Theorem 3.5.6. Let A D .A;�; �; S; �; �;  / be a measured multiplier .B; �/-
Hopf �-algebroid such that � admits a GNS-representation via bounded operators
.K;ƒ�; ��/ and the Radon–Nikodym cocycle of � has a positive square root in
M.B/. Let Q� be the n.s.f. weight on N D ��.B/00 associated to the Hilbert algebra
ƒ�.B/ and let ƒ� WA ! L.H/ be the GNS-map for � D � ı � D � ı  . Define
�� WA ! L.H/, �W OA ! L.H/ as in (3.15), ˛; ˇ; ǑWN ! L.H/ as in (3.4) and
�; O� as in (3.19), whereW WHˇ˝

Q�
˛H ! H˛˝

Q�
b̌H is the left pseudo-multiplicative

unitary of A. Then .��.A/00; ˛; ˇ;�/ and .�. OA/00; b̌; ˛; O�/ are Hopf–von Neumann
bimodules over .N; Q�/.

Proof. The tuples .��.A/00; ˛; ˇ;�/ and .�. OA/00; b̌; ˛; O�/ are the Hopf–von Neu-
mann bimodules associated to the pseudo-multiplicative unitary W . More precisely,
the assertion follows from Proposition 10.3.10 and Theorem 10.3.11 in [23] and
equation (3.18).

Definition 3.5.7. Let .A;�; �; S; �; �;  /, .��.A/00; ˛; ˇ;�/ and .�. OA/00; b̌; ˛; O�/
be as in Theorem 3.5.6. Then we call .��.A/00; ˛; ˇ;�/ the Hopf–von Neumann
bimodule of .A;�; �; S; �; �;  / and .�. OA/00; b̌; ˛; O�/ the dual Hopf–von Neumann
bimodule of .A;�; �; S; �; �;  /.



Proper dynamical quantum groups as measured quantum groupoids 69

Theorem 3.5.6 above can also be deduced from the following explicit formulas
for � and O�:

Lemma 3.5.8. For all a; c; x; y 2 A,

�.��.a//.ƒ�.x/˝
Q�
ƒ�.y// D

X
ƒ�.a.1/x/˝

Q�
ƒ�.D

1
2 .a.2//y/;

O�.�. Oc//.ƒ�.x/˝
Q�
ƒ�.y// D

X
ƒ�.x.2/r. .S.c/x.1/y.1////˝

Q�
ƒ�.y.2//;

Proof. We calculate

�.��.a//
X

ƒ�.y.1/x/˝
Q�
ƒ�.D

1
2 .y.2///

D W �.id˝
Q�
��.a//W W

�.ƒ�.x/˝
Q�
ƒ�.y//

D W �.ƒ�.x/˝
Q�
ƒ�.ay//

D

X
ƒ�.a.1/y.1/x/˝

Q�
ƒ�.D

1
2 .a.2/y.2///;

W � O�.�. Oc//.ƒ�.x/˝
Q�
ƒ�.y//

D .�. Oc/˝
Q�

id/W �.ƒ�.x/˝
Q�
ƒ�.y//

D

X
�. Oc/ƒ�.y.1/x/˝

Q�
ƒ�.D

1
2 .y.2///

D

X
ƒ�.y.2/x.2/r. .S.c/y.1/x.1////˝

Q�
ƒ�.D

1
2 .y.3///

D W �
X

ƒ�.x.2/r. .S.c/y.1/x.1////˝
Q�
ƒ�.y.2//:

Remark 3.5.9. Under the identification (3.9), for all homogeneous a; x; y 2 A and
� 2 K

�.��.a//.ƒ�.x/˝ � ˝ƒ�.y// D
X

ƒ�.a.1/x/˝ UN@a.1/
� ˝ƒ�.a.2/y/;

where a.1/ is assumed to be homogeneous without loss of generality.

3.6. The Hopf C �-bimodules. The fundamental unitary W is a regular C �-
pseudo-multiplicative unitary in the sense of [24], and therefore yields Hopf C �-
bimodules which are completions of A and OA. To prove this, we again need some
preliminaries concerning the relative tensor product in the setting ofC �-algebras; for
details, see [22] and [24]. The construction is parallel to the von Neumann-algebraic
setting and differs mainly in notation.
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As before, let b D .K; Œ��.B/�; Œ��.B/�/. The relative tensor product
H
E
�
 

˝
b E

�
�

H of the C �-b-modules .H;E� / and .H;E��/ is the separated comple-

tion of the algebraic tensor product E� ˝ K ˝ E
�
� with respect to the sesquilinear

form given by

h� ˝ � ˝ �j� 0 ˝ �0 ˝ �0i D h�j.��� 0/.���0/�0i: (3.20)

It can be regarded as a twofold internal tensor product of Hilbert C �-modules and
identified with certain separated completionsE� =˛H andHˇ<E�� of the algebraic

tensor products E� ˝H and H ˝E�� , respectively, such that

E
�
 = ˛H Š HE

�
 

˝
b E

�
�

H Š Hˇ <E
�
� ; � = �� � � ˝ � ˝ � � �� < �:

(3.21)

Comparing the sesquilinear forms (3.7) with (3.20) and using (3.6), one finds that
there exists an isomorphism

Hˇ˝
Q�
˛H Š HE

�
 

˝
b E

�
�

H; ƒ�.x/˝ � ˝ƒ�.y/ � ƒ
�
 .x/˝ � ˝ƒ

�
�.y/:

(3.22)

For each � 2 E� and � 2 E�� , there exist bounded linear operators

j�i1WH ! H
E
�
 

˝
b E

�
�

H; �0 7! � = �0; j�i2WH ! H
E
�
 

˝
b E

�
�

H; � 0 7! � 0 < �:

We denote their adjoints by h�j1 and h�j2, respectively, and write jE� i1 D fj�i1 W

� 2 E
�
 g, jE

�
�i2 D fj�i2 W � 2 E

�
�g et cetera. Comparing with (3.13), we see that

under the identification (3.22), �b̨;ˇ
ƒ�.x/

� jƒ
�
 .x/i1 and �b̨;ˇ

ƒ�.y/
� jƒ

�
�.y/i2 for all

x; y 2 A.

Replacing E� and E�� by E�� and E� , respectively, one similarly defines the
relative tensor product H

E
�
�

˝
b
E�H with a canonical isomorphism H

E
�
�

˝
b
E�H Š

H˛˝
Q�
b̌H , and operators j�i1; j�i2WH ! H

E
�
�

˝
b
E�H for all � 2 E�� and � 2 E� .

Thus, W can be regarded as a unitary H
E
�
 

˝
b E

�
�

H ! H
E
�
�

˝
b
E�H .
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Lemma 3.6.1. For all x; x0; y; y0 2 A and 
 2 f˛; ˇ; b̌g, 
 0 2 f˛;b̨; ˇg,
ƒ�.x/˝

Q�
ƒ�.y/ 2 D..Hˇ˝

Q�
˛H/id˝

Q�

 ; Q�/;

R
id˝
Q�

; Q�

ƒ�.x/˝
Q�
ƒ�.y/

D �
ˇ;˛

ƒ�.x/
R

; Q�

ƒ�.y/
D jƒ

�
 .x/i1R


; Q�

ƒ�.y/
;

ƒ�.x
0/˝
Q�
ƒ�.y

0/ 2 D..H˛˝
Q�
b̌H/
 0˝

Q�
id; Q�/;

R

 0˝
Q�

id; Q�

ƒ�.x0/˝
Q�
ƒ�.y0/

D �
˛;b̌
ƒ�.y0/

R

 0; Q�

ƒ�.x0/
D jƒ�.y

0/i2R

 0; Q�

ƒ�.x0/
:

Proposition 3.6.2. The following equations for subspaces of L.H;H
E
�
 

˝
b E

�
�

H/

hold:

W ŒjE
�
 i1E� � D ŒjE�i2E

�
 �; W ŒjE

�
�i2E � D ŒjE�i2E �;

W ŒjE
�
�i2E� � D ŒjE�i2E� �; W ŒjE

�
�i2E

�
� � D ŒjE

�
�i1E

�
� �;

W ŒjE
�
 i1E

�
 � D ŒjE

�
�i1E

�
 �; W ŒjE

�
 i1E � D ŒjE

�
�i1E �:

Proof. We only prove the first equation; the others follow similarly:

W ŒjE
�
 i1E� � D ŒfWR

id˝
Q�

b̌; Q�
! W ! 2 ƒ�.A/˝

Q�
ƒ�.A/g� (Lem. 3.6.1 and (3.2.3))

D ŒfR
ˇ˝
Q�

id; Q�

W! W ! 2 ƒ�.A/˝
Q�
ƒ�.A/g� (Lem. 3.5.1)

D ŒfR
ˇ˝
Q�

id; Q�

!0 W !0 2 ƒ�.A/˝
Q�
ƒ�.A/g� (Def. of W )

D ŒjE�i2E
�
 �: (Lem. 3.6.1 and 3.2.3)

Theorem 3.6.3. Let A D .A;�; �; S; �; �;  / be a measured multiplier .B; �/-
Hopf �-algebroid such that � admits a GNS-representation via bounded operators
.K;ƒ�; ��/ and the Radon–Nikodym cocycle of � has a positive square root in
M.B/. Let b D .K; Œ��.B/�; Œ��.B/�/, let ƒ� WA ! L.H/ be the GNS-map of
� D �ı� D �ı and defineE� ; E

�
� ; E ; E

�
 � L.K;H/ as in (3.3). Then the left

and the right pseudo-multiplicative unitary W and V of A, regarded as operators
H
E
�
 

˝
b E

�
�

H ! H
E
�
�

˝
b
E�H and HE ˝

b E
�
 

H ! H
E
�
 

˝
b E

�
�

H as above, are

C �-pseudo-multiplicative unitaries in the sense of [24].

Proof. The assertion on W is Proposition 3.6.2 and Lemma 3.5.2. For V , the proof
is similar.
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Proposition 3.6.4. W and V are regular in the sense that ŒhE�� j1W jE
�
�i2� D

ŒE
�
�.E

�
�/
�� � L.H/ and ŒhE� j1V jE

�
 i2� D ŒE

�
 .E

�
 /
�� � L.H/.

Proof. Let x; x0; y 2 A. Then ƒ��.y/ƒ
�
�.x/

�ƒ�.y
0/ D ƒ�.r.�.y

0�.x�///y/ by
Lemma 3.2.1 and

hƒ
�
�.y/j2W

�
jƒ
�
�.x/i1ƒ�.y

0/

D .�
ˇ;˛

ƒ�.y/
/�W �.ƒ�.x/˝

Q�
ƒ�.y

0//

D

X
ˇ.hƒ�.y/jƒ�.D

1
2 .y0.2///i˛; Q�/ƒ�.y

0
.1/x/

D

X
ƒ�.s.�.D

1
2 .y0.2//�.y

�///y0.1/x/ .Eqn. (3.6)/

D

X
ƒ�.s.�.y

0
.2/z//y

0
.1/x/ with z WD D�

1
2 .�.y�//

D

X
ƒ�.r.�.y

0z.2///S
�1.z.1//x/: .Prop. 2:5:3/

Since the maps �;D�
1
2 ; S and T3 are bijections, we can conclude

Œfƒ
�
�.y/ƒ

�
�.x/

�
W x; y 2 Ag� D Œfhƒ

�
�.x/j2W

�
jƒ
�
�.y/i1 W x; y 2 Ag�:

The assertion on V follows from a similar calculation.

Recall from [24] that a Hopf C �-bimodule over b consists of a C �-.b; b/-module
.L;E; F /, a non-degenerateC �-algebraC � L.L/ satisfying �E .��.B// �M.C/
and �F .��.B// � M.C/, and a non-degenerate �-homomorphism �C WC !

CF �
b
EC that is co-associative and compatible with E and F in a suitable sense,

where

CF �
b
EC D fT 2 L.LF˝

b
EL/ W T jF i1 C T

�
jF i1 � ŒjF i1C �

and T jEi2 C T �jEi2 � ŒjEi2C �g

is the fiber product of C with itself relative to F and E.
Theorem 3.6.5. Let A D .A;�; �; S; �; �;  / be a measured multiplier .B; �/-
Hopf �-algebroid such that � admits a GNS-representation via bounded oper-
ators .K;ƒ�; ��/ and its Radon–Nikodym cocycle has a positive square root
in M.B/. Let b D .K; Œ��.B/�; Œ��.B/�/, let ƒ� WA ! L.H/ be the GNS-
map for � D � ı � D � ı  , let .��.A/00; ˛; ˇ;�/ be the Hopf–von Neu-
mann bimodule of A, let .�. OA/00; Ǒ; ˛; O�/ be the dual Hopf–von Neumann bi-
module of A, define E� ; E

�
� ; E , E� � L.K;H/ as in (3.3) and regard �

and O� as maps ��.A/00 ! L.H
E
�
 

˝
b E

�
�

H/ and �. OA/00 ! L.H
E
�
�

˝
b
E�H/ as

above. Then ..H;E�� ; E
�
 /; Œ��.A/�;�jŒ��.A/�/ and ..H;E ; E

�
�/; Œ�.

OA/�; O�j
Œ�. OA/�

/

are Hopf C �-bimodules over b.
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Proof. By Theorem 3.6.3 and Proposition 3.6.4, the left pseudo-multiplicative uni-
tary W of A, regarded as a unitary H

E
�
 

˝
b E

�
�

H ! H
E
�
�

˝
b
E�H , is a regular C �-

pseudo-multiplicative unitary. By [24], the latter gives rise to two Hopf C �-bimod-
ules ..H;E�� ; E

�
 /; ŒhE� j2W jE

�
�i2�; �/ and ..H;E ; E

�
 /; ŒhE

�
� j1W jE

�
 i1�;

O�/. Fi-

nally, by Lemma 3.4.1, ŒhE�� j1W jE
�
 i1� D Œ�. OA/� and ŒhE� j2W jE

�
�i2� D Œ�. OA/�.

3.7. The measured quantum groupoid. To obtain a measured quantum groupoid,
we finally extend �; �;  to normal, semi-finite, faithful weights on the level of von
Neumann algebras. We impose the following simplifying assumptions:

(A3) the bimodule rAs is proper in the sense that r.B/s.B/ � A.

(A4) There exists a net .ui /i inB that is truncating for� in the sense that .��.ui //i
is a net of positive elements in the unit ball of ��.B/ that converges in
M.Œ��.B/�/ strictly to 1 and such that .��.u2i //i is increasing.

Note that a net .ui /i as in (A4) exists always if we drop the condition that .��.u2i //i
should be increasing.

Let us also note that in the bi-measured case where �; and � arise from a bi-
integral h on .A;�/, the extensions of �; ; � and the invariance of these extensions
can be proved quite easily, see Remark 3.7.5 and 3.7.10.

For the extension of �, we do not need the assumptions (A3) and (A4), but use
the modular automorphism � for � obtained in Theorem 2.6.5, the theory of Hilbert
algebras [20], and results of Kustermans and van Daele [11].

Lemma 3.7.1. ƒ�.A/ � H is a Hilbert algebra with respect to the �-algebra
structure inherited from A.

Proof. The multiplicationƒ�.y/ 7! ƒ�.xy/ is bounded for each x 2 A by Theorem
3.4.2, and the involution ƒ�.x/ 7! ƒ�.x

�/ is pre-closed because

hƒ�.x/jƒ�.y
�/i D �.x�y�/ D �.y��.x�// D hƒ�.y/jƒ�.�.x

�//i

for all x; y 2 A:
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The general theory of Hilbert algebras [20] now yields
� M D ��.A/

00 � L.H/ as the associated von Neumann algebra,
� a n.s.f. weight Q� onM such that Q�.��.a�a// D hƒ�.a/jƒ�.a/i D �.a�a/ for

all a 2 A,
� a left ideal NQ� WD fx 2 M W Q�.x�x/ < 1g � M of square-integrable

elements,
� a closed map ƒQ� WNQ� ! H such that .H;ƒQ� ; idM / is a GNS-representation

for Q�; this is the closure of the map ��.A/! H given by ��.a/! ƒ�.a/;
� the usual objects JQ� ; �Q� ; � Q� ;TQ� ; : : : of Tomita-Takesaki theory.

The modular automorphism � is related to the modular automorphism group � Q�

as follows:
Proposition 3.7.2. ��.A/ � TQ� and � Q�ni .��.a// D ��.�

�n.a// for all a 2 A,
n 2 Z.

Proof. Use the arguments in [12, §3], in particular from Lemma 3.16 till Proposition
3.22.

Let A� WD fa 2 A W �.a/ D ag � A. Note that this space is a �-subalgebra and,
by (A3), contains r.B/s.B/.
Lemma 3.7.3.

i) � Q� acts trivially on ��.A� /00, in particular on ˛.N / and ˇ.N /.

ii) JQ�˛.x/�JQ� D b̌.x/ and JQ�ˇ.x/�JQ� D b̨.x/ for all x 2 N .

Proof. i) The first assertion follows from the fact that � Q�t .x/ D �it
Q�
x��it
Q�

and
��1
Q�
x�Q� D x for each x 2 �Q�.A� / by Proposition 3.7.2, and the second assertion

follows from the fact that � Q�t is normal for all t 2 R and acts trivially on
��.r.B/s.B//.

ii) Combine i) and Lemma 3.2.2.

Proposition 3.7.4. There exist unique n.s.f. weights TL from M to ˛.N / and TR
from M to ˇ.N / such that Q� ı ˛�1 ı TL D Q� D Q� ı ˇ�1 ı TR.

Proof. This follows from Lemma 3.7.3 i) and [18, 10.1] or [20, IX Theorem 4.18].

We thus obtain extensions Q� WD ˛�1 ı TL and Q WD ˇ�1 ı TR of � and  .
Remark 3.7.5. Assume that � D .id˝�/ıh and  D .�˝ id/ıh for a normalized
bi-integral h on .A;�/. Then the mapƒ�.B/˝ƒ�.B/! ƒ�.A/ given byƒ�.b/˝
ƒ�.b

0/ 7! ƒ�.r.b/s.b
0// extends to an isometry �WK ˝ K ! H , and a short

calculation shows that ����.a/� D .�� ˝ ��/.h.a// for all a 2 A. We therefore
get a positive, normal, linear extension QhWM ! N , x 7! ��x�, of h, and thereby the
desired extensions Q� D .id N̋ Q�/ ı Qh, Q D . Q� N̋ id/ ı Qh and Q� D . Q� N̋ Q�/ ı Qh.
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Recall that an element � 2 H is right-bounded with respect to the Hilbert algebra
ƒ�.A/ if there exists an operator R� 2 L.H/ such that ��.a/� D R�ƒ�.a/ for all
a 2 A. Note that then R� 2M 0.

Lemma 3.7.6.

i) If x 2 A� , then ƒ�.x/ 2 H is right-bounded, Rƒ�.x/ D J���.x/
�J� and

kRƒ�.x/k D k��.x/k.

ii) If x 2 A� \ r.B/0, then ��.a/ƒ�.x/ D Rƒ�.x/ƒ�.a/ for all a 2 A.

iii) If a 2 A and � 2 K is right-bounded with respect to ƒ�.B/, then ƒ�.a/� Db̌.R�/ƒ�.a/.
Proof. i) For all x 2 A� ; a 2 A, we have ��.a/ƒ�.x/ D ƒ�.ax/ D J���.x/�J�ƒ�.a/.

ii) For all x 2 A� \ r.B/0; a 2 A; b 2 B ,

��.a/ƒ�.x/ƒ�.b/ D ƒ�.axr.b// D ƒ�.ar.b/x/

D ��.ar.b//ƒ�.x/

D Rƒ�.x/ƒ�.ar.b// D Rƒ�.x/ƒ�.a/ƒ�.b/:

iii) If a 2 A and � D ƒ�.b/ for some b 2 B , then R� D ��.b/ and ƒ�.a/� D
ƒ�.ar.b// D b̌.��.b//ƒ�.a/. Now, the assertion follows for all right-bounded
� because ƒ�.B/ is a core for ƒ Q� and the right-bounded elements coincide with
ƒ Q�.N Q�/.

To prove Theorem 3.7.9, we construct increasing approximations of the weights
Q�; Q�; Q�; Q by bounded positive maps, using an approximate unit .ui /i in B with the
properties assumed in (A4). Let ui;j WD r.ui /s.uj / 2 A, and define for all i; j
bounded, normal, positive, linear maps

�i WN ! C; x 7! hƒ�.ui /jxƒ�.ui /i;

�i;j WM ! C; x 7! hƒ�.ui;j /jxƒ�.ui;j /i;

�i;j WM ! N; x 7! ƒ�.ui;j /
�xƒ�.ui;j /;

 i;j WM ! N; x 7! ƒ .ui;j /
�xƒ .ui;j /:

Given a net .��/� of real numbers, we write .��/� % � if it is increasing and
converges to �. Likewise, given a von Neumann algebra C with a net .!�/� in CC�
and a n.s.f. weight !, we write .!�/� % ! if !�.x�x/% !.x�x/ for all x 2 C .

Proposition 3.7.7.

i) .�i /i % Q� and .�i;j /i;j % Q�;

ii) .� ı �i;j /i;j % � ı Q� and .� ı  i;j /i;j % � ı Q for all � 2 NC� .
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Proof. i) We only prove the assertion concerning Q�.
Let �i;j WD ƒ�.ui;j / and Ri;j WD R�i;j D J���.ui;j /J� for all i; j .
The net .�i;j /i;j in MC� is increasing because .R�i;jRi;j /i;j is increasing by

assumption on .ui /i , �i;j .��.a�a// D kRi;jƒ�.a/k2 for all a 2 A and ��.A/ �M
is weakly dense.

Call � 2 H right-contractive if � is right-bounded and kR�k � 1. Let x 2 M .
Then

Q�.x�x/ D sup
˚
kx�k2

ˇ̌
� 2 H is right-contractive

	
:

Each �i;j is right-contractive by Lemma 3.7.6 and hence �i;j .x�x/ D kxƒ�.ui;j /k2 �
Q�.x�x/ for all i; j . Conversely, for each right-contractive � 2 H ,

kx�k2 D lim
i;j
kx��.ui;j /�k

2
D lim

i;j
kxR�ƒ�.ui;j /k

2

� lim
i;j
kxƒ�.ui;j /k

2
D lim

i;j
�i;j .x

�x/

because R� 2M 0 and R�
�
R� � 1. Therefore, Q�.x�x/ � limi;j �i;j .x

�x/.
ii) We only prove the assertion concerning Q�. A similar argument as above and

Lemma 3.7.6 ii) show that for each � 2 NC� , the net .� ı �i;j /i;j is increasing.
Taking pointwise limits, we obtain a normal semi-finite weight ! fromM toN such
that for each y 2M , the element !.y�y/ in the extended positive part ONC is defined
by �.!.y// D supi;j �.�i;j .y

�y// for all � 2 NC� . Then for all y 2M ,

Q�.!.y�y// -
i;j;k

kyƒ�.ui;j /ƒ�.uk/k
2
D kyb̌.��.uk//�i;j k2 k!1

����! ky�i;j k
2

D �i;j .y
�y/%

i;j

Q�.y�y/

and hence Q� ı ! D Q�. By [20, Theorem 4.18], ! D Q�.

Lemma 3.7.8. W ��˛;b̌
ƒ�.r.b/s.b0//

ˇ.��.b
00// D �

ˇ;˛

ƒ�.r.b00/s.b0//
˛.��.b// for all

b; b0; b00 2 B .

Proof. Applying both sides to ƒ�.a/, where a 2 A is arbitrary, we obtain
W �.ƒ�.s.b

00/a/˝
Q�
ƒ�.r.b/s.b

0/// and ƒ�.r.b/a/˝
Q�
ƒ�.r.b

00/s.b0//, respectively,

which coincide.

As usual, let NTL WD fx 2M W TL.x
�x/ 2 N g and similarly define NTR .

Theorem 3.7.9. Let A D .A;�; �; S; �; �;  / be a measured multiplier .B; �/-
Hopf �-algebroid satisfying the following conditions:

(A1) � admits a GNS-representation via bounded operators .K;ƒ�; ��/,
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(A2) the Radon–Nikodym cocycle of � has a positive square root in M.B/,
(A3) the bimodule rAs is proper,
(A4) there exists a truncating net for �.

Let Q� be the weight on N D ��.B/
00 associated to the Hilbert algebra ƒ�.B/, let

ƒ� WA ! L.H/ be the GNS-map for � D � ı � D � ı  , let .��.A/00; ˛; ˇ;�/
be the Hopf–von Neumann bimodule of A (Definition 3.5.7), let Q� be the weight on
M D ��.A/

00 associated to the Hilbert algebra ƒ�.A/, and let TL and TR be the
n.s.f. weights fromM to ˛.N / and ˇ.N / given by Q�ı˛�1 ıTL D Q� D Q�ıˇ�1 ıTR
(see Proposition 3.7.4). Then .N; Q�;M; ˛; ˇ;�; TL; TR; Q�/ is a measured quantum
groupoid in the sense of [2]. In particular, TL and TR are left- and right-invariant
with respect to � in the sense that

TL..�
ˇ;˛

�
/��.x�x/�

ˇ;˛

�
/ D ˛..R

ˇ; Q�

�
/�TL.x

�x/R
ˇ; Q�

�
/

for all x 2 NTL ; � 2 D.Hˇ ; Q�/;

TR..�
ˇ;˛
� /��.x�x/�ˇ;˛� / D ˇ..R˛; Q�� /�TR.x

�x/R˛; Q�� /

for all x 2 NTR ; � 2 D.H˛; Q�/:

Proof. We use the same notation as before. To prove the assertion concerning Q� and
TL, we show that

h�j Q�..�
ˇ;˛

�
/��.x�x/�

ˇ;˛

�
/�i D k˛. Q�.x�x//

1
2R

ˇ; Q�

�
�k2 (3.23)

for all x 2 NTL , � 2 D.Hˇ ; Q�/ and � 2 K. Given such x; �; �, let

�k WD ˛.��.uk//�

and ci;j;k WD h�j�i;j ..�
ˇ;˛

�k
/��.x�x/�

ˇ;˛

�k
/�i for all i; j; k:

Then Rˇ; Q�
�k
D ˛.��.uk//R

ˇ; Q�

�
, �ˇ;˛

�k
D .˛.��.uk// ˝

Q�
id/�ˇ;˛

�
, and by Proposi-

tion 3.7.7,

ci;j;k
k!1
����! h�j�i;j ..�

ˇ;˛

�
/��.x�x/�

ˇ;˛

�
/�i %

i;j

h�j Q�..�
ˇ;˛

�
/��.x�x/�

ˇ;˛

�
/�i:

On the other hand, using the relation ƒ�.ui;j / D ƒ
�
�.ui;j /, we find

ci;j;k D k.1˝
�
x/W �

ˇ;˛

�k
ƒ�.ui;j /�k

2 (Def. of �W and �i;j )

D k.1˝
�
x/W�

ˇ;˛

ƒ�.ui;j /
˛.��.uk//R

ˇ; Q�

�
�k2 (Def. of Hˇ˝

Q�
˛H )

D k.1˝
�
x/�
b̨;ˇ
ƒ�.uk;j /

ˇ.��.ui //R
ˇ; Q�
� �k2 (Lem. 3.7.8)

D kb̨.�k;j .x�x// 12ˇ.��.ui //Rˇ; Q�� �k2 %
i;j;k

kb̨. Q�.x�x// 12Rˇ; Q�
�
�k2:

(Prop. 3.7.7)



78 T. Timmermann

Thus, (3.23) follows. The assertion concerning Q and TR can be proven similarly,
where W has to be replaced by the unitary V .

Remark 3.7.10. Assume that � D .id˝�/ ı h for a normalized bi-integral
h on .A;�/. Then for each b 2 B , the map ƒ�.B/ ! ƒ�.A/ given by
ƒ�.c/ 7! ƒ�.s.b/r.c// is bounded with norm less than or equal to �.b�b/

1
2 , and

therefore extends to an operator ƒ�.s.b// 2 L.K;H/. One can then approximate Q�
monotonously by the maps �i WM ! N , x 7! ƒ�.s.ui //

�xƒ�.s.ui //, and a similar
calculation as in Lemma 3.7.8 shows that each �i is right-invariant.

Associated to the measured quantum groupoid .N; Q�;M; ˛; ˇ;�; TL; TR; Q�/ are
two fundamental unitaries U 0H WHb̨˝

Q�
ˇH ! Hˇ˝

Q�
˛H and UH WH˛˝

Q�
b̌H !

Hˇ˝
Q�
˛H , characterized by

.�ˇ;˛w /�UH .v ˝
Q�
ƒQ�.a// D ƒQ�..!w;v � id/.�.a///

for all v;w 2 D.Hˇ ; Q�/; a 2 NQ� \NTL ;

.�
ˇ;˛
w0 /

�U 0H .ƒQ�.a
0/˝
Q�
v0/ D ƒQ�..id�!w0;v0/.�.a0///;

for all v0; w0 2 D.H˛; Q�/; a0 2 NQ� \NTR I

see [13, Proposition 3.17].

Proposition 3.7.11. W � D UH and V D U 0H .

Proof. Let x; y; y0; z 2 A and choose vi ; wi 2 A such that
P
ND
1
2 .y.1//x

0˝
B
y.2/ DP

vi ˝
B
wi in sA˝

B
rA. Then

.!ƒ�.x/;ƒ�.x0/ � id/.W �/ƒ�.y/ D
X
i

.�
ˇ;˛

ƒ�.x/
/�.ƒ�.vi /˝

Q�
ƒ�.wi //

D

X
i

ƒ�.r. .vi�.x
�///wi /;

.!ƒ�.x/;ƒ�.x0/ � id/.�.y//ƒ�.z/ D
X
i

.�
ˇ;˛

ƒ�.x/
/�.ƒ�.vi /˝

Q�
ƒ�.wiz//

D

X
i

��.r. .vi�.x
�////ƒ�.wiz/;

and hence .!ƒ�.x/;ƒ�.x0/ � id/.W �/ƒ�.y/ D ƒQ�..!ƒ�.x/;ƒ�.x0/ � id/.�.y///.
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Likewise, with v0i ; w
0
i 2 A such that

P
ND
1
2 .x.1//˝

B
x.2/y

0 D
P
v0i ˝
B
w0i 2 sA˝

B
rA,

we find

.id�!ƒ�.y/;ƒ�.y0//.V /ƒ�.x/ D
X
i

.�
ˇ;˛

ƒ�.y/
/�.ƒ�.v

0
i /˝
Q�
ƒ�.w

0
i //

D

X
i

ƒ�.s.�.w
0
i�.y

�///v0i /;

.id�!ƒ�.y0/;ƒ�.y//.�.��.x///ƒ�.z/ D
X
i

.�
ˇ;˛

ƒ�.y/
/�.ƒ�.v

0
iz/˝

Q�
ƒ�.w

0
i //

D

X
i

��.s.w
0
i�.y

�///ƒ�.v
0
iz/

and hence .id�!ƒ�.y/;ƒ�.y0//.V /ƒ�.x/ D ƒQ�
�
.id�!ƒ�.y0/;ƒ�.y//.�.��.x///

�
.

The adapted measured quantum groupoid .N; Q�;M; ˛; ˇ;�; TL; TR; Q�/ has an
antipode QS which is characterized by the following properties:

i) spanf.!v;w � id/.V / W w; v 2 TQ�;TRg is a core for QS ,

ii) QS..!w;v � id/.V // D .!w;v � id/.V �/ for all w; v 2 TQ�;TR ,

where TQ�;TR is the set of all x 2 M that are analytic with respect to � Q� and satisfy
� Q�z 2 NQ� \N�

Q�
\NTR \N�TR for all z 2 C. Likewise, one defines TQ�;TL .

Lemma 3.7.12. ��.A/ � TQ�;TR \ TQ�;TL .

Proof. Recall that ��.A/ � TQ� by Proposition 3.7.2. Using Lemma 3.7.3 i), we find

� Q�z .��.A// D �
Q�
z .��.As.B/// D �

Q�
z .��.A//ˇ.��.B// � NQ�ˇ.N Q�/ � NTR

for all z 2 C. Consequently, ��.A/ � TQ�;TR . A similar argument shows that
��.A/ � TQ�;TL .

Proposition 3.7.13. ��.A/ � Dom. QS/ and QS.��.a// D ��.D
1
2SD

1
2 .a// for all

a 2 A.
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Proof. Let x; x0 2 A and a D
P
D�

1
2 .x0

.2/
r. .x�x0

.1/
///. Then

.!ƒ�.x/;ƒ�.x0/ � id/.V / D ��.a/; (Lem. 3.4.4)

.!ƒ�.x/;ƒ�.x0/ � id/.V �/ D
�
.�
ˇ;˛

ƒ�.x0/
/�V �

b̨;ˇ
ƒ�.x/

��
D

X
��.D

� 12 .x.2/r. .x
0�x.1/////

� (Lem. 3.4.4)

D

X
��.D

1
2 .r. .x�.1/x

0//x�.2///

D

X
��.D

1
2 .S.x0.2/r. .x

�x0.1////// (Prop. 2.5.3)

D ��.D
1
2SD

1
2 .a//:
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