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Measured quantum groupoids associated to proper dynamical
quantum groups

Thomas Timmermann*

Abstract. Dynamical quantum groups were introduced by Etingof and Varchenko in connection
with the dynamical quantum Yang—Baxter equation, and measured quantum groupoids were
introduced by Enock, Lesieur and Vallin in their study of inclusions of type II; factors. In this
article, we associate to suitable dynamical quantum groups, which are purely algebraic objects,
Hopf C*-bimodules and measured quantum groupoids on the level of von Neumann algebras.
Assuming invariant integrals on the dynamical quantum group, we first construct a fundamental
unitary which yields Hopf bimodules on the level of C *-algebras and von Neumann algebras.
Next, we assume properness of the dynamical quantum group and lift the integrals to the
operator algebras. In a subsequent article, this construction shall be applied to the dynamical
SU, (2) studied by Koelink and Rosengren.
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1. Introduction

Dynamical quantum groups were introduced by Etingof and Varchenko as an
algebraic framework for the study of the dynamical quantum Yang—Baxter equation
[6,7, 8], a variant of the Yang—Baxter equation arising in statistical mechanics. Every
(rigid) solution of this equation has a naturally associated tensor category of repre-
sentations which turns out to be equivalent to the category of representations of some
dynamical quantum group. In the case of the basic rational or basic trigonometric
solution, this dynamical quantum group can be regarded as a quantization of the
function algebra on some Poisson-Lie-groupoid. In general, it can be regarded as a
quantum groupoid and fits into the theory of Hopf algebroids developed by Bohm
and others [1].

Measured quantum groupoids were introduced by Enock, Lesieur and Vallin [2,
13] to capture generalized Galois symmetries of certain inclusions of type II; factors
[3, 4, 15]. Apart from this fundamental example in von Neumann algebra theory,
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which was also considered in the algebraic setting [9, 19], and from the finite case,
only few measured quantum groupoids have been constructed and investigated yet
[13,29].

Up to now, connections between algebraic and operator-algebraic approaches to
quantum groupoids have only been explored in the finite case [14, 17, 28] and in the
form of a few examples and constructions that exist on both levels. The situation
is very different in the area of quantum groups, where Woronowicz’s theory of
compact quantum groups [35] and van Daele’s theory of multiplier Hopf algebras
with integrals [12, 31] form a bridge between the algebraic and operator-algebraic
approaches, combining the computational convenience of the former with the power
and richness of the latter.

Another approach to quantum groupoids which is equivalent to the algebraic and
operator algebraic one, at least in finite dimensions, is via fusion categories [5, 19].

In this article, we associate to suitable dynamical quantum groups, which are
purely algebraic objects, Hopf C*-bimodules and measured quantum groupoids on
the level of von Neumann algebras. The main example of a dynamical group we have
in mind for application is the dynamical SU,(2) studied by Koelink and Rosengren
[10], and in a subsequent article, we want to study the construction for this example
in detail.

On the dynamical quantum groups, we have to impose several assumptions.

First, we need a left- and a right-invariant integral, which correspond to fiber-wise
integration on a groupoid, and a weight on the basis that is suitably quasi-invariant,
such that the resulting total integrals are faithful, positive, and coincide. In the case
of the dynamical SU,(2), the left- and right-invariant integrals can be obtained from
a Peter—Weyl decomposition due to Koelink and Rosengren [10], while the quasi-
invariant weight on the basis can be chosen quite freely.

Second, we assume the dynamical quantum group to be proper, which is the
natural analogue of compactness and unitality for quantum groupoids, and to possess
a specific approximate unit in the base algebra. The dynamical SU,(2) mentioned
above even is compact and thus satisfies this second assumption.

In particular, the dynamical quantum group need not be a Hopf algebroid, but
only a multiplier Hopf algebroid in the sense of [25]. The latter are closely related to
the weak multiplier Hopf algebras that were recently introduced by Van Daele and
Wang [33, 34].

Third, we assume that the quasi-invariant weight on the basis admits a bounded
GNS-construction. Like the first condition, this one is very natural. In the case of
the dynamical SU, (2), the base algebra is formed by all meromorphic functions on
the plane and does not admit any non-trivial bounded representations. To apply our
construction, one therefore has to change the base and check that the Peter—Weyl
decomposition persists.

Given these assumptions, the measured quantum groupoid is constructed as
follows.
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The algebraic GNS-construction, applied to the total integral on the dynamical
quantum group, yields a Hilbert space of square-integrable functions on the dy-
namical quantum group together with a natural representation by densely defined
multiplication operators. To obtain a C™*-algebra or von Neumann algebra, one
has to show that these multiplication operators are bounded. To prove this and
to lift the comultiplication to the resulting C *-algebra and von Neumann algebra,
we proceed as in the case of quantum groups [23] and construct a fundamental
unitary which is pseudo-multiplicative on the level of von Neumann algebras and
C *-algebras in the sense of [27] and [24], respectively. The general theory of these
unitaries then yields completions of the dynamical quantum group in the form a Hopf
C*-bimodule and a Hopf von-Neumann bimodule, and simultaneously a Pontrjagin
dual in the same form. Finally, we extend the invariant integrals to the level of
operator algebras, using properness of the dynamical quantum group and standard
von Neumann algebra techniques.

This article is organized as follows.

Section 2 provides the algebraic basics on dynamical quantum groups and
integration that are needed for the construction in Section 3. We first generalize
the definition of a dynamical quantum group or h-Hopf algebroid, allowing the base
to be non-unital, then consider left- and right-invariant integrals on the total algebra
and quasi-invariant weights on the basis, and finally construct a x-algebra related to
the Pontrjagin dual. The main result of this section is the existence of a modular
automorphism for the total integral, which follows from a strong invariance property
similarly as in the setting of multiplier Hopf algebras [31].

Section 3 presents the construction of the measured quantum groupoid outlined
above. It uses Connes spatial theory, in particular the relative tensor product of
Hilbert modules, and the C *-algebraic analogue of that construction [22], and
introduces the necessary concepts along the way when they are needed.

We use standard notation and adopt the following conventions. All algebras will
be over the ground field C and we do not assume the existence of a unit element.
Given a vector space V with a subset X C V, we denote by (X) C V the linear
span and, if V' is normed, by [X] € V the closed linear span of X. Inner products
on Hilbert spaces will be linear in the second and anti-linear in the first variable.

2. Dynamical quantum groups with integrals on the algebraic level

This section summarizes and develops the basics on dynamical quantum groups and
integration used in this article. Before turning to details, let us outline the main
concepts.

A dynamical quantum group is a special quantum groupoid and as such consists
of an algebra B called the basis, an algebra A, an embedding : B — A and
an anti-homomorphic embedding s: B — A whose images commute, and a
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comultiplication, antipode and counit. What makes it special is that the basis B
is commutative, that »(B) and s(B) are central in A up to a twist which is controlled
by an action of a group I" on B and a bigrading of A by I', and that the target of the
comultiplication is a well-behaved monoidal product AR A.

Integration on a quantum groupoid involves several ingredients. The analogue of
the left- or right-invariance property of Haar measures on groups, Haar systems on
groupoids, and Haar weights on quantum groups can be formulated for conditional
expectations from A to r(B) or s(B), respectively. To obtain a total integration on
A, such a partial integral has to be composed with a suitable functional on B that is
quasi-invariant with respect to the action of I".

Let us now turn to details. We proceed as follows.

From the beginning, we assume all our algebras to possess an involution but not
necessarily a unit. We first recall terminology concerning non-unital algebras (§2.1),
then describe the monoidal product AR A (§2.2), and define dynamical quantum
groups or, more precisely, multiplier (B, I')-Hopf x-algebroids (§2.3). Afterwards,
we introduce and study integrals (§2.4-§2.6) and prove the existence of a modular
automorphism that controls the deviation of the total integral from being a trace.
Using integration, we finally construct the dual *x-algebra of a multiplier (B, I')-
Hopf *x-algebroid (§2.7).

2.1. Preliminaries on non-unital algebras. To handle non-unital algebras, we use
extra non-degeneracy assumptions and multiplier algebras [30, appendix] which are
recalled below.

Let R be an algebra, not necessarily unital. Given a left R-module M, we say
that R has local units for M if for each finite subset I C M, there exists some
r € R such that rm = m for all m € F [32]. The corresponding notion for right
R-modules is defined similarly. We say that R has local units if it has local units for
R, regarded as a left and as a right R-module.

Let R and S be algebras with local units, let N be an R-S-bimodule and assume
that R and S have local units for N. A multiplier of N is a pair T = (T}, T}),
where 7,,: R — N is a left R-module map and 73: S — N aright S-module map
satisfying T,(r)s = rT)(s) forallr € R,s € S. Given such a multiplier, we write
rT = Ty(r)and T's := T)(s) forallr € R, s € S. We denote the set of all
multipliers of N by M(N). Clearly, N embeds into M(N) and M(N) carries a
natural structure of an R-S-bimodule that is compatible with this embedding.

Regarding R as an R-R-bimodule, M (R) becomes an algebravia T T’ = (T[; o Ty,
T, o T)’L), and R embeds into M(R) as an essential ideal. If R is a x-algebra, then
so is M(R), where the adjoint of a multiplier T = (7,,7,) € M(R) is the pair
T* = (T,,Ty) givenby T (r) = (To(r*))* and T} (r) = (T, (r*))* forall r € R.

The bimodule N is an M(R)-M(S)-bimodule via T (rns)T" := Ty(r)nT,(s)
forall T € M(R),r € R,n € N,s € S, T' € M(S), and M(N) is an M(R)-
M(S)-bimodule via TT'T" := (T, 0 T, 0 Tp, T o T; o T)') forall T € M(R),
T e M(N), T" € M(S).
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A homomorphism 7: R — M(S) is non-degenerate if (x(R)S) = S =
(S7(R)); in that case, it extends uniquely to a homomorphism M(R) — M(S)
which is again denoted by 7 (see [30]).

2.2. The category of (B, I')¢'-algebras. Let B be a commutative *x-algebra with
local units, let I be a group that acts on B on the left, and let e € T" be the unit.

A (B,T')-module is a T-graded B-bimodule V' = P, V for which B has
local units, where each V, is a B-bimodule and vb = y(b)v for all v € V,,
b € B,y € T'. A morphism of (B, T')-modules V and W is a morphism of I'-graded
B-bimodules.

A (B, T')-algebra is a I'-graded =x-algebra A = @y <r Ay which has local units
in A, and is equipped with a *-homomorphism B — M(A) that turns A into a
(B, T')-module. Such a (B, I')-algebra is proper if B maps into A.

Givena (B, I')-algebra A and y € I', we denote by M(A),, € M(A) the space of
all multipliers 7 € M (A) satisfying TA, € Ay, and AT € A, forall y’ € .

A morphism of (B,T')-algebras A and C is a non-degenerate, B-linear
*-homomorphism 7: A — M(C) satisfying w(A4,) € M(C), forall y € I'. Such
a morphism is proper if it maps A4 into C.

Using the extension of non-degenerate homomorphisms to multipliers, one
defines the composition of morphisms and checks that (B, I")-algebras form a
category.

The tensor product B ® B is a x-algebra with local units and a natural action of
I' x I". Replacing (B, ") by (B, I')® := (B ® B, " x I') in the definition above, we
obtain the category of all (B, I')®-algebras.

Let A be a (B, I')®-algebra. We call an element x € A homogeneous and write
dy =y, 0x = ¥/ if x € Ay, for some y,y’ € T. Thus, dyd, = dxy, dxdy = Oxy
and d,x = 8;1, Oy+ = 5;1 for all homogeneous x,y € A. Definer = rq: B —
M(A)ands = s4: B — M(A) by r(b)a = (b ® 1)a and s(b)a = (1 ® b)a for all
ac€ A be B. Wewrite A, Ay, sA, Ag if we consider A as a B-module via left or
right multiplication via r or s, respectively.

Clearly, B is a (B, I')-algebra and B ® B is a (B, I')®-algebra with respect to
the trivial gradings. Every (B, I')-algebra A can be regarded as a (B, I")®'-algebra,
where A(,,,) = A, and A,y = 0 whenever y # y’, and (b ® b")a = bb’a for
all b,b’ € B, a € A. Conversely, every (B, T")*-algebra A can be considered as
a (B, I')-algebra via r: B — M(A) and the grading given by 4, := P, Ay,)’, or
via s: B — M(A) and the grading given by A,/ := P, Ay,,7. We write (4,r) and
(A, s), respectively, to denote the resulting (B, I')-algebras.

Denote by B x I' the crossed product for the action of I' on B, that is, the
universal algebra containing B and T" such that e = 1p and by - by’ = by(b')yy’
for all b,b’ € B, y,y’ € T'. This is a (B, I')-algebra with respect to the natural
inclusion B — B x T and the involution and grading given by (hy)* = y~!b* and
(BxTI), =Byforallbe B,y el
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The fiber product of (B,I')®-algebras A and C is defined as follows. The
subalgebra

T
ARC:= Y Ay ®Cpy CARC

vy, vy €l

r
isa (B, ') -algebra, where (A ® C)yyr = Y,/ Ayy ® Cyryr forall y,y” € T

r
and (r x $)(b ® b)) = rg(b) @ s¢(b’) forall b,b’ € B. Let I € M(A ® C) be the
ideal generated by {s4(b) ® 1 — 1 ® rc(b) : b € B}. Then the quotient

~ r r
ARC :=AR C/(I(A® C))

is a (B, I')®-algebra again, called the fiber product of A and C. Write a®c for the
image of an element a ® ¢ in AQC.

The assignment (4, C) — A®C is functorial, associative and unital. Indeed,
for all morphisms of (B, I')®-algebras w!: A! — C!, n2: A2 — C?2, there exists a
morphism

l@n2 A'®A% — CIRC?, a1®ar > 7l (a1)®@72(as); 2.1
for all (B, I')®V-algebras A, C, D, there exists an isomorphism
(ARC)®D — AR(CR®D), (a®c)®d > aR(c®d), (2.2)
and for each (B, I')®V-algebra A, there exist isomorphisms

(BxT)®A — A, by®a > r(b)a, AR(B xT) — A, a®by > s(b)a.
(2.3)

These isomorphisms are compatible in a natural sense and endow the category of
(B, I')*-algebras with a monoidal structure. From now on, we shall use them
without further notice.

The category of (B, I')®-algebras carries automorphisms (—)°P and (—)°° such
that for each (B, I')-algebra A and each morphism ¢: A — C, we have A = A as
an algebra, AP is the opposite *-algebra of A, that is, the same vector space with the
same involution and reversed multiplication, and

(A%)y,yr = Ay—1 -1 forall y, Y €T, ram =rq, Saw =154, ¢ =0,

v
2.4)
(A°°)y,r = Ay forall y,y" €T, Fgco =S4, Sqc =T4, ¢ =¢.
(2.5)

These automorphisms are involutive and commute, that is,

()P0 ()P =id, ()P0 ()P =id ()P0 (-) = (-)° 0 (-).



Proper dynamical quantum groups as measured quantum groupoids 41

Furthermore, they are compatible with the monoidal structure as follows. Given
(B,T)-algebras A, C, there exist isomorphisms (A®C)® — APRC® and
(ARC)® — C®RA% given by a®c +— a®c and a®c + c®a, respectively.
Moreover, (B x I')*® = B x I, there exists an isomorphism SBXT.- B T —
(B x T)°, by + p~!b, and all of these isomorphisms and the isomorphisms in
(2.2) and (2.3) are compatible in a natural sense.

2.3. Multiplier (B, I")-Hopf =x-algebroids. We shall work with variants of the
h-Hopf algebroids and (B, I')-Hopf *-algebroids considered in [7, 10] and [21],
respectively, where the basis need no longer be unital. These variants consist
of a (B, I")®-algebra and a comultiplication, counit and antipode, which will be
introduced one after the other. To quickly proceed to the main part of this article, we
postulate all the usual properties of these maps as axioms and leave a study of the
axiomatics for later.

Given a (B, I')®¥-algebra A, we denote by M(A@A) C M(A®A) the set of all
T € M(A®A) for which all products of the form

T(x®1p1(4)), (x®1p10a)T, T(1pu)®y), (I pay®y)T

where x € Ay.,y € Aey,y € T, lie in AQA. Evidently, M(A®A) is a
*-subalgebra of M(ARA).

Definition 2.3.1. A comultiplication on a (B,I')®-algebra A is a morphism A
from A to ARA satisfying A(4) € M(A®A) and (AQid) o A = (iId®A) o A.
A (proper) multiplier (B, T)-%-bialgebroid is a (proper) (B,I")®-algebra with
a comultiplication. A morphism of multiplier (B, I')-x-bialgebroids (A4, A 4),
(B, Ap) is a morphism ¢ from A to B satisfying Ag o ¢ = (¢R¢) o A 4.

Let (A, A) be a multiplier (B, I')-*-bialgebroid.

We shall need to form products of the form A(x)(1 ® y) or (y ® 1)A(x) when
dy, # eor 5y # e, respectively, which are defined as follows. Let x,y € A. The
multiplication on A ® A induces a canonical AQ A-A ® A-bimodule structure on
sA %) +A and a canonical A ® A-A® A-bimodule structure on Ag (%) Ay. Using the

natural maps s M(A)®@, M(A) - M(;AR,A) and M(A)sQM(A), > M(A;QA,),
B B B B
we define multipliers | ® y,x® 1 e M(A®,A)andx® 1,10y € M(A; ® A;).
B B B B B B
Regarding M(;A ® ,A) as an M(A®A)-M(A ® A)-bimodule and M(A; ® A,) as
B B

an M(A® A)-M(A® A)-bimodule (see §2.1), we can then multiply these multipliers
with A(x) or A(y), respectively.
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Lemma 2.3.2. The following linear maps are well defined:
Ti:4; @A > A® A, xQy > AX)(1®Y),
B B B B
T4, @, A= A, ®Ar, x QY (x @ DA(Y),
B B B B
T3 AQ As > As® Ar, x®y > (1®y)A(X),
B B B B
Ty AR Ay > AR A, x®y > A)(x®1).
B B B B
Proof. We only prove the assertion concerning 77, the cases of 75, ..., T4 being
similar. Using the explanations above, we obtain a linear map AQA — M(;AR,A),
B
xXx® Yy~ A)(1 ® y). This map factorizes through the quotient map A ® A —
B
As ® s A because A(xs(h)) = A(x)(1®s(b)) forall x € A, b € B, and takes values
B
ingA ® A because A(A) is contained in M (AR A). O
B
We adopt the Sweedler notation and write A(x) = Y x(1)®x(2) for x € A. This
notation requires extra care because A(x) need not lie in A® A but only in M (AR A),

so that x (1) and x(2) do not simply represent elements of A. In this notation, the maps
introduced above take the form

Tl:x%yHZx(l)%x(z)y, Tzzx%yﬁzxy(n%y(z),
Tyx%)y !—)ZX(l)%yx(z), T4:x(§y HZJ’(I)X%Y(Z)-

We shall almost exclusively use the Sweedler notation for products as above. A
detailed explanation of this notation in the context of multiplier Hopf algebras is
given in [30, 32]. Apart from the fact that we use tensor products of B-modules
instead of tensor products of vector spaces, this explanation carries over easily. As in
the theory of (multiplier) Hopf algebras, we extend the Sweedler notation to iterated
applications of A, writing

(ARId)(A(X) = D x(1)®x2)®xa) = (d®A)(A(x))
for x € A, and to iterated applications of the maps 77, ..., Ty, writing, for example,
T Id)(dRT)) xRy ®z)) = X ® X z
(T2 @id)((d BTN &y &2) = Y 3y @ ye) @ V)
= ({({dT)(T2 ®id)(x ® y ® 2))
B B B~ B

forall x, y,z € A.

Definition 2.3.3. A counit for a multiplier (B, I")-x-bialgebroid (A, A) is a proper
morphism of (B, T)®-algebras e: 4 — B x I satisfying (e®id) o A = idgy =
(id ®e€) o A.
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Let (A, A) be a multiplier (B, I')-*-bialgebroid with counit €. Using the linear
maps

f:BxT —>B. Y by Y by, b:BxI —B. Y yb, > by,
14 Y Y v

we define €%, ¢’: 4 — B by et = ff o € and € :=boe. Definemy,: A, ® ;A — A
andms:As%sAeAbyZixi%yi|—>Zixiyi. ?
Remarks 2.3.4.
i) Clearly, €(Ay,)’) € (B xT),,,» = 0 whenever y,y’ € [and y # y’.
ii) If € is a counit as well, then € = € 0 (id®€’) o A = €' 0 (e®id) o A = €.
iii) The condition (e®id) o A = id4 = (id ®€) o A is equivalent to the relations
Zr(eﬁ(x(l)))x(z)y =xy = ny(l)s(eb(y(z))) forall x,y € A,

and hence to commutativity of the diagrams

7 5 et \B
A A —r A AR A—r A.

Furthermore, this condition is equivalent to the relations
ny(z)r(eb(y(l))) =xy = Zs(eﬁ(xa)))xu)y forall x,y € A.
The definition of the antipode involves the isomorphism
04.4: (ARA)OP — ACPRACP xRy > yRX.

Definition 2.3.5. An antipode for a multiplier (B, I')-*-bialgebroid (A4, A) with
counit € is an isomorphism S: 4 — A of (B, )% -algebras that makes the
following diagrams commute:

T, T:
AS®SA;SA®I‘A7 Ar®rA;As®Ar s
B B B B
by . .
€ %hdl/ iS%m 1d%>enl/ \le%S
A~ A ® 4 A Ay ® A
S Ac0:0p

A B l/Aco.op
AR A & AC0:0P &) 40:0P A4 (A@)A)CO’OP.

A multiplier (B, T")-Hopf *-algebroid is a multiplier (B, I")-*-bialgebroid with
counit and antipode.
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Examples 2.3.6.

i) The tensor product B ® B is a multiplier (B, I')-Hopf *-algebroid, where
AbRbP)=bR1NR(A®b),e(b®b’)=5bb',S(b®>b')=>b"®b forall
b,b’ € B.

ii) The crossed product B x I is a multiplier (B, I')-Hopf *-algebroid, where
A(by) = by®y = y®by, e =idand S(yb) = by ' forallb € B,y € T.

Given an antipode S on a multiplier (B, I')-*-bialgebroid (4, A) and an element
a € A, we shall henceforth always regard S(a) as an element of A and not of AP,

Remarks 2.3.7. Let (A4, A, €, S) be a multiplier (B, I')-Hopf x-algebroid.

1) In Sweedler notation, commutativity of the diagrams in Definition 2.3.5
amount to

Y SGaNxey =sE@)y. Y xymSOe) = xr((y))
forall x,y € A,

Z S(X(l))®S(X(2)) = ZS(X)(2)®S(X)(1) forall x € A. 2.7)

(2.6)

ii) If S’ is an antipode as well, then S” = S because for all x, y,z € A4,

xS(y)z =SS 1(x))z = Z Ss(e* () vy S~ ()2
- Z S(S~ ) (et (y@e))z

=Y SGmST S (8" (2)ye)
=xS'(y)z.

For every multiplier (B, I')-Hopf x-algebroid, the maps 77, .. ., T4 defined above
are bijections.

Proposition 2.3.8. Let (A, A) be a multiplier (B, I')-x-bialgebroid. If (A, A) has
a counit € and an antipode S, then the maps T1, ..., T4 are bijective and for all
X,y € A,

T ®y) =) xa) & S (0)xe),
L ®y) =) SomsS™ () 8 ya).
T ®y) =) xa) 8 S (xS0,

T ®y) =) STHS@yw) 8 v
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Proof. We only prove the assertion concerning 77. One first checks that the formula
given for Tl_l yields a well-defined map 77: ;A ® A — As ® sA, and then that for
B B

allx,y e Aandu,v € A, .,
@ @v) - (T1oTH(x & y) = ) uxe) & vy S(S™' (1)¥)
= Z UX(1) %) vX2)S(X(3))y
= Zux(l) %) vr(eﬁ(xa)))y
= Zus(e”(x(z)))X(l) %) vy = ux %) vy,
(u®v)-(T] o Ty)(x ®y) = Y uxq ® vS(S™H (x@)1)xX@)
= Zux(l) %) vS(x(2))x@3)y
- Zux(l) % vs(eb(X(z)))y

= Zux(l)s(eb(xm)) %) vy = ux %) vy. O

2.4. Bi-measured multiplier (B, I')-x-bialgebroids. We now introduce the main
objects of this article — multiplier (B, I')-Hopf *x-algebroids equipped with certain
integrals. In §3, we shall construct completions of such objects in the form of
measured quantum groupoids.

As on a groupoid, integration on a multiplier (B, I")-x-bialgebroid (A4, A)
proceeds in stages. First, one needs partial integrals ¢, ¥: A — B with suitable
left or right invariance properties, and second a suitable weight u: B — C that
is compatible with the action of I". The results in [10] suggest that dynamical
quantum groups that are compact in a suitable sense even possess a bi-invariant
integral h1: A — B ® B that can be obtained from a Peter—Weyl decomposition
of A.

We first focus on the weight p and the bi-integral &, and discuss left and right
integrals in the next subsection.

Let us briefly recall some terminology. Let C be a x-algebra with local units.
A linear map u: C — C is faithful if u(Cc) = 0 implies ¢ = 0, and positive if
u(c*c) = 0forall ¢ € C. Assume that u is positive. Then u is *-linear, because
positivity of u((b+c¢)*(b+c¢)) and w((b+ic)*(b+ic)) implies w(b*c) = u(c*b)
for all b, ¢ € C, and faithful as soon as u(c*c) # 0 whenever ¢ # 0.

Definition 2.4.1. A weight for (B, T") is a faithful, positive linear map u: B — C
that is quasi-invariant with respect to I' in the sense that for each y € T, there exists
some D, € M(B) such that u(y(bD,)) = u(b) forallb € B.



46 T. Timmermann

Remark 2.4.2. Let i be a weight for (B, I'). Then
i) each D, is uniquely determined and self-adjoint,
ii) Dy, =y~ (Dy)Dy and 1 = y~1(D,-1)D, forall y,y" € T,
iii) u(y~'(b)c) = /L(b)/(C)D;_ll))) = u(by(cDy)) forallb,c € B,y € T.
Indeed, i) and ii) follow easily from the fact that p is faithful and the relations
u(y(dD3)) = u(y(Dyb*)) = n(*) = w(b) and u(y(y'(bDyy))) = n(b) =

w(y'(bDy)) = u(y(y'(bDy1) Dy)).
We henceforth call the family (D, ), er the Radon—Nikodym cocycle of .

The following definition is inspired by the notion of a Haar functional introduced
in [10].
Definition 2.4.3. A bi-integral on (A, A) is a morphism of (B, I')¢-modules h: A —
B® B satisfying A(kerh)(1® A4, ) C ker h®A and A(ker h) (A, .®1) € AR ker h.
If (A, A) is proper and h(r(b)s(b’)) = b ® b’ for all b, b’ € B, we call such a bi-
integral normalized.

Lemma 2.4.4. Let (A, A) be proper and let h be a normalized bi-integral on (A, A).

i) i d®mpoh)oA =h=(mpoh®id)oA, wheremp: B® B — B denotes
the multiplication.

ii) If i is a normalized bi-integral on (A, A), then h' = h.

iii) If (A, A€, S) is a proper multiplier (B, I')-Hopf *-algebroid, then h o S =
opoh, whereop: B® B — B ® B denotesthe fliph @ c +— ¢ ® b.

Proof. 1) We only prove the first equation. Let w: (A4,7) — B be a morphism of
(B, I')-modules sending I := ker 4 to 0. Then

(id ®w)(A(1))Ae,e = (id %w)(A(I)(Ae,e®l)) € ([d®w)(A4& 1) =0

and hence (id ®)(A(1)) = 0. Moreover, if b,b’,b” € B andu € A, ., then
(id ) (A(r(b)s(b")))s (6" )u = (id @) (r(b)s(b")u ® s(b"))
B B
=r(b)s(w(s(d)rd")))u.
For @ = mp o h, these calculations imply for alla € I and b,b’ € B

(id®@mp o h)(A(a)) = 0 = h(a),
(id ®@mp o W) (A(r(b)s(D))) = r(b)s(b") = h(r(b)s ().

Since A = I + r(B)s(B), we can conclude (id ®mp o h) o A = h.
ii) Let x € kerh and choose u,u’ € B ® B such that u(1 @ mpu'))h'(x) =
K (x). Then

h'(x) = h(uh'(x)s(mp'))) = Zh(ux(l)s(mB(h/(x(z)u/)))) =0
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because ) ux) ® xu’ € u(kerh) ® A. Thus, ker i C ker /. Since h and i’ are
B

normalized and kerh + B ® B = A, we can conclude i = h'.
iii) One easily verifies that og o h o S is a normalized bi-integral. By ii), it equals
h. O

Definition 2.4.5. A proper multiplier (B, I')-x-bialgebroid (A4, A) is bi-measured if
it is equipped with a normalized bi-integral #: A — B ® B and a weight u for (B,T")
such that v := (i ® p) o h is faithful and positive.

Remark 2.4.6. Given a bi-measured proper multiplier (B, I')-Hopf *-algebroid
as above, h is evidently faithful, and also *-linear. To see this, note that (u ®

w)(h(@*)(b®c)) = v(a*r(b)s(c)) = v(s(c*)r(b*)a) = (L @ w)((b @ c)*h(a)) =
(L@ u)h(@)*(b®c)) foralla € A,b,c € B.

2.5. Left and right integrals. For large parts of this article, the multiplier (B, I')-
Hopf x-algebroids under consideration need not be equipped with a bi-integral, but
only with left and right integrals ¢, 1. The definition of these integrals involves slice
maps of the following form.

Let (A, A) be a multiplier (B, I')-*-bialgebroid and let ¢: (A, r) — B be a mor-
phism of (B, I')-modules. Then there exists a unique linear map id ®¢: M (AR A) —
M (A) such that

((ild®¢)(T))a = (id %¢)(T(a ® 1)), a((id®¢)(T)) = (id %¢)((a ® DT)

forall T € M(A®A) and a € A, where we regard T(a ® 1) and (@ ® 1)T as
elements of ;A4 ® ,A and Ay ® A, respectively. In the case T = A(x) for some
B B

x € A,

(d@P)(A(x)a =D s(@(x@))xma. a(id®¢)(A(X) =D axms(d(x@))-

(2.8)
Likewise, every morphism : (4, s) — B yields a slice map ¥ ® id: M (AQA) —
M(A).

Definition 2.5.1. A left integral on (A, A) is a morphism ¢: (A4, r) — B satisfying
(id®¢) o A = r o¢. A right integral on (A, A) is a morphism ¥: (4,5) — B
satisfying (Y ® id) o A = s o .

Remarks 2.5.2.

i) In Sweedler notation, the invariance conditions on ¢ and ¥ become

Y s(@r))xma =r(@)a. Y axer(xm)) = as(y(x))

foralla,x € A.
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ii) If (A, A,€,S) is a (B, I')-Hopf *-algebroid, then the map ¢ — ¢ o S gives a
bijection between left and right integrals on (A4, A). This follows easily from
2.7).

iii) If ¢ is a left integral, then ¢(—s(b)) is also a left integral for each b € B.
Likewise, if v is a right integral, then also ¥ (—r (b)) is a right integral for
eachb € B.

We shall frequently use the following strong invariance relations:
Proposition 2.5.3. Assume that (A, A, €, S) is a (B, I')-Hopf x-algebroid. Then
i) (id %qﬁ)((l@z)A(x)) = S(Gd %q&)(A(z)(l@x))) for every left integral ¢
andall x,z € A;
i) (Y ®id)(A(x)(z®1)) = S((¥ ® id)((x®1)A(z2)) for every right integral
andlzzllx, z € A. g

Proof. Using Sweedler notation, we calculate

Y xs@zxe) = Y xs@EarE cn)xe))
=Y s C)xn)s (@)
=Y SCazexms@GEax@)) = Y SC)r¢E@x)

and

Y r@Wm)xe = Y rxasEze)zm)xe)
= > r(Wxpza)xer(eze))
= > rW(xmzm)x@z@S(Ee) = sW(xz0)S(ze). O

Normalized bi-integrals yield left and right integrals as follows:

Lemma 2.5.4. Assume that (A, A) is proper, h is a normalized bi-integral on (A, A),
and ju: B — C is linear. Then ¢ := (id®u) o h and ¥ := (1 ® id) o h are a left
and a right integral, respectively, and ¢ o ST' = .

Proof. Repeating the proof of Lemma 2.4.4 i) with  := ¢ = (id ®pu) o h, we find
(id ®¢)(A(a)) = 0 = r($(a)),
(id ®¢)(A(r(b)s(d"))) = r(bud") = ¢(r(b)s(2")

for all a € kerh and b,b’ € B. Since A = (kerh) + r(B)s(B), we can conclude
(id®¢) o A = r o ¢. The assertion on ¥ follows similarly, and the last equation
follows from Lemma 2.4.4 iii). ]
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2.6. Measured multiplier (B, I')-x-bialgebroids. Much of the ensuing material
applies not only to bi-measured proper multiplier (B, I")-Hopf *-algebroids but also
to the following class of objects.

Definition 2.6.1. A multiplier (B, I')-x-bialgebroid (A4, A) is measured if it is
equipped with a left integral ¢, a right integral v, and a weight u for (B,T")

such that v := g o ¢ and v™! := p o ¥ are faithful, positive, and coincide, and
Y(A) = B = ¢(A).
Remarks 2.6.2.

i) Given a measured multiplier (B, I')-Hopf *-algebroid as above, the maps ¢
and ¢ are x-linear. This can be seen from a similar argument as in Remark
2.4.6.

ii) If (4, A€, S, h, n) is abi-measured proper multiplier (B, I')-Hopf x-algebroid
and ¢ = (id®u)oh and ¥ = (u ®id) o &, then (4, A€, S,¢, ¢, 1) is a
measured multiplier (B, I')-Hopf *-algebroid by Lemma 2.5.4. In that case,
$poST =y andvoS = vbyLemma 2.4.4 iii).

Till the end of this subsection, let (4, A, €, S, ¢, ¥, 1) be a measured multiplier
(B,T)-Hopf *-algebroid and let (Dy), be the Radon-Nikodym cocycle for p.
Define D, D: A — A by

D(a) = r(Dy-1)a = ar(Dy}),  D(a) = s(Dj-1)a = as(Dé_al) (2.9)

for all homogeneous a € A.
Lemma 2.6.3. D and D both are algebra and (B, T')*'-module automorphisms of
A, and satisfy
(D®id)oA=AoD, (d®D)oA=AoD, (D®id)oA=(@(d®D)o A,
DoD=DoD, SoD=D10S, SoD=D710S8,
xoD=Dlox, xoD=Dlox.

Proof. The maps D and D are bijective because D, is invertible for each y € T'.
The remaining assertions follow from straightforward calculations, for example,

D(xy) = r(Da;yl)xy = r(Da;lax(Da;l))xy = r(Da;l)xr(D{,;l)y = D(x)D(y),
S(D(x)) = S(r(Dy)x) = S(x)s(Dz ) = DH(S(x)),
D(x)* = x*r(Dy_;) = x*r(Dy ) = D™'(x*) forallx,y € A. O

Lemma 2.6.4. Let w € {¢, V¥, v}.
i) w(Ay,y) = 0whenever (y,y') # (e, e).
ii) wrb)s(b)a) = wl(arb)s(d)) foralla € A, b,b’ € B.
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iii) w(D(a)a') = w(@D~(a")) and w(D(a)a’) = w(@D~(a")) forall a,a’ €
A.

Proof. 1) For w = v, the assertion follows from the relation ker ¢ + ker  C kerv.
To obtain the assertion for @ = ¢, ¥, use the fact that w is faithful.

ii) Let a € A and b,b’ € B. Then v(r(b)a) = ube(a)) = ulp(a)b) =
v(ar (b)) and similarly v(s(b")a) = v(as(b’)). To obtain the assertion for w = ¢, ¥,
use the fact that p is faithful again.

iii) This follows immediately from equation (2.9) and 1). [

We shall now show that v = @ o¢ has a modular automorphism and thus satisfies
an algebraic variant of the KMS-condition. Let us briefly recall this concept.

Let C be a x-algebra with local units and a faithful, positive, linear map
w:C — C. A modular automorphism for w is a bijection 6,: C — C satisfying
w(cc’) = w(c'By(c)) forall ¢c,c¢’ € C. If it exists, a modular automorphism 6,, for
o is uniquely determined, an algebra automorphism, and satisfies w o 6, = w and
Oy © * 0 B, o * = id¢. This follows easily from the relations

0(z0,(xy)) = 0(xyz) = 0(yz0,(x)) = ©(20,(x)00(y)),
0(yx) = o(x*y*) = 0(y*0u (x*)) = 0(0u(x*)*y) = @(y 00 (0u (x)™)),

where x,y,z € C.

As before, let (A, A,€,S,¢,¥, u) be a measured multiplier (B, I')-Hopf *-
algebroid.

Theorem 2.6.5. Let (A, A€, S, ¢, Y, ) be a measured multiplier (B, T")-Hopf *-
algebroid and letv = o = o .

i) There exists a modular automorphism 6 for v.
ii) 6 isa (B, )% -module automorphism of A.
i) IfvoS =v, thenfoS =S o007
Proof. 1) The proof repeatedly uses strong invariance of ¢ and ¥, and closely follows

[31], where the corresponding result was obtained for multiplier Hopf algebras. We
proceed in three steps.
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Step 1. Repeatedly using Remark 2.4.2 iii), we find that for all homogeneous
x,x",y,y €A,
0 =0,' = v'(sxx)y) = p( (¥, (¥ (xx)))
= (¥ (xx)dy (¥ (vy) D3 )
=v (xs((yy)NDK).  (2.10)
Ix =0y = v(yr(¥(xx)y") = w(@(yyH9y (¥ (xx'))
= W@y ($(ry") Dy, )W (xx"))
= v (xs(@(D(YNX). Q211
=09, = v(yr(@(xx))y") = 1y (p(xx)Np(yy")
= (@3 (1Y) Dy-)p(xx"))
=v(xr(@(D(y)y"))x). (2.12)

Step 2. Letc,d € A be homogeneous and let

a=Y DsW(dSa))ew) €A, d =Y dayr(@(D(S(day)D(c))) € A.

(2.13)
Then the equations above and Proposition 2.5.3 imply
v(za) = Y v(ED (W (AS(c@))e))

=Y v(ds(@¥(zc))Se)) (Equation (2.10))

=Y v(drYzme)ze) (Proposition 2.5.3)

=Y v(EWs@(D(d)z2))e) (Equation (2.11))

=Y v(S(D(dm))r(¢(d@)2))c) (Proposition 2.5.3)
=Y v(Sd)r(¢(d22))D(c)) (;15(61 g'g'fiﬁ?) D7'oS

= Z v(d(z)r(¢(D(S(d(1)))D(c)))z) =v(a'z). (Equation2.12)

Step 3. Using bijectivity of the maps D, S, T} and the relation (s(y(4))A) = A,
one finds that all elements of the form like a in (2.13) span A. A similar argument
shows that the same is true for elements of the form like a’. Hence, there exists a
bijection 8: A — A such that v(az) = v(z6(a)) for all @ € A, and uniqueness of
such a bijection follows from faithfulness of v.

ii) We first show that 6 respects the grading. Let c,d € A be homogeneous. Then
the element a in (2.13) is homogeneous as well, with grading given by d, = d. and
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da = 04 because Y (dS(cz))) = O unless dg = dery = E_)c(l), and similarly o’
in (2.13) is homogeneous with the same degree like a. To see that 6 is B ® B-
linear, use the relation v(y0(r(b)s(b")x)) = v(r(b)s(d')xy) = v(xyr(b)s(b)) =
v(yr(b)s(b")0(x)), where x, y € A and b, b’ € B, and faithfulness of v.

iii) If v o S = v, then we have v(y0(S(x))) = v(S(x)y) = v(S~1(y)x) =
(@71 (x)SH(y)) = v(yS(O~1(x))) forall x, y € A. O

Define 9D,9[),90,[)i14 — A by

Op:=0oD 1'=D71o89,
05 :=0oD'=D"lo0,
Opp:=0cD oD

Proposition 2.6.6. Let x,y € A be homogeneous. Then
i) ot =¢andPp(xy) = dx(¢(y0p(x)));
i) Y00 =y and ¥(xy) = (Y (y0;5(x)));

iii) hof = handh(xy) = (0x ® 5x)(h(y9D,D- (x))) if h is a bi-invariant integral
andv = (L Q ) o h.

Proof. Assertion i) follows from the fact that w is faithful and that for all homoge-
neous x,y € Aand all b € B,

(b (6(x))) = v(r(b)0(x)) = v(O(r(b)x)) = v(r(b)x) = n(be(x)).
(b (y0(x))) = v(r(b)yO(x)) = v(xr(b)y)
= v(r(3x(bDy,))xr(Dy1)y)
= u(@x(bDy, )p(D(x)y)) = u(bd;" ($(D(x)y))).

Assertions ii) and iii) follow similarly. L]

Recall that a B-module N is called flat if the functor N ® — on the category of
B
B-modules is exact or, equivalently, preserves injectivity of morphisms.

Proposition 2.6.7. Assume that Ay is a flat B-module. Then Aofp = (S?®0p)oA.
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Proof. Let x, y € A be homogeneous. Using Sweedler notation, we calculate

D 0p(xX))s(@(y0p()2) = D _ S(s(d (3200 (x))y1)) (Prop. 2.5.3)
=) S(s07 (¢ (xy@))y)) (Prop. 2.6.6)
=Y S(us@(xye))
=S (s(p(x@¥)x)) (Prop. 2.5.3)

=Y S%(s(xe) (@ (0D (x2)))X(1))  (Prop. 2.6.6)
=Y 8%(xa)s(p(y0p (x)))-

Since Ay is a flat B-module and maps of the form a — ¢(ya), where y € A is
homogeneous, separate the points of A, we can conclude

> 0p(x)1)®0p (X)) = Y S*(x1))®6p (x(2). O

2.7. The dual x-algebra. Let (A4,A,€,S,¢,%, u) be a measured multiplier
(B, T')-Hopf *-algebroid. Denote by M(A)’ the dual vector space of M(A) and
let

A:={v(x—):x € A} C M(A).

Then A = {v(—x) : x € A} by Theorem 2.6.5 and for each w € A, there exist
unique B-module maps ,w: M(A) — B, w,: M(A), — B, sw:sM(A) — B,
ws: M(A)s — B whose compositions with p are equal to w, because v = (o ¢ =
o and p is faithful. Using either of these B-module maps, one can equip A
with the structure of a x-algebra. We shall choose an approach that fits well with the
duality on the operator-algebraic level in the next section.

First, we define an abstract Fourier transform

A=A, x> 2:=v(Sx)-).

which is a linear bijection because v is faithful. Evidently, X; = ¥ (S(x)—) and X, =
¢ (S(x)—), and by Proposition 2.6.6, ;X = ¥ (—0(S(x))) and ,x = ¢(—0(S(x))).
For all x,a € A, we define a right convolution

axX:=Y agr®aw)) =Y apr@(Sxam)) € A. (2.14)

Remark 2.7.1. One could also work with the transform 4 — /f X = X =
v(—S(x)), and the left convolution defined by

X *a:= Zs(r)vc(a(z)))a(l) = Zs(qﬁ(a(z)S(x)))a(l) €A forallx,a e A.
(2.15)
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If ¢ o S = o, for example, if we are in the bi-measured case (see Remark 2.6.2 ii)),
then

S(x) * S(a) =Y s(p(S(@@S*(x))S@ ) = Sagr @ (S(x)aw)))) = S(a %)

foralla, x € A.

We collect a few useful formulas. First, for alla, x € A4,

axx=Y r(¥(aufp)ag. (Proposition 2.6.6)  (2.16)
ax%=Y STr@E®wma)SE @)
=Y x)s(Y(S(x@))a) (Proposition 2.5.3)  (2.17)
Next, foralla,x,y € A,b € B, y,y',8,8 €T,
r(h)a* % =axsb)yx, ar(d)*%=ax*xsb), 018
s(b)a * £ = s(b)(a * %), as(b) x % = (a x £)s(b),
(@x£)* 9 =Y agr@SGagr@(Sxam)))
=Y aprW(SOMxwmsW (SE)am))) (2.19)
= a@yr (W (SEar@SMxam)am)) =a* (x * 3).
Ayyr 5 As g Y s (Ag—1 g=1 Ayy ) Ayryr € Sy 0 As . (2.20)
"

where we used Lemma 2.6.4 in the last line. Finally, note that the surjectivity of 75
(Proposition 2.3.8) and of ¥ imply

(Ax A) =y ®id)(T>(4, ® rA)) = (Ar(y(4) = (Ar(B)) = 4. (221)

The (B, I")®-algebra structure on A induces the following structure on A:

Proposition 2.7.2.

i) A carries the structure of a non-degenerate x-algebra, where X = x * y
and x* = S(x)* forall x,y € A.
ii) There exist non-degenerate *-homomorphisms 7,5: B — M (/I) such that
Fb)2 =xr(B). 2F(0) = xs(b). ()% =rb)x. 1) = s(b)x
forall x € A,b € B. The images of ¥ and § commute.

iii) Let AV = (71,,1,\/)f0r all y,y' € T. Then A = D, er A" as a vector
space and

A 438 5)’/,8141/,8/’ (/fy,y/)* — AV, f(B)§(B)/f””/ c A
forally,y' 8,8 €T.
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Furthermore, forall y,y’,8,8' €T, a € AV b,b’' € B,
F(D)S(B")a = F(y~ (B)3(y(b))a and ai(b)s(b') = ar(y'' (b")S(y'(b)).

Proof. 1) The multiplication is associative and turns Aintoa non-degenerate algebra
by (2.19) and (2.21). The *-operation is involutive because * o § is involutive, and
anti-multiplicative because

Sy =Y SGer@S®yan)*
=Y S sW () Sx)")
=" S0 WSS S()*) = S(0)* * SK)*.

i) For each b € B, the formulas above define multipliers 7(b),§(b) € M (A)
because

FEB)Z) = (xr(b) % §) = (x % ys(b)) = (FF(b))%

and similarly y(5(b)X) = (5(b))x for all x, y € A by (2.18). The maps 7, §: B —
M (A) are non-degenerate homomorphisms because r, s: B — M(A) have the same
properties, their images evidently commute, and they are involutive because

FF(B)* = (x3(B)* = (S(xs(b)*) = (S(X)*r(b*)) = F(b*)2*

and similarly (X5(b))* = §(b*)x* forallx € A, b € B.

iii) All of these assertions follow easily fronl the definitions and relation (2.20),
for example, F(b)x = );(?) = (r(y(b))x) = S§(y(b))x for all y,y’ € T,
xeAy,,.beB. O

3. Construction of associated measured quantum groupoids

In this section, we fix a measured multiplier (B, I')-Hopf *x-algebroid (4, A, €, S, u,
¢, ¥) and construct operator-algebraic completions of this algebraic object in the
form of a Hopf C *-bimodule, Hopf—von Neumann bimodule and a measured quan-
tum groupoid. Along the way, we shall impose further assumptions on B, T', u, A
which were mentioned already in the introduction, most notably properness.

The basic idea is to use the GNS-representations for the weight u on the basis B
and the functional v on the total algebra A, respectively. Naturally, some restrictions
have to be made on B, I', u. To show that v admits a bounded GNS-representation
and to lift the comultiplication to the level of operator algebras, we use a fundamental
unitary. To take full advantage of this unitary, we describe its domain and range as
relative tensor products, and show that it is a pseudo-multiplicative unitary in the
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sense of [24] and [27]. The necessary modules are introduced in §3.2, and the unitary
itself is constructed in §3.3. This part uses Connes’ spatial theory [20], and the
relative tensor product of Hilbert spaces over C *-algebras which was introduced in
[22]. The fundamental unitary then gives rise to completions of 4 and A in the form
of Hopf C *-bimodules and two Hopf—von Neumann bimodules; see §3.4-§3.6.To
obtain the full structure of a measured quantum groupoid, we finally extend the
integrals ¢, ¥ to the level of von Neumann algebras and show that these extensions
are left- or right-invariant again in §3.7.

Before we turn to details, let us briefly sketch the construction of the fundamental
unitary, which we denote by W. Its domain and range can be described as separated
completions of the relative tensor products ;A %) ;Aand A % A, with respect to the

sesquilinear forms given by
(x @ y1x' @ y)ag,a) = V(s @y (@ (" yHNN).

/ / * * ./ / (31)
(x@MIx" Q@ y)(a0a,) = v(X T(@(y y))x")
B B B

for all x, y € A, where y is assumed to be homogeneous in the upper line. Note that
positivity of these forms is not evident because ¢ is not assumed to be completely
positive in any sense. Given that positivity, the map

Thy: ;AR A > s AR A, x®@y > AY)(x®1) = Zy(l)x ® Y(2)s
B B B B B

extends to a unitary on the respective completions because it is surjective by
Proposition 2.3.8 and isometric as shown by the calculation

> ayx ® Yo lymx' 9 yéz))(sA%A) = v(x*y{) SOy @ (i Y)Y X))

= v(x* (@Y VY inx)

= v(x*r(@(*y))x")

=(xQy|x' ® ¥ a04,) (3.2)
B B B

where y(7) is assumed to be homogeneous without loss of generality. The adjoint of
this extension is the fundamental unitary W'.

Similarly, one can construct and employ another unitary V' which is an extension
of the map T7: A % sA — A %) A, x % y = A(x)(1 %) ¥). We shall focus on

W because this unitary is given preference in the theory of locally compact quantum
groups and measured quantum groupoids.

3.1. Preparations concerning the base. We define an inner product on B by
(b|b") = w(b*b’) for all b,b’ € B, and denote by K the Hilbert space obtained
by completion, and by A, : B — K the canonical inclusion.
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From now on, we assume:

(A1) The weight w admits a GNS-representation via bounded operators in the
sense that the following equivalent conditions hold:

i) for each b € B, there is a A > 0 such that u(c*b*bc) < Au(c*c) for
allc € B;

ii) the formula 7, (b)A,(c) = A, (bc) defines a *-homomorphism
. B = L(K).

Remarks 3.1.1.

i) Assumption (A1) holds if B is a pre-C *-algebra since then u(c*b*bc) <
w(c*|6*b|c) = ||b*b||u(c*c) for all b,c € B. Conversely, if (Al) holds,
then B can be regarded as a pre-C *-algebra with respect to the norm given by
b= ||z (B)].

ii) To apply the constructions below, it may be useful to first perform a base
change, similarly as described in [21, §2], to replace B by a pre-C *-algebra
of the form C,.(£2), where Q2 is a locally compact space with an action of
I'. For example, one can take €2 to be the set of all *-homomorphisms
x: B — C, equipped with the weakest topology that makes the function
Q — C, y — x(b), continuous for each b € B, and perform a base change
along the canonical map B — M(C.(2)). Note, however, that such a base
change can not simply be applied to left and right integrals, but only to bi-
integrals.

Recall that a Hilbert algebra is a x-algebra with an inner product such that left
multiplication by each element is bounded, the resulting *-representation is non-
degenerate, and the involution is pre-closed with respect to the norm induced by
the inner product. Since B is commutative, the map A, (B) — A, (B) given
by A,(b) — A, (b*) extends to an anti-unitary operator J, on K, and hence
A, (B) € K together with the *-algebra structure inherited from B is a Hilbert
algebra. We thus obtain

* avon Neumann algebra N := 7, (B)"” € L(K),

» an.s.f. weight i on N such that (7, (b*D)) = (A, (b)|A (D)) = n(b*b)
forall b € B,

e aleftideal My = {x € N : fi(x*x) < oo} € N of square-integrable
elements,

* aclosed map Ay:M; — K such that (K, Ay, idy) is a GNS-representation
for fi; this is the closure of the map m, (B) — K given by m, (b) — A, (b).
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3.2. Various module structures. We define an inner product on A4 by (ala’) :=
v(a*a’) forall a,a’ € A and denote by H the Hilbert space obtained by completion.
We call the canonical inclusion of 4 into H the GNS-map for v and denote it by A,,.

Lemma 3.2.1. There exist maps Ay, Ay, A;, A:r[,: A — L(K, H) such that for all
x,y€ A beB,
Ap ()AL (b) = Ay(xr (b)),
Ag()" Ay (¥) = Ap(@(x*y)),  Ap(x)*Agp(y) = mu(p(x™y)),
Ay (X)A (D) = Ay(xs(b)),
Ay ()" Ay (y) = Ap(W (X)), Ay () Ay (y) = mu (Y (x7y)),
AS)AL(b) = Ay (r(D)x).
AT AL (D) = A@(O(x™). AL AL() = mu(@ (),
ALCOALB) = Ay(s(b)x),

AL AL () = A (O, AL AL (G) = M (yo())).
Proof. We only prove the assertions concerning Ay and AL. They follow from the
relations
1A Ger ()12 = v(r (b)*x*xr (b)) = n(b* ¢ (x*x)b) < |l (P (™ )AL (D)1,
(AvDIAv(xr(B))) = v(y*xr () = p(@(y*x)b) = (Au(@(x*y)IA (D))

and
1A (r (0)x) |12 = v(x*r(b*b)x) = v(0~" (x)x™r (b*b))
= (@07 (x)x™)b"b)
< 1Ap@) Pl (071 ()2 ™).
(A (MIAL(r(B)x)) = v(y*r(b)x) = v(O7 (x)y*r (b))
= (@0~ (x)y*)b)
= (Au(@(yO(™)NIALD)),
which hold forall x, y € Aand b € B. O

The maps introduced above yield various module structures on H as follows. Let
Ep:=[Ap(D]. Ey:=[Ay(D]. E}:=[AL]. E}:=[Al )] (3.3)

We shall use the following concepts introduced in [22, 24]. A C™*-b-module,
where b = (K, [, (B)], [,,(B)]), consists of a Hilbert space L and a closed subset
E < L(K.L) such that [EK] = L, [En,(B)] = E, [E*E] = [n,(B)]. Each
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such C*-b-module gives rise to a normal, faithful, non-degenerate representation
pe:N = m,(B)” — L(L) such that pg(x)é§ = éx forallx e N,§ € E. AC*-
(b, b)-module is a triple (L, E, F) such that (L, E) and (L, F) are C*-b-modules
and [pg (7, (B))F] = F and [pF (7, (B))E] = [E].

Lemma 3.2.2. The Hilbert space H is a C*-(b, b)-module with respect to either
two of the spaces Eg, Ey, E;;, EZ; The representations o = pE;, B = 'OEJ,’

o= pE,, ,/g := pEg, of N on H are given by

a(mu (b)) Av(a) = Ay(r(b)a), P(ru(b))Av(a) = Ay(s(b)a). 3.4)
Blru®)Av(@) = Ay(ar®)), @(ru(b)Ay(@) = Aylas(b)) '

forallb € B,a € A.

Proof. Let E, F be any two of the spaces listed above. Then [EH] = H and
[Er,(B)] = E because (r(B)s(B)Ar(B)s(B)) = A, and [E*E] = [n,(B)]
because ¢(A) = B = Y (A). Thus, (H, E) is a C*-b-module. The formulas
for the associated representations are easily verified. Using these formulas and the
relation (r(B)s(B)Ar(B)s(B)) = A, one easily checks that [pg (7, (B))F] = F
and [pr (7, (B))E] = E. O

Recall that a vector ¢ in a Hilbert space L is bounded with respect to a normal,
non-degenerate representation p: N — L(L) and the weight fi if the following
equivalent conditions hold:

i) there exists a K > 0 such that [|p(x)¢|| < Kjt(x*x) for all x € Ng;

ii) there exists an operator R?’ﬁ“ € L(K, L) such that R‘;’ﬂAM(x) = p(x)¢ for

all x € ‘ﬁﬂ.
The set of all such bounded vectors is denoted by D(L,, ). This spaces carries
an N-valued inner product (—|—), s, given by (¢|¢"), i = (R?“)*Rg,’”“ for all
£.t' € D(Ly. ), and p(N)' D(Lp. ) = D(Ly. fi) and

A1) = (RP)'Y, RE = TRY™ forall T € p(NY,¢.¢ € D(Ly, ).

(3.5)
Lemma 3.2.3. A,(A) € D(Hy, ft) N D(Hg, 1) N D(Ha, a)n D(H/ﬂ\, L) and for
all x,y € A,

~

Wi _ At Bt _ At Wi _ B _
RAU(X)—A¢(x), RA,,(x)_Aw(x)’ RA,,(x)_AVf(x)’ RAU(X)—A¢(x).

Proof. We shall only prove the assertion concerning «. Let a € A. Then
A;(a)Aﬂ(nM(b)) = A,(r(b)a) = a(m,(b))Ay(a) forall b € B, and since 7, (B)
is a core for A, we can conclude A:; (@)Ap(x) =a(x)Ay(a) forallx € Ny, O
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The preceding result and Lemma 3.2.1 imply that for all x, y € A4,

(MDA ()i = (@ (O, (Av(X)[A )i = mu (P (O(x™))),
(AN D)ap =T (TY). (AIA (D)5 ;= Tu(@(xTy)).
(3.6)

3.3. The fundamental unitary. To define the domain and the range of the
fundamental unitary, we use Connes’ relative tensor product of Hilbert modules
and the module structures introduced above. Connes’ original manuscript on the
construction remained unpublished; we therefore refer to [20] and [23] for details.
The relative tensor product H g ® o H is the separated completion of the algebraic

n
tensor product D(Hg, j1)® K® D(Hy, j1) with respect to the sesquilinear form given
by

@@t @ ®@n') = (CIEIE g1 anl). (3.7

This Hilbert space can naturally be identified with the separated completions of the
algebraic tensor products D(Hg, 1) ® H and H ® D(H,, ft) with respect to the
sesquilinear forms given by

(E@nE ®@n) = nla((ElE)pn)n') and (E®@nlE ®@n') = EIB(NIN)an)E)
(3.8)

respectively, via

f@ R =twten= Rt ®, (3.9)
and we shall use these identifications without further notice. Replacing the
representations B,a by «, 8 or &, B, respectively, one obtains the relative tensor
products Ho®2H and H-QpH.

s 7
To proceed, we impose the following simplifying assumption:
(A2) The Radon-Nikodym cocycle (D), of u has a positive square root in M(B)
1

in the sense that there exists a family (D )yer in M(B) such that for all
v,y €T, c € B,

1 1 1 1

D =1, (D})*=D;, (D})?*=D,,
1 1 1 1

D}, =y "D;)D,, p(c*Dyc)=0.

Clearly, this condition implies the existence of a unitary representation U: " —
L(K) such that

1
UyAu(c) = Au(y(eDy)), nyrpu(b)U)jk =m,(y(b)) forallb,c e B,y el.
(3.10)
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Similarly as in (2.9), we define linear maps D2, D2: A — A by

1 _1 _ 1 _1
D2(a) = r(D; )a = ar(D;?), D%(a) = s(DZ )a = as(D; ?)

for all homogeneous a € A. These maps share all the properties of the maps D, D
listed in Lemma 2.6.3. Short calculations show that for all homogeneous x, y € A,

M)yt = AL(DE().  (Au(D2)AVDE())asi = 1 (Bx($(x* 1)),
(3.11)
Ay @)Uz = AL (D2(x). (Ay(DEE)IAD2D))) g = 7 (Bx (W (x*))).
(3.12)

Indeed, for all homogeneous x,y € Aand b € B,

AUy Ay(b) = Ay (er (35 (BD2)))
= M BDL)x) = AY(DF)AL®B).
AFD2 ) ALD (1) = Uy Ap ()" Ap (1) Uy
= Uax”u((f)(X*y))Ua;l = ﬂu(ax(d’(X*y)))-

Lemma 3.3.1. The sesquilinear forms on A ® A and , A ® A, defined in (3.1) are
B B

positive. Denote by ;A ® A and A ® A, the respective separated completions.
B B

Then there exist isomorphisms

Ay AR Ar — Ha®ﬁH, xQy > Ay(x) ® Au(y),
B i B i

NA® A Hp®uH, x@y > Avx) 8 Av(DZ(y)).
il it

Proof. The maps A, A’ are surjective because A,(A) C H is dense, and they are
well-defined and isometric because (3.8), (3.6) and (3.11) imply for all homogeneous
x,ye A

(Ax @ MIAX ® y)) = v(x"s(p(y*y'))x),
(A (x @ »IAN (X @) =v(x r@y(@(y*y)))x"). O
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Proposition 3.3.2. There exists a unitary W: Hg®uH — Hg @EH such that
i i
W*o A = A oTyasmapsfrom, AR A, to Hg®q H, that is, for all homogeneous
B i
X,y € A4,

WA @ A1) = 37 Ay(D2(y1))x) @ A ()
L Av(D2 (y2))),
WA 8 M) = 3 Au(STHD ™ (yy)x) ® Av(v2)
=" AP ray)x) & Ay ()

Proof. Calculation (3.2) and Lemma 3.3.1 imply that the map A, (x) ® Ay (y) —
n

> Av(yayx) %) AV(D%(y(z))) extends to an isometry Ha%)/EH — Hﬂ%aH.

Bijectivity of this isometry and the formula for W follow from Proposition 2.3.8
and Lemma 2.6.3. 0

Similarly, the map 7 yields a second fundamental unitary:

Proposition 3.3.3. There exists a unitary V: H>®gH — Hpg®qH such that for
i i

all homogeneous x, y € A,
VA © AV = 3 Ay(D2(x(1))) ® A ()
=2 Ay @ Av(D 2 (x2)y),
VA @ M) = 30 A (k) @ Ay(S(D72(x2))y)
=2 M) ® Ay(D2(S(x@))).

Proof. The formula above defines an isometry V. Indeed, (3.8), (3.6) and (3.12)
imply

— 1 — 1
D {A(D2 (x1) ® Av(x) )| Av(D2 (x(1)) ® Av(X(5))) (H s )
n n u
= Z V(y*xzcz)r(gx(l)(w(xa)xh))))xéz)y/)

= Z V(y*xztz)xéz)r(w(xa)x&))))/)’
(Av(x) % Av(»)IAL(x) % MO E-gp 1) = V(s (P (X))
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for all homogeneous x, x’,y,y’ € A, where X(1) is assumed to be homogeneous
without loss of generality, and by right-invariance of ¥ (see Remark 2.5.2 1)), the
expressions above coincide. Bijectivity of V' and the inversion formula follow from
Proposition 2.3.8. 0

3.4. Boundedness of the canonical representations. The first application of the
fundamental unitary W is to show that left multiplication on A and right convolution
by A extend to representations on the Hilbert space H .

The proof of Theorem 3.4.2 involves operators and slice maps of the following
form. For each § € D(Hg,ji) and n € D(Hg, i), there exist bounded linear
operators

MUH > Hg@uH, > E@0.  pb“H > Hp@uH. & — & @0,
i i L i
(3.13)

whose adjoints are given by

AL E @) = a(ElE)pn. () E ©n) = Blnln )€ (3.14)

~

see also [4]. Likewise, there exist operators kg’ﬂ , p‘,’,"ﬁ H — Hy @EH forall £
I

D(Hy, 1) and 5 € D(H;,;, [t) which are defined similarly. Using these operators,
one defines slice maps

g % id: L(Ha®5H. Hy®uH) — LIH). T > (") TagP,
M i

id %y L(Ho ®5H, Hp®a H) > L(H), T > (ofey Tp%F
i i
forall§ € D(Hpg,ji),&" € D(Hy. 1), n € D(Hy, 1), 1 € D(Hzg, [1); see [3].

Lemma 3.4.1. Let x,x',y,y’ € A. Then

. * ~—1 / *
(id *wa, (y),4,3)) (WA (x) = Ay(ax), wherea = ZD 2(0(ys@ "y
(WA, @A, G * I (WAL (Y) = Ay(y * ¢), where ¢ = S—I(D%(e—l(x’)x*)).
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Proof. Without loss of generality, we may assume y to be homogeneous. Then

~

(PR W00 A ()
=Y (R (A ® A (D2 (¥())

=3 BUALDIALD 2 () a) Av(¥ipyx)  (Eqn. (3.14))

=3 Au(s@y (@D V) (1) x) (Eqn. (3.11))
= > M@ DT ))0) (Lem. 2.6.3)
=" A (DTG yig))). (Lem. 2.6.3),

B WP AL
= 08 Ay (Dz(yu))x)@A (@)

=" a((A@)|A (D2 (ya)x)) ) Av(¥2)  (Ean. (3.14))

=" AW (D2 (yay)x'0(x*))y ) (Eqn. (3.6))
= Z Avr@ (rayD 2 (X (x*))y2) (Lem. 2.6.3)
=Y AOer@ D27 (NDxNya).  (Ean. (2.16)0

Theorem 3.4.2. Let (A, A,€,S,u,d, V) be a measured multiplier (B, I")-Hopf
*-algebroid such that p admits a GNS-representation via bounded operators
(K, Ay, my) and its Radon—Nikodym cocycle has a positive square root in M(B).
Denote by A,: A — L(H) the GNS-map for v = po ¢ = o . Then there exist
non-degenerate x-homomorphisms m,: A — L(H) and p: A — L(H) such that

Ty (X) Ay (y) = Av(xy) and p(@)Av(y) = Av(y * ©) (3.15)

forallx,y € A,w € A.

Proof of Theorem 3.4.2. For elements a and ¢ of the form in Lemma 3.4.1, the
maps Ay(y) = A,(ay) and A,(x) — A, (x * ¢) coincide with compositions of
bounded operators and therefore are bounded. Since elements of this form span A4,
we obtain maps m,: A — L(H) and p: A — L(H) asin (3.15). Evidently, m, is a
*-homomorphism. The map p is multiplicative by (2.19) and Proposition 2.7.2, and
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it is involutive because by (2.17) and Proposition 2.7.2,

(p(R)* Aw(2)Au (1) = (p(SC)*) Aw(2)[Av (7))
= (Au(SO) s (SS@)EH)NIAL(K))
= V(s (" x1))S(x@2)y)
= (2 x s (W (S(x@)Y)) = (Av(2) PR AL ().

A

Finally, m, and p are non-degenerate because (AA4) = A and (4 *x A) = A
(see (2.21)). ]

Remark 3.4.3. Lemma 3.4.1, Theorem 3.4.2 and self-adjointness of 7, (4) and p(A)
imply

7wy (A) = span{(id xwx , (y),a, ) (W )|y, ¥ € A}
= span{(id *wa,,(;),a, ) (W)|y. ¥’ € A},

p(A) = span{(wn, (x).a, () * 1W*)|x, x" € A}
= span{(wa, (x).A, ) * Id)(W)|x,x" € A}.

For later use, we calculate the slices of V', which are defined similarly as those
of W*.

Lemma 3.4.4. Let x,x',y,y’ € A. Then

. 1 / *x ./
(@A, (0.8, () *IDVIAL(Y) = Ay(ay), wherea =Y D72 (x(5r (¥ (x*x(;))).
(id *wp, (y),0, ) (V)AL (X) = Ay (C * X), where ¢ = S_I(D_%(y’e(y*))).

Proof. Without loss of generality, we assume x to be homogeneous. Proceeding as
in the proof of Lemma 3.4.1, we then find

(AR %) Vki’f(x/) Av(y)
= > (8% )  (Au(D2(x(y)) @ Av(x(y))  (Def.of V)
=3 a((Av @) A (D2 (x{1))) ) Av () ¥)

=3 MA@ (W (D72 () x{1))x () Y) (Eqn. (3.12))
=3 A (D7 (g r (W (x* X)),
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(R Py )
= >R ) (M () : Ay(D2(x2))y")  (Def.of V)

= 3" BUAIAVD I (x2)Y N ai) Ao (1)
= > Au(s(@(D2 (x2)y 0™ x ) (Eqn. (3.6))
=" MA@ D20 N)xq). O

3.5. The Hopf-von Neumann bimodules. We next show that the fundamental
unitary W is pseudo-multiplicative in the sense of [27] and therefore yields two
Hopf-von Neumann bimodules, which are completions of A and A, respectively.
First, we need further preliminaries.

The relative tensor product is functorial so that there exist bounded linear
operators S ® T € E(H,g@aH) for all S € B(N),T € a(N), as well as

S ® T € £(H ®AH) for all § € a(N),T € ﬁ(N)’ both times given by
3 ® n— S§ ® T 77
In partlcular, the commuting representations «, f8, @, 73\ yield six representations
o ® id, o ®id, B ® id, id ®p, id@&, id®pB of N on Hg®yH, and further six
i 7

Iz Iz i i s
representations of N on Hy @EH .
n

Lemma 3.5.1. The following relations hold for all x € N:
Wid@B() = (B) ®iDW.  W@E() ®id) = @) ® i)W,
i i i i
W(B(x) ®id) = (B(x) @)W,  W(e(x) ®id) = (id @a(x)W,
i i i i
W(id ®B(x)) = (id®B(x))W, W(id ®a(x)) = (id @a(x))W.
i i i i

Proof. This follows immediately from the fact that 7, (B) € N is weakly dense,
the definition of W, and the formulas for «, 8, @, 8 given in Lemma 3.2.2. O

The relative tensor product is associative in a natural sense. The intertwining
relations for W obtained above imply that all operators in the diagram below are
well defined,
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W w.

Hg®uHp®aH ——> Hy@®3Hp®aH —> Hy®3Ha®5H.
i i i i i i
lW23 W12T
Wis

Hpg ® (idga)(Ha @gH) (Hp®aH)@asid @EH
i g fi it o

(3.16)

where Wi = W ® id, W3 = id®W, and W;3 acts on the first and third tensor
n

o
factor; see [27] for details.

Lemma 3.5.2. Diagram (3.16) commutes, that is, Wazs Wi, = Wi, W13 Was.

Proof. A short calculation shows that the adjoints of both compositions are given by
Ay(x) @ Ay(y) ® Ay(2)
i i
1 1
= A ymx) ® Av(D2 (2 ¥2) ® Av(D2(23). O
i i

Theorem 3.5.3. Let (A,A,€,S,u, ¢, V) be a measured multiplier (B, I")-Hopf
k-algebroid such that pu admits a GNS-representation via bounded operators
(K, Ay, my) and its Radon—Nikodym cocycle has a positive square root in M(B).
Let [i be the weight on N = m,,(B)" associated to the Hilbert algebra A, (B),
let Ay:A — L(H) be the GNS-map for v = po¢ = oy, and define

. f.p:N — L(H) as in (3.4). Then the unitaries W: Hg®uH — Ho®zH
i il

and V:HoQpH — Hp®uH defined in Proposition 3.3.2 and 3.3.3 are pseudo-
R i
multiplicative in the sense of [27].

Proof. The assertion on W is just Lemma 3.5.1 and Lemma 3.5.2. For V, the proof
is similar. O

Definition 3.5.4. Let (4, A,€,S, 1, ¢,¥), W and V as in Theorem 3.5.3. Then we
call W and V the left and the right pseudo-multiplicative unitary of (A, A, €, S, i, ¢, V),
respectively.

Recall from [26] that a Hopf~von Neumann bimodule over (N, i) is a von
Neumann algebra M acting on a Hilbert space L together with faithful, non-
degenerate, commuting normal representations y, 6: N — M and a non-degenerate,
normal *-homomorphism Ap:M — Mgx, M such that Ayy oy = y ® id,

i i
Ap o8 = id®8 and (Aprxid) o Ay = (id % Apr), where Msx, M = (M’ ®
I H i i fi

n
M’)Y € L(Ls ® yL),and Ay * id and id * Ay are suitably defined [16].
i i i
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Lemma 3.5.5. The following relations hold:

a(N) U B(N) € m,(4)" € B(NY NG(NY,

\ . R (3.17)
B(N)Ua(N) € p(A)" € B(N) Na(N)

and

nv(A)/ ={S e ﬁ(N)/ N O‘(N)/ | (Sa@EI)W = W(S,B @al)},
i i

N A (3.18)
p(A) =A{T € a(N)' N B(N)" | (la %gT)W = W(lg %aT)}-

Proof. The inclusions in (3.17) follow from Lemma 3.2.2, non-degeneracy of , (A)
and p(A) and equation (2.18). The equations (3.18) follow from (3.17) and Remark
34.3. O

Using (3.17) and (3.18) and slightly abusing notation, we define faithful, normal,
non-degenerate *-homomorphisms

Aimy(A)" — LHg®qH), x> W*(id®x)W,
i it

. (3.19)
Aip(A)' — L(Ha®5H), y > ZW(y @ id)W*S.
i i

Theorem 3.5.6. Let A = (A, A,¢,S, i, ¢, V) be a measured multiplier (B, T)-
Hopf x-algebroid such that p admits a GNS-representation via bounded operators
(K, Ay, ) and the Radon—Nikodym cocycle of w has a positive square root in
M(B). Let ji be the n.s.f. weight on N = 7, (B)" associated to the Hilbert algebra
A, (B) and let A,: A — L(H) be the GNS-map for v = o ¢ = o . Define
A — L(H), p: A — L(H) as in (3.15), (X,,B,B:N — L(H) as in (3.4) and
A, Aasin (3.19), where W: Hp Qo H — Hq @/EH is the left pseudo-multiplicative
i i

unitary of A. Then (m,(A)", o, B, A) and (p(A)", 73\, a, A) are Hopf-von Neumann
bimodules over (N, [i).

Proof. The tuples (m,(A)”,a, B, A) and (p(ff)”,ﬁ,a, A) are the Hopf-von Neu-
mann bimodules associated to the pseudo-multiplicative unitary W. More precisely,
the assertion follows from Proposition 10.3.10 and Theorem 10.3.11 in [23] and
equation (3.18). ]

Definition 3.5.7. Let (4, A€, S, 1. ¢, V), (7, (A)", o, B, A) and (p(A)", ,/3\ a,A)
be as in Theorem 3.5.6. Then we call (nv (A)” a, B, A) the Hopf-von Neumann
bimodule of (A, A, €, S, u, ¢, V) and (,o(A)” ﬂ o, A) the dual Hopf-von Neumann
bimodule of (A, A, e, S, 0, ¢, V).



Proper dynamical quantum groups as measured quantum groupoids 69

Theorem 3.5.6 above can also be deduced from the following explicit formulas
for A and A:

Lemma 3.5.8. Foralla,c,x,y € A,
A @)(A ) & Ay () = 37 Avlaex) & Av(D2(a@)y),
Mp@ (A @ A 0) = 37 A (0 (S@xmya)) & Ay
Proof. We calculate
A (@) 3 A ()@ ALD 20@)
= W @m @)W W (A () & Ay ()
= WA () @ Av(@r)

1
=Y Av(a@yymX) ® Av(D2(a@)y ).
I

W*Mp(é))(Av(x)%Av(y))
= (P(@) ® IDW* (Ay(x) @ Ay())
i i
= 2P OMOwY @ Av(D2(y2))
= 2 MO@rer (U S©yaxm) @ Av(D2(y(3)
=W* ) Av(xr(@ (S©)ymxw))) %’ Av(ye). O

Remark 3.5.9. Under the identification (3.9), for all homogeneous a, x,y € A and
ek

Ay (@) (A () ® E® Av(1) = D Avlagx) ® Upugr, § ® Avla@y).
where a1y is assumed to be homogeneous without loss of generality.

3.6. The Hopf C*-bimodules. The fundamental unitary W is a regular C*-
pseudo-multiplicative unitary in the sense of [24], and therefore yields Hopf C *-
bimodules which are completions of A and A. To prove this, we again need some
preliminaries concerning the relative tensor product in the setting of C *-algebras; for
details, see [22] and [24]. The construction is parallel to the von Neumann-algebraic
setting and differs mainly in notation.
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As before, let b = (K, [m,(B)],[7(B)]). The relative tensor product
H ;+ ® o+ H of the C*-b-modules (H, E:;) and (H, E;) is the separated comple-
v b P
tion of the algebraic tensor product E :/r, ®K® E; with respect to the sesquilinear
form given by

E@l@nlE @ ®@n') = (LI(EE) 0™ L) (3.20)

It can be regarded as a twofold internal tensor product of Hilbert C*-modules and
identified with certain separated completions E :/r/ GoH and Hg© E; of the algebraic

tensor products E:/r, ® Hand H® E], respectively, such that

El GoH=H_ ® H=Hy©F), ton=(®{®@n=£§01.
v b
(3.21)

Comparing the sesquilinear forms (3.7) with (3.20) and using (3.6), one finds that
there exists an isomorphism

Hp®uH 2 Hpi @ prH, Av(x) ®C 8 Av(y) = AL ®t® AL
n
(3.22)

Foreach § € EZ;, andn e E T, there exist bounded linear operators
|€)1: H — HEJ,?EJ,H’ n"—£tcn, nsH— HEIE(%E;H’ £—Ean

We denote their adjoints by (£]; and (5|,, respectively, and write |E3;,)1 = {|&)1 :
£ e E:;,}, |E;)2 ={n)2:ne€ E;} et cetera. Comparing with (3.13), we see that

under tl;le identification (3.22), /\(Xf(x) = |A:rl,(x))1 and p‘;\’f(y) = |AL (y))> for all
x,y € A.

Replacing EJ;I and E; by E; and Ey, respectively, one similarly defines the
relative tensor product H .+ ® g, H with a canonical isomorphism H .+ ® g, H =
® b b b

Ha®7’;H, and operators |§)1, [n)2: H — H @ g, H forall § € E; and n € Ey.
i ® b

Thus, W can be regarded as a unitary HE]; (%E;H — HE; (%)Ed)H.
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Lemma 3.6.1. Forall x,x’,y,y' € Aandy € {a,ﬁ,ﬁ}, vy €{a,a, B},

Av(x) ® Av(y) € D(Hp®aH)iawy, iL),
12 “ a

id @y, it P - + -
i _ o Vsl _ Vil
Ry mea) = A0, RAL o) = 1Ay CONRY (),
I

Av(x/) @ Av(y/) € D((He @"H)y’(gid»,a),
i ik i

)//@id,[/; ’g ; o~ /=
i _ o, v oo _ U Vou
RA\,<x’)§Au(y/) = PAyon Rag ey = 1Mo (V)2 RY oy

Proposition 3.6.2. The following equations for subspaces of L(H, H E} % E] H)

hold:
WIE})1Eg] = [|Eg)2EL). WIE)2Ey] = [|Eg)2Ey).
WIE)2Eg] = [|Eg)2Eg. WIE})E}] = [|E) E).
WIESWEL] = [IED ES ). WIEI W Ey] = [|[ED Ey).

Proof. We only prove the first equation; the others follow similarly:

id ®B.ii
WIEL W Egl = [(WRo" o € Ay(4) ® Ay(A)}] (Lem. 3.6.1 and (3.2.3))
n

B®id,i
=[{Ry. weA(A)RA(A)Y]  (Lem.3.5.1)
n

B®id.ji
=[{R," 0 €A, (A)QA,(A)}] (Def of W)
L

= [|Eg)2E} ). (Lem. 3.6.1 and 3.23) OJ

Theorem 3.6.3. Let A = (A, A,¢,S,u, ¢, V) be a measured multiplier (B, T')-
Hopf x-algebroid such that p admits a GNS-representation via bounded operators
(K, Ay, my) and the Radon—Nikodym cocycle of w has a positive square root in
M(B). Let b = (K, [7n,(B)).[7u(B)]), let Ay: A — L(H) be the GNS-map of
vV = po¢ = poy and define Ey, E;:, Ey, E:L C L(K, H) as in (3.3). Then the left
and the right pseudo-multiplicative unitary W and V of A, regarded as operators
HE;};(%E;H — HE;(%EobH and HEI//(%EJ,H — HE;};%E;H as above, are

C*-pseudo-multiplicative unitaries in the sense of [24].

Proof. The assertion on W is Proposition 3.6.2 and Lemma 3.5.2. For V, the proof
is similar. O
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Proposition 3.6.4. W and V are regular in the sense that [(E;|1W|E;)2] =
[EJ(E})*] € L(H) and (E [V |E})2] = [EL(ES)* € L(H).

Proof. Let x,x',y € A. Then Al (y)A X)*A, () = Ay(r(p(y'0(x*)))y) by
Lemma 3.2.1 and

(AL LW AL 1AL ()
= (PR, W (Ay(x) ® M)

= Z B A\)()’)|AV(Dj (y(z))))a,ﬂ)/\v(yél)x)

=" A @(D (30 *))Y ()X (Eqn. (3.6))
=" MA@ 2) ¥y ) with z := D™2(8(y*))
= Z Ay (r(@(¥'z2)) Sz y)x). (Prop. 2.5.3)

. _1 e L.
Since the maps 6, D~2, S and T3 are bijections, we can conclude

{ALOIAL )™ tx y € A = [[(AL ) LW* AL ()1 1 x.y € 4.
The assertion on V follows from a similar calculation. O

Recall from [24] that a Hopf C *-bimodule over b consists of a C *-(b, b)-module
(L, E, F), anon-degenerate C *-algebra C C L(L) satisfying pg (7, (B)) € M(C)
and pfr(m,(B)) € M(C), and a non-degenerate *-homomorphism Ac:C —
Cr >[|: g C that is co-associative and compatible with £ and F in a suitable sense,

where
CF’EEC ={T € E(Lp@b{)EL) :T|F)1 +T*|F) C[|F):1C]
and T|E), + T*|E), C [|E)2C1}

is the fiber product of C with itself relative to F and E.

Theorem 3.6.5. Let A = (A, A,¢,S, i, ¢, V) be a measured multiplier (B, T)-
Hopf *-algebroid such that p admits a GNS-representation via bounded oper-
ators (K, A, my,) and its Radon—Nikodym cocycle has a positive square root
in M(B). Let b = (K,[n,(B)],[n.(B)]), let A,:A — L(H) be the GNS-
map for v = jo¢ = poy, let (nv(A)“ a, B, A) be the Hopf-von Neu-
mann bimodule of A, let (p(A)” B.a,A) be the dual Hopf-von Neumann bi-

module of A, define E¢,E¢,E1/,, EJ;, C L(K,H) as in (3.3) and regard A

and A as maps w,(A) — L(H i ® o+ H) and p(/i)” — L(H ,+®Eg,H) as
v b Po é b

above. Then (H. E}. E). [y (A)]. Alix, ay) and (H. Ey . E}). [p(A)]. Al ) 57)
are Hopf C*-bimodules over b.
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Proof. By Theorem 3.6.3 and Proposition 3.6.4, the left pseudo-multiplicative uni-

tary W of A, regarded as a unitary Hoi® +H — H.iQF,H, is a regular C*-
v b Eo b b

pseudo-multiplicative unitary. By [24], the latter gives rise to two Hopf C*-bimod-

ules (H. E}, E}). [(EglaW|E})2], A) and (H, Ey, E}) [{ES i WIEL )], A). Fi-

nally, by Lemma 3.4.1, [(E}[1W|E})1] = [p(A)] and [(Egl2W|E})2] = [A(A)].

O

3.7. The measured quantum groupoid. To obtain a measured quantum groupoid,
we finally extend v, ¢, ¥ to normal, semi-finite, faithful weights on the level of von
Neumann algebras. We impose the following simplifying assumptions:

(A3) the bimodule , Ay is proper in the sense that r(B)s(B) C A.

(A4) There exists anet (u;); in B thatis truncating for j in the sense that (7, (4;));
is a net of positive elements in the unit ball of m,(B) that converges in
M([r,,(B))) strictly to 1 and such that (7, (u?)); is increasing.

Note that a net (u;); as in (A4) exists always if we drop the condition that (i, (ul.z)),-
should be increasing.

Let us also note that in the bi-measured case where ¢, ¥ and v arise from a bi-
integral s on (A4, A), the extensions of ¢, ¥, v and the invariance of these extensions
can be proved quite easily, see Remark 3.7.5 and 3.7.10.

For the extension of v, we do not need the assumptions (A3) and (A4), but use
the modular automorphism 6 for v obtained in Theorem 2.6.5, the theory of Hilbert
algebras [20], and results of Kustermans and van Daele [11].

Lemma 3.7.1. A, (A) € H is a Hilbert algebra with respect to the *-algebra
structure inherited from A.

Proof. The multiplication A, (y) — A, (xy) is bounded for each x € A by Theorem
3.4.2, and the involution A, (x) — A, (x*) is pre-closed because

(Av()AL(YF)) = v(x*y™) = v(y™0(x™) = (A (M)A (O(x™)))

forall x,y € A. O
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The general theory of Hilbert algebras [20] now yields

e M = m,(A)” € L(H) as the associated von Neumann algebra,

e an.s.f. weight b on M such that ¥ (m, (a*a)) = (Ay(a)|Ay(a)) = v(a*a) for
alla € A,

e aleftideal My = {x € M : P(x*x) < oo} € M of square-integrable
elements,

¢ aclosed map Ay: 91y — H such that (H, Ay, idps) is a GNS-representation
for ¥; this is the closure of the map 7,(4) — H given by m,(a) — A, (a);

* the usual objects Jy, Ay, oV, T, ... of Tomita-Takesaki theory.

The modular automorphism @ is related to the modular automorphism group o®

as follows:

Proposition 3.7.2. 7,(4) C Ty and ar‘fi(n,,(a)) = my,(07"(a)) for all a € A,
neZ.

Proof. Use the arguments in [12, §3], in particular from Lemma 3.16 till Proposition
3.22. O

Let A% := {a € A: 6(a) = a} C A. Note that this space is a *-subalgebra and,
by (A3), contains r(B)s(B).
Lemma 3.7.3.

i) o acts trivially on ,(A%)", in particular on a(N) and B(N).

i) Jya(x)*Jy; = E(x) and J5B8(x)*J; = d(x) forall x € N.

Proof. i) The first assertion follows from the fact that o (x) = A%’xA;” and
A;lef, = x for each x € m(A?) by Proposition 3.7.2, and the second assertion
follows from the fact that o is normal for all # € R and acts trivially on
my(r(B)s(B)).

11) Combine i) and Lemma 3.2.2. ]

Proposition 3.7.4. There exist unique n.s.f. weights Ty, from M to a(N) and Tg
from M to B(N) suchthat ioa= ' oTy =9 = jiof 7 o Tg.

Proof. This follows from Lemma 3.7.3 i) and [18, 10.1] or [20, IX Theorem 4.18].
]

We thus obtain extensions ¢ := o' o Tz and ¢ := 7' o Tg of ¢ and V.
Remark 3.7.5. Assume that ¢ = (id ®u)oh and ¥ = (4 ® id) o k for a normalized
bi-integral 2 on (4, A). Then the map A, (B)®A ,(B) — A, (A) givenby A, (b)®
A (D) — A,(r(b)s(b’)) extends to an isometry 1: K @ K — H, and a short
calculation shows that (*7, (a). = (7, ® 7,)(h(a)) for alla € A. We therefore
get a positive, normal, linear extension h:M — N , X > *xt, of h, and thereby the
desired extensions ¢ = (id ®j1) o i, ¥ = (i®id) o h and ¥ = (iQ®}2) o h.
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Recall that an element £ € H is right-bounded with respect to the Hilbert algebra
A, (A) if there exists an operator Rg € L(H ) such that 7, (a)§ = RgA,(a) for all
a € A. Note that then Rg € M.

Lemma 3.7.6.
i) If x € A% then A,(x) € H is right-bounded, RA,(x) = Jymy(x)*J, and
[RA, ol = Il o) -
ii) If x € A’ N r(BY, then m,(a)Ay(x) = Ra,x)Ag(a) foralla € A.
iii) Ifa € A and § € K is right-bounded with respect to A ,,(B), then Ag(a)é =
B(Re)Ay(a).

Proof. i)Forall x € A%, a € A, we have wy(@)Ay(x) = Ay(ax) = Jymy (x)* T, Ay (a).
i) Forall x € 47 N r(B),a € A,b e B,

my(@)Ag(x)A L (b) = Ay(axr(b)) = Ay(ar(b)x)
= my(ar(b))Ay(x)
= RA, ) Av(ar(d)) = Ra,x)Ag(@)A (D).

iii) Ifa € Aand § = A, (b) for some b € B, then Rg = 7 (b) and Ay(a)s =
Ay(ar (b)) = B(ru(b))Av(a). Now, the assertion follows for all right-bounded

& because A, (B) is a core for A and the right-bounded elements coincide with
Ap(Mp). O

To prove Theorem 3.7.9, we construct increasing approximations of the weights
i, 7, ¢, ¥ by bounded positive maps, using an approximate unit (;); in B with the
properties assumed in (A4). Let u; ; := r(u;)s(u;) € A, and define for all 7, j
bounded, normal, positive, linear maps

wi:N — C, x> (Ayu(ui)|xA,(u;)),
vij:M — C, x> (Ay(uij)|xAy(u;j)),
gb,',j: M — N, xm— A¢(ui’j)*xA¢(u,~,j),
Wi,j: M — N, X = All,(ui,j)*xAd,(u,-,j).
Given a net (A,), of real numbers, we write (A,), ' A if it is increasing and

converges to A. Likewise, given a von Neumann algebra C with a net (w), in C.
and a n.s.f. weight w, we write (wy), " w if W (x*x) / w(x*x) forall x € C.

Proposition 3.7.7.
i) (wi)i /" rand (vij)i; /' V5
ii) (Wodijij /v o¢~)and (o vo &forallv € N*+.
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Proof. 1) We only prove the assertion concerning v.

Let&;j := Ay(ui,j) and Ry j := Rg, , = Jymy(u;,j)Jy forall i, j.

The net (v;,;);,; in M, is increasing because (R} ;Ri,j)i,j 1s increasing by
assumption on (;);, v; j (my(a*a)) = ||R;,jAy(a)|* foralla € A and 7, (4) € M
is weakly dense.

Call £ € H right-contractive if £ is right-bounded and || Rg|| < 1. Letx € M.
Then

(x*x) = sup {||x£||* | € € H is right-contractive} .

Each §; ; is right-contractive by Lemma 3.7.6 and hence v; j (x*x) = [|xA, (u; ;)||? <
D(x*x) for all i, j. Conversely, for each right-contractive £ € H,

Ix¢|I> = lim ey (ui )EN1* = lim IxRe Ay (i, )11

< lim [|xAy (u; ;) ]|* = limv; j (x*x)
I, l,]
because R¢ € M’ and R;‘Rg < 1. Therefore, V(x*x) < lim; j v; ; (x*x).

ii) We only prove the assertion concerning ¢. A similar argument as above and
Lemma 3.7.6 ii) show that for each v € N, the net (v o ¢; ;);,; is increasing.
Taking pointwise limits, we obtain a normal semi-finite weight @ from M to N such
that for each y € M, the element w(y*y) in the extended positive part N + is defined
by v(w(y)) = sup; ; v(¢i,j(y*y)) forall v € N . Thenforall y € M,

f(y*y)) i']_\k 1yA i AR = [yB . ue)E 1P = i 1P
| =vij(¥"y) 5 vy y)
and hence fi o w = . By [20, Theorem 4.18], w = ¢. O
Lemma 3.78. WP o Bor, ") = 0B sy () for all

b,b',b" € B.

Proof. Applying both sides to A,(a), where a € A is arbitrary, we obtain

W*(Ay(s(b")a) @ Ay(r(b)s(b'))) and A, (r(b)a) @ A, (r(b")s(b")), respectively,
i i

which coincide. O

As usual, let N7, :={x € M : Tp(x*x) € N} and similarly define 91z,

Theorem 3.7.9. Let A = (A,A,¢,S, i, ¢, V) be a measured multiplier (B, T)-
Hopf x-algebroid satisfying the following conditions:

(Al) w admits a GNS-representation via bounded operators (K, A, ),
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(A2) the Radon—Nikodym cocycle of | has a positive square root in M(B),
(A3) the bimodule , Ay is proper,
(A4) there exists a truncating net for L.

Let [i be the weight on N = 1, (B)" associated to the Hilbert algebra A, (B), let
Ay:A — L(H) be the GNS-map forv = po¢ = poy, let (m,(A),a, B, A)
be the Hopf—von Neumann bimodule of A (Definition 3.5.7), let V be the weight on
M = 7, (A)" associated to the Hilbert algebra A, (A), and let Ty, and Tg be the
n.s.f. weights from M to a(N) and B(N) given by fioa™ 1 oTy =7 = o1 oTg
(see Proposition 3.7.4). Then (N, i, M,o, B, A, T, TR, V) is a measured quantum
groupoid in the sense of [2]. In particular, Ty, and Ty are left- and right-invariant
with respect to A in the sense that

TL(AL)* AG"0AL) = a((RE™) TL(x"x) RE™)

forall x € Nr, . § € D(Hg, 1),
TR((PE*)* A(x*x)p8*) = B((RZ™)* Tr(x*x)RZH)

forallx e Nr,,n € D(Hy, f1).

Proof. We use the same notation as before. To prove the assertion concerning ¢ and
T, we show that

7 ay * R Tk 1 S
(EIALN A )AL )E) = lle(d(x*x))? REF ¢ (3.23)
forall x € Nz, , & € D(Hg, ji) and { € K. Given such x,&,, let
&k 1= a(mu(uk))é
and Cijk = (C19i ) (QL)* AL ) foralli, j. k.
Then ngﬂ = a(nM(uk))Rg”l, )Lgk’a = (a(my(ug)) %) id)/\g’a, and by Proposi-
tion 3.7.7,

i =2 (Cpi (AL A 0ALNE) 7 EOL™)* A )AE)E).

L,J

On the other hand, using the relation Ag(u;,;) = Az;(ui,j), we find

ik = 101® WAL Ay )C|2 (Def. of Ay and ¢;. ;)
= 11 @ WD, ) RETE I (Def. of Hg®q H)
’ i
= (1@ 0003,y BOTu () REE (Lem. 3.7.8)

= [@(@r.; (*x) 2 Bru ) REFLIP 7 @@ x) T REFE |
bk (Prop. 3.7.7)
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Thus, (3.23) follows. The assertion concerning ¥ and T can be proven similarly,

where W has to be replaced by the unitary V. O

Remark 3.7.10. Assume that ¢ = (id®u) o h for a normalized bi-integral
h on (A,A). Then for each b € B, the map A (B) — A,(A) given by

Au(c) = Ay(s(b)r(c)) is bounded with norm less than or equal to //,(b*b)%, and
therefore extends to an operator A4 (s(b)) € L(K, H). One can then approximate é
monotonously by the maps ¢;: M — N, x — Ay(s(u;))*xAy(s(u;)), and a similar
calculation as in Lemma 3.7.8 shows that each ¢; is right-invariant.

Associated to the measured quantum groupoid (N, i, M,«, 8, A, T, Tg, D) are
two fundamental unitaries U;{: H;;@g H — Hpg®qH and Uy:H, @/‘;H —
i i i

Hg®qH, characterized by
n

By Uy (v ® A5(@)) = A (0w, * id)(A(a)))
forall v, w € D(Hg, t),a € My NNy, ,
(L Uiy (Aot) 8 1) = A (5070} (A )
forallv', w" € D(Hy, f1),a’ € M5 N Ny,

see [13, Proposition 3.17].

Proposition 3.7.11. W* = Ug and V = Uy,.

Proof. Letx,y,y’,z € A and choose v;, w; € A such that ) D%(y(l))x’ ® Y =
B
> v ®w; ingA® ,A. Then
B B

(a)Av(x);Av(X/) * id)(W*)A”(y) - Z(A%:(X))*(AV(W) % Avlwn)
= Z Av(r(W(vie(x*)))wi)’
(@A, 00 *IDAONAE) = P (Aw (i) © Av(wiz))

= Z jrv(r(lﬂ(viQ(X*))))Av(wiz)a

and hence (wa, (x),A, () * ID)(WF)AL (V) = As((@p, (x),A, ) * 1) (A(Y))).
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Likewise, with v/, w] € A such that 3" D 3 (X)) ®x2)y =D viQuw; € (A® A,
B B B

we find
(id 0, (9,8, 6m) D ASE) = D (0L )" (Ao () ® Au(w))
=2 MA@,
(id *a,, (7,8, ) (AT () Av(2) = Z(Pi’f(w)*(/\v(”fz) ® Ay ()

= 3w (AL (v))

and hence (id *a)AU(y),AU(y/))(V)A,,(x) = A,j ((id *a)Av(y/),Av(y))(A(n,,(x)))).
O

The ac}apted measured quantum groupoid (N, i, M,«, B8, A, Ty, Tr, V) has an
antipode S which is characterized by the following properties:

i) span{(wy,y *id)(V) : w,v € T5 1, } is a core for S,
i) S((@w,p *1d)(V)) = (W,v * id)(V*) forall w, v € T5 1.

where T 7, is the set of all x € M that are analytic with respect to oV and satisfy
o) € M NI N Nre N fﬁ;R for all z € C. Likewise, one defines T 7, .

Lemma 3.7.12. 7,(A) € Ty.r N Tor, -

Proof. Recall that 7,,(A) C T; by Proposition 3.7.2. Using Lemma 3.7.3 i), we find
07 (my(4)) = 07 (my(As(B))) = 07 (my (A)B(mu(B))  MsB(Mz) < Nre
for all z € C. Consequently, 7,(4) € Ty 7,. A similar argument shows that

my(A) € T, - O

Proposition 3.7.13. 7,(4) € Dom(S) and S(n,(a)) = (D%SD%(a)) Sfor all
aceA.
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Proof. Letx,x' € Aanda = )_ D_%(xzz)r(ilf(x*le)))). Then

(WA, (), A, () ¥ 1) (V) = 7y (a), (Lem. 3.4.4)

~ *
(@A, (),A, @) * I (V) = ((Af\’f(x’))*ij{\’f(x))

=3 (D7 (yr (W (< x@))*  (Lem. 3.44)
=Y (D (W () )xy)

= > 1 (D3(S(fpyr (¥ (x*x{1y))))  (Prop. 2.5.3)
7(D2SD2(a)). O
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