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Abstract. We introduce and study holomorphically finitely generated (HFG) Fréchet algebras,
which are analytic counterparts of affine (i.e., finitely generated) C-algebras. Using a theorem
of O. Forster, we prove that the category of commutative HFG algebras is anti-equivalent to the
category of Stein spaces of finite embedding dimension. We also show that the class of HFG
algebras is stable under some natural constructions. This enables us to give a series of concrete
examples of HFG algebras, including Arens–Michael envelopes of affine algebras (such as the
algebras of holomorphic functions on the quantum affine space and on the quantum torus), the
algebras of holomorphic functions on the free polydisk, on the quantum polydisk, and on the
quantum polyannulus.
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1. Introduction

The present paper is motivated by two classical results that underlie noncommutative
geometry. The first result, which is essentially a categorical consequence of
Hilbert’s Nullstellensatz, states that the category of affine algebraic varieties over
C is anti-equivalent to the category of finitely generated commutative unital C-
algebras without nilpotents. Explicitly, the anti-equivalence is given by sending
an affine variety X to the algebra O reg.X/ of regular functions on X . The second
result of the same nature is the Gelfand–Naimark theorem, which establishes an
anti-equivalence between the category of locally compact Hausdorff topological
spaces and the category of commutative C �-algebras by sending each locally
compact space X to the algebra C0.X/ of continuous functions on X vanishing at
infinity. Both results are traditionally viewed as starting points for noncommutative
geometry and are often mentioned in introductory textbooks on the subject (see,
e.g., [3, 15, 22, 29, 43, 48]).
�This work was supported by the RFBR grants no. 12-01-00577 and 15-01-08392.
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Our first goal here is to prove a complex analytic analog of the above results. In
fact, a significant step in this direction has already been taken by O. Forster [13].
In order to formulate his result, recall (see, e.g., [17]) that for each complex space
.X;OX / the algebra O.X/ has a canonical topology making it into a Fréchet algebra.
If X is reduced (e.g., if X is a complex manifold), then the elements of O.X/ are
holomorphic functions on X , and the canonical topology on O.X/ is the topology
of compact convergence. By definition, a Fréchet algebra A is a Stein algebra if A
is topologically isomorphic to O.X/ for some Stein space .X;OX /.

Theorem 1.1 (O. Forster [13]). The functor .X;OX / 7! O.X/ is an anti-
equivalence between the category of Stein spaces and the category of Stein algebras.

Forster’s theorem, although somewhat similar to the Nullstellensatz and to the
Gelfand–Naimark theorem, still lacks an important feature of the above results.
Indeed, it does not identify the category of Stein algebras with the “commutative
part” of any category of algebras, and so it does not give us any idea of what
“noncommutative Stein spaces” could be. Our goal is to propose a possible
approach to this problem for the special case of Stein spaces having finite embedding
dimension.

In Section 3, we introduce a category of “holomorphically finitely generated”
(HFG for short) Fréchet algebras. Such algebras may be viewed as “analytic
counterparts” of affine (i.e., finitely generated) C-algebras. We show that a
commutative Fréchet algebra is holomorphically finitely generated if and only if
it is topologically isomorphic to the algebra O.X/ for a Stein space .X;OX / of
finite embedding dimension. Together with Forster’s theorem, this implies that
the category of Stein spaces of finite embedding dimension in anti-equivalent to
the category of commutative HFG algebras. We hope that such a “refinement” of
Forster’s theorem may contribute to the development of noncommutative complex
analytic geometry, a field much less investigated than other types of noncommutative
geometry (cf. discussion in [1, 23]).

In Sections 4–6, we show that the category of HFG algebras is stable under
a number of natural constructions. Section 4 is devoted to Arens–Michael free
products [4]. We give several explicit constructions for the Arens–Michael free
product, and we show that the Arens–Michael free product of finitely many HFG
algebras is again an HFG algebra. In Section 5, we consider two analytic versions
of the smash product construction, the b̋-smash product [37] and the Arens–
Michael smash product. The former is more explicit and easier to deal with, while
the latter is better suited for the category of Arens–Michael algebras. We give
sufficient conditions for the two smash products to coincide, and we show that the
Arens–Michael smash product of HFG algebras is an HFG algebra. In view of
further applications, we pay a special attention to the case of semigroup actions
and semigroup graded Arens–Michael algebras. Algebras of skew holomorphic
functions, or Arens–Michael Ore extensions [38], are discussed in Section 6. They
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can be viewed as “analytic counterparts” of algebraic Ore extensions, and are often
reduced to Arens–Michael smash products. Given a balanced domain (respectively, a
Reinhardt domain)D � Cn and an HFG algebraA endowed with an equicontinuous
action � of ZC (respectively, Zn), we define the algebra O.D;AI �/ of skew A-
valued holomorphic functions on D, and we show that O.D;AI �/ is an HFG
algebra.

Section 7 is entirely devoted to examples of HFG algebras. One source
of examples comes from the notion of an Arens–Michael envelope [20, 45].
In Subsection 7.1, we observe that the Arens–Michael envelope of any finitely
generated algebra is holomorphically finitely generated. As a consequence, the
algebras Oq.Cn/ and Oq..C�/n/ of holomorphic functions on the quantum affine
space and on the quantum torus [38, 39], the algebra of entire functions on a basis
of a Lie algebra [9,11], and some other algebras studied in [38] are holomorphically
finitely generated. Other examples are specializations of the constructions discussed
in Sections 4–6. In Subsection 7.2, we define the HFG algebra F .DnR/ of
holomorphic functions on the free polydisk, and we give an explicit power series
representation of it. Deformed algebras of holomorphic functions on products of
balanced and Reinhardt domains are discussed in Subsection 7.3. Such algebras,
being special cases of Arens–Michael Ore extensions, are also HFG algebras.
Subsections 7.4 and 7.5 are devoted to the algebras Oq.DnR/ and Oq.Dnr;R/ of
holomorphic functions on the quantum polydisk and on the quantum polyannulus,
respectively. The former is shown to be a quotient of F .DnR/, while the latter is an
iterated Arens–Michael Ore extension of the algebra of holomorphic functions on
the one-dimensional annulus. As a consequence, both Oq.DnR/ and Oq.Dnr;R/ are
HFG algebras.

Some of the results of the present paper were announced in [40].

2. Preliminaries and notation

We shall work over the field C of complex numbers. All algebras are assumed to be
associative and unital, and all algebra homomorphisms are assumed to be unital (i.e.,
to preserve identity elements). In particular, a subalgebra of an algebra A is assumed
to contain the identity of A.

By a topological algebra we mean an algebraA endowed with a topology making
A into a topological vector space and such that the multiplication A � A ! A is
separately continuous. A Fréchet algebra is a complete metrizable locally convex
topological algebra (i.e., a topological algebra whose underlying space is a Fréchet
space). A locally m-convex algebra [31] is a topological algebra A whose topology
can be defined by a family of submultiplicative seminorms (i.e., seminorms k � k
satisfying kabk � kakkbk for all a; b 2 A). Equivalently, a topological algebra A
is locally m-convex if and only if there exists a base U of 0-neighborhoods in A
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such that each U 2 U is absolutely convex and idempotent (i.e., satisfies U 2 �
U ). A complete locally m-convex algebra is called an Arens–Michael algebra [19].
The semigroup of all continuous endomorphisms of a topological algebra A will be
denoted by End.A/, and the group of all topological automorphisms of A will be
denoted by Aut.A/.

The completed projective tensor product of locally convex spaces (see, e.g.,
[16, 19, 24]) will be denoted by b̋. A complete locally convex topological algebra
A with jointly continuous multiplication A � A ! A is called a b̋-algebra [19].
For example, each Fréchet algebra and each Arens–Michael algebra are b̋-algebras.
The multiplication on a b̋-algebra A uniquely extends to a continuous linear map
�AWA b̋A ! A satisfying the usual associativity conditions. In other words, a b̋-
algebra is the same thing as an algebra in the tensor category of complete locally
convex spaces endowed with the bifunctor b̋. The notions of b̋-coalgebra, b̋-
bialgebra, Hopf b̋-algebra, left/right b̋-module over a b̋-algebra, etc. have obvious
meanings: roughly, we just replace ˝ by b̋ in the usual algebraic definitions. In
fact, such notions can be defined in a straightforward manner in any symmetric
tensor category (cf. discussion in [27]). By an Arens–Michael bialgebra we mean
a b̋-bialgebra that is locally m-convex as a topological algebra. Similarly, if H is
a b̋-bialgebra, then by a left H -b̋-module Arens–Michael algebra we mean a left
H -b̋-module algebra that is locally m-convex as a topological algebra. If A is ab̋-algebra, we let �AWC ! A denote the unit map taking � 2 C to �1 2 A. If
C is a b̋-coalgebra, then the comultiplication (respectively, the counit) on C will
be denoted by �C (respectively, "C ). Finally, if H is a Hopf b̋-algebra, then the
antipode of H will be denoted by SH .

Let A be a topological algebra. Recall from [20] (cf. [45]) that the Arens–
Michael envelope of A is the completion of A with respect to the family of all
continuous submultiplicative seminorms onA. Thus we have a canonical continuous
homomorphism iAWA ! bA, and it is easy to show [20, 45] that for each Arens–
Michael algebra B and each continuous homomorphism 'WA ! B there exists a
unique continuous homomorphismb'WbA! B such thatb' ı iA D '. In other words,
we have a natural bijection

HomAM.bA;B/ Š HomTopalg.A;B/ .B 2 AM/; (2.1)

where Topalg is the category of topological algebras and AM � Topalg is the full
subcategory consisting of Arens–Michael algebras. Moreover, the correspondence
A 7! bA is a functor from Topalg to AM, and this functor is left adjoint to the inclusion
AM ,! Topalg (see (2.1)). In what follows, the functor A 7! bA will be called the
Arens–Michael functor.

Here is an important special case. Given an algebra A, we can always make
A into a topological algebra Astr by endowing A with the strongest locally convex
topology (i.e., the topology generated by all seminorms on A). We define the Arens–
Michael envelope of A to be the Arens–Michael envelope of Astr.



Holomorphically finitely generated algebras 219

Arens–Michael envelopes were introduced by J. L. Taylor [45] under the name of
“completed locally m-convex envelopes”. Now it is customary to call them “Arens–
Michael envelopes”, following the terminology suggested by A. Ya. Helemskii [20].
For a more detailed study of Arens–Michael envelopes we refer to [7–11, 36–38].

Throughout we will use the following multi-index notation. Let ZC D N [ f0g
denote the set of all nonnegative integers. For each n 2 N and each d 2 ZC, let
Wn;d D f1; : : : ; ng

d , and let Wn D
F
d2ZC Wn;d . Thus a typical element of Wn is

a d -tuple ˛ D .˛1; : : : ; ˛d / of arbitrary length d 2 ZC, where ˛j 2 f1; : : : ; ng for
all j . The only element of Wn;0 will be denoted by �. For each ˛ 2 Wn;d � Wn,
let j˛j D d . Given an algebra A, an n-tuple a D .a1; : : : ; an/ 2 An, and
˛ D .˛1; : : : ; ˛d / 2 Wn, we let a˛ D a˛1 � � � a˛d 2 A if d > 0; it is also convenient
to set a� D 1 2 A. Given k D .k1; : : : ; kn/ 2 ZnC, we let ak D a

k1
1 � � � a

kn
n .

If the ai ’s are invertible, then ak makes sense for all k 2 Zn. As usual, for each
k D .k1; : : : ; kn/ 2 Zn we let jkj D jk1j C � � � C jknj.

Let S be a set, and let Fin.S/ denote the collection of all finite subsets of S
ordered by inclusion. Suppose that E is a complete locally convex space, and that
.xs/s2S is a family of elements of E. For each I 2 Fin.S/, let xI D

P
s2I xs .

By definition [35, 1.3.8], the family .xs/s2S is summable if the net .xI /I2Fin.S/

converges in E. The limit of the above net is denoted by
P
s2S xs . The family

.xs/s2S is absolutely summable [35, 1.4.1] if for each continuous seminorm k�k onE
we have

P
s2S kxsk <1. Each absolutely summable family in E is summable [35,

1.4.5].
Let O.Cn/ denote the Fréchet algebra of all holomorphic functions on Cn.

Recall that for each Arens–Michael algebra A and each commuting n-tuple a D
.a1; : : : ; an/ 2 A

n there exists an entire functional calculus, i.e., a unique continuous
homomorphism hol

a WO.Cn/ ! A taking the complex coordinates z1; : : : ; zn to
a1; : : : ; an, respectively. Explicitly, hol

a is given by

hol
a .f / D f .a/ D

X
k2Zn
C

cka
k

�
f D

X
k2Zn
C

ckz
k
2 O.Cn/

�
:

In the language of category theory, the above result means that the algebra O.Cn/
together with the n-tuple .z1; : : : ; zn/ 2 O.Cn/n represents the functor A 7! An

acting from the category CommAM of commutative Arens–Michael algebras to the
category of sets. Thus we have a natural bijection

HomCommAM.O.Cn/; A/ Š An .A 2 CommAM/: (2.2)

Equivalently, we have CŒz1; : : : ; zn�bŠ O.Cn/ (cf. [46]).
A noncommutative (or, more exactly, free) version of the entire functional

calculus was introduced by J. L. Taylor [46]. Let Fn D Ch�1; : : : ; �ni be the free
algebra with generators �1; : : : ; �n. The set f�˛ W ˛ 2 Wng of all words in �1; : : : ; �n
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is the standard vector space basis of Fn. The algebra of free entire functions [46,47]
is defined by

Fn D

n
a D

X
˛2Wn

c˛�˛ W kak� D
X
˛2Wn

jc˛j�
j˛j <1 8� > 0

o
: (2.3)

The topology on Fn is given by the norms k � k� .� > 0/, and the multiplication
is given by concatenation (like on Fn). Each norm k � k� is easily seen to be
submultiplicative, so Fn is a Fréchet–Arens–Michael algebra containing Fn as a
dense subalgebra. As was observed by D. Luminet [25], Fn is nuclear. Note also
that F1 is topologically isomorphic to O.C/.

Taylor [46] observed that for each Arens–Michael algebra A and each n-tuple
a D .a1; : : : ; an/ 2 A

n there exists a free entire functional calculus, i.e., a unique
continuous homomorphism  free

a WFn ! A taking the free generators �1; : : : ; �n to
a1; : : : ; an, respectively. Explicitly,  free

a is given by

 free
a .f / D f .a/ D

X
˛2Wn

c˛a˛

�
f D

X
˛2Wn

c˛�˛ 2 Fn

�
: (2.4)

Similarly to the commutative case, the above result means that the algebra Fn

together with the n-tuple .�1; : : : ; �n/ 2 F n
n represents the functor A 7! An acting

from the category AM of Arens–Michael algebras to the category of sets. Thus we
have a natural bijection

HomAM.Fn; A/ Š A
n .A 2 AM/: (2.5)

Equivalently, we have bF n Š Fn (cf. [46]).
Given n 2 N and R D .R1; : : : ; Rn/ 2 .0;C1�n, let

DnR D fz D .z1; : : : ; zn/ 2 Cn W jzi j < Ri 8i D 1; : : : ; ng

denote the open polydisk in Cn of polyradius R. If Ri D � 2 .0;C1� for all i , then
we write Dn� for DnR. In particular, Dn1 D Cn. If r; R 2 Œ0;C1�n and ri < Ri for
all i , let

Dnr;R D fz D .z1; : : : ; zn/ 2 Cn W ri < jzi j < Ri 8i D 1; : : : ; ng

denote the open polyannulus of polyradii r and R. Clearly, DnR D D1R1 � � � � � D1Rn
and Dnr;R D D1r1;R1 � � � � � D1rn;Rn .

The structure sheaf of a complex space X will always be denoted by OX , while
the structure sheaf of a scheme S will be denoted by O reg

S . IfX is a complex manifold
and E is a complete locally convex space, then O.X;E/ stands for the space of all
holomorphic E-valued functions on X . Recall (see, e.g., [16]) that there exists a
topological isomorphism O.X/ b̋E Š O.X;E/ taking each f ˝ u 2 O.X/ b̋E
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to the function x 7! f .x/u. Recall also (loc. cit.) that, if X and Y are complex
manifolds, then we have a topological isomorphism O.X/ b̋O.Y / Š O.X � Y /
taking each f ˝ g 2 O.X/ b̋O.Y / to the function .x; y/ 7! f .x/g.y/.

The completion of a locally convex space E will be denoted by E�.

3. HFG algebras and a refinement of Forster’s theorem

We start this section with some elementary observations on the algebra Fn. Letting
A D O.Cn/ in (2.5), we obtain a continuous homomorphism

�nWFn ! O.Cn/; �i 7! zi .i D 1; : : : ; n/: (3.1)

The following is immediate from the universal properties of O.Cn/ and Fn.

Proposition 3.1. For each commutative Arens–Michael algebra A and each a 2 An

we have a commutative diagram

Fn  free
a

''
�n

��

A

O.Cn/ hol
a

77

Given a topological algebraA, let ŒA;A� denote the closure of the two-sided ideal
of A generated by the commutators Œa; b� D ab � ba .a; b 2 A/.

Proposition 3.2. The map �n given by (3.1) induces a topological algebra isomor-
phism

Fn=ŒFn;Fn�
�
�! O.Cn/; N�i D �i C ŒFn;Fn� 7! zi .i D 1; : : : ; n/:

Proof. Each continuous homomorphism from Fn to a commutative Arens–Michael
algebra factors through Fn=ŒFn;Fn�. Combined with (2.5), this implies that
Fn=ŒFn;Fn� together with the n-tuple . N�1; : : : ; N�n/ has the same universal prop-
erty (2.2) as O.Cn/. The rest is clear.

Let A and B be Arens–Michael algebras, and let 'WA ! B be a contin-
uous homomorphism. Given a D .a1; : : : ; an/ 2 An, we denote the n-tuple
.'.a1/; : : : ; '.an// 2 B

n simply by '.a/.

Proposition 3.3. For each a 2 An and each f 2 Fn, we have '.f .a// D f .'.a//.

Proof. This is immediate either from the power series expansion (2.4) or from the
observation that ' ı  free

a WFn ! B; f 7! '.f .a//, is a continuous homomorphism
taking each �i to '.ai /.
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Let us introduce some notation. Given an Arens–Michael algebra A, an m-tuple
a 2 Am, and an n-tuple f D .f1; : : : ; fn/ 2 F n

m, let f .a/ D .f1.a/; : : : ; fn.a// 2
An. If now g 2 F k

n , we define g ı f 2 F k
m by g ı f D g.f /. Thus we obtain a

“free superposition” operation

F k
n �F n

m ! F k
m; .g; f / 7! g ı f: (3.2)

Proposition 3.4. For each Arens–Michael algebra A, each a 2 Am, each f 2 F n
m,

and each g 2 F k
n we have .g ı f /.a/ D g.f .a//.

Proof. We may assume that k D 1. Consider the maps '; WFn ! A given by

'.g/ D g.f .a//;  .g/ D .g ı f /.a/ .g 2 Fn/:

Clearly, ' D  free
f .a/

is a continuous homomorphism, and so is  D  free
a ı  free

f
. For

each i D 1; : : : ; n we have

'.�i / D �i .f .a// D fi .a/;

 .�i / D .�i ı f /.a/ D .�i .f //.a/ D fi .a/:

Therefore ' D  , as required.

Corollary 3.5. The free superposition (3.2) is associative.

Proof. Take f 2 F n
m, g 2 F k

n , and h 2 F `
k

. Using Proposition 3.4, we obtain

.h ı g/ ı f D .h ı g/.f / D h.g.f // D h ı .g ı f /:

From now on, we assume that A is an Arens–Michael algebra.

Definition 3.6. We say that a subalgebra B � A is holomorphically closed if for
each n 2 N, each b 2 Bn, and each f 2 Fn we have f .b/ 2 B .

In the commutative case, we can use O.Cn/ instead of Fn:

Proposition 3.7. Let A be a commutative Arens–Michael algebra. Then a subalge-
bra B � A is holomorphically closed if and only if for each n 2 N, each b 2 Bn,
and each f 2 O.Cn/ we have f .b/ 2 B .

Proof. By Propositions 3.1 and 3.2, we have

ff .b/ W f 2 O.Cn/g D fg.b/ W g 2 Fng: (3.3)

The rest is clear.

Examples 3.8. Of course, if B is closed in A, then it is holomorphically closed.
More generally, if B is an Arens–Michael algebra under a topology stronger than
the topology inherited from A, then B is holomorphically closed in A. For example,
the algebraC1.M/ of smooth functions on a manifoldM is holomorphically closed
in C.M/.
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Remark 3.9. Our notion of a holomorphically closed subalgebra should not
be confused with the more common notion of a subalgebra stable under the
holomorphic functional calculus (see, e.g., [3, 15]). Recall that a subalgebra B � A
is stable under the holomorphic functional calculus if for each b 2 B , each
neighborhood U of the spectrum �A.b/, and each f 2 O.U / we have f .b/ 2 B .
Such a subalgebra is necessarily spectrally invariant in A, i.e., �B.b/ D �A.b/ for
all b 2 B . In contrast, a holomorphically closed subalgebra need not be spectrally
invariant. For example, for each domain D � C the algebra O.C/ may be viewed
(via the restriction map) as a holomorphically closed subalgebra of O.D/, but it is
not spectrally invariant in O.D/ unless D D C.

It is clear from the definition that the intersection of any family of holomorphi-
cally closed subalgebras of A is holomorphically closed. This leads naturally to the
following definition.
Definition 3.10. The holomorphic closure, Hol.S/, of a subset S � A is the
intersection of all holomorphically closed subalgebras of A containing S .

Clearly, Hol.S/ is the smallest holomorphically closed subalgebra of A contain-
ing S . It can also be described more explicitly as follows.
Proposition 3.11. For each nonempty subset S � A we have

Hol.S/ D ff .a/ W f 2 Fn; a 2 S
n; n 2 ZCg: (3.4)

Proof. Let B denote the right-hand side of (3.4). Clearly, S � B � Hol.S/, so it
suffices to show that B is a holomorphically closed subalgebra of A. First observe
that 1A 2 B (take any a 2 S and f D 1F1). Let now a 2 Sm, b 2 Sn, f 2 Fm,
and g 2 Fn. We have to show that f .a/C g.b/ 2 B and f .a/g.b/ 2 B . To this
end, define F;G 2 FmCn by

F D f .�1; : : : ; �m/; G D g.�mC1; : : : ; �mCn/;

where the �i ’s are now considered as elements of FmCn. We clearly have f .a/ D
F.a; b/ and g.b/ D G.a; b/. Therefore

f .a/C g.b/ D F.a; b/CG.a; b/ D .F CG/.a; b/ 2 B;

and similarly f .a/g.b/ 2 B . Thus B is a subalgebra of A.
Let us now show that B is holomorphically closed. Take any b 2 Bk , and

represent it in the form

b D
�
f1.a

.1//; : : : ; fk.a
.k//

�
;

where a.i/ 2 Sni and fi 2 Fni .i D 1; : : : ; k/. Let n D n1C� � �Cnk . By replacing
f1; : : : ; fk with suitable elements Nf1; : : : ; Nfk of Fn (where Nf1 D f1.�1; : : : ; �n1/,
Nf2 D f2.�n1C1; : : : ; �n1Cn2/, etc.), we see that b D Nf .a/, where

Nf D . Nf1; : : : ; Nfk/ 2 F k
n ; a D .a.1/; : : : ; a.k// 2 Sn:
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Now Proposition 3.4 implies that for each g 2 Fk we have g.b/ D g. Nf .a// D

.g ı Nf /.a/ 2 B . Thus B is holomorphically closed, as required.

Corollary 3.12. If A is commutative, then for each nonempty subset S � A we have

Hol.S/ D ff .a/ W f 2 O.Cn/; a 2 Sn; n 2 ZCg:

Proof. This is immediate from (3.4) and (3.3).

Corollary 3.13. Let A and B be Arens–Michael algebras, and let 'WA ! B be a
continuous homomorphism. Then for each S � Awe have '.Hol.S// D Hol.'.S//.
As a consequence, if A0 � A is a holomorphically closed subalgebra, then '.A0/ is
holomorphically closed in B .

Proof. Apply ' to both sides of (3.4) and use Proposition 3.3.

In the case where S is finite, an even more explicit characterization of Hol.S/ is
possible.

Proposition 3.14. For each a D .a1; : : : ; an/ 2 An we have

Hol.fa1; : : : ; ang/ D ff .a/ W f 2 Fng: (3.5)

Proof. Let B denote the right-hand side of (3.5), and let S D fa1; : : : ; ang. Clearly,
S � B � Hol.S/, and B is a subalgebra of A. So it suffices to show that B is
holomorphically closed in A. Each element b 2 Bk has the form b D f .a/ for
some f 2 F k

n . Thus for each g 2 Fk we have g.b/ D g.f .a// D .g ıf /.a/ 2 B .
Thus B is holomorphically closed, as required.

Corollary 3.15. If A is commutative, then for each a D .a1; : : : ; an/ 2 An we have

Hol.fa1; : : : ; ang/ D ff .a/ W f 2 O.Cn/g:

Now we are ready to introduce our main objects of study.

Definition 3.16. Let A be a Fréchet–Arens–Michael algebra. We say that A is
holomorphically generated by a subset S � A if Hol.S/ D A. We say that A is
holomorphically finitely generated (HFG for short) ifA is holomorphically generated
by a finite subset.

Example 3.17. By Proposition 3.14, Fn is holomorphically generated by �1; : : : ; �n.
Similarly, Corollary 3.15 shows that O.Cn/ is holomorphically generated by
z1; : : : ; zn. Thus Fn and O.Cn/ are HFG algebras.

Proposition 3.18. If A is an HFG algebra and I � A is a closed two-sided ideal,
then A=I is also an HFG algebra.

Proof. Clear from Corollary 3.13.
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Remark 3.19. A closed subalgebra of an HFG algebra is not necessarily an HFG
algebra (see Remark 7.3 below).

HFG algebras can also be characterized as follows.

Proposition 3.20. Let A be a Fréchet–Arens–Michael algebra.

(i) A is holomorphically finitely generated if and only if A is topologically
isomorphic to Fn=I for some n 2 ZC and for some closed two-sided ideal
I � Fn.

(ii) If A is commutative, then A is holomorphically finitely generated if and only
if A is topologically isomorphic to O.Cn/=I for some n 2 ZC and for some
closed two-sided ideal I � O.Cn/.

Proof. (i) The “if” part is immediate from Example 3.17 and Proposition 3.18.
Conversely, if A is an HFG algebra holomorphically generated by a1; : : : ; an 2 A,
then Proposition 3.14 implies that  free

a WFn ! A (where a D .a1; : : : ; an/) is onto.
Applying the Open Mapping Theorem, we obtain a topological algebra isomorphism
A Š Fn=Ker  free

a . This completes the proof of (i). The proof of (ii) is similar (use
Corollary 3.15 instead of Proposition 3.14).

Corollary 3.21. Each HFG algebra is nuclear.

The following theorem characterizes commutative HFG algebras as algebras of
holomorphic functions.

Theorem 3.22. A commutative Fréchet–Arens–Michael algebra is holomorphically
finitely generated if and only if it is topologically isomorphic to O.X/ for some Stein
space .X;OX / of finite embedding dimension.

Proof. By the Remmert–Bishop–Narasimhan–Wiegmann Embedding Theorem [51],
each Stein space .X;OX / of finite embedding dimension is biholomorphically
equivalent to a closed analytic subspace of Cn, where n 2 N is large enough. By
H. Cartan’s Theorem B, the restriction map O.Cn/ ! O.X/ is onto. Applying
Proposition 3.20 (ii) and using the Open Mapping Theorem, we conclude that O.X/
is an HFG algebra.

Conversely, let A be a commutative HFG algebra. Taking into account Proposi-
tion 3.20 (ii), we may assume that A D O.Cn/=I , where I � O.Cn/ is a closed
two-sided ideal. By [12, Satz 2], O.Cn/=I Š O.X/ for a certain closed analytic
subspace X of Cn (specifically, X is the zero set of I , and OX D OCn=I , where
I � OCn is the ideal sheaf generated by I ). Clearly, X has finite embedding
dimension.

Combining Theorem 3.22 with Forster’s Theorem 1.1, we obtain the following.

Theorem 3.23. The functor .X;OX / 7! O.X/ is an anti-equivalence between
the category of Stein spaces of finite embedding dimension and the category of
commutative HFG algebras.
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Theorem 3.23 looks similar to the Gelfand–Naimark Theorem and to the cate-
gorical consequence of the Nullstellensatz (see Section 1). Thus HFG algebras may
be considered as candidates for “noncommutative Stein spaces of finite embedding
dimension”. Of course, this naive point of view needs a solid justification, and it
is perhaps too early to say whether it will lead to an interesting theory. As a first
step towards this goal, we will give some concrete examples of HFG algebras in
Section 7, showing thereby that the class of HFG algebras is rather large. To this
end, we will need to show that the class of HFG algebras is stable under a number of
natural constructions. This will be done in Sections 4–6.

4. Free products

Definition 4.1 (cf. [4]). Let .Ai /i2I be a family of Arens–Michael algebras. The
Arens–Michael free product of .Ai /i2I is the coproduct of .Ai /i2I in the category
of Arens–Michael algebras, i.e., an Arens–Michael algebra A together with a natural
isomorphism

HomAM.A;B/ Š
Y
i2I

HomAM.Ai ; B/ .B 2 AM/: (4.1)

More explicitly, the Arens–Michael free product of .Ai /i2I is an Arens–Michael
algebra A together with a family .ji WAi ! A/i2I of continuous homomorphisms
such that for each Arens–Michael algebra B and each family .'i WAi ! B/i2I
of continuous homomorphisms there exists a unique continuous homomorphism
A! B making the following diagram (for each i 2 I ) commute:

A // B

Ai

ji

``

'i

>>

Clearly, if the Arens–Michael free product A of .Ai /i2I exists, then it is unique
up to a unique topological algebra isomorphism over the Ai ’s. In what follows, we
will write A Db�i2I Ai .

To show that b�i2I Ai exists, recall the definition (due to J. Cuntz [4]; cf. also
[38,49,50]) of an Arens–Michael tensor algebra. LetE be a complete locally convex
space, and let fk � k� W � 2 ƒg be a directed defining family of seminorms on E. For
each � 2 ƒ and each n 2 ZC, let k � k.n/

�
denote the nth projective tensor power of

k � k� (we let k � k.0/
�
D j � j by definition). The Arens–Michael tensor algebra (or a
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smooth tensor algebra) bT .E/ is defined by

bT .E/ D na D 1X
nD0

an W an 2 E
b̋n; kak�;�
D

X
n

kank
.n/

�
�n <1 8� 2 ƒ; 8� > 0

o
:

The topology on bT .E/ is defined by the seminorms k � k�;� .� 2 ƒ; � > 0/,
and the multiplication on bT .E/ is given by concatenation, like on the usual tensor
algebra T .E/. Each seminorm k � k�;� is easily seen to be submultiplicative, and
so bT .E/ is an Arens–Michael algebra containing T .E/ as a dense subalgebra.
As was observed by Cuntz [4], bT .E/ has the universal property that, for every
Arens–Michael algebra A, each continuous linear map E ! A uniquely extends
to a continuous homomorphism bT .E/ ! A. In other words, there is a natural
isomorphism

HomAM.bT .E/; A/ Š L .E;A/ .A 2 AM/; (4.2)

where L .E;A/ is the space of all continuous linear maps from E to A. Note thatbT .Cn/ Š Fn, and that (2.5) is a special case of (4.2).

Proposition 4.2. Let .Ai /i2I be a family of Arens–Michael algebras, and let A be
the completion of the quotient of bT D bT .Li2I Ai / by the two-sided closed ideal J
generated by all elements of the form

ai ˝ bi � aibi ; 1bT � 1Ai .ai ; bi 2 Ai ; i 2 I /:

For each i 2 I , define ji WAi ! A to be the composition of the canonical embedding
of Ai into bT with the quotient map bT ! A. Then ji is a continuous homomorphism,
and A together with .ji WAi ! A/i2I is the Arens–Michael free product of .Ai /i2I .

Proof. Clearly, each ji is a continuous linear map, and it is immediate from the
definition of J that ji is an algebra homomorphism. For each Arens–Michael algebra
B we have natural isomorphisms

HomAM.A;B/ Š f' 2 HomAM.bT ;B/ W 'jJ D 0g
Š
˚
 2 L

�M
i2I

Ai ; B
�
W  jAi is an algebra homomorphism 8i 2 I

	
Š

Y
i2I

HomAM.Ai ; B/:

A more explicit construction of b�i2I Ai (in the nonunital category, and in the
case where I is finite) was given by Cuntz [4]. We need to adapt his construction
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to the unital case, assuming that for each i 2 I there exists a closed two-sided ideal
Aıi � Ai such that Ai D C1Ai ˚ Aıi as locally convex spaces.

For each d � 2, let

Id D
n
˛ D .˛1; : : : ; ˛d / 2 I

d
W ˛k ¤ ˛kC1 8k D 1; : : : ; d � 1

o
: (4.3)

Let also I1 D I , I0 D f�g (the singleton), and I1 D
F
d2ZC Id . For each d 2 ZC

and each ˛ 2 Id , we let j˛j D d . Given d > 0 and ˛ D .˛1; : : : ; ˛d / 2 I1, let
A˛ D Aı˛1

b̋ � � � b̋Aı˛d . For d D 0, we let A� D C. For each i 2 I , choose a
directed defining family fk � k� W � 2 ƒig of submultiplicative seminorms on Aıi . Let
ƒ D

Q
i2I ƒi , and, for each � D .�i /i2I 2 ƒ and each ˛ D .˛1; : : : ; ˛d / 2 I1, let

k � k
.˛/

�
denote the projective tensor product of the seminorms k � k�˛1 ; : : : ; k � k�˛k .

For d D 0, it is convenient to set k � k.�/
�
D j � j. Let P.I / D Œ1;C1/I denote

the family of all functions on I with values in Œ1;C1/. Given p 2 P.I /, we let
pi D p.i/ for i 2 I , p˛ D p˛1 � � �p˛d for ˛ D .˛1; : : : ; ˛d / 2 I1 with d > 0, and
p� D 1. Let

A D
n
a D

X
˛2I1

a˛ W a˛ 2 A˛; kak�;p

D

X
˛2I1

ka˛k
.˛/

�
p˛ <1 8� 2 ƒ; 8p 2 P.I /

o
: (4.4)

A standard argument shows that A is a complete locally convex space with respect
to the topology determined by the seminorms k � k�;p .� 2 ƒ; p 2 P.I //.

Now, given ˛ D .˛1; : : : ; ˛d / 2 I1, let Aalg
˛ D A

ı
˛1
˝ � � �˝Aı˛d . The algebraic

sum
Aalg
D

M
˛2I1

Aalg
˛

is clearly a dense subspace of A. Recall from [34] that there is a multiplication on
Aalg such that each Ai becomes a subalgebra of Aalg and such that Aalg D �i2I Ai ,
the algebraic free product of .Ai /i2I . Specifically, the multiplication on Aalg is
given by concatenation composed (if necessary) with the product maps Aıi ˝A

ı
i !

Aıi .i 2 I /.

Proposition 4.3. The multiplication on Aalg uniquely extends to a continuous mul-
tiplication on A. The resulting algebra A together with the canonical embeddings
Ai ! A is the Arens–Michael free product of .Ai /i2I . Moreover, each seminorm
k � k�;p .� 2 ƒ; p 2 P.I // is submultiplicative.

Proof. Let us show that each seminorm k � k�;p is submultiplicative on Aalg. Take
any a 2 Aalg

˛ and b 2 Aalg
ˇ

, where ˛ D .˛1; : : : ; ˛d / 2 I1, ˇ D .ˇ1; : : : ; ˇm/ 2 I1.
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Suppose first that ˛d ¤ ˇ1. Then  D .˛; ˇ/ 2 I1, ab D a ˝ b 2 A
alg
˛ ˝A

alg
ˇ
D

A
alg
 , and

kabk�;p D ka˝ bk
./

�
p D kak

.˛/

�
kbk

.ˇ/

�
p˛pˇ D kak�;pkbk�;p: (4.5)

Now consider the case where ˛d D ˇ1. Let  D .˛1; : : : ; ˛d ; ˇ2; : : : ; ˇm/ 2 I1.
Denote by �WAı˛d ˝A

ı
ˇ1
! Aı˛d the product map on Aı˛d , and let

N� D 1˝ �˝ 1WAalg
˛ ˝A

alg
ˇ
! Aalg

 :

Then ab D N�.a˝b/ 2 Aalg
 . Clearly, for each u 2 Aalg

˛ ˝A
alg
ˇ

we have k N�.u/k./
�
�

kuk
.˛;ˇ/

�
, where k � k.˛;ˇ/

�
is the projective tensor product of the seminorms k � k.˛/

�

and k � k.ˇ/
�

. Therefore

kabk�;p D k N�.a˝ b/k
./

�
p � kak

.˛/

�
kbk

.ˇ/

�
p˛pˇ D kak�;pkbk�;p: (4.6)

Finally, take any a; b 2 Aalg and decompose them as

a D
X
˛2I1

a˛; b D
X
ˇ2I1

bˇ .a˛ 2 A
alg
˛ ; bˇ 2 A

alg
ˇ
/:

By using (4.5) and (4.6), we obtain

kabk�;p D
X
˛;ˇ

a˛bˇ

�;p
�

X
˛;ˇ

ka˛k�;pkbˇk�;p D kak�;pkbk�;p:

Thus each seminorm k � k�;p is submultiplicative on Aalg, and so Aalg is a locally m-
convex algebra. Since A is the completion of Aalg, it follows that the multiplication
on Aalg uniquely extends to a continuous multiplication on A making A into an
Arens–Michael algebra. Moreover, each seminorm k � k�;p is submultiplicative on
A.

Let now B be an Arens–Michael algebra, and let .'i WAi ! B/i2I be a family
of continuous homomorphisms. Since Aalg D �i2I Ai , there exists a unique algebra
homomorphism 'algWAalg ! B such that 'algjAi D 'i for all i 2 I . We claim that
'alg is continuous with respect to the topology inherited from A. Indeed, let k � k
be a continuous submultiplicative seminorm on B . Then for each i 2 I there exists
pi � 1 and �i 2 ƒi such that for each a 2 Aıi we have

k'i .a/k � pikak�i : (4.7)

Given ˛ D .˛1; : : : ; ˛d / 2 I1, let 'alg
˛ D 'algj

A
alg
˛

. By construction (cf. [34]), 'alg
˛

is the composition of the maps

Aı˛1 ˝ � � �˝A
ı
˛d

'˛1 ˝���˝'˛d
���������! B˝ � � �˝B

�d
��! B;
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where �d is the product map. Now it follows from (4.7) and from the submultiplica-
tivity of k � k that for each a 2 Aalg

˛ we have

k'alg
˛ .a/k � p˛kak

.˛/

�
;

where � D .�i /i2I 2 ƒ and p D .pi /i2I 2 P.I /. Finally, for each a DP
j˛j>0 a˛ 2 A

alg (where a˛ 2 A
alg
˛ ) we obtain'alg�X

˛

a˛
� �X

˛

k'alg
˛ .a˛/k �

X
˛

ka˛k
.˛/

�
p˛ D kak�;p:

Therefore 'alg is continuous, and so it uniquely extends to a continuous homomor-
phism 'WA! B . Thus A Db�i2I Ai , as required.

Corollary 4.4. Under the above assumptions, suppose that I is finite. Then

b�
i2I

Ai D
n
a D

X
˛2I1

a˛ W a˛ 2 A˛; kak�;�

D

X
˛2I1

ka˛k
.˛/

�
� j˛j <1 8� 2 ƒ; 8� � 1

o
: (4.8)

Moreover, each seminorm k � k�;� .� 2 ƒ; � � 1/ is submultiplicative.

Proof. For each � � 1 we have k � k�;� D k � k�;p , where pi D � for all i 2 I .
Conversely, for each p 2 P.I / we have k � k�;p � k � k�;� , where � D maxi2I pi .
Now (4.8) follows from (4.4) and Proposition 4.3.

Here is a simple example.

Proposition 4.5. For each family .Ei /i2I of complete locally convex spaces there
exists a topological algebra isomorphism

b�
i2I

bT .Ei / Š bT �M
i2I

Ei
�
:

In particular,

Fmb�Fn Š FmCn; (4.9)

Fn Š O.C/b� � � �b�O.C/ (n factors): (4.10)

Proof. This is immediate from (4.1), from (4.2), and from the fact that the locally
convex direct sum is the coproduct in the category of locally convex spaces.

The next observation shows that the Arens–Michael free product commutes with
quotients (modulo completions).
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Proposition 4.6. Let .Ai /i2I be a family of Arens–Michael algebras, and let, for
each i 2 I , Ji be a closed two-sided ideal of Ai . Denote by J the closed two-
sided ideal ofb�i2I Ai generated by all the Ji ’s. There exists a topological algebra
isomorphism b�

i2I

�
.Ai=Ji /

�
�
Š
�
. b�
i2I

Ai /=J
��
:

Proof. For each Arens–Michael algebra B we have natural isomorphisms

HomAM
��
. b�
i2I

Ai /=J
��
; B
�
Š
˚
' 2 HomAM

� b�
i2I

Ai ; B
�
W '.J / D 0

	
Š
˚
' 2 HomAM

� b�
i2I

Ai ; B
�
W '.Ji / D 0 8i 2 I

	
Š

n
' D .'i /i2I 2

Y
i2I

HomAM.Ai ; B/ W 'i .Ji / D 0 8i 2 I
o

Š

Y
i2I

HomAM
�
.Ai=Ji /

�; B
�
:

Corollary 4.7. If A1 and A2 are HFG algebras, then so is A1b�A2.

Proof. By Proposition 3.20, each Ak .k D 1; 2/ is a quotient of Fnk for some
nk 2 N. Applying Proposition 4.6 and using (4.9), we see that A1b�A2 is a quotient
of Fn1Cn2 . Hence A1b�A2 is an HFG algebra by Proposition 3.20.

5. Smash products

In this section we consider two analytic versions of the smash product construction
(see, e.g., [5, 14, 27, 44]), the b̋-smash product and the Arens–Michael smash
product. While the former is a special case of smash products in tensor categories
[27], the latter appears to be new. Let us start by recalling some definitions [26, 27].

Let H be a b̋-bialgebra. Similarly to the algebraic case (see, e.g., [21]), the
projective tensor product of two left H -b̋-modules (respectively, comodules) has
a natural structure of a left H -b̋-module (respectively, comodule). A left H -b̋-
module algebra is a b̋-algebra A endowed with the structure of a left H -b̋-module
in such a way that the product �AWA b̋A ! A and the unit map �AWC ! A are
H -b̋-module morphisms. Similarly, a leftH -b̋-comodule algebra is a b̋-algebra B
endowed with the structure of a left H -b̋-comodule in such a way that the product
�B WB b̋B ! B and the unit map �B WC ! B are H -b̋-comodule morphisms.
Given a left H -b̋-module algebra A and a left H -b̋-comodule algebra B , the b̋-
smash product Ab#H B is defined as follows. As a topological vector space, Ab#H B
is equal to A b̋B . To define multiplication, denote by �H;AWH b̋A ! A the
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action of H on A, by �H;B WB ! H b̋B the coaction of H on B , and define
�B;AWB b̋A! A b̋B to be the composition

B b̋A �H;B˝1A
�������! H b̋B b̋A 1H˝cB;A

�������! H b̋A b̋B �H;A˝1B
�������! A b̋B (5.1)

(here cB;A stands for the flip B b̋A! A b̋B). Then the map

.A b̋B/ b̋.A b̋B/ 1A˝�B;A˝1B���������! A b̋A b̋B b̋B �A˝�B
�����! A b̋B (5.2)

is an associative multiplication on A b̋B (the associativity was proved in [26] for
the special caseB D H ; the proof extends verbatim to an arbitraryB). The resultingb̋-algebra is denoted by Ab#H B and is called the b̋-smash product of A and B over
H .

To motivate our further constructions, let us show that Ab#H B is characterized
by a universal property. We need a simple lemma.
Lemma 5.1. Let H be a b̋-bialgebra, A be a left H -b̋-module algebra, and B be
a left H -b̋-comodule algebra. We have the following identities in Ab#H B:

.a˝ 1/.a0 ˝ b0/ D aa0 ˝ b0; (5.3)

.a˝ b/.1˝ b0/ D a˝ bb0; (5.4)

.1˝ b/.a˝ 1/ D �B;A.b ˝ a/; (5.5)

.a˝ b/.a0 ˝ b0/ D .a˝ 1/�B;A.b ˝ a
0/.1˝ b0/: (5.6)

Proof. Identities (5.3) and (5.5) are immediate from (5.2). To prove (5.4), let
"0WH b̋C! C be given by "0.h˝ �/ D "H .h/�. We have a commutative diagram

B b̋A �H;B˝1A// H b̋B b̋A 1H˝cB;A // H b̋A b̋B �H;A˝1B // A b̋B
B b̋C

�H;B˝1C //

1B˝�A

OO

H b̋B b̋C
1H˝cB;C //

1H˝1B˝�A

OO

H b̋C b̋B "0˝1B //

1H˝�A˝1B

OO

C b̋B�A˝1B
OO

B
�H;B //

can

OO

H b̋Bcan

OO

H b̋B "H˝1B //

can

OO

B

can

OO

(5.7)
where the arrows marked by “can” are the canonical isomorphisms. Since ."H ˝
1B/�H;B D 1B , (5.4) now follows from (5.7). Identity (5.6) is immediate
from (5.3)–(5.5).

Lemma 5.1 implies, in particular, that the maps

iAWA! Ab#H B; a 7! a˝ 1;

iB WB ! Ab#H B; b 7! 1˝ b;
(5.8)

are b̋-algebra homomorphisms.
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Definition 5.2. Given a b̋-algebra C , we say that a pair .'AWA! C; 'B WB ! C/

of b̋-algebra homomorphisms is compatible if the diagram

B b̋A �B;A //

'B˝'A
��

A b̋B
'A˝'B
��

C b̋ C
�C

""

C b̋ C
�C

||
C

is commutative.

Proposition 5.3. Let H be a b̋-bialgebra, A be a left H -b̋-module algebra, and B
be a left H -b̋-comodule algebra. Let the homomorphisms iA, iB be given by (5.8).
Then

(i) the pair .iA; iB/ is compatible;
(ii) for each b̋-algebra C and each compatible pair .'AWA! C; 'B WB ! C/ of

continuous homomorphisms there exists a unique continuous homomorphism
Ab#H B ! C making the diagram

Ab#H B
��

A

iA
::

'A $$

B

iB
dd

'Bzz
C

(5.9)

commute.

In other words, we have a natural isomorphism

Homb̋-alg.A
b#H B;C / Š ˚compatible .'A; 'B/ 2 Homb̋-alg.A; C /�Homb̋-alg.B; C /

	
;

where b̋-alg is the category of all b̋-algebras.

Proof.
(i) It is immediate from (5.3) and (5.5) that

�
Ab#H B

.iA ˝ iB/ D 1Ab̋B ; �
Ab#H B

.iB ˝ iA/ D �B;A:

This readily implies that the pair .iA; iB/ is compatible.
(ii) Define  WAb#H B ! C by  D �C .'A ˝ 'B/. Clearly,  makes (5.9)

commute. We claim that  is an algebra homomorphism. Indeed, by using (5.3), for
each a; a0 2 A and each b0 2 B we obtain

 ..a˝ 1/.a0 ˝ b0// D  .aa0 ˝ b0/ D 'A.a/'A.a
0/'B.b

0/ D 'A.a/ .a
0
˝ b0/:
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By linearity and continuity, we conclude that

 ..a˝ 1/u/ D 'A.a/ .u/ .a 2 A; u 2 Ab#H B/: (5.10)

Similarly, (5.4) yields

 .u.1˝ b// D  .u/'B.b/ .b 2 B; u 2 Ab#H B/: (5.11)

Since .'A; 'B/ is a compatible pair, we have

 .�B;A.b ˝ a// D 'B.b/'A.a/ .b 2 B; a 2 A/: (5.12)

Finally, by using (5.6) and (5.10)–(5.12), for each a; a0 2 A and each b; b0 2 B we
obtain

 ..a˝ b/.a0 ˝ b0// D  ..a˝ 1/�B;A.b ˝ a
0/.1˝ b0//

D 'A.a/'B.b/'A.a
0/'B.b

0/ D  .a˝ b/ .a0 ˝ b0/:

Thus  is an algebra homomorphism. The uniqueness of  is immediate from the
fact that Im iA and Im iB generate a dense subalgebra of Ab#H B .

Remark 5.4. Proposition 5.3 has an obvious “purely algebraic” version which
characterizes the algebraic smash product A #H B .

Proposition 5.3 motivates the following definition.
Definition 5.5. Let H be a b̋-bialgebra, A be a left H -b̋-module Arens–Michael
algebra, and B be a left H -b̋-comodule Arens–Michael algebra. The Arens–
Michael smash product of A and B over H is an Arens–Michael algebra A #HAMB

together with a compatible pair .iAWA! A #HAMB; iB WB ! A #HAMB/ of continuous
homomorphisms such that for each Arens–Michael algebra C and each compatible
pair .'AWA! C; 'B WB ! C/ of continuous homomorphisms there exists a unique
continuous homomorphism A #HAMB ! C making the diagram

A #HAMB

��

A

iA
::

'A %%

B

iB
dd

'Byy
C

(5.13)

commute.
In other words, the Arens–Michael smash product is an Arens–Michael algebra

A #HAMB together with a natural isomorphism

HomAM.A #HAMB;C / Š
˚
compatible .'A; 'B/ 2 HomAM.A; C / � HomAM.B; C /

	
:

Proposition 5.3 easily implies that A #HAMB exists. Indeed, we have

A #HAMB D .A
b#H B/b: (5.14)

Here is one more characterization of A #HAMB .
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Proposition 5.6. Let H be a b̋-bialgebra, A be a left H -b̋-module Arens–Michael
algebra, and B be a left H -b̋-comodule Arens–Michael algebra. Denote by

jAWA! Ab�B; jB WB ! Ab�B
the canonical homomorphisms, and let J be the closed two-sided ideal of Ab�B
generated by

Im
�
�
Ab�B.jB ˝ jA � .jA ˝ jB/�B;A/�:

Finally, let S be the completion of .Ab�B/=J , and let the homomorphisms
iAWA! S and iB WB ! S be the compositions of jA; jB with the quotient map
Ab�B ! S . Then .S; iA; iB/ is the Arens–Michael smash product of A and B .

Proof. For each Arens–Michael algebra C we have natural bijections

HomAM.S; C / Š
˚
' 2 HomAM.Ab�B;C / W '.J / D 0	

Š
˚
' 2 HomAM.Ab�B;C / W '�Ab�B�jB ˝ jA � .jA ˝ jB/�B;A� D 0	

Š
˚
' 2 HomAM.Ab�B;C / W �C .' ˝ '/�jB ˝ jA � .jA ˝ jB/�B;A� D 0	

Š
˚
' 2 HomAM.Ab�B;C / W �C �'jB ˝ 'jA � .'jA ˝ 'jB/�B;A� D 0	

Š
˚
' 2 HomAM.Ab�B;C / W .'jA; 'jB/ is compatible

	
Š
˚
compatible .'A; 'B/ 2 HomAM.A; C / � HomAM.B; C /

	
Š HomAM.A #HAMB;C /:

Corollary 5.7. Let H be a b̋-bialgebra, A be a left H -b̋-module Arens–Michael
algebra, and B be a left H -b̋-comodule Arens–Michael algebra. If both A and B
are holomorphically finitely generated, then so is A #HAMB .

Proof. Immediate from Proposition 5.6, Corollary 4.7, and Proposition 3.18.

So far we have two constructions of A #HAMB , the one given by (5.14) and the one
given by Proposition 5.6. However, both of them are rather implicit. In particular,
they tell us almost nothing about the underlying locally convex space of A #HAMB .
Fortunately, as we will see in Proposition 5.16 and Corollary 5.18, we actually
have A #HAMB D Ab#H H under appropriate conditions. To this end, we need some
definitions and a lemma.

Definition 5.8. Let X be a vector space, and let T be a set of linear operators on X .
We say that a seminorm k � k on X is T -stable [37] if for each T 2 T there exists
C > 0 such that for each x 2 X we have kT xk � Ckxk. A subset U � X is said
to be T -stable if for each T 2 T there exists C > 0 such that T .U / � CU .

The following is a “continuous version” of Definition 5.8.



236 A. Yu. Pirkovskii

Definition 5.9. Let A be a locally convex algebra, and let X be a left A-module. We
say that a seminorm k � kX on X is A-stable if there exists a continuous seminorm
k � kA on A such that for all a 2 A; x 2 X we have ka � xkX � kakAkxkX . A
subset U � X is said to be A-stable if there exists a 0-neighborhood V � A such
that V � U � U .

Remark 5.10. Observe that a seminorm k � k is T -stable (respectively, A-stable) if
and only if so is the unit ball fx 2 X W kxk � 1g.

Remark 5.11. Clearly, each A-stable seminorm on X is stable with respect to the
set fx 7! a � x W a 2 Ag of multiplication operators. If A is endowed with the
strongest locally convex topology, then the converse is also true. Indeed, suppose
that a seminorm k � kX on X is stable with respect to fx 7! a � x W a 2 Ag. Then
kakA D supfka � xkX W kxkX � 1g is a seminorm on A satisfying ka � xkX �
kakAkxkX . Thus k � kX is A-stable.

Definition 5.12. Let B be an Arens–Michael algebra, and let T be a set of
continuous linear operators on B . We say that T is m-localizable [38] if there
exists a defining family of submultiplicative, T -stable seminorms on B . A linear
operator T WB ! B is m-localizable if so is the singleton fT g.

Finally, we have the following “continuous” version of Definition 5.12.

Definition 5.13. Let A be a locally convex algebra, and let B be an Arens–Michael
algebra endowed with a left A-module structure. We say that the action of A on
B is m-localizable if there exists a defining family of submultiplicative, A-stable
seminorms on B . Equivalently, the action of A on B is m-localizable if there exists
a base of idempotent, A-stable 0-neighborhoods in B .

Remark 5.14. Let A be an Arens–Michael algebra, and let B be an Arens–Michael
algebra endowed with a left A-b̋-module structure. By [38, Proposition 3.4], there
always exists a defining family of A-stable seminorms on B . However, it is unclear
whether it is possible to find a defining family of seminorms that are A-stable and
submultiplicative simultaneously.

The following lemma (see [37, Corollary 1.3]) is a special case of a useful result
due to Mitiagin, Rolewicz, and Żelazko [32].

Lemma 5.15. Let A be a topological algebra. Suppose that A has a base U of
absolutely convex 0-neighborhoods with the property that for each V 2 U there
exist U 2 U and C > 0 such that UV � CV . Then A is locally m-convex.

Recall a notation from the theory of topological vector spaces (see, e.g., [16, 24,
42]). Let E and F be complete locally convex spaces, and let U � E and V � F
be 0-neighborhoods. By a standard abuse of notation, we let �.U ˝V / denote the
closed absolutely convex hull of the setU ˝V D fu˝v W u 2 U; v 2 V g � E b̋ F .
If now U (respectively, V ) is a base of 0-neighborhoods inE (respectively, F ), then
f�.U ˝V / W U 2 U ; V 2 V g is a base of 0-neighborhoods in E b̋ F (loc. cit.).
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Now we are in a position to show that, under appropriate conditions, the b̋-smash
product and the Arens–Michael smash product are the same.

Proposition 5.16. LetH be a b̋-bialgebra, A be a leftH -b̋-module Arens–Michael
algebra, and B be a left H -b̋-comodule Arens–Michael algebra. Suppose that the
action of H on A is m-localizable. Then Ab#H B is an Arens–Michael algebra.
Equivalently, A #HAMB D A

b#H B .

Proof. Let U be a base of idempotent, H -stable 0-neighborhoods in A, and let V
be a base of idempotent 0-neighborhoods in B . Then the family

B D f�.U ˝V / W U 2 U ; V 2 V g

is a 0-neighborhood base in Ab#H B . Given U 2 U and V 2 V , let W � H be
a 0-neighborhood such that W � U � U . Choose V 0 2 V such that �H;B.V 0/ �
�.W ˝V /. We claim that

�.U ˝V 0/ �.U ˝V / � �.U ˝V /: (5.15)

Indeed, take u1; u2 2 U , v1 2 V 0, and v2 2 V . Then �H;B.v1/ 2 �.W ˝V /.
Since W � U � U , i.e., �H;A.W ˝U/ � U , it follows that

�B;A.v1 ˝ u2/ D .�H;A ˝ 1B/.1H ˝ cB;A/.�H;B.v1/˝ u2/

2 .�H;A ˝ 1B/.1H ˝ cB;A/
�
�.W ˝V ˝U/

�
D .�H;A ˝ 1B/

�
�.W ˝U ˝V /

�
� �.U ˝V /:

Therefore,

.u1 ˝ v1/.u2 ˝ v2/ D .�A ˝ �B/.u1 ˝ �B;A.v1 ˝ u2/˝ v2/

2 .�A ˝ �B/.U ˝�.U ˝V /˝V /

� .�A ˝ �B/
�
�.U ˝U ˝V ˝V /

�
� �.U ˝V /:

This proves (5.15). Thus the base B satisfies the conditions of Lemma 5.15, whence
Ab#H B is an Arens–Michael algebra.

Proposition 5.17. Let H be a Banach bialgebra, and let A be a left H -b̋-module
Arens–Michael algebra. Then the action of H on A is m-localizable.

Proof. Let fk � k� W � 2 ƒg be a directed defining family of submultiplicative
seminorms on A. Without loss of generality, we assume that the norm k � k on H is
submultiplicative, and that k1Hk D 1. Given � 2 ƒ, find � 2 ƒ and C1 > 0 such
that

kh � ak� � C1khkkak� .h 2 H; a 2 A/: (5.16)

Define a seminorm k � k0
�

on A by

kak0� D supfkh � ak� W khk � 1g:
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By (5.16), we have k � k0
�
� C1k � k�, whence k � k0

�
is a continuous seminorm on A.

Letting h D 1, we see that k � k� � k � k0�. Let now h 2 H , a 2 A, and assume that
khk � 1. Then

kh � ak0� D supfkh1h � ak� W kh1k � 1g � kak0�;

due to the submultiplicativity of k � k. Hence

kh � ak0� � khkkak
0
� .h 2 H; a 2 A/; (5.17)

and so k � k0
�

is H -stable.
Let k � k� denote the projective tensor norm on H b̋H , and let k � k0

�;�
denote

the projective tensor seminorm on A b̋A associated to k � k0
�

. Observe that (5.17)
implies the estimate

ku � vk0�;� � kuk�kvk
0
�;� .u 2 H b̋H; v 2 A b̋A/: (5.18)

Choose C � 1 such that

k�H .h/k� � Ckhk .h 2 H/: (5.19)

For each a; b 2 A we have

kabk0� D supfkh � abk� W khk � 1g

D supfk�A.�H .h/ � .a˝ b//k� W khk � 1g (since �A is an H -module morphism)

� supfk�H .h/ � .a˝ b/k�;� W khk � 1g (since k � k� is submultiplicative)

� supfk�H .h/ � .a˝ b/k0�;� W khk � 1g (since k � k� � k � k0�)

� supfk�H .h/k�ka˝ bk0�;� W khk � 1g (by (5.18))

� Cka˝ bk0�;� (by (5.19))

D Ckak0�kbk
0
�:

Hence k � k00
�
D Ck � k0

�
is a continuous,H -stable, submultiplicative seminorm on A,

and k�k� � k�k00�. Therefore fk�k00
�
W � 2 ƒg is a directed defining family ofH -stable,

submultiplicative seminorms on A, and the action of H on A is m-localizable.

Corollary 5.18. Let H be a Banach bialgebra, A be a left H -b̋-module Arens–
Michael algebra, and B be a left H -b̋-comodule Arens–Michael algebra. Then
Ab#H B is an Arens–Michael algebra. Equivalently, A #HAMB D A

b#H B .

Proof. Combine Propositions 5.16 and 5.17.

Remark 5.19. An inspection of the above proof shows that Proposition 5.17 holds
for each Arens–Michael bialgebra H that can be represented as an inverse limit of
Banach bialgebras. Equivalently, this means that the topology onH can be generated
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by a family fk � k� W � 2 ƒg of submultiplicative seminorms with the additional
property that k�H .h/k�;� � C�khk� .h 2 H/, for suitable constants C� > 0.
We restrict ourselves to Banach bialgebras mostly because this is enough for our
purposes, and also because the vast majority of natural nonnormable Arens–Michael
bialgebras do not have the above property. We do not know, however, whether
Proposition 5.17 holds for each Arens–Michael bialgebra H .

We now specialize to smash products coming from semigroup actions and
semigroup graded algebras. Given a unital semigroup S , we endow the Banach
algebra `1.S/ with the structure of a Banach bialgebra by letting

�.s/ D s ˝ s; ".s/ D 1 .s 2 S/:

It is elementary to check that� and " uniquely extend to continuous comultiplication
and counit on `1.S/, respectively, and that .`1.S/;�; "/ is indeed a Banach
bialgebra.

Proposition 5.20. Let S be a unital semigroup, and let A be a b̋-algebra.

(i) Suppose that S acts on A by endomorphisms in such a way that the action is
equicontinuous. Then A is a left `1.S/-b̋-module algebra via the map

�S;AW `
1.S/ � A! A;

�X
s2S

css; a
�
7!

X
s2S

cs.s � a/: (5.20)

(ii) Conversely, ifA is endowed with a left `1.S/-b̋-module algebra structure, then
the respective action of S on A is equicontinuous.

Proof. (i) Let fk � k� W � 2 ƒg be a directed defining family of seminorms on
A. Given � 2 ƒ, find � 2 ƒ and C > 0 such that ks � ak� � Ckak� for all
s 2 S; a 2 A. Then for each h D

P
s css 2 `

1.S/ we haveX
s2S

kcs.s � a/k� � C
X
s2S

jcsjkak� D Ckhkkak�: (5.21)

Thus the family .cs.s �a//s2S is absolutely summable inA, and (5.20) yields a jointly
continuous bilinear map from `1.S/ � A to A. The axioms of an `1.S/-b̋-module
algebra are readily verified.

(ii) Let fk � k� W � 2 ƒg be a directed defining family of seminorms on A. Given
� 2 ƒ, choose � 2 ƒ and C > 0 such that

kh � ak� � Ckhkkak� .h 2 `1.S/; a 2 A/: (5.22)

Letting h D s 2 S , we see that the action of S on A is equicontinuous.

To introduce an appropriate “analytic” version of a semigroup graded algebra,
we need a definition from the theory of locally convex spaces.
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Definition 5.21. Let E be a complete locally convex space. Following [6, 3.3], we
say that a family fEs W s 2 Sg of vector subspaces of E is an absolute Schauder
decomposition of E if the following conditions hold:

(i) for each x 2 E there exists a unique family .xs/s2S 2
Q
s2S Es such that

x D
P
s2S xs;

(ii) for each continuous seminorm k�k onE we have kxk0 D
P
s2S kxsk <1 (i.e.,

the family .xs/s2S is absolutely summable to x), and, moreover, the seminorm
k � k0 is continuous.

We say that a seminorm k � k on E is graded if for each x 2 E we have kxk DP
s2S kxsk. It follows from the above definition that the family of all continuous

graded seminorms generates the original topology on E.

Definition 5.22. Let S be a unital semigroup, and let A be a b̋-algebra. By an
absolute S -grading onAwe mean an absolute Schauder decomposition fAs W s 2 Sg
of A such that for each s; t 2 S we have AsAt � Ast . An absolutely S -graded b̋-
algebra is a b̋-algebra endowed with an absolute S -grading.

Similarly to the purely algebraic case, it is easy to see that for each a; b 2 A and
each r 2 S we have .ab/r D

P
stDr asbt . We also have 1 2 Ae , where e is the

identity element of S (cf. [33, 1.1.1]).

Proposition 5.23. Let S be a unital semigroup, and let A be a b̋-algebra.

(i) IfA is endowed with an absolute S -grading, thenA is a left `1.S/-b̋-comodule
algebra via the map

�S;AWA! `1.S/ b̋A; a 7!
X
s2S

s ˝ as .a 2 A/: (5.23)

(ii) Conversely, if A is endowed with a left `1.S/-b̋-comodule algebra structure,
then the subspaces As D fa 2 A W �S;A.a/ D s ˝ ag form an absolute
S -grading on A.

Proof. Let fk � k� W � 2 ƒg be a directed defining family of seminorms on A. For
each � 2 ƒ, we will use the same notation k � k� for the respective projective tensor
seminorm on `1.S/ b̋A.

(i) Suppose that A is absolutely S -graded. Without loss of generality, we may
assume that each seminorm k � k� is graded. For each a 2 A, we haveX

s2S

ks ˝ ask� D
X
s2S

kask� D kak�:

Hence the family .s ˝ as/s2S is absolutely summable in `1.S/ b̋A, and (5.23)
yields a continuous linear map from A to `1.S/ b̋A. The axioms of a left `1.S/-b̋-
comodule algebra are readily verified.
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(ii) Conversely, assume that A is a left `1.S/-b̋-comodule algebra. Recall [35,
7.2.3] that there exists a topological isomorphism between `1.S/ b̋A and the locally
convex space `1.S; A/ of all absolutely summable families .as/s2S in A. Explicitly,
the isomorphism takes each .as/s2S 2 `1.S; A/ to

P
s2S s ˝ as 2 `

1.S/ b̋A, and
for all � 2 ƒ we have k

P
s2S s ˝ ask� D

P
s2S kask�. Hence for each a 2 A

there exists a unique absolutely summable family .as/s2S inA such that the coaction
�S;A of `1.S/ on A is given by (5.23). By coassociativity, we haveX

s2S

s ˝�S;A.as/ D
X
s2S

s ˝ s ˝ as;

whence �S;A.as/ D s ˝ as , i.e., as 2 As . We also have

a D ."˝ 1A/.�S;A.a// D
X
s2S

as .a 2 A/:

If .a0s/s2S 2
Q
s As is another summable family such that a D

P
s2S a

0
s , then

applying �S;A yields
P
s2S s ˝ as D

P
s2S s ˝ a0s , whence a0s D as for all

s 2 S . Thus condition (i) of Definition 5.21 is satisfied. Clearly, for each � 2 ƒ
the seminorm kak0

�
D k�S;A.a/k� is continuous on A. On the other hand,

kak0
�
D
P
s2S kask�. Thus condition (ii) of Definition 5.21 is also satisfied, and

so fAs W s 2 Sg is an absolute Schauder decomposition of A. Finally, for each
a 2 As and b 2 At we have �S;A.ab/ D .s ˝ a/.t ˝ b/ D st ˝ ab, i.e., ab 2 Ast .
This completes the proof.

Theorem 5.24. Let A be a b̋-algebra. Suppose that a unital semigroup S acts on
A by endomorphisms in such a way that the action is equicontinuous. Let also B be
an absolutely S -graded b̋-algebra. Then there exists a unique b̋-algebra structure
on A b̋B such that

.a1 ˝ 1/.a2 ˝ 1/ D a1a2 ˝ 1 .a1; a2 2 A/I (5.24)

.1˝ b1/.1˝ b2/ D 1˝ b1b2 .b1; b2 2 B/I (5.25)

.a˝ 1/.1˝ b/ D a˝ b .a 2 A; b 2 B/I (5.26)

.1˝ bs/.a˝ 1/ D .s � a/˝ bs .a 2 A; bs 2 Bs; s 2 S/: (5.27)

The resulting b̋-algebra Ab#S B is equal to Ab#`1.S/B . If, in addition, A and
B are Arens–Michael algebras, then so is Ab#S B . Finally, if both A and B are
holomorphically finitely generated, then so is Ab#S B .

Proof. Applying Propositions 5.20 and 5.23, we obtain a left `1.S/-b̋-module
algebra structure on A and a left `1.S/-b̋-comodule algebra structure on B . Let
Ab#S B D Ab#`1.S/B . Relations (5.24)–(5.27) are immediate from Lemma 5.1
modulo the fact that �S;B.bs/ D s ˝ b. By (5.26), the elements a ˝ 1 .a 2 A/
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and 1 ˝ bs .s 2 S; bs 2 Bs/ generate a dense subalgebra of Ab#S B , whence the
multiplication on Ab#S B is uniquely determined by (5.24)–(5.27). If both A and B
are Arens–Michael algebras, then Corollary 5.18 implies that Ab#S B is an Arens–
Michael algebra too. The last assertion follows from Corollary 5.7.

6. Skew holomorphic functions

A construction closely related to smash products is that of an Ore extension, or a
skew polynomial ring (see, e.g., [21, 30]). Similarly to free products and smash
products, Ore extensions also have natural “analytic” counterparts [38].

LetA be an algebra, and let � be an endomorphism ofA. Recall that a linear map
ıWA! A is a � -derivation if ı.ab/ D ı.a/b C �.a/ı.b/ for all a; b 2 A. Suppose
now that A is an Arens–Michael algebra, � is an endomorphism of A, and ı is a
� -derivation such that f�; ıg is m-localizable. By [38, Proposition 4.3], there exists
a unique continuous multiplication on O.C; A/ such that the canonical embeddings

O.C/ ,! O.C; A/; f 7! f ˝ 1;

A ,! O.C; A/; a 7! 1˝ a;
(6.1)

are algebra homomorphisms, and such that

za D �.a/z C ı.a/ .a 2 A/; (6.2)

where z 2 O.C/ � O.C; A/ is the complex coordinate. The resulting b̋-algebra
is denoted by O.C; AI �; ı/ and is called the Arens–Michael Ore extension (or the
analytic Ore extension) of A via f�; ıg. By [38, Proposition 4.5], O.C; AI �; ı/ is an
Arens–Michael algebra.

By [38, Proposition 4.4 and Remark 4.6], O.C; AI �; ı/ has the universal property
that for each Arens–Michael algebraB , each continuous homomorphism 'WA! B ,
and each x 2 B satisfying x'.a/ D '.�.a//x C '.ı.a// .a 2 A/, there exists a
unique continuous homomorphism  WO.C; AI �; ı/ ! B such that  jA D ' and
 .z/ D x. In other words, there is a natural bijection

HomAM.O.C; AI �; ı/; B/ Š
˚
.'; x/ 2 HomAM.A;B/ � B W

x'.a/ D '.�.a//x C '.ı.a// 8a 2 A
	
: (6.3)

Remark 6.1. The algebra O.C; AI �; ı/ can be viewed as an analytic analog of the
algebraic Ore extension AŒzI �; ı� (see, e.g., [21, 1.7]). Note that AŒzI �; ı� is a dense
subalgebra of O.C; AI �; ı/. In fact, it is rather easy to deduce from (6.3) that, if we
endow AŒzI �; ı� with a suitable topology, then O.C; AI �; ı/ becomes the Arens–
Michael envelope of AŒzI �; ı�.
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Proposition 6.2. Let A be an Arens–Michael algebra, � be an endomorphism of A,
and ı be a � -derivation on A such that f�; ıg is m-localizable. Identify O.C/ and
A with the respective subalgebras of O.C/b�A via the canonical embeddings jO.C/
and jA, and let J be the closed two-sided ideal of O.C/b�A generated by

fza � �.a/z � ı.a/ W a 2 Ag:

Finally, let S be the completion of .O.C/b�A/=J . Then there exists a unique
topological algebra isomorphism S Š O.C; AI �; ı/ such that z C J 7! z and
aC J 7! a for all a 2 A.

We omit the proof since it is similar to that of Proposition 5.6 modulo (6.3) and
the natural bijection HomAM.O.C/; B/ Š B .B 2 AM/.
Corollary 6.3. Let A be an Arens–Michael algebra, � be an endomorphism of
A, and ı be a � -derivation on A such that f�; ıg is m-localizable. If A is
holomorphically finitely generated, then so is O.C; AI �; ı/.

If � D 1A (respectively, if ı D 0), then the algebra O.C; AI �; ı/ is denoted by
O.C; AI ı/ (respectively, O.C; AI �/). These algebras can be interpreted as Arens–
Michael smash products as follows (for details, see [38, Remarks 4.2–4.4]). Observe
that the Fréchet–Arens–Michael algebra O.C/ can be made into a b̋-bialgebra in
two different ways. The first way is to use the additive structure on C and to define a
comultiplication �add and a counit "add on O.C/ by

�add.f /.z; w/ D f .z C w/; "add.f / D f .0/ .f 2 O.C//:

The resulting Arens–Michael bialgebra (which is in fact an Arens–Michael Hopf
algebra) will be denoted by O.Cadd/. Alternatively, we can use the multiplicative
structure on C to define a comultiplication �mult and a counit "mult on O.C/ by

�mult.f /.z; w/ D f .zw/; "mult.f / D f .1/ .f 2 O.C//:

The resulting Arens–Michael bialgebra will be denoted by O.Cmult/. If now A is
an Arens–Michael algebra and ı is an m-localizable derivation on A, then A can be
made into an O.Cadd/-b̋-module algebra in such a way that z � a D ı.a/ .a 2 A/.
Moreover, the action of O.Cadd/ onA is easily seen to bem-localizable, and we have
topological algebra isomorphisms

O.C; AI ı/ Š Ab# O.Cadd/ Š A #AM O.Cadd/: (6.4)

Similarly, if � is an m-localizable endomorphism of A, then A can be made into an
O.Cmult/-b̋-module algebra in such a way that z � a D �.a/ .a 2 A/. Moreover, the
action of O.Cmult/ on A is easily seen to be m-localizable, and we have topological
algebra isomorphisms

O.C; AI �/ Š Ab# O.Cmult/ Š A #AM O.Cmult/: (6.5)
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Of course, the isomorphisms (6.4) and (6.5) come from their algebraic versions
AŒzI ı� Š A # O reg.Cadd/ Š A #U.C/ (where U.C/ is the enveloping algebra of
the abelian Lie algebra C) and AŒzI �� Š A # O reg.Cmult/ Š A #CZC (where CZC
is the semigroup algebra of the additive semigroup ZC).

Our next goal is to extend the definition of O.C; AI �/ to the case of A-valued
functions on a domain D � Cn satisfying some additional conditions. In what
follows, we let z1; : : : ; zn denote the coordinates on Cn. Recall that a subsetD � Cn
is balanced if for each � 2 C with j�j � 1 we have �D � D. Given a balanced
domain D � Cn and f 2 O.D/, let fm denote the homogeneous polynomial of
total degree m 2 ZC that appears in the Taylor expansion of f at 0. Explicitly,

fm.z/ D
X
k2Zn
C

jkjDm

Dkf .0/

kŠ
zk :

By [6, Proposition 3.36], the series
P
m2ZC fm absolutely converges in O.D/, and

we have f D
P
m2ZC fm. Moreover (loc. cit.), for each compact set K � D the

seminorm

kf k0K D
X
m2ZC

kfmkK .where kfmkK D sup
z2K

jfm.z/j/

is continuous on O.D/. Thus we see that O.D/ becomes an absolutely ZC-graded
Fréchet algebra (see Definition 5.22).

Proposition 6.4. Let A be a b̋-algebra, and let � be an endomorphism of A
such that the family f�k W k 2 ZCg is equicontinuous. Then for each balanced
domain D � Cn there exists a unique b̋-algebra structure on O.D;A/ such that
the canonical embeddings

O.D/ ,! O.D;A/; f 7! f ˝ 1;

A ,! O.D;A/; a 7! 1˝ a;

are algebra homomorphisms, and such that

zia D �.a/zi .a 2 A; i D 1; : : : ; n/: (6.6)

The resulting b̋-algebra O.D;AI �/ is equal to Ab#ZC O.D/. If, in addition, A is
an Arens–Michael algebra, then so is O.D;AI �/. Finally, if A is holomorphically
finitely generated, then so is O.D;AI �/.

Proof. We have an equicontinuous action of ZC on A given by k � a D �k.a/ .k 2
ZC; a 2 A/. As we have already observed, O.D/ is an absolutely ZC-graded
Fréchet algebra. Now the result follows from Theorem 5.24 modulo the obvious fact
that A and z1; : : : ; zn generate a dense subalgebra of O.D;AI �/.
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Proposition 6.4 can be extended to the case of several commuting endo-
morphisms of A. To this end, we have to impose more restrictions on the
domain D. Recall that a domain D � Cn is a Reinhardt domain if for each
z D .z1; : : : ; zn/ 2 D and each � D .�1; : : : ; �n/ 2 Cn such that j�i j D 1 .i D

1; : : : ; n/ we have .�1z1; : : : ; �nzn/ 2 D. If the above condition holds for all
� D .�1; : : : ; �n/ 2 Cn such that j�i j � 1 .i D 1; : : : ; n/, then D is a complete
Reinhardt domain. Equivalently, D is a Reinhardt domain (respectively, a complete
Reinhardt domain) if and only if D is a union of closed polyannuli (respectively, of
closed polydisks) centered at 0.

Given a Reinhardt domain D � Cn, let

ND D
˚
j 2 f1; : : : ; ng W D \ fz 2 Cn W zj D 0g ¤ ∅

	
:

Note that if 0 2 D (e.g., if D is complete), then ND D f1; : : : ; ng. Clearly, the
monomial zk (where k 2 Zn) is defined everywhere on D if and only if kj � 0 for
all j 2 ND .

The following is essentially a restatement of a well-known fact from complex
analysis (see, e.g., [41, Chap. II, §1.2]).

Lemma 6.5. For each Reinhardt domain D � Cn, the subspaces

O.D/k D

(
spanfzkg if kj � 0 for all j 2 NDI
0 otherwise

.k 2 Zn/

form an absolute Zn-grading on O.D/. In particular, if 0 2 D, then O.D/ is
absolutely ZnC-graded.

Proof. By [41, Chap. II, §1.2, Theorem 1.5], each f 2 O.D/ has a unique Laurent
series representation

f .z/ D
X
k2Zn

ckz
k .z 2 D/;

and ck D 0 whenever kj < 0 for some j 2 ND . Thus for each k 2 Zn we have
fk D ckz

k 2 O.D/k . Fix a compact polyannulus NDnr;R � D, and let � 2 .0; 1/ be
such that ND�r;��1R � D. By [41, Chap. II, §1.2, (1.11)], we have

kfkk NDr;R � �
jkj
kf k ND

�r;��1R
.k 2 Zn/:

Therefore X
k2Zn
kfkk NDr;R � Ckf k ND�r;��1R

; (6.7)

where

C D
X
k2Zn

�jkj D

�
1C �

1 � �

�n
:
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Since each compact set K � D is covered by finitely many compact polyannuli
contained in D, it follows from (6.7) that the seminorm kf k00K D

P
k kfkkK is

continuous on O.D/. This completes the proof.

Proposition 6.6. Let A be a b̋-algebra, and let � D .�1; : : : ; �n/ be a commuting
family of endomorphisms of A. Suppose that D � Cn is a Reinhardt domain, and
that one of the following conditions holds:

(i) 0 2 D, and the subsemigroup of End.A/ generated by �1; : : : ; �n is equicon-
tinuous;

(ii) �1; : : : ; �n are automorphisms, and the subgroup of Aut.A/ generated by
�1; : : : ; �n is equicontinuous.

Then there exists a unique b̋-algebra structure on O.D;A/ such that the canonical
embeddings

O.D/ ,! O.D;A/; f 7! f ˝ 1;

A ,! O.D;A/; a 7! 1˝ a;

are algebra homomorphisms, and such that

zia D �i .a/zi .a 2 A; i D 1; : : : ; n/: (6.8)

Let S D ZnC for case (i), and S D Zn for case (ii). Then the resulting b̋-algebra
O.D;AI �/ is equal to Ab#S O.D/. If, in addition, A is an Arens–Michael algebra,
then so is O.D;AI �/. Finally, if A is holomorphically finitely generated, then so is
O.D;AI �/.

We omit the proof as it is similar to that of Proposition 6.4.

Remark 6.7. In practice, the equicontinuity of the subsemigroup of End.A/ gen-
erated by commuting endomorphisms �1; : : : ; �n is often reduced to the following
property. Suppose that there exists a defining family fk � k� W � 2 ƒg of seminorms
on A such that

k�i .a/k� � kak� .a 2 A; � 2 ƒ; i D 1; : : : ; n/: (6.9)

Then for each k 2 ZnC and each a 2 A we have k�k.a/k� � kak�, which obviously
implies that the subsemigroup of End.A/ generated by �1; : : : ; �n is equicontinuous.
Similarly, if �1; : : : ; �n are automorphisms, then the subgroup of Aut.A/ generated
by �1; : : : ; �n is equicontinuous provided that there exists a defining family fk � k� W
� 2 ƒg of seminorms on A such that

k�i .a/k� D kak� .a 2 A; � 2 ƒ; i D 1; : : : ; n/: (6.10)

Remark 6.8. Algebras O.D;AI �/ from Proposition 6.6 (i) can be viewed as
analytic analogs of iterated Ore extensions of the following special form. Given
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an algebra A and a commuting n-tuple � D .�1; : : : ; �n/ of endomorphisms of
A, we define a chain A0 � � � � � An of algebras by letting A0 D A and
Ak D Ak�1ŒzkI Q�k�, where Q�k is the endomorphism of Ak�1 uniquely determined
by Q�kjA D �k and Q�k.zi / D zi .i D 1; : : : ; k � 1/. The existence of such
an endomorphism easily follows from the commutativity of the �i ’s. We have
An D AŒz1; : : : ; zn� with multiplication uniquely determined by (6.8) and by the
requirement that the embeddings A ,! An and CŒz1; : : : ; zn� ,! An are algebra
homomorphisms. If now A, � , and D are such as in Proposition 6.6 (i), then An
is obviously a dense subalgebra of O.D;AI �/. If condition (ii) of Proposition 6.6
holds, and if ND D ∅ (e.g., if D is a polyannulus), then the situation is similar, but
one should use iterated Laurent extensions instead of iterated Ore extensions.

In the special case where D D DnR is a polydisk in Cn, the algebra O.D;AI �/
can also be defined by a similar iterative procedure. Specifically, we have a chain
B0 � � � � � Bn of Fréchet algebras with B0 D A and Bk D O.DRk ; Bk�1I Q�k/,
where

Q�k D �k ˝ 1WA b̋O.DR1 � � � � � DRk�1/! A b̋O.DR1 � � � � � DRk�1/:

It is easy to show that Bn Š O.D;AI �/. A similar picture holds in the case where
D is a polyannulus.

7. Examples

7.1. Arens–Michael envelopes. Let A be a finitely generated algebra, and suppose
that A is good enough to be interpreted as the algebra of “regular functions” on a
“noncommutative affine variety”. According to the point of view adopted in [38],
the Arens–Michael envelope of A is then a natural candidate for the algebra of
“holomorphic functions” on the same “variety”. This agrees with the philosophy
of the present paper, as we will now see.

Proposition 7.1. If A is a finitely generated algebra, then bA is holomorphically
finitely generated.

Proof. Let A D Fn=I , where I � Fn is a two-sided ideal. Applying [38, Corollary
3.2], we conclude that bA D Fn=J , where J is the closure of I in Fn. By
Proposition 3.20, bA is an HFG algebra.

We have already noticed in Section 2 that, according to [46], the Arens–Michael
envelope of the polynomial algebra CŒz1; : : : ; zn� is the algebra O.Cn/ of entire
functions, while the Arens–Michael envelope of the free algebra Fn is the algebra
Fn of free entire functions. The following example is a slight generalization of [38,
Example 3.6]
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Example 7.2. Let .X;O reg
X / be an affine scheme of finite type over C, and let

.Xh;OXh/ be the complex space associated to .X;O reg
X / (cf. [18, Appendix B]). We

claim that the Arens–Michael envelope of A D O reg.X/ is O.Xh/. Indeed, we have
A D O reg.Cn/=I for an ideal I � O reg.Cn/. Let f1; : : : ; fq 2 O reg.Cn/ generate
I ; then, by definition [18, Appendix B], we have OXh D OCn=I , where I � OCn

is the ideal sheaf generated by f1; : : : ; fq . Thus we have an exact sequence

Oq
Cn

.f1;:::;fq/
������! OCn ! OXh ! 0

of OCn-modules. Applying the global section functor, we see that O.Xh/ Š
O.Cn/=J , where J � O.Cn/ is the ideal generated by f1; : : : ; fq (note that J
is automatically closed in O.Cn/; see [17, V.6]). We claim that J D I , the closure
of I in O.Cn/. Indeed, since J is closed, we have I � J . On the other hand, I is
an ideal of O.Cn/, because O reg.Cn/ is dense in O.Cn/. Since J is algebraically
generated by f1; : : : ; fq , we see that J � I , and finally J D I . By using the fact
that the Arens–Michael functor commutes with quotients [38, Corollary 3.2], we
conclude that

2O reg.X/ Š 3O reg.Cn/=I Š O.Cn/=J Š O.Xh/:

Thus we may interpret the Arens–Michael functor as a noncommutative exten-
sion of the analytification functor that takes an affine scheme .X;O reg

X / of finite type
over C to the associated complex space .Xh;OXh/.

Remark 7.3. The following example shows that a closed subalgebra of an HFG
algebra need not be an HFG algebra. Let g be the two-dimensional solvable Lie
algebra with basis fx; yg and commutation relation Œx; y� D y. As was shown
in [38, Proposition 5.2], the Arens–Michael envelope of the enveloping algebra U.g/
is given by

bU.g/ D na D 1X
i;jD0

cijx
iyj W kakn;t D

1X
iD0

nX
jD0

jcij jt
i
8t > 0; 8n 2 N

o
: (7.1)

The topology on bU.g/ is given by the seminorms k � kn;t .t > 0; n 2 N/. By
Proposition 7.1, bU.g/ is an HFG algebra. On the other hand, it immediate from (7.1)
that the closed subalgebra of bU.g/ generated by y is the algebra CŒŒy�� of formal
power series. Clearly, CŒŒy�� is not isomorphic to O.X/ for any Stein space .X;OX /
and hence is not an HFG algebra.

The following two examples [38] will motivate our further constructions, so we
reproduce them here.

Example 7.4. Let q D .qij / be a complex n � n-matrix such that qi i D 1

and qj i D q�1ij for all i; j D 1; : : : ; n (such matrices are called multiplicatively
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antisymmetric). Recall that the algebra O reg
q .Cn/ of regular functions on the

quantum affine n-space is generated by n elements x1; : : : ; xn subject to the relations
xixj D qijxjxi for all i; j (see, e.g., [2]). If qij D 1 for all i; j , then
O reg

q .Cn/ is nothing but the polynomial algebra CŒx1; : : : ; xn� D O reg.Cn/. Of
course, O reg

q .Cn/ is noncommutative unless qij D 1 for all i; j , but the monomials
xk D x

k1
1 � � � x

kn
n .k 2 ZnC/ still form a basis of O reg

q .Cn/. Thus O reg
q .Cn/ may be

viewed as a “deformed” polynomial algebra.
The Arens–Michael envelope of O reg

q .Cn/ is denoted by Oq.Cn/ and is called the
algebra of holomorphic functions on the quantum affine n-space. If qij D 1 for all
i; j , then Oq.Cn/ Š O.Cn/ (see Section 2 or Example 7.2). The algebra Oq.Cn/ has
the following explicit description [38]. Given d 2 ZC, let us identify each element
˛ D .˛1; : : : ; ˛d / 2 Wn;d with the function ˛W f1; : : : ; dg ! f1; : : : ; ng; ˛.i/ D ˛i .
The symmetric group Sd acts on Wn;d via �.˛/ D ˛��1 .˛ 2 Wn;d ; � 2 Sd /.
Clearly, for each ˛ 2 Wn;d and � 2 Sd there exists a unique �.�; ˛/ 2 C� (where
C� D C n f0g) such that

x˛ D �.�; ˛/x�.˛/: (7.2)

Given k D .k1; : : : ; kn/ 2 ZnC, let

ı.k/ D .1; : : : ; 1„ ƒ‚ …
k1

; : : : ; n; : : : ; n„ ƒ‚ …
kn

/ 2 Wn;jkj:

Define a weight function wqWZnC ! RC by

wq.k/ D minfj�.�; ı.k//j W � 2 Sjkjg: (7.3)

For example [38, Proposition 5.12], if jqij j � 1 whenever i < j , then wq.k/ � 1,

and if jqij j � 1 whenever i < j , then wq.k/ D
Q
i<j q

kikj
ij . In particular, in the

single-parameter case (i.e., in the case where qij D q for all i < j ) we have

wq.k/ D

(
1 if jqj � 1;
jqj

P
i<j kikj if jqj < 1:

(7.4)

As was shown in [38, Theorem 5.11], for each multiplicatively antisymmetric
complex n � n-matrix q we have

Oq.Cn/ D
n
a D

X
k2Zn
C

ckx
k
W kakt D

X
k2Zn
C

jckjwq.k/t
jkj <1 8t > 0

o
: (7.5)

The topology on Oq.Cn/ is given by the norms k � kt .t > 0/. Moreover, each norm
k � kt is submultiplicative.

Example 7.5. As in the previous example, let q D .qij / be a multiplicatively
antisymmetric complex n�n-matrix. Recall that the algebra O reg

q ..C�/n/ of regular
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functions on the quantum affine n-torus is generated by 2n elements x˙11 ; : : : ; x˙1n
subject to the relations xixj D qijxjxi for all i; j , and xix�1i D xix

�1
i D 1 for

all i (see, e.g., [2]). If qij D 1 for all i; j , then O reg
q ..C�/n/ is nothing but the

Laurent polynomial algebra CŒx˙11 ; : : : ; x˙1n � D O reg..C�/n/. In the general case,
the Laurent monomials xk D xk11 � � � x

kn
n .k 2 Zn/ form a basis of O reg

q ..C�/n/, and
so O reg

q ..C�/n/ may be viewed as a “deformed” Laurent polynomial algebra.
Assume now that jqij j D 1 for all i; j . The Arens–Michael envelope of

O reg
q ..C�/n/ is denoted by Oq..C�/n/ and is called the algebra of holomorphic

functions on the quantum affine n-torus. If qij D 1 for all i; j , then Oq..C�/n/ Š
O..C�/n/ (see Example 7.2). As was shown in [38, Corollary 5.22], we have

Oq..C�/n/ D
n
a D

X
k2Zn

ckx
k
W kakt D

X
k2Zn
jckjt

jkj <1 8t > 1
o
: (7.6)

The topology on Oq..C�/n/ is given by the norms k � kt .t > 1/. Moreover,
each norm k � kt is submultiplicative. Note that, if jqij j ¤ 1 for at least one
pair of indices i; j , then the Arens–Michael envelope of O reg

q ..C�/n/ is trivial [38,
Proposition 5.23].

We refer to [9, 11, 38] for explicit descriptions of Arens–Michael envelopes of
some other finitely generated algebras, including quantum Weyl algebras, the algebra
of quantum 2 � 2-matrices, and universal enveloping algebras. Note that, in many
concrete cases, the Arens–Michael envelope of a “deformed polynomial algebra”
can be interpreted as a “deformed power series algebra”, similarly to (7.5) and (7.6).

7.2. Free polydisk. The following definition is motivated by (4.10).

Definition 7.6. We define the algebra of holomorphic functions on the free n-
dimensional polydisk of polyradius R D .R1; : : : ; Rn/ 2 .0;C1�n to be

F .DnR/ D O.DR1/b� � � �b�O.DRn/: (7.7)

By Corollary 4.7, F .DnR/ is an HFG algebra. Letting Ri D 1 for all i and
using (4.10), we see that F .Cn/ D Fn. Note that replacing in (4.10) and (7.7) the
Arens–Michael free productb� by the projective tensor product b̋ yields the algebras
of holomorphic functions on Cn and DnR, respectively.

We have the canonical “restriction” map Fn ! F .DnR/ defined to be the free
product of the restriction maps O.C/ ! O.DRi / .i D 1; : : : ; n/. For each i D
1; : : : ; n, the canonical image of the free generator �i 2 Fn in F .DnR/ will also be
denoted by �i . The next result shows that F .DnR/ has a universal property similar
to (2.5). In what follows, given an algebra A and an element a 2 A, the spectrum of
a in A will be denoted by �A.a/.

Proposition 7.7. Let A be an Arens–Michael algebra, and let a D .a1; : : : ; an/ be
an n-tuple in An such that �A.ai / � DRi for all i D 1; : : : ; n. Then there exists
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a unique continuous homomorphism  free
a WF .DnR/ ! A such that  free

a .�i / D ai
for all i D 1; : : : ; n. Moreover, the assignment a 7!  free

a determines a natural
isomorphism

HomAM.F .DnR/; A/ Š fa 2 A
n
W �A.ai / � DRi 8i D 1; : : : ; ng .A 2 AM/:

Proof. For n D 1, the above result is standard (see, e.g., [28, VI.3, Theorem 3.2]).
Hence for each n 2 N we have natural isomorphisms

HomAM.F .DnR/; A// Š
nY
iD1

HomAM.O.DRi /; A/

Š fa 2 An W �A.ai / � DRi 8i D 1; : : : ; ng:

The algebra F .DnR/ can also be described more explicitly as follows. Given
d � 2 and ˛ D .˛1; : : : ; ˛d / 2 Wn, let s.˛/ denote the cardinality of the set˚

i 2 f1; : : : ; d � 1g W ˛i ¤ ˛iC1
	
:

If j˛j 2 f0; 1g, we set s.˛/ D j˛j � 1. Let also .0; R/ D
Qn
iD1.0; Ri /.

Proposition 7.8. We have

F .DnR/ Dn
a D

X
˛2Wn

c˛�˛ W kak�;� D
X
˛2Wn

jc˛j�˛�
s.˛/C1 <1 8� 2 .0; R/; 8� � 1

o
:

The topology on F .DnR/ is given by the norms k � k�;� .� 2 .0; R/; � � 1/,
and the multiplication is given by concatenation. Moreover, each norm k � k�;� is
submultiplicative.

Proof. Let I D f1; : : : ; ng, and let Ai D O.DRi / for all i 2 I . Note that Ai D
C1Ai ˚ Aıi , where Aıi D ff 2 Ai W f .0/ D 0g. Hence Corollary 4.4 applies,
and (4.8) holds. We have

Aıi Š
n
f D

1X
kD1

ck�
k
i W kf k�i D

1X
kD1

jckj�
k
i <1 8�i 2 .0; Ri /

o
:

Recall the standard fact that the projective tensor product of two Köthe sequence
spaces is again a Köthe sequence space (cf. [24, 41.7]). Hence for each ˛ D
.˛1; : : : ; ˛d / 2 I1 with d > 0 we have

A˛ Š
n
u D

X
k2Nd

ck�
k1
˛1
� � � �kd˛d W kuk

.˛/
� D

X
k2Nd

jckj�
k1
˛1
� � � �kd˛d <1 8� 2 .0; R/

o
:



252 A. Yu. Pirkovskii

Now (4.8) yields

F .DnR/ Š
n
a D �1C

1X
dD1

X
˛2Id

X
k2Nd

c˛k�
k1
˛1
� � � �kd˛d W � 2 C;

kak�;� D j�j C

1X
dD1

X
˛2Id

X
k2Nd

jc˛kj�
k1
˛1
� � � �kd˛d �

d <1 8� 2 .0; R/; 8� � 1
o
:

(7.8)

LetW Cn D
F
d�1Wn;d , and let S D

F
d�1.Id �Nd /. We have a bijection between

S and W Cn given by

.˛; k/ D ..˛1; : : : ; ˛d /; .k1; : : : ; kd // 2 Id � Nd

7! ˇ.˛/ D
�
˛1; : : : ; ˛1„ ƒ‚ …

k1

; : : : ; ˛d ; : : : ; ˛d„ ƒ‚ …
kd

�
2 W Cn : (7.9)

Note that jˇ.˛/j D jkj and that j˛j D s.ˇ.˛//C 1. Using (7.9) and (7.8), we obtain

F .DnR/ Š
n
a D �1C

X
ˇ2W

C
n

cˇ �ˇ W � 2 C;

kak�;� D j�j C
X
ˇ2W

C
n

jcˇ j�ˇ �
s.ˇ/C1 <1 8� 2 .0; R/; 8� � 1

o
Š

n
a D

X
ˇ2Wn

cˇ �ˇ W kak�;� D
X
ˇ2Wn

jcˇ j�ˇ �
s.ˇ/C1 <1 8� 2 .0; R/; 8� � 1

o
:

The submultiplicativity of k � k�;� follows from Corollary 4.4.

Remark 7.9. Another natural candidate for the algebra of holomorphic functions on
the free polydisk was introduced by J. L. Taylor [46, 47]. By definition,

F T .DnR/ D
n
a D

X
˛2Wn

c˛�˛ W kak� D
X
˛2Wn

jc˛j�˛ <1 8� 2 .0; R/
o
: (7.10)

Obviously, F .DnR/ � F T .DnR/, and kak� � kak�;� for each a 2 F .DnR/, each
� 2 .0; R/, and each � � 1. Hence the embedding of F .DnR/ into F T .DnR/ is
continuous. For n D 1, we clearly have F T .D1R/ D F .D1R/ D O.D1R/. To
compare F T .DnR/ with F .DnR/ for n � 2, it is convenient to consider the following
three cases.

(i) Suppose that Ri D 1 for all i , i.e., DnR D Cn. Comparing (2.3) and (7.10),
we see that F T .Cn/ D Fn D F .Cn/, both algebraically and topologically.

(ii) Suppose that Ri < 1 for at most one i 2 f1; : : : ; ng. We claim
that F T .DnR/ D F .DnR/ in this case. Without loss of generality, assume that
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R1 < 1 and R2 D : : : D Rn D 1. Given � 2 .0; R/ and � � 1, let
�0 D .�1; �

2�2; : : : ; �
2�n/. We clearly have �0 2 .0; R/. To prove the claim, it

suffices to show that for each ˛ 2 Wn we have

k�˛k�;� � �k�˛k�0 : (7.11)

Fix ˛ 2 Wn and write �˛ in the form

�˛ D �
m1
1 �˛.1/�

m2
1 �˛.2/ � � � �

mk
1 �˛.k/�

mkC1
1 ;

where m1; : : : ; mkC1 2 ZC, ˛.1/; : : : ; ˛.k/ 2 Wn do not contain 1, and j˛.i/j � 1
for all i D 1; : : : ; k. We clearly have

s.˛/ � 2k C

kX
iD1

s.˛.i//:

Since for each ˇ 2 Wn we have s.ˇ/C 1 � jˇj, it follows that

s.˛/ � 2k C

kX
iD1

s.˛.i// � k C

kX
iD1

j˛.i/j � 2

kX
iD1

j˛.i/j:

Therefore
k�˛k�;� D �˛�

s.˛/C1
� ��˛�

2
P
j˛.i/j; (7.12)

while

k�˛k�0 D �
P
mj

1 �2j˛.1/j�˛.1/ � � � �
2j˛.k/j�˛.k/ D �˛�

2
P
j˛.i/j: (7.13)

Comparing (7.12) with (7.13), we obtain (7.11), as required. Therefore F T .DnR/ D
F .DnR/, both algebraically and topologically.

(iii) Finally, suppose that Ri <1 for at least two i 2 f1; : : : ; ng. As was shown
in [25, 46], F T .DnR/ is not nuclear in this case. Hence F T .DnR/ is not an HFG
algebra, and so F T .DnR/ ¤ F .DnR/. Moreover, the topology on F .DnR/ is strictly
stronger than that inherited from F T .DnR/.

7.3. q-products of balanced and Reinhardt domains. In the remaining sub-
sections, we will introduce deformed products on some algebras of holomorphic
functions, and we will show that the resulting deformed algebras are HFG algebras.
Let us start with the simplest case of the algebra O.D1 �D2/, where D1 � Cm and
D2 � Cn are balanced domains.

Proposition 7.10. Let D1 � Cm and D2 � Cn be balanced domains. Denote
by z1; : : : ; zm (respectively, w1; : : : ; wn) the coordinates on Cm (respectively, Cn).
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Then for each q 2 C� there exists a unique continuous multiplication on O.D1�D2/
such that

zizj D zj zi .i; j D 1; : : : ; m/;

wiwj D wjwi .i; j D 1; : : : ; n/; (7.14)

ziwj D qwj zi .i D 1; : : : ; m; j D 1; : : : ; n/:

The resulting Fréchet algebra O.D1 �q D2/ is an HFG algebra.

Proof. By interchanging D1 and D2 if necessary, we can assume that jqj � 1.
Consider the endomorphism � of O.D1/ given by .�f /.z/ D f .q�1z/. For each
compact set K � D1 and each f 2 O.D1/ with homogeneous expansion f DP
m2ZC fm, we have

k�.f /k0K D
X
m2ZC

k�.fm/kK D
X
m2ZC

jqj�mkfmkK �
X
m2ZC

kfmkK D kf k
0
K :

Hence (6.9) holds, and the subsemigroup of End.O.D1// generated by � is
equicontinuous. Now Proposition 6.4 yields the HFG algebra O.D2;O.D1/I �/.
Identifying O.D2;O.D1/I �/ with O.D1 �D2/ as a Fréchet space (see Section 2),
we see that the relations (7.14) hold in O.D2;O.D1/I �/. Letting O.D1 �q D2/ D
O.D2;O.D1/I �/, we obtain the required algebra.

If we assume that D1 and D2 are Reinhardt domains, then we can generalize the
commutation relations (7.14) as follows.

Proposition 7.11. Let D1 � Cm and D2 � Cn be Reinhardt domains. Denote
by z1; : : : ; zm (respectively, w1; : : : ; wn) the coordinates on Cm (respectively, Cn).
Let q D .qij / be a complex m � n-matrix, and assume that one of the following
conditions holds:

(i) D1 and D2 are complete, and either jqij j � 1 for all i; j , or 0 < jqij j � 1 for
all i; j ;

(ii) jqij j D 1 for all i; j .

Then there exists a unique continuous multiplication on O.D1 �D2/ such that

zizj D zj zi .i; j D 1; : : : ; m/;

wiwj D wjwi .i; j D 1; : : : ; n/; (7.15)

ziwj D qijwj zi .i D 1; : : : ; m; j D 1; : : : ; n/:

The resulting Fréchet algebra O.D1 �q D2/ is an HFG algebra.

Proof.
(i) By interchanging D1 and D2 if necessary, we can assume that jqij j � 1

for all i; j . Consider the commuting endomorphisms �1; : : : ; �n of O.D1/ given
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by .�jf /.z/ D f .q�11j z1; : : : ; q
�1
mj zm/. For each compact set K � D1 and each

f 2 O.D1/ with Taylor expansion f D
P
k2Zm
C
ckz

k , we have

k�j .f /k
00
K D

X
k2Zm
C

jckjk�j .z
k/kK �

X
k2Zm
C

jckjkz
k
kK D kf k

00
K :

Hence (6.9) holds, and the subsemigroup of End.O.D1// generated by �1; : : : ; �n is
equicontinuous. Now Proposition 6.6 (i) yields the HFG algebra O.D2;O.D1/I �/.
Identifying O.D2;O.D1/I �/ with O.D1 �D2/ as a Fréchet space (see Section 2),
we see that the relations (7.15) hold in O.D2;O.D1/I �/. Letting O.D1 �q D2/ D

O.D2;O.D1/I �/, we obtain the required algebra.
(ii) The proof is similar to (i), the only difference is that now �1; : : : ; �n are

automorphisms satisfying (6.10), and so the subgroup of Aut.O.D1// generated by
�1; : : : ; �n is equicontinuous.

7.4. Quantum polydisk. Our next example is motivated by (7.5). Let q D .qij /

be a multiplicatively antisymmetric complex n � n-matrix. Observe that, for each
t > 0, the norm k � kt on O reg

q .Cn/ given by (7.5) is a special case of the following
one. Given � 2 .0;C1/n and a D

P
k ckx

k 2 O reg
q .Cn/, let

kak� D
X
k2Zn
C

jckjwq.k/�
k;

where the function wqWZnC ! RC is given by (7.3). The same argument as in [38,
Lemma 5.10] shows that k � k� is submultiplicative.
Definition 7.12. LetR 2 .0;C1�n. We define the algebra of holomorphic functions
on the quantum n-polydisk of polyradius R by

Oq.DnR/ D
n
a D

X
k2Zn
C

ckx
k
W kak� D

X
k2Zn
C

jckjwq.k/�
k <1 8� 2 .0; R/

o
:

The topology on Oq.DnR/ is given by the norms k � k� .� 2 .0; R//, and the
multiplication on Oq.DnR/ is uniquely determined by xixj D qijxjxi for all i; j .

In other words, Oq.DnR/ is the completion of O reg
q .Cn/ with respect to the family

fk � k� W � 2 .0; R/g of submultiplicative norms. Clearly, if qij D 1 for all i; j , then
Oq.DnR/ is topologically isomorphic to the algebra O.DnR/ of holomorphic functions
on the polydisk DnR.
Theorem 7.13. There exists a unique continuous homomorphism

� WF .DnR/! Oq.DnR/ such that �.�i / D xi .i D 1; : : : ; n/:

Moreover, � is onto, and Ker� coincides with the closed two-sided ideal of F .DnR/
generated by the elements �i�j � qij �j �i for all i; j D 1; : : : ; n. Finally, Ker� is a
complemented subspace of F .DnR/.
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To prove Theorem 7.13, we need some preparation. Given k 2 ZnC, let

W.k/ D f�.ı.k// W � 2 Sjkj; j�.�; ı.k//j D wq.k/g

(for notation, see Example 7.4). Observe that, if ˛ 2 Wn and �1; �2 2 Sj˛j are such
that �1.˛/ D �2.˛/, then �.�1; ˛/ D �.�2; ˛/ (see (7.2)). In other words, �.�; ˛/
depends only on ˛ and �.˛/. As a consequence we obtain the following.

Lemma 7.14. If � 2 Sjkj, then �.ı.k// 2 W.k/ if and only if j�.�; ı.k//j D wq.k/.

Recall [38, Lemma 5.8] that, for each ˛ 2 Wn and each �; � 2 Sj˛j we have

�.��; ˛/ D �.�; �.˛//�.�; ˛/: (7.16)

Lemma 7.15. If ˛ 2 W.k/, then

(i) j�.�; ˛/j � 1 for each � 2 Sjkj;
(ii) j�.�; ˛/j D 1 if and only if �.˛/ 2 W.k/.

Proof. Choose � 2 Sjkj such that ˛ D �.ı.k//. By Lemma 7.14, we have
j�.�; ı.k//j D wq.k/. Moreover, �.˛/ 2 W.k/ if and only if j�.��; ı.k//j D wq.k/.
Using (7.16), we see that

wq.k/ � j�.��; ı.k//j D j�.�; ˛/jwq.k/:

This readily implies both (i) and (ii).

Let d 2 ZC, and let d1; : : : ; dp 2 ZC be such that d1 C � � � C dp D d . We will
identify each p-tuple .ˇ1; : : : ; ˇp/ such that ˇi 2 Wn;di .i D 1; : : : ; p/ with the
element of Wn;d obtained from ˇ1; : : : ; ˇp by concatenation.

Definition 7.16. Let `; d 2 ZC, ` � d . We say that ˇ 2 Wn;` is a subword
of ˛ 2 Wn;d if there exist `0; `00 2 ZC and ˇ0 2 Wn;`0 , ˇ00 2 Wn;`00 such that
d D `0 C `C `00 and ˛ D .ˇ0; ˇ; ˇ00/.

Definition 7.17. Given j 2 f1; : : : ; ng, a j -word is a word of the form .j; : : : ; j / 2

Wn;d for some d 2 ZC.

Definition 7.18. Let ˛ 2 Wn;d , and let ˇ be a j -subword of ˛. We say that ˇ is a
maximal j -subword of ˛ if ˇ is not a proper subword any other j -subword of ˛.

Given ˛ 2 Wn;d and j 2 f1; : : : ; ng, let N.˛; j / denote the number of maximal
nonempty j -subwords of ˛. Let also

nc.˛/ D
˚
j 2 f1; : : : ; ng W N.˛; j / � 2

	
;

c.˛/ D f1; : : : ; ng n nc.˛/:
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Definition 7.19. We say that ˛ 2 Wn;d is compact if nc.˛/ D ∅. Equivalently, ˛ is
compact if there exist � 2 Sn and k D .k1; : : : ; kn/ 2 ZnC such that

˛ D .�.1/; : : : ; �.1/„ ƒ‚ …
k1

; : : : ; �.n/; : : : ; �.n/„ ƒ‚ …
kn

/:

Given s; t; d 2 ZC such that 1 � s < t � d , consider the cycle

�s;t D .s s C 1 : : : t � 1 t/ 2 Sd :

Let also �t;s D ��1s;t . We clearly have

�s;t D .s s C 1/.s C 1 s C 2/ � � � .t � 1 t/;

�t;s D .t � 1 t/.t � 2 t � 1/ � � � .s s C 1/:

Lemma 7.20. For each ˛ 2 Wn;d we have

�.�s;t ; ˛/ D

t�1Y
iDs

q˛i˛t ; �.�t;s; ˛/ D

tY
iDsC1

q˛s˛i : (7.17)

Proof. We prove only the first equality, the proof of the second being similar. We
use induction on p D t � s. For p D 1, there is nothing to prove. Let now p � 2,
and let ˛0 D .t � 1 t/˛. Since �s;t D �s;t�1.t � 1 t/, the induction hypothesis and
(7.16) yield

�.�s;t ; ˛/ D �.�s;t�1; ˛
0/�..t � 1 t/; ˛/

D

�t�2Y
iDs

q˛0
i
˛0
t�1

�
q˛t�1˛t D

�t�2Y
iDs

q˛i˛t

�
q˛t�1˛t D

t�1Y
iDs

q˛i˛t :

Lemma 7.21. Let k 2 ZnC. For each noncompact ˛ 2 W.k/ and each j 2 nc.˛/
there exists � 2 Sjkj such that �.˛/ 2 W.k/, N.�.˛/; j / D N.˛; j / � 1, and
c.˛/ � c.�.˛//.

Proof. Since j 2 nc.˛/, we can write ˛ in the form

˛ D .ˇ1; 1; ˇ2; 2; ˇ3/ (7.18)

where 1 and 2 are maximal nonempty j -subwords of ˛, and ˇ1; ˇ2; ˇ3 are
subwords of ˛ such that ˇ2 ¤ ∅. Let also

r D jˇ1j; s D jˇ1j C j1j; t D jˇ1j C j1j C jˇ2j:

In particular, we have ˛s D ˛tC1 D j . Using (7.17), we obtain

�.�t;s; ˛/ D

tY
iDsC1

qj˛i ; �.�sC1;tC1; ˛/ D

tY
iDsC1

q˛ij :
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Hence �.�sC1;tC1; ˛/ D �.�t;s; ˛/
�1. Applying Lemma 7.15, we conclude that

j�.�t;s; ˛/j D j�.�sC1;tC1; ˛/j D 1, whence �t;s.˛/ 2 W.k/.
Let ˛0 D �t;s.˛/. We have

˛0 D .ˇ1; 
0
1; ˇ2; 

0
2; ˇ3/;

where  02 D .j; 2/ and 1 D . 01; j /. If  01 ¤ ∅, then the same procedure applied
to ˛0 and to the maximal nonempty j -subwords  01; 

0
2 yields

˛00 D �t�1;s�1.˛
0/ D .ˇ1; 

00
1 ; ˇ2; 

00
2 ; ˇ3/ 2 W.k/;

where  002 D .j; 
0
2/ and  01 D .

00
1 ; j /. After finitely many steps we obtain

˛.s�r/ D �t�sCrC1;rC1.˛
.s�r�1// D .ˇ1; ˇ2; 1; 2; ˇ3/ 2 W.k/: (7.19)

We clearly have ˛.s�r/ D �.˛/, where � D
Qs�r
iD1 �t�sCrCi;rCi . Comparing (7.19)

with (7.18), we conclude thatN.˛.s�r/; j / D N.˛; j /�1 and c.˛/ � c.˛.s�r//.

Lemma 7.22. For each k 2 ZnC, W.k/ contains a compact word.

Proof. Choose ˛ 2 W.k/ such that jc.˛/j � jc.ˇ/j for each ˇ 2 W.k/. Assume,
towards a contradiction, that ˛ is noncompact, and fix any j 2 nc.˛/. Applying
Lemma 7.21 finitely many times, we obtain ˇ 2 W.k/ such that N.ˇ; j / D 1 and
c.˛/ ( c.ˇ/. Thus jc.ˇ/j > jc.˛/j. The resulting contradiction completes the
proof.

Proof of Theorem 7.13. Fix i 2 f1; : : : ; ng, and let zi 2 O.DRi / denote the complex
coordinate. Let ei 2 ZnC denote the n-tuple with 1 at the i th position, 0 elsewhere.
Clearly, for each d 2 ZC the element ı.dei / D .i; : : : ; i / 2 Wn;d is invariant under
the action of Sd . Hence wq.dei / D 1, and

kxdi k� D kx
deik� D �

d
i D kz

d
i k�i .� 2 .0; R//:

This implies that there exists a Fréchet algebra embedding O.DRi / ,! Oq.DnR/ that
sends the complex coordinate zi to xi . Hence, by Definition 7.6, there exists a unique
continuous homomorphism

� WF .DnR/! Oq.DnR/; �i 7! xi .i D 1; : : : ; n/:

Let us construct a continuous linear map

~WOq.DnR/! F .DnR/ such that �~ D 1: (7.20)

To this end, fix any k 2 ZnC and choose a compact word ˛k 2 W.k/ (see
Lemma 7.22). Let �k 2 Sjkj be such that ˛k D �k.ı.k//. Then

xk D xı.k/ D �.�k; ı.k//x˛k D �.�.�k; ı.k//�˛k /: (7.21)
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We claim that for each a D
P
k2Zn
C
ckx

k 2 Oq.DnR/ the seriesX
k2Zn
C

ck�.�k; ı.k//�˛k (7.22)

absolutely converges in F .DnR/. Indeed, since ˛k is compact, it follows that s.˛k/ �
n�1 for each k 2 ZnC. By Lemma 7.14, we also have j�.�k; ı.k//j D wq.k/. Hence
for each � 2 .0; R/ and each � � 1 we obtainX

k2Zn
C

kck�.�k; ı.k//�˛kk�;� �
X
k2Zn
C

jckjwq.k/�
k�n D �nkak�: (7.23)

Therefore (7.22) converges to an element ~.a/ 2 F .DnR/. It is also immediate
from (7.23) that for each a 2 Oq.DnR/ we have k~.a/k�;� � �nkak�, whence
~WOq.DnR/! F .DnR/ is a continuous linear map. Using (7.21), we see that �~ D 1.
Hence � is onto, and Ker� is a complemented subspace of F .DnR/.

Let now I � F .DnR/ denote the closed two-sided ideal generated by the
elements �i�j � qij �j �i for all i; j . Clearly, I � Ker� , and hence � induces a
continuous homomorphism

N� WF .DnR/=I ! Oq.DnR/; N�i 7! xi .i D 1; : : : ; n/;

where N�i D �i C I 2 F .DnR/=I . Let N~WOq.DnR/ ! F .DnR/=I denote the
composition of ~ with the quotient map F .DnR/ ! F .DnR/=I . It is immediate
from (7.20) that N� N~ D 1. On the other hand, it follows from the definition of I that
the linear span of the set f N�˛k W k 2 ZnCg is dense in F .DnR/=I . Hence Im N~ is also
dense in F .DnR/=I . Together with N� N~ D 1, this implies that N� and N~ are topological
isomorphisms. Therefore I D Ker� . This completes the proof.

Corollary 7.23. Oq.DnR/ is an HFG algebra.

Proof. Immediate from Theorem 7.13, Corollary 4.7, and Proposition 3.18.

7.5. Quantum polyannulus. Our last example is motivated by (7.6). Let q D .qij /
be a multiplicatively antisymmetric complex n � n-matrix such that jqij j D 1 for
all i; j . For each k 2 Zn, define kC; k� 2 Zn by kCi D maxfki ; 0g and k�i D
minfki ; 0g. Given r; R 2 Œ0;C1�n, we write r < R if ri < Ri for all i . In
this case, let .r; R/ D

Qn
iD1.ri ; Ri /. Given �; � 2 .0;C1/n with � < � and

a D
P
k ckx

k 2 O reg
q ..C�/n/, let

kak�;� D
X
k2Zn
jckj�

k��k
C

:

Clearly, k � k�;� is a norm on O reg
q ..C�/n/. Observe that for each k 2 Zn we have

kxkk�;� D �
k��k

C

D maxfjzkj W z 2 NDn�;�g:
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Since jqij j D 1 for all i; j , it follows that

kxkx`k�;� D kx
kC`
k�;� � kx

k
k�;�kx

`
k�;� ;

whence the norm k � k�;� is submultiplicative on O reg
q ..C�/n/. Observe that, for each

t > 1, the norm k � kt given by (7.6) is a special case of the above construction, since

k � kt D k � k.t�1;:::;t�1/;.t;:::;t/:

Definition 7.24. Let r; R 2 Œ0;C1�n; r < R. We define the algebra of
holomorphic functions on the quantum n-polyannulus of polyradii r and R by

Oq.Dnr;R/ D
n
a D

X
k2Zn

ckx
k
W kak�;�

D

X
k2Zn
jckj�

k��k
C

<1 8�; � 2 .r; R/; � < �
o
:

The topology on Oq.Dnr;R/ is given by the norms k � k�;� .�; � 2 .r; R/; � < �/,
and the multiplication on Oq.Dnr;R/ is uniquely determined by xixj D qijxjxi for
all i; j .

In other words, Oq.Dnr;R/ is the completion of O reg
q ..C�/n/ with respect to the

family fk � k�;� W �; � 2 .r; R/; � < �g of submultiplicative norms. Observe that,
as a Fréchet space, Oq.Dnr;R/ is topologically isomorphic to the space O.Dnr;R/ of
holomorphic functions on the polyannulus Dnr;R. Explicitly, the isomorphism takes
each holomorphic function on Dnr;R to its Laurent expansion about 0. Clearly, if
qij D 1 for all i; j , then the above isomorphism is a Fréchet algebra isomorphism.

Theorem 7.25. Oq.Dnr;R/ is an HFG algebra.

Proof. For n D 1, there is nothing to prove. Let n � 2, and assume that
the result holds for n � 1. Let r 0 D .r1; : : : ; rn�1/, R0 D .R1; : : : ; Rn�1/,
and q0 D .qij /i;j�n�1. Let � be the automorphism of O reg

q0 ..C
�/n�1/ given by

�.xi / D q
�1
in xi .i D 1; : : : ; n � 1/. Clearly, for each a 2 O reg

q0 ..C
�/n�1/ we have

k�.a/k�;� D kak�;� .�; � 2 .r 0; R0/; � < �/: (7.24)

Hence � uniquely extends to a topological automorphism of Oq0.Dn�1r 0;R0/. Moreover,
(7.24) holds for each a 2 Oq0.Dn�1r 0;R0/. Hence � satisfies (6.10), and the subgroup of
Aut.Oq0.Dn�1r 0;R0// generated by � is equicontinuous. Applying Proposition 6.6 (ii),
we obtain the HFG algebra O.Drn;Rn ;Oq0.Dn�1r 0;R0/I �/, which is easily seen to be
topologically isomorphic to Oq.Dnr;R/.

Remark 7.26. If jqij j ¤ 1 for at least one pair of indices i; j , then the only
submultiplicative seminorm on O reg

q ..C�/n/ is identically zero (see Example 7.5).
That is why we make no attempt to define Oq.Dnr;R/ in this case.
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Remark 7.27. If q D .qij / is a multiplicatively antisymmetric complex n�n-matrix
satisfying jqij j � 1 for all i < j , then Corollary 7.23 can be proved similarly to
Theorem 7.25. In the general case, however, the endomorphism � of O reg

q0 .C
n�1/

given by �.xi / D q�1in xi .i D 1; : : : ; n � 1/ need not extend to a continuous
endomorphism of Oq0.Dn�1R0 /. Consider, for example, the simplest case where n D 2,
R0 D 1, and jqj D jq12j < 1. We have O reg

q0 .C
n�1/ D CŒx1�, Oq0.Dn�1R0 / D O.D1/,

and � WCŒx1� ! CŒx1� acts by �.x1/ D q�1x1. If � were continuous with respect
to the topology inherited from O.D1/, then for each � 2 .0; 1/ there would exist
r 2 .�; 1/ and C > 0 such that k�.a/k� � Ckakr for each a 2 CŒx1�. For a D xk1 ,
this yields jqj�k�k � Crk , or, equivalently, jqj�1 � C 1=k.r=�/. Letting first
k ! 1 and then � ! 1, we obtain jqj�1 � 1. The resulting contradiction shows
that � is not continuous. Thus the above method cannot be applied to Corollary 7.23
in the general case.
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