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Metrics and spectral triples for Dirichlet and resistance forms
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Abstract. The article deals with intrinsic metrics, Dirac operators and spectral triples induced
by regular Dirichlet and resistance forms. We show, in particular, that if a local resistance
form is given and the space is compact in resistance metric, then the intrinsic metric yields
a geodesic space. Given a regular Dirichlet form, we consider Dirac operators within the
framework of differential 1-forms proposed by Cipriani and Sauvageot, and comment on its
spectral properties. If the Dirichlet form admits a carré operator and the generator has discrete
spectrum, then we can construct a related spectral triple, and in the compact and strongly
local case the associated Connes distance coincides with the intrinsic metric. We finally give a
description of the intrinsic metric in terms of vector fields.
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1. Introduction

In this article we study intrinsic metrics, Dirac operators and spectral triples
associated with Dirichlet and resistance forms. A regular symmetric Dirichlet form
on a locally compact space X allows the localization of energy by means of energy
measures �.f /, f 2 F , in the sense of Fukushima [27] and LeJan [54]. These
energy measures may or may not be absolutely continuous with respect to the given
reference measure, but it is always possible to find measures m that are energy
dominant, i.e. such that the energy measure �.f / of every function f 2 F is
absolutely continuous with respect to m. If the given Dirichlet form is strongly
local, [27, Section 3.2], then for any energy dominant measure m we can consider
an intrinsic distance d�;m that generalizes the classical expression

d.x; y/ D sup
˚
f .x/ � f .y/ j f 2 C 1 such that jrf j � 1

	
:
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The definition of d�;m depends on the choice ofm, and in general different measures
mwill lead to different metrics. The first papers that studied intrinsic metrics induced
by strongly local regular Dirichlet forms on locally compact spaces were [8, 75, 76],
and more recent references are [12, 49, 71]. Intrinsic metrics for non-local forms
have been studied for the first time in [28], where in particular a Rademacher type
theorem is proved for general regular Dirichlet forms, [28, Theorem 4.9]. Intrinsic
metrics in infinite dimensional situations are considered in [39]. A typical question is
whether a locally compact space X equipped with the intrinsic metric coming from
a strongly local Dirichlet form is geodesic or at least a length space, i.e. such that the
intrinsic metric coincides with the shortest path metric. Some of the corresponding
results of Sturm [75, 76] have later been simplified by Stollmann, [71]. In these
references it is assumed that the original reference measure is energy dominant and
that the topology induced by the intrinsic metric coincides with the original topology.
Under these assumptions the space, equipped with the intrinsic metric, is a length
space, [71]. The same arguments allow to prove this result also for intrinsic metrics
d�;m with respect to an arbitrary energy dominant measurem. The question whether
or not the topology induced by d�;m coincides with the original topology on X is
known to be characterized by a compact embedding of a ball of Lipschitz functions
into the space of continuous functions, see Theorems 2.1 and 2.2 below. This result
is not new, in more abstract context it has been shown by Rieffel [64], Pavlović [59]
and Latrémolière [52, 53]. For expository reasons we quote a version in the language
of Dirichlet forms.

The second setup we investigate is that of resistance forms .E ;F/ in the sense of
Kigami [45, 46, 48]. One of the most prominent examples for a resistance form is
the standard energy form on the Sierpinski gasket, see for instance [43, 45]. Neither
a topology nor a measure are needed to define a resistance form on a set X , and
every resistance form determines a metric dR on X , the so-called resistance metric.
A resistance form gives rise to a Dirichlet form in the sense of [27] if a suitable
reference measure m is specified, and under some conditions the resulting form will
be regular (with respect to the topology induced by dR). If .X; dR/ is compact,
the Dirichlet form will always be regular. In this case we may proceed as before
and consider the intrinsic metric d�;m. It turns out that in the local case the space
.X; d�;m/ is always a length space. To our knowledge this result is new. Since
compactness in dR implies compactness in d�;m any such space is even geodesic,
i.e. any two points x and y can be joined by a path of length d�;m.x; y/. We also
give an example for a space X that is compact in intrinsic metric d�;m, but non-
compact in the resistance metric dR. A very special situation arises for resistance
forms on dendrites (topological trees), [44]. If the dendrite is compact in resistance
metric, then any intrinsic metric will itself be a resistance metric.

Another question we are interested in is the existence of Dirac operators and
spectral triples associated with Dirichlet forms. In noncommutative geometry
spectral triples are used to encode geometric information [22, 30]. Recently several
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authors have begun to discuss spectral triples for fractals, [15, 16, 31]. It would be
interesting to see how these objects are related to recent research in mathematical
physics on fractals, see for instance [2, 3]. In [18] the authors investigate spectral
triples for the Sierpinski gasket. They consider a parametrized family of spectral
triples associated with non-local operators, first on circles and later on the gasket.
The singularity of the energy with respect to the self-similar Hausdorff measure is
described in terms of an energy dimension, defined by a trace formula, that differers
from the Hausdorff dimension. In [60] spectral triples on ultrametric spaces are
constructed. There the authors represent the ultrametric space in terms of a uniquely
associated tree and base their construction on a notion of choices. Later on, they use
Dirac operators, traces and integration over the space of choices to define associated
Dirichlet forms. Further results related to spectral triples can be found in [9], where
dynamical systems are studied and [58], where tiling spaces are investigated.

At first, we take a rather abstract point of view upon the existence of Dirac
operators and spectral triples, as proposed by Cipriani and Sauvageot in [20, 21].
Given a regular symmetric Dirichlet form .E ;F/ we follow this approach to a first
order calculus and consider a Hilbert space H of L2-differential 1-forms and a first
order derivation @ associated with .E ;F/. Typical examples arise from Dirichlet
forms on fractals such as Sierpinski carpets or gaskets, others from (relativistic)
Schrödinger operators or Schrödinger operators associated with Lévy processes. We
recall the definition of a related Dirac operator D from [37], and for the special
case that the generator L of .E ;F/ has pure point spectrum we describe the spectral
representation for D.

Our interest in pure point spectrum arises, in particular, from its appearance in the
study of Laplacians on finitely ramified symmetric fractals and related graphs, see
[7, 56, 66, 79]. These studies are influenced by the mathematical theory of Anderson
localization for random Hamiltonians, see [1, 13, 69] and references therein. It is
an interesting question, which we do not address, whether our results can be related
to the pure point spectrum of random orthogonal polynomials on the circle (see [78,
29, 70] and references therein) and the quasi-circles considered in [22].

To consider spectral triples we partially follow the definition used in [18], it
differs slightly from the classical one, cf. [30]. This seems reasonable, because
we are particularly interested in spectral triples on fractal spaces, and the latter may
roughly speaking have an infinite dimensional first cohomology. A precise statement
can be found in [19, Theorem 3.9], see also [40]. If the original reference measure
itself is energy dominant for .E ;F/ and the generator L has discrete spectrum,
then we can verify the existence of a spectral triple .A;H;D/ for the C �-algebra
A obtained as the uniform closure of the collection A0 of continuous compactly
supported functions of finite energy that have essentially bounded energy densities.
See formula (2.3) and Theorem 5.1. To verify this result we make use of a direct
integral representation for H from [36], stated in Theorem 5.2. In the strongly local
case and under some conditions (for instance if X is compact), a related Connes
distance dD on X coincides with the intrinsic metric d�;m, see Theorem 5.3.
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We would like to point out that our spectral triples differ from the spectral triples
on Cantor sets considered in [60]. More precisely, the authors in [60] first construct
a spectral triple and then derive a regular Dirichlet form from this spectral triple. If
our method is applied to this regular Dirichlet form then one obtains a spectral triple
that is different from the one they started with.

As a last item, we provide a description of the intrinsic metric d�;m in terms of
bounded vector fields. This resembles the situation in sub-Riemannian geometry.
Our interest in vector fields arises, in particular, from the study of gradients on self-
similar fractals [23, 35, 61, 72, 80] and, more generally, on fractafolds (see [73, 74]).

Section 2 is concerned with intrinsic metrics for regular Dirichlet forms, and
Section 3 with the resistance form case. Dirac operators and spectral triples are
investigated in Sections 4 and 5, respectively. Section 6 rephrases the definition
of the intrinsic metric in terms of vector fields. Two straightforward facts about
composition and multiplication of energy finite functions are stated in a short
appendix.

When dealing with symmetric bilinear or conjugate symmetric sesquilinear
expressions .f; g/ 7! Q.f; g/ we write Q.f / WD Q.f; f / to shorten notation.

Acknowledgements. The authors are very grateful to Jean Bellissard for important
and helpful discussions leading to this paper. They also thank Joe P. Chen, Naotaka
Kajino, Daniel Lenz and the anonymous referees for valuable suggestions.

2. Length spaces for local regular Dirichlet forms

Let .X; d/ be a locally compact separable metric space and � a nonnegative Radon
measure on X such that �.U / > 0 for any nonempty open set U � X . A pair
.E ;F/ is called a symmetric Dirichlet form on L2.X; �/ if it satisfies the following
conditions:

(DF1) E W F � F ! R is a nonnegative definite bilinear form on a dense subspace
F of L2.X; �/,

(DF2) .E ;F/ is closed, i.e. .F ; E1/, where E1.f; g/ WD E.f; g/C hf; giL2.X;�/, is
a Hilbert space,

(DF3) .E ;F/ has the Markov property, i.e. u 2 F implies .0 _ u/ ^ 1 2 F and

E..0 _ u/ ^ 1/ � E.u/:

A Dirichlet form .E ;F/ is called regular if in addition

(DF4) the space C WD Cc.X/\F is both uniformly dense in the space of compactly
supported continuous functions Cc.X/ and dense in F with respect to the
Hilbert space norm f 7! E1.f /1=2.
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See for instance [27, 55]. Now let .E ;F/ be a regular Dirichlet form on L2.X; �/.
Since

E.fg/1=2 � kf kL1.X;�/ E.g/
1=2
C kgkL1.X;�/ E.g/

1=2; f; g 2 C;

cf. [11, Corollary I.3.3.2], the space C is an algebra of bounded functions, usually
referred to as the Dirichlet algebra. From a representation theoretic point of view
it has been studied in detail in [17]. For any f 2 C we may define a nonnegative
Radon measure �.f / on X byZ

' d�.f / D E.'f; f / � 1
2
E.'; f 2/; ' 2 C:

The measure �.f / is referred to as the energy measure of f . Elements of the domain
F represent finite energy configurations on X , and �.f / may be regarded as the
distribution of energy for the configuration f 2 C.

A nonnegative Radon measure m on X with m.U / > 0 for any nonempty open
U � X is called energy dominant for .E ;F/ if all energy measures �.f /, f 2 C,
are absolutely continuous with respect to m. Note that the original measure � is
energy dominant for .E ;F/ if and only if .E ;F/ admits a carré du champ, see [11,
Chapter I].

A sequence of functions .fn/1nD1 � C will be called a coordinate sequence for
.E ;F/ with respect tom if the span of ffng

1
nD1 is E1-dense in F and �.fn/ � m for

any n. Here the notation �.f / � m means that �.f / is absolutely continuous with
respect to m with Radon–Nikodym derivative d�.f /=dm bounded by one m-a.e.
A coordinate sequence .fn/1nD1 will be called point separating if, as usual, for any
distinct x; y 2 X there is some fn such that fn.x/ ¤ fn.y/. If .fn/1nD1 is a point
separating coordinate sequence, the mapping � W X ! RN, given by

�.x/ WD .f1.x/; f2.x/; : : :/

is a bijection of X onto its image �.X/. Related concepts of coordinates have
already been used in [36] and [81]. Energy dominant measures and point separating
coordinate sequences can always be found. The basic idea of the following fact is
standard, see for instance [34] or [36].

Lemma 2.1. Let .E ;F/ be a regular symmetric Dirichlet form on L2.X; �/. Then
there exist a finite energy dominant measure m0 and a point separating coordinate
sequence .fn/n for .E ;F/ with respect to m0.

Proof. The separability of the Hilbert spaces .F ; E1/ together with the regular-
ity property (DF4) implies the existence of a countable collection of functions
fgngn � C such that span.fgngn/ is E1-dense in F . By (DF4), together with the
uniform density of Cc.X/ in the space C0.X/ of continuous functions on X that
vanish at infinity, any function f 2 C0.X/ can be uniformly approximated by a
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sequence of functions from C. The Stone–Weierstrass theorem implies that C0.X/
is separable, and therefore we can find a countable family fhngn � C that separates
the points of X . If a function gn has positive energy, set egn WD E.gn/�1=2 gn,
if it has zero energy, egn WD gn. Similarly define functions ehn. Let .fn/n be
a sequence obtained by relabelling the union fegngn [ nehno

n
. For any summable

sequence .an/n � .0; 1/ the sum of measures

m0 WD
X

nW E.fn/>0

an �.fn/: (2.1)

is a finite measure for .E ;F/, and the energy densities satisfy d�.fn/=dm0 � 1

m0-a.e. for all n. It is energy dominant because span.ffngn/ is dense in F and

j�.f /.A/1=2 � �.g/.A/1=2j � E.f � g/1=2 (2.2)

for any Borel set A � X and any f; g 2 C, cf. [27, Section 3.2].

Remark 2.1. (i) Hino [34] calls an energy dominant measure for .E ;F/ minimal
if it is absolutely continuous with respect to any other energy dominant
measure for .E ;F/. Any two minimal energy dominant measures are mutually
absolutely continuous. The measure m0 as in (2.1) is minimal energy
dominant.

(ii) Let m be an energy dominant measure for .E ;F/. It is straightforward to see
that there exists a coordinate sequence for .E ;F/ with respect to m if and only
if there are a countable collection of functions ffngn with span.ffngn/ E1-
dense in F and a sequence .an/n � .0; 1/ such that

P
n an�.fn/ � m. If m0

is another energy dominant measure and m � m0 then trivially there is also a
coordinate sequence for m0.

(iii) If E is closable with respect to m, we may change measure and establish m as
a new reference measure by time change arguments, see e.g. [27, Section 6.2].
In this case m may be seen as the distribution of volume.

A regular symmetric Dirichlet form .E ;F/ is called strongly local if E.f; g/ D 0
whenever f 2 C is constant on a neighborhood of the support suppg of g 2 C,
cf. [27, Section 3.2]. We are interested in the question whether for a strongly local
regular Dirichlet form .E ;F/ the set X , together with the intrinsic metric d�;m
induced by .E ;F/ and an energy dominant measure m, forms a length space.

Let .E ;F/ be a strongly local Dirichlet form on L2.X; �/. Then we can define
(Radon) energy measures �.f / for functions f from

Floc D ff 2 L2;loc.X; �/ j for any K � X compact

there exists some u 2 F with ujK D f jK �-a.e.g
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by setting �.f / WD �.u/, seen as a measure on K, if u 2 Floc is such that
ujK D f jK �-a.e. See [27, 54, 71, 75, 76] for details. Now let m be an energy
dominant measure for .E ;F/. For simplicity we use the symbol �.f / also to denote
the density d�.f /=dm of the energy measure �.f / of f 2 Floc with respect to this
fixed measure m. Set

A WD ff 2 Floc \ C.X/ j �.f / 2 L1.X;m/g : (2.3)

The intrinsic metric or Carnot–Carathéodory metric induced by .E ;F/ and m is
defined by

d�;m.x; y/ WD sup ff .x/ � f .y/ j f 2 A with .{/ � mg (2.4)

for any x; y 2 X . If a point separating coordinate sequence for .E ;F/ with respect
to m exists, then the intrinsic metric d�;m is a metric in the wide sense, [71], i.e. it
satisfies the axioms of a metric but may attain the value C1. For investigations
of d�;m in the context of strongly local Dirichlet forms see for instance [8, 12, 49,
71, 75, 76]. These references assume that the original reference measure � itself is
energy dominant and use it in place of m. However, actually one can allow arbitrary
energy dominant measuresm, and the value of d�;m will depend on the choice of m.

A common hypothesis in the existing literature on intrinsic metrics is to require
that d�;m induces the original topology of X , cf. [71, 75, 76]. Theorems 2.1 and 2.2
below sketch a criterion for the coincidence of these topologies. They exist in various
formulations and are well known. For the classical situation see for instance [25,
Theorem 11.3.3]. In an operator theoretic context these statements were first proved
in [59, Corollary 5.2] and in an abstract form for general seminorms on normed
spaces in [64, Theorems 1.8 and 1.9]. Other versions can be found in [57, 65]. A
full generalization of these statements to non-unital C � algebras respectively locally
compact Hausdorff spaces was given in [52, Theorem 4.1]. We restate Theorems 2.1
and 2.2 for Dirichlet forms to emphasize their close connection to arguments in [71].

Let C0.X/ denote the space of continuous functions on X that vanish at infinity
and consider the space

A0 WD ff 2 Floc \ C0.X/ j �.f / 2 L1.X;m/g : (2.5)

Set A10 WD ff 2 A0 W �.f / � mg. According to the proof of [71, Lemma 5.4 (ii)]
the set A10 is a closed subset of C0.X/.

Theorem 2.1. Let .E ;F/ be a strongly local Dirichlet form on L2.X; �/, let m be
an energy dominant measure for .E ;F/ and assume there exists a point separating
coordinate sequence for .E ;F/ with respect to m. If A10 is compact in C0.X/, then
d�;m induces the original topology.

Under the hypotheses of Theorem 2.1 the cited results in [52, 59, 64] imply
that the metric d0�� , defined similarly as d�;� but with A0 in place of A, induces



366 M. Hinz, D. J. Kelleher and A. Teplyaev

the original topology on X . On the other hand it follows from [75, Appendix 4.2,
Proposition 1 (a) and its proof] that d0�;m induces the original topology on X if and
only if d�;m does.

Remark 2.2. In the next section we will consider resistance forms, for which this
coincidence of topologies can be verified directly.

If d 0 is a given metric in the wide sense on a set X and  W Œa; b�! X is a path
in X, i.e. a continuous mapping from a closed interval Œa; b� � R into .X; d/, then
the length of  is defined as

l./ WD sup
X
k

d 0..tkC1/; .tk//

with the supremum taken over all finite partitions a D t0 < t1 < � � � < tN D b of
Œa; b�. The path metric dl is defined by

dl.x; y/ WD inf fl./ j  W Œa; b�! X is a path in X with x; y 2 .Œa; b�/g ;

with dl.x; y/ WD C1 if the infimum is taken over the empty set. The path metric dl
always dominates the original metric, dl � d 0. The space .X; d 0/ is called a length
space if dl D d 0.

Now assume that .X; d/ is a locally compact separable metric space and .E ;F/ is
a strongly local Dirichlet form. If the reference measure � itself is energy dominant
and the topologies induced by d and d�;� coincide, then a result of Stollmann [71,
Theorem 5.2] implies that .X; d�;�/ is a length space. However, a look at the proofs
of [71, Theorems 5.1 and 5.2] and their background ([71, Lemma 5.4] and [12,
Lemma A.2 and Propositions A.4 and A.5]) reveals that this conclusion remains
valid for any energy dominant measure m, provided a point separating coordinate
sequence exists. A crucial ingredient seems to be a Rademacher type theorem,
originally proved for general regular Dirichlet forms by Frank, Lenz and Wingert,
see [28, Theorem 4.9] and [71, Theorem 5.1]. Together with Theorem 2.1 we obtain
the following.

Corollary 2.1. Let .E ;F/ be a strongly local Dirichlet form on L2.X; �/, let m be
an energy dominant measure for .E ;F/, and assume there exists a point separating
coordinate sequence for .E ;F/ with respect to m. If A10 is compact in C0.X/, then
the metric space .X; d�;m/ is a length space.

Remark 2.3. Assume A10 is compact in C0.X/.

(i) Then for any two distinct points x; y 2 X with d0�;m.x; y/ < C1 and any
sequence .fn/n � A10 such that d0�;m.x; y/ D limn.fn.x/ � fn.y// there
is a uniformly convergent subsequence .fnk /k with limit g 2 C0.X/, hence
d0�;m.x; y/ D g.x/ � g.y/.
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(ii) Since the topologies induced by d0�;m and d and d�;m coincide by Theorem 2.1
and [75, Appendix 4.2, Proposition 1 (a)], the distance function dx , given by

dx.z/ WD d�;m.x; z/; z 2 X;

is a maximizing element in (2.4), i.e. dx.y/ D d�;m.x; y/. This was shown by
Sturm, see [75, Lemma 10] and [76, Lemma 1]. In general dx will not be an
element of A0.

For compact spaces a converse of Theorem 2.1 is a simple consequence of the
Arzelà–Ascoli theorem.

Theorem 2.2. Assume .X; d/ is compact. Let .E ;F/ be a strongly local Dirichlet
form on L2.X; �/ and m an energy dominant measure for .E ;F/. If the topologies
induced by d and d�;m coincide, then A10 is compact in C.X/.

3. Length spaces induced by resistance forms

In this section we investigate resistance forms in the sense of Kigami and show that
in the compact case they always produce a geodesic space. We recall the definition,
see [46, Definition 2.8] or [48, Definition 3.1]. Given a set X , a pair .E ;F/ is called
a resistance form on X if

(RF1) E W F � F ! R is a nonnegative definite symmetric bilinear form on a
vector space F of real valued functions on X , and E.u/ D 0 if and only if u
is constant on X ,

(RF2) .F= �; E/ is a Hilbert space; here � is the equivalence relation on F given
by u � v if and only if u � v is constant on X ,

(RF3) F separates the points of X ,

(RF4) For any x; y 2 X the expression

dR.x; y/ WD sup
˚
ju.x/ � u.y/j2 W u 2 F ; E.u/ � 1

	
is finite,

(RF5) .E ;F/ has the Markov property, i.e. u 2 F implies .0 _ u/ ^ 1 2 F and

E..0 _ u/ ^ 1/ � E.u/:

Comprehensive background can be found in [43, 45, 46]. For resistance forms the
length space property can be verified independently of Theorem 2.1.

Take X to be a nonempty set and let .E ;F/ be a resistance form on X . Then
dR as defined in (RF4) is a metric on X , the so-called resistance metric associated
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with .E ;F/, cf. [45, Definition 2.3.2] and [46, Definition 2.11]. There is a one-
to-one correspondence between resistance forms and resistance metrics, see [45,
Theorems 2.3.4 and 2.3.6].

The inequality
ju.x/ � u.y/j2 � dR.x; y/E.u/ (3.1)

holds for any x; y 2 X and u 2 F , showing that the space F is a subspace of
the space of 1=2-Hölder continuous functions on .X; dR/, cf. [46, Section 2]. In
particular, F � C.X/. If the space .X; dR/ is compact, then the resistance form
.E ;F/ is seen to be regular, i.e. F is uniformly dense in C.X/, [48]. Further, it is
known, [45, Section 2.3] that

d
1=2
R .x; y/ WD sup fjf .x/ � f .y/j W E.f / � 1g

is a metric which induces the same topology as dR.
If the space .X; dR/ is endowed with a suitable measure, a given resistance form

.E ;F/ induces a Dirichlet form in the sense of [27] as discussed in the preceding
section. Let � be a finite nonnegative Borel regular measure on the space .X; dR/
with �.U / > 0 for all nonempty open U � X . Then F � L2.X; �/, and .E ;F/
is a regular symmetric Dirichlet form on L2.X; �/. For a fixed measure � we
may therefore consider energy measures as in the previous section, and Lemma 2.1
remains valid.

Lemma 3.1. Let .E ;F/ be a resistance form on X such that .X; dR/ is compact
and let m be a finite energy dominant measure on .X; dR/. Then any coordinate
sequence .fn/1nD1 for .E ;F/ with respect to m is point separating.

Proof. Assume that x; y 2 X are two distinct points with fn.x/ D fn.y/ for
all n. Then f .x/ D f .y/ for all f 2 F by linearity, approximation and (3.1),
contradicting dR.x; y/ > 0.

We introduce yet another metric d� , now in terms of coordinates. For a fixed
point separating coordinate sequence .fn/1nD1 set

d�.x; y/ WD sup fjfk.x/ � fk.y/j W k D 1; 2; : : :g ; x; y 2 X:

A resistance form .E ;F/ is called local if it is local (and therefore strongly local)
in the Dirichlet form sense. Let .E ;F/ be a local resistance form. If the topologies
induced by dR and d�;m coincide we may again use [71, Theorem 5.2] to conclude
.X; d�;m/ is a length space. In order to ensure the required coincidence of topologies
we will now compare the metrics d1=2R , d�;m and d� .

Theorem 3.1. Suppose .E ;F/ is a local resistance form on X such that .X; dR/ is
compact, let m be an energy dominant measure for .E ;F/, and assume there exists
a coordinate sequence for .E ;F/ with respect to m. Then the topologies induced by
dR and d�;m coincide, and .X; d�;m/ is a length space.
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Proof. Let .fn/1nD1 be a coordinate sequence for .E ;F/. Because

.fn/
1
nD1 � ff 2 A W �.f / � mg � ff 2 F j E.f / � 1g ;

the suprema over these sets increase, thus

d�.x; y/ � d�;m.x; y/ � d
1=2
R .x; y/

for all x; y 2 X , and the open d�-ball centered at x0 with radius r > 0 contains the
open d1=2R -ball centered at x0 with radius r , hence also an open dR-ball centered at
x0. For arbitrary fixed x0 on the other hand there must be some " > 0 such that an
open d�-ball centered at x0 with radius " is contained in the open dR-ball of radius
one centered at x0. If not, then we could find a sequence .xk/1kD1 that does not
converge in the dR-ball with respect to dR but converges to x0 with respect to d� .
Then by the definition of d� all the differences jfn.xk/ � fn.x0/j would go to zero.
By compactness there exist a subsequence .xkl /

1
lD1

of .xk/1kD1 and some x1 ¤ x0
to which .xkl /

1
lD1

converges with respect to dR. The continuity of the coordinates
fn with respect to dR implies that also jfn.xkl / � fn.x1/j goes to zero for all n,
what is a contradiction, because .fn/n separates points.

A metric space .X; d/ is called geodesic if for any two distinct points x; y 2 X
there exists a path  of length d.x; y/. If a metric space is a length space and
complete, then it is a geodesic space, as was shown in [76, Theorem 1].

Corollary 3.1. Suppose .E ;F/ is a local resistance form on X such that .X; dR/ is
compact, let m be an energy dominant measure for .E ;F/, and assume there exists
a coordinate sequence for .E ;F/ with respect to m. Then the space .X; d�;m/ is
compact and therefore complete and geodesic.

Proof. The Corollary follows because .X; dR/-compactness implies .X; d1=2R /-
compactness and d1=2R � d�;m.

Remark 3.1. The converse conclusion is not valid: There are spaces carrying a
regular resistance form that are not dR-compact but can be equipped with a measure
m such that they become d�;m-compact. See Example 3.1 below.

A special situation arises if .E ;F/ is a resistance form on a dendrite, [44].
A dendrite (or tree) is an arcwise connected topological space that has no subset
homeomorphic to a circle, cf. [44, Definition 0.6]. Given two points x; y in a
dendrite X there exists a unique (up to reparametrization) path x;y W Œ0; 1� ! X

such that x;y.0/ D x and x;y.1/ D y. A metric d on a dendrite X is called a
shortest path metric if for any x; y 2 X and any z 2 x;y.Œ0; 1�/ we have

d.x; y/ D d.x; z/C d.z; y/:
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Theorem 3.2. Suppose that X is a dendrite, .E ;F/ is a local resistance form on X
such that .X; dR/ is compact, m is a finite energy dominant measure for .E ;F/, and
assume there exists a coordinate sequence for .E ;F/ with respect to m. Then d�;m
itself is a shortest path metric.

Proof. By Theorem 3.1 the space .X; d�;m/ is a length space. Hence if x; y 2 X
are two distinct points and x;y is the unique path such that x;y.0/ D x and
x;y.1/ D y, we have d�;m.x; y/ D l.x;y/. If z is yet another point on x;y.Œ0; 1�/
then we have

x;y.t/ D

(
x;z.2t/ 0 � t �

1
2

z;y.2t/
1
2
� t � 1

;

where x;z and z;y are the uniquely determined paths joining x and z, respectively
z and y, and the additivity of the path length yields

d�;m.x; y/ D l.x;y/ D l.x;z/C l.z;y/ D d�;m.x; z/C d�;m.z; y/:

Remark 3.2. Kigami has shown in [44, Proposition 5.1] that any shortest path metric
d on a dendrite X is a resistance metric on X . Under additional assumptions this
implies that d is a resistance metric associated to a regular resistance form, [44,
Theorem 5.4]. In the situation of Theorem 3.2 it follows that d�;m is a resistance
metric in the sense of [45, Definition 2.3.2].

Examples 3.1. Consider a dendrite X consisting of countably many copies Œp; qn�,
n 2 N, of the unit interval Œ0; 1�, glued together at the left interval end point p. Set

F WD
(
f W X ! R W f is absolutely continuous on each Œp; qn�

and
X
n

Z qn

p

jf 0.x/j2dx <1

)
and

E.f / WD
X
n

Z qn

p

jf 0.x/j2dx; f 2 F :

Then E is a resistance form on X . Obviously dR.p; qn/ D 1, and for distinct
m; n 2 N we have

dR.qm; qn/ D 2:

Hence the sequence .qn/n is dR-bounded but has no dR-convergent subsequence, so
X is not dR-compact. On the other hand we can equip X with a suitable measure
m such that it becomes d�;m-compact. Let .an/n be a bounded sequence of positive
real numbers converging to zero and set

m WD
X
n

andxjŒp;qn�:
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Then m is a finite energy dominant measure for .E ;F/ and on Œp; qm� the density
of �.f / with respect to m is given by a�1m jf

0j2. Now let .pn/n be a d�;m-bounded
sequence. If it has a subsequence that is entirely contained in one segment Œp; qm�
then it has a subsequence .pnk /k that converges in Euclidean metric to some point
q 2 Œp; qm�. For any function f 2 F with �.f / � m we have jf 0j �

p
am a.e.

on Œp; qm� and therefore jf .q/ � f .pnk /j �
p
amjq � pnk j. Hence .pnk /k d�;m-

converges to q. If no subsequence of .pn/n is contained in a single segment then
there must be a subsequence .pnk /k such that pnk 2 Œp; qk� for any k. For any k
there is some f with jf 0

k
j �
p
ak a.e. on Œp; qk� such that

d�;m.p; pnk / � jfk.p/ � fk.pnk /j C
1

k
�
p
ak C

1

k
;

hence .pnk /k is d�;m-convergent to p.

4. Dirac operators

In this section we introduce Dirac operators and spectral triples related to Dirichlet
forms. Our considerations are based on the first order theory proposed by Cipriani
and Sauvageot in [20, 21, 67, 68] and developed in [18, 36, 40]. Related
constructions can be found in [26, 83, 84].

As in Section 2 let X be a locally compact separable metric space and � be a
nonnegative Radon measure on X with �.U / > 0 for any nonempty open U � X .
Let .E ;F/ be a regular symmetric Dirichlet form on L2.X; �/. According to the
Beurling-Deny decomposition the form E uniquely decomposes into a strongly local,
a pure jump and a killing part, see [27, Theorem 3.2.1]. In this section we assume
that the killing part of E is zero. Recall that we write C WD Cc.X/ \ F and that the
mutual energy measure of two functions f; g 2 C is denoted by �.f; g/. We equip
the space C ˝ C with a bilinear form, determined by

ha˝ b; c ˝ d iH D

Z
X

bd d�.a; c/:

The right hand side is the integral of the product bd 2 C with respect to the mutual
energy measure �.a; c/ of a and c. This bilinear form is nonnegative definite, hence
it defines a seminorm on C ˝ C. Let H denote the Hilbert space obtained by first
factoring out zero seminorm elements and then completing. Following [20] we refer
to it as the space of differential 1-forms associated with .E ;F/.
Examples 4.1. If X D M is a smooth compact Riemannian manifold without
boundary and dvol the Riemannian volume on M , then the closure in L2.M; dvol/
of

E.f / D
Z
M

kdf k2T �M dvol; f 2 C1.M/;

where df denotes the exterior derivative of f , is a strongly local Dirichlet form
.E ;F/ on L2.M; dvol/.
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For a simple tensor f ˝ g 2 C ˝ C we observe that

kf ˝ gk2H D

Z
M

kgdf k2T �M dvol:

In this case H is isometrically isomorphic to the space L2.M; T �M;dvol/ of L2-
differential 1-forms.

The space H can be made into a C-C-bimodule: Setting

c.a˝ b/ WD .ac/˝ b � c ˝ .ab/ and .a˝ b/c WD a˝ .bc/ (4.1)

for a; b; c 2 C and extending linearly we observe the bounds nX
iD1

c.ai ˝ bi /


H

� sup
X

jcj

 nX
iD1

ai ˝ bi


H

and  nX
iD1

.ai ˝ bi /c


H

� sup
X

jcj

 nX
iD1

ai ˝ bi


H

;

and by continuity we can extend further to obtain uniformly bounded left and right
actions of C on H. See [20, 40].

The definition
@a WD a˝ 1

yields a derivation operator @ W C ! H such that

k@ak2H D E.a/

and the Leibniz rule holds,

@.ab/ D a@b C .@a/b; a; b 2 C: (4.2)

Remark 4.1. By approximation, the right action is also well defined for elements
c of the space Bb.X/ of bounded Borel functions on X , and the space H agrees
with the Hilbert space obtained by factoring Bb.X/˝ C and completing similarly as
before.

Remark 4.2. We give a short comment concerning the above construction in the
case of purely non local Dirichlet forms. For simplicity assume that X is compact
such that 1 2 C. A customary algebraic standard definition is to consider the tensor
product C ˝ C, endowed with the C-actions c.a˝ b/ WD .ca/˝ b and .a˝ b/c WD
a ˝ .bc/, and a derivation d W C ! C ˝ C, given by da WD a ˝ 1 � 1 ˝ a

up to a sign convention, see e.g. [30]. As C is an algebra of functions, we have
.a˝ b/.x; y/ D a.x/b.y/ for any x; y;2 X , and in particular

.cda/.x; y/ D c.x/.a.x/ � a.y// and ..da/c/.x; y/ D .a.x/ � a.y//c.y/:
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The difference of .da/c � .@a/c has zero seminorm, k1˝ .ac/k2H D 0. The
definition of the left action in (4.1) produces the Leibniz rule (4.2), note also that
c@a, defined according to (4.1), agrees in C ˝ C with cda, defined using the left
action in the present remark. If for instance .E ;F/ is a purely nonlocal Dirichlet
form with jump measure J , cf. [27, Theorem 3.2.1],

E.f / D 1

2

Z
X

Z
X

.f .x/ � f .y//2 J.dxdy/; f 2 F ;

then

kg@f k2H D
1

2

Z
X

g.x/2
Z
X

.f .x/ � f .y//2 J.dxdy/;

and the difference df , given by df .x; y/ D f .x/ � f .y/, is a representative of the
H-equivalence class @f . If moreover the jump measure J is concentrated on

f.x; y/ 2 X �X W 0 < d.x; y/ < "g ;

f is supported in a bounded setA � X and g is supported outside fx 2 X W dist.x; A/
< "g, then g@f is zero in H.

Let the space C be equipped with the norm kf kC WD E1.f /1=2 C supx2X jf .x/j
and let C� denote the dual space of C, equipped with the usual norm. Note that
C � L2.X; �/ � C�. We write hu; 'i D u.'/ to denote the dual pairing of u 2 C�
and ' 2 C. For ! 2 H let @�! be the element of C� defined by

.@�!/.'/ WD h!; @'iH ; ' 2 C:

It is straightforward to see that @� is a bounded linear operator @� W H ! C�. The
operator @ extends to a densely defined closed linear operator @ W L2.X; �/ ! H
with domain dom @ D F . The restriction of @� to

dom @� D
n
! 2 H W there exists u� 2 L2.X; �/ such that

hu�; 'iL2.X;�/ D h!; @'iH for all ' 2 F
o

is the adjoint of @, i.e. the unbounded linear operator @� W H! L2.X; �/ such that
for all ! 2 dom @� we have

h@�!; 'iL2.X;�/ D h!; @'iH ; ' 2 F : (4.3)

By general theory .@�; dom @�/ is closed and densely defined.

Examples 4.2. In the situation of Examples 4.1 the operator @ coincides with the
exterior derivative d , seen as an unbounded closed linear operator fromL2.M; dvol/

into L2.M; T �M;dvol/.



374 M. Hinz, D. J. Kelleher and A. Teplyaev

Let .L; dom L/ denote the infinitesimal L2.X; �/-generator of .E ;F/, i.e. the
nonpositive definite self-adjoint operator L on L2.X; �/ with domain dom L � F
such that

E.f; g/ D �hf;LgiL2.X;�/

for all f 2 F and g 2 domL. Note that @�@g D �Lg, g 2 domL, as was already
proved in [21]. The image Im @ of @ is a closed subspace of H: We have

ker L D ff 2 L2.X; �/ W E.f / D 0g ;

and F decomposes orthogonally into ker L and its complement in F ,

F D ker L˚ .ker L/?F :

The space ..ker L/?F ; E/ is Hilbert, and therefore the the image of .ker L/?F under @
is a closed subspace of H. However, as @f D 0 for all f 2 ker L, this image is just
Im @. Consequently H decomposes orthogonally into Im @ and ker @�,

H D Im @˚ ker @�;

and we have dom @� D f@f W f 2 dom Lg ˚ ker @�.
From now on we consider the natural complexifications of L2.X; �/, E , F , � ,

H, C and the operators @ and @�, and for simplicity we denote them by the same
symbols. The algebra C becomes involutive by complex conjugation.

The Hilbert space

H WD L2.X; �/˚H

carries the natural scalar product

h.f; !/; .g; �/iH WD hf; giL2.X;�/ C h!; �iH :

Put dom D WD F ˚ dom @� and define an unbounded linear operator D W H ! H
by

D.f; !/ WD .@�!; @f /; .f; !/ 2 dom D: (4.4)

To D we refer as the Dirac operator associated with .E ;F/. In matrix notation its
definition reads

D D

 
0 @�

@ 0

!
:

This definition of a Dirac operator follows sign and complexity conventions often
used in geometry and differs slightly from the definition in [37].
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Lemma 4.1. The operator .D; dom D/ is self-adjoint on H.

This lemma is not difficult to see: A direct calculation shows that D is symmetric,
see [37, Theorem 3.1], hence also D is symmetric. By the closedness of @ and @� we
have D D D and due to the matrix structure of D also D� D D. The symmetry of D�
then implies that D is self-adjoint, see for instance [85, Theorem 5.20].

We are particularly interested in the special case where the generator L of .E ;F/
has pure point spectrum, i.e. there are an increasing sequence 0 < �1 � �2 � � � �
of nonzero eigenvalues �i of �L, with possibly infinite multiplicities taken into
account, and an orthonormal basis

˚
'j
	1
jD1

in L2.X;m/ of corresponding eigen-
functions such that

� Lf D

1X
jD1

�j
˝
f; 'j

˛
L2.X;�/

'j ; f 2 dom L; (4.5)

and zero itself may be an eigenvalue of infinite multiplicity. See [62]. In this case
the Dirac operator D rewrites as follows.

Lemma 4.2. If the generator L of .E ;F/ has pure point spectrum with spectral
representation (4.5) then D admits the spectral representation

Dv D
1X
jD1

�
1=2
j

˝
v; vj

˛
H vj �

1X
jD1

�
1=2
j

˝
v;wj

˛
Hwj ; v 2 dom D; (4.6)

where

vj D
1
p
2
.'j ; �

�1=2
j @'j / and wj D

1
p
2
.'j ;��

�1=2
j @'j /; j D 1; 2; : : :

In general, zero may be an eigenvalue of D of infinite multiplicity.

To prove the lemma we investigate the square D2 of D. Set

dom �1 WD f! 2 dom @
�
W @�! 2 Fg

and
�1! WD @@

�!; ! 2 dom �1:

The restriction�L? of�L to .kerL/?
L2.X;�/

has a nonnegative and bounded inverse
.�L?/

�1, and by .�L?/�1=2 we denote its square root. Set

Uf WD @..�L?/
�1=2f /; f 2 L2.X; �/:

Then U is a unitary transformation from .ker L/?
L2.X;�/

onto a subspace of H, and
it is not difficult to see that

U..ker L/?domL/ D Im @ \ dom �1 D f@g W Lg 2 Fg :
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For f 2 .ker L/?
domL

we have �1Uf D @..�L/�1=2f / D ULf . Moreover, the
1-forms

!j WD U'i D �
�1=2
j @'j ; j D 1; 2; : : :

yield an orthonormal basis of Im @, and �1!j D �j!j . By choosing a suitable
orthonormal basis of ker @� (note that H is separable), we can obtain an orthonormal
basis of H such that for any ! 2 dom �1 we have

�1! D

1X
jD1

�j
˝
!;!j

˛
H !j :

We also observe that

dom �1 D

8<:! 2 H W
1X
jD1

�j j h!;!i iH j
2 < C1

9=; :
Therefore the operator .�1; dom�1/ is self-adjoint onH with eigenvalues �1; �2; : : :,
and possibly also zero is an eigenvalue.

Remark 4.3. It follows from the results in [21, 40] that for resistance forms on
finitely ramified fractals (such as for instance the Sierpinski gasket) the space ker @�

is infinite dimensional (even if zero is not an eigenvalue of L) and therefore zero is
an eigenvalue of �1 of infinite multiplicity. A precise statement for the Sierpinski
gasket is [19, Theorem 3.9]. See also [38] for more general metric spaces.

The square D2 of D is given by

D2 D

 
@�@ 0

0 @@�

!
;

and it is straightforward to see that its domain dom D2 WD fv 2 H W Dv 2 dom Dg
coincides with dom L ˚ dom �1. By the spectral theorem also .D2; dom D2/ is
self-adjoint on H. Put

vj;0 WD .'j ; 0/ and vj;1 WD .0; !j /; i D 1; 2; : : :

Lemma 4.3. Assume that L has pure point spectrum with spectral representation
(4.5). Then the operator .D2; dom D2/ admits the spectral representation

D2v D
X
iD0;1

1X
jD1

�j
˝
v; vj;i

˛
H vj;i ; v 2 dom D2:

In general, zero may be an eigenvalue of D2 of infinite multiplicity.
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Now Lemma 4.2 is proved quickly.

Proof. If

D D
Z
R
xdEx

is the spectral representation of D then we haveZ
R
x2 d hExv; viH D

˝
v;D2v

˛
H D

1X
jD1

�j j
˝
v; vj

˛
H j
2

for any v 2 domD2. By functional calculus it follows that the measures d hExv; viH
are supported on the discrete setn

��
1=2
j

o1
jD1
[ f0g [

n
�
1=2
j

o1
jD1

;

and a direct calculation shows that vj and wj are the eigenvectors corresponding to
�
1=2
j and ��1=2j , respectively.

Remark 4.4. It is not difficult to prove versions of these results in the measurable
setup. Let .X;X ; �/ be a � -finite measure space and .E ;F/ a Dirichlet form on
L2.X; �/. Then the collection B WD F \ L1.X; �/ of (equivalence classes of)
bounded energy finite functions on X provides a (normed) algebra. If .E ;F/ admits
a carré du champ, [11, Chapter I], then we can use B and B� in place of C and C�,
respectively, to introduce the spaces H and H and the operators @, @� and D in a
similar manner as before.

Examples 4.3. We collect some examples that satisfy the hypotheses of this
section.

(i) Consider the Sierpinski gasket X D SG, equipped with the resistance metric
and the natural self-similar normalized Hausdorff measure � and let .E ;F/
be the local regular Dirichlet form on L2.SG;�/, determined by the standard
energy form on SG, cf. [45, Theorems 3.4.6 and 3.4.7]. It is known that the
generator of .E ;F/ has discrete spectrum. This can also be observed for more
general resistance forms on p.c.f. self-similar sets. See [45, Theorems 2.4.1,
2.4.2, 3.4.6 and 3.4.7].

(ii) Generators of local regular Dirichlet forms on generalized Sierpinski carpets,
considered with the natural normalized Hausdorff measure, have pure point
spectrum, see [4, 6] and in particular [5, Proposition 6.15].

(iii) LetX D Rn and let .E ;F/ be the quadratic form associated with a Schrödinger
operatorH D ��CV . Under some conditions on the potential V (for instance
continuity and nonnegativity) the associated form will be a Dirichlet form,
and under further conditions on V (for instance unboundedness at infinity)
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the operator H will have discrete spectrum. See for example [63, XIII.6.7–
XIII.6.9]. This also applies to relativistic Schrödinger operators and, more
generally, to Schrödinger operators associated with Lévy processes, [14].

5. Spectral triples

In this section we consider spectral triples associated with the Dirac operators D
defined by formula (4.4) in the preceding section.

Let X be a locally compact separable metric space and � a nonnegative Radon
measure on X with �.U / > 0 for any nonempty open U � X . Let .E ;F/ be a
regular symmetric Dirichlet form onL2.X; �/. As before we assume that .E ;F/ has
no killing part. As in the previous section we consider the natural complexifications
of E , F , � etc.

Since the kernel ker D may be infinite dimensional, we discuss a generalized
notion of spectral triple similar to the one proposed in [18, Definition 2.1].

Definition 5.1. A (possibly kernel degenerate) spectral triple for an involutive
algebra A is a triple .A;H;D/ where H is a Hilbert space and .D; dom D/ a self-
adjoint operator on H such that

(i) there is a faithful �-representation � W A! L.H/,

(ii) there is a dense �-subalgebra A0 of A such that for all a 2 A0 the commutator
ŒD; �.a/� is well defined as a bounded linear operator on H ,

(iii) the operator .1CD/�1 is compact on .ker D/?.

If the reference measure � is an energy dominant measure for .E ;F/, i.e. if
.E ;F/ admits a carré du champ, [11], then the space

A0 WD ff 2 C W �.f / 2 L1.X; �/g (5.1)

is well defined and, according to Lemma 2.1, E1-dense in F . The Markov property
of .E ;F/ implies that A0 is an involutive algebra of functions, see Corollary A.1 in
the Appendix. Let A be the C �-subalgebra of C0.X/ obtained as the closure of A0,

A WD closC0.X/.A0/: (5.2)

Remark 5.1. (i) By definition any coordinate sequence for .E ;F/ with respect
to � is contained in the algebra A0. The Stone–Weierstrass theorem implies
that if there exists a point separating coordinate sequence .fn/n that vanishes
nowhere (i.e. such that for any x 2 X there exists some fn with fn.x/ ¤ 0)
then A agrees with the space C0.X/.

(ii) If m is a given nonnegative Radon measure on X with m.U / > 0 for any
nonempty openU � X and such that ff 2 C W �.f / 2 L1.X;m/g is E-dense
in F , then m is energy dominant for .E ;F/. This follows from (2.2).
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If in addition the generator L of .E ;F/ has discrete spectrum, i.e. if there exists
a monotonically increasing sequence 0 � �1 � �2 � : : : of isolated eigenvalues �j
of �L with finite multiplicity and limj!1 �j D C1, together with an orthonormal
basis

˚
'j
	
j

of corresponding eigenfunctions in L2.X; �/, then the Dirac operator D
on the Hilbert space H gives rise to a spectral triple for A.

Theorem 5.1. Let .E ;F/ be a regular symmetric Dirichlet form on L2.X; �/ and
assume � is energy dominant for .E ;F/. Then we have the following.

(i) There is a faithful representation � W A! L.H/,
(ii) For any a 2 A0 the commutator ŒD; �.a/� is a bounded linear operator on H,

(iii) If the L2.X; �/-generator L of .E ;F/ has discrete spectrum then .1CD/�1 is
compact on .ker D/?, and .A;H;D/ is a spectral triple for A.

The proof of (ii) uses the fact that given an energy dominant measure m, the
Hilbert spaceH can be written as the direct integral with respect tom of a measurable
field of Hilbert spaces fHxgx2X , cf. [24, 77].

Theorem 5.2. Let .E ;F/ be a regular symmetric Dirichlet form on L2.X; �/ and
let m be an energy dominant measure for .E ;F/. Then there are a measurable
field of Hilbert C-modules on which the action of a 2 C on !x 2 Hx is given
by a.x/!x 2 Hx and such that the direct integral

R ˚
X

Hx m.dx/ is isometrically
isomorphic to H. In particular,

h!; �iH D

Z
X

h!x; �xiHx m.dx/

for all !; � 2 H, where we write h�; �iHx for the scalar products in the spaces Hx ,
respectively. Given f; g 2 F , we have �.f; g/.x/ D h@xf; @xgiHx for m-a.e.
x 2 X , where @xf WD .@f /x .

Theorem 5.2 follows by fixing m-versions of the functions �.f; g/, possible
thanks to the separability of the Hilbert space .F ; E1/. See [36, Section 2] for a
proof.

To prove Theorem 5.1 (ii) we also make use of a product rule for the operator @�.
Given a 2 C and u 2 C�, define their product au 2 C� by

.au/.'/ WD u.a'/; ' 2 C:

For ! 2 H define a mapping from H into C� (actually C0.X/� would suffice) by

.!��/.'/ WD h'!; �iH ; � 2 H; ' 2 C:

If m is an energy dominant measure, fHxgx2X is the corresponding measurable
field of Hilbert spaces as in Theorem 5.2, and the function x 7! h!x; �xiHx is
in L2.X;m/, then !�� 2 C� agrees with it and therefore may itself be seen as a
function in L2.X;m/.
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Lemma 5.1. We have
@�.a!/ D a@�! � !�@a (5.3)

for all a 2 C and ! 2 H, seen as an equality in C�. If the reference measure � itself
is energy dominant, ! 2 dom @� and a 2 A0, then a! 2 dom @�, and (5.3) holds
in L2.X; �/.

Proof. The validity of (5.3) in C� is a consequence of the Leibniz rule for @ together
with the integration by parts identity (4.3), see [36]. If � is energy dominant,
! 2 dom @� and a 2 A0, then obviously a@�! 2 L2.X; �/. But we also have
!�@a 2 L2.X; �/, becauseZ
X

j h!x; @xaiHx j
2�.dx/ �

Z
X

k!xk
2
Hx k@xak

2
Hx �.dx/ � k�.a/kL1.X;�/ k!k

2
H :

This implies the lemma.

We prove Theorem 5.1.

Proof. Given a 2 A0, let �.a/ denote the multiplication operator on H, defined by

�.a/.f; !/ WD .af; a!/; .f; !/ 2 H:

Clearly �.a/ is bounded, and � extends to a faithful representation of A on H, what
shows (i). To shorten notation we write again a instead of �.a/. For (ii) note first
that for any a 2 A0 the commutator ŒD; a� is well defined as linear operator from
C ˚H � dom D into C� ˚H � H, and by Lemma 5.1 together with the Leibniz
rule we have

ŒD; a�.f; !/ D D.af; a!/ � aD.f; !/
D .@�.a!/; @.af // � .a@�!; a@f /

D .�!�@a; f @a/

for any .f; !/ 2 C ˚H. However, the norm bound

kŒD; a�.f; !/k2H D
Z
X

j h!x; @xaiHx j
2�.dx/C

Z
X

kf .x/@xak
2
Hx �.dx/

� k�.a/kL1.X;�/ k.f; !/k
2
H : (5.4)

shows that ŒD; a�.f; !/ is a member of H, and by the density of C ˚ H in H the
commutator ŒD; a� extends to a bounded linear operator on H. The operator .1CD/�1
is compact because if L has discrete spectrum with spectral representation (4.5) then
D admits the spectral representation (4.6) with limj!1.˙�

�1=2
j / D 0.
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Now let A be a point separating C �-subalgebra of C.X/ and .A;H;D/ be a
spectral triple forA. LetA0 be a dense �-subalgebra ofA such that ŒD; a� is bounded
on H , cf. Definition 5.1 (ii). Then

dD.x; y/ WD sup fa.x/ � a.y/ j a 2 A0 is such that kŒD; a�k � 1g

defines a metric in the wide sense on X , (a version of) the Connes distance.

Theorem 5.3. Let .E ;F/ be a strongly local Dirichlet form on L2.X; �/, let m be
energy dominant for .E ;F/ and assume there exists a point separating coordinate
sequence for .E ;F/ with respect to m. Let D, A0 and A be given as in (4.4), (5.1)
and (5.2), respectively. Then

dD.x; y/ WD sup fa.x/ � a.y/ j a 2 A0 is such that kŒD; a�k � 1g

is a metric in the wide sense on X and dD � d�;�. If X is compact then dD D d�;�.

Proof. It is obvious that dD is a metric in the wide sense. We next first verify that

kŒD; a�k2 D k�.a/kL1.X;�/ (5.5)

for any a 2 A0. By (5.4) we have kŒD; a�k2 � k�.a/kL1.X;�/. Now assume that
� WD kŒD; a�k2 < k�.a/kL1.X;�/. Then we could find some some Borel set A � X
and some ı > 0 such that 0 < �.A/ < C1 and k@xak

2
Hx D �x.A/ > �.1 C ı/

for all x 2 A. Since � is Radon, there would be some compact set K � A with
�.K/ > 0 and some open set U � K with

�.U nK/ < ı �.K/: (5.6)

Let f 2 C be a function supported in U such that 0 � f � 1 and f .x/ D 1 for
x 2 K. By the regularity of .E ;F/ such f exists, cf. [27, Problem 1.4.1]. Then,
according to (5.6),

ı

Z
K

f .x/2�.dx/ >

Z
XnK

f .x/2�.dx/

and therefore

kf @ak2H D

Z
X

f .x/2 k@xak
2
Hx �.dx/ > �.1Cı/

Z
K

f .x/2�.dx/ > � kf k2L2.X;�/ :

This would imply kŒD; a�.f; 0/kH > � k.f; 0/kH, a contradiction. Therefore (5.5)
holds. Since A0 � Floc \ C.X/ we have dD � d�;�. If X is compact, then
Floc \ C.X/ D C, hence A as defined in (2.3) coincides with A0 and consequently
dD D d�;�.



382 M. Hinz, D. J. Kelleher and A. Teplyaev

Remark 5.2. Either of the following conditions imply the equality dD D d�;� also
for noncompact X :

(i) The distance d�;� induces the original topology and .X; d�;�/ is complete.
(ii) The distance dD induces the original topology and .X; dD/ is complete.

(iii) For any relatively compact open set U � X there exists a function ' 2 C with
0 � ' � 1 and '.x/ D 1 for x 2 U such that �.'/ � m.

Both (i) and (ii) imply the desired equality by [75, Appendix 4.2, Proposition 1 (c)]
together with (5.5). Condition (iii) allows a suitable cut-off argument. Note that it
is always possible to construct a finite energy dominant measure for which (iii) is
valid: If X D

S
n Un is an exhaustion of X by an increasing sequence of relatively

compact open sets Un with Un � UnC1 then there are functions 'n 2 C such that
0 � 'n � 1, 'n.x/ D 1 for x 2 Un and 'n.x/ D 0 for x 2 U cnC1. It suffices
to adjoin the countable collection f'ngn to the functions in the construction of the
measure m0 in Lemma 2.1.
Examples 5.1. (i) Consider the Sierpinski gasket X D SG, equipped with the
resistance metric. From the standard energy form we can construct the Kusuoka
measure �, [42, 47, 49, 51, 81]: There is a complete (up to constants) energy
orthonormal system fh1; h2g of harmonic functions on SG, and � is defined as
the sum of their energy measures, � WD �.h1/ C �.h2/. The Kusuoka measure
is energy dominant. Note that the self-similar normalized Hausdorff measure is not
energy dominant, [10]. Let .E ;F/ be the local regular Dirichlet form on L2.SG; �/
induced by the standard energy form on SG. Its generator has discrete spectrum, cf.
[45, Theorems 2.4.1, 2.4.2, 3.4.6 and 3.4.7]. Moreover, all functions of finite energy
are continuous, and we have A D C.SG/ in (5.2). Theorem 5.1 yields a spectral
triple .C.SG/;H;D/ for C.SG/.

In a similar manner we can obtain spectral triples associated with regular
resistance forms on finitely ramified fractals, equipped with the Kusuoka measure,
[46, 81]. Note that any nonatomic Borel measure (with respect to the resistance
metric) satisfying some growth condition turns the given resistance form into a
Dirichlet form having a generator with discrete spectrum, see [46, Theorem 8.10,
Proposition 8.11 and the remark following the proof of Lemma 8.12].

(ii) For the standard self-similar Dirichlet form on the 2-dimensional Sierpinski
carpet, equipped with the natural self-similar normalized Hausdorff measure � the
energy measures are singular with respect to �, see [32, 33, 34]. It is always possible
to construct energy dominant measures, [34, 36], and under some conditions one can
establish an energy dominant measure as new reference measure by means of time
change, see [27, Section 6.2] and the references therein.

(iii) For the Dirichlet forms associated with Schrödinger operators and relativistic
Schrödinger operators mentioned in Examples 4.3 (iii) the Lebesgue measure is
energy dominant, and Theorem 5.1 yields associated spectral triples.

(iv) If a purely nonlocal regular Dirichlet form has a jump kernel with respect to
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the product�˝� of the reference measure�, then� is energy dominant. Conditions
for general purely nonlocal Dirichlet forms to have discrete spectrum are provided in
[82, Section 4, in particular Corollary 4.2]. In some cases, for instance when using
subordination, [41, 50], discrete spectrum may be observed directly.

Remark 5.3. If �0 is a nonnegative Radon measure on X such that � and �0 are
mutually absolutely continuous and � � �0, then .E ; C/ is closable in L2.X; �0/ �
L2.X; �/ and its closure .E ;F 0/ is a regular Dirichlet form with F 0 � F . If H0
defines the Hilbert space H defined with �0 in place of �, and similarly for the other
objects, we observe H0 D H, H0 � H and A00 D A0. The operator D is an extension
of (a restriction of) D0. For the corresponding distances we have dD � dD0 .

6. Metrics and gradient fields

The intrinsic metric d�;m of a strongly local Dirichlet form with respect to an energy
dominant measurem can also be expressed in terms of vector fields. As in Section 2
let X be a locally compact separable metric space, � a nonnegative Radon measure
on X such that �.U / > 0 for all nonempty open U � X and .E ;F/ a strongly local
Dirichlet form onL2.X; �/. LetBb.X/ denote the space of bounded Borel functions
on X . We consider the tensor product Floc \ C.X/˝ Bb.X/. For any compact set
K � X we can define a symmetric bilinear form on Floc \ C.X/˝ Bb.X/ by*X

i

fi ˝ gi ;
X
i

fi ˝ gi

+
H.K/

WD

X
i

X
j

Z
K

gigjd�.fi ; fj /: (6.1)

This form is nonnegative definite, as may be seen using step functions in place of
the gi . Its square root defines a seminorm k�kH.K/ on Floc \ C.X/˝ Bb.X/, and
by H.K/ we denote the Hilbert space obtained by factoring out elements of zero
seminorm and completing. Similarly as before we define a right action of Bb.X/ on
Floc \ C.X/˝ Bb.X/ by

.f ˝ g/h WD f ˝ .gh/: (6.2)

For anyK � X compact,
.Pi fi ˝ gi /h


H.K/ � supx2K jh.x/j

P
i fi ˝ gi


H.K/,

hence (6.2) extends to an action of Bb.X/ that is bounded on H.K/. For any finite
linear combination

P
i fi ˝ gi from Floc \ C.X/˝ Bb.X/ the integrandX

i

X
j

gigjd�.fi ; fj /

on the right hand side of (6.1) defines a nonnegative measure on X . Consequently
we have k�kH.K/ � k�kH.K0/ for any two compact sets K;K 0 � X with K � K 0.
This implies that the restriction v1K to K in the sense of (6.2) of any v 2 H.K 0/
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is a well defined element of H.K/. Together with this restriction the spaces H.K/,
K � X compact, form an inverse system of Hilbert spaces, and we denote its inverse
limit by Hloc . If .Kn/n is an exhaustion of X by compact sets Kn then the family
of seminorms k�kH.Kn/, n 2 N, induces the topology of Hloc . The space Hloc is
locally convex. A left action of Floc \ C.X/ on Floc \ C.X/ ˝ Bb.X/ can be
defined by

h.f ˝ g/ WD .f h/˝ g � h˝ .fg/: (6.3)

Corollary A.1 and the nonnegativity of the measure on the right hand side of (6.1)
imply

h.Pi fi ˝ gi /

H.K/ � supx2K jh.x/j

P
i fi ˝ gi


H.K/, hence also (6.3)

extends to a bounded action on each H.K/. The definition @f WD f ˝ 1 now
provides a linear operator @ W Floc \ C.X/ 7! Hloc such that for any K � X the
operator @ acts as a bounded derivation, more precisely, k@f k2H.K/ D �.f /.K/ and
@.fg/ D f @g C g@f .

Now let m be an energy dominant measure for .E ;F/. By Theorem 5.2
there exists a measurable field of Hilbert modules fHxgx2X such that for any
K � X compact the space H.K/ is isometrically isomorphic to the direct integralR ˚
K

Hxm.dx/, in particular

kvkH.K/ D

Z
K

kvxk
2
Hx m.dx/

for any measurable section v D .vx/x2X of fHxgx2X . Let L1.X;m; fHxg/ denote
the space of m-equivalence classes of measurable sections v D .vx/x2X such that

kvkL1.X;m;fHxg/ WD ess sup
x2X

kvxkHx

is finite. The space L1.X;m; fHxg/ is a Banach space, as can be seen using a
version of the classical Riesz–Fischer type argument. Since the measurem is Radon,
we have L1.X;m; fHxg/ � Hloc . We refer to L1.X;m; fHxg/ as the space of
bounded vector fields. It allows a natural description of the intrinsic metric in terms
of functions with gradient fields that are L1-bounded by one.
Theorem 6.1. Let .E ;F/ be a strongly local Dirichlet form on L2.X; �/ and let m
be an energy dominant measure for .E ;F/. We have

d�;m.x; y/ D sup ff .x/ � f .y/ j f 2 Floc \ C.X/
is such that k@f kL1.X;m;fHxg/ � 1

	
:

for all x; y 2 X .

A. Appendix

The following statements are versions of results on composition and multiplication
from [11, Chapter I]. Let X be a locally compact separable metric space, � a
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nonnegative Radon measure onX such that�.U / > 0 for all nonempty openU � X
and let .E ;F/ be a regular symmetric Dirichlet form on L2.X; �/.

Given n 2 N n f0g let T 0n denote the set of all normal contractions, that is,
functions F W Rn ! R such that F.0/ D 0 and jF.x/ � F.y/j �

Pn
iD1 jxi � yi j,

x; y 2 Rn.

Lemma A.1. Let f1; : : : ; fn 2 C, F 2 T 0n and g WD F.f1; : : : ; fn/. Then we have

.E.gh; g/ � 1
2
E.g2h//1=2 �

nX
iD1

.E.fih; fi / �
1

2
E.f 2i ; h//1=2

for all nonnegative h 2 C.

The lemma can by proved by arguments similar to those used for [11, Proposi-
tions I.2.3.3 and I.3.3.1]. The following corollary is an immediate consequence, cf.
[11, Corollary I.3.3.2].

Corollary A.1. For any f; g 2 C and any Borel set A � X we have

�.fg/.A/1=2 � sup
x2A

jf .x/j�.g/.A/1=2 C sup
x2A

jg.x/j�.f /.A/1=2:

If m is energy dominant, then in particular

�.fg/.x/ � 2
�
�.f /.x/ kgk2L1.X;m/ C �.g/.x/ kf k

2
L1.X;m/

�
for m-a.e. x 2 X .
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totic problems in probability theory: stochastic models and diffusions on fractals
(Sanda/Kyoto, 1990), 201–218, Pitman Res. Notes Math. Ser., 283, Longman Sci. Tech.,
Harlow, 1993. Zbl 0793.31005 MR 1354156

[44] J. Kigami, Harmonic calculus on limits of networks and its applications to dendrites, J.
Funct. Anal. 128 (1995), 48–86. Zbl 0820.60060 MR 1317710

[45] J. Kigami, Analysis on Fractals, Cambridge Univ. Press, Cambridge, 2001.
Zbl 0998.28004 MR 1840042

[46] J. Kigami, Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), 399–444.
Zbl 1039.31014 MR 2017320

[47] J. Kigami, Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka
measure and the Gaussian heat kernel estimate, Math. Ann. 340 (2008), 781–804.
Zbl 1143.28004 MR 2372738

[48] J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem.
Amer. Math. Soc. 216 (2012), no. 1015 Zbl 1246.60099 MR 2919892

[49] P. Koskela, X. Zhou, Geometry and analysis of Dirichlet forms. Adv. Math. 231 (2012),
2755–2801. Zbl 1253.53035 MR 2970465

[50] T. Kumagai, Some remarks for jump processes on fractals, In: Grabner, Woess (Eds.),
Trends in mathematics: Fractals in Graz 2001, Birkhäuser, Basel.

[51] S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst.
Math. Sci. 25 (1989), 659–680. Zbl 0694.60071 MR 1025071

[52] F. Latrémolière, Bounded-Lipschitz distances on the state space of a C�-algebra.
Taiwanese J. Math. 11 (2007), 447–469. Zbl 1129.46063 MR 2333358

[53] F. Latrémolière, Quantum locally compact metric spaces. J. Funct. Anal. 264 (2013),
362–402. Zbl 1262.46049 MR 2995712

[54] Y. LeJan, Mesures associées à une forme de Dirichlet. Applications., Bull. Soc. Math.
France 106 (1978), 61–112. Zbl 0393.31008 MR 508949

[55] Z.-M. Ma, M. Röckner, Introduction to the Theory of Non-Symmetric Dirichlet Forms,
Universitext, Springer, Berlin, 1992. Zbl 0826.31001 MR 1214375

[56] L. Malozemov and A. Teplyaev, Pure point spectrum of the Laplacians on fractal graphs.
J. Funct. Anal. 129 (1995), 390–405. Zbl 0822.05045 MR 1327184

[57] N. Ozawa, M. A. Rieffel, Hyperbolic group C�-algebras and free-product C�-algebras
as compact quantum metric spaces, Canad. J. Math. 57 (2005), no. 5, 1056–1079.
Zbl 1101.46047 MR 2164594

[58] I. Palmer, J. Bellissard, Uniquely ergodic minimal tiling spaces with positive entropy,
preprint, arXiv:0906.2997, 2010.
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