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Abstract. This paper provides a further step in the program of studying superconformal nets
over S1 from the point of view of noncommutative geometry. For any such net A and any
family � of localized endomorphisms of the even part A of A, we define the locally convex
differentiable algebra A� with respect to a natural Dirac operator coming from supersymmetry.
Having determined its structure and properties, we study the family of spectral triples and JLO
entire cyclic cocycles associated to elements in � and show that they are nontrivial and that
the cohomology classes of the cocycles corresponding to inequivalent endomorphisms can be
separated through their even or odd index pairing with K-theory in various cases. We illustrate
some of those cases in detail with superconformal nets associated to well-known CFT models,
namely super-current algebra nets and super-Virasoro nets. All in all, the result allows us to
encode parts of the representation theory of the net in terms of noncommutative geometry.
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1. Introduction

In this article we would like to explore certain aspects of conformal quantum field
theory that emerge by looking at a superconformal net from the point of view of
noncommutative geometry. By such a connection between two important areas of
mathematics, we hope to gain new insight into conformal field theory. In order
to make this article reasonably self-contained, we provide almost all the necessary
basics in (super-)conformal field theory and noncommutative geometry.

By conformal field theory [28] we actually mean here chiral conformal quantum
field theory on the unit circle S1 (i.e., generated by fields depending on one light-ray
coordinate only) and we work within the operator algebraic approach to quantum
field theory [43] in its chiral conformal field theory version, see e.g. [7, 9, 34, 37,
42, 48, 52, 53, 60, 63] for some representative works in this and related settings.

In the local case, the basic object is a local conformal net: a net of von Neumann
algebras, indexed by the proper open intervals of S1, satisfying a set of natural
axioms. Such a net contains always a Virasoro net (the net associated to the unitary
vacuum representation of the Virasoro Lie algebra with given central charge) as a
minimal conformal subnet. Then we call a net superconformal if it satisfies a certain
graded-local version of those axioms and contains a super-Virasoro net introduced
in Example 2.10 (a net associated to the (N D 1) super-Virasoro algebra, a graded
extension of the Virasoro algebra).

By noncommutative geometry we mean here the operator algebraic extension of
differential geometry according to Connes [21, 23]. The basic objects are spectral
triples .A;H� ;D/, whose three components generalize the algebra of smooth
functions on a manifold, the left representation on its spinor bundle, and the Dirac
operator on that bundle, respectively. The crucial point is that spectral triples give
rise to certain Chern characters in cyclic cohomology (the JLO cocycles), dual
generalizations of the Chern characters in de Rham cohomology, which then in
turn pair with K-theory: thus one can compute numbers characterizing geometric
structures.

Concerning our motivations, we mention that crucial structural objects for a given
net are its sectors, the unitary equivalence classes of its irreducible representations
(cf. [26]). One can envisage that the sectors are to be the basic ingredients for
an index theorem in the quantum infinite-dimensional case (cf. [55]). Moreover,
by considering Weyl’s asymptotic expansion of the Laplace operator on a compact
manifold, it has been shown in [49] that the conformal Hamiltonian of a modular
conformal net in a given sector has a similar meaning as the Laplace operator on an
infinite-dimensional manifold. Since in the commutative setting the Dirac operator
is an odd square-root of the Laplacian, it suggests itself to look at graded-local
conformal nets whose conformal Hamiltonian in certain representations has an odd
square-root. This led to consider superconformal nets and in particular Ramond
representations of such nets [18].
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In this light, we would like to study spectral triples .A; .�;H�/;Q/ in super-
conformal quantum field theory. In [16], together with Y. Kawahigashi, we dealt
with (nets of) graded spectral triples associated to the unitary representations with
positive energy of the Ramond super-Virasoro algebra. In the present article we
define a different but related version of spectral triples, which shall be one of the
objectives of Section 4. Once a (� -summable) spectral triple .A; .�;H�/;Q/ for
a given superconformal net is fixed, we obtain an entire cyclic cocycle, called JLO
cocycle. Changing now the representation � of our superconformal net changes the
spectral triple. But does the cohomology class of the cocycle also change? If we have
no abstract reasoning available to answer this question, we could try to find suitable
K-classes which separate the cocycles corresponding to the several representations:
since they are dual objects, there is a natural integer-valued index pairing, and so
we should be able to do explicit computations. Summing up, we have in mind the
following association:

CFT NCG Number

superconformal net
(and its representations)

7!

�
entire cyclic cocycles

K-classes

�
7! Z-valued pairing

If this procedure gives a non-trivial result, then we can express information about
the original superconformal net in terms of noncommutative geometry. Moreover, in
later steps we may study the whole extent of this relationship and a possible inversion
of the association.

We would like to mention that the present approach will be somehow differential-
geometric involving some differentiability and admissibility conditions on the
representations of our net. A general and purely topological approach, dispensing
with supersymmetry, has been recently achieved in [15, 14] for completely rational
local conformal nets. We expect a deeper relation to the present work in the case
where the completely rational net is the even part of a superconformal net.

Let us now briefly explain how we are going to put our plan into practice
in Sections 4 and 5. Sections 2 and 3 contain the necessary preliminaries on
superconformal nets and noncommutative geometry. Since they are to a large extent
collections of known facts, included in order to keep this article reasonably self-
contained, we provide proofs only for the new results there, while referring to
literature otherwise.

Given a superconformal net A, we shall fix an irreducible Ramond representation
.�R;HR/. It will be either graded or ungraded. In such a representation, there exists
automatically a square-root of the conformal Hamiltonian L�R0 up to an additive
constant, namely Q D G

�R
0 coming from the super-Virasoro algebra, and it is odd

in case the representation is graded. This gives rise to a derivation ı on B.HR/,
and usually satisfies the condition for � -summability: e�tQ

2
is trace-class on HR,

for all t > 0. Then the JLO formula defines an entire cyclic cocycle over the even
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subalgebra, which gives rise to a pairing in K-theory. Actually, we have a family
of cocycles since we may perform this construction for every local algebra A.I /,
I 2 I , as well as for nice global algebras like the universal C*- or von Neumann
algebra. While we kept this generality in [16], we shall recognize below that the
local algebras are not sufficient for our task and we have to choose a global one in
Definition 4.8.

As is known, locally normal localized representations of the even subnet
A correspond to localized transportable (DHR) endomorphisms of the universal
C*-algebra C �.A / or its enveloping von Neumann algebra W �.A /.

Given a family of localized covariant endomorphisms � we consider the largest
subalgebra A� � W

�.A / \ dom.ı/ such that .A�; .�R ı �;HR/;Q/ is a spectral
triple for all � 2 �, cf. Definition 4.8. There is a natural locally convex topology
on A� which guarantees that the JLO cocycle �� associated to the � -summable
spectral triple .A�; .�R ı �;HR/;Q/ is entire for all � 2 �. This way we will
end up with a family of entire cyclic cocycles .��/�2� corresponding to the family
of localized endomorphisms �: geometric quantities associated to quantum field
theoretical ones in a non-trivial way. Imposing further optional conditions on the
set � like differentiable transportability as in Definition 4.1 results in a very rich
structure and several stability properties of A�, the spectral triples and the cocycles.

Now the above JLO cocycles �� might be all cohomologous. That this is
actually not the case, for suitably chosen �, can be proved by pairing the family
of cocycles with a suitable family of K�.A�/-classes, represented by idempotent or
invertible elements in the case of even or odd spectral triples, respectively. The right
representatives of these classes (or at least one possible solution) will be constructed
in Section 5. They are related to certain finite-dimensional subprojections of the
positive eigenspace HR;C of the grading unitary or to certain shift unitaries on the
eigenspaces of Q, respectively. With these two families at hand – the cocycles
and K-classes corresponding to the representations – we then obtain a well-defined
index pairing between them, separating the (JLO cocycles corresponding to the)
equivalence classes of representations in � as described in Theorem 5.3 and 5.6.

After these general investigations and constructions, we shall apply them in
Section 6 to important models of superconformal nets: super-current algebra nets
and the super-Virasoro net. Our goal will be to show that our assumptions and
conditions make sense, to understand the geometric, algebraic, and physical meaning
of the involved objects better, and to see how far we can go with our correspondence
between superconformal nets and noncommutative geometry. This way, our work
becomes self-contained and complete, but offering many potential interactions with
related issues.

One of those issues is the study of higher degree of supersymmetry, i.e., super-
Virasoro algebras involving further odd fields apart from G. This can be done for
arbitrary degree, but the first and already very interesting case with new emerging
structures is the N D 2 super-Virasoro algebra (in contrast to the usual N D 1
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super-Virasoro algebra investigated in the present paper and in [16, 18]). The
corresponding nets, their representations and extensions were studied by us together
with Y. Kawahigashi and F. Xu in [17]. The noncommutative differential-geometric
aspects and the resulting index pairing there are similar to the present ones, but with
some important differences. Other interesting future directions could be related to
the results in [2, 12].

This work is based in part on RH’s PhD thesis at Università di Roma “Tor
Vergata” [44].

Throughout this article all (associative) �-algebras and all �-representations are
assumed to be unital. Nevertheless, sometimes we will repeat these assumptions
simply in order to underline them.

2. Superconformal nets

We provide here a brief summary on (graded-)local conformal nets, see also [18] and
the references here below.

Let S1 D fz 2 C W jzj D 1g be the unit circle, let Diff.S1/ be the infinite-
dimensional (real) Lie group of orientation preserving smooth diffeomorphisms of
S1 and denote by Diff.S1/.n/, n 2 N[f1g, the corresponding n-cover. In particular
Diff.S1/.1/ is the universal covering group of Diff.S1/. The group PSL.2;R/ of
Möbius transformations of S1 is a three-dimensional subgroup of Diff.S1/. We
denote by PSL.2;R/.n/ � Diff.S1/.n/, n 2 N [ f1g, the corresponding n-cover
so that PSL.2;R/.1/ is the universal covering group of PSL.2;R/. We denote
by Pg 2 Diff.S1/ the image of g 2 Diff.S1/.1/ under the covering map. Since
the latter restricts to the covering map of PSL.2;R/.1/ onto PSL.2;R/ we have
Pg 2 PSL.2;R/ for all g 2 PSL.2;R/.1/.

Now let I denote the set of nonempty and non-dense open intervals of S1. For
any I 2 I , I 0 denotes the interior of S1 n I . We write C1.S1/ WD C1.S1;R/ for
the smooth real-valued functions on S1 and, given I 2 I , C1.S1/I for the subspace
of those with support in I . The subgroup Diff.S1/I � Diff.S1/ of diffeomorphisms
localized in I is defined as the stabilizer of I 0 in Diff.S1/ namely the subgroup of
Diff.S1/ whose elements are the diffeomorphisms acting trivially on I 0. Then, for
any n 2 N[f1g, Diff.S1/.n/I denotes the connected component of the identity of the
pre-image of Diff.S1/I in Diff.S1/.n/ under the covering map. Then we write I.n/

for the set of intervals in S1.n/ which map to an element in I under the covering map.
Moreover, we often identify R with S1 n f�1g by means of the Cayley transform,
and we write IR (or NIR) for the set of bounded open intervals (or bounded open
intervals and open half-lines, respectively) in R. After the above identification of R
with S1 n f�1g we have the inclusions IR � NIR � I .
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Definition 2.1. A graded-local conformal net A on S1 is a map I 7! A.I / from the
set of intervals I to the set of von Neumann algebras acting on a common infinite-
dimensional separable Hilbert space H which have the following properties:

(A) Isotony. A.I1/ � A.I2/ if I1; I2 2 I and I1 � I2.

(B) Möbius covariance. There is a strongly continuous unitary representation U of
PSL.2;R/.1/ such that

U.g/A.I /U.g/� D A. PgI /; g 2 PSL.2;R/.1/; I 2 I:

(C) Positive energy. The conformal Hamiltonian L0 (i.e., the self-adjoint generator
of the restriction of U to the lift to PSL.2;R/.1/ of the one-parameter anti-
clockwise rotation subgroup of PSL.2;R/) is positive.

(D) Existence and uniqueness of the vacuum. There exists a U -invariant vector
� 2 H which is unique up to a phase and cyclic for

W
I2I A.I /.

(E) Graded locality. There exists a self-adjoint unitary � (the grading unitary) on
H satisfying �A.I /� D A.I / for all I 2 I and �� D � and such that

A.I 0/ � ZA.I /0Z�; I 2 I;

where

Z WD
1 � i�
1 � i

:

(F) Diffeomorphism covariance. There is a strongly continuous projective unitary
representation of Diff.S1/.1/, denoted again by U , extending the unitary
representation of PSL.2;R/.1/ and such that

U.g/A.I /U.g/� D A. PgI /; g 2 Diff.S1/.1/; I 2 I;

and
U.g/xU.g/� D x; x 2 A.I 0/; g 2 Diff.S1/.1/I ; I 2 I:

A local conformal net is a graded-local conformal net with trivial grading � D 1.
The even subnet of a graded-local conformal net A is defined as the fixed point
subnet A , with grading gauge automorphism  D Ad� . It can be shown that the
projective representation U of Diff.S1/1 commutes with � , cf. [18, Lemma 10].
Accordingly the restriction of A to the even subspace H� of H is a local conformal
net with respect to the restriction to this subspace of the projective representation
U of Diff.S1/1. This local conformal net will again be denoted by A while
the corresponding representations of PSL.2;R/.1/ together with its extension to
Diff.S1/1 will be denoted by U  .
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Note that graded-local conformal nets on S1 are called Fermi conformal nets
in [18]. A map I 7! A.I / satisfying all the properties in the above definition
with the possible exception of .F / (diffeomorphism covariance) is called a graded-
local Möbius covariant net on S1 (or Möbius covariant Fermi net on S1). Some
results of this paper could be formulated in terms of Möbius covariant nets but for
simplicity of the exposition we will always consider diffeomorphism covariant nets.
Actually we will restrict ourselves mainly to the class of graded-local nets admitting
a supersymmetric extension of the diffeomorphism symmetry namely the class of
superconformal nets on S1, defined below. When we want to permit both situations,
we shall denote by G either of the two groups PSL.2;R/ or Diff.S1/. For the rest of
this section, we write A for a generic graded-local conformal net over S1 acting on
the Hilbert space H and with grading automorphism  as in the above definition.

Some of the consequences [18, 19, 37, 34, 42] of the preceding definition are:

(1) Reeh-Schlieder Property. � is cyclic and separating for every A.I /, I 2 I .

(2) Bisognano–Wichmann Property. Let I 2 I and let �I , JI be the modular
operator and the modular conjugation of .A.I /;�/. Then we have

U.ıI .�2�t// D �
i t
I ; t 2 R:

Moreover the unitary representation U W PSL.2;R/.1/ ! B.H/ extends to an
(anti-)unitary representation of PSL.2;R/.1/oZ=2 determined by

U.rI / D ZJI

and acting covariantly on A. Here .ıI .t//t2R is (the lift to PSL.2;R/.1/ of) the
one-parameter subgroup of dilations with respect to I and rI the point reflection
of the interval I onto the complement I 0. rI is identified with 1 2 Z=2 and
the corresponding automorphism g 7! rIgrI of PSL.2;R/.1/ is determined by
the requirement that the image of rIgrI in PSL.2;R/ under the covering map is
equal to rI PgrI for all g 2 PSL.2;R/.1/, cf. [41, 42].

(3) Graded Haag Duality. A.I 0/ D ZA.I /0Z�, for I 2 I .

(4) Outer regularity.
A.I0/ D

\
I2I;I� NI0

A.I /; I0 2 I:

(5) Additivity. If I D
S
˛ I˛ with I; I˛ 2 I a certain family, then A.I / DW

˛A.I˛/.

(6) Factoriality. A.I / is a type III1-factor, for I 2 I .

(7) Irreducibility.
W
I2I A.I / D B.H/.



398 S. Carpi, R. Hillier and R. Longo

(8) Vacuum Spin-Statistics theorem. ei2�L0 D � , in particular ei2�L0 D 1 for
local nets, where L0 is the infinitesimal generator from above corresponding
to rotations. Hence the representation U of PSL.2;R/.1/ factors through a
representation of PSL.2;R/.2/ (PSL.2;R/ in the local case) and consequently its
extension Diff.S1/.1/ factors through a projective representation of Diff.S1/.2/

(Diff.S1/ in the local case).

(9) Uniqueness of Covariance. For fixed �, the strongly continuous projective
representation U of Diff.S1/.1/ making the net covariant is unique.

Definition 2.2. A graded-local conformal net A satisfies the split property if, given
I1; I2 2 I such that NI1 � I2, there is a type I factor F such that

A.I1/ � F � A.I2/:

Definition 2.3. A (DHR) representation of A is a family � D .�I /I2I of
��representations

�I W A.I /! B.H�/; I 2 I;

on a common Hilbert space H� such that �I2 jA.I1/ D �I1 whenever I1 � I2.

– � is called locally normal if every �I is normal.

– � is called G-covariant if there exists a projective unitary representation U�
of G1 on H� satisfying

U�.g/�I .x/U�.g/
�
D � PgI .U.g/xU.g/

�/; g 2 G1; x 2 A.I /; I 2 I:

Here G D PSL.2;R/ or G D Diff.S1/.

– � has positive energy if it isG-covariant and the infinitesimal generator of the
lift of the rotation subgroup in U�.G.1// is positive.

– We say that the operator T 2 B.H�1 ;H�2/ intertwines two representations
�1; �2 , if for every I 2 I , it intertwines �1;I and �2;I . Two representations
�1; �2 are unitarily equivalent if they admit a unitary intertwiner. The unitary
equivalence class of a representation � is denoted by Œ��. � is said to be
irreducible if its self-intertwiners coincide with the scalar multiples of the
identity operator. The direct sum �1˚�2 is defined by .�1˚�2/I WD �1;I ˚
�2;I , I 2 I . Accordingly a representation � of the net A is irreducible if and
only if it is not unitarily equivalent to a direct sum of non-simultaneously zero
representations. The unitary equivalence classes of irreducible locally normal
representations are called the sectors of A.

– � is called localized in a certain interval I0 2 I if H� D H and, for every
I 2 I with I � I 00, we have �I D �I . � is said to be localizable in I 2 I if
is unitarily equivalent to a representation which is localized in I .
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The identity representation �0 of A on H is called the vacuum representation,
and it is automatically locally normal, G-covariant, and localized in any given
interval. Moreover, if � is non-trivial we will denote the vacuum representation
of A on H� � H by �0 .

In the above definition, note that when G D PSL.2;R/, the projective
representation U� comes from a unique unitary representation, which we will denote
by the same symbol. Hence, the generators of one-parameter subgroups of U� are
uniquely determined, in particular, this is the case for the generator L�0 of rotations
(conformal Hamiltonian). When G D Diff.S1/, these generators are actually
obtained by the unitary representation (also denoted by U� ) corresponding to the
restriction of U� to PSL.2;R/.1/.

The space H� is separable if � is locally normal and cyclic, and � is localizable
in every I0 2 I and hence locally normal if H� is separable, see e.g. [50, App.B].
If � is locally normal, then it is automatically PSL.2;R/-covariant [18, 25] and of
positive energy [62]. Moreover, the representation U� can be uniquely chosen to be
inner, i.e., such that U�.g/ 2

W
I2I �I .A.I //, for all g 2 PSL.2;R/.1/ (cf. also

[51]). In the following, unless stated otherwise, U� will always denote this unique
inner representation.

In our index pairing below the even subnet (which is a local conformal net) will
play a central role, so let us collect here a few general facts about local conformal
nets. Let us denote by B a generic local conformal net with vacuum representation
�0. In this case, if � is a representation of B localized in I0, then by Haag duality
we have �I .B.I // � B.I /, for all I 2 I containing I0, i.e., �I is an endomorphism
of B.I /, and we say that � is a localized endomorphism or DHR endomorphism
(localized in I0) of the net B. If �I0.B.I0// D B.I0/ then �I .B.I // D B.I / for all
I 2 I containing I0 and we say that � is a localized automorphism of the net B. For
an analogous statement in the graded-local case we refer to [18, Prop.14].

If � is a representation of B and I1; I2 2 I are disjoint intervals with I1 ¤ I 02
then it follows from locality that �I1.B.I1// � �I2.B.I2//0. Hence, if � is locally
normal, we have an inclusion of type III factors �I .B.I // � �I 0.B.I 0//0 for every
I 2 I as a consequence of additivity. Moreover, it follows from the covariance of �
that the minimal index Œ�I 0.B.I 0//0 W �I .B.I //� is independent of I . Its square root
is called the statistical dimension of the locally normal representation � , is denoted
by d.�/ and depends only on the unitary equivalence class Œ�� of � . If �1; �2
are locally normal then d.�1 ˚ �2/ D d.�1/ C d.�2/. If the representation � is
localized in I0 2 I and if I 2 I contains I0 we have d.�/ D ŒB.I / W �I .B.I //�

1
2 ,

i.e., d.�/2 is the index of the unital endomorphism �I 2 End.B.I //. Accordingly,
recalling that normal endomorphisms of von Neumann factors are always injective,
the localized endomorphism � of the net B is a localized automorphism if and only
if d.�/ D 1. In general we have d.�/ � 1.
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We start with an important global algebra associated to it, introduced in [35,
Sect.2] and [36, (5.1.7)] (see also [41, Sect.8]):
Definition 2.4. The universal C*-algebra C �.B/ is the C*-algebra such that

– for every I 2 I , there are unital embeddings �I W B.I / ! C �.B/, such
that �I1jB.I2/ D �I2 whenever I1 � I2, and �I .B.I // generate C �.B/ as a
C*-algebra;

– for every representation � of B on some Hilbert space H� , there is a unique
�-representation O� W C �.B/! B.H�/ such that

�I D O� ı �I ; I 2 I:

The universal C*-algebra can be shown to be unique up to isomorphism. Let
. O�u;Hu/ be its universal representation: the direct sum of all GNS representations
O� of C �.B/. Since it is faithful, C �.B/ can be identified with O�u.C �.B//.
We call the weak closure W �.B/ D O�u.C

�.B//00 the universal von Neumann
algebra of B, in other words, the enveloping von Neumann algebra of C �.B/ [29,
Ch.12]. Accordingly, every representation � of C �.B/ extends to a unique normal
representation of W �.B/ and similarly, every endomorphisms � of C �.B/ extends
to a unique normal endomorphism of W �.B/. Throughout this paper, when no
confusion arises we will again denote by � and � these normal extensions.
Remark 2.5. (1) If O� is the representation of C �.B/ corresponding to the repre-

sentation � of B according to the above universal property, we shall freely say
that O� is locally normal, localized in some I0 2 I , the vacuum representation,
or covariant, respectively, if � is such. The statistical dimension d. O�/ of O� is
defined by d. O�/ D d.�/. Moreover, we shall drop the O� sign when no confusion
arises. Note that the terms intertwiner, unitary equivalence, irreducibility and
direct sum for representations of the net B agree with the standard terminology
for the corresponding representations of the C*-algebra C �.B/.

(2) C �.B/ inherits the local structure from the net B. Thus, when no confusion
arises, we may identify B.I / with its image �I .B.I // in C �.B/.

(3) We say that an endomorphism � of C �.B/ is localized in I0 if it is the identity
endomorphism in restriction to the subalgebra �I .B.I // whenever I � I 00. It
is well known (see Proposition 2.6 below) that there is a natural one-to-one
correspondence between localized covariant endomorphisms of C �.B/ and the
localized locally normal representations of C �.B/, which in turn correspond to
the localized representations of B by definition.

We then write

�0 WD
[
I2I

�0I ;

�0I WDfPSL.2;R/�covariant endomorphisms of C �.B/ localized in I g:
(2.1)
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(4) As a consequence of the universal property of C �.B/ there is a unique
representation ˛ of Diff.S1/ by automorphisms of C �.B/ implementing the
covariance of B, i.e., such that ˛g.�I .x// D �gI .U.g/xU.g/�/. It follows from
[25] that ˛g is an inner automorphism of C �.B/, for all g 2 Diff.S1/, and we
shall use the same notation for its lift to Diff.S1/.1/.

Let U be an open neighborhood of the identity in PSL.2;R/.1/. A map z from U
into the set of unitary operators of C �.B/ is said to be a local (unitary) ˛-cocycle if
z.gh/ D z.g/˛g.z.h// whenever g; h; gh 2 U . If U D PSL.2;R/.1/ then z is said
to be an ˛-cocycle. From the fact that PSL.2;R/.1/ is simply connected it follows
that every local ˛-cocycle defined on a connected open neighborhood of the identity
in PSL.2;R/.1/ has a unique extension to an ˛-cocycle, cf. [41, Sect.8].

Now let � be a locally normal representation of C �.B/ localized in an interval
I0 2 I . Fix an interval I 2 I containing the closure of I0 and define the open
neighborhood of the identity UI0;I to be the connected component of the identity of
the open set

fg 2 PSL.2;R/.1/ W PgI0 � I g:

Then, U�.g/U.g/� 2 B.I 0/0 D B.I / for all g 2 UI0;I and the map zI� W UI0;I !
C �.B/ defined by

zI�.g/ WD �I .U�.g/U.g/
�/; g 2 UI0;I ; (2.2)

is a local unitary ˛-cocycle and therefore extends to a unique ˛-cocycle which can be
easily seen to be independent on the choice of I and which will be denoted by z� , cf.
[41, Sect.8]. Note that if I is any interval in I containing the closure of I0 then we
have z�.g/ D �I .U�.g/U.g/

�/ for all g 2 UI0;I . As a consequence, �0.z�.g// D
U�.g/U.g/

� for all g 2 UI0;I and hence, since UI0;I is a neighborhood of the
identity, �0.z�.g// D U�.g/U.g/� for all g 2 PSL.2;R/.1/.
Proposition 2.6. There is a natural one-to-one correspondence between PSL.2;R/-
covariant representations � of C �.B/ localized in a given interval I0 2 I
and PSL.2;R/-covariant endomorphisms � of C �.B/ localized in I0: given the
representation � , � is the unique endomorphism of C �.B/ localized in I0 satisfying
� D �0 ı � and the covariance condition

Ad.z�.g/�/ ı � D ˛g ı � ı ˛�1g ; g 2 PSL.2;R/.1/ :

If �1 and �2 are localized covariant endomorphisms of C �.B/ then �0 ı �1 is
equivalent to �0 ı �2 iff �1 D Ad.u/ ı �2 for some unitary u 2 C �.B/. A localized
covariant endomorphism � of C �.B/ is a C*-algebra automorphism if and only if its
statistical dimension d.�/ WD d.�0 ı �/ is equal to one.

Proof. The proof is mainly given in [41, Sect.8(p.541)], see also [36, Sect.5.1]. �
is uniquely determined by the condition �jB.I / WD Ad z�.g/, g 2 PSL.2;R/.1/,
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I � PgI 00 and the universal property of C �.B/. Recall that, because of (2.2),
z�.g/ is uniquely determined by � through the unique inner representation U� of
PSL.2;R/.1/ making � covariant.

We give now a proof for the last statement. If the covariant endomorphism � of
C �.B/ localized in the interval I0 is an automorphism, then it is straightforward
to see that ��1 is again a covariant endomorphism localized in I0. Therefore,
1 D d.id/ D d.���1/ D d.�/d.��1/ so that d.�/ D 1. Vice versa, if d.�/ D 1,
then it follows from [42, Cor.2.10] that �0 ı� is irreducible. By [42, Thm.2.11] there
exists a covariant endomorphism N� localized in I0 (the conjugate endomorphism)
such that �0 ı N� is irreducible, �0 ı N�� ' �0 ı � N� contains �0 as a subrepresentation
and d. N�/ D d.�/ D 1. Since d. N��/ D d. N�/d.�/ D 1, also �0 ı N�� is irreducible and
hence unitarily equivalent to �0. Therefore N�� is an inner automorphism of C �.B/.
Similarly � N� is an inner automorphism. Hence � is an automorphism.

We shall say that two localized endomorphisms �1; �2 of C �.B/ are equivalent if
Œ�0 ı�1� D Œ�0 ı�2� and write Œ�� for the equivalence class of the localized covariant
endomorphism � of C �.B/.

We shall need the following proposition, cf. [54, 55].

Proposition 2.7. Given I0 2 I , we define the unitary-valued map

z W .�; g/ 2 �0I0 � PSL.2;R/.1/ 7! z�0ı�.g/:

Then

z.�; gh/ D z.�; g/˛g.z.�; h// � 2 �0I0 ; g; h 2 PSL.2;R/.1/ : (2.3)

Moreover, if �0 ı��.C �.B//0\�0 ı�.C �.B//00 is a direct sum of finite dimensional
algebras then

z.��; g/ D �.z.�; g//z.�; g/; �; � 2 �0I0 ; g 2 PSL.2;R/.1/ : (2.4)

In particular, (2.4) always holds whenever � and � have finite statistical dimension,
namely the restriction of z to the endomorphisms with finite statistical dimension is
a two-variable cocycle.

Proof. The first of the two identities is true by definition. Let us therefore prove the
second one.

Note that the map g 7! �.z.�; g//z.�; g/ is a unitary ˛-cocycle so that it is
enough to show that it coincides with g 7! z.��; g/ in a neighborhood of the identity
in PSL.2;R/.1/. Let us consider the unitary representation QU of PSL.2;R/.1/ on
the vacuum Hilbert space H of B defined by QU.g/ WD �0 .�.z.�; g//z.�; g// U.g/,
g 2 PSL.2;R/.1/ : It satisfies QU.g/�0 ı ��.x/ QU.g/� D �0 ı ��.˛g.x// for all
x 2 C �.B/ and all g 2 PSL.2;R/.1/. Accordingly, V.g/ WD U�0ı�� .g/

QU.g/� 2

�0 ı ��.C
�.B//0 for all g 2 PSL.2;R/.1/. It follows that the map g 7! V.g/
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defines a strongly continuous unitary representation V of PSL.2;R/.1/ on H with
values in �0 ı ��.C �.B//0.

On the other hand QU.g/ D �0.�.z.�; g///U�0ı�.g/ 2 �0 ı �.C
�.B//00 so that

V.g/ 2 �0 ı ��.C
�.B//0 \ �0 ı �.C �.B//00 for all g 2 PSL.2;R/.1/. Since by

assumption �0 ı��.C �.B//0\�0 ı�.C �.B//00 is a direct sum of finite dimensional
algebras, V is a direct sum of finite dimensional unitary representations, and
hence it must be trivial because PSL.2;R/.1/ has no nontrivial finite dimensional
unitary representations. Accordingly �0 .�.z.�; g//z.�; g// D �0.z.��; g// for
all g 2 PSL.2;R/.1/. Hence, for any I 2 I containing the closure of I0, we
have �.z.�; g//z.�; g/ D z.��; g/ for all g 2 UI0;I , because, if g 2 UI0;I
then �.z.�; g//; z.�; g/; z.��; g/ 2 �I .B.I // and the restriction of �0 to the latter
subalgebra is faithful. Therefore, the two ˛-cocycles coincide in a neighborhood of
the identity and the conclusion follows.

Clearly, the localized covariant endomorphism corresponding to the vacuum
representation �0 of B is the identity automorphism id W C �.B/ ! C �.B/. The
unitary z�.g/ turns out to transport the “charges” related to � from I0 to PgI0,
wherefore it is also called a charge transporter of the representation � between the
localization regions I0 and PgI0.

In every locally normal irreducible representation � of B the conformal Hamil-
tonian L�0 is selfadjoint with a lowest eigenvalue lw.�/ D h� , called the lowest
energy of � , and discrete spectrum equal to lw.�/ C N0 (except for the vacuum
representation case where possibly the spectrum is strictly contained in N0).

Let us now return to our graded-local conformal net A. The concept of
representations begun in Definition 2.3 becomes slightly more involved here:

Definition 2.8 ([18, Sect.4]). (1) A G-covariant soliton of A is a family � D

.�I /I2 NIR of normal representations of A restricted to NIR on a common Hilbert
space H� with a projective unitary representation U� W G.1/ ! B.H�/ such
that:

– �I2 jA.I1/ D �I1 , whenever I1 � I2, I1; I2 2 NIR;

– for every I 2 IR,

U�.g/�I .x/U�.g/
�
D � PgI .U.g/xU.g/

�/; g 2 VI ; x 2 A.I /;

where VI is the connected component of the identity in G.1/ of the open
set fg 2 G.1/ W PgI 2 IRg.

If U� is a positive energy representation, namely the selfadjoint generator L�0
corresponding to the one parameter group of rotations has nonnegative spectrum,
we say that � has positive energy. If � is a G-covariant soliton and the family
� D .�I /I2 NIR can be extended to I giving a covariant DHR representation of
A (with the same U� ) we say that � is a DHR representation of A.
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(2) AG-covariant general soliton A is aG-covariant soliton such that the restriction
of � from A to the even subnet A is a DHR representation. In case
G D Diff.S1/, we shall simply say general soliton.

(3) AG-covariant general soliton � of A is called graded if there exists a selfadjoint
unitary �� 2 B.H/ commuting with U�.g/, for all g 2 G.1/, and such that

���I .x/�� D �I ..x//; x 2 A.I /; I 2 NIR:

(4) AG-covariant graded general soliton � of A is called supersymmetric ifL�0��1
admits an odd square-root (the supercharge) for some � 2 R.

Remark 2.9. It can be shown (using a straight-forward reasoning based on co-
variance relations) that a family .�I /I2IR of normal representations of A which is
covariant with respect to a given projective unitary representation of G.1/ extends
automatically from IR to NIR, thus defines a G-covariant soliton. We shall make use
of this (simplifying) fact when considering the super-current algebra models and the
super-Virasoro net in the final section.

As in the case of DHR representations (see the comments after Definition 2.3)
it can be shown that in various cases, as a consequence of the results in [62], the
positive energy condition is automatic for G-covariant general solitons, see [18,
Prop.12 & Prop.21]. In particular an irreducible G-covariant general soliton is
always of positive energy.

Example 2.10 (Super-Virasoro net). The fundamental example of a graded-local
conformal net is the super-Virasoro net. It has been introduced in [18, Sect.6] and
studied in [16] with the aim of constructing spectral triples. We sketch here the main
ideas.

The Neveu–Schwarz super-Virasoro algebra is the Z=2-graded Lie algebra
generated by even Ln, n 2 N, odd Gr , r 2 1

2
C Z, and a central even element

Oc, together with the following (anti-) commutation relations

ŒLm; Ln� D .m � n/LmCn C
Oc

12
.m3 �m/ımCn;0;

ŒLm; Gr � D
�m
2
� r

�
GmCr ;

ŒGr ; Gs�C D 2LrCs C
Oc

3

�
r2 �

1

4

�
ırCs;0:

(2.5)

The Ramond super-Virasoro algebra is defined analogously but with r 2 Z. Both
are equipped with an involution: Ln 7! L�n, Gr 7! G�r and Oc 7! Oc.

In an irreducible (nonzero) unitary positive energy representation � of these
algebras, the central element Oc is represented by a positive multiple c1 of 1; �
is completely determined by this number c (the central charge) together with the
lowest eigenvalue h� D lw.�/ 2 RC of L�0 . More generally, if � is a possibly
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reducible positive energy unitary representation such that Oc is represented by a
positive multiple c1 we say that � has central charge c. The vacuum representation
with central charge c of the Neveu–Schwarz algebra is the graded irreducible
representation � with central charge c where the lowest eigenvalue of L�0 is 0.
The Ramond vacuum representation with central charge c is the graded irreducible
representation of the Ramond algebra having central charge c and lowest energy
h� D c=24. For representations of the Ramond algebra we automatically have a
(odd) square-root of the conformal Hamiltonian up to an additive constantL�0 �

c
24

1,
namely G�0 . We shall consider this point in more generality in Proposition 2.14.

Consider now the Neveu–Schwarz algebra in the vacuum representation with
certain central charge value c, and drop the symbol � for simplicity. For smooth
and localized functions f 2 C1.S1/I with I 2 I (or I 2 IR), the Fourier
coefficients fn, n 2 Z, (or fr WD 1

2�

R �
��
f .ei t / e� i rt d t , r 2 1

2
C Z, respectively)

are rapidly decreasing and, owing to so-called energy bounds (analytical properties
of the operators Ln; Gr on H), the formal sumsX

n2Z

fnLn;
X

r2 12CZ

frGr

are densely defined closable essentially selfadjoint operators on C1.L0/, which
forms an invariant core for them; we denote their selfadjoint closures, the so-
called smeared fields, by L.f / and G.f /, respectively. Similarly one can define
smeared fields L�.f / and G�.f / for any unitary positive energy representation of
the Neveu–Schwarz or Ramond super-Virasoro algebra having a given central charge
c, cf. [16]. Since

ŒL.f /; L.g/� D ŒL.f /;G.g/� D ŒG.f /;G.g/�C D 0; supp.f / \ sup.g/ D ;;

one can show (cf. [18, Sect. 6]) that the family of von Neumann algebras

ASVir;c.I / WD feiL.f /; eiG.f /
W f 2 C1.S1/I g

00; I 2 IR;

extends (by covariance) to a unique graded-local conformal net .ASVir;c.I //I2I
over S1.

Based on the fact that every local conformal net contains the Virasoro net as a
minimal conformal subnet [48, Prop.3.5] and [13, Rem.3.8] (in fact irreducible by
[13, Prop.3.7]), one can make the following definition:

Definition 2.11. The net A with central charge c is superconformal if it contains
ASVir;c as a PSL.2;R/-covariant subnet and the projective representation U of
Diff.S1/.1/ making A diffeomorphism covariant satisfies

U.Diff.S1/.1/.I // � ASVirc .I / � A.I /; I 2 I:
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If A is superconformal, then it can be shown, using [13, Prop.3.7], that the
inclusion ASVirc .I / � A.I / is irreducible, for every I 2 I , in other words,
ASVirc � A is an irreducible inclusion of conformal nets. Conversely, if A
contains ASVirc as a PSL.2;R/-covariant irreducible subnet and c < 3=2, then A
is superconformal, cf. [18, Sect.7].

Let us focus a little bit more on the several kinds of solitons, their properties, and
the meaning of supersymmetry.

Proposition 2.12 ([18, Sect.4.3]). Let � be an irreducible general soliton of A. Then
the following three conditions are equivalent:

– � is graded,

– �jA is reducible,

– �jA ' �C ˚ �C ı O DW �C ˚ ��,

with �C and �� inequivalent irreducible localized DHR representation of A and O
a localized DHR automorphism of A dual to the grading.

It can be shown [18, Cor.23 (proof)] that for irreducible graded � and under the
assumption of finite statistical dimension on �C, ei4�L�

0 D ei4�h� 1 is a scalar and
we have in fact the two possibilities

ei2�L�
0 D ei2�L

�C
0 ˚˙ ei2�L

�C
0 D ei2�h� 1˚˙ ei2�h� 1;

while in the irreducible ungraded case ei2�L�
0 is always a scalar because it commutes

with
W
I2I �I .A .I // D B.H�/. Here “C” will correspond to .R/ in the following

theorem, “�” to .NS/. In the following, we shall not restrict ourselves to finite
index, but we will always assume that ei4�L�

0 is a scalar if � is irreducible, although
this assumption might turn out to be unnecessary. As we shall see, it is easy to verify
this for the models in Section 6.

Theorem 2.13 ([18, Sect.4.3]). Let � be an irreducible general soliton of A such
that ei4�L�

0 is a scalar, and denote �jA DW �C ˚ �C ı O or �jA DW �C with an
irreducible representation �C of A (for graded or ungraded � , respectively). Then
� is of either of the subsequent two types:

.NS/ � is a DHR representation of A; equivalently, ei2�.L�
0
�h�1/ D �� imple-

ments the grading.

.R/ � is not a representation but only a general soliton of A; equivalently
ei2�.L�

0
�h�1/ D 1 and hence does not implement the grading.

In case .NS/, � is called a Neveu–Schwarz representation of A, and in case .R/,
a Ramond representation, the latter, however, being actually only a general soliton
and not a proper (DHR) representation of A. A direct sum of irreducible Neveu–
Schwarz (Ramond) representations is again called a Neveu–Schwarz (Ramond)
representation.
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Proposition 2.14. Assume A is superconformal with central charge c and let � be
an irreducible G-covariant general soliton of A such that ei4�L�

0 is a scalar.

– If � is supersymmetric, then it is a Ramond representation.

– Conversely, if � is a Ramond representation, then there is a unitary repre-
sentation with central charge c of the Ramond algebra by operators G�r ; L

�
n

on H� such that �I .eiG.f // D eiG� .f / and �I .eiL.f // D eiL� .f /, for
all f 2 C1.S1/I and I 2 IR, and the choice Q D G�0 makes �
supersymmetric.

Proof. Suppose � is a Neveu–Schwarz representation of A. Then it has to be graded
by definition: �� D ei2�.L�

0
�h� /, with h� the lowest energy of � . Suppose there

exists an odd supercharge Q for that representation. Then Q2 D L�0 � �1 for
some � 2 R. According to the preceding theorem, the grading is implemented by
�� D ei2�.L�

0
�h� /, so

Q D ���Q�
�
� D � ei2�.L�

0
�h� /Q e� i2�.L�

0
�h� / D �Q

becauseQ commutes withL�0 D Q
2C�1. This is a clear contradiction, so � cannot

be supersymmetric.
Suppose now instead that � is a (graded or ungraded) Ramond representation.

The net A contains the super-Virasoro net ASVir;c as an irreducible conformal
subnet, with c the central charge of A, and the representation � restricts to a
(possibly reducible) Ramond representation O� of this subnet on H O� D H� since
ei2�L O�

0 D ei2�L�
0 is a scalar. The image of the net ASVir;c under a Ramond

representation O� is isomorphic to the net A O�SVir;c generated directly by the smeared
super-Virasoro fields in the corresponding Ramond representation O� of the Lie
algebra SVir on H O� , as shown in [20]. But in such a representation of the super-
Virasoro algebra, a possible supercharge on H� is G O�0 , which follows easily from
(2.5). Since .G O�0 /

2 D L�0 �
c
24

1, Q WD G O�0 forms in fact a supercharge for A in the
representation � . Moreover, if � is graded, Q is odd.

3. Noncommutative geometry

In noncommutative geometry the notion of spectral triples (called K-cycles in [23,
IV.2. ]) is fundamental. Depending on the context there are several ways of defining
it. For background information and versions adapted to the setting of superconformal
field theory consider [16, Sect.3]. In this paper we content ourselves with the most
common

Definition 3.1. A � -summable spectral triple .A; .�;H/;Q/ consists of

– a �-algebra A
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– a separable Hilbert space H and a �-representation (not necessarily faithful)
� W A! B.H/;

– a selfadjoint operatorQ on H such that e�tQ
2

is trace-class, for all t > 0, and
such that �.A/ � dom.ı/, with ı the derivation on B.H/ induced by Q (cf.
Eq. (3.1) below).

The spectral triple is called even if there is a grading � on H such that Œ�; �.A/� D 0
and �Q� D �Q. Otherwise, it is called odd.

If H is a Hilbert space and � is a grading operator on H, we have the
decomposition H D HC ˚H� of H as a direct sum of the corresponding even and
odd subspaces. Now, if T is a (possibly unbounded and densely defined) operator on
H which is odd, i.e., such that �T � D �T , then we can write

T D

�
0 T�
TC 0

�
;

with operators T˙ from (a dense subspace of) H˙ to H�. Accordingly, if
.A; .�;H/;Q/ is a � -summable spectral triple then for the selfadjoint Q we can
write

Q D

�
0 Q�
QC 0

�
;

with Q� D Q�C. On the other hand, if T is even, i.e., it commutes with � , then we
can write

T D

�
TC 0

0 T�

�
;

with operators T˙ from (a dense subspace of) H˙ to H˙
We recall now that if Q is a selfadjoint operator on H (not necessarily graded),

then one obtains a derivation ı as follows: dom.ı/ is the set of elements x 2 B.H/
such that

.9y 2 B.H// xQ � Qx � y; (3.1)

in which case ı.x/ WD y. If H is graded and Q odd, then one also obtains a
superderivation ıs in a similar manner: dom.ıs/ is the set of elements x 2 B.H/
such that

.9y 2 B.H// �x�Q � Qx � y; (3.2)

in which case ıs.x/ WD y; clearly, the restrictions of ıs and ı to the even elements
are derivations and coincide: ısjdom.ıs/� D ıjdom.ı/� . In either of the two cases,
dom.ı/ (or dom.ıs/) equipped with the norm k � k C kı.�/k (or k � k C kıs.�/k,
respectively) becomes a Banach �-algebra [16, Cor.2.3]. We remark that based on
such a superderivation we introduced the concept of graded spectral triples in [16],
which, however, shall play no role in the present article.
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A remarkable generalization of de Rham homology of currents in differential
geometry to the noncommutative setting was found by Connes to be cyclic coho-
mology. Here we will consider its entire version which is suitable for applications to
quantum field theory. For extensive discussions and further references consider the
standard textbooks [23, 40].

Definition 3.2. (1) Let .A; .k � ki /i2I / be a locally convex unital �-algebra and,
for any nonnegative integer n, let C n.A/ be the vector space of multilinear maps :
A � .A=C1/n ! C. We will identify C n.A/ with the space of .n C 1/-linear
forms � on A such that �.a0; a1; : : : ; an/ D 0 if ai D 1 for some 1 � i � n

(simplicial normalization). For integers n < 0 we set C n.A/ WD f0g. Let C �.A/ WDQ1
kD0 C

k.A/ be the space of sequences � D .�k/k2N0 , �k 2 C k.A/ and define the
operators b W C �.A/! C �.A/ and B W C �.A/! C �.A/ by

.b�/k.a0; : : : ; ak/ WD

k�1X
jD0

.�1/j�k�1.a0; : : : ; ajajC1; : : : ; ak/

C .�1/k�k�1.aka0; a1; : : : ; ak�1/;

.B�/k.a0; : : : ; ak/ WD

kX
jD0

.�1/jk�kC1.1; aj ; : : : ; an; a0; : : : ; aj�1/:

The linear map @ W C �.A/ ! C �.A/ defined by @ WD b C B satisfies @2 D 0

and, with the boundary operator @, C �.A/ becomes the cyclic cocomplex C �.A/ D
.C e.A/; C o.A// over Z=2Z, namely the elements of C e.A/ D

Q1
kD0 C

2k.A/ (the
even cochains) are mapped into the elements of C o.A/ D

Q1
kD0 C

2kC1.A/ (the
odd cochains) and vice versa.

(2) A cochain � D .�k/k2N0 2 C
�.A/ is called entire if, for every bounded

subset B � A, there is a constant cB such that

j�k.a0; : : : ; ak/j �
1
p
kŠ
cB ; ai 2 B; k 2 N0:

Letting CE�.A/ be the entire elements in C �.A/, one defines the entire cyclic coho-
mology .HEe.A/;HEo.A// of A as the cohomology of the cocomplex ..CEe.A/;
CEo.A//; @/. The cohomology class of an entire cocycle � 2 CE�.A/\ ker.@/ will
be denoted by Œ��.

Concerning entireness, there are a few alternative conventions in the original
literature [23, 38, 45] but what matters is actually only that everything is chosen
in a consistent way. Usually the setting is that of Banach algebras while here we
are dealing only with locally convex algebras, a generalization discussed in [23,
IV.7.˛], cf. also [56]. The above entireness condition for a cyclic cochain � can be
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reformulated as follows: for every bounded subset B � A and every � > 0, there is
cB;� such that

j�k.a0; : : : ; ak/j �
1
p
kŠ
cB;��

k; ai 2 B; k 2 N;

or again in another way: for every bounded subset B � A, we have

lim sup
k!1

 
p
kŠ sup
ai2B

j�k.a0; : : : ; ak/j

!1=k
D 0:

In the case of a Banach algebra A, it suffices to study the unit sphere as bounded sub-
set, and there we obtain the classical entireness condition lim supk!1.

p
kŠk�kk/

1=k

D 0 from [38, 45].
We now recall, (cf. e.g. [3, 23, 24]) the definition of the K-groups for a unital

locally convex algebra .A; k � ki2I /:
.K0/ Let Mr.A/ be the locally convex algebra of r � r matrices over A, r 2 N, and

let M1.A/ denote the algebra of infinite matrices over A with only finitely
many nonzero entries. The maps x 7! diag.x; 0/ define natural embeddings
Mr.A/ ! MrC1.A/ ! : : : ! M1.A/. We denote by P Mr.A/ the set of
idempotents in Mr.A/, r 2 N [ f1g. An equivalence relation on P M1.A/
is defined by p � q if there are x; y 2 M1.A/ such that p D xy, q D yx.
There is a binary operation

.p1; p2/ 2 P Mr1.A/�P Mr2.A/ 7! p1˚p2 WD diag.p1; p2/ 2 P Mr1Cr2.A/;

which turns P M1.A/= � into an abelian semigroup. Then the K0-group of
A is defined as

K0.A/ WD Grothendieck group of P M1.A/= �;

where the Grothendieck group of an arbitrary additive semigroup H is the
group of formal differences of elements of H , i.e.,

.H�H/=f.h1; h2/ �H�H .g1; g2/ , .9k 2 H/h1Cg2Ck D h2Cg1Ckg:

We write Œp� for the element in K0.A/ induced by p 2 P M1.A/.
.K1/ Let GLr.A/ denote the group of invertible elements in Mr.A/. With the

diagonal inclusion u 2 GLr.A/ 7! u ˚ 1 WD diag.u; 1/ 2 GLrC1.A/, this
gives a directed family, and the inductive limit GL1.A/ WD lim

�!
GLr.A/, with

the inductive limit topology, is a topological group. Its connected component
of the identity is denoted by GL1.A/0. Then the K1-group of A is defined as
the quotient

K1.A/ WD GL1.A/=GL1.A/0
and it turns out to be abelian. We write Œu� for the element in K1.A/ induced
by u 2 GL1.A/.
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In order to describe the pairing between entire cyclic cohomology and K-theory
we need to introduce a canonical extension of a linear functional �k 2 C k.A/ to
a linear functional �r

k
2 C k.Mr.A//, defined as follows after the identification

Mr.A/ ' Mr.C/˝ A,

�rk.m0 ˝ a0; : : : ; mk ˝ ak/ WD tr.m0 : : : mk/�k.a0; : : : ; ak/: (3.3)

The map � 7! �r is a morphism of the complexes of entire chains, see [23,
IV.7.ı]. Let .A; .�;H/;Q/ be a � -summable spectral triple. We denote by �r the
representation of Mr.A/ on Hr WD Cr ˝ H defined by �r.m ˝ a/ D m ˝ �.a/,
m 2 Mr.C/, a 2 A. Moreover, for every operator T on H we consider the
operator Tr D 1 ˝ T on Hr . Then, for every r 2 N, .Mr.A/; .�r ;Hr/;Qr/ is
a � -summable spectral triple which is even with grading �r if .A; .�;H/;Q/ is even
with grading � .

The concluding main theorem about � -summable spectral triples and entire cyclic
cohomology is (in chronological order) mainly due to [22, 45, 38, 33, 11] in the case
of Banach algebras. The basic ingredients are the JLO cochains associated to a
spectral triple .A; .�;H/;Q/. They are obtained from the .n C 1/-linear forms �n
on A defined by

�n.a0; : : : ; an/ D

Z
0�t1�:::�tn�1

tr
�
��.a0/ e�t1Q

2

ŒQ; �.a1/� e�.t2�t1/Q
2

: : :

: : : ŒQ; �.an/� e�.1�tn/Q
2
�

d t1 : : : d tn; (3.4)

for n > 0 and �0.a0/ D tr.��.a0/ e�Q
2
/, where we take � D 1 if the spectral triple

is odd. The locally convex version we shall need can be found basically in [23, IV.7]
and reads as follows:

Theorem 3.3. Let A be a unital locally convex �-algebra, and let .A; .�;H/;Q/
be a � -summable spectral triple such that the representation � of A in the Banach
algebra dom.ı/ is continuous.

(1) If the spectral triple is even (odd), then the cochain .�n/n22N0 (.�n/n22N0C1) is
an even (odd) entire cyclic cocycle, called the even (odd) JLO cocycle or Chern
character.

(2) Suppose .Qt /t2Œ0;1� is a differentiable homotopy between the two (odd) self-
adjoint operators Q0;Q1, i.e., the domain of Qt does not depend on t 2 Œ0; 1�
and t 7! Qt �Q0 is a norm differentiable B.H/-valued function. Then for the
corresponding even or odd JLO cocycles � t we have Œ� s� D Œ� t �, for s; t 2 Œ0; 1�,
namely the entire cohomology class of � t does not depend on t 2 Œ0; 1�.



412 S. Carpi, R. Hillier and R. Longo

(3) The values of the maps .�; p/ 2 .CEe.A/ \ ker.@// � P Mr.A/ 7! �.p/ 2 C,
r 2 N, where

�.p/ WD �r0.p/C

1X
kD1

.�1/k
.2k/Š

kŠ
�r2k..p �

1

2
/; p; : : : ; p/;

only depend on the cohomology class of the entire cocycle � and on the K-
theory class of the idempotent p and are additive on the latter. Hence they give
rise to a pairing hŒ��; Œp�i WD �.p/ between the even entire cyclic cohomology
HEe.A/ and K-theory K0.A/. Moreover, the operator �r.p/�QrC�r.p/C
from �r.p/CHrC to �r.p/�Hr� is a Fredholm operator and for the even JLO
cocycle � we have

�.p/ D hŒ� �; Œp�i D ind
�
�r.p/�QrC�r.p/C

�
2 Z:

The values of the maps .�; u/ 2 .CEo.A/ \ ker.@// � GLr.A/ 7! �.u/ 2 C,
r 2 N, where

�.u/ WD
1
p
�

1X
kD0

.�1/kkŠ�r.2kC1/.u
�1; u; : : : ; u�1; u/;

only depend on the cohomology class of the entire cocycle � and on the K-
theory class of u and are additive on the latter. Hence they give rise to a pairing
hŒ��; Œu�i WD �.u/ between odd entire cyclic cohomologyHEo.A/ and K-theory
K1.A/. Moreover, if �r.u/ is unitary, the operator �Œ0;1/.Qr/�r.u/�Œ0;1/.Qr/
from �Œ0;1/.Qr/Hr to �Œ0;1/.Qr/Hr is a Fredholm operator and for the odd
JLO cocycle � we have

�.u/ D hŒ� �; Œu�i D ind
�
�Œ0;1/.Qr/�r.u/�Œ0;1/.Qr/

�
2 Z:

One usually encounters this theorem in the context of Banach algebras. However,
it extends to the setting of locally convex algebras. Concerning the generalization of
points (1) and (2), we just have to check that the locally convex entireness conditions
are satisfied by � , and then follow the lines of e.g. [11, 38]: the continuity of
� W A ! dom.ı/ implies its boundedness, i.e., bounded sets in A are mapped
into bounded sets in the Banach algebra dom.ı/, so that the entireness of the JLO
cochain associated to .dom.ı/; .id;H/;Q/ implies the entireness of the JLO cochain
for .A; .�;H/;Q/. The pairing with K-theory in part (3) is proved in [23, IV.7. ı,
Theorem 21] (even case) and [23, IV.7.�, Corollary 27], cf. also [39], (odd case).
The index formula in the even case follows from [23, IV.8.ı, Theorem 19] and [23,
IV.8.�, Theorem 22]. The index formula in the odd case for Banach �-algebras
follows from [11, Corollary 7.9] and [11, Theorem 10.8]. Hence the formula
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is true for the � -summable spectral triple .dom.ı/; .id;H/;Q/. Accordingly the
formula for .A; .�;H/;Q/ with A locally convex follows from the continuity of
� W A! dom.ı/ and the formula for the pairing with K1 for general locally convex
algebras.

We shall need the following proposition in Section 4. Consider the JLO cocycle
� associated to a spectral triple .A; .�;H/;Q/, even (with grading operator �) or
odd. Let v 2 dom.ı/ be a unitary operator commuting with � if the spectral triple
is even and let �v be the continuous representation of A on H defined by �v.a/ WD
v�.a/v�, a 2 A. Then .A; .�v;H/;Q/ is again a spectral triple (with grading
operator � in the even case) and we denote by �v the corresponding JLO cocycle.

Proposition 3.4. Œ�v� D Œ� � for every unitary v 2 dom.ı/ (commuting with � in the
even case).

Proof. First note that the JLO cocycle �v coincides with the JLO cocycle associated
to the spectral triple .A; .�;H/; v�Qv/ D .A; .�;H/;QCv�ı.v//. Now, the family
Qt WD Q C tv�ı.v/ with t 2 Œ0; 1� is a differentiable homotopy between Q and
v�Qv, so that Œ� � D Œ�v� according to Theorem 3.3 (2).

4. Spectral triples and cyclic cocycles for superconformal nets

We briefly recall our objective from the Introduction. Given a superconformal net A
with grading automorphism  and acting on the (vacuum) Hilbert space H, we would
like to associate in a canonical way a (family of) � -summable spectral triple(s),
which in a second step should give rise to entire cyclic cocycles corresponding to
certain localized endomorphisms of C �.A /. These cocycles will be investigated in
the index pairing of the next section.

The spectral triples. In order to construct our spectral triples, we need a suitable
representation .�;H�/ of A and want A to have a supercharge for the conformal
Hamiltonian: an odd selfadjoint operator Q on H� such that Q2 D L�0 up to an
additive constant. The existence of Q depends on the representation � of A, and
according to Proposition 2.14 it exists precisely if � is a Ramond representation, in
which case our fixed choice shall be Q D G�0 . Let .�R;HR/ denote henceforth
a certain fixed (graded or ungraded) irreducible Ramond representation of A, to be
described in more detail below. By restriction it gives rise to a (possibly reducible)
representation �RjA of A and thus to a representation of C �.A / and to its
unique normal extension toW �.A /, for which we write simply �R again whenever
confusion with the original representation of A is unlikely. Note then that, for a
localized endomorphism � of C �.A /, �R ı � is again a representation of C �.A /
orW �.A / on the same Hilbert space HR. Throughout the rest of the paper we shall
make the following assumption.
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Standing Assumption. A satisfies the split property as in Definition 2.2 and the
trace-class condition in the representation �R, namely

trHR
�

e�tL
�R
0

�
<1; t > 0: (4.1)

Now a few observations. First, Proposition 2.12 tells us how to distinguish
between graded and ungraded representations, corresponding to the even and odd
index pairing in Theorem 3.3(3). Second, in view of Theorem 3.3 a K-theoretical
index pairing makes sense only for the even subnet A : physically G�R0 being an
odd element in the super-Virasoro algebra should induce a superderivation while in
the index pairing we need the induced derivation, so we have to deal with A where
they coincide. Third, we would like our spectral triples to exhibit some aspects of
the sector structure of this subnet A . Working with the local algebras A .I / lets us
face a serious obstruction as we shall see later in Proposition 4.13. Finally, if possible
we would like to establish a correspondence between equivalence of representations
and equivalence of the corresponding JLO entire cyclic cocycles. Based on A, �R
and Q, we therefore have to construct a couple .�;A�/ consisting of a suitable
family � � �0 of localized endomorphisms and a subalgebra A� of the (global)
universal von Neumann algebra W �.A / equipped with a topology such that the
JLO cocycles associated to the family .A�; .�R ı �;HR/;Q/�2� of spectral triples
become entire. After that we can study the question of equivalence.

Let us recall from (2.2) and Proposition 2.7 that, for every endomorphism
� of C �.A / localized in I , one can define the cocycle z.�; g/ 2 C �.A /,
g 2 PSL.2;R/.1/. It satisfies

�g WD ˛g ı � ı ˛
�1
g D Ad.z.�; g/�/ ı �; g 2 PSL.2;R/.1/ : (4.2)

Moreover if the closure of I is contained in some I0 2 I and UI;I0 is the connected
component of the identity of the open set fg 2 PSL.2;R/.1/ W PgI � I0g we have
z.�; g/ D �I0.U�

0
ı�.g/U

 .g/�/ for all g 2 UI;I0 .
Notice also that it follows from (4.2) and Proposition 2.7 that

z.�h; g/ D z.�; h/�z.�; g/˛g.z.�; h// D z.�; h/
�z.�; gh/; g; h 2 PSL.2;R/.1/ :

(4.3)

Definition 4.1. A covariant endomorphism � 2 �0 of C �.A / is called differen-
tiably transportable if it is localized in some I 2 I and �R.z.�; g// 2 dom.ı/,
for all g 2 PSL.2;R/.1/. The set of differentiably transportable endomorphisms
localized in I is denoted by �1I , and we set �1 WD

S
I2I �

1
I .

Remark 4.2. As a consequence of (4.3) we have that, for any g 2 PSL.2;R/.1/,
� 2 �1I if and only if �g 2 �1gI .

Now, for any I 2 I , let pI be the middle point of I and let PI be the dilation-
translation subgroup of PSL.2;R/.1/ fixing pI 0 .
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Proposition 4.3. Let � 2 �0I , I 2 I and let U be an open subset of PSL.2;R/.1/
containing PI . Assume that �R.z.�; g// 2 dom.ı/ for all g 2 U . Then � 2 �1I .
In particular, an endomorphism � 2 �0I belongs to �1I if and only if �R.z.�; g// 2
dom.ı/ for all g 2 UI , where UI is the connected component of 1 of the open set
fg 2 PSL.2;R/.1/ W pI 0 … Pg NI g.

Proof. Let � be a covariant endomorphism localized in the fixed interval I and let
U be an open subset of PSL.2;R/.1/ containing PI . Assume that �R.z.�; g// 2
dom.ı/ for all g 2 U . Let g be an arbitrary element of PSL.2;R/.1/ and let
r.t/, t 2 R, be (the lift to PSL.2;R/.1/ of) the one-parameter subgroup of
rotations. It easily follows from the Iwasawa decomposition of SL.2;R/ (see
e.g. [37, Appendix I]) that g D r.s/p for some s 2 R and p 2 PI . Accord-
ingly z.�; g/ D z.�; r.s/p/ D z.�; r.s//˛r.s/.z.�; p// and hence �R.z.�; g// D
�R.z.�; r.s/// ei sL

�R
0 �R..z.�; p/// e� i sL

�R
0 : Now, �R..z.�; p/// 2 dom.ı/ by

assumption and ei tL
�R
0 commutes with Q for every t 2 R. Hence

ei sL
�R
0 �R..z.�; p/// e� i sL

�R
0

belongs to dom.ı/.
On the other hand if n is a sufficiently large positive integer then r.s=n/ 2 U so

that �R.z.�; r.s=n/// 2 dom.ı/. Accordingly

�R.z.�; r.s/// D�R

�
z.�; r.s=n//˛r.s=n/.z.�; r.s=n/// : : : ˛r.s�s=n/.z.�; r.s=n///

�
D�R

�
z.�; r.s=n//

�
ei snL

�R
0 �R

�
z.�; r.s=n//

�
: : :

�R
�
z.�; r.s=n//

�
e� i.s� sn /L

�R
0

lies in dom.ı/. Therefore �R.z.�; g// 2 dom.ı/ and the claim follows.

The above proposition will be very useful in order to check that localized
endomorphisms are differentiably transportable. This is because for � localized in I
and g 2 UI there is an open interval I1 � S1 n fpI 0g containing NI [ Pg NI such that
the explicit formula z.�; g/ D �I1.�


0 .z.�; g/// D �I1

�
U�

0
ı�.g/U

 .g/�
�

holds,
so that many computations become easier or possible at all.

Proposition 4.4. Let I 2 IR, let x 2 A .I / and let �I be a real smooth function
with support in S1 n f�1g and coinciding with 1 on I . Then, �R.x/ 2 dom.ı/ if and
only if x is in the domain of the derivation ŒG.�I /; �� and, in this case, ı.�R.x// D
�R.ŒG.�I /; x�/. As a consequence, for every I 2 I , the algebra fx 2 A .I / W
�R.x/ 2 dom.ı/g does not depend on the choice of the Ramond representation �R.
Moreover, �1I does not depend on the choice of �R.
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Proof. Let I 2 IR, x 2 A .I / and let �I be a real smooth function with support in
I0 � S

1 n f�1g and coinciding with 1 on I . According to [16, Sect.5] on localized
implementations of the canonical superderivation and together with Proposition 2.14
and the local normality of �R we have

ŒG
�R
0 ; �R.x//� D ŒG

�R.�I /; �R.x/�

D
d

i d t
Ad.ei tG�R .�I //.�R.x//

ˇ̌
tD0

D
d

i d t
�R
�

Ad.ei tG.�I //.x/
�ˇ̌
tD0

D �R ı �I0.ŒG.�I /; x�/:

As a consequence, for every I 2 IR, the algebra fx 2 A .I / W �R.x/ 2 dom.ı/g
does not depend on the choice of �R and the same is true for an arbitrary I 2 I as a
consequence of covariance and the fact that G�R0 is invariant under rotations.

Now let � be a covariant endomorphism of C �.A / localized in an interval
I 2 I . Then, by Proposition 4.3, � 2 �1I if and only if �R.z.�; g// 2 dom.ı/
for all g 2 UI . Now, given g 2 UI , there is an interval I1 2 I such
that �0 .z.�; g// 2 A .I1/. Accordingly �R.z.�; g// 2 dom.ı/ if and only if
�

0 .z.�; g// 2 fx 2 A .I1/ W �R.x/ 2 dom.ı/g, a condition that does not depend

on the choice of �R. It follows that �1I does not depend on the choice of �R.

Remark 4.5. In view of Proposition 2.12, in later applications where a graded
�R is given and O is an explicit fixed localized endomorphism representing the
dual of the grading, we may assume (after replacing �R with a unitarily equivalent
representation) that �RjC�.A / D �R;C˚�R;C ı O . As well known, without loss of
generality, we may also assume that O2 D id.

We keep on record the following consequence of the cocycle identity:

�R.˛h.z.�; g/// D �R.z.�; h/
�/�R.z.�; hg// 2 dom.ı/; h; g 2 PSL.2;R/.1/ :

(4.4)
Recalling from [54, Sect.2&A] the concept of tensor C*-categories we can

exhibit the following structure of �1I :

Proposition 4.6. The subset of �1I consisting of differentiably transportable en-
domorphisms with finite statistical dimension is closed under composition and
conjugates. Moreover, the braiding operators ".�; �/ lie in �R�1.dom.ı//. In
particular �1I with morphisms the corresponding intertwiners in A .I / forms a
braided tensor C*-category with conjugates and simple unit.
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Proof. Composition. Given �; � 2 �1I , choose h 2 PSL.2;R/.1/ such that Ph NI \
NI D ;. Then �h acts trivially on A.I /, so owing to Proposition 2.7 we have

z.��; g/ D �.z.�; g//z.�; g/

D Ad.z.�; h// ı �h.z.�; g//z.�; g/

D Ad.z.�; h//.z.�; g//z.�; g/;

which is a product of elements in �R�1.dom.ı//.
Conjugation. Suppose that � is localized in I . Let I1 2 I be the interval

with boundary points pI and pI 0 (the middle points of I and I 0 respectively) in
anti-clockwise order so that rI1 is the S1-reflection fixing pI and pI 0 . Choose an
arbitrary g in the open set UI defined in Proposition 4.3. Then z.�; g/ 2 A .I0/
with a certain open interval I0 � S1 n fpI 0g containing NI [ Pg NI . Since rI1 fixes pI 0
we can also assume that I0 D rI1I0 so that NI [ Pg NI [ rI1 Pg NI � I0.

Let ˛rI1 be the antilinear automorphism of C �.A / implementing the reflection
rI1 (it exists and is unique because of the universal property of C �.A /). We recall
from [41, Sect.8] and [42, Sect.2] the formula N� WD ˛rI1 ı � ı ˛rI1 for an explicit
choice of representative of the conjugate sector. By the Bisognano–Wichmann
property (2) in Section 2, the anti-unitary U.rI1/ representing the reflection rI1 on
H equals OJI1 WD ZJI1 , where JI1 is the modular conjugation of the local algebra
A.I1/ with respect to the vacuum vector �. Similarly, the anti-unitary U  .rI1/
representing the reflection rI1 on H� coincides with the modular conjugation J I1 ,
of the local algebra A .I1/ on H� with respect to the vacuum vector �. Note
that J I1 D JI1 jH� D

OJI1 jH� . Then a straight-forward computation based
on the covariance of � and N� shows that U�

0
ı N�.g/ D J


I1
U�

0
ı�.g

r/J

I1

, with
gr WD rI1grI1 , so

z. N�; g/ D �I0

�
U�

0
ı N�.g/U

 .g/�
�

D �I0

�
J

I1
U�

0
ı�.g

r/J

I1
U  .g/�

�
D �I0

�
J

I1
U�

0
ı�.g

r/U  .gr/�J

I1

�
D ˛rI1 .z.�; g

r// 2 A .rI1I0/ D A .I0/:

By Proposition 4.4, the derivation ı D ŒG
�R
0 ; �� restricted to �R.A.I0// comes

from a derivation in the vacuum representation, given by the commutator with
G.�I0/, where �I0 is any smooth function compactly supported in some proper open
interval of S1 and satisfying �I0 jI0 D 1. We choose this function symmetric so that
�I0 ı rI1 D �I0 . Then OJI1G.�I0/ OJ

�
I1
D �G.�I0 ı rI1/ D �G.�I0/ which follows

from an adaptation of [10, Sect.3] to fermionic fields. On the even subnet, we clearly
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have Ad. OJI1/jA D Ad.JI1/jA . Hence, for every  1;  2 2 C1.L0/,

h 1; G.�I0/z. N�; g/ 2i D h 1; G.�I0/
OJI1z.�; g

r/ OJ �I1 2i

D �h 1; OJI1G.�I0/z.�; g
r/ OJ �I1 2i

D �h 1; OJI1z.�; g
r/G.�I0/

OJ �I1 2i

� h 1; OJI1 ŒG.�I0/; z.�; g
r/� OJ �I1 2i

D h 1; z. N�; g/G.�I0/ 2i

� h 1; OJI1 ŒG.�I0/; z.�; g
r/� OJ �I1 2i:

Using again Proposition 4.4, we thus obtain �R.z. N�; g// 2 dom.ı/ with

ı.�R.z. N�; g/// D �R.ŒG.�I0/z. N�; g/�/ D ��R.
OJI1 ŒG.�I0/; z.�; g

r/� OJ �I1/:

Braiding. Let �; � 2 �1I and let I0 2 I be an interval containing the closure of
I . Consider g˙ 2 PSL.2;R/.1/ such that Pg˙I is localized on the left (right) of I
inside I0 and Pg˙ NI \ NI D ;, respectively. Then z.�; g˙/ 2 A .I0/, and the braiding
operator is given by [58, (2.2)]

"˙.�; �/ D Ad.z.�; g˙/�/�.z.�; g˙// 2 A .I0/:

Since I0 � I was arbitrary, we have "˙.�; �/ 2 A .I / by outer regularity (the same
result can be obtained by using Haag duality and the fact that "˙.�; �/ intertwines
�� and �� ). Now let h 2 PSL.2;R/.1/ be such that PhI \ I D ;. Then

�.z.�; g˙// D Ad.z.�; h// ı �h.z.�; g˙// D Ad.z.�; h//.z.�; g˙//:

Hence, since �; � 2 �1, �R.".�; �/˙/ is a product of operators in dom.ı/, so
�R.".�; �/

˙/ 2 dom.ı/.

We can sharpen the statement about conjugates in the following special situation:

Proposition 4.7. If � 2 �1I is an automorphism, then ��1 2 �1I , i.e., every �1I is
closed under inverses if they exist as endomorphisms of C �.A /.

In other words, apart from the possible choice of representative Ad.U.rI // ı � ı
Ad.U.rI // of the conjugate of �, one may also choose ��1.

Proof. For g 2 UI , we have z.�; g/ 2 A .I0/ with suitable I0 2 I . Recall that
locally, and in particular on A .I0/, � is implemented by a local unitary z.�; h/,
with a suitable h 2 PSL.2;R/.1/ depending on I0. Hence, for any such g and
corresponding h, we have

1 D z.id; g/ D z.�; g/�.z.��1; g// D z.�; g/Ad.z.�; h//.z.��1; g//;

which implies z.��1; g/ D Ad.z.�; h/�/.z.�; g/�/ 2 ��1R .dom.ı//, as a product of
elements in ��1R .dom.ı//. Applying then Proposition 4.3, we get ��1 2 �1I .
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Let us turn now to the definition of the differentiable algebra, based on a given
unital subset� � �0, not necessarily in�1, and recall that we use the same symbol
for the normal extension to W �.A / of an endomorphism or a representation of
C �.A /.
Definition 4.8. Given a superconformal net A with a (supersymmetric) Ramond
representation .�R;HR/ and supercharge Q, and given a subset � � �0 of
localized endomorphisms of C �.A / which contains the identity automorphism id,
the associated �-ı-differentiable algebra is the �-algebra given by

A� WD fx 2 W
�.A / W .8� 2 �/ �R ı �.x/ 2 dom.ı/g

and the corresponding local subalgebras are given by A�.I / WD A� \ A .I /.
Endowed with the family of norms

k � k� WD k � kW �.A / C kı.�R ı �.�//kB.HR/; � 2 �;

A� becomes a locally convex �-algebra.
Remark 4.9. (1) If � actually forms a semi-group, i.e., �� 2 � for all �; � 2 �,

then A� is globally invariant under �: for � 2 � and x 2 A�, we have
�R ı �.�.x// D �R ı .��/.x/ 2 dom.ı/ for all � 2 �, so �.A�/ � A� and
� W A� ! A� is continuous (with respect to the locally convex topology on
A�).

(2) Since we are only interested in locally normal representations of A , we
could consider the corresponding locally normal C*-algebra C �ln.A / instead
of C �.A /, which is characterized by the corresponding universal property in
Definition 2.4 for locally normal representation only. It was explicitly defined
in [15] and proven to be � -weakly closed in the universal locally normal
representation if A is completely rational. As a consequence, in the latter
case, A� may alternatively be chosen as a subalgebra of C �ln.A /. Although a
wide range of models including a relevant part of those studied in Section 6 are
known to fall into this class, W �.A / does not cause any particular difficulties
and we do not want to become too restrictive wherefore we continue here with
the general setting above.

Theorem 4.10. Given A, �R and � as above, .A�; .�R ı �;HR/;Q/ is a � -
summable spectral triple, for every � 2 �. It is even if �R is graded and odd if
�R is ungraded. Moreover, the representation �R ı � of the locally convex algebra
A� into the Banach algebra dom.ı/ is continuous.

Proof. Note simply that the trace-class property in (4.1) guarantees the � -summability.
By definition we have �R ı �.A�/ � dom.ı/. Finally, in the case of graded �R, we
have �R ı �.A�/ � �R ı �.W �.A // � �R.W �.A // � B.HR/

� and Q D G�R0
is odd, so the spectral triple is even. The continuity of �R ı � W A� ! dom.ı/
follows easily from the definition of the locally convex topology on A�.
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We shall collect a few further important properties of A�. For the proof we need

Lemma 4.11. Let I1; I2 2 I with NI1 � I2. Then there is a unitary V 2 B.H˝H,
H/ such that V.a1 ˝ a02/V

� D a1a
0
2 for all a1 2 A.I1/ an all a02 2 ZA.I 02/Z�,

and V.� ˝ �/V � D � . So V implements an isomorphism A.I1/ _ ZA.I 02/Z� '
A.I1/˝ZA.I 02/Z� intertwining the gradings.

Proof. By our standing assumption and the Reeh-Schlieder property, the inclusion
.A.I1/ � A.I2/;�/ is a standard split inclusion in the sense of [30, 31], with
� the (unique) vacuum vector of A. By [30, Sect.3] (see also [31]) there is a
unique vector � in the natural cone P \�.A.I1/0 \ A.I2// such that h�; a1a02�i D
h�; a1�ih�; a

0
2�i, for all a1 2 A.I1/ and a02 2 A.I2/0. Moreover, by the

uniqueness of �we have �� D � (cf. the proof of [30, Lemma 3.3]). Then the unitary
V 2 B.H˝H;H/ defined by V.a1�˝ a02�/ D a1a

0
2� satisfies V.a1 ˝ a02/V

� D

a1a
0
2 for all a1 2 A.I1/ and all a02 2 A.I2/0, and V.� ˝ �/V � D � . Since,

by graded Haag duality (3) in Section 2, we have A.I2/0 D ZA.I 02/Z�, the claim
follows.

Proposition 4.12. We have:

(1) If � � �1, then

A�.I / D �
�1
R .dom.ı// \A .I / 6D C; I 2 I:

In particular, the local algebras A�.I / are non-trivial and coincide with
A�1.I /.

(2) Given a unitary u 2 A .I /, for some I 2 I , such that Ad.u/ 2 �1I , then
u 2 A�1.I /.

Proof. (1) Given x 2 ��1R .dom.ı//\A .I / and � 2 �I0 with some I0 2 I , choose
h 2 PSL.2;R/.1/ such that Ph NI0 \ NI D ;. Then

�.x/ D Ad.z.�; h// ı ˛h ı � ı ˛�1h .x/ D Ad.z.�; h//.x/ 2 ��1R .dom.ı//;

by assumption on x and �I0 . Since this holds for every I0 2 I and � 2 �I0 WD
�\�0I0 , we have x 2 A�.I /. From Proposition 2.14 and [16, Thm.4.13] it follows
that the closure of ��1R .dom.ı//\A .I / in the � -weak topology of A .I / contains
ASVirc .I /, the even part of the local algebra corresponding to the super-Virasoro
subnet ASVirc � A as in Definition 2.11. In particular ��1R .dom.ı// \ A .I / is
nontrivial.

(2) Since u 2 A .I /, Ad.u/ defines an automorphism of C �.A / localized
in I , and by assumption Ad.u/ 2 �1I . The unique inner representation estab-
lishing covariance is given by U�

0
ıAd.u/.g/ WD uU  .g/u�. It follows that the

corresponding cocycle is given by z.Ad.u/; g/ D u˛g.u/
�. Next, choose g 2 UI

and I0 � NI such that Pg NI0 \ NI0 D ;, and fix I1 2 I containing both I0
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and PgI0. Then Lemma 4.11 gives us a unitary V 2 B.H˝H;H/ implementing the
isomorphism A.I0/_ZA. PgI0/Z� ' A.I0/˝ZA. PgI0/Z�. Recall from the proof
of Proposition 4.4 that, for a local element (like u˛g.u/�) in A .I1/, it suffices
to check differentiability in the vacuum representation, i.e., whether it lies in the
domain of ıI1 D ŒG.�I1/; ��; here �I1 2 C

1.S1/ is 1 on I1 and its support is non-
dense in S1. Then on A .I /_A . PgI /, ıI1 is implemented by the commutator with
G.�I /CG.� PgI / D G.�I /� i�ZG.� PgI /Z�. We use the fact that G.�I / preserves
C1.L0/ and that it is affiliated with A.I0/. Moreover, by assumption ıI1.u˛g.u/

�/

is bounded. Thus, for  1;  2; �1; �2 2 C1.L0/ and using V.� ˝ �/V � D � from
Lemma 4.11, we obtain

h 1 ˝  2;V
�ıI1.u˛g.u/

�/V .�1 ˝ �2/i

D h 1 ˝  2; V
�
�
.G.�I / � i�ZG.�gI /Z�/u˛g.u/�

� u˛g.u/
�.G.�I / � i�ZG.�gI /Z�/

�
V.�1 ˝ �2/i

D h 1 ˝  2; Œ.G.�I /˝ 1/; .u˝ ˛g.u/�/�.�1 ˝ �2/i
� ih 1 ˝  2; Œ.� ˝ �/.1˝ZG.�gI /Z�/; .u˝ ˛g.u/�/�.�1 ˝ �2/i

D h 1 ˝  2; .ŒG.�I /; u�˝ ˛g.u/
�/.�1 ˝ �2/i

� ih 1 ˝  2; .�u˝ �ZŒG.�gI /; ˛g.u/��Z�/.�1 ˝ �2/i

D h 1 ˝  2; .ıI1.u/˝ ˛g.u/
�/.�1 ˝ �2/i

C h 1 ˝  2; .�u˝ ıI1.˛g.u/
�//.�1 ˝ �2/i;

so ıI1.u/ ˝ ˛g.u/
� C �u ˝ ıI1.˛g.u/

�/ gives rise to a bounded operator on
H˝H. Suppose ıI1.u/ were unbounded; then we could find normalized sequences
 1;n; �1;n 2 C

1.L0/, n 2 N, with fixed  2; �2, such that

jh 1;n ˝  2; .ıI1.u/˝ ˛g.u/
�/.�1;n ˝ �2/ij ! C1;

while h 1;n ˝  2; .�u ˝ ıI1.˛g.u/
�//.�1;n ˝ �2/i remains bounded because

k�uk D 1 owing to unitarity; thus the sum of these two expressions would go
to infinity, so ıI1.u/ ˝ ˛g.u/

� C �u ˝ ıI1.˛g.u/
�/ would be unbounded, which

is a contradiction. Hence, both u and ˛g.u/� have to be in dom.ıI1/, thus in
�R
�1.dom.ı//, and according to part (1), u 2 A�.I /.

The cocycles. Let � � �0. Then, for every � 2 � we consider the � -summable
spectral triple .A�; .�R ı �;HR/;Q/ from Theorem 4.10, which is even when �R
is graded and odd when it is ungraded. From the same theorem we also know that
the representation �R ı � W A� ! dom.ı/ is continuous. Hence, by Theorem 3.3
the spectral triple has a corresponding JLO cocycle which we will denote by ��.
The JLO cocycles ��, � 2 �, will play a central role in the rest of this article as
noncommutative geometric invariants associated to DHR endomorphisms. Note that
if � is a semigroup then, for �; � 2 �, we have �� 2 � and ��� D ���� where ��
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is the pull-back of � 2 End.A�/ to End.HE�.A�//. In particular, �� D ���id, for
all � 2 �.

In general, if �; � 2 � are localized in a given interval I and Œ�� D Œ��, then there
is a unitary u 2 A .I / such that � D Ad.u/�. Accordingly, if �R.u/ 2 dom.ı/,
then �� D �

�R.u/
� and hence Œ��� D Œ�� � by Proposition 3.4. However, in general, the

cohomology class of the cocycle �� associated to � could be different from the one of
the cocycle �� associated to a localized endomorphism � equivalent to �. Therefore,
the cohomology classes of the cocycles ��, � 2 �, need not give invariants for
DHR endomorphisms in the strict sense but only with respect to a finer equivalence
relation involving the differentiability of intertwiners. One could say that they are
not “topological” invariants but only invariants for the “differentiable structure”.
Nonetheless, as a consequence of the following proposition, this distinction turns
out to be unnecessary in the case of differentiably transportable automorphisms.

Proposition 4.13. Suppose � � �1. Given I 2 I and two automorphisms
�; � 2 �I which are equivalent via a unitary in A .I /, then the unitary lies actually
in A�.I / and the associated cocycles �� and �� over A� give rise to the same
cohomology class.

Proof. We start with the following simple observation for localized covariant
automorphisms, a consequence of Proposition 4.7:

if two out of �; �; �� are in �1I then the third one lies in �1I . (4.5)

Let now � and � be the two equivalent automorphisms and u 2 A .I / the
intertwining unitary. Considering the three localized automorphisms Ad.u/; �; � D
Ad.u/�, the latter two are in �I by assumption, so Ad.u/ 2 �1I by (4.5). Then
Proposition 4.12 implies that u 2 A�1.I / D A�.I / � A�. Applying Proposition
3.4 with A D A�, � D �R ı � and v D �R.u/ finally provides the equivalence of
the cocycles �� D �Ad.u/� D �

v
� and �� on the global algebra A�.

Our final observation has already been announced at the beginning of this section,
namely that our spectral triples have to be constructed out of a certain global rather
than local algebra:

Proposition 4.14. Given any � 2 � \�1, we have

Œ��jA�.I /� D Œ�idjA�.I /�; I 2 I:

In other words, all JLO cocycles for differentiably transportable endomorphisms are
locally cohomologous.

Proof. Let I1 2 I be the localization region of � and let I 2 I be given. Choose
any I2 2 I such that NI2 � I 0, and choose g 2 PSL.2;R/.1/ such that I2 D PgI1.
Then �g D Ad.z.�; g/�/ ı � is localized in I2 and hence �g acts trivially on A�.I /.
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It follows that ��jA�.I / D �
�R.z.�;g//
id jA�.I /. Now, according to Proposition 3.4,

Œ�
�R.z.�;g//
id � D Œ�id� and hence there exists an entire cochain  2 CE�.A�/ such

that �Ad.z.�;g// D � C @ . Restricting a coboundary to a unital subalgebra gives us
again a coboundary: a coboundary is the image under @ of a cochain, and restricting
a cochain to a subalgebra gives again a cochain, now over the subalgebra; applying
then @ to this restricted cochain defines a coboundary (over the subalgebra), which by
construction is just the restriction of the original coboundary. Thus .@ /jA�.I / D
@. jA�.I // 2 CE�.A�.I // is again a coboundary and ��jA�.I / D �idjA�.I / C

.@ /jA�.I / is cohomologous to �idjA�.I /.

5. Pairing with K-theory for superconformal nets and geometric invariants for
DHR endomorphisms

Even case. The spectral triples in Theorem 4.10 associated to a superconformal net
A, a subset � � �0 and an irreducible graded Ramond representation �R of A is
even, so the corresponding JLO cocycles ��, � 2 �, are even, and they pair with
K0.A�/-classes: in fact, according to Theorem 3.3(3), for a projection p 2 A�,
the densely defined operator �R.�.p//�QC�R.�.p//C from �R.�.p//CHR;C to
�R.�.p//�HR;� is a Fredholm operator and

��.p/ D ind�R.�.p//CHR;C.�R.�.p//�QC�R.�.p//C/;

depending only on the class of p in K0.A�/.
The task is to choose this p in a suitable and general (model-independent)

manner. Note that if �R.p/ projects onto a subspace of HR;C, then �R.p/� D 0 so
that �R.p/�QC�R.p/C D 0 and �R.p/�HR;� D f0g, and it follows that

�id.p/ D ind.�R.p/�QC�R.p/C/

D dim ker�R.p/CHR;C.0/ � dim ker�R.p/�HR;�.0/

D dim.�R.p/HR;C/:

(5.1)

However, not all such p are in A�, e.g. the projection 1
2
.1 C �R/ 62 dom.ı/ onto

HR;C, so we have to find suitable subprojections.
Given a representation � of W �.A /, which is quasi-equivalent to a subrepre-

sentation of the universal representation ofW �.A /, denote by s.�/ 2 Z.W �.A //
the central support of the projection onto this subrepresentation so that, in particular
�.s.�// D 1. Recall from Proposition 2.12 and Remark 4.5 the decomposition
�RjC�.A / D �R;C ˚ �R;� D �R;C ˚ �R;C ı O into irreducible representations
of C �.A / on HR D HR;C ˚ HR;�. Considering then for � the irreducible
representation �R;C, we get �R;C.W �.A // D B.HR;C/, and �R;C restricts to
an isomorphism s.�R;C/W

�.A / ! B.HR;C/. Let HR;0 � HR be the minimal
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energy subspace, i.e., the (finite-dimensional) L�R0 -eigenspace corresponding to the
eigenvalue lw.�R/, and let HR;0;C WD HR;0 \HR;C be its even part. Note that, by
replacing if necessary �R with ��R, we can always assume that dim.HR;0;C/ ¤ 0,
so that lw.�R/ D lw.�R;C/. We consider any projection p 2 W �.A / such that
�R;C.p/ 2 B.HR;C/ is the projection onto HR;0;C. Then p0;C WD p � s.�R;C/ 2

W �.A / is well-defined and does not depend on the explicit choice of p, and neither
does it depend on the explicit �R in its unitary equivalence class.

Definition 5.1. Given a graded Ramond representation .�R;HR; �R/ of A, we call
the associated projection p0;C 2 W �.A / its characteristic projection.

It is natural to ask whether p0;C lies even in A�, and whether it does the job we
want it to do. A partial answer is contained in

Proposition 5.2. (1) p0;C has the following characteristic property:

�R;C.p0;C/ D projection onto HR;0;C

and �.p0;C/ D 0 if �R;C is not equivalent to a subrepresentation of � .

(2) In .�R;HR/, the characteristic projection attains the form

�R.p0;C/ D �1.e�.L
�R
0
�lw�R//

1C �R
2

2 dom.ı/ � B.HR/; (5.2)

where �1 denotes the characteristic function of f1g � R.

(3) Suppose � � �1, and �R ı � and �R are disjoint, for every � 2 � with
Œ�� 6D Œid�. Then p0;C 2 A�.

Proof. (1) is obvious from the definition of p0;C.
(2) Since �RC and �R� are inequivalent irreducible representations they are

disjoint and hence �R�.s.�R;C// D 0; recalling that �RC.s.�R;C// D 1 it follows
that �R.s.�R;C// is the projection of HR onto HR;C, i.e., 1

2
.1C�R/. The projection

in B.HR/ onto the finite-dimensional subspace of lowest energy HR;0 is obviously
given by �1.e�.L

�R
0
�lw�R//, which proves our claim.

(3) By definition, �R.p0;C/ is the projection onto the even part of the finite-
dimensional eigenspace corresponding to the L�R0 -eigenvalue lw.�R/. Q commutes
with L�R0 and hence it restricts to an operator, which is obviously bounded, on this
finite-dimensional eigenspace (with spectrum � f˙

p
lw.�R/ � c=24g). It follows

that �R.p0;C/ 2 dom.ı/. Given � 2 � equivalent to id, we have � D Ad.u/
with u a unitary in A�, according to Proposition 4.14; thus �R ı �.p0;C/ D
�R.u/�R.p0;C/�R.u/

� lies in dom.ı/, too. On the other hand, for � 2 � with
� 6' id, we have by assumption �R ı �.p0;C/ D 0, so �R ı �.p0;C/ 2 dom.ı/.
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Now we are in the position to prove our main theorem concerning the even index
pairing:

Theorem 5.3. Let A be a superconformal net with a fixed supersymmetric graded
Ramond irreducible representation .�R;HR/ with supercharge Q, and let � � �0

be a subset of localized endomorphisms with id 2 �. Then .A�; .�Rı�;HR/;Q/�2�
is a family of even � -summable spectral triples and the associated even JLO cocycles
have the following properties:

(1) Suppose �id.1/ D ind.QC/ 6D 0 and that, for fixed � 2 � and all � 2 � with
Œ�� 6D Œ��, �R ı � and �R ı � are disjoint. Then, for all � 2 � with Œ�� 6D Œ��,
we have Œ��� 6D Œ�� �.

(2) Suppose that, for fixed automorphism � 2 � and all � 2 � with � 6D � , �R ı �
and �R ı � are disjoint. Then for every � 2 � with � 6D � , we have Œ��� 6D Œ�� �.

(3) Suppose � � �1 and that, for fixed automorphism � 2 � and all � 2 � with
Œ�� 6D Œ��, �R ı � and �R ı � are disjoint. Then for every � 2 �, we have

Œ�� D Œ�� iff Œ��� D Œ�� �:

In either case, the two non-equivalent cocycles are separated by pairing them with a
suitable element from K0.A�/.

Proof. We have an even � -summable spectral triple according to Theorem 4.10.
(1) Note that under the present conditions, �Rı�.s.�Rı�// D 0 if Œ�� 6D Œ��, and

�R ı �.s.�R ı �// D 1 if Œ�� D Œ��; thus s.�R ı �/ 2 A�. Moreover, it separates
the cocycles since ��.s.�R ı �// D 0 if Œ�� 6D Œ��, while ��.s.�R ı �// D �id.1/ D
indHR;C.QC/ 6D 0 if Œ�� D Œ��, and this depends only on the class Œs.�R ı �/� 2
K0.A�/, according to Theorem 3.3(3).

(2) Suppose � 6D � . Then

�R ı �.�
�1.p0;C// D �R ı ��

�1.p0;C/ D 0

because p0;C < s.�R/ and because �R ı � and �R ı � are disjoint by assumption,
whence �R ı ���1 and �R are disjoint since � is an automorphism. On the other
hand, for � D � ,

�R ı �.�
�1.p0;C// D �R.p0;C/ 2 dom.ı/;

according to the preceding proposition, so ��1.p0;C/ 2 A�. If � 6D � , we then
have ��.��1.p0;C// D 0, whereas �� .��1.p0;C// D dim.HR;0;C/ 6D 0, so that
Œ��� 6D Œ�� �, and they are separated by (the K0.A�/-class of) ��1.p0;C/.

(3) Since � � �1, � is equivalent via a unitary in A� to an endomorphism
localized in the same interval I 2 I as � , so we may assume without loss of
generality that � and � are actually localized in the same interval I . If Œ�� D Œ��,
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then according to Proposition 4.13 they are intertwined by a unitary u 2 A�.I /
wherefore

�R ı �.�
�1.p0;C// D Ad.�R.u//.�R.p0;C// 2 dom.ı/:

On the other hand, if Œ�� 6D Œ��, then �R ı �.��1.p0;C// D 0 by the assumption on
disjointness. Thus ��1.p0;C/ 2 A�, and it separates the cocycles as follows:

��.�
�1.p0;C// D

�
�
�R.u/
id .p0;C/ D �id.p0;C/ D dim.HR;0;C/ if Œ�� D Œ��
0 if Œ�� ¤ Œ��;

and according to Theorem 3.3(3) this depends only on the class of ��1.p0;C/ in
K0.A�/.

Odd case. The spectral triple associated to a superconformal net A, a subset � �
�1 and an irreducible ungraded Ramond representation �R is odd. According to
Theorem 3.3(3) the index pairing for odd spectral triples is given by

�id.v/ D ind�Œ0;1/.Q/HR.�Œ0;1/.Q/�R.v/�Œ0;1/.Q//;

for every unitary v 2 A�, where �Œ0;1/.Q/�R.u0;C/�Œ0;1/.Q/ is considered as an
operator from �Œ0;1/.Q/HR to �Œ0;1/.Q/HR, and this depends only on the class
Œv� 2 K1.A�/. Pictorially speaking, the unitary �R.v/ should therefore act as a
certain shift on the spectrum of Q if we want a non-vanishing pairing, or otherwise
as the unit element if we want a trivial pairing. Note here that the spectrum of Q is
discrete because that of L�R0 D Q

2 C
c
24

1 is so.
Since �R is ungraded, it remains irreducible in restriction to A (cf. Proposi-

tion 2.12) and defines an irreducible representation of W �.A /, denoted again �R.
As in the even case, s.�R/ 2 Z.W �.A // stands for the central support of the
projection onto the subrepresentation �R of the universal representation ofW �.A /,
and �R restricts to an isomorphism �Rjs.�R/W �.A / between s.�R/W �.A / and
B.HR/ owing to irreducibility. Thus

u0;C WD .�Rjs.�R/W �.A //
�1.us/C .1 � s.�R// 2 W �.A /;

with us 2 dom.ı/ � B.HR/ the spectrum shift unitary from Construction 5.5 below
depending on Q, is a well-defined unitary.

Definition 5.4. Given an ungraded Ramond representation .�R;HR/ of A, we call
the above u0;C 2 W �.A / the characteristic unitary for �R.

We have a similar characteristic property as in the even case (cf. Proposition 5.2):
�R.u0;C/ D us , the spectrum shift, while �.u0;C/ D 1 if � has no subrepresentation
equivalent to �R.
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Construction 5.5. We would like to give a general construction of the spectrum shift
unitary us 2 B.HR/ used in the preceding definition. The construction is somehow
lengthy and technical, but the point is that a priori not much is known about the
dimension of the eigenspaces of Q, so we have to go through all single steps.

(1) Consider the lowest energy subspace of HR: the finite-dimensional subspace
where L

�R
0 has eigenvalue h D lw.�R/. On this subspace, Q D G

�R
0 is

diagonalizable with spectrum � f˙
q
h � c

24
g, since Q is selfadjoint and Q2 D

L
�R
0 �

c
24

1. Let p 2 B.HR/ be the projection onto the (nonzero!) eigenspace of Q

corresponding to the eigenvalue �0 WD
q
h � c

24
, denoted here by HR;0;C but not

to be confused with the different one in the even pairing. Then p is well-defined,
non-trivial, lies in the image �R.W �.A // owing to irreducibility, and commutes
with Q by construction.

(2) For n 2 N, let HR;n be the subspace of L�R0 -eigenvalue hC n, and consider
two orthogonal copies HR;n;˙ of HR;0;C in HR;n such that the selfadjoint and

diagonalizable operator Q has eigenvalue �n WD
q
hC n � c

24
> 0 on HR;n;C

and ��n < 0 on HR;n;�. Let us check that this is always possible. First, given
�0 2 HR;0;C such that Q�0 D �0�0, let

�˙n WD
�
L�R�n C

1

2

�
� �0 ˙

q
�20 C n

�
G�R�n

�
�0:

To understand this definition, recall from Definition 2.11 that A as a superconformal
net contains the super-Virasoro net introduced in Example 2.10 as a conformal
subnet. Then �R restricts to a Ramond representation of that subnet, and according
to Proposition 2.14 we have the corresponding field operators G�Rn and L�Rn acting
on HR. Using the commutation relations (2.5), which hold in particular on the finite
energy vectors like �˙n, we then find

Q�˙n DQ
�
L�R�n C

1

2

�
� �0 ˙

q
�20 C n

�
G�R�n

�
�0

D�0

�
L�R�n �

1

2

�
� �0 ˙

q
�20 C n

�
G�R�n

�
�0

C

�n
2
G�R�n C

�
� �0 ˙

q
�20 C n

�
L�R�n

�
�0

D˙

q
�20 C nL

�R
�n�0 C

1

2

�
�20 C n� �0

q
�20 C n

�
G�R�n �0

D˙

q
�20 C n

�
L�R�n C

1

2

�
� �0 ˙

q
�20 C n

�
G�R�n

�
�0

D˙

q
�20 C n�˙n:

So for every n 2 N, the corresponding �˙n 2 HR;n are eigenvectors with

eigenvalues ˙�n D ˙
q
�20 C n, respectively. Second, given two such �0 ? �0 2
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HR;0 � ker.L�Rn / \ ker.G�Rn /, with �0 2 R the Q-eigenvalue of �0 and arbitrary
˛ 2 R, we have

h.L�R�n C ˛G
�R
�n /�0; .L

�R
�n C ˛G

�R
�n /�0i D h�0; .L

�R
n C ˛G

�R
n /.L�R�n C ˛G

�R
�n /�0i

D

D
�0;
�
2.nC ˛2/L0 C 3n˛G

�R
0 C .n

3
C 4n2 � n � 1/

c

12
1
�
�0

E
D

�
2.nC ˛2/.�20 C

c

24
/C 3n˛�0 C .n

3
C 4n2 � n � 1/

c

12

�
h�0; �0i

which vanishes due to the orthogonality assumption �0 ? �0, so �˙n and �˙n are
again mutually orthogonal. These two facts together show that we have two copies
of HR;0;C in HR;n on which Q has eigenvalues �n > 0 > ��n respectively, so they
are in fact orthogonal and unambiguously denoted by HR;n;˙.

(3) Consider now

HR;shift WD : : :˚HR;n;�˚ : : :˚HR;1;�˚HR;0;C˚HR;1;C˚ : : :˚HR;n;C˚ : : :

Let us be the standard left shift on HR;shift (mapping every component isomorphi-
cally into the next one on its left, in particular �n 7! �n�1, for every n 2 Z and
�0 2 HR;0;C), extended by the identical action on the orthogonal complement
of HR;shift in HR. It is clearly a unitary in B.HR/. Moreover, it has bounded
commutator with Q: for all �0 2 HR;0;C and n 2 N, we have

.usQu
�
s �Q/�˙n D usQ�˙nC1 � �n�˙n D ˙.�n˙1 � �n/�˙n;

where j.�n˙1 � �n/j D j
p
hC n˙ 1 �

p
hC nj � 1, and

.usQu
�
s �Q/ D 0;  2 HR 	HR;shift;

so u�s 2 dom.ı/ and hence us 2 dom.ı/.
(4) Now that we have the above spectrum shift us 2 dom.ı/, the desired index

on HR;shift is well-defined, and we find

ind�Œ0;1/.Q/HR.�Œ0;1/.Q/us�Œ0;1/.Q// D dimHR;0;C 6D 0:

(5) Let us make a brief remark. Performing the above construction in the case of
a graded representation .�R;HR; �R/ has a serious consequence: the shift unitary
us 2 B.HR/ is not even with respect to the natural grading �R, so it cannot lie
in the image

W
I2I �R.A .I // ' B.HR;C/ ˚ B.HR;�/, but only in B.HR/ D

B.HR;C ˚HR;�/. In the case of ungraded �R, however, �R remains irreducible in
restriction to A , so

W
I2I �R.A .I // D B.HR/, and us 2 B.HR/ therefore lies

in the von Neumann algebra generated by the �R.A .I //, I 2 I . 2
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We summarize this construction in

Theorem 5.6. Let A be a superconformal net with a fixed supersymmetric ungraded
Ramond irreducible representation .�R;HR/ with supercharge Q, and let � � �0

be a subset of localized endomorphisms with id 2 �. Then .A�; .�R ı �;HR/;

Q/�2� is a family of odd � -summable spectral triples and the associated odd JLO
cocycles have the following properties:

(1) Suppose that, for fixed automorphism � 2 � and all � 2 � with � 6D � , �R ı �
and �R ı � are disjoint. Then for every � 2 � with � 6D � , we have Œ��� 6D Œ�� �.

(2) Suppose � � �1 and that, for fixed automorphism � 2 � and all � 2 � with
Œ�� 6D Œ��, �R ı � and �R ı � are disjoint. Then for every � 2 �, we have

Œ�� D Œ�� iff Œ��� D Œ�� �:

In either case, the two non-equivalent cocycles are separated by pairing them with a
suitable element from K1.A�/.

Proof. We have a family of odd � -summable spectral triples according to Theorem
4.10 and our standing assumption (4.1). The remaining statements (1)–(2) are proved
as those in Theorem 5.3(2)–(3) with p0;C replaced by u0;C using the pairing of the
cocycles with K1.A�/ in Theorem 3.3(3).

6. Examples from super-current algebra nets and super-Virasoro nets

Basics of the super-current algebra net. In order to define the super-current
algebra net and its representations, we need basically two ingredients: loop group
nets and free fermion nets, and we start with the former ones.

LetG be a simple simply connected simply laced compact Lie group, g its simple
Lie algebra and LG D C1.S1; G/ its loop group. Let d denote the dimension, h_

the dual Coxeter number, h�; �i the basic inner or scalar product of g, a multiple of
the Killing form normalized in such a way that h�; �i D 2 with � the highest root of
g. Furthermore, let .ea/aD1;:::;d be an orthonormal basis with respect to this scalar
product and fabc the structure constants of g with respect to .ea/aD1;:::;d , cf. [46,
Sect.1 & 2].

The corresponding affine Kac-Moody algebra or g-current algebra is the com-
plex Lie algebra OLg generated by J an , a D 1; : : : ; d and n 2 Z, Ocg and Odg, with
commutation relations

ŒJ am; J
b
n � D

X
c

ifabcJ cmCn C ımCn;0ıa;bm OcG ; ŒJ am; Ocg� D 0;

ŒJ am;
Odg� D mJ

a
m; Œ Ocg; Odg� D 0;
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cf. [47] and also [46, Sect.7] for a more systematic construction based on the central
extension of the complexified loop algebra C1.S1; gC/. The above scalar product
on g extends to a scalar product on the complexification gC and thus gives rise to a
scalar product on C1.S1; gC/ namely f; g 7! hf; gi WD 1

2�

R
S1
hf; gi; we write K

for the corresponding Hilbert space completion, which consists of gC-valued square-
integrable functions on S1, and KI for the subspace generated by those with compact
support in I 2 I . An orthonormal basis of K is given by ear WD ea�

r , a D 1; : : : ; d ,
r 2 1

2
C Z, with the smooth functions �r W z 2 S1 n f�1g 7! crz

r 2 S1 and cr
a suitable normalization scalar. Another orthonormal basis is obtained analogously
with the choice r 2 Z. Notice that gC can be identified with the Lie subalgebra
of C1.S1; gC/ spanned by .ea0 /aD1;:::;d or the Lie subalgebra of OLg generated by
.� iJ a0 /aD1;:::;d .

Second, the d -fermion algebra or (self-dual) CAR algebra f is the unital graded
C*-algebra generated by odd elements F.f /, with f 2 K, satisfying F.f /� D
F. Nf / and the anticommutation relations ŒF . Nf /; F.g/�C D hf; gi1, so in particular
kF.f /k D kf k, cf. [1, 4] for further information. The elements F ar WD F.e

a
r /, with

a D 1; : : : ; d and r 2 1
2
C Z or Z and commutation relations

ŒF ar ; F
b
s �C D ırCs;0ıa;b1:

define two Lie superalgebras inside f, called the Neveu–Schwarz fermion algebra
fNS and Ramond fermion algebra fR, respectively.

We are interested in unitary highest weight irreducible representations of g.
These representations are characterized by a level l 2 N (the scalar value of the
central element Ocg in the representation) and an integral dominant weight � of g
(which determines the action of the maximal toral subalgebra, tg of g on the highest
weight vector) such that h�; �i � l , and are denoted here by .�g

l;�
;Hg

l;�
/, cf. [46,

Sect.10&11], and we shall use the same symbol for the corresponding Hilbert space
completions. For each level l 2 N, the set ˆg

l
of the allowed integral dominant

weights is finite and hence the set of equivalence classes of representations is finite.
The unitary irreducible representations .�f;Hf/ of f in which we are interested

are those which have positive energy in restriction to one of the subalgebras fNS
or fR, cf. [5, Sect.3&4] and also [4]. In the first case, such a representation is a
Fock space representation and unique and called the Neveu–Schwarz or vacuum
representation of f, denoted by �f

NS . In the second case, it is determined by an
irreducible representation space of the 0-mode Clifford algebra generated by fF a0 W
a D 1; : : : ; dg. Such a space is of dimension 2Œd=2�; if d is even, it carries a natural
grading and is unique; if instead d is odd, there are two inequivalent spaces and they
are ungraded, but their direct sum can be equipped with a natural grading, cf. [40,
Sect.5.3] together with [61, Sect.3.12] for details on the construction. We write �f

R

for the unique (if d is even) or one of the two (if d is odd) irreducible representations,
called Ramond representation of f.
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For .�f;Hf/ either the Neveu–Schwarz or Ramond representation of f, we obtain
a unitary representation of the g-current algebra at level h_ by

J a;�
f

n WD �f.J an / WD
1

2

X
r

dX
b;cD1

fabc�
f.F bn�r/�

f.F cr /: (6.1)

The summation in r is obviously over the set 1
2
C Z for Neveu–Schwarz or Z

for Ramond type, respectively. This defines the diagonal currents J
a;�

g
l;�
˝�f

n D

J
a;�

g
l;�

n ˝1fC1l;�˝J
a;�f

n on Hg
l;�
˝Hf, which we shall frequently use henceforth.

The vacuum diagonal currents are those determined by J a;�0n , with �0 D �
g
l;0
˝�

f
NS .

In either of the representations � D �g
l;�
; �f; �

g
l;�
˝ �f, the g-current modes satisfy

linear energy bounds in terms of the corresponding conformal Hamiltonian L�0 , cf.
[10, Sect.2] and [19, Sect.4]. In complete analogy to Example 2.10 this permits us
to define unbounded selfadjoint smeared fields on (the Hilbert space) H� localized
in I 2 I0 with invariant core C1.L�0 / as the closures

J �.f / D

 X
n2Z

dX
aD1

fn:aJ
a;�
n

!�
; f 2 C1.S1; g/I ;

where fn;a, n 2 Z, denote the rapidly decreasing Fourier modes of the ea-component
of f . If � D �

g
l;�
˝ �f, then we write F �.f / � 1l;� ˝ F �

f
.f / and (6.1) implies

the following important commutation relations:

ŒJ �.f /; F �.g/� D iF �.Œf; g�/; f; g 2 C1.S1; g/: (6.2)

For the Lie group G and given level l 2 N, the current algebra net of G at level
l is defined as

AGl .I / WD feiJ
�
g
l;0 .fX/

W f 2 C1.S1/I ; X 2 gg00; I 2 I;

which is often introduced in the equivalent way �G
l;0
.fx 2 LG W xjI 0 D 1g/00 and

called loop group net, with �G
l;0

the integration to LG of �g
l;0

on the Hilbert space
Hg
l;0

, cf. [37, Sect.3.9], and [57, 59, 60]. The d -fermion net is the graded-local net
defined as

F.I / WD fF �
f
NS .fX/ W f 2 C1.S1/I ; X 2 gg00; I 2 I;

whose grading comes from f, cf. [4, 4] for the definition and structure of the even
subnet. Both AGl and F are known to be diffeomorphism-covariant. Thus the tensor
product net

A WD AGl ˝F (6.3)
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is a graded-local diffeomorphism-covariant net (with grading  the product of the
trivial grading on the first and the nontrivial above grading on the second factor),
which we call the super-current algebra net of G at level l C h_. Its central charge
is c D d

2
C

dl
lCh_

.

Lemma 6.1. The algebras A.I / are generated by the fermionic fields F �
f
NS .f /

together with the exponentials of the diagonal currents eiJ
�
g
l;0
˝�

f
NS .f /, with f 2

C1.S1; g/I .
This follows immediately from the facts that

eiJ
�
g
l;0
˝�

f
NS .f /

D eiJ
�
g
l;0 .f /

˝ eiJ�
f
NS .f /

and that eiJ�
f
NS .f / 2 F.I / as a consequence of (6.2) and graded Haag duality.

The super-Sugawara construction [47, Sect.2&4] in the representation � D

�
g
l;�
˝�f gives now rise to a representation of the super-Virasoro algebra with central

charge c D d
2
C

dl
lCh_

and with generators

G�r WD
1

p
l C h_

X
a;m

W

�
J a;�

G

m C
1

3
J a;�

F
m

�
F a;�

F
r�m W

L�n WD
1

2.l C h_/

X
a

W

 X
m

J a;�
G

m J a;�
G

n�m �

X
r

rF a;�
F

r F a;�
F

n�r

!
W;

(6.4)

where W � W stands for normal ordering, and n 2 Z and r 2 1
2
C Z or Z (for

�f of Neveu–Schwarz or Ramond type, respectively). Considering then for �
the (diagonal) vacuum representation �0 D �

g
l;0
˝ �

f
NS , we notice that the Lie

algebra representation of the Virasoro algebra with generators L�0n integrates to the
projective unitary representation U of Diff.S1/.1/ [59] which turns out to be the
one making the net A diffeomorphism-covariant. We would like to show that A is
superconformal in the sense of Definition 2.11.

The procedure is standard (cf. e.g. [18, Sect.6.3]), but for the reader’s conve-
nience we provide a sketch, and for the sake of readability we drop the superscripts
� which stand for the vacuum representation �0 here. The (graded) commutation
relations between the fieldsL;G and J; F in the above super-Sugawara construction
are written in [47, (2.5)]. In terms of smeared fields, a straight-forward computation
yields (on the core C1.L0/):

ŒJ.f /; L.g/� D � iJ.f 0g/; ŒF .f /; L.g/� D � iF.f 0g/ �
i
2
F.fg0/;

ŒJ.f /;G.g/� D � iF.f 0g/; ŒF .f /;G.g/� D J.fg/;

(6.5)

for f 2 C1.S1; g/I and g 2 C1.S1/I with I 2 IR; notice that the first
relation holds actually for every I 2 I . Thus, L.g/;G.g/ (graded-) commute with
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J.f /; F.f / if suppf \ suppg D ;. Moreover, the four fields satisfy linear energy
bounds w.r.t. L0:

kF.f /�k D
1
p
2
kf k2; kJ.f /�k � cJ .f /k.1C L0/�k;

kG.g/�k � cG.g/k.1C L0/1=2�k; kL.g/�k � cL.g/k.1C L0/�k;
(6.6)

for all � 2 C1.L0/ and with suitable positive real constants cJ .f /; cG.g/; cL.g/
depending only on f; g, cf. [10, (2.21)&(2.23)] and [18, Sect.6.3]. Following then
[18, Sect.6.3] and applying [32, Thm.3.1], we see that eiL.f / and eiG.f / (graded-)
commute with eiJ.f / and F.f /, so they lie in ZA.I /0Z� D A.I 0/. They generate
the super-Virasoro net ASVir;c , which, by rotation covariance, satisfies

U.Diff.S1/.1/I / � ASVir;c.I / � A.I /; I 2 I;

and we can summarize the preceding discussion in

Proposition 6.2. The super-current algebra net ofG at level lCh_, A D AGl ˝F ,
is a graded-local superconformal net.

The Ramond representation .�f
R;H

f
R/ of f gives rise to an irreducible Ramond

representation of the net F in the sense of Theorem 2.13, cf. [4, 5] together with [18,
Sect.6.4]. We write .�R;HR/, where HR D Hl;0 ˝ Hf

R, for the corresponding
irreducible Ramond representation of A which is the identity representation on
the first component AGl . As explained above, it is graded iff d is even, and the
eigenspace of minimal energy HR;0 has dimension 2Œd=2�, where Œd=2� denotes the
integral part of d=2. The restriction of �R to A on HR will be denoted again by
�R (as in the preceding sections). According to Proposition 2.14 and the explanation
at the beginning of Section 4, �R is supersymmetric in the sense that it contains an
(odd) operator Q such that Q2 D L

�R
0 � �1, namely Q WD G

�R
0 with � D c=24

(following the notation in Proposition 2.14). The trace-class condition (4.1) can
be shown in every locally normal representation of A, in particular for �R and the
vacuum representation, implying the split property of A [27]. As can be seen in [61,
Sect.III.13] or [47] or by a straight-forward computation, the following commutation
relations hold on the invariant core C1.L�0 /:

ŒQ; F �R.f /�C D
1

p
l C h_

J �R.f /; ŒQ; J �R.f /� D i
p
l C h_F �R.f 0/;

f 2 C1.S1; g/: (6.7)

Let us now come to the localized endomorphisms of C �.A /. Fix an interval
I0 2 I , let OI 00 � S

1.1/ (the latter regarded as multiplicative abelian group) denote
the preimage of I 00 under the universal covering map, and fix a smooth function
O� W S1

.1/
! R which is locally constant on OI 00 and satisfies O�.tC2�/ D O�.t/C2� .
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Given z 2 Z.G/, let Xz 2 g be a fixed choice such that exp.2�Xz/ D z, which is
possible since G is compact and connected whence exp is surjective; in particular,
if z D 1, we choose Xz D 0. As Z.G/ is the intersection of all maximal tori of
G, Xz lies actually in the maximal toral subalgebra tg � g. For every I 2 I , let
�I 2 C

1.S1/ be a function with support in a proper interval of S1, coinciding with
O� modulo 2�Z on I (regarding I as a subset of S1.1/ via the universal covering
map). Then the formula

.�l;z/I .x/ WD Ad
�

eiJ
�
g
l;0 .�IXz/

�
.x/; x 2 AGl .I /; (6.8)

defines a representation, independent of the explicit choice of Xz and �I . It can
be shown that it gives rise to a localized representation of the net AGl localized in
I0 and corresponding to [37, Sect.3.8&3.9]. The equivalence class Œ�l;z� does not
depend on the choice of the interval I0 nor on the function O� but only on z 2 Z.G/.
Moreover, �l;z is equivalent to the vacuum representation if and only if z is the
neutral element of G.

A similar definition can be given on the component F : Notice that

R W f 2 K 7! Ad.exp. O�Xz//.f / 2 K

extends to a well-defined automorphism because O�.t C 2�/ D O�.t/ C 2� and
exp.2�Xz/ D z 2 Z.G/ by construction. This enables us to define

�F;z.F
�
f
NS .f // WD F �

f
NS .Rf / D F �

f
NS .Ad.exp. O�Xz//.f //; f 2 KI ;

for every I 2 I . Therefore,

eiJ�
f
NS .�IXz/ F �

f
NS .f / e� iJ�

f
NS .�IXz/ D F �

f
NS .Ad.exp.�IXz//.f //

D F �
f
NS .Ad.exp. O�Xz//.f //

D �F;z.F
�
f
NS .f //;

where the first line follows from a standard integration argument for the covariant
U.1/-action on the fermionic currents (similar to [18, Sect.6.3]). Thus we obtain a
representation �F;z of F , which restricted to AGh_ obviously has the form (6.8):

.�F;z/I .x/ D Ad
�

eiJ�
f
NS .�IXz/

�
.x/; x 2 AGh_ .I /; I 2 I:

Let us write �z for the subrepresentation on the even subspace H� � H of the
restriction of �l;z ˝ �F;z to A . It is clear from the definition that �z is actually a
localized automorphism of the net A localized in I0.

For the sake of readability, we shall henceforth drop the superscripts �0 on the
fields in case � is the vacuum (Neveu–Schwarz) representation �0.
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We shall consider two different types of localized endomorphisms of C �.A /:
(1) We have just constructed a family of localized automorphisms of A D AGl ˝

F , namely the above �z , with z 2 Z.G/ and localized in the given fixed
I0. We denote the corresponding localized endomorphisms of C �.A / by �z .
Since they have statistical dimension 1 they are automorphisms, cf. Proposition
2.6. Moreover, we have Œ�z� D Œ�y � if and only if z D y, and Œ�z�y � D Œ�zy �.

By construction their 2-variable cocycles (charge transporters), for given I 2 I
containing the closure of I0, are the Weyl unitaries

z.�z; g/ D �I

�
eiJ.. O�� O�ıg/Xz/

�
; g 2 UI0;I :

(2) As explained above, the irreducible unitary representations of OLg at level l are
�

g
l;�

with � 2 ˆg
l

the corresponding integral dominant weight; their integration
gives rise to a locally normal representation of AGl , which can be implemented
in the vacuum representation by an endomorphism localized in I0, cf. [37,
Sect.3.8]. Tensoring with the vacuum representation of F , it defines a localized
endomorphism of the product net A , and we write �� for the corresponding
localized endomorphism of C �.A /.

We now define two subsets of �0 corresponding to the above two types
of localized endomorphisms of C �.A /, which we shall use in order to find
applications of the main theorems in Section 5. Starting from those two, further
examples can be constructed in a rather straight-forward manner left over to the
reader.

Definition 6.3. Letting �z denote the endomorphisms of type (1) above, define

Q� WD semigroup generated by f�z W z 2 Z.G/g:

Letting �� denote the endomorphisms of type (2) above, define

� WD f�� W � 2 ˆ
g
l
g:

From the following proposition it shall become clear that Q� � �1 in the sense of
Definition 4.1. On the other hand, we cannot expect the inclusion � � �1 to hold
for all choices of the representatives �� of type (2) above. Actually, we don’t even
know if this inclusion can hold for a suitable choice of those endomorphisms.

Derivation and spectral triples for the super-current algebra net. Let us
now investigate the derivation .ı; dom.ı// coming from the above “supercharge”
Q D G

�R
0 in the Ramond representation .�R;HR/:

Proposition 6.4. The set dom.ı/\�R.A .I // is a � -weakly dense �-subalgebra of
�R.A .I // and hence ��1R .dom.ı// \A .I / is a � -weakly dense �-subalgebra of
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A .I /, for all I 2 I . The elements eiJ.fX/ with f 2 C1.S1/I ; X 2 g, lie in
��1R .dom.ı// \ A .I /, for all I 2 I . In particular, the charge transporters of Q�
are in ��1R .dom.ı//, so in fact Q� � �1.

Proof. In order to understand the proof we notice that

.�R/I .eiJ.fX// D eiJ�R .fX/; f 2 C1.S1/I ; I 2 I;

and
.�R/I .F.fX// D F

�R.fX/; f 2 C1.S1/I ; I 2 IR;
and we may therefore work with the expressions on the right-hand side. Moreover, in
the first three steps of the present proof, we drop the superscripts �R for the sake of
readability, so J.fX/, F.fX/, L0 mean actually J �R.fX/, F �R.fX/ and L�R0 .

For an arbitrary interval I 2 IR, we shall prove that first the resolvents and then
also the exponentials of J �R.fX/ lie in dom.ı/\ �R.A .I //, and in the third step
we shall deal with the fermion fields. The fourth step concludes the proof.

(1) Recall that as always the subspace C1.L0/ � HR is a common invariant
core for all J.fX/, F.fX/, and Q, and owing to the energy bounds (6.6), these
operators map dom.Ln0/ to dom.Ln�10 /, for every n 2 N. Moreover, from [16,
Prop.4.3] we know that .J.fX/ � �/�1 preserves the joint cores dom.Ln0/, for
n D 1; 2, if j=�j is sufficiently large. Thus, for  2 dom.L20/, we have

QJ.fX/.J.fX/ � �/�1 D J.fX/Q.J.fX/ � �/�1 

C i
p
l C gF.f 0X/.J.fX/ � �/�1 ;

by (6.7). Adding ��Q.J.fX/ � �/�1 on both sides and multiplying then by
.J.fX/ � �/�1 yields

.J.fX/ � �/�1Q D Q.J.fX/ � �/�1 

C .J.fX/ � �/�1 i
p
l C gF.f 0X/.J.fX/ � �/�1 ;

so .J.fX/ � �/�1 2 dom.ı/ if j=�j is sufficiently large, and

ı..J.fX/ � �/�1/ D � i
p
l C gF.f 0X/.J.fX/ � �/�2;

using ŒF .f 0X/; J.fX/� D 0, cf. (6.2). This holds actually for every � 2 C n R,
which can be seen as follows: Suppose it holds for �0. The spectrum of .J.f / �
�0/
�1 lies in .R � i=�0/�1. Consider the complex map

�.z/ WD
1

z�1 C .�0 � �/

which is defined and analytic on an open neighborhood of .R � i=�0/�1 � C and
has its only pole in .� � �0/�1. Holomorphic functional calculus then gives

.J.f / � �/�1 D �
�
.J.f / � �0/

�1
�
2 dom.ı/;
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since dom.ı/ is closed under holomorphic functional calculus — an adaptation of
[6, Prop.3.2.29].

(2) By the same reasoning (with the spectral projections of J.fX/ denoted by
PJ.fX/.�/), also the exponentials eiJ.fX/ preserve dom.L20/. Using Borel functional
calculus, Laplace transformation, step (1) and the selfadjointness of Q, J.fX/ and
F.f 0X/, we get, for all �; 2 dom.L20/,

h�;Q eiJ.fX/  i

D

Z
R

ei t dhQ�;PJ.fX/.t/ i

D

Z
R

Z
RCi

ei�.t � �/�1 d� dhQ�;PJ.fX/.t/ i.t/

D

Z
RCi

Z
R

ei�.t � �/�1 dhQ�;PJ.fX/.t/ i d�

D

Z
RCi

ei�.h�; .J.fX/ � �/�1Q i C h�; ı..J.fX/ � �/�1/ i/ d�

D

Z
RCi

ei�.h�; .J.fX/ � �/�1Q i d�

C

Z
RCi

ei�
h�; i

p
l C gF.f 0X/.J.fX/ � �/�2 i/ d�

D

Z
R

Z
RCi

ei�.t � �/�1 d� dh�; PJ.fX/.t/Q i

C

Z
R

Z
RCi

ei�.t � �/�2 d� dh�; i
p
l C gF.f 0X/PJ.fX/.t/ i

D

Z
R

ei t dh�; PJ.fX/.t/Q i C
Z
R

ei t dh�;
p
l C gF.f 0X/PJ.fX/.t/ i

Dh�; eiJ.fX/Q i C h�;
p
l C gF.f 0X/ eiJ.fX/  i

so eiJ.fX/ 2 dom.ı/ and ı.eiJ.fX// D
p
l C gF.f 0X/ eiJ.fX/.

(3) Part (1) together with (6.7) shows only that

� s1s2F.f1X1/.J.f1X1/C i s1/�1F.f2X2/.J.f2X2/C i s2/�1 2 dom.ı/;

s1; s2 6D 0; (6.9)

cf. [8]. To conclude the proof of denseness we would like to see that
F.f1X1/F.f2X2/ is in the weak closure of the �-algebra generated by these
operators. Using the spectral decomposition of the selfadjoint unbounded J.fX/,
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we obtain, for every  2 dom.L20/,

� i s.J.fX/ � i s/�1 D
Z
R

� i s
t � i s

dPJ.fX/.t/ !
Z
R

dPJ.fX/.t/ D  ;

s !1;

by means of the dominated convergence theorem applied to the fact that t 7!
� i s=.t � i s/ is bounded by the PJ.fX/-integrable function t 7! 1 and converges
pointwise to 1, for s !1. Hence � i s.J.fX/ � i s/�1 ! 1 strongly. Considering
in the same way the limit s1; s2 ! 1 in (6.9), we infer that F.f1X1/F.f2X2/ lies
in the strong closure of dom.ı/.

Thus the weak closure of the algebra generated by the elements

eiJ.f1X1/; F .f1X1/.J.f1X1/C i/�1F.f2X2/.J.f2X2/C i/�1

in dom.ı/, with fi 2 C1.S1/I ; Xi 2 g, coincides with �R.A .I // owing to
Proposition 2.14 and Lemma 6.1 – and this proves the claimed denseness.

(4) Let us return to writing the superscripts “�R”. So far we have the denseness
of dom.ı/ \ �R.A .I // � �R.A .I //, for I 2 IR. To obtain the statement for
arbitrary I 2 I , we only have to use the rotation invariance of dom.ı/ together with
covariance and local normality, which holds for the restriction of the general soliton
�R to A . Concerning the explicit exponentials, we have proved that eiJ�R .fX/ 2

dom.ı/\�R�1.A .I //, for f 2 C1.S1/I ; X 2 g with I 2 IR, which is equivalent
to saying eiJ.fX/ 2 ��1R .dom.ı// \ A .I /. Using rotation covariance, we obtain
the statement actually for every I 2 I .

We can now understand our above choice of the localized representations �z:
if instead of �l;z ˝ �


F;z we had taken �l;z ˝ idF , then the cocycles would be

eiJ
�
g
l;0 .. O�� O�ıg/Xz/, with g 2 UI0;I , which in general are not in �R�1.dom.ı//, so

the corresponding automorphisms would not be differentiably transportable.

The index pairing for the super-current algebra net. From the preceding
proposition, Definition 6.3 and the theory of Section 4 we obtain two families
of nontrivial � -summable spectral triples .A�; .�R ı �;HR/;Q/�2� and .A Q�,
.�R ı �;HR/;Q/�2 Q� over the locally convex algebras A� and A Q�. They are even
or odd, depending on whether �R is graded or ungraded, which in turn depends on
whether d is even or odd. The pairing with K-theory needs several cases covered
by Theorem 5.3(3) and 5.6(2) for the algebra A Q�, and then by Theorem 5.3(2) and
5.6(1) for the algebra A�:

Theorem 6.5. (1) Suppose d D dim.G/ is even. Then we have a family of even
spectral triples .A Q�; .�R ı �;HR/;Q/�2 Q� with A Q�.I / D �R

�1.dom.ı// \
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A .I / � A .I / � -weakly dense, for all I 2 I . Moreover, for �; � 2 Q�, we
have

Œ�� D Œ�� iff Œ��� D Œ�� �:

(2) Suppose d is odd. Then we have a family of odd spectral triples .A Q�; .�R ı
�;HR/;Q/�2 Q� with A Q�.I / D �R

�1.dom.ı// \ A .I / � A .I / � -weakly
dense, for all I 2 I . Moreover, for �; � 2 Q�, we have

Œ�� D Œ�� iff Œ��� D Œ�� �:

For every d , the cocycles can be obtained as pullback cocycles �� D ���id, for
all � 2 Q�, since Q� forms a semigroup.

Proof. First recall that �R is graded iff d is even. The equality A Q�.I / D

�R
�1.dom.ı// \ A .I / follows from Proposition 4.12(1) because Q� consists of

differentiably transportable endomorphisms, and the denseness has been shown in
Proposition 6.4. This gives rise to spectral triples according to the general theory.
Suppose d is even. If �; � are inequivalent, then there are y 6D z 2 Z.G/ such that
�Rı� ' �l;z˝�1 and �Rı� ' �l;y˝�2, with �1; �2 two graded representations of
F . Since �l;z and �l;y are irreducible and mutually inequivalent, �R ı� and �R ı�
must be disjoint. Since all elements in Q� are moreover automorphisms, we can apply
Theorem 5.3(3) to obtain the complete separation of the cocycles corresponding to
inequivalent endomorphisms.

If d instead is odd, then the representations �R ı � are ungraded and hence the
spectral triples odd. In that case we apply Theorem 5.6(2) to obtain statement (2).
The pullback statement becomes obvious using Remark 4.9(1).

Theorem 6.6. (1) Suppose d D dim.G/ is even. Then we have a family of even
spectral triples .A�; .�R ı �;HR/;Q/�2�, and ��1� .p0;C/ 2 A� if �� 2 � is
an automorphism, and

���.�
�1
� .p0;C// D dim.HR;0;C/ı��;�� D 2

d=2�1ı�;�:

Hence, we can separate every entire cohomology class Œ��� � from every Œ��� �
with �� 2 � an automorphism using the finite family

fŒ��1� .p0;C/� W �� 2 � is an automorphismg � K0.A�/:

(2) Suppose d is odd. Then we have a family of odd spectral triples
.A�; .�Rı�;HR/;Q/�2�, and ��1� .u0;C/ 2 A� if �� 2 � is an automorphism,
and

���.�
�1
� .p0;C// D dim.HR;0;C/ı��;�� D 2

.d�1/=2�1ı�;�:

Hence, we can separate every cocycle ��� from every ��� with �� 2 � an
automorphism using the finite family

fŒ��1� .u0;C/� W �� 2 � is an automorphismg � K1.A�/:
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Proof. It follows directly from the definition that for � 6D � 2 ˆ
g
l
, the two

irreducible representations �R ı �� and �R ı �� are disjoint. Thus we can apply
Theorem 5.3(2) obtaining a separation of ��� from all ��� , �� 2 � an automorphism,
by means of ��1� .p0;C/. Since by construction in Definition 6.3, � contains no
other endomorphism equivalent to ��, we obtain the final equivalence and separation
statement of the theorem. The precise dimension of HR;0;C is a consequence of
the representation structure of the Clifford algebra of fermion 0-modes as explained
above.

The odd case goes in complete analogy appealing to Theorem 5.6(1).

The super-Virasoro net and the case indHR;C
Q 6D 0. Looking at Theorem 5.3,

we would also like to study an example of case (1), where no differentiability
condition is fulfilled and moreover the sectors are not automorphic but instead
indHR;CQ 6D 0. Consider the super-Virasoro net from Example 2.10 with
c D 1. We recall from [18, Sect.6] that in this case there is a unique graded
irreducible Ramond representation �R of ASVir;1 with lowest energy h D 1

24
and

indHR;CQ D 1. We have to check for which irreducible endomorphisms � of
ASVir;1 the representations �R ı � and �R are disjoint.

In the notation of [18, Sect.7], �R D �RC ˚ �R� corresponds to the
representation .121/C˚.121/� of the coset of SU.2/4 � SU.2/2˝SU.2/2 identified
with our net ASVir;1. We first compute the S-matrix of ASVir;1 using the formulae
stated there for the coset construction of ASVir;1, and then we compute the fusion
matrices using the results for the S-matrix and the Verlinde formula. We would
like to separate the sectors of ASVir;1 from the vacuum sector. We cannot expect
this to be possible for all sectors, but we may seek those for which it is, i.e., those
localized endomorphisms � for which the two representations �R˙ ı � are disjoint
from �RC˚�R�. In terms of the fusion matrix, this means the entries N �R˙

�R˙;�
have

to be all 0. Write � n fidg for the set of those localized endomorphisms �, assuming
exactly one representative endomorphism per equivalence class. Identifying every
sector .jkl/ (in the notation of [18, Sect.7]) with that representative and in particular
.000/ with id 2 �, explicit computations yield:

� WD f.000/; .110/; .130/; .031/; .121/C; .121/�; .141/; .231/g: (6.10)

Define the associated algebra A� and the spectral triples .A�; �R�;G
�R
0 /�2� as

in Definition 4.8. Theorem 5.3(1) with � D id can now be applied yielding
Proposition 6.7. For the net ASVir;1, the irreducible graded Ramond representation
�R with lowest energy 1=24 and the endomorphism set � from (6.10), we have
a family of JLO cocycles �� associated to the even � -summable spectral triples
.A�; .�R ı �;HR/; G

�R
0 /, � 2 �. They can be separated from �id as follows:

��.s.�R// D

�
1 W � D id
0 W � 6D id :
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We can also separate the cocycles associated to � 2 � from those associated to
any other � 2 � as proposed in Theorem 5.3(1), but it does not give further insight
into the situation, wherefore we shall stop at this point. The present example should
just serve as a simple illustration of the fact that, even in the case where we have no
differentiability properties and no automorphic sectors but instead indHR;CQ 6D 0,
we still get non-trivial noncommutative geometric (cohomology) invariants. Many
further examples may be treated in a similar way in order to study more specific
aspects.

All in all, this section of examples strongly confirms that the general construction
of Section 4 and the various situations treated in Theorems 5.3 and 5.6 show
up naturally in well-known models of superconformal nets and help towards a
completely new understanding of the latter in terms of noncommutative geometry.

Acknowledgements. We would like to thank Joachim Cuntz for useful explana-
tions.
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