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Abstract. There are two notions of Yang–Mills action functional in noncommutative geometry.
We show that for noncommutative n-torus both these notions agree. We also prove a structure
theorem on the Hermitian structure of a finitely generated projective modules over spectrally
invariant subalgebras of C�-algebras.
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1. Introduction

There are two approaches to noncommutative geometry due to Alain Connes. In
the first approach [3] one begins with .A; G; ˛; �/ a C �-dynamical system along
with an invariant trace. Moreover one also assumes that the dynamics is governed
by a Lie group. In this setting Connes introduces the basic notions like Hermitian
vector bundles, connections, curvature etc. and eventually along with Rieffel ([6])
he introduces the notion of Yang-Mils action functional as a certain functional
YM.r/ defined on the space of compatible connections C.E/ on a finitely generated
projective A module E with a Hermitian structure. Critical points of this functional
has been studied by Rieffel in ([11]). Variations of this concept have been studied in
[9]. Later ([4]) Connes gave a spectral formulation of noncommutative geometry. In
this formulation a noncommutative geometric space is described by a certain triple
called spectral triple. This formulation is more popular today. In this setting as
well he introduced the concept of compatible connections QC.E/ and Yang–Mills
action functional. There is a general recipe to produce a “spectral triple” from a
C �-dynamical system. Here we have put spectral triple with in quotation because
the general recipe does not tell you that the resulting object is a true spectral triple
but they are candidates and one has to verify the relevant conditions on a case by
case basis. However for noncommutative torus, the prime test case in the subject it
is easy to see that indeed one obtains a genuine spectral triple. Then one encounters
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the natural question whether these two notions agree. This is important because
even though the spectral approach is the popular one, whenever it comes to YM on
noncommutative torus ([9],[5]) one goes back to the dynamical system path. Connes
addressed the issue of their equivalence for noncommutative two torus. Proposition
13, in the last chapter of [4] states that the notions of compatible connections are
the same in both the approaches and the concepts of Yang–Mills action functionals
also agree up to a normalizing factor. Since the applications deal with higher
dimensional cases, in this paper we take up those and show that even in these cases
the notions of compatible connections are same in the sense that there is an affine
isomorphism between the spaces C.E/ and QC.E/ and Yang–Mills action functionals
also agree up to a normalizing factor. Along the way we also prove a structural result
on finitely generated projective modules with Hermitian structure over spectrally
invariant subalgebras of C �-algebras. The result is the following. If A is a spectrally
invariant subalgebra of aC �-algebraA, that is A � A is a �-subalgebra closed under
holomorphic function calculus, and E is a finitely generated projective A module
with a Hermitian structure, then there is a self adjoint projection p 2 Mn.A/ such
that E Š pAn and E has the induced Hermitian structure. Our proof makes crucial
use of the hypothesis that A is closed under holomorphic function calculus. We do
not have any counter example but we believe it is necessary to assume that A is
spectrally invariant.

Organization of the paper is as follows. In section two we recall the definition
of Yang–Mills action functional in the dynamical system approach and work out
the expression for the noncommutative n-tori. In section three we show that finitely
generated projective modules with a Hermitian structure over a spectrally invariant
subalgebra of a C �-algebra is always isomorphic with a submodule of a free module
with induced Hermitian structure. Section four is devoted to the description of Yang–
Mills in the frame work of spectral triples. Finally in the fifth section we explicitly
work out the Yang–Mills functional for the noncommutative torus and show that it
agrees with the first approach. This result is an higher dimensional analog of the
corresponding result of Connes.

2. First approach to Yang–Mills functional

We briefly recall the setting of ([6]) for Yang–Mills functional on a C �-dynamical
system with an invariant, faithful trace. Let .A; G; ˛; �/ be one such, where A
is a unital C �-algebra, G is a connected Lie group, ˛ W G �! Aut.A/, a
homomorphism such that for all a 2 A, the map g 7! ˛g.a/ is continuous and
� is a G-invariant, faithful trace on A. We say that a 2 A is smooth if the map
g 7! ˛g.a/ from G to the normed space A is smooth. The involutive algebra
A1 D fa 2 A W a is smoothg is a norm dense subalgebra of A, called the smooth
subalgebra. Note that this is unital as well. One crucial property enjoyed by this
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algebra is that it is closed under the holomorphic function calculus inherited from
the ambient C �-algebra A.

Let E be a finitely generated projective module over A . Unless otherwise stated
we will only consider right modules. We will say f.g.p module to mean finitely
generated projective module. There exists a f.g.p A1-module E1, unique upto
isomorphism, such that E is isomorphic to E1 ˝A1 A. Conversely if E1 is a
f.g.p A1-module then E1 ˝A1 A becomes a f.g.p module over A. Since we shall
never work with A and E but only with A1 and E1, from now on, for notational
simplicity, we denote the latter by A and E . Define E� as the space of A linear
mappings from E to A. Clearly E� is a right A module.

Definition 2.1. A Hermitian structure on E is anA-valued positive-definite sesquilin-
ear mapping h ; iA such that,

(a) h�; � 0i�A D h�
0; �iA ; 8 �; �

0 2 E .

(b) h�; � 0:aiA D .h�; � 0iA/:a ; 8 �; � 0 2 E ; 8 a 2 A.

(c) The map � 7�! ˆ� from E to E� , given by ˆ�.�/ D h�; �iA ; 8� 2 E , gives
conjugate linear A-module isomorphism between E and E�. This property will
be referred as the self-duality of E .

Any free A-module E0 D Aq has a Hermitian structure, given by h �; � iA DPq
jD1 �

�
j �j ;8 � D .�1; : : : ; �q/ ; � D .�1; : : : ; �q/ 2 E0. We refer this as the

canonical Hermitian structure on Aq . The following lemma shows that every f.g.p
module admits a Hermitian structure.

Lemma 2.2. (a) A f.g.p module of the form pAq , where p 2 A ˝ Mq.C/ a
projection, has a Hermitian structure.

(b) Every finitely generated projective module E over A is isomorphic as a f.g.p
module with pAq where p is a self-adjoint idempotent, that is a projection. Hence
E has a Hermitian structure on it.

Proof. (a) With respect to the canonical Hermitian structure hp��; � iA D h �; p� iA
holds for any p 2Mq.A/. Suppose E D pAq be a f.g.p module with p a projection
in Mq.A/. The canonical structure h �; � iA D

P
��j �j on Aq will induce a pairing

on E . We have to show that � 7�! ˆ� gives an A-module isomorphism between
E and E�. It is enough to check only the surjectivity of this map. In order to do
so let’s take an element f 2 E�. Then Qf D f ı � is an element of .Aq/� where
� W Aq �! pAq is the map � 7�! p�. By definition (2.1) there exists � 2 Aq s.t
Qf D ˆ� . Consider any element p� 2 E with � 2 Aq . Then,

f .p�/ D f ı �.p�/ D Qf .p�/ D h �; p� iA

D hp��; p� iA D hp�; p� iA D ˆp�.p�/:

Hence f D ˆp� with � 2 Aq . So the induced pairing on E gives a Hermitian
structure on it.
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(b) Let E be a f.g.p module over A . There exists an A-module F such
that E

L
F Š Aq for some natural number q. Once we fix such an F we let

p W Aq �! Aq given by p.eCf / D e for e 2 E and f 2 F . So p is an idempotent
in Mq.A/ with E D pAq . By ([13],page 101) we see that in a C �-algebra .or �-
subalgebra of a C �-algebra which is stable under holomorphic function calculus/
every idempotent is similar to a selfadjoint idempotent i.e., a projection and this
similarity is witnessed by the invertible element z D ..2p� � 1/.2p � 1/C 1/1=2.
Since A is closed under holomorphic function calculus the invertible element z
actually belongs to Mq.A/. Hence Qp D zpz�1 is a projection in Mq.A/ andeE D QpAq Š pAq D E . Then one restricts the Hermitian structure on Aq to eE
and endows E with the Hermitian structure obtained via the isomorphism between E
andeE .

Remark 2.3. The concept of Hermitian structure can be defined for f.g.p modules
over involutive algebras and part (a) of Lemma ( 2.2 ) still holds. But part (b) requires
the more finer property of closure under holomorphic function calculus.
Remark 2.4 (Open Question). We do not know whether a finitely generated
projective module over an involutive algebra always admits Hermitian structure.

Let Lie.G/ be the Lie algebra of G. Then we have a representation ı of Lie.G/
into the Lie algebra Der.A/ of derivations on A given by

ıX .a/ D
d

dt
jtD0 ˛exp.tX/.a/: (2.1)

where exp W Lie.G/! G is the exponential map.
Definition 2.5. Let E be a f.g.p module over A with a Hermitian Structure. A
connection (on E) is a C-linear map r W E �! E ˝ Lie.G/� such that, for all
X 2 Lie.G/ and � 2 E , a 2 A one has

rX .� � a/ D rX .�/ � aC � � ıX .a/: (2.2)

We shall say that r is compatible with respect to the Hermitian structure on E
iff :

hrX � ; �
0
iA C h� ;rX �

0
iA D ıX .h �; �

0
iA/ ; 8 � ; �

0
2 E ; 8X 2 Lie.G/ :

As discussed in ([3]) compatible connection always exists. We will denote the set of
compatible connections on E by C(E). The algebra End.E/ has a natural involution
given by ,

hT ��; � iA D h �; T � iA 8 �; � 2 E ; T 2 End.E/:

For any two compatible connections r;r 0 it can be easily checked that rX �r 0X is
a skew-adjoint element of End.E/ for each X 2 Lie.G/. The curvature �r of a
connection r is the alternating bilinear End.E/-valued form on Lie.G/ defined by,

�r W ^
2.Lie.G// �! End.E/
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�r.X ^ Y / D ŒrX ;rY � � rŒX;Y � ; 8X; Y 2 Lie.G/:

This measures the extent to which r fails to be a Lie algebra homomorphism. A
simple calculation will assure that �r takes value in End.E/. Infact more can be
said about the range of �r . We define End.E/skew D fT 2 End.E/ W T � D �T g,
the subset of skew-adjoint elements of End.E/.
Lemma 2.6. Range of �r is contained in End.E/skew .

Proof. We have to show that h�r.X ^ Y /.�/; � iA D �h �;�r.X ^ Y /.�/ iA for
all �; � 2 E .

h�r.X ^ Y /.�/;� iA

D h .ŒrX ;rY � � rŒX;Y �/.�/; � iA

D hrX .rY .�// � rY .rX .�// � rŒX;Y �.�/; � iA

D hrX .rY .�//; � iA � hrY .rX .�//; � iA � hrŒX;Y �.�//; � iA

D ıX .h rY .�/; � iA/ � hrY .�/;rX .�/ iA � ıY .h rX .�/; � iA/

C hrX .�/;rY .�/ iA � ıŒX;Y �.h�; �iA/C h �;rŒX;Y �.�/ iA

D ıX .ıY .h�; �iA/ � h�;rY .�/iA/ � hrY .�/;rX .�/iA/

� ıY .ıX .h�; �iA/ � h�;rX .�/iA/C hrX .�/;rY .�/iA/

� ıŒX;Y �.h�; �iA/C h�;rŒX;Y �.�/iA

D ŒıX ; ıY �.h�; �iA/ � ıŒX;Y �.h�; �iA/C h�;rŒX;Y �.�/iA

C hrX .�/;rY .�/iA C ıY .h�;rX .�/iA/

� hrY .�/;rX .�/iA � ıX .h�;rY .�/iA/

D h�;rŒX;Y �.�/iA � h�;rXrY .�/iA C h�;rYrX .�/iA

D h�;rŒX;Y �.�/iA � h�; ŒrX ;rY �.�/iA

D �h�; .ŒrX ;rY � � rŒX;Y �/.�/iA

D �h �;�r.X ^ Y /.�/ iA : 2

We fix an inner product on Lie.G/ and this will remain fixed throughout. We
next choose an orthonormal basis fZ1; : : : ; Zng of Lie.G/. The bilinear form on
the space of alternating 2-forms with values in End.E/ is given by,

fˆ;‰gE D
X
i<j

ˆ.Zi ^Zj /‰.Zi ^Zj /:

Recall that we have a G-invariant faithful trace � on A. We can extend it to a
canonical faithful trace e� on End.E/ with the help of the following lemma from
([6]).
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Lemma 2.7. If E is f.g.p A-module with a Hermitian structure, then every element
of End.E/ can be written as a linear combination of elements of the form h �; � iE
for �; � 2 E , where h �; � iE.�/ D �h �; � iA; 8 � 2 E .

Proof. Let E D pAq where p 2 Mq.A/ is an idempotent and fe1; : : : ; eqg be the

standard basis for Aq . For any given T 2 End.E/ one can write T D

qM
iD1

Ti ;

where Ti D �i ı T; �i denotes the projection onto the i -th component of Aq . Then
Ti .�/ D h�i ; �iA for some �i 2 E , which follows from self duality of E . Then one
can show directly that T D

P
hpei ; �i iE .

Now, using this lemma, we define a linear functionale� on End.E/ as,

e� W End.E/ �! C

e�.h �; � iE/ D �.h�; �iA/:
Lemma 2.8. e� defined above, is a trace on End.E/.

Proof. One can easily check that h �1; �1 iEh �2; �2 iE D h �1h�1; �2iA; �2 iE . Now
use the fact that � is a trace on A.

Moreover it can be shown that e� is faithful (see [6]). Finally, the Yang–Mills
functional on C.E/ is given by,

YM .r/ D �e�.f�r ; �rgE/
Notice that by Lemma ( 2.6 )�r takes value in End.E/skew . Hence this minus sign
will force YM to take nonnegative real values.

Now we will deal with A D A� , the noncommutative n-torus. We recall
non-commutative n-torus A� as defined in ([10]). Let � be a n � n real skew-
symmetric matrix. Denote by A� , the universal C �-algebra generated by n

unitaries U1; : : : ; Un satisfying UkUm D e2�i�kmUmUk , where k;m 2 f1; : : : ; ng.
Throughout this paper i will stand for

p
�1. On the noncommutative n-torus A� ,

G D Tn(connected Lie group) acts as follows:

˛.z1;:::;zn/.Uk/ D zkUk ; k D 1; : : : ; n:

The smooth subalgebra of A� , is given by

A1� WD f
X

ar U
r
W farg 2 S.Zn/ ; r D .r1; : : : ; rn/ 2 Zng
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where S.Zn/ denotes vector space of multisequences .ar/ that decay faster than the
inverse of any polynomial in r D .r1; : : : ; rn/.

This subalgebra (also A�) is equipped with a unique G-invariant tracial state,
given by �.a/ D a0 ; where 0 D .0; : : : ; 0/. One can further assume that the lattice
ƒ� generated by columns of� is such that ƒ�CZn is dense in Rn. The advantage
of choosing such a matrix � is that A� (hence A1� ) becomes simple (see [7], Page
537). But in our case simpleness of A1� is not needed and hence we do not require
any assumption on � except skew-symmetry. The Hilbert space obtained by
applying the G.N.S. construction to � can be identified with l2.Zn/ ([10]).

From now on we will work with A1� only and hence for notational brevity we
denote it by A� . In this case L D Lie.G/ is Rn. Let f�1; �2; : : : ; �ng be the
standard basis of Rn and the associated derivations ı�1 ; : : : ; ı�n . We will denote ı�j
by eıj .

The derivations feı1; : : : ; eıng on A� are given by,

eıj .X
r

arU
r/ D i

X
r

rjarU
r (2.3)

It can be easily checked that these derivations commute and they are �-derivations
of A� i,e.

.eıj .a//� Deıj .a�/ I eıj .ab/ Deıj .a/b C aeıj .b/:
A connection is given by n maps reıj W E �! E such that reıj .�:a/ D reıj .�/a C
�eıj .a/. So the space of compatible connections r consists of n-tuples of maps
.reı1 ; : : : ;reın/ such that,

r.�/ D

nX
jD1

reıj .�/˝ ej : (2.4)

hreıj .�/; �iA� C h�;reıj .�/iA� D eıj �h�; �iA�� : (2.5)

Here fe1; � � � ; eng denotes the basis dual to f�1; � � � ; �ng of the dual of the Lie algebra
Rn. The curvature of a connection r is given by,�r.eıj ^eık/ D Œreıj ;reık � because

Œeıj ; eık� D 0 in this case. We have Œreıj ;reık �� D �Œreıj ;reık � by Lemma ( 2.6 ). The
bilinear form on space of alternating 2-forms with values in End.E/ becomes,

fˆ;‰gE D
X
j<k

ˆ.eıj ^ eık/‰.eıj ^ eık/:
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Finally, the Yang–Mills functional of r is given by,

YM .r/ D �e�.f�r ; �rgE/ D �e� 0@X
j<k

Œreıj ;reık �2
1A

D e� 0@X
j<k

Œreıj ;reık ��Œreıj ;reık �
1A

� 0 :

For notational simplicity we write,

YM.r/ D
X
j<k

e� �Œrj ;rk��Œrj ;rk�� : (2.6)

3. Finitely generated projective modules with a Hermitian structure

It is almost by definition that a finitely generated projective module over an asso-
ciative algebra can be embedded in a free module as a complemented submodule.
However the situation is different for finitely generated projective modules with
a Hermitian structure over involutive subalgebras of C �-algebras. Let A be an
involutive subalgebra of a C �-algebra A and E be a finitely generated projective
module over A with a Hermitian structure. Note that any free A module has
a canonical Hermitian structure and one may ask does there exist an embedding
i W E �! An such that (i) there exists a submodule F of An with the property
i.E/ ˚ F D An and (ii) the Hermitian structure of E is the one induced from An
. In this section we show that this is indeed the case provided A is a subalgebra of
a C �-algebra and is closed under holomorphic function calculus. In this result the
emphasis is on this condition which is often overlooked. In fact we do not know
whether the result is true in general.

Let A be a unital subalgebra of aC �-algebra stable under holomorphic functional
calculus and represented faithfully on a Hilbert space H. Let E be a f.g.p
(right)module over A equipped with a Hermitian structure on it. There is a right
A-module F such that E

L
F Š Aq for some q. Since Aq has a topology,

E inherits the topology from Aq . Also E� inherits topology from Aq because
E�
L

F� Š .Aq/� Š Aq . As because we have topology now, we can expect
the isomorphism between E and E� to be topological, which turns out to be true by
the following lemma.

Lemma 3.1. If two finitely generated projective A-modules E1 and E2 are alge-
braically isomorphic then they are also isomorphic as topological vector spaces.
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Proof. Since both the modules are projective, we can find F1 and F2 such that,
E1
L

F1 Š Ak and E2
L

F2 Š Al . Then, E1
L

F1
L

Al Š AkCl and
E2
L

F2 ˚ Ak Š AkCl . Hence we can write E1 D p1AkCl and E2 D p2AkCl ,
where p1; p2 2 MkCl.A/ are idempotents. Let uj W AkCl �! Ej denote the
projection maps and vj W Ej �! AkCl denote the inclusion maps for j D 1; 2. If
we denote the isomorphism between E1 and E2 by � then considering f D v2ı�ıu1
and g D v1 ı �

�1 ı u2 in HomA.AkCl ;AkCl/, it is easily seen that f ı g D p2
and g ı f D p1. If we choose

Qp1 D

�
p1 0

0 0

�
; Qp2 D

�
p2 0

0 0

�
U D

�
f 1 � f ı g

1 � g ı f g

�
then we see that Qp2 D U Qp1U

�1. Since f; g both are A-linear maps, U is also an
A-linear map from Aq to Aq where q D 2.k C l/. Since A is unital, U 2 Mq.A/.
Hence U is bounded and induces a topological isomorphism between E1; E2.

Lemma 3.2. All Hermitian structures on a free module over A are isomorphic to
each other.

Proof. The canonical Hermitian structure onAq was given by h�; �iA D
Pq

kD1
��
k
�k .

We show that any other Hermitian structure is isomorphic to this one. Let h ; i0 W
Aq � Aq �! A be another Hermitian structure on Aq . Let fe1; : : : ; eqg be
standard basis of Aq . Let T D ..trs// be given by tsr D her ; esi

0. Then
h�; �i0 D

X
r;s

her�r ; es�si
0
D

X
r;s

��r her ; esi
0�s . That is, h�; �i0 D ��T �, where

T 2 Mq.A/ is positive-definite. Hence T is a positive element in the C �-algebra
Mq.B.H//. Note that for � 2 Aq , �� D .��1 ; : : : ; �

�
q / where � D .�1; : : : ; �q/.

We consider elements of Aq as column vector, whereas their � will denote row
vector. So here �� is a row vector and � is a column vector. We denote h ; i0

by h ; iT . Hence, Hermitian structures on Aq are parametrized by such T . We
show that T is one to one. Suppose T � D 0. Then for any � 2 E , we get
ˆ�.�/ D ��T � D .T �/�� D 0, showing ˆ� D 0. Since � 7�! ˆ� is an
isomorphism, we get � D 0. Hence T is one to one. To see T is onto, we pick
any � from Aq . Then � 7�! ��� is a A-linear map on Aq taking value in A (we are
dealing with right A-module). Hence there exists � in Aq such that,

ˆ�.�/ D �
�� D ��T � D .T �/��

Hence � D T � , showing T is onto. We defineeT W Aq �! AqeT .T �/ D �
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To show this map is continuous, let T �k ! T � in Aq . Then ��
k
T �! ��T � for any

� because multiplication is continuous with respect to the topology of Aq . Hence
ˆ�k ! ˆ� . By Lemma (3.1 ) � 7�! ˆ� is a continuous isomorphism. Hence we get
�k ! � , which shows continuity of eT . Thus T has a bounded inverse eT implying
spectrum of T is away from zero. Since T is positive,

p
T is a holomorphic function

of T . Now define,

‰ W Aq �! Aq

‰.�/ D
p
T �

Then, h�; �iT D ��T � D ��
p
T
p
T � D h‰.�/;‰.�/i. Since A is stable under

holomorphic functional calculus in B.H/, inverse of T i,e. eT lies in Mq.A/ �
Mq.B.H// (see [12]). Invertibility of T in Mq.A/ gives invertibility of ‰. So ‰
gives an isomorphism between the canonical Hermitian structure h ; iA on A and
Hermitian structure obtained throught T . Hence we are done.

Using this lemma we can conclude the following fact about Hermitian structures
on a f.g.p module which is also important in our calculation of Yang–Mills.

Theorem 3.3. Let E be a f.g.p A-module with a Hermitian structure. Then we can
have a self-adjoint idempotent p 2 Mq.A/ such that E D pAq and E has the
induced Hermitian structure.

Proof. Let E be a f.g.p A-module with a Hermitian structure h ; iE . Because E is
projective, we can have an A-module F such that E

L
F Š Aq for some natural

number q. Since F is also f.g.p A-module, by Lemma ( 2.2 ) F has a Hermitian
structure say h ; iF . Then E

L
F posseses a Hermitian structure h ; i given by,

h.e1; f1/; .e2; f2/i D he1; e2iE C hf1; f2iF :

i,e. we get a Hermitian structure on Aq coming from E and F . By our previous
lemma, this Hermitian structure is isomorphic with the canonical one. Note that E is
orthogonal to F with respect to this Hermitian structure. Let p be a projection from
Aq onto E , i,e. p.e C f / D e. Then E D pAq . Now,

hp.e1 C f1/; .e2 C f2/i D he1; e2iE C he1; f2iF

D he1; e2iE

D he1; p.e2 C f2/iE

D he1 C f1; p.e2 C f2/i:

which shows that p is self-adjoint. Once we have a self-adjoint p, we can now
restrict the Hermitian structure on Aq to E (recall proof of part .a/ of Lemma 2.2 )
and hence E has the induced Hermitian structure.
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4. Second approach to Yang–Mills

We first recall the differential graded algebra from [4].

Definition 4.1. A spectral triple .A;H;D/, over an algebra A with involution �,
consists of the following things :

(1) a � -representation of A on a Hilbert space H.

(2) an unbounded selfadjoint operator D.

(3) D has compact resolvent and ŒD; a� extends to a bounded operator on H for
every a 2 A.

We shall assume that A is unital and the unit 1 2 A acts as the identity on H.
If jDj�d is in the ideal of Dixmier traceable operators L.1;1/ then we say that the
spectral triple is .d;1/-summable.

Let ��.A/ D
1M
kD0

�k.A/ be the reduced universal differential graded algebra

over A . It is by definition equal to A in degree 0 and is generated by symbols da
(a 2 A) of degree 1 with the following presentation :

(1) d.ab/ D .da/b C adb .8 a; b 2 A/
(2) d1 D 0 .

The involution � of A extends uniquely to an involution on ��.A/ with the rule
.da/� D �da� . The differential d on ��.A/ is defined unambiguously by

d.a0da1 : : : dak/ D da0da1 : : : dak 8aj 2 A ;
and it satisfies the relations

(1) d2! D 08! 2 ��.A/,
(2) d.!1!2/ D .d!1/!2 C .�1/deg.!1/!1d!2 ; 8!j 2 ��.A/.
For ! 2 �k.A/ , deg.!/ D 0 ; C1 or �1 accordingly as whether k is zero, even or
odd. We get a � -representation � of ��.A/ on H by,

�.a0da1 : : : dak/ D a0ŒD; a1� : : : ŒD; ak� I aj 2 A:

Let J .k/0 D f! 2 �k W �.!/ D 0g and J 0 D
L
J
.k/
0 . Since J 0 fails to be a

differential graded ideal, the quotient ��=J 0 is not a differential graded algebra.
This problem can be overcome by letting J � D

L
J .k/ where J .k/ D J

.k/
0 C

dJ
.k�1/
0 . Then J � becomes a differential graded two-sided ideal and the quotient

��D D �
�=J � becomes a differential graded algebra.

The representation � gives an isomorphism,

�kD Š �.�
k/=�.dJ k�10 /:
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Arbitrary element of �kD can be viewed as a class of elements

� D
X
j

a
j
0 ŒD; a

j
1 � � � � ŒD; a

j

k
�

modulo the sub-bimodule of elements of the form,X
j

ŒD; b
j
0 �ŒD; b

j
1 � � � � ŒD; b

j

k�1
� W bjr 2 A I

X
j

b
j
0 ŒD; b

j
1 � � � � ŒD; b

j

k�1
� D 0 :

The abstract differential d induces a differential Qd on the complex ��D.A/ so that
we get a chain complex .��D.A/; Qd/ and a chain map �D W ��.A/! ��D.A/ such
that the following diagram

�D
��.A/ ��D.A/

�D
��C1.A/ ��C1D .A/

Qdd

commutes.
Suppose we are given a unital � -algebra A and a .d;1/-summable spectral

triple .A;H;D/ over A. We also assume A is closed under holomorphic function
calculus so that theorem (3.3) applies.
Definition 4.2. Let E be a Hermitian, f.g.p module over A. A compatible connection
on E is a C-linear mapping r W E �! E ˝A �

1
D such that,

(a) r.�a/ D .r�/aC � ˝ da; 8 � 2 E ; a 2 A;
(b) h �;r� i � hr�; � i D d h �; � iA 8 �; � 2 E (Compatibility).

The meaning of the last equality in �1D is, if r.�/ D
P
�j ˝ !j , with

�j 2 E , !j 2 �1D.A/, then hr�; �i D
P
!�j h�j ; �iA. Any f.g.p right module has a

connection. An example of a compatible connection is the Grassmannian connection
r0 on E D pAq , given by r0.�/ D pd�, where d� D .d�1; : : : ; d�q/. This
connection is compatible with the Hermitian structure,

h�; �iA D

qX
kD1

��k�k ; 8 �; � 2 pA
q:

Also, any two compatible connections can only differ by an element of HomA.E ,
E ˝A �

1
D.A//. That is, the space of all compatible connections on E , which we

denote by eC.E/, is an affine space with associated vector space HomA.E , E ˝A
�1D.A//. The connection r extends to a unique linear map er from E ˝ �1D to
E ˝�2D such that,er.� ˝ !/ D .r�/! C � ˝ Qd!; 8 � 2 E ; ! 2 �1D:
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It can be easily checked that er, defined above, satisfies the Leibniz rule, i.e.er.�a/ D er.�/a � � Qda ; 8 a 2 A; � 2 E ˝�1D :
A simple calculation shows that � D er ı r is an element of HomA.E ; E ˝A�

2
D/.

Our next goal is to define an inner-product on HomA.E ; E ˝A �
2
D/. In order to do

so, recall that �2D Š �.�2/=�.dJ
.1/
0 /. Let H2 be the Hilbert space completion of

�.�2/ with the inner-product

hT1; T2i D T r!.T
�
1 T2jDj

�d /; 8T1; T2 2 �.�
2/: (4.1)

Let eH2 be the Hilbert space completion of �.dJ .1/0 / with the above inner-product.
Clearly eH2 � H2. Let P be the orthogonal projection of H2 onto the orthogonal
complement of the subspace �.dJ .1/0 /. Now define h ŒT1�; ŒT2� i�2

D
D hPT1; P T2i;

for all ŒTj � 2 �2D . This gives a well defined inner-product on �2D . Viewing
E D pAq we see that HomA.E ; E ˝A �

2
D/ D HomA.pAq; pAq ˝A �

2
D/ Š

HomA.pA
q; p.�2D/

q/ , which is contained in HomA.Aq; .�2D/q/. Now for
�; 2 HomA.E ; E ˝A �

2
D/, define hh�; ii D

P
kh�.peek/;  .peek/i�2

D
where

fee1; : : : ; eeqg is the standard basis of Aq . Finally, the Yang–Mills functional on eC.E/
is given by,

YM .r/ D hh�;� ii : (4.2)

Remark 4.3. To see that this does not depend on the choice of the projection used
to describe E , let E Š p1Aq and E Š p2Al be two isomorphisms. Then there is a
unitary U 2MqCl.A/ such that fp2 D Ufp1U � where

fp1 D �p1 0

0 0

�
; fp2 D �p2 0

0 0

�
:

Hence w.l.o.g. we can assume l D n D q and there is a unitary U 2 Mn.A/
such that p2 D Up1U

�. Let M D fA 2 Mn.�
2
D/ W p1A D Ag and M0 D

fB 2 Mn.�
2
D/ W p2B D Bg. We have obvious bijections HomA.p1An; p1An ˝A

�2D/ �! M and HomA.p2An; p2An ˝A �
2
D/ �! M0 such that the induced

bijection ‰ W M ! M0 is given by A 7�! UA. Observe that ‰ makes sense
on Mn.�.�

2//. Using the inner product (4.1) we can convert Mn.�.�
2// into an

inner product space. Clearly ‰ is inner product preserving and respects �.dJ 10 /.
Recall that �2D Š �.�2/=�.dJ 10 /, hence ‰ induces an inner product preserving
map on Mn.�

2
D/. The equality hh�;� ii D hh‰.�/;‰.�/ ii shows that YM does

not depend on the choice of projection p in E D pAq .

5. Comparison between the two approaches

In this section we work out the Yang–Mills action functional in the second
formulation and show that this is same as the one coming from the C �-dynamical
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system formulation. Given a C �-dynamical system .A; G; ˛/ where G is a
connected Lie group with a G-invariant faithful trace � on A, we can consider
the G.N.S Hilbert space eH D L2.A; �/. If dimension of the Lie group G is
m, letting t D 2Œm=2� , we know that there exist m matrices in Mt .C/ denoted
by 
1; 
2; � � � ; 
m (called Clifford gamma matrices), such that, 
r
s C 
s
r D

2ırs ; r; s 2 f1; : : : ; mg , where ırs is the Kronecker delta function. In our
case of non-commutative n torus A� , the Lie group is Tn and hence we get n
Clifford gamma matrices 
1; : : : ; 
n . We define D WD

Pn
jD1 ıj ˝ 
j where

ıj D .�i/eıj (recall definition ofeıj from 2.3). Then D becomes self-adjoint on
H D eH˝CN with domain A� ˝CN , N D 2Œn=2�. Moreover jDj�n lies in L.1;1/
with T r!.jDj�n/ D 2N�n=2=.n.2�/n�.n=2// (see [7],Page 545) and .A�;H;D/
gives us a .n;1/-summable spectral triple. Following propositions determine the
A�-bimodules �1D and �2D upto bimodule isomorphisms :

Proposition 5.1. �1D Š A� ˚ � � � ˚A�„ ƒ‚ …
n times

.

Proof. We know that�1D Š �.�
1/. Let! 2 �1, so! D

P
j ajdbj ; aj ; bj 2 A� .

Then,

�.!/ D
X
j

.aj ˝ I /ŒD; bj �

D

X
j

 
nX
lD1

aj ıl.bj /˝ 
l

!
:

Since f
1; : : : ; 
ng �MN .C/ is a linearly independent set, their linear span forms a
n-dimensional vector space Cn where we identify 
l with ˛l D .0; : : : ; 1; : : : ; 0/ 2 Cn
with 1 in the l-th place. f˛1; : : : ; ˛ng is the canonical basis for Cn. Hence we get
�1D � A� ˝ Cn. To see surjectivity notice that for any a 2 A� , we can write
a D aU �

l
Ul D aU

�
l
ıl.Ul/ where the element aU �

l
d.Ul/ 2 �

1.

Remark 5.2. Henceforth throughout this article f�1; : : : ; �ng will denote the
standard basis of An� as free A�-bimodule where �k D .0; : : : ; 1; : : : ; 0/„ ƒ‚ …

n tuple

with 1 in

the k-th place; whereas fee1; : : : ;eeqg will stand for the standard basis of Aq� whereeel D .0; : : : ; 1; : : : ; 0/„ ƒ‚ …
q tuple

with 1 in the l-th place. We will reserve this notation in the

rest of this article. Under the identification in the above proposition, �k is identified
with U �

k
ık.Uk/˝ 
k in �1D for k 2 f1; : : : ; ng.

Proposition 5.3. �2D Š A� ˚ : : : : : :˚A�„ ƒ‚ …
n.n�1/=2 times

.
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Proof. We know that �2D Š �.�2/=�.dJ
.1/
0 /. Let ! 2 �2 and write ! DP

r ardbrdcr , where ar ; br ; cr 2 A� . Then,

�.!/ D
X
r

.ar ˝ I /ŒD; br �ŒD; cr �

D

X
r

.ar ˝ I /

0@ nX
jD1

ıj .br/˝ 
j

1A nX
kD1

ık.cr/˝ 
k

!

D

X
r

0@ nX
jD1

arıj .br/˝ 
j

1A nX
kD1

ık.cr/˝ 
k

!

D

X
r

0@0@ nX
jD1

arıj .br/ıj .cr/˝ I

1A
C

X
p<q

�
arıp.br/ıq.cr/ � arıq.br/ıp.cr/

�
˝ 
p
q

!
Since we know that, 
2

l
D I and 
l
m D �
m
l for l ¤ m, arıp.br/ıq.cr/˝


p
q C arıq.br/ıp.cr/ ˝ 
q
p D .arıp.br/ıq.cr/ � arıq.br/ıp.cr// ˝ 
p
q .
Now 
l
m is independent with all 
p
q if l; m … fp; qg. Hence, �.�2/ �
1Cn.n�1/=2M

lD1

A.l/� ; where A.l/� D A�; 8 l because total number of the elements

.arıp.br/ıq.cr/˝ 
p
q � arıq.br/ıp.cr/˝ 
p
q/ is n.n� 1/=2. To show equality
we take any non-zero a 2 A� and b D U1 ; c D U �1 . Then adU1dU �1 2 �

2 and
�.adU1dU

�
1 / D �a˝I is a non-zero element of �.�2/. Similarly for each p; q we

consider aU �q U
�
pd.Up/d.Uq/ 2 �

2. Then �.aU �q U
�
pd.Up/d.Uq// D a ˝ 
p
q .

This shows that the above inclusion is an equality.
Now we calculate �.dJ .1/0 /. We have ! 2 J .1/0 implies ! D

P
s asdbs where

as; bs 2 A� , such that
X
s

.as ˝ I /ŒD; bs� D 0. So we get,

X
s

.as ˝ I /

0@ nX
jD1

ıj .bs/˝ 
j

1A D 0;
that is,

nX
jD1

 X
s

asıj .bs/

!
˝ 
j D 0:

But, 
1; : : : ; 
n being linearly independent we get,X
s

asıj .bs/˝ 
j D 0; 8j D 1; : : : ; n: (5.1)
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Now d! D
X
s

dasdbs . So,

�.d!/ D
X
s

ŒD; as�ŒD; bs�

D

X
s

0@ nX
jD1

ıj .as/˝ 
j

1A nX
kD1

ık.bs/˝ 
k

!

D

X
s

 
.

nX
jD1

ıj .as/ıj .bs/˝ I /C : : :

C .ıp.as/ıq.bs/ � ıq.as/ıp.bs//˝ 
p
q C : : :

!
Now from eqn. ( 5.1 ) we get,X

s

ıp.as/ıq.bs/˝ 
p
q D �
X
s

asıpıq.bs/˝ 
p
q

and, X
s

ıq.as/ıp.bs/˝ 
q
p D �
X
s

asıqıp.bs/˝ 
q
p

Hence,

.ıp.as/ıq.bs/ � ıq.as/ıp.bs//˝ 
p
q D .�asıpıq.bs/C asıqıp.bs//˝ 
p
q

D 0

because, ıpıq D ıqıp ; 8p; q 2 f1; : : : ; ng. Hence, �.dJ .1/0 / � A� and to show
the equality take any a 2 A� . Consider ! D a.U �1 dU1 � 1=2�U

�2
1 d.U 21 // 2 �

1.
Then we get �.!/ D 0 but �.d!/ D a˝ I ¤ 0 (which also shows non-triviality of
!). Hence we conclude �.dJ .1/0 / Š �.A�/ Š A� .

Now we want to determine the differential Qd W �.A�/ �! �1D so that,
Qd.�.a// D �.da/; 8a 2 A� .

Lemma 5.4. Qd W �.A�/ �! �1D is given by, �.a/ 7�! .ı1.a/; : : : ; ın.a//.

Proof. Pick any element �.a/ 2 �.A�/. Then da 2 �1 and hence �.da/ D

ŒD; a� D

nX
jD1

ıj .a/˝ 
j . This is an element in�1D , which is isomorphic to An� and

under this isomorphism,
nX
jD1

ıj .a/ ˝ 
j goes to .ı1.a/; : : : ; ın.a// in An� . Hence

the above definition of Qd is justified.
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Next we want to determine the differential Qd W �1D �! �2D so that,
Qd.�.!// D �.d!/, 8! 2 �1.

Lemma 5.5. Qd W �1D �! �2D is given by,

.0; : : : ; a; : : : ; 0/ 7�! ..ıp.aU
�
j /ıq.Uj / � .ıq.aU

�
j /ıp.Uj ///1�p<q�n

for a in the j -th place.

Proof. For .0; : : : ; a; : : : ; 0/ 2 �1D with a in the j -th place, we have aU �j dUj 2 �
1,

such that �.aU �j dUj / is identified with .0; : : : ; a; : : : ; 0/. Now, d.aU �j dUj / D
d.aU �j /dUj , an element of �2. Now,

�.d.aU �j /dUj / D ŒD; aU
�
j �ŒD;Uj �

D

 
nX
lD1

ıl.aU
�
j /˝ 
l

! 
nX
kD1

ık.Uj /˝ 
k

!

D

nX
lD1

ıl.aU
�
j /ıl.Uj /˝ I

C

X
p<q

�
ıp.aU

�
j /ıq.Uj / � ıq.aU

�
j /ıp.Uj /

�
˝ 
p
q:

Under the isomorphism�2D Š An.n�1/=2� ,
X
p<q

.ıp.aU
�
j /ıq.Uj /�ıq.aU

�
j /ıp.Uj //˝


p
q goes to the required point in An.n�1/=2� .

Finally the product map is recognized by the following lemma.

Lemma 5.6. The product map eQ W �1D ��1D �! �2D is given by,

.a1; : : : ; an/:.b1; : : : ; bn/ WD ..apbq � aqbp//1�p<q�n

Proof. We have a product
Q
W �1 � �1 �! �2 given by

Q
.a1da2; b1db2/ D

a1da2b1db2 D a1d.a2b1/db2 � a1a2db1db2 . Choose two elements .a1; : : : ; an/

and .b1; : : : ; bn/ in �1D . We have seen previously that �.
nX

mD1

amU
�
md.Um// in

�.�1/ is identified with .a1; : : : ; an/. Similarly for bm inplace of am. Let

! D

nX
mD1

amU
�
md.Um/ and !0 D

nX
mD1

bmU
�
md.Um/:
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Now,

Y
.!; !0/ D

 
nX

mD1

amU
�
md.Um/

!0@ nX
jD1

bjU
�
j d.Uj /

1A
D

nX
m;jD1

amU
�
md.Um/bjU

�
j d.Uj /

D

nX
m;jD1

�
amU

�
md.UmbjU

�
j /d.Uj / � amd.bjU

�
j /d.Uj /

�
:

It is an element of �2. Applying � on it we get

�.
Y
.!; !0// D

nX
m;jD1

�
amU

�
mŒD;UmbjU

�
j �ŒD;Uj � � amŒD; bjU

�
j �ŒD;Uj �

�
D

nX
m;jD1

.amU
�
m.

nX
kD1

ık.UmbjU
�
j /˝ 
k/.

nX
lD1

ıl.Uj /˝ 
l/

� am.

nX
rD1

ır.bjU
�
j /˝ 
r/.

nX
sD1

ıs.Uj /˝ 
s//

D

X
p<q

.

nX
m;jD1

amU
�
mıp.UmbjU

�
j /ıq.Uj /

�

nX
m;jD1

amU
�
mıq.UmbjU

�
j /ıp.Uj / �

nX
m;jD1

amıp.bjU
�
j /ıq.Uj /

C

nX
m;jD1

amıq.bjU
�
j /ıp.Uj //˝ 
p
q:

For each p and q,

X
p<q

.

nX
m;jD1

.amU
�
mıp.UmbjU

�
j /ıq.Uj / �

nX
m;jD1

amU
�
mıq.UmbjU

�
j /ıp.Uj /

�

nX
m;jD1

amıp.bjU
�
j /ıq.Uj /C

nX
m;jD1

amıq.bjU
�
j /ıp.Uj //
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D

nX
mD1

.amU
�
mıp.UmbqU

�
q /Uq � amıp.bqU

�
q /Uq

C amıq.bpU
�
p /Up � amU

�
mıq.UmbpU

�
p /Up/

D

nX
mD1

.amU
�
mıp.Umbq/ � amıp.bq/

C amıq.bp/ � amU
�
mıq.Umbp//

D

nX
mD1

.amU
�
mıp.Um/bq � amU

�
mıq.Um/bp/

D apbq � aqbp:

Hence for .a1; : : : ; an/; .b1; : : : ; bn/ 2 �1D , we get eQ..a1; : : : ; an/; .b1; : : : ; bn// D
..apbq � aqbp//1�p<q�n .

It can be easily checked that both the Qd , defined above, are derivations. We first
prove the following lemmas which will help us in the computation.
Lemma 5.7. The canonical trace � on A� equals 1=T r!.jDj�n/

R
where T r!

denotes Dixmier trace and
R
a WD T r!..a˝ I /jDj

�n/ for all a 2 A� .

Proof. We have �.a/ D �.˛g.a//; 8 g 2 Tn because � is G-invariant on A� .
The G.N.S Hilbert space L2.A�; �/ is identified with l2.Zn/. For g 2 Tn,
˛g.U

k1
1 : : : U

kn
n / D gkU

k1
1 : : : U

kn
n . Here g D .g1; : : : ; gn/ 2 Tn ; gk D

g
k1
1 : : : g

kn
n . Define,

Ug W L
2.A�; �/ �! L2.A�; �/
a 7�! ˛g.a/

It is easy to check this map is isometry with dense range. Hence extends as unitary
onL2.A�; �/. For ek 2 l

2.Zn/, Ug.ek/ D gkek. SinceD.ek˝M/ D
Pn
jD1 kj ek˝


jM forM 2MN .C/, it follows thatD.Ug˝I / D .Ug˝I /D onL2.A� ; �/˝CN .
But .Ug˝I /D.U

�
g ˝I / D D) .Ug˝I /jDj.U

�
g ˝I / D jDjwhich further implies

.Ug ˝ I /jDj
�n.U �g ˝ I / D jDj

�n. Hence,

T r!..UgaU
�
g ˝ I /jDj

�n/ D T r!..Ug ˝ I /.a˝ I /jDj
�n.U �g ˝ I //

D T r!..a˝ I /jDj
�n/

which shows that 1=T r!.jDj�n/
R

is also a G-invariant trace on A� . Now unique-
ness of G-invariant trace on A� gives �.a/ D T r!..a ˝ I /jDj

�n/=T r!.jDj
�n/

where T r!.jDj�n/ is a positive constant.

Lemma 5.8. If f
1; : : : ; 
ng are Clifford gamma matrices inMN .C/ then they enjoys
the property T race.
l
m/ D 0 for l ¤ m.
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Proof. This follows immediately from the fact that Clifford gamma matrices satisfy
the relation 
l
m C 
m
l D 2ılm for all l; m.

Lemma 5.9. The positive linear functional
R
W T 7�! T r!.T jDj

�n/=T r!.jDj
�n/,

for T 2 MN .A�/, equals with � ˝ T race , where ‘T race’ denotes the ordinary
matrix trace (normalized) on MN .C/.

Proof. SinceD2 D
P
ı2j ˝IN , jDj�n commutes with 1˝MN .C/ it follows that

R
is a trace onMN .A�/ Š A�˝MN .C/. Our requirement is now fulfilled because of
the fact that � ˝ T race is the unique extention (normalized) of � on MN .A�/.

Lemma 5.10. If l ¤ m then any a ˝ 
l
m lies in the range of P where P was the
orthogonal projection onto the orthogonal complement of �.dJ .1/o / � �2D .

Proof. Recall that any element of �.dJ .1/0 / looks like x˝ I . Now h a˝ 
l
m ; x˝
I i�.�2/ D T r!..a

�x ˝ 
l
m/jDj
�n/ D T r!.jDj

�n/�.a�x/T race .
l
m/ D 0,
since T race .
l
m/ D 0 by Lemma ( 5.8 ).

Now we are ready to calculate the Yang–Mills for A� . Since �1D Š An� , any
compatible connectionr W E �! E˝�1D is given by n-tuple of maps .r1; : : : ;rn/,
where rj W E �! E such that,

r.�/ D

nX
jD1

rj .�/˝ �j (5.2)

h�;rj .�/i � hrj .�/; �i D ıj .h�; �iA� /: (5.3)

Here f�1; : : : ; �ng is the standard basis of An� as free A�-bimodule. Then er W
E˝�1D �! E˝�2D is given by, er.�˝�m/ D

0@ nX
jD1

rj .�/˝ �j

1A �mC�˝ Qd.�m/
for each m D 1; : : : ; n.

Proposition 5.11. The curvature � D er ır is given by
P
m<j Œrm;rj �.:/˝�m�j

where �m; �j 2 An� and �m�j is the element in An.n�1/=2� produced by the product
map eQ of Lemma . 5:6/.
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Proof. Through direct computation we get,

�.�/ D er ı r.�/
D

nX
mD1

er.rm.�/˝ �m/
D

X
m

0@.X
j

rj .rm.�//˝ �j /�m Crm.�/˝ Qd.�m/

1A
D

X
m;j

rj .rm.�//˝ �j�m Crm.�/˝ Qd.�m/

D

X
m<j

Œrm;rj �.�/˝ �m�j C
X
m

rm.�/˝ Qd.�m/:

But,X
m

rm.�/˝ Qd.�m/ D
X
m

rm.�/˝..ıp.U
�
m/ıq.Um/�ıq.U

�
m/ıp.Um//1�p<q�n D 0

because ıj .U �m/ D �U
�
mıj .Um/U

�
m. Hence � D

X
m<j

Œrm;rj � ˝ �m�j .

Proposition 5.12. YM.r/ D
X
m<j

�q.Œrm;rj �
�Œrm;rj �/ upto a positive factor

where �q denotes the extended trace � ˝ T race on Mq.A�/.

Proof. Recall that hh�;�ii D
qX
kD1

h�.peek/;�.peek/ i�2
D

where fee1; : : : ;eeqg
denotes standard basis of Aq� and E D pAq� . Let Œrm;rj �.peek/ D �.mjk/ D

p�.mjk/ D .�
.mjk/
1 ; : : : ; �

.mjk/
q / 2 Aq� . Then from proposition ( 5.11 ) we get

�.peek/ DX
m<j

.�
.mjk/
1 �m�j ; : : : ; �

.mjk/
q �m�j / ;

an element of .�2D/
q . It is easily seen that as C vector spaces Hom.E ; E ˝

�2D/ Š
L
Hom.E ; E/. We can view End.E/ as pMq.A�/p � Mq.A�/. We

have an inner-product on
L
Mq.A�/ given by h.A1; : : : ; At /; .B1; : : : ; Bt /i D

tX
jD1

�q.A
�
jBj /. Following calculation shows this inner-product becomes same with

the one on Hom.E ; E ˝�2D/.



468 P. S. Chakraborty and S. Guin

h�.peek/;�.peek/i D X
m<j;l<r

h .�
.mjk/
1 �m�j ; : : : ; �

.mjk/
q �m�j / ;

.�
.lrk/
1 �l�r ; : : : ; �

.lrk/
q �l�r/ i

D

X
m<j;l<r

qX
sD1

h �.mjk/s �m�j ; �
.lrk/
s �l�r i�2

D

D

X
m<j;l<r

qX
sD1

h Œ�.mjk/s ˝ 
m
j � ; Œ�
.lrk/
s ˝ 
l
r � i�2

D

D

X
m<j;l<r

qX
sD1

hP.�.mjk/s ˝ 
m
j / ; P.�
.lrk/
s ˝ 
l
r/ i�.�2/

D

X
m<j;l<r

qX
sD1

T r!

�
.�.mjk/s

�
�.lrk/s ˝ 
j 
m
l
r/jDj

�n
�
:

Last equality follows from Lemma (5.10). Now use of Lemma (5.8) and (5.9) shows
the following,

hh�;�ii D T r!.jDj
�n/

qX
kD1

X
m<j

qX
sD1

�
�
�.mjk/s

�
�.mjk/s

�
D T r!.jDj

�n/

qX
kD1

X
m<j

�
�
h Œrm;rj �.peek/ ; Œrm;rj �.peek/ iA� �

D T r!.jDj
�n/

qX
kD1

X
m<j

�
�
hpeek ; Œrm;rj ��Œrm;rj �.peek/ iA� �

D T r!.jDj
�n/

X
m<j

�q
�
Œrm;rj �

�Œrm;rj �
�
:

The last equality follows from the fact that for any T D ..trs// 2 pMq.A�/p where

p 2 Mq.A�/ is a projection,
qX
kD1

heek; TeekiA� D qX
kD1

hpeek; Tpeek iA� D qX
rD1

trr .

Hence follows the proposition.

Recall that fe1; : : : ; eng denotes the standard basis choosen for Rn and f�1; : : : ; �ng
is the standard basis of �1D . We have an one to one correspondence between these
sets, both being finite sets of same cardinality. The following theorem points out the
main result.
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Theorem 5.13. Let C.E/ and eC.E/ denote the affine space of compatible connec-
tions for the first and second approaches respectively. Then both these are in one
to one correspondence through an affine isomorphism, and the value of Yang–Mills
functional on corresponding elements of these spaces are same upto a positive scalar
factor. That is to say the following diagram commutes.

C.E/ eC.E/

RC [ f0g

ˆ

YMcYM

where c D 2N�n=2=.n.2�/n�.n=2//:

Proof. Recall from equation (2.4) for any r 2 C.E/, r.�/ D
Pn
jD1 rj .�/ ˝ ej

where rj W E �! E . We define ˆ.r/ D er where,

er.�/ D nX
jD1

.�i/rj .�/˝ �j

It is easy to see that er defines a connection. Given compatibility of r , we have to
check whether er is compatible with respect to the Hermitian structure. This follows
from a direct calculation.

h �;er.�/ i � her.�/; � i D nX
jD1

.h �; .�i/rj .�/˝ �j i � h .�i/rj .�/˝ �j ; � i /

D

nX
jD1

. h �;rj .�/ iA� .�i/�j � i�
�
j h rj .�/; � iA� /

D

nX
jD1

. h �;rj .�/ iA� .�i/�j � i�j h rj .�/; � iA� /

D .�i/.h �;r1.�/iA� C hr1.�/; � iA� ; : : : ;

h �;rn.�/iA� C hrn.�/; � iA� /

D .�i/.eı1. h �; � iA� /; : : : ; eın. h �; � iA� //
D .ı1. h �; � iA� /; : : : ; ın. h �; � iA� //

D Qd . h �; � iA� /:

which shows compatibility of er with respect to the Hermitian structure and henceer belongs to eC.E/. Conversely, for given er 2 eC.E/ recall from equation (5.2) that
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er.�/ D nX
jD1

erj .�/˝ �j where erj W E �! E . We define ˆ�1.er/ D r where,

r.�/ D

nX
jD1

ierj .�/˝ ej
An absolutely similar computation shows the compatibility of r. So elements of
C.E/ and eC.E/ are in one-one correspondence. Recall from equation ( 2.6 ), for
finitely generated projective A�-module E D pAq� we obtained for r 2 C.E/,

YM.r/ D
X
j<k

e�.Œrj ;rk��Œrj ;rk�/
where e� was the trace on End.E/. For ˆ.r/ D er we obtain from Proposi-
tion ( 5.12 ) ,

YM.er/ D T r!.jDj�n/X
j<k

�q.Œrj ;rk�
�Œrj ;rk�/

where �q was the extended trace of � on Mq.A�/. Identifying End.E/ with
pMq.A�/p �Mq.A�/we see that bothe� and �q are equal with �˝T race. Hence
follows the equality of Yang–Mills for both the approaches except for the positive
scalar factor T r!.jDj�n/ D 2N�n=2=.n.2�/n�.n=2//.

Remark 5.14. The question studied here makes sense whenever we have a C �-
dynamical system with an invariant trace. Now, Kang has already considered
([8]) the dynamical system approach to Yang–Mills for the quantum Heisenberg
manifolds. Even in that case we have shown ([2]) that both these approaches agree.

Acknowledgements. We are thankful to an anonymous referee for inspiring us to
explore the nonsimple case.
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