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Abstract. In this paper we study the curved geometry of noncommutative 4-tori T4
�

. We
use a Weyl conformal factor to perturb the standard volume form and obtain the Laplacian
that encodes the local geometric information. We use Connes’ pseudodifferential calculus to
explicitly compute the terms in the small time heat kernel expansion of the perturbed Laplacian
which correspond to the volume and scalar curvature of T4

�
. We establish the analogue of Weyl’s

law, define a noncommutative residue, prove the analogue of Connes’ trace theorem, and find
explicit formulas for the local functions that describe the scalar curvature of T4

�
. We also study

the analogue of the Einstein–Hilbert action for these spaces and show that metrics with constant
scalar curvature are critical for this action.
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1. Introduction

Spectral geometry has played an important role in the development of metric aspects
of noncommutative geometry [6, 8, 10, 9]. After the seminal paper [12], in which the
analogue of the Gauss–Bonnet theorem is proved for noncommutative two tori T2

�
,

there has been much progress in understanding the local differential geometry of
these noncommutative spaces [15, 11, 16, 17]. In these works, the flat geometry
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of T2
�

which was studied in [5] is conformally perturbed by means of a Weyl factor
given by a positive invertible element in C1.T2

�
/ (see also [4] for a preliminary

version). The pseudodifferential calculus developed in [5] forC �-dynamical systems
is employed crucially to apply heat kernel techniques to geometric operators on T2

�

to derive small time heat kernel expansions that encode local geometric information
such as scalar curvature. A purely noncommutative feature is the appearance of the
modular automorphism of the state implementing the conformal perturbation of the
metric in the computations and in the final formula for the curvature [11, 16].

In this paper we study the curved geometry of noncommutative 4-tori T4
�
. We

view these spaces as noncommutative abelian varieties equipped with a complex
structure given by the simplest possible period matrix. We use a Weyl conformal
factor to perturb the standard volume form and obtain the Laplacian that encodes
the local geometric information. We use the pseudodifferential calculus of [5] to
explicitly compute the terms in the small time heat kernel expansion of the perturbed
Laplacian which correspond to the volume and scalar curvature of T4

�
. We establish

the analogue of Weyl’s law, define a noncommutative residue, prove the analogue
of Connes’ trace theorem [7], and find explicit formulas for the local functions that
describe the scalar curvature of T4

�
. We also study the analogue of the Einstein–

Hilbert action for these spaces and show that metrics with constant scalar curvature
are critical for this action.

This paper is organized as follows. In Section 2, we recall basic facts about higher
dimensional noncommutative tori and their flat geometry. In Section 3, we consider
the noncommutative 4-torus T4

�
with the simplest structure of a noncommutative

abelian variety. We perturb the standard volume form on this space conformally
(cf. [12]), and analyse the corresponding perturbed Laplacian. Then, we recall the
pseudodifferential calculus of [5] for T4

�
and review the derivation of the small time

heat kernel expansion for the perturbed Laplacian, using this calculus. In Section 4,
we prove the analogue of Weyl’s law for T4

�
by studying the asymptotic distribution

of the eigenvalues of the perturbed Laplacian on this space. We then define a
noncommutative residue on the algebra of classical pseudodifferential operators
on T4

�
, and show that it gives the unique continuous trace on this algebra. We also

prove a trace theorem for T4
�

by showing that this noncommutative residue and the
Dixmier trace coincide on pseudodifferential operators of order �4. In Section 5, we
perform the computation of the scalar curvature for T4

�
, and find explicit formulas for

the local functions that describe the curvature in terms of the modular automorphism
of the conformally perturbed volume form and derivatives of the logarithm of the
Weyl factor. Then, by integrating this curvature, we define and find an explicit
formula for the analogue of the Einstein–Hilbert action for T4

�
. Finally, we show

that the extremum of this action occurs at metrics with constant scalar curvature (see
[3] for the corresponding commutative statement).

We are indebted to Alain Connes for several enlightening discussions at different
stages of this work. Also, F. F. would like to thank IHES for the excellent
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environment and kind support during his visit in Winter 2012, where part of this
work was carried out.

2. Noncommutative tori

In this section we recall basic facts about higher dimensional noncommutative tori
and their flat geometry.

2.1. Noncommutative real tori. Let V be a finite dimensional real vector space
equipped with a positive definite inner product h ; i and let � W V ˝ V ! R be a
skew-symmetric bilinear form on V . Let ƒ � V be a cocompact lattice in V . Thus
ƒ is a discrete abelian subgroup of V such that the quotient space V=ƒ is compact.
Equivalently, we can describe ƒ as ƒ D Ze1 C � � � C Zen, the free abelian group
generated by a linear basis e1; : : : ; en for V .

By definition, the noncommutative torus C.Tn
�
/, attached to the above data, is

the universal unital C �-algebra generated by unitaries U˛; ˛ 2 ƒ, satisfying the
relations

U˛Uˇ D e
�i�.˛;ˇ/U˛Cˇ ; ˛; ˇ 2 ƒ:

Let e1; : : : ; en be a basis for ƒ over Z, and let Ui D Uei . Then we have

UkUl D e
2�i�klUlUk; k; l D 1; : : : ; n;

where �kl D �.ek; el/.
Let ƒ0 � V denote the dual lattice. Thus v 2 ƒ0 iff hv;wi 2 2�Z for all

w 2 ƒ. There is a continuous action of the dual torus V=ƒ0 on C.Tn
�
/ by C �-

algebra automorphisms f�sgs2V , defined by

�s.U˛/ D e
ihs;˛iU˛:

The space of smooth elements of this action, namely those elements a 2 C.Tn
�
/

for which the map s ! �s.a/ is smooth will be denoted by C1.Tn
�
/. It

is a dense �-subalgebra of C.Tn
�
/ which plays the role of smooth functions on

the noncommutative torus Tn
�
. It can be alternatively described as the algebra

of elements in C.Tn
�
/ whose (noncommutative) Fourier expansion has rapidly

decreasing Schwartz class coefficients:

C1.Tn� / D
nX
˛2ƒ

a˛U˛I sup
˛2ƒ

.j˛jkja˛j/ <1; 8k 2 N
o
:

There is a normalized faithful positive trace, i.e. a tracial state, '0 on C.Tn
�
/ whose

restriction on smooth elements is given by

'0

� X
˛2Zn

a˛U˛

�
D a0:
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The infinitesimal generator of the action �s defines a Lie algebra map

ı W V ! Der.C1.Tn� /; C
1.Tn� //; (2.1)

where we have used the natural identification of the (abelian) Lie algebra of the torus
V=ƒ0 with V .

Let us fix an orthonormal basis e1; : : : ; en for V . Then the restriction of the
above map ı defines commuting derivations ıi WD ı.ei / W C

1.Tn
�
/ ! C1.Tn

�
/;

i D 1; : : : ; n; which satisfy

ıi .Uj / D ıijUi ; i; j D 1; : : : ; n:

The derivations ıj are analogues of the differential operators 1
i
@=@xj acting

on smooth functions on the ordinary torus. We have ıj .a�/ D �ıj .a/� for
j D 1; : : : ; n; and any a 2 C1.Tn

�
/. Moreover, since '0 ı ıj D 0, for all j ,

we have the analogue of the integration by parts formula:

'0.aıj .b// D �'0.ıj .a/b/; a; b 2 C1.Tn� /:

Using these derivations, we can define the flat Laplacian

4 D

nX
iD1

ı2i W C
1.Tn� /! C1.Tn� /:

We note that the Laplacian 4 is independent of the choice of the orthonormal basis
e1; : : : ; en:

2.2. Noncommutative complex tori. Let W be an n-dimensional complex vector
space andƒ � W be a lattice inW . Thusƒ is a free abelian group of rank 2nwhich
is discrete in its subspace topology. Given a basis e1; : : : ; en of W as a complex
vector space and a basis �1; : : : ; �2n of ƒ as a free abelian group, we can express
�1; : : : ; �2n in terms of e1; : : : ; en. We obtain an n by 2n matrix M D .A;B/ with
A;B 2Mn.C/ with

�j D

nX
iD1

Mij ei ; j D 1; : : : ; 2n:

Let WR denote the realification of W . Note that �1; : : : ; �2n is a basis for WR
over R. Let dz1; : : : ; dzn denote the basis of W � D HomC .W;C/, dual to the basis
e1; : : : ; en, and let dx1; : : : ; dx2n denote the basis of W �R D HomR .W;R/; dual to
the basis �1; : : : ; �2n. Then we have for i D 1; : : : ; n,

dzi D

2nX
jD1

Mijdxj ; d Nzi D

2nX
jD1

NMijdxj :
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Now let � W WR ˝ WR ! R be an alternating bilinear form and Tn
�

denote the
associated noncommutative torus. We further assume that WR is equipped with an
Euclidean inner product. Using (2.1), we get the derivations

ıi D ı�i W C
1.Tn� /! C1.Tn� /; i D 1; : : : ; 2n:

The above relations define the Dolbeault operators which will be denoted by
@i ; N@i ; i D 1; : : : ; n:

We have a decomposition WR ˝ C D W.1;0/ ˚ W.0;1/ with W.1;0/ D W and
W.0;1/ D NW with the bases e1; : : : ; en for W.1;0/ and Ne1; : : : ; Nen for W.0;1/: Let dzi
and d Nzj denote the corresponding bases for dual spaces W �

.1;0/
D HomC.W.1;0/;C/

andW �
.0;1/

: Using this decomposition we can define a Dolbeault type complex for on
C1.Tn

�
/ as follows. Let

�p;q WD C1.Tn� /˝^
pW �.1;0/ ˝^

qW �.0;1/;

and define the operators

@i W �
p;q
! �pC1;q; N@i W �

p;q
! �p;qC1:

by

@i .adzI ^ d NzJ / D
X
i

@i .a/dzi ^ dzI ^ d NzJ ;

N@i .adzI ^ d NzJ / D
X
i

N@i .a/d Nzi ^ dzI ^ d NzJ :

Suppressing the obvious indexing, these operators satisfy the relations

@2 D 0; N@2 D 0; @N@C N@@ D 0:

Let Hn � Mn.C/ denote the Siegel upper half space. By definition, a matrix
� 2 Hn if and only if

�t D � and Im� > 0:

For n D 1, H1 is the Poincaré upper half plane. The following two conditions are
known to be equivalent for a lattice ƒ � W : i) The complex torus W=ƒ can be
embedded, as a complex manifold, in a complex projective space PN .C/; ii) There
exists a basis .e1; : : : ; en/ of W , and a basis .�1; : : : ; �2n/ of ƒ such that the matrix
of .�1; : : : ; �2n/ in the basis .e1; : : : ; en/ is of the form

.�k; �/;

where k D .k1; : : : ; kn/ is a sequence of integers ki 2 Z, �k D diag .k1; : : : ; kn/
is a diagonal matrix, and � 2 Hn. A noncommutative torus Tn

�
attached to

a pair .W;ƒ/ satisfying the equivalent conditions i) or ii) can be regarded as a
noncommutative abelian variety.
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3. Laplacian and its heat kernel

In this section we consider the curved geometry of noncommutative 4-tori and
analyse the corresponding Laplacian. We also recall the pseudodifferential calculus
of [5] for these spaces and review the derivation of small time heat kernel expansions
using this calculus.

3.1. Perturbed Laplacian on T4
�
. We consider the construction of Section 2 for

the noncommutative 4-torus T4
�
, the matrix � D iI2�2 in the Siegel upper half

space H2, and k1 D k2 D 1. That is, we consider the complex structure on T4
�

which is introduced by setting @; N@ W C1.T4
�
/! C1.T4

�
/˚ C1.T4

�
/ as

@ D @1 ˚ @2; N@ D N@1 ˚ N@2;

where

@1 D ı1 � iı3; @2 D ı2 � iı4;

N@1 D ı1 C iı3; N@2 D ı2 C iı4:

We consider the inner product

.a; b/ D '0.b
�a/; a; b 2 C.T4� /; (3.1)

and denote the Hilbert space completion of C.T4
�
/ with respect to this inner product

by H0. Since the derivations ıi are formally selfadjoint with respect to the above
inner product, we have

@�@ D ı21 C ı
2
2 C ı

2
3 C ı

2
4 ;

which is the flat Laplacian4 introduced in Section 2. The reason for this coincidence
is that the underlying metric is Kähler when we have the non-perturbed standard
volume form '0. Therefore, the ordinary Laplacian and the Dolbeault Laplacian
agree with each other in this case.

In order to perturb the above Laplacian conformally, following [4, 12], we
consider a selfadjoint element h 2 C1.T4

�
/ and perturb the volume form '0 by

replacing it with the linear functional ' W C.T4
�
/! C defined by

'.a/ D '0.ae
�2h/; a 2 C.T4� /:

This is a non-tracial state which is a twisted trace, and satisfies the KMS condition
at ˇ D 1 for the 1-parameter group f�tgt2R of inner automorphisms

�t .a/ D e
2ithae�2ith; a 2 C.T4� /:

The inner product associated with this linear functional is given by

.a; b/' D '.b
�a/; a; b 2 C.T4� /:
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We denote the Hilbert space completion of C.T4
�
/ with respect to this inner product

by H' , and write the analogue of the de Rham differential on T4
�

as

d D @˚ N@ W H' ! H.1;0/
' ˚H.0;1/

' :

Here, we view d as an operator from H' to the corresponding Hilbert space
completion of the analogue of 1-forms, namely the direct sum of the linear span
of fa@bI a; b 2 C1.T4

�
/g and fa N@bI a; b 2 C1.T4

�
/g.

Now we define the perturbed Laplacian

4' D d
�d;

which is an unbounded operator acting in H' . We will see in the following lemma
that 4' is anti-unitarily equivalent to a differential operator acting in H0, and
because of this equivalence, we identify these operators with each other in the sequel.

Lemma 3.1. The perturbed Laplacian 4' is anti-unitarily equivalent to the
operator

eh N@1e
�h@1e

h
C eh@1e

�h N@1e
h
C eh N@2e

�h@2e
h
C eh@2e

�h N@2e
h;

acting in H0.

Proof. It follows easily from the argument given in the proof of the following lemma.

Let h0; h00 2 C1.T4
�
/ be selfadjoint elements, and H , H0, H1 respectively be

the Hilbert space completion of C.T4
�
/ with respect to the inner products defined by

.a; b/ D '0.b
�a/; .a; b/0 D '0.b

�ae�h
0

/; .a; b/1 D '0.b
�ae�h

00

/;

for any a; b 2 C.T4
�
/. We recall the operator @1 D ı1� iı3 W H ! H and its adjoint

N@1 D ı1 C iı3.

Lemma 3.2. Let @0;1 be the same map as @1 viewed as an operator from H0 to H1.
Then its adjoint is given by

@�0;1.y/ D
N@1.ye

�h00/eh
0

;

and the operator @�0;1@0;1 W H0 ! H0 is anti-unitarily equivalent to

eh
0=2@1e

�h00 N@1e
h0=2
W H ! H;

where eh
0

; e�h
00

; eh
0=2 act by left multiplication.
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Proof. Right multiplication by eh
0=2 extends to a unitary map from H to H0, which

we denote by W0. Similarly, right multiplication by e�h
00=2 extends to a unitary map

from H1 to H , which will be denoted by W1. So we have

W1@0;1W0 D Re�h00=2@1Reh0=2 :

Therefore, we have

W �0 @
�
0;1W

�
1 W1@0;1W0 D Reh0=2

N@1Re�h00=2Re�h00=2@1Reh0=2 :

Thus @�0;1@0;1 is unitarily equivalent to

Reh0=2
N@1Re�h00=2Re�h00=2@1Reh0=2 :

Conjugating the latter with the anti-unitary involution J.a/ D a�, one can see that it
is anti-unitarily equivalent to

eh
0=2@1e

�h00 N@1e
h0=2:

3.2. A pseudodifferential calculus for T4
�
. A pseudodifferential calculus was

developed in [5] for C �-dynamical systems. Here we briefly recall this calculus for
the canonical dynamical system defining the noncommutative 4-torus, and will use it
in the sequel to apply heat kernel techniques [19, 12] to the perturbed Laplacian4'
on T4

�
.

A differential operator of order m 2 Z�0 on T4
�

is an operator of the formX
j`j�m

a`ı
`1
1 ı

`2
2 ı

`3
3 ı

`4
4 ;

where ` D .`1; `2; `3; `4/ 2 Z4�0; j`j D `1 C `2 C `3 C `4; a` 2 C
1.T4

�
/: We

first recall the definition of the operator valued symbols, using which, the notion
of differential operators on T4

�
extends to the notion of pseudodifferential operators

[5]. For convenience, we will use the notation @j for the partial derivatives @
@�j

with

respect to the coordinates � D .�1; : : : ; �4/ 2 R4, and for any ` 2 Z4�0; we denote

`1Š`2Š`3Š`4Š by `Š, �`11 �
`2
2 �

`3
3 �

`4
4 by �`, @`11 @

`2
2 @

`3
3 @

`4
4 by @`, ı`11 ı

`2
2 ı

`3
3 ı

`4
4 by ı`, and

U
`1
1 U

`2
2 U

`3
3 U

`4
4 by U `.

Definition 3.3. A smooth map � W R4 ! C1.T4
�
/ is said to be a symbol of order

m 2 Z, if for any set of non-negative integers i; j 2 Z4�0, there exists a constant c
such that

jj@j ıi
�
�.�/

�
jj � c.1C j�j/m�jj j;

and if there exists a smooth map k W R4 n f0g ! C1.T4
�
/ such that

lim
�!1

��m�.��/ D k.�/; � 2 R4 n f0g:
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The space of symbols of order m is denoted by Sm. The pseudodifferential
operator P� W C1.T4� /! C1.T4

�
/ associated to a symbol � 2 Sm is given by

P�.a/ D .2�/
�4

Z Z
e�is���.�/˛s.a/ ds d�; a 2 C1.T4� /;

where f˛sgs2R4 is the group of C �-algebra automorphisms defined by

˛s.U
`/ D eis�`U `; ` 2 Z4;

which was explained in more generality in Subsection 2.1. For example, the
differential operator

P
a`ı

` is associated with the symbol
P
a`�

` via the above
formula.

The pseudodifferential operators on T4
�

form an algebra and there is an asymp-
totic expansion for the symbol of the composition of two such operators. There
is also an asymptotic formula for the symbol of the formal adjoint of a pseudod-
ifferential operator, where the adjoint is taken with respect to the inner product
given by (3.1). We explain this in the following proposition in which the relation
� �

P1
jD0 �j for given symbols �; �j means that for any k 2 Z, there exists an

N 2 Z�0 such that � �
Pn
jD0 �j 2 Sk for any n > N .

Proposition 3.4. Let � 2 Sm and �0 2 Sm0 . There exists a unique � 2 SmCm0 such
that

P� D P�P�0 :

Moreover,

� �
X
`2Z4
�0

1

`Š
@`�.�/ ı`.�0.�//:

There is also a unique � 2 Sm such that P� is the formal adjoint of P�, and

� �
X
`2Z4
�0

1

`Š
@`ı`

�
�.�/

��
:

Elliptic pseudodifferential operators on T4
�

are defined to be those whose symbols
have the following property:

Definition 3.5. A symbol � 2 Sm is said to be elliptic if �.�/ is invertible for any
� ¤ 0, and if there exists a constant c such that

jj�.�/�1jj � c.1C j�j/�m;

when j�j is sufficiently large.

As an example, the flat Laplacian4 D ı21 C ı
2
2 C ı

2
3 C ı

2
4 is an elliptic operator

of order 2 since its symbol is �.�/ D �21 C �
2
2 C �

2
3 C �

2
4 , which satisfies the above

criterion.
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3.3. Small time asymptotic expansion for Trace.e�t4' /. Geometric invariants of
a Riemannian manifold, such as its volume and scalar curvature, can be computed by
considering small time heat kernel expansions of its Laplacian. Pseudodifferential
calculus may be employed to compute the terms of such expansions (cf. [19]).
One can use the pseudodifferential calculus of [5] to apply similar heat kernel
techniques in order to compute geometric invariants of noncommutative spaces
[12, 11, 15, 16, 17]. Here, we briefly explain this method and derive the small time
asymptotic expansion for the trace of e�t4' , where 4' is the perturbed Laplacian
on T4

�
introduced in Subsection 3.1. First we need to compute the symbol of this

differential operator.

Lemma 3.6. The symbol of4' is equal to a2.�/C a1.�/C a0.�/; where

a2.�/ D e
h

4X
iD1

�2i ; a1.�/ D

4X
iD1

ıi .e
h/�i ;

a0.�/ D

4X
iD1

�
ı2i .e

h/ � ıi .e
h/e�hıi .e

h/
�
:

Proof. It follows easily from the symbol calculus explained in Proposition 3.4.

Using the Cauchy integral formula, one has

e�t4' D
1

2�i

Z
C

e�t�.4' � �/
�1 d�; (3.2)

where C is a curve in the complex plane that goes around the non-negative real axis
in such a way that

e�ts D
1

2�i

Z
C

e�t�.s � �/�1 d�; s � 0:

Appealing to this formula, one can use the pseudodifferential calculus to employ
similar arguments to those in [19] and derive an asymptotic expansion of the form

Trace.e�t4' / � t�2
1X
nD0

B2n.4'/t
n .t ! 0/:

That is, one can approximate .4' � �/�1 by pseudodifferential operators B� whose
symbols are of the form

b0.�; �/C b1.�; �/C b2.�; �/C � � � ;

where for j D 0; 1; 2; : : : , bj .�; �/ is a symbol of order �2 � j .
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Therefore, we have to use the calculus of symbols explained in Subsection 3.2 to
solve the equation

.b0 C b1 C b2 C � � � /..a2 � �/C a1 C a0/ � 1:

Here, � is treated as a symbol of order 2 and we let a02 D a2 � �; a
0
1 D a1; a

0
0 D a0.

Then the above equation yieldsX
j2Z�0; `2Z4�0;

kD0;1;2

1

`Š
@`bj ı

`.a0k/ � 1:

Comparing symbols of the same order on both sides, one concludes that

b0 D a
0�1
2 D .a2 � �/

�1
D

�
eh

4X
iD1

�2i � �
��1

;

and
bn D �

X 1

`Š
@`bj ı

`.ak/b0; n > 0; (3.3)

where the summation is over all 0 � j < n; 0 � k � 2; ` 2 Z4�0 such that
2C j C j`j � k D n: Similar to [19, 12] one can use these symbols to approximate
e�t4' with suitable infinitely smoothing operators and derive the desired asymptotic
expansion. We record this result in the following proposition.

Proposition 3.7. There is a small time asymptotic expansion

Trace.e�t4' / � t�2
1X
nD0

B2n.4'/t
n .t ! 0/;

where for each n D 0; 1; 2; : : : ;

B2n.4'/ D
1

2�i

Z Z
C

e��'0.b2n.�; �// d� d�:

4. Weyl’s law and Connes’ trace theorem

A celebrated theorem of Weyl states that one can hear the volume of a closed Rie-
mannian manifold .M; g/ from the asymptotic distribution of the eigenvalues of its
Laplacian4g acting on smooth functions onM . That is, if 0 � �0 � �1 � �2 � � � �
are the eigenvalues of 4g counted with multiplicity and N.�/ D #f�j � �g is the
eigenvalue counting function then

N.�/ �
Vol.M/

.4�/n=2�.n
2
C 1/

�n=2 .�!1/;
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where n D dimM and Vol.M/ is the volume of M . An equivalent formulation of
this result is the following asymptotic estimate for the eigenvalues:

�j �
4��.n

2
C 1/2=n

Vol.M/2=n
j 2=n .j !1/:

This readily shows that .1C4g/�n=2 is in the domain of the Dixmier trace and

Tr!
�
.1C4g/

�n=2
�
D

Vol.M/

4�n=2�.n
2
C 1/

:

A generalization of this result is the trace theorem of [7] which states that the
Dixmier trace and Wodzicki’s noncommutative residue [22] coincide on pseudod-
ifferential operators of order �n acting on the sections of a vector bundle over
M . In the sequel we will provide more explanations about the Dixmier trace, the
noncommutative residue, and the trace theorem.

In this section, we establish the analogue of Weyl’s law for T4
�

by studying the
asymptotic distribution of the eigenvalues of the Laplacian4' . We will then prove a
trace theorem for T4

�
. This is done by introducing a noncommutative residue on the

algebra of classical pseudodifferential operators on T4
�

and showing that it coincides
with the Dixmier trace on the pseudodifferential operators of order �4. We closely
follow the constructions and arguments given in [17, 18] for the noncommutative
2-torus, and because of similarities in the arguments, we provide essentials of the
proofs rather briefly.

4.1. Asymptotic distribution of the eigenvalues of 4' . Let 0 � �0 � �1 �

�2 � � � � be the eigenvalues of 4' , counted with multiplicity. It follows from the
asymptotic expansion

Trace.e�t4' / D
1X
jD0

e�t�j � t�2
1X
nD0

B2n.4'/t
n .t ! 0/;

derived in Proposition 3.7, that

lim
t!0C

t2
X

e�t�j D B0.4'/:

It readily follows from Karamata’s Tauberian theorem [1] that the corresponding
eigenvalue counting function N has the following asymptotic behavior:

N.�/ �
B0.4'/

�.3/
�2 .�!1/:

We establish the analogue of Weyl’s law for T4
�

in the following theorem by
computing B0.4'/ and observing that, up to a universal constant, it is equal to
'.1/ D '0.e

�2h/.
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Theorem 4.1. The eigenvalue counting function N of the Laplacian 4' on T4
�

satisfies

N.�/ �
�2'0.e

�2h/

2
�2 .�!1/: (4.1)

Proof. Using Proposition 3.7, we have

B0.4'/ D
1

2�i

Z Z
C

e��'0.b0.�; �// d� d�

D '0

� 1

2�i

Z Z
C

e��
�
eh

4X
iD1

�2i � �
��1

d�d�
�

D '0

� Z
e�e

h.�2
1
C���C�2

4
/ d�

�
D �2'0.e

�2h/:

Thus, it follows from the above discussion that

N.�/ �
�2'0.e

�2h/

�.3/
�2 D

�2'0.e
�2h/

2
�2 .�!1/:

A corollary of this theorem is that .1C4'/�2 is in the domain of the Dixmier
trace. Before stating the corollary we quickly review the Dixmier trace and the
noncommutative integral, following [8].

We denote the ideal of compact operators on a Hilbert space H by K.H/. For
any T 2 K.H/, let �n.T /; n D 1; 2; : : : ; denote the sequence of eigenvalues of its
absolute value jT j D .T �T /

1
2 written in decreasing order with multiplicity:

�1.T / � �2.T / � � � � � 0:

The Dixmier trace is a trace functional on an ideal of compact operators L1;1.H/
defined as

L1;1.H/ D
n
T 2 K.H/I

NX
nD1

�n.T / D O .logN/
o
:

This ideal of operators is equipped with a natural norm:

jjT jj1;1 WD sup
N�2

1

logN

NX
nD1

�n.T /; T 2 L1;1.H/:

It is clear that trace class operators are automatically in L1;1.H/. The Dixmier trace
of an operator T 2 L1;1.H/ measures the logarithmic divergence of its ordinary
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trace. More precisely, for any positive operator T 2 L1;1.H/ we are interested in
the limiting behavior of the sequence

1

logN

NX
nD1

�n.T /; N D 2; 3; : : : :

While by our assumption this sequence is bounded, its usual limit may not exist and
must be replaced by a suitable generalized limit. The limiting procedure is carried
out by means of a state on a C �-algebra. Recall that a state on a C �-algebra is a
non-zero positive linear functional on the algebra.

To define the Dixmier trace of a positive operator T 2 L1;1.H/, consider the
partial trace

TraceN .T / D
NX
nD1

�n.T /; N D 1; 2; : : : ;

and its piecewise affine interpolation denoted by Tracer.T / for r 2 Œ1;1/: Then let

�ƒ.T / WD
1

logƒ

Z ƒ

e

Tracer.T /
log r

dr

r
; ƒ 2 Œe;1/;

be the Cesàro mean of the function Tracer.T /= log r over the multiplicative group
R>0. Now choosing a normalized state ! W CbŒe;1/ ! C on the algebra of
bounded continuous functions on Œe;1/ such that !.f / D 0 for all f vanishing
at1, the Dixmier trace of T � 0 is defined as

Tr!.T / D !.�ƒ.T //:

Then one can extend Tr! to all of L1;1.H/ by linearity.
The resulting linear functional Tr! is a positive trace on L.1;1/.H/ which

in general depends on the limiting procedure !. The operators T 2 L1;1.H/
whose Dixmier trace Tr!.T / is independent of the choice of the state ! are called
measurable and we will denote their Dixmier trace by

R
�T . If for a compact positive

operator T we have

�n.T / �
c

n
.n!1/;

where c is a constant, then T is measurable and
R
�T D c: We use this fact in the

proof of the following corollary of Theorem 4.1.

Corollary 4.2. The operator .1 C 4'/�2, where 4' is the perturbed Laplacian
on T4

�
, is a measurable operator in L1;1.H0/, andZ

� .1C4'/
�2
D
�2

2
'0.e

�2h/:
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Proof. It follows from the asymptotic behavior (4.1) of the eigenvalue counting
function N that the eigenvalues �j of4' satisfy

�j �

p
2

�'0.e�2h/1=2
j 1=2 .j !1/:

Therefore, using the above fact, it easily follows that .1C4'/�2 is measurable andR
� .1C4'/

�2 D
�2

2
'0.e

�2h/:

4.2. A noncommutative residue for T4
�
. Let M be a closed smooth manifold of

dimension n. Wodzicki defined a trace functional on the algebra of pseudodifferen-
tial operators of arbitrary order on M , and proved that it was the only non-trivial
trace [22]. This functional, denoted by Res, is called the noncommutative residue.

The noncommutative residue of a classical pseudodifferential operator P acting
on smooth sections of a vector bundle E over M is defined as

Res.P / D .2�/�n
Z
S�M

tr.��n.x; �// dx d�;

where S�M � T �M is the unit cosphere bundle on M and ��n is the component
of order �n of the complete symbol of P .

Similar to [18], we define a noncommutative residue on the algebra of classical
pseudodifferential operators on T4

�
, which is a natural analogue of the Wodzicki

residue.

Definition 4.3. A pseudodifferential symbol � 2 Sm on T4
�

is said to be classical if
there is an asymptotic expansion of the form

�.�/ �

1X
jD0

�m�j .�/ .� !1/;

where each �m�j W R4 n f0g ! C1.T4
�
/ is smooth and positively homogeneous of

order m � j . Given such a symbol, we define the noncommutative residue of the
corresponding pseudodifferential operator P� as

res.P�/ D
Z
S3
'0.��4.�// d�;

where d� is the standard invariant measure on the unit sphere in R4.

We note that, as shown in [18], the homogeneous terms in the expansion of
any classical pseudodifferential symbol are uniquely determined. Thus, there is no
ambiguity in the above definition.

In the following theorem we identify all continuous trace functionals on the
algebra of classical pseudodifferential operators on T4

�
. A linear functional on this
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algebra is said to be continuous if it vanishes on the operators whose symbols are of
sufficiently small order. First we state two lemmas which will be used in the proof of
the following theorem. One can prove these lemmas by similar arguments to those
given in [18].
Lemma 4.4. Let f W R4 n f0g ! C1.T4

�
/ be a smooth map which is positively

homogeneous of order m 2 Z. If m ¤ �4, or if m D �4 and
R
S3 f d� D 0; then

one can write f D
P4
iD1 @i .hi /; for some smooth maps hi W R4 n f0g ! C1.T4

�
/.

Lemma 4.5. Let �j 2 Smj , j D 0; 1; 2; : : : , be a sequence of pseudodifferential
symbols on T4

�
such that limmj D �1. There exists a symbol � such that � �P1

jD0 �j :

Theorem 4.6. The noncommutative residue res is a trace, and up to multiplication
by a constant, it is the unique continuous trace on the algebra of classical
pseudodifferential operators on T4

�
.

Proof. Let �; �0 W R4 ! C1.T4
�
/ be classical symbols with asymptotic expansions

�.�/ �

1X
jD0

�n�j .�/; �0.�/ �

1X
kD0

�n0�k.�/ .� !1/;

where �n�j is homogeneous of order n�j and �n0�k is homogeneous of order n0�k.
Using the calculus of symbols explained in Proposition 3.4 and the trace property of
'0, we have:

res.P�P�0 � P�0P�/

D

Z
S3
'0

�X 1

`Š

�
@`.�n�j /ı

`.�0n0�k/ � ı
`.�n�j /@

`.�0n0�k/
��
d�;

where the summation is over all j; k 2 Z�0 and ` 2 Z4�0 such that nC n0 � j � k �
j`j D �4. One can write each @`.�n�j /ı`.�0n0�k/� ı

`.�n�j /@
`.�0

n0�k
/ in the above

integral as
4X
iD1

�
@i .fi /C ıi .gi /

�
;

for some fi ; gi W R4 n f0g ! C1.T4
�
/, where each fi is positively homogeneous of

order�3. Thus, using Lemma 5.1.3 on page 208 of [21] and the fact that '0ııi D 0,
we have

res.P�P�0 � P�0P�/ D 0:

This proves the trace property of res.
In order to prove the uniqueness, assume that  is a continuous trace on the

algebra of classical symbols on T4
�
. For any classical symbol �, the symbol of

P�iP� � P�P�i is equivalent to ıi .�/. Since  is a trace, it follows that

 .Pıi .�// D 0: (4.2)
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Since we can write

� D '0.�/C

4X
iD1

ıi .�i /;

for some symbols �i , equation (4.2) implies that

 .P�/ D  .P'0.�//: (4.3)

Also, by considering the symbol of P�PUi �PUiP� and using similar arguments
to those in [18], one can conclude that

 .P@i .�// D 0: (4.4)

Now we consider the asymptotic expansion

�.�/ �

1X
jD0

�n�j .�/; .� !1/;

where �n�j is positively homogeneous of order n � j . By using Lemmas 4.4 and
4.5, and setting r D Vol.S3/�1

R
S3 ��4 d�; we can write

� � ��4 C
X

n�j¤�4

�n�j

D
r

j�j4
C
�
��4 �

r

j�j4

�
C

X
n�j¤�4

4X
iD1

@i .�n�j;i /

�
r

j�j4
C

4X
iD1

@i .��4;i /C

4X
iD1

@i

� X
n�j¤�4

�n�j;i

�
; (4.5)

for some smooth maps ��4;i ; �n�j;i W R4 n f0g ! C1.T4
�
/. Now we can use (4.3),

(4.4), (4.5) to conclude that

 .P�/ D  .Pr=j�4j/ D  .P'0.r=j�4j// D '0.r/ .P1=j�4j/ D
 .P1=j�4j/

Vol.S3/
res.P�/:

4.3. A trace theorem for T4
�
. As above, let M be a closed smooth manifold

of dimension n. The restriction of the Wodzicki residue Res to pseudodifferential
operators of order �n was discovered independently by Guillemin and its properties
were studied in [20]. In general, unlike the Dixmier trace, Res is not a positive linear
functional. However, its restriction to pseudodifferential operators of order �n is
positive. One of the main results proved in [7] is that if E is a smooth vector bundle
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on M then the Dixmier trace Tr! and Res coincide on pseudodifferential operators
of order �n acting on L2 sections of E. In fact it is proved that such operators P are
measurable operators in L1;1.L2.M;E// andZ

�P D
1

n
Res.P /:

In the following theorem we establish the analogue of this result for the noncommu-
tative 4-torus T4

�
.

Theorem 4.7. Let � be a classical pseudodifferential symbol of order �4 on T4
�
.

Then P� is a measurable operator in L1;1.H0/; and under the assumption that all
nonzero entries of � are irrational, we haveZ

�P� D
1

4
res.P�/:

Proof. In order to show that P� 2 L1;1.H0/, we write P� D A.1C4/�2, where
4 D ı21C� � �C ı

2
4 is the flat Laplacian, and A D P�.1C4/2 is a pseudodifferential

operator of order 0. Since A is a bounded operator on H0 and it was shown in
Corollary 4.2 that .1 C 4/�2 2 L1;1.H0/, it follows that P� is in the domain of
the Dixmier trace. Using a similar argument, one can see that any pseudodifferential
operator of order �5 on T4

�
is in the kernel of the Dixmier trace. Therefore, if we

write

�.�/ � �0.�/C

1X
jD1

��4�j .�/ .� !1/;

where �0 and ��4�j are respectively positively homogeneous of order�4 and�4�j ,
then

Tr!.P�/ D Tr!.P�0/: (4.6)

Also, since the symbol of P�0PUi�PUiP�0 is equivalent to the symbol of P�0Ui�
PUi�0 modulo a symbol of order �5, and Tr! is a trace, for i D 1; : : : 4; we have

Tr!.P�0Ui / D Tr!.PUi�0/:

It follows from this observation that if f W R4 n f0g ! C is smooth and positively
homogeneous of order -4, then Tr!.Pf U `/ D 0 if ` ¤ 0 2 Z4. Therefore, similar
to the argument given in [17] one can write the following expansion with rapidly
decreasing coefficients

�0.�/ D
X
`2Z4

�0`.�/U
`;

and conclude that
Tr!.P�0/ D Tr!.P�0

0
/; (4.7)

where, as noted above, �00 D '0 ı �
0 W R4 n f0g ! C:
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Note that one has to use the fact that Tr! is continuous with respect to the
uniform norm of symbols of order �4, namely that, if we let qm.�/ D �0.�/ �P
j`j�m a`.�/U

`; then
lim
m!1

Tr!.Pqm/ D 0:

Since �00 is a smooth complex-valued function on R4 n f0g which is positively
homogeneous of order �4, in order to analyze Tr!.P�0

0
/, we define a linear

functional � on the space of continuous complex-valued functions on S3, as follows.
Given a smooth function f W S3 ! C, we denote its positively homogeneous
extension of order �4 to R4 n f0g by Qf , and define �.f / D Tr!.P Qf /. Using the
continuity property mentioned above, � extends to the space of continuous functions
on S3. Also using positivity of Tr! , one can see that � is a positive linear functional.
Thus, it follows from the Reisz representation theorem that � is given by integration
against a Borel measure on S3. This measure is rotation invariant, which can be
shown by using the trace property of Tr! and the fact that for any rotation T of R4
and any pseudodifferential symbol � on R4 we have

P�.T x;T �/ D U�1P�.x;�/U ;

where U is the unitary operator U.g/ D g ı T �1, g 2 C1c .R4/. Therefore � is
given by integration against a constant multiple of the standard invariant measure on
S3. Denoting this constant by c, identities (4.6), (4.7) imply that

Tr!.P�/ D Tr!.P�0/ D Tr!.P�0
0
/ D �.�00

??
S3/ D c

Z
S3
�00
??
S3 d� D c res.P�/:

The constant c can be fixed by considering the flat Laplacian 4 D
P4
iD1 ı

2
i .

According to corollary 4.2, we have Tr!..1 C4/�2/ D �2=2. On the other hand,
considering the fact that the term of order �4 in the asymptotic expansion of the
symbol of .1C4/�2 is j�j�4, we have res..1C4/�2/ D 2�2. Therefore c D 1=4.

5. Scalar curvature and Einstein–Hilbert action

Let .M; g/ be a smooth compact manifold of dimension n � 2; and 4g be the
Laplacian acting on smooth functions on M . For any t > 0, the operator e�t4g is
an infinitely smoothing operator, and there is an asymptotic expansion for its kernel
K.t; x; y/, which is of the form

K.t; x; y/ �
e�dist.x;y/2=4t

.4�t/n=2

�
u0.x; y/Cu1.x; y/t Cu2.x; y/t

2
C� � �

�
.t ! 0/:

The coefficients ui are smooth functions defined in a neighborhood of the diagonal
in M � M . The kernel K is called the heat kernel since it is the fundamental
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solution of the heat operator @t C 4g , and the ui are called the heat kernel
coefficients. These coefficients are well-studied and are often known under the
names of people who made the major contributions in the study, namely that, they are
called both Minakshisundaram–Pleijel coefficients and Seeley–De Witt coefficients.
Minakshisundaram and Pleijel derived the above asymptotic expansion by using the
transport equation method of Hadamard. An approach, which is followed in the
noncommutative case in [12, 11, 15, 16, 17], is to use pseudodifferential calculus
to derive such asymptotic expansions. For a clear account of this approach and
a detailed discussion of the local geometric information that are encoded in heat
coefficients, we refer the reader to [19] and the references therein.

A crucial point that is used to define and compute the scalar curvature for
noncommutative spaces [9, 11, 16] is that, up to a universal factor, the restriction
of u1 to the diagonal gives the scalar curvature ofM . This, via the Mellin transform,
allows to have a spectral definition for scalar curvature in terms of values or residues
of spectral zeta functions. That is, if for instance the dimension of M is 4, the scalar
curvature is the unique R 2 C1.M/ (up to a universal constant) such that

ressD1Trace.f4�sg / D
Z
M

fR dvolg ;

for any f 2 C1.M/.
In this section we define the scalar curvature for T4

�
equipped with the perturbed

Laplacian4' , and compute the functions that give a local expression for the curva-
ture. Then we consider the analogue of the Einstein–Hilbert action

R
M
Rdvolg . We

find a local expression for this action as well, and show that its extremum is attained
if and only if the Weyl factor is a constant, which is equivalent to having a metric
with constant curvature.

5.1. Scalar curvature for T4
�
. Following [9, 11, 16] and the above discussion,

we define the scalar curvature of T4
�

equipped with the perturbed Laplacian 4' as
follows. (See also [2] and [14] for variants, and [13] where a perturbative form of the
Gauss–Bonnet theorem for terms up to second order in the perturbation parameter is
verified.)

Definition 5.1. The scalar curvature of the noncommutative 4-torus equipped with
the perturbed volume form is the unique element R 2 C1.T4

�
/ such that

ressD1Trace.a4�s' / D '0.aR/;

for any a 2 C1.T4
�
/.

We follow the method employed in [12, 11, 16] to find a local expression for the
scalar curvature R. For the sake of completeness, we explain this procedure in the
following proposition.
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Proposition 5.2. The scalar curvature R is equal to

1

2�i

Z
R4

Z
C

e��b2.�; �/ d� d�;

where b2 is the term of order �4 of the pseudodifferential symbol of the parametrix
of4' � �, given in Subsection 3.3.

Proof. Using the Mellin transform we have

a4�s' D
1

�.s/

Z 1
0

a.e�t4' � P /t s�1 dt; a 2 C1.T4� /; <.s/ > 0;

where P denotes the orthogonal projection on Ker.4'/.
Appealing to the Cauchy integral formula (3.2) and using similar arguments

to those explained in Subsection 3.3 (cf. [19, 12]), one can derive an asymptotic
expansion of the form

Trace.ae�t4' / � t�2
1X
nD0

B2n.a;4'/t
n .t ! 0/:

Using this asymptotic expansion one can see that the zeta function

�a.s/ D Trace.a4�s' /; <.s/� 0;

has a meromorphic extension to the whole plane with a simple pole at 1, and

ressD1�a.s/ D B2.a;4'/:

On the other hand, there are explicit formulas for the coefficients of the above
asymptotic expansion. In particular we have

B2.a;4'/ D
1

2�i

Z Z
C

e��'0
�
ab2.�; �/

�
d�d�:

We directly compute b2 using (3.3) and in order to compute

1

2�i

Z
R4

Z
C

e��b2.�; �/ d� d�;

we use a homogeneity argument for the contour integral (cf. [12, 11]) and pass to
the spherical coordinates

�1 D r sin. / sin.�/ cos.�/; �2 D r sin. / sin.�/ sin.�/;

�3 D r sin. / cos.�/; �4 D r cos. /;
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with 0 � r < 1; 0 �  < �; 0 � � < �; 0 � � < 2�: After working out the
integrations with respect to the angles  ; �; � , we obtain the following terms up to
an overall factor of ��2:

C 4r9ehb0b0b0ı1.e
h/ehb0b0ı1.e

h/b0 C 2r
9ehb0b0e

hb0b0ı1.e
h/b0ı1.e

h/b0

C 4r9ehb0b0ı1.e
h/ehb0b0b0ı1.e

h/b0 C 2r
9ehb0b0ı1.e

h/ehb0b0ı1.e
h/b0b0

C 4r9ehb0e
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h/b0 C 2r
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h/b0

� r7ehb0e
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h/b0
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5ehb0b0ı1ı1.e
h/b0b0

� 2r3b0b0ı1ı1.e
h/b0 � 2r

3b0ı1ı1.e
h/b0b0

C 4r9ehb0b0b0ı2.e
h/ehb0b0ı2.e

h/b0 C 2r
9ehb0b0e

hb0b0ı2.e
h/b0ı2.e

h/b0

C 4r9ehb0b0ı2.e
h/ehb0b0b0ı2.e

h/b0 C 2r
9ehb0b0ı2.e

h/ehb0b0ı2.e
h/b0b0

C 4r9ehb0e
hb0b0b0ı2.e

h/b0ı2.e
h/b0 C 2r

9ehb0e
hb0b0ı2.e

h/b0b0ı2.e
h/b0

C 2r9ehb0e
hb0b0ı2.e

h/b0ı2.e
h/b0b0 C 6r

9ehehb0b0b0b0ı2.e
h/b0ı2.e

h/b0

C 2r9ehehb0b0b0ı2.e
h/b0b0ı2.e

h/b0 C 2r
9ehehb0b0b0ı2.e

h/b0ı2.e
h/b0b0

� r7b0b0ı2.e
h/ehb0b0ı2.e

h/b0 � 2r
7b0ı2.e

h/ehb0b0b0ı2.e
h/b0

� r7b0ı2.e
h/ehb0b0ı2.e

h/b0b0 � 16r
7ehb0b0b0ı2.e

h/b0ı2.e
h/b0

� r7ehb0b0e
hb0b0ı2ı2.e

h/b0 � 8r
7ehb0b0ı2.e

h/b0b0ı2.e
h/b0

� 8r7ehb0b0ı2.e
h/b0ı2.e

h/b0b0 � 2r
7ehb0e

hb0b0b0ı2ı2.e
h/b0

� r7ehb0e
hb0b0ı2ı2.e

h/b0b0 � 3r
7ehehb0b0b0b0ı2ı2.e

h/b0

� r7ehehb0b0b0ı2ı2.e
h/b0b0 C 5=2r

5b0b0ı2.e
h/b0ı2.e

h/b0

C 2r3b0b0ı2.e
h/e�hı2.e

h/b0 C 5=2r
5b0ı2.e

h/b0b0ı2.e
h/b0

C 5=2r5b0ı2.e
h/b0ı2.e

h/b0b0 C 2r
3b0ı2.e

h/e�hı2.e
h/b0b0
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C 6r5ehb0b0b0ı2ı2.e
h/b0 C 3r

5ehb0b0ı2ı2.e
h/b0b0

� 2r3b0b0ı2ı2.e
h/b0 � 2r

3b0ı2ı2.e
h/b0b0

C 4r9ehb0b0b0ı3.e
h/ehb0b0ı3.e

h/b0 C 2r
9ehb0b0e

hb0b0ı3.e
h/b0ı3.e

h/b0

C 4r9ehb0b0ı3.e
h/ehb0b0b0ı3.e

h/b0 C 2r
9ehb0b0ı3.e

h/ehb0b0ı3.e
h/b0b0

C 4r9ehb0e
hb0b0b0ı3.e

h/b0ı3.e
h/b0 C 2r

9ehb0e
hb0b0ı3.e

h/b0b0ı3.e
h/b0

C 2r9ehb0e
hb0b0ı3.e

h/b0ı3.e
h/b0b0 C 6r

9ehehb0b0b0b0ı3.e
h/b0ı3.e

h/b0

C 2r9ehehb0b0b0ı3.e
h/b0b0ı3.e

h/b0 C 2r
9ehehb0b0b0ı3.e

h/b0ı3.e
h/b0b0

� r7b0b0ı3.e
h/ehb0b0ı3.e

h/b0 � 2r
7b0ı3.e

h/ehb0b0b0ı3.e
h/b0

� r7b0ı3.e
h/ehb0b0ı3.e

h/b0b0 � 16r
7ehb0b0b0ı3.e

h/b0ı3.e
h/b0

� r7ehb0b0e
hb0b0ı3ı3.e

h/b0 � 8r
7ehb0b0ı3.e

h/b0b0ı3.e
h/b0

� 8r7ehb0b0ı3.e
h/b0ı3.e

h/b0b0 � 2r
7ehb0e

hb0b0b0ı3ı3.e
h/b0

� r7ehb0e
hb0b0ı3ı3.e

h/b0b0 � 3r
7ehehb0b0b0b0ı3ı3.e

h/b0

� r7ehehb0b0b0ı3ı3.e
h/b0b0 C 5=2r

5b0b0ı3.e
h/b0ı3.e

h/b0

C 2r3b0b0ı3.e
h/e�hı3.e

h/b0 C 5=2r
5b0ı3.e

h/b0b0ı3.e
h/b0

C 5=2r5b0ı3.e
h/b0ı3.e

h/b0b0 C 2r
3b0ı3.e

h/e�hı3.e
h/b0b0

C 6r5ehb0b0b0ı3ı3.e
h/b0 C 3r

5ehb0b0ı3ı3.e
h/b0b0

� 2r3b0b0ı3ı3.e
h/b0 � 2r

3b0ı3ı3.e
h/b0b0

C 4r9ehb0b0b0ı4.e
h/ehb0b0ı4.e

h/b0 C 2r
9ehb0b0e

hb0b0ı4.e
h/b0ı4.e

h/b0

C 4r9ehb0b0ı4.e
h/ehb0b0b0ı4.e

h/b0 C 2r
9ehb0b0ı4.e

h/ehb0b0ı4.e
h/b0b0

C 4r9ehb0e
hb0b0b0ı4.e

h/b0ı4.e
h/b0 C 2r

9ehb0e
hb0b0ı4.e

h/b0b0ı4.e
h/b0

C 2r9ehb0e
hb0b0ı4.e

h/b0ı4.e
h/b0b0 C 6r

9ehehb0b0b0b0ı4.e
h/b0ı4.e

h/b0

C 2r9ehehb0b0b0ı4.e
h/b0b0ı4.e

h/b0 C 2r
9ehehb0b0b0ı4.e

h/b0ı4.e
h/b0b0

� r7b0b0ı4.e
h/ehb0b0ı4.e

h/b0 � 2r
7b0ı4.e

h/ehb0b0b0ı4.e
h/b0

� r7b0ı4.e
h/ehb0b0ı4.e

h/b0b0 � 16r
7ehb0b0b0ı4.e

h/b0ı4.e
h/b0

� r7ehb0b0e
hb0b0ı4ı4.e

h/b0 � 8r
7ehb0b0ı4.e

h/b0b0ı4.e
h/b0

� 8r7ehb0b0ı4.e
h/b0ı4.e

h/b0b0 � 2r
7ehb0e

hb0b0b0ı4ı4.e
h/b0

� r7ehb0e
hb0b0ı4ı4.e

h/b0b0 � 3r
7ehehb0b0b0b0ı4ı4.e

h/b0

� r7ehehb0b0b0ı4ı4.e
h/b0b0 C 5=2r

5b0b0ı4.e
h/b0ı4.e

h/b0

C 2r3b0b0ı4.e
h/e�hı4.e

h/b0 C 5=2r
5b0ı4.e

h/b0b0ı4.e
h/b0

C 5=2r5b0ı4.e
h/b0ı4.e

h/b0b0 C 2r
3b0ı4.e

h/e�hı4.e
h/b0b0
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C 6r5ehb0b0b0ı4ı4.e
h/b0 C 3r

5ehb0b0ı4ı4.e
h/b0b0

� 2r3b0b0ı4ı4.e
h/b0 � 2r

3b0ı4ı4.e
h/b0b0:

We use the rearrangement lemma of [11] to integrate the above terms with respect
to r from 0 to1. We recall this lemma here:

Lemma 5.3. For any m D .m0; m1; : : : ; m`/ 2 Z`C1>0 and elements �1; : : : ; �` 2
C1.T4

�
/, we haveZ 1

0

ujmj�2

.ehuC 1/m0

Ỳ
1

�j .e
huC1/�mj du D e�.jmj�1/hFm.�.1/; : : : ; �.`//

�Ỳ
1

�j

�
;

where

Fm.u1; : : : ; u`/ D

Z 1
0

xjmj�2

.x C 1/m0

Ỳ
1

�
x

jY
1

uh C 1
��mj

dx;

�.a/ D e�haeh; a 2 C.T4� /:

Here, �.j / signifies the action of � on �j .

Then, we use the identities (cf. [11, 16])

e�hıi .e
h/ D g1.�/.ıi .h//;

e�hı2i .e
h/ D g1.�/.ı

2
i .h//C 2g2.�.1/; �.2//.ıi .h/ıi .h//;

where

g1.u/ D
u � 1

logu
; g2.u; v/ D

u.v � 1/ log.u/ � .u � 1/ log.v/
log.u/ log.v/.log.u/C log.v//

;

and obtain the final formula for the scalar curvature in terms of r D log� and h,
which is recorded in the following theorem.

Theorem 5.4. The scalar curvature R of T4
�
, up to a factor of �2, is equal to

e�hK.r/
� 4X
iD1

ı2i .h/
�
C e�hH.r.1/;r.2//

� 4X
iD1

ıi .h/
2
�
; (5.1)

where

K.s/ D
1 � e�s

2s
;

H.s; t/ D �
e�s�t

�
.�es � 3/ s

�
et � 1

�
C .es � 1/

�
3et C 1

�
t
�

4st.s C t /
:
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We analyse the functions K;H; which describe the scalar curvature of T4
�
, as

follows. The Taylor expansion of K at 0 is of the form

K.s/ D
1

2
�
s

4
C
s2

12
�
s3

48
C

s4

240
�

s5

1440
CO

�
s6
�
:

We have lims!�1K.s/ D 1; lims!1K.s/ D 0, and here is the graph of this
function:

-2 2 4

0.5

1.0

1.5

2.0

2.5

3.0

Graph of the function K.

The function H has the following Taylor expansion at .0; 0/:

H.s; t/ D

�
�
1

4
C

t

24
�
t3

480
CO

�
t4
��
C s

�
5

24
�
t

16
C
t2

80
�
t3

576
CO

�
t4
��

C s2
�
�
1

12
C

7t

240
�
t2

144
C

5t3

4032
CO

�
t4
��

C s3
�
11

480
�
5t

576
C

t2

448
�

t3

2304
CO

�
t4
��
CO

�
s4
�
:

Here is the graph of H in a neighborhood of the origin:

Graph of the function H .
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This function is not bounded from below on the main diagonal as for

H.s; s/ D �
e�2s .es � 1/2

4s2
;

we have lims!�1H.s; s/ D �1, and lims!1H.s; s/ D 0. At 0 we have the
Taylor expansion

H.s; s/ D �
1

4
C
s

4
�
7s2

48
C
s3

16
�
31s4

1440
C

s5

160
CO

�
s6
�
;

and here is the graph of this function:

-2 -1 1 2

-2.5

-2.0

-1.5

-1.0

-0.5

Graph of the map s 7! H.s; s/.

On the other diagonal, H is neither bounded below nor bounded above as we
have

H.s;�s/ D
�4s � 3e�s C es C 2

4s2
;

which implies that lims!�1H.s;�s/ D �1; lims!1H.s;�s/ D 1: This
function has the following Taylor expansion at 0

H.s;�s/ D �
1

4
C
s

6
�
s2

48
C

s3

120
�

s4

1440
C

s5

5040
CO

�
s6
�
;

and here is its graph:

-6 -4 -2 2 4 6

-10

-8

-6

-4

-2

2

4

Graph of the map s 7! H.s;�s/.
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Remark 5.5. SinceK.0/ D 1=2 andH.0; 0/ D �1=4, in the commutative case, the
scalar curvature given by (5.1) reduces to

�2

2

4X
iD1

�
ı2i .h/ �

1

2
ıi .h/

2
�
;

which, up to a normalization factor, is the scalar curvature of the ordinary 4-torus
equipped with the metric e�h.dx21 C � � � C dx

2
4/.

5.2. Einstein–Hilbert action for T4
�
. A natural analogue of the Einstein–Hilbert

action for T4
�

is '0.R/, where R is the scalar curvature given by (5.1). In the
following theorem we find an explicit formula for this action.

Theorem 5.6. A local expression for the Einstein–Hilbert action for T4
�
, up to a

factor of �2, is given by

'0.R/ D
1

2
'0

� 4X
iD1

e�hı2i .h/
�
C '0

� 4X
iD1

G.r/.e�hıi .h//ıi .h/
�
; (5.2)

where

G.s/ D
�4s � 3e�s C es C 2

4s2
:

Proof. Let us recall from Theorem 5.4 that up to a factor of �2

R D e�hK.r/
� 4X
iD1

ı2i .h/
�
C e�hH.r.1/;r.2//

� 4X
iD1

ıi .h/
2
�
:

Writing K as a Fourier transform

K.s/ D

Z
e�iusf .u/ du;

we have

'0
�
e�hK.r/.ı2i .h//

�
D

Z
'0
�
e�h��iu.ı2i .h//

�
f .u/ du D K.0/ '0.e

�hı2i .h//:

Also, by writing H as a Fourier transform

H.s; t/ D

Z
e�i.suCtv/g.u; v/ du dv;
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we have

'0
�
e�hH.r.1/;r.2//.ıi .h/

2/
�
D

Z
'0
�
e�h��iu.ıi .h//�

�iv.ıi .h//
�
g.u; v/ du dv

D

Z
'0
�
��i.u�v/.e�hıi .h//ıi .h/

�
g.u; v/ du dv

D '0
�
H.r;�r/.e�hıi .h//ıi .h/

�
:

Therefore

'0.R/ D
1

2
'0

� 4X
iD1

e�hı2i .h/
�
C '0

� 4X
iD1

G.r/.e�hıi .h//ıi .h/
�
;

where

G.s/ D H.s;�s/ D
�4s � 3e�s C es C 2

4s2
:

5.3. Extremum of the Einstein–Hilbert action for T4
�
. We show that the

Einstein–Hilbert action '0.R/ attains its maximum if and only if the Weyl factor
e�h is a constant. This is done by combining the two terms in the explicit formula
(5.2) for '0.R/, and observing that it can be expressed by a non-negative function.
We note that the functionG in (5.2), which was analysed in Subsection 5.1, is neither
bounded below nor bounded above.

Theorem 5.7. The maximum of the Einstein–Hilbert action is equal to 0, and it is
attained if and only if the Weyl factor is a constant. That is, for any Weyl factor
e�h; h D h� 2 C1.T4

�
/; we have

'0.R/ � 0;

and the equality happens if and only if h is a constant.

Proof. We can combine the two terms in (5.2) as follows. We have

'0.e
�hı2i .h// D �'0.ıi .e

�h/ıi .h//

D '0.e
�hıi .e

h/e�hıi .h//

D '0.e
�hıi .h/e

�hıi .e
h//

D '0

�
e�hıi .h/

� � 1

log�
.ıi .h//

�
D '0

�
e�hıi .h/

er � 1

r
.ıi .h//

�
D '0

�
e�h

e�r � 1

�r
.ıi .h//ıi .h/

�
:
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The last equality follows from the fact that for any entire function F, one has

'0.e
�haF.r/.b// D '0.e

�hF.�r/.a/b/; a; b 2 C.T4� /:

Therefore we can write (5.2) as

'0.R/ D

4X
iD1

'0

�1
2
e�h

e�r � 1

�r
.ıi .h//ıi .h/CG.r/.e

�hıi .h//ıi .h/
�

D

4X
iD1

'0
�
e�hT .r/.ıi .h//ıi .h/

�
; (5.3)

where

T .s/ D
1

2

e�s � 1

�s
CG.s/ D

�2s C es � e�s.2s C 3/C 2

4s2
:

The Taylor expansion of T at 0 is of the form

T .s/ D
1

4
�
s

12
C
s2

16
�
s3

80
C

s4

288
�

s5

2016
CO

�
s6
�
:

We have lims!1 T .s/ D 1; lims!�1 T .s/ D 1. Moreover, this function is
non-negative as its absolute minimum is approximately 0:218207 which is attained
around s D 0:812394. Here is the graph of this function:

-4 -2 2 4 6 8

2

4

6

8

10

Graph of the function T .

Since T is a non-negative function and ıi .h/� D �ıi .h/ for i D 1; : : : ; 4, we
have

'0.e
�hT .r/.ıi .h//ıi .h// D �'0.e

�hT .r/.ıi .h//ıi .h/
�/ � 0:

In the last inequality we have used the fact that r is a selfadjoint operator with
respect to the inner product

.a; b/ D '0.e
�hb�a/; a; b 2 C.T4� /:
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Also, faithfulness of '0 implies that for each i D 1; : : : ; 4;

'0.e
�hT .r/.ıi .h//ıi .h// D 0

if and only if ıi .h/ D 0. Thus, it follows from (5.3) that

'0.R/ D

4X
iD1

'0
�
e�hT .r/.ıi .h//ıi .h/

�
� 0;

and the equality happens if and only ıi .h/ D 0 for all i D 1; : : : ; 4; which holds if
and only if h is a constant.
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