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Inequalities a la Frolicher and cohomological decompositions
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Abstract. We study Bott—Chern and Aeppli cohomologies of a vector space endowed with two
anti-commuting endomorphisms whose square is zero. In particular, we prove an inequality
a la Frolicher relating the dimensions of the Bott—Chern and Aeppli cohomologies to the
dimensions of the Dolbeault cohomologies. We prove that the equality in such an inequality a
la Frolicher characterizes the validity of the so-called cohomological property of satisfying the
99-Lemma. As an application, we study cohomological properties of compact either complex,
or symplectic, or, more in general, generalized-complex manifolds.
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1. Introduction

Given a compact complex manifold X , the Boti—Chern cohomology, H g¢ (X ), [10],
and the Aeppli cohomology, H y*(X), [1], provide useful invariants, and have been
studied by several authors in different contexts, see, e.g., [1, 10, 8, 16, 47, 2, 42,
32,9, 46, 3, 5]. In the case of compact Kihler manifolds, or, more in general,
of compact complex manifolds satisfying the d9-Lemma, the Bott—Chern and the
Aeppli cohomology groups are naturally isomorphic to the Dolbeault cohomology
groups. The 93-Lemma for compact complex manifolds has been studied by P.
Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan in [16], where it is proven
that the validity of the dd-Lemma on a compact complex manifold X yields the
formality of the differential graded algebra (A*X ®g C, d), [16, Main Theorem];
in particular, a topological obstruction to the existence of Kéhler structures on
compact differentiable manifolds follows, [16, Lemma 5.11]. Furthermore, they
showed that any compact manifold admitting a proper modification from a Kéhler
manifold (namely, a manifold in class C of Fujiki, [20]) satisfies the 99-Lemma, [16,
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analisi armonica”, by the Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”,
and by GNSAGA of INdAM.
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Corollary 5.23]. An adapted version of the 99-Lemma for differential graded Lie
algebras has been considered also in [21] by W. M. Goldman and J. J. Millson,
where they used a “principle of two types”, see [21, Proposition 7.3(ii)], as a key
tool to prove formality of certain differential graded Lie algebras in the context
of deformation theory, [21, Corollary page 84]. An algebraic approach to the
39-Lemma has been developed also by Y. I. Manin in [37] in the context of
differential Gerstenhaber—Batalin—Vilkovisky algebras, in order to study Frobenius
manifolds arising by means of solutions of Maurer—Cartan type equations. A
generalized complex version of the d9-Lemma has been introduced and studied by
G. R. Cavalcanti in [12, 13].

Since Bott—Chern and Aeppli cohomologies on compact Kihler manifolds
coincide with Dolbeault cohomology, in [5], we were concerned in studying
Bott—Chern cohomology of compact complex (possibly non-Kéihler) manifolds X,
showing the following inequality a la Frolicher, which relates the dimensions of the
Bott—Chern and Aeppli cohomologies to the Betti numbers, [5, Theorem A]:

forany k € Z ,

> (dimg HEE(X) + dime HY(X)) > 2 dime Hjp(X:C)
pt+a=k

furthermore, the authors showed that the equality in the above inequality holds for
every k € 7 if and only if X satisfies the 39-Lemma, [5, Theorem B].

It turns out that such results depend actually on the structure of double complex of
(/\"‘X , 0, 5) In this paper, we are concerned in a generalization of the inequality
a la Frolicher in a more algebraic framework, so as to highlight the algebraic
aspects. As an application, we recover the above results on the cohomology of
compact complex manifolds, and we get results on the cohomology of compact
symplectic manifolds and compact generalized complex manifolds: more precisely,
characterizations of compact symplectic manifolds satisfying the Hard Lefschetz
Condition and of compact generalized complex manifolds satisfying the dd--
Lemma are provided.

More precisely, consider a double complex (B"', a, 5) of K-vector spaces
(namely, a Z2-graded K-vector space B** endowed with 3 € End"°(B**) and

9 € End®!'(B**) such that 9% = 3 =09 + 39 = 0). Several cohomologies can be
studied: other than the Dolbeault cohomologies

kerd .o .o ker d
and H(é;g) (B**) =

Ham (B™) = 55 im3
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and than the cohomology of the associated total complex,

kerd

Tot' B>*:= @ B?".d:=0+0|.  Hj, (Tot" B*®) := - R
’ m

pHq=e

one can consider also the Bott—Chern cohomology and the Aeppli cohomology, that
is,

ker d N ker 0 ker 90
H _(B**) = ———— d 2 ) =
(8.3;39) (B*) im 99 an (99:0,9) () imd + im @

The identity induces natural morphisms of (possibly Z-graded, possibly Z?-graded)
K-vector spaces:

H y5.09) (B

T

Hl) (B*) H¢, g (Tot* B**) H('g’;'a (B**)
Ho,o

(@5:0.5) (B

In general, the above maps are neither injective nor surjective; actually, the map
H(.z;.a ) (B**) — H(aa 23) (B**) being injective is equivalent to all the above
maps being isomorphisms, [16, Lemma 5.15, Remark 5.16, 5.21]. In such a case,
one says that (B"', d, 5) satisfies the 30-Lemma.

By considering the spectral sequence associated to the structure of double

complex of (B *® 0, 5), one gets the Frolicher inequality, [19, Theorem 2],
min %dimK Tot® H;a’;a) (B**) . dimg Tot® H(a ) (B**); = dimg Hpg (Tot* B**).

We prove an inequality a la Frolicher also for the Bott—Chern and Aeppli
cohomologies. More precisely, we prove the following result.

Theorem 1 (see Theorem 3.4 and Corollary 3.6). Let A® be a Z- -graded K-vector

space endowed with two endomorphisms §, € End®! (A®) and 8, € End® (A®) such
that 5% = 8% = 6102 + 6281 = 0. Suppose that
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Then

dimg H(:91,52;8152) (A.) + dimg H(.5152;51,52) (A.)

In particular, given a bounded double complex (B ®*. 0, 5), and supposed that

dimg Tot* Hig s 1 (B®*) <+oo  and  dimgTot® Hi s ) (B*®) < +oo,

then, for + € {+, -},

dimg Tot® Hs 5005060) (B"') + dimg Tot*® Hig's 5060 (B"')

Z 2 dim]K Hé1i82,81i52) (TOt. B.’.) .

Furthermore, we provide a characterization of the equality in the above inequality
a la Frolicher in terms of the validity of the §;6,-Lemma.

Theorem 2 (see Theorem 4.3). Let (B**, §1, 62) be a bounded double complex.
Suppose that

dimg Hg' s ) (B"') < 400 and dimg H(g 5 ) (B"') < +4o00.
The following conditions are equivalent:
(1) B**® satisfies the 818>-Lemma;
(2) the equality
dimg Tot® H™ 5 .5 5 (B*®) + dimg Tot® Hg® < 5 (B*°)

=2 dimg H, ;5.5 15, (Tot" B>®) .

holds.

Given a compact complex manifold X, one can apply Corollary 3.6 and
Theorem 4.3 to the double complex (/\"'X , 0, 5). More precisely, one recovers
[5, Theorem A], getting that, on every compact complex manifold,

dime Tot® Hgg (X) + dimg Tot® Hy®(X) > 2 dime Hjx(X:C),

and the characterization of the 3-Lemma in terms of the Bott—Chern cohomology
given in [5, Theorem B], namely, that the equality holds if and only if the dd-Lemma
holds.

Furthermore, Corollary 3.6 and Theorem 4.3 allow also to study the cohomology
of compact manifolds X endowed with symplectic forms w. In this case, one
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considers the Z-graded algebra A®*X endowed with d € End! (A®X) and d® :=
[d, —t,~1] € End™!(A®X), which satisfy d> = (dA)2 = dd® +d*d = 0. The
symplectic Bott—Chern and Aeppli cohomologies have been introduced and studied
by L.-S. Tseng and S.-T. Yau in [44, 45, 46]. In particular, we get the following
result.

Theorem 3 (see Theorem 5.4). Let X be a compact manifold endowed with a
symplectic structure w. The inequality

dimg HE, n g gny (X) + dimg B a0y (X)) = 2 dime Hip(X:R) - (5.2)

holds. Furthermore, the equality in (5.2) holds if and only if X satisfies the Hard
Lefschetz Condition.

We recall that a compact 2n-dimensional manifold X endowed with a symplectic
form w is said to satisfy the Hard Lefschetz Condition if [a)]k — <« H :;I;k (X:R) —
H;’;k (X; R) is an isomorphism for every k € Z.

Finally, Corollary 3.6 and Theorem 4.3 can be applied also to the study of the
cohomology of generalized-complex manifolds. Generalized-complex geometry
has been introduced by N. Hitchin in [29], and studied, among others, by M.
Gualtieri, [24, 26, 25], and G. R. Cavalcanti, [12]. It provides a way to generalize
both complex and symplectic geometry, since complex structures and symplectic
structures appear as special cases of generalized-complex structures. See, e.g.,
[30] for an introduction to generalized-complex geometry; the cohomology of
generalized-complex manifolds has been studied especially by G. R. Cavalcanti,
[12, 13, 14]. On a manifold X endowed with an H -twisted generalized complex
structure 7, (see §5.3 for the definitions), one can consider the Z-graduation
TotA*X ®r C = @Ppey UX, and the endomorphisms 97,5 € End' (U) and
5J,H € End™! (U}), which satisfy 8?7,H = 523,H = aj,ng,H +§j,H83,H =0;
then, let

ker d ker d
GH; (X) := *rosH GH: (X) := *r9z.H -
J.H imdy g d7.1 imd s g
and
. kerd; g Nkerd, g
GHBCJ‘H(X) = - p .
imds go7 H
kerd s g0
GH} , ,(X) = — LHOTH

imaJ’H —f—imgj,H

The above general results yield the following.
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Theorem 4 (see Theorem 5.10 and Theorem 5.11). Let X be a compact differen-

tiable manifold endowed with an H -twisted generalized complex structure [J. Then
dim¢ GH;CJH (X) + dimc GH:U,H (X)

> dim¢ GHg'J’H (X) + dimc GHa']’H X). (5.3

Furthermore, X satisfies the 0 J,ng,H—Lemma if and only if the Hodge and
Frolicher spectral sequences associated to the canonical double complex

(U}1_°2 ® B2, 07,1 ®cid, 7,5 ®c ,3)

degenerate at the first level and the equality in (5.3) holds.

2. Preliminaries and notation

Fix K € {R, C}. In this section, we summarize some notation and results concerning
graded K-vector spaces endowed with two commuting differentials.

2.1. (Bi-)graded vector spaces. We set the notation, in constructing two functors
in order to change over Z-graduation and Z2-graduation of a K-vector space.

Consider a Z?-graded K-vector space A** endowed with two endomorphisms
81 € End®1191.2 (4%*) and §, € End®1:%22 (4**) such that §? = 82 = 818> +
8,81 = 0. Define the Z-graded K-vector space

Tot* (4%) == @ 479,
ptg=e

endowed with the endomorphisms
8, € End® 11512 (Tot® (4%%))  and 8, € End®21%%22 (Tot* (4°*))

such that 8% = 8% = 6162 + 6261 = 0.

Conversely, consider a Z-graded K-vector space A*® endowed with two endomor-
phisms §; € End®! (4*) and 8§, € End®2 (A4°) such that §2 = 83 = 8,6, + 6,81 = 0.
Following [11, §1.3], [12, §4.2], see [22, §IL.2], [15, §II], take an infinite cyclic
multiplicative group {f™ : m € Z} generated by some S, and consider the Z-
graded K-vector space @, ., K B°. Define the Z2-graded K-vector space

oc’

Doub®*2 (4%) := Abiethe g kg
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endowed with the endomorphisms
§1®xid € End"? (Doub** (4°*)) and  8,®kpB € End"* (Doub™* (4°)) .
which satisfy
(61 ®x id)* = (82 ®x B)* = (81 Rk id) (62 ®k B) + (62 ®k B) (81 Rk id) = 0;
following [11, §1.3], [12, §4.2], the double complex
(Doub™*® (4°), §; ®xk id, 8> ®k B)

is called the canonical double complex associated to A°.

2.2. Cohomologies. Let A® be a Z-graded K-vector space endowed with two
endomorphisms §; € End‘g1 (A®) and §, € End‘s2 (A*) such that

82 =82 = 816, +68:8 = 0.

Since one has the Z-graded K-vector sub-spaces im 618, C ker§; N ker §,, and
imd; € kerdy, and im 6, C Ker §,, and im §; +im §, C ker §;5,, one can define the
Z-graded K-vector spaces

ker 81 Nkerd,

’

H(:31,52;5152) (A.) =

im8182
R o . kerd R o . kerdp
His,ip (47) = 5 Hisp (A7) = S5
ker8182

His a0 (A7) = s
and, since one has the K-vector sub-space im (§; + &) < ker (§; + §,), one can
define the K-vector space

ker (81 + d2)

H(s, 15538, +5) (Tot 4°) 1= im(§; +682)

we follow notation in [16, Remark 5.16]: more precisely, if maps f;:C; — A
for j € {l,...,r} and gxg: A — By for k € {1,...,s} of K-vector spaces

ﬂ 1 ker f;
X:jk—lmg' (Note that

up to consider —§, € End? (A°®) instead of &, € End® (A®), one has the

K-vector sub-space im (§; —§;) < ker(§; — 62), and hence one can consider
ker(81—32) .

are given, then H(z . f..¢,,..g,) denotes the quotient

also the K-vector space H s, —s,:5,—s,) (Tot A®%) = n6,=85) > Dhote that, for
1516, € {(61:81) . (62:82) ., (61.82:8182) . (8182:61.682)}, one has Hy (A ) =
Hy _, (4%))

uﬁl



512 D. Angella and A. Tomassini

Remark 2.1. Note that Hg, +5,:5, +8,) (A®) admits a <Z/ (31 — 82) Z)-graduation;

in particular, if §; = &5, then H(81+82;81+82

space.

Remark 2.2. Note that, for ]j (S {(81,82;8182), (81;81) S (82;62) s (8182;51,82)},
if A** is actually ZZ?-graded, then Hy (A*) admits a Z2-graduation such that

Tot* Hﬁ"' (A%®) = Hy (Tot® A**). Furthermore, for §; € End®1.1:81.2 (A**) and

8y € End®2.182.2 (A**®), one has that H(s, 45,:5,+8,) (Tot A®) admits a
((Z/ (81,1 — 82,1> Z) X (Z/ (81,2 — 82’2> Z)) — graduation;

in particular, if 31,1 = 82,1 and 31,2 = 32,2, then Hs, 15,:5,+5,) (Tot A®) is actually
Z2-graded.

Since kerd; N kerd, < ker(8; £+ 6) and imb;5, € im(§; = 65) for + €
{+,—}, and ker §; Nker 6, C ker§; andim 618, C im 87, and ker §; Nker 8, C ker 6,
and im §;8, C im§,, and ker (§; + &) C ker 818, and im (§; + 6) € im§; +im b,
for + € {4,—}, and ker§; C keré16, and im§; € im§; + imé,, and kerd, C
ker 618, and im §, C im 61 4+1im &5, then the identity map induces natural morphisms

of (possibly Z-graded, possibly Z2-graded) K-vector spaces

ﬁ H(.‘sla5225|82) (4%) \

H 5. (A%) Hs 45538, +5,) (Tot A®) Hs,—5,:6,-8,) (Tot A%)  H ) (A°)

\ Hy o () /

(As a matter of notation, by writing, for example,

) (A°®) is actually a Z-graded K-vector

/

H(.81,82;8182) (A.) — H(5, 465381 +62) (Tot A') ,
we mean Tot H, 5,.5,5,) (A%) = Hs, 468, +6,) (Tot A°) )

2.3. §16,-Lemma. Let A* be a Z-graded K-vector space endowed with two
endomorphisms §; € End’! (4°) and 8, € End®2 (4*) such that §2 = 8 =
8182 + 6281 = 0, and consider the cohomologies introduced in §2.2. In general,
the natural maps induced by the identity between such cohomologies are neither
injective nor surjective: the following definition, [16], points out when they are
actually isomorphisms.

Definition 2.3 ([16]). A Z-graded K-vector space A*® endowed with two endomor-
phisms §; € End®! (4®) and 8, € End®? (A°®) such that §2 =682 =16182+8261=0
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is said to satisfy the §;6,-Lemma if and only if
kerd; Nkerd, N (im§; +imd,) = iméb;6, ,

namely, if and only if the natural map H(8l 52:8182) (A*) — H(8]82,8],82) (A*)
induced by the identity is injective.

A Z2-graded K-vector space A** endowed with two endomorphisms §; €
End®11:812 (4°#) and 8, € End®21:%22 (4*) such that 62 = 83 = 8§18, + 8261 = 0
is said to satisfy the 818,-Lemma if and only if Tot® (A* ') satlsﬁes the §;6,-Lemma.

We recall the following result, which provides further characterizations of the
validity of the §;6,-Lemma. (Note that, according to Remark 2.1 and Remark 2.2,
the natural maps induced by the identity in Lemma 2.4 are maps of possibly Z-
graded, possibly Z2-graded K-vector spaces.)

Lemma 2.4 (see [16, Lemma 5.15]). Let A® be a Z- -graded K-vector space endowed

with two endomorphisms §, € End®! (A®) and b, € End® (A®) such that §2 = 83 =
8162 + 6281 = 0. The following conditions are equivalent:

(1) A® satisfies the 818,-Lemma, namely, the natural map H(.S] 82:8155) (4°) —
H (.81 82:61.82) (A®) induced by the identity is injective;

2) t_he na_tun‘ll map H(.81,82;8182) (A4°%) — H(.8182;81,82) (A®) induced by the identity
is surjective;

(3) both the natural map H(Sl 2:8162) (A4°) — H(8 1) (A®) induced by the identity
and the natural map H((gl’s2 $185) (4°) — H(°8 ) (A') induced by the identity
are injective;

(4) both the natural map H 51) (4°%) —> H(S1 52:81.62) (A°®) induced by the identity
and the. nat.ural map H(& 55) (4%) — H(8182 165 (A®) induced by the identity
are surjective.

Furthermore, suppose that the K-vector space ker 816, admits a Z-graduation

ker8182 = @ (ker5152 N AY)
Lez

with respect to which ker (§; £ 82) N A® = (ker8; Nkerd,) N A®. (For example, if
$ 1 # 52, then take the Z-graduation given by A®. For example, if A** is actually 7.2-

graded and 6, € End®1.1:81.2 (A%*) and 6, € End®>.182.2 (A**) with (81 1,61 2) #*
(82’1, 82’2), then take the Z-graduation induced by the 7>-graduation of A**® by

means of a chosen bijection 7. = 72 ) Then the previous conditions are equivalent

to each of the following:

(5) the natural map Tot H(.81,82;8182) (A®) — H(,+68:8,+8,) (Tot A®) induced by
the identity is injective;
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(6) the fmtuital map H(8}+52;81+52) (Tot A®) — Tot H(.8182;81,82) (A*®) induced by
the identity is surjective;

(7) the natural map Tot H(°81 $2:8162) (A®) — Hs,-5,:5,—8,) (Tot A®) induced by the
identity is injective;

(8) t.he nc'ztur'al map H(gl —82:81—82) (Tot A*) — Tot Hy o 5 5 ) (A®) induced by the
identity is surjective.

Proof. For the sake of completeness, we recall here the proof in [16].

[(1) = (3)]. By the hypothesis, kerd; N kerd, N (im&; + imdy) = im§;0,,
and we have to prove that kerd, Nimdé; € im &6, and kerd; N imé; € im§;6,.
Since im§; C imd; + imd, and imS, C imd; + imd,, one gets immediately
that the natural maps H(.81,82;5182) (A4°%) —> H(.Sl;sl) (A®) and H(.81,8z;8182) (4°%) —
H(‘sz;sz) (A®) are injective.

[(3) = (4)]. By the hypotheses, we have that keré, N im§; = imd;8, and
ker§; Nim§, = im 8,6, and we have to prove that ker §; + im 6, 2 ker 618, and
kerd, +im &y D ker8;8,. Let x € ker818,. Then §;(x) € kerd, Nimd; = im §;65,:
let y € A® be such that 61 (x) = 6182(y). Then x = (x — 82(y)) +62(y) € ker§; +
im 5, since 1 (x — 82(y)) = 0; it follows that the natural map H(.81;81) (4% —
H(.8182;81,82) (A°®) is surjective. Analogously, §>(x) € kerd; N imd, = imd18,:
let z be such that §,(x) = §;62(z). Then x = (x 4+ 61(2)) — 61(2) € kerd, +
imd1, since &, (x 4+ 81(z)) = 0; it follows that the natural map H('Sz;sz) (A% —
H(.z¥182;81,82) (A®) is surjective.

[(4) = (2)]. By the hypothesis, ker §; + im §, = ker §;6, and ker §, 4+ im§; =
ker 618,, and we have to prove that (ker §; N ker §;)+im §;+im d, D ker §;8,. Since
ker 816, = (kerdy + imd,) N (kerd, + imd;) C (kerdy Nkerdy) + im Sy + im s,
one gets that the natural map H(.81,82;8182) (A4°%) — H(:S182;81,82) (A®) is surjective.

[(2) = (1)]. By the hypothesis, (keré; Nkerd,) + imé§; + imé, = ker 6182,
and we have to prove that kerd; N kerd, N (imd; +imd,) € imé;8,. Let
x :=:681(y) + 82(z) € kerd; Nkerd, N (imd; + im§,). Therefore y € ker §18, =
(ker 8 Nkerd,)+imd; +imd, and z € ker §16, = (ker §; N ker 6,)+im 81 +im §5.
It follows that §;(y) € im 816, and §2(z) € im 8165, and hence x = §1(y) +82(z) €
1m 81(.32, proving that the natural map H(.b’1,82;8182) 4% — H(°8182;51,52) (A®) is
injective.

[(1) = (5), and (1) = (7)]. By the hypothesis, ker §; Nker §,N(im§; + im §,) =
im 618>, and we have to prove that ker §; Nker§, Nim (§; & §,) € im§;§, for + €
{+,—}. Since ker §; Nker §, Nim (8 =+ §,) < ker 6y Nker, N (im§; + im J5), one
gets immediately that the natural map Tot Hy 5 ¢ 51 (A%) = Hs 46,5, +8,) (A°)
is injective.

[(5) = (6), and (7) = (8)]. Fix + € {+,—}. By the hypothesis, ker§; N
keré, N im(6; = 8,) = imé§;8,, and we have to prove that ker (67 + 62) +
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imdé; + im§, D kerd;8,. Let x € ker$16,. Then (8; £62) (x) € kerd; N
kerd, N im (87 £ 8,) = imd18;; let z € Tot A® be such that (§; +65) (x) =
8162(z). Since (§; £6) (x £ %81(2) — %82(2)) = 0, one gets that x =
(x £181(2) = 162(2)) — (£281(2)) + 2 62(2) € ker (61 £8») + imé; + im Sy,
proving that the natural map Hs, +5,:5,+5,) (Tot A®) — Tot H('8152;81’82) (A°®) is
surjective.

To conclude the equivalences, we assume the additional hypothesis given in the
statement.

[(6) = (2), and (8) = (2)]. Fix + € {4+, —}. By the hypothesis, ker (§; £ 62) +
imé; + imé, = ker§d,, and we have to prove that (ker8; Nkerd,) 4+ iméd; +
imé&, D ker§,8,. By the additional hypothesis, we have that ker §,, admits a Z-
graduation ker 6,8, = @, (ker 8162 N /IE) with respect to which ker (§; &= 85) N

{* = (ker8; Nkerd,) N A°.
Then one has that

ker818; = @D (ker 18, N ﬂ)

Lez (

((ker (61 £ 85) +imé; +imdy) N /fe)
LeZ
(

- @ (ker (61 £8)N AK) +imé; + 1m52>
LeZ

-P (((ker51 N8, N Af) +imé; + im 52)

Lez
- (ker81 N 82) + 1m81 + 111’152 .

proying that the natural map Hs, +5,.5,+s,) (Tot A*) — Tot H(‘8182;81’82) (A°®) is
surjective.

By noting that, for ﬂgl’gz € {61, 82, 8162, 81 + 82, 61 — 62},

S1 014520 .
(kerfis, 5,)" " @ K B2

. 3 L] +<§ . °
(lmﬁ&,(gg) L 2®KKIB 2a

[ ) ,.
(kerﬁ51®Kid,52®Kﬂ) v

)'15'2

and (lm nrsl ®kid,62 ®x B

we get the following lemmata.

Lemma 2.5. Let A* be a Z-graded }AK—vector space endowed with two endomor-
phisms §, € End%! (A®) and 8, € End® (A®) such that §* = 8% = 8162+ 68261 = 0.
Then, there are natural isomorphisms of K-vector spaces

Hﬂ's‘l’;( s (Doub®*® 4°*) =~ Doub®!-*2 H‘;&l,s2 (4°) ,

where fi5, 5, € {(81,02:8162), (81:81), (82:62), (8162:01.82)}.
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Lemma 2.6. Let A® be a Z-graded K-vector space endowed with two endomor-
phisms §, € End‘§1 (A®) and 8, € Endg2 (A®) such that §* = 8% = 8182+ 682,81 = 0.
Denote the greatest common divisor of 31 and 82 by GCD (81, 82) The following
conditions are equivalent:

0 AGCD(SI,SZ).
(2) Doub®*® (A°) satisfies the (§1 ®x id) (62 Rk B)-Lemma.

satisfies the §16,-Lemma;

Proof. Indeed,
(ker (8, ®x id) N im (8, @ B))"1*2 = (ker81 Nimé, N A% e1+8 '2) o K %
and  (im (8, ®x id) (8, @k B))"1""? = (im8182 N Adre1+8 '2) ®x K2,

completing the proof. O

3. An inequality a la Frolicher

Let A** be a bounded Z2-graded K-vector space endowed with two endomorphisms
81 € End"® (4**) and §, € End®! (4*) such that §? = 62 = 8,8, + 8281 = O.
The bi-grading induces two natural bounded filtrations of the Z-graded K-vector
space Tot® (A**) endowed with the endomorphism §; + 8, € End! (Tot® (4%*)),
namely,

'FP Tot* (4%°) := @ A" < Tot® (4°°) }
r+s=e PEZ
rzp

and

TFITort (4%°) i= @) A <> Tot® (A'=')} .
£

Such filtrations induce naturally two spectral sequences, respectively,

VED® (4%, 81, 82)) and  {"E}" (4%, 81, 8))

rez rez ’

such that

(A 80 8) = HI (A = BT (1o (4°7))

and

//EII,.Z (A.,.’ 81, 82) = H(.tgllj;gzl) (A.’.) = H(:311::322;31+52) (TOt. (A.’.)) >

see, e.g., [39, §2.4], see also [23, §3.5].
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By using these spectral sequences (and up to consider —§, instead of §5), one
gets the classical A. Frolicher inequality.

Notation 3.1. Given two Z-graded K-vector spaces A® and B®, writing, for example,
dimg A®* > dimg B®, we mean that, for any k € Z, the inequality dimg Ak >
dimg B* holds.

Proposition 3.2 ([19, Theorem 2]). Let A** be a bounded 7-graded K-vector
space endowed with two endomorphisms §; € End"® (4%*) and §, € End®! (4**)
such that §% = §3 = §18, + 8281 = 0. Then, for + € {+,—},

min {dlmKTot H(& 8)(A *). dimg Tot® H(8 ) (A”')}

Z dlmK ]—I(.(g1 :|:82,8] :|:82) (TOt. A.’.) .

As a straightforward consequence, the following result holds in the Z-graded
case.

Corollary 3.3. Let A® be a bounded Z- graded K-vector space endowed with two

endomorphisms §, € End‘g1 (A%) and 6, € End‘g2 (A®) such that 82 = 52 = 6162 +
8281 = 0. Then, for + € {+,—},

. . H p+8 q H p+z§ q .
min Z dimg H(b’l 81)2 Z dimg H(‘s1 ;82)2 (A )
ptg=e pt+q=e

= dimy H{(s, g,i0)2(5:040):(61 @i £ 5,0 p)) (ToL Doub™® A7)

Proof. By Lemma 2.5, one has that, for f15, 5, € {(61,82:6182), (61:61), (62;62),
(6182:61,62)},

dimg H, " (Doub®* 4%) = dimy HJ'*1 52 (4%) .

#5, ®kid.6, Rk B #5,.55

Hence, by applying the classical Frolicher inequality, Proposition 3.2, to Doub®**
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endowed with 6; ®k id and 8, ®k B, one gets, for + € {4, —},

: : 81 p+82q $1p+62q ( 4o
min Z dimg H(8 1) Z dimg H(S 65) (A )
ptg=e ptg=e
_ . . DP.q oo o
= min { Z dimg H(81®Kid;81®md) (Doub A ) ,
ptg=e

: p.q oo o
Y dimg HE 55,6, 5) (Doub™ 4 )}
ptg=e

(Doub"' A') ,

= min § dimy Tot® H(51®Kld 51 ®xid)

dimg Tot* Hy (Doub®* 4°)

(52 ®kB;62®xB)

= dimg H{(s, @i (5, 018):(61 9 £ 5,0 p)) (Tt Doub™® A7)
completing the proof. 0
We prove the following inequality a la Frolicher involving the cohomologies
H(81,82 6155) (A®) and H(Sls2 51.55) (A*®), other than H(S 1) (A°®) and H(8 5) (A4°).
Theorem 3.4. Let A® be a Z-graded K-vector space endowed with two endomor-
phisms §, € End®! (A®%) and 8, € End® (A®) such that §2 = 85 = §182+ 8281 = 0.
Suppose that

dimg Hf, 5, (4%) <400 and  dimg H, 5, (4%) < +oo.

Then

dimg H(.51,32;5152) (A.) + dimg H(.5152;51,52) (A.)
> dimg H(.Sl;Sl) (A') + dimg H(.82;82) (A') . (3.1

Proof. If either H(S 52:6182) (A®) or H(S] 52:61.62) (A®) is not finite-dimensional, then
the inequality holds trivially; hence, we are reduced to suppose that also

dimyg H(:31,82;8182) (A') < 400 and dimg H(.8182;81,82) (A') < +4o00.
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Following J. Varouchas, [47, §3.1], consider the exact sequences

0—
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im§; Nimé§, ker 8, Nim 6, ker 81
im8182 im8182 11’I181
ker 818, ker 8,6,
. . % . % 0 9
imé§; 4+ imd; ker 8, 4+ imé§,
imé; Niméd, ker 8, N im &g ker 8,
im8152 im8182 im 82
ker 8,6, ker 6162
- - — ; -0,
imd; + imd, ker§, +im§;
imd; Nkeré, ker 81 Nker d, ker §;
im8152 im8182 1m81
ker §:6, ker 610>
— - — — 0,
ker 85 + im 8y ker 81 + ker 6,
im &, N ker§; ker§; Nkerd, ker 8,
im8182 im8182 ll’Il(Sz
ker5182 ker 8182

% .
kerd; +imé,

of Z-graded K-vector spaces.
Note that all the K-vector spaces appearing in the exact sequences have finite
dimension. Indeed, since H (’81 52:51.62) (A°®) has finite dimension, then

ker 5182

dimg ————
1 ker$; +imé,

< 40

and dimg

. . . o .
since H (31.62:8162) (A°®) has finite dimension, then

imé; Nkeré,

di
m im 81 82

K

Furthermore, note that the natural maps

ker §oNim &1 .
Timsis - Hisys0806)

keré; Nimé,

di
1 im 51 52

it follows also that

< +o0

and dimg

imé&;6o

ker§, +imé;

ker 81 Nim &>

— —
keré; + ker 8,

ker 5152

imdé, N ker &g
im5152

[ ]
= H, 5,606

< 400

(A®) and

(A®) induced by the identity are injective, and hence

and dimg

. 1[1’181 N 11’I182
dll’nK —_—
1m8152

ker 6, N im &y
im5152

400 .

< +00;
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Analogously, since the natural maps

ker 8182

. . . . ker8182
H(5152;51,52) (A ) - ker 8, + im §; and H(5152;51,52) (A )

e
kerd; + im 6,

induced by the identity are surjective, then

. ker8182 . ker8182
d —_— < d d _— < ,
e ker §, + im §; oo an He keré; + imé, oo
and hence also
. ker 816,
dimg ———— < 4+00.

ker§; + ker o
By using the above exact sequences, it follows that

di ker 818, . imd&; Nimédy . kerd; Nimé,
img ————— =dimgk ———— —dimg ——=
“imé; +imé, “ T imé,s, T im 8,8,
. ker81 ker8182
d - o . o 9
+ dimg im & + dimg kerd; +imé,
di ker 8162 . imé; Niméd, di ker§, Nim &g
img ———————— =dimg ——— —dimg ———
= 11'Il81 + 11’1'182 = im8152 K im8152
+ di keI‘52 1 di ker8182
im img ————
K imd, Kker82+im81
. ker 81 N kerd, . imé; Nkeré, . ker 81
dimg —————— = dimg —————— + dimg -
imdé16, imé16, imé;
. ker8182 . ker8182
—d — — +d _
1 kerd, + im 8, + dimg ker 81 + ker o
ker§; Nkerd, . im &, N keré; . ker 8,
dimg ——————— = dimg ————— + dimx -
imd16, imé&;8, 1m 0,
keré:6 ker 616
— dimg —— 12 4 G o102

ker§; + imd, i ker§; + kerd,

from which, by summing up, one gets

. ker 6162 . kerd; Nkerd,
2d — 4+ 2d _
e s+ imes O T imsrss
. . 2 imé; Nimd,
= 2 dimg - + 2 dimg - + 2 dimg ——
imé&; imé, imé; 68,
ker8182
2 dimg ——— 172
+ 2 dimg ker §; + ker 8,
ker § ker §
> 2 dimg — 4 2 dimg — 22 | 3.2)
im 8y imd,
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yielding
di ker 8165 +di ker§; Nkerd, . ker §; . ker 8,
img ———— img ————= im im ,
K1n151 + imé, = imd18, - K im 1 K imé,
and hence the theorem. ]

Remark 3.5. Note that the proof of Theorem 3.4 works also for Z2-graded K-vector
spaces, since in this case J. Varouchas’ exact sequences are in fact exact sequences
of Z?-graded K-vector spaces. More precisely, one gets that, g1ven a Z2-graded K-

vector space A*® endowed with two endomorphisms §; € End®1.1:81.2 (A**) and
8 € End®.182.2 (A**) such that §2 = §2 = §18, + 8281 = 0, and supposed that

dimg H (A**) < +o0 and dimg H('a’;sz) (A%°) < +o0,

(5 381)

then

dimg Hg s 05,5,y (A7) + dim Higly 5, ) (4%7)
> dimg H'g ) (A%°) + dimg Hig s ) (A%°)
As a consequence of Theorem 3.4 and Proposition 3.2, one gets the following
inequality & la Frolicher for double complexes, namely, Z2?-graded K-vector spaces

B** endowed with two endomorphisms §; € End!*° (B**) and §, € End®! (B**)
such that 8% = 5% = 6162 + 6261 = 0.

Corollary 3.6. Let B** be a bounded 7.*-graded K-vector space endowed with two
endomorphisms §; € End"® (B**) and 8, € End®! (B**) such that §2 =82 =
8162 4+ 8281 = 0. Suppose that

dimg Tot® H(.éjl.ﬁl) (B**) < +o0 and dimg Tot® H(s 5,) (B**) < +o0.

Then, for £ € {+,—},

dimg Tot® H(S] $:6152) (B ) + dimg Tot*® H(z?lz?z 51.62) (B"')
2 2 dlm]K H(81i82,8li82) (TOt. B.j.) . (3.3)

4. A characterization of §;6,-Lemma by means of the inequality a la Frolicher

With the aim to characterize the validity of the §;8,-Lemma in terms of the
dimensions of the cohomologies H(8 $52:8162) (A®) and H, (8162:81.52) (A®), we need
the following lemmata.
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Lemma 4.1. Let B*® be a Z?-graded K-vector space endowed with two endo-
morphisms §; € End"®(B**) and §, € End®! (B**) such that §2 = §2 =
8162 + 68261 = 0. If

imd; Nimd,

— = = {0},

1m 5152

then the natural map t:Tot® Hi 5,58 (BS) — H(.<Sl+52;81+82) (Tot® B*-*)
induced by the identity is surjective.

Proof. Leta :=: [x] € HE 4508, 160) (Tot®* B**). Since §;(x) + 82(x) = 0 and
imé; Nimd, = imé§6,, then we have §;(x) = —(x) € im§; Nimé, =
im§;8,; let y € Tot*~! B** be such that §;(x) = 8182(y) = —82(x). Hence,
consider a = [x] = [x — (61 + 82) (¥)] € H(.81+82;81+82) (Tot® B*:*), and note that
@ = t(lx = (1 +8) (0)]) where [x — (31 +8) (1)] € Tot® H" s o (B),
since 81 (x — (8; + 82) (¥)) = 0and & (x — (81 + 82) (¥)) = 0. O

Lemma 4.2. Let B*® be a 7?-graded K-vector space endowed with two endo-
morphisms §; € End"® (B**) and 8§, € End®! (B**) such that §2 = 8 =
8162 + 6261 =0. If

ker 8182

_ ®Ho1%2 g
ker8; + ker 8 0}

t.hen the naturgl mflp'“_l_{(:‘il-_i—&;&l%—&z) (Tot®* B**) — Tot® Hg 5,508 (B**)
induced by the identity is injective.

Proof. Let a :=: [x] € H{ ,s s .5, (Tot®> B*®). Suppose that i(a) = [0] €
Tot® H(.S’l.52§81,82) (B**), that is, there exist y € Tot*"! B®* and z € Tot*"! B**
such that x = 61(y)+382(z). Since (81 + 82) (x) = 0 and ker §;6, = ker §; +ker 45,
it follows that §;6, (z — y) = O, thatis, z — y € ker§18, = ker§; + kerd,. Let
u € keré; and v € kerd, be such that z — y = u + v. Then, one has that x =
$1(0) + 82(2) = 81(y) + 620y +u +v) = (61 +382) (y +u) € im(é1 + 62),

proving that a = [0] € H(.81+82;81+82) (Tot® B**). O

We can now prove the following characterization of the §;8,-Lemma for double
complexes in terms of the equality in (3.3).

Theorem 4.3. Let B** be a bounded 7.-graded K-vector space endowed with two
endomorphisms §; € End"° (B**®) and 8, € End®! (B**) such that §2 =82 =
8162 + 8261 = 0. Suppose that

dimg H(}’;;b,l) (B**®) < +o0 and dimg H(.S’z.ﬁz) (B**) < +o0.

The following conditions are equivalent:

(1) B**® satisfies the 818,-Lemma;
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(2) the equality

dimg Tot® H™ 5 5 5 (B*®) + dimy Tot® Hg's o 1 (B**)

=2 dimg H, ;5.5 15, (Tot" B>®) .
holds.

Proof. [(1) = (2)]. By Lemma 2.4, it follows that

dimg Tot® Hg™ 5 5 50 (B*®) < dimg H, 5,5, 15, (Tot* B**)
and
dim]K TOt. H(S’l 82,81,82) (B.’.) f dim]K H(.lg1+82,81+82) (TOt. B.’.) .

By Corollary 3.6, it follows that

dimg Tot® H(8’1,82;8182) (B"') + dimg Tot*® H(§182;81,82) (B"')

Z 2 dlm]K I_I(.(g1 +82;8] +82) (TOt. B.’.)

Hence actually the equality holds.
[(2) = (1)]. Since, by (3.2) and Proposition 3.2, it holds

dimg Tot® Hy" 5 .5 5 (B*®) + dimg Tot® H® o 5 (B*°)

= dimg Tot® H(.z?’l.;&) (B**) + dimg Tot* H(}’;Sz) (B**)

imé; Nimd, . ker 8162

— 4+ dimg ———
iméd;8, ker 81 + ker 8,

> 2 dimg Hg (5,5, 15, (TOt* B™®)
then, by the hypothesis, it follows that

imé; Niméd, ker 818,
imd;9, 0} an ker 81 + ker 8, 0}

By Lemma 4.1, one gets that the natural map
H, s,:8,8,) (T BY®) = H L5515, (Tot” B>

induced by the identity is surjective; by Lemma 4.2, one gets that the natural map

H(.81+82;81+82) (Tot®* B**) — H(.8182;81,82) (Tot®* B**) induced by the identity is

injective. In particular, one has that

dimg Tot® Hig™ 5 5 50 (B*®) = dimg H, 45,5, 1, (Tot* B**)
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and that

dimg Tot® Hig's s 5 (B*®) > dimg H, 15,5, 15, (Tot” B>®) .
Hence, by the hypothesis, it holds in fact that

dimg Tot® H(81,82,8182) (B"') = dimg H(.(‘)’1+82-81+82) (Tot' B"')
= dimg Tot® H(8182,81,8z) (B**) .

Sipce. H ('51' 52:8,8,) (B5®) and H, (.8,1.82; 5,.5,) (B**) are finite-dimensional by hypoth-
esis, it follows that the natural maps

H(.51,52;8152) (TOt. B.’.) - H(.81+82;81+82) (TOt. B.’.)
and Hiy x5, 450 (To BYY) = Hi 5,055, (Tot” B*)

induced by the identity are in fact isomorphisms. By Lemma 2.4, one gets the
theorem. [

In order to apply Theorem 4.3 to Z-graded K-vector spaces to get geometric
applications, e.g., for compact symplectic manifolds, we need to record the following
corollaries.

Corollary 4.4. Let A® be a bounded Z-graded K-vector space endowed with two
endomorphisms 8 € End®1 (A®) and 5, € End® (A®) such that §2 = 83 = 818, +

8281 = 0. Denote the greatest common divisor of 81 and 52 by GCD (81, 82)
Suppose that

dimg Hg 5y (A%) <400 and  dimg Hy, 5, (A%) < +o0.
The following conditions are equivalent:
) AGCD(SI,SZ) .
(2) the equality

satisfies the 816,-Lemma;

. H p+t§ q ° . H p+z§ q .
> (d‘mK H g, ity (A7) + dimsc Hg 57525 (4 )>
ptq=e

=2 dlmK H(.Sl ®xid +8> @k B;61 Qkid +52 Rk B) (TOt. Doub™* A.) .

holds.

Proof. The Corollary follows from Lemma 2.6, Theorem 4.3, and Lemma 2.5. [
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Corollary 4.5. Let A® be a bounded Z-graded K-vector space endowed with two
endomorphisms §; € End‘gl (A®) and 6, € End‘g2 (A®) such that §3 = 85 =
8162 + 8,81 = 0. Suppose that the greatest common divisor of 81 and 82 is
GeD (81, 82) = 1, and thar

dimg Hf, 5, (4°%) <400 and  dimg H, 5, (4%) < +oo.

The following conditions are equivalent:
(1) A°® satisfies the §18,-Lemma;
(2) (a) both the Hodge and Frolicher spectral sequences of

(Doub"' A®, 81 Rk id, 8, Rk /3)

degenerate at the first level, equivalently, the equalities

dimg Hy o i 15,05 :5) ®xid +5> @ B) (Tot" Doub®* 4°)
= dimg Tot®* H;

= dimg Tot®* H;

Doub®* A*)
Doub®* A*)

(82®Kﬂ 82®xB) (

(51®1K1d 81®Kkid) (
hold;

(b) the equality

dimyg Hy 5 .55, (A°) + dimg H 55 51 (4°%)
= dimg H; .5 (A°) + dimg H 5., (4°)
holds.

Proof. The Corollary follows from Corollary 4.4, Proposition 3.2, Theorem 3.4, and
Lemma 2.5. =

5. Applications

In this section, we prove or recover applications of the inequality a la Frolicher,
Theorem 3.4 and Theorem 4.3, to the complex, symplectic, and generalized complex
cases.

5.1. Complex structures. Let X be a compact complex manifold. Consider the
Z2-graded C-vector space A**X of bi-graded complex differential forms endowed
with the endomorphisms 9 € End*® (A**X) and 9 € End®! (A**X), which satisfy

02 = 52 = 99 + 00 = 0. As usual, define the Dolbeault cohomologies as

Hy*(X) == HGh (A™°X) . HPN(X) = HEw (A°X)

(3 3)
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and the Bott—Chern cohomology and the Aeppli cohomology as, respectively, [10, 1],

Hye(X) = HI% o (h°X) . HY(X) =

(5,3:99) AX)

Higam) (
Note that, since X is a compact manifold, dim¢ Tot® Hg'"(X ) < +oo: indeed,
for any Hermitian metric g with C-linear Hodge-*-operator *g:A®*1'*2X —
Adime X—e2.dimc X—e1 ' 5pne has an isomorphism ker [5, 5*] il H3(X), where BN
is the adjoint operator of d with respect to the inner product induced on A**X by g,
and the 2™-order self-adjoint differential operator [5, 5*] is elliptic. Furthermore,
dimc Tot® H, *(X) = dimc Tot® Hg” (X) < 400, since conjugation induces the
(C-anti-linear) isomorphism H 8' Lo2(X) ~ ng’” (X) of R-vector spaces.

Note also that dime Tot® Hyo(X) = dimg Tot? 4™ X=* H9°(X) < +o0,
[42, Corollaire 2.3, §2.c]: indeed, for any Hermitian metric g on X, the C-linear
Hodge-*-operator #g: A®1:*2 X — Adimc X—e2.dimec X=¢1 ¥ indyces the isomorphism
sg Hyli™(X) S HAmeXmeadime X=e1 y) 145 §2.c], and ker Agc = Hye (X),
[42, Théoreme 2.2], where Agc := (85) (85)* + (35)* (35) + (5*8> (5*3)* +
(5* 8)* (5* 8) +979 + 03 is a 4%-order self-adjoint elliptic differential operator,
[31, Proposition 5], see also [42, §2.b].

By abuse of notation, one says that X satisfies the d0-Lemma if the double
complex (/\"'X , 0, 5) satisfies the 00-Lemma, and one says that X satisfies
the dd®-Lemma if the Z-graded C-vector space A*X ®r C endowed with the
endomorphisms d € End! (A*X ®g C) andd® := —i (8 —5) € End! (A*X @R C)
such that 2 = (d°)*> = [d, d°] = O satisfies the dd°-Lemma. Actually, it
turns out that X satisfies the dd°-Lemma if and only if X salisﬁes the d0-Lemma,
[16, Remark 5.14]: indeed, note that 0 = % (d+id°) and 0 = % (d—id°), and
90 = —5 dd-.

From Corollary 3.6 and Theorem 4.3, one gets straightforwardly the following
inequality a la Frolicher for the Bott—-Chern cohomology of a compact complex

manifolds and the corresponding characterization of the dd-Lemma by means of
the Bott—Chern cohomology, first proved by the authors in [5].

Corollary 5.1 ([5, Theorem A, Theorem B]). Let X be a compact complex manifold.
The inequality

dim¢ Tot® Hg (X) + dime Tot®* H3®(X) > 2 dimg Hjx(X;C) (5.1

holds. Furthermore, the equality in (5.1) holds if and only if X satisfies the 90-
Lemma.
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5.2. Symplectic structures. Let X be a 2n-dimensional compact manifold en-
dowed with a symplectic structure w, namely, a non-degenerate d-closed 2-form

on X. The symplectic form @ induces a natural isomorphism 7: TX S T*X ; more
precisely, 1(-)(~) = w(-,~). Set I1 :=: 0! := a)(l_1~,l_1 ) € A’TX the

canonical Poisson bi-vector associated to @, namely, in a Darboux chart with local

. 1 ' :
coordinates {xl,...,x",yl,...,y”} such that w = Z'}-zldxf A dy’, one has

—1 loc <=n 3 d T k —-1\k
o =) J=1 927 Ngy7 One gets a bi-R-linear form on A" X, denoted by (a) ) ,

by defining it on the simple elements a! A---Aak € AKX and B1A---ABK € AKX
as
—1\k _
(v 1) (al/\---/\ak,,Bl/\---/\,Bk) = det(a) 1(0/,,3”’)) :
L,me{l,...k}
k. . . . . .
note that (w™!')" is skew-symmetric, respectively symmetric, according to k is odd,

respectively even.
We recall that the operators

L € End®*(A°X), L(a) :==0Aa,

A € End™2 (/\’X) ., Al) :=—1na,

H € End’ (A°X), H(a) ::Z(n—k) Tk x O,
kezZ

yield an s[(2; R)-representation on A*X (where tg: A®X — A*72X denotes the
interior product with £ € A2 (TX), and mpx y: A*X — AKX denotes the natural
projection onto AKX, for k € 7Z).

Define the symplectic co-differential operator as

d* := [d, A] € End™' (A°X) ;

one has that (dA)2 = [d, dA] = 0, see [33, page 266, page 265], [11,
Proposition 1.2.3, Theorem 1.3.1].

As amatter of notation, for ff € {(d,d*;dd"), (d;d), (d*;d*), (dd?;d,d")},
we shorten Hﬁ‘(X) = Hﬂ' (A®X). Note that H(’d;d)(X) = Hj p(X:R). As
regards notation introduced by L.-S. Tseng and S.-T. Yau in [44, §3], note that

Hengny(X) = H3(X), and that HY, xoay(X) = Hy 0 (X), and that

H g gy (X0 = H3 ().
Note also that, as a consequence of the Hodge theory developed by L.-
S. Tseng and S.-T. Yau in [44, Proposition 3.3, Theorem 3.5, Theorem 3.16],

one has that, [44, Corollary 3.6, Corollary 3.17], X being compact, for ff €
{(d,d*;dd?), (d;d), (d*;d?), (dd™;d,d?)},

dimg HJ(X) < +oo.
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With the aim to develop a symplectic counterpart of Riemannian Hodge the-
ory for compact symplectic manifolds, J.-L. Brylinski defined the symplectic-x-
operator, [11, §2],

*p A°X —> AZTCX

requiring that, for every o, g € AKX,
aA*yp = (a)_l)k (o, B) 0" .

Since d4 |,k x= (—=1)**! %, d %, [11, Theorem 2.2.1], and *2 = id, [11,
Lemma 2.1.2], then one gets that %, induces the isomorphism

*o: Hipg (X) > H(zd’i\_;;A)(X) .

In particular, by the PoincarAl' duality, it follows that

Furthermore, by choosing an almost-complex structure J compatible with @
(namely, such that w(:, J-) is positive definite and w(J-, J - -) = o), and by
considering the J-Hermitian metric g := w(-, J - -), one gets that, [44, Corollary
3.25], the Hodge-*-operator *4: A*X — A2"* X associated to g induces the
isomorphism, [11, Corollary 2.2.2],

*g: H(.d,dA;ddA) (X) :> H(zdndj\.;d’d/\) (X) .
In particular, it follows that

2n—

dimRH(‘d,dA;ddA)(X) - dimRH(ddA.;d,dA)(X) < +OO

Recall that one says that the Hard Lefschetz Condition holds on X if

forevery k e N, LK HIZF(X;R) 5 HIFF(X:R) . (HLC)

As in [6], and miming [34] in the almost-complex case, define, for r, s € N,
HEOXGR) = {[17y©O] e HEH(XGR) © Ay© =0} ¢ HF(XGR);

one has that
Y HU(X:R) € Hip(X:R),
2r+s=e

but in general neither the sum is direct, nor the inclusion is an equality.
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As proved by Y. Lin in [35, Proposition A.5], if the Hard Lefschetz Condition
holds on X, then
HPY(X:R) = PH{(X:R),

where

kerd Nkerd® Nker A
PHd.(X;R) — cr cr cr

imd |-ker d® Nker A

is the primitive cohomology introduced by L.-S. Tseng and S.-T. Yau in [44, §4.1].

We recall the following result.

Theorem 5.2 ([38, Corollary 2], [48, Theorem 0.1], [40, Proposition 1.4], [27],
[44, Proposition 3.13], [12, Theorem 5.4], [6, Remark 2.3]). Let X be a compact
manifold endowed with a symplectic structure ®. The following conditions are
equivalent:

(1) every de Rham cohomology class of X admits a representative being both d-
closed and dA—closed, namely, Brylinski’s conjecture [11, Conjecture 2.2.7]
holds on X ;

(2) the Hard Lefschetz Condition holds on X ;

(3) the natural map H('Cl S (A*X) — HZR(X:;R) induced by the identity is

;dd?
surjective;

(4) the natural map H(.d,d’\;dd/‘) (A*X) — HJi(X;R) induced by the identity is an
isomorphism;

(5) the bounded Z-graded R-vector space N*X endowed with the endomorphisms
d € End! (A*X) and d* € End™! (A®*X) satisfies the d d®-Lemma;

(6) the decomposition

Hip(X:R) = (DL HP*"(X:R).

reN

holds.

In order to apply Corollary 4.5 to the Z-graded R-vector space A®*X endowed
with the endomorphisms d € End! (A®X) and d* € End™! (A®X), satisfying d> =
(dA)2 = [d, dA] = 0, we need the following result.

Lemma 5.3 ([11, Theorem 2.3.1], [17, Theorem 2.5]; see also [17, Theorem 2.9],
[13, Theorem 5.2]). Let X be a compact manifold endowed with a symplectic
structure w. Consider the Z?-graded R-vector space N*X endowed with the endo-
morphisms d € End' (A*X) and d* € End™' (A*X). Both the spectral sequences
associated to the canonical double complex (Doub"' A*X, d®grid, dA ®R,3) de-
generate at the first level.
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Hence, by applying Theorem 3.4 and Corollary 4.5 to the Z-graded R-vector
space A®X endowed with d € End! (A®X) and d® € End™' (A®X), we get the
following result.

Theorem 5.4. Let X be a compact manifold endowed with a symplectic structure .
The inequality

dimg H;, o ay (X) +dimgp H, A 2y (X) = 2dimg Hjx(X:R)  (5.2)
(d,d7;da™) (dd™;d,a™)

holds. Furthermore, the equality in (5.2) holds if and only if X satisfies the Hard
Lefschetz Condition.

Consider X = I'\G a solvmanifold endowed with a G-left-invariant symplectic
structure w; in particular, w induces a linear symplectic structure on g; therefore the
endomorphisms d € End! (A®X) and d® € End~! (A*X) yield endomorphisms
d € End! (A®g*) and d® € End~!(A®g*) on the Z-graded R-vector sub-space
A®g* — A®X, where we identify objects on g with G-left-invariant objects on X by
means of left-translations. For ff € {(d,d*;dd%), (d;d), (d*;d*). (dd*;d,d*)},
one has the natural map ¢ Hﬁ’ (A°g") — Hﬂ’ (X). We recall the following result,
which allows to compute the cohomologies of a completely-solvable solvmanifold
by using just left-invariant forms; recall, e.g., that, by A. Hattori’s theorem [28,
Corollary 4.2], if G is completely-solvable (that is, for any g € G, all the eigenvalues
of Ad, = d (wg)e € Aut(g) are real, equivalently, if, for any X € g, all
the eigenvalues of ady := [X,:] € End(g) are real, where ¥:G > g
(1//g: h—gh g_l) € Aut(G) and e is the identity element of G), then the natural
map Hj, (A*g*) — Hjp (X;R) is an isomorphism.

Theorem 5.5 ([36, Theorem 3, Remark 4], see also [4]). Let X = TI'\G be
a completely-solvable solvmanifold endowed with a G-left-invariant symplectic
structure . Then, for § € {(d,d*;dd"), (d;d), (d*;d?), (dd*;d,d™)}, the
natural map

i H (A°g") — Hy (X)
is an isomorphism.

Example 5.6. Let I3 := Z[i]*> \ (C3, *) be the Iwasawa manifold, where the group
structure * on C3 is defined by

(z1, 22, z3) * (W1, Wo, W3) 1= (21 + W1, Z2 + W2, Z3 + 21w + W3) .

There exists a (C3, )-left-invariant co-frame {e’ }j o Of T* X such that

de! = de? = de® = de* = 0, de® = —eP34e?*, de® = —elt—e?3

(in order to simplify notation, we shorten, e.g., e!2 := e! A €2).
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Consider the ((C3, *)-left—invariant almost-Kihler structure (J, w, g) on I3
defined by

Jel = —e6, Je? = —es, Je3 = —e4,
o= eC+eP et o= w(, I

it has been studied in [7, §4] as an example of an almost-Kihler structure non-
inducing a decomposition in cohomology according to the almost-complex structure,
[7, Proposition 4.1].

The symplectic cohomologies of the Iwasawa manifold I3 endowed with the
((C3, *)—left—invariant symplectic structure @ can be computed using just ((C3, *)—
left-invariant forms, and their real dimensions are summarized in Table 1.

dime Hy (I3) || (d;d) | (d%;d?) | (d.d*;dd?) | (dd*;d,d")
0 | —— 1 | 1 | 1
1 |4 | 4 | 4 | 4
2 |8 | 8 | 9 | 10
3 | 10 | 10 | 11 | 11
4 | 8 | 8 | 10 | 9
5 | 4 | 4 | 4 | 4
6 | —— 1 | 1 | 1

Table 1: The symplectic cohomologies of the Iwasawa manifold I3 :=
Z[i]® \ (C3, x) endowed with the symplectic structure  := el A e® + 2 A e® +
3, L4

e’ Ne’.

In particular, note that

dimy H(ld’dA;ddA) (X) + dimg H(lddA;d,dA) (X) —2 dimg Hjp(X;R) =0,

dimg H(Zd’dA;ddA) (X) + dimg H(deA;d,dA) (X) —2 dimg Hio(X;R) =3,

dimg H(3d,dA;d ) (X) + dimg H(3ddA; s (X) —2 dimg Hjp(X;R) = 2.
Remark 5.7. More in general, let X be a compact manifold endowed with a
Poisson bracket {-, -}, and denote by G the Poisson tensor associated to {-,-}. By
following J.-L.. Koszul, [33], one defines § := [ig, d] € End~! (A®X). One has that

82 = 0 and [d, §] = 0, [33, page 266, page 265], see also [11, Proposition 1.2.3,
Theorem 1.3.1].
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One has that, on any compact Poisson manifold, the first spectral sequence
"E* associated to the canonical double complex (Doub®® A*X, d ®gid, § ®r B)
degenerates at the first level, [17, Theorem 2.5].

On the other hand, M. Ferndndez, R. Ibdnez, and M. de Le6n provided
an example of a compact Poisson manifold (more precisely, of a nilmanifold
endowed with a co-symplectic structure) such that the second spectral sequence
"E>* (Doub®® A*X, d ®rid, § ®g B) does not degenerate at the first level, [17,
Theorem 5.1].

In fact, on a compact 2n-dimensional manifold X endowed with a symplectic
structure @, the symplectic-x-operator *,: A*X — A2"7*X induces the isomor-
phism *,: E?!"*? 5 ”E;2’2”+°1, [17, Theorem 2.9]; it follows that, on a com-
pact symplectic manifold, also the second spectral sequence ” E;'* (Doub®*® A®X,
d ®rid, § ®r B) actually degenerates at the first level, [11, Theorem 2.3.1], see also
[17, Theorem 2.8].

5.3. Generalized complex structures. Let X be a compact differentiable manifold
of dimension 2n. Consider the bundle 7X & T*X endowed with the natural
symmetric pairing

(1) (TX ®T*X) x

—~~

TX @ T*X) > R,

(X+E[Y +n) = 5 (EX)+n(X)) .

N —

Fix a d-closed 3-form H on X. On the space C* (X; TX & T*X) of smooth
sections of TX @ T*X over X, define the H -twisted Courant bracket as

[ CP (X TX @ T*X) xC®(X; TX @ T*X) - C=° (X; TX @ T*X) ,

1
(X +& Y +nlg = [X, Y]+ Lxn—LyE— 3 d(xn—yé) +wyixH

(where 1y € End™! (A®X) denotes the interior product with X € C%°(X; TX) and
Lx = [tx. d] € End® (A*X) denotes the Lie derivative along X € C®(X;TX));
the H -twisted Courant bracket can be seen also as a derived bracket induced by the
H -twisted differential dg := d+H A -, see [24, §3.2], [26, §2].

Furthermore, consider the Clifford action of TX & T*X on the space of
differential forms with respect to (- | --),

CLff (TX & T*X)xA°X - A ' X @AY, (X+&)¢ = ixp+EAQ ,
and its bi-C-linear extension

CLff ((TX ® T*X) ®r C) x (A*X ®r C) > (A 'X @& C) & (A*T'X ®r C),
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where

Cliff (TX ® T*X) :=

k
PRITXxeT*X)|/{v@rv—(v|v) : veTX & T*X}
keZ j=1

is the Clifford algebra associated to TX & T*X and (- | --).

Recall that an H-twisted generalized complex structure on X, [24, Defi-
nition 4.14, Definition 4.18], [26, Definition 3.1] is an endomorphism J €
End (TX @ T*X) such that (i) J? = —idrxer+x, and (ii) J is orthogonal with
respect to (- | --), and (iii) the Nijenhuis tensor

NijJ,H = _[j'7\7"]H+\7[\7'7 "]H+~7["t7"]H+«7['v ]H
e (TX®T*X)®r (TX ®T*X) ®r (TX ® T*X)"

of J with respect to the H -twisted Courant bracket vanishes identically.

Equivalently, [24, Proposition 4.3], (by setting L :=: L 7 the i-eigen-bundle of
the C-linear extension of 7 to (TX & T*X) ®g C), a generalized complex structure
on X is identified by a sub-bundle L of (TX & T*X) ®gr C such that (i) L is
maximal isotropic with respect to (- | --), and (ii) L is involutive with respect to the
H -twisted Courant bracket, and (iii) L N L = {0}.

Equivalently, [24, Theorem 4.8], (by choosing a complex form p whose Clifford
annihilator

Ly, = {ve(TX®T*'X)®rC : v-p=0}

is the i-eigen-bundle L ; of the C-linear extension of 7 to (TX & T*X) ®r C), a
generalized complex structure on X is identified by a sub-bundle U :=: U, (which
is called the canonical bundle, [24, §4.1], [26, Definition 3.7]) of complex rank 1
of A*X ®g C being locally generated by a form p = exp (B +iw) A 2, where
Ben’X,andw € A2X,and Q = 01 A -+ A 0F € AKX @g C with {01,..., 0K}
a set of linearly independent complex 1-forms, such that (i) Q A Q A "% #£ 0,
and (ii) there exists v € (TX & T*X) ®g C such thatdg p = v - p, where dy :=
d+H A-.

By definition, the type of a generalized complex structure 7 on X, [24, §4.3],
[26, Definition 3.5], is the upper-semi-continuous function

type (J) := % dimp (T*X N jT*X)

on X, equivalently, [26, Definition 1.1], the degree of the form £2.

A generalized complex structure 7 on X induces a Z-graduation on the space of
complex differential forms on X, [24, §4.4], [26, Proposition 3.8]. Namely, define,
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fork € Z,
Uk == U% .= A" FL; U; € A°X @R C,
where L ; is the i-eigenspace of the C-linear extension of J to (TX & T*X) ®g C
and U’ := Uy is the canonical bundle of 7.
For a (- | -)-orthogonal endomorphism J € End(TX & T*X) satisfying

J? = —idrxer*x, the Z-graduation U7 still makes sense, and the condition that
Nij 7 g = 0 turns out to be equivalent, [24, Theorem 4.3], [26, Theorem 3.14], to

dg:U5 > UM @ U

Therefore, on a compact differentiable manifold endowed with a generalized
complex structure 7, one has, [24, §4.4], [26, §3],

dg = 0,40, where d07,1:U5 — U}H and gj’H:U} — U}_l .
Define also, [24, page 52], [26, Remark at page 97],

df = ~i(dm —gm):Us > USH @ UST

By abuse of notation, one says that X satisfies the 0 j,ng,H-Lemma if
(U‘, 07.H, 5J,H) satisfies the BJ,ng,H—Lemma, and one says that X satis-

fies the dg dY;-Lemma if (U®, dg. d7;) satisfies the dp df;-Lemma. Actually,
it turns out that X satisfies the dy d‘; -Lemma if and only if X satisfies the
37,107, g-Lemma, [13, Remark at page 129]: indeed, note that kerd s gd7. 5 =
kerdg d7,, and kerd.7 g ﬁkergj,H = kerdy Nkerd?, and imds g —l—imgj,H =
imdg +imdy,.
Moreover, the following result by G. R. Cavalcanti holds.

Theorem 5.8 ([12, Theorem 4.2], [13, Theorem 4.1, Corollary 2]). A manifold X
endowed with an H -twisted generalized complex structure J satisfies the dg d‘g,-
Lemma if and only if (ker d‘g,, d) — (U®, dg) is a quasi-isomorphism of differential
Z-graded C-vector spaces. In this case, it follows that the splitting N*X g C =
Drcy UF gives rise to a decomposition in cohomology.

An application of [16, Proposition 5.17, 5.21] yields the following result.

Theorem 5.9 ([12, Theorem 4.4], [13, Theorem 5.1]). A manifold X endowed with
an H -twisted generalized complex structure J satisfies the d d7 -lemma if and only if
the canonical spectral sequence degenerates at the first level and the decomposition
of complex forms into sub-bundles U k induces a decomposition in cohomology.

Given a compact complex manifold X endowed with an H -twisted generalized
complex structure, consider the following cohomologies:

GHug, (X) = Hypap) (TotUS) |
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and
GHﬁj,H(X) = H(5J.H;5J.H) (UJ) - GHy, (X) == H(aj,H§3J,H) (Uj) '
and
GHBCJ.H(X) = H(aj,Hﬁj,H:aJ,ng,H) (UJ) ’
GHj  ,(X) = H(aj’ng,HéaJ,HﬁJ,H) (v3) -

Note that, for H = 0, one has GHyg,(X) = Tot Hj,(X; R).
By [24, Proposition 5.1], [26, Proposition 3.15], it follows that

dimg¢ GHBJ,H(X) < 400 and dimg Gng’H(X) < 400.

As an application of Theorem 3.4, we get the following result.

Theorem 5.10. Let X be a compact differentiable manifold endowed with an H -
twisted generalized complex structure J. Then

dime GHpc, , (X) + dime GHY  , (X)
> dime GH; (X)+dimc GHy | (X). (5.3)

As an application of Corollary 4.5, we get the following result; compare it also
with [12, Theorem 4.4].

Theorem 5.11. Let X be a compact differentiable manifold endowed with an H -
twisted generalized complex structure J. The following conditions are equivalent:

o X satisfies the 3 7,519 7. ;g -Lemma;

e the Hodge and Frolicher spectral sequences associated to the canonical
double complex (Doub”' U5, 07,1 ®cid, 7.1 Oc ,3) degenerate at the
first level and the equality in (5.3),

dimc GHpc, ,(X) +dime GHY |, (X)
= dim¢ Gﬂg‘jﬂ (X) + dim¢ GHy _, (X) |

holds.

Symplectic structures and complex structures provide the fundamental examples
of generalized complex structures; in fact, the following generalized Darboux
theorem by M. Gualtieri holds. (Recall that a regular point of a generalized complex
manifold is a point at which the type of the generalized complex structure is locally
constant.)



536 D. Angella and A. Tomassini

Theorem 5.12 ([24, Theorem 4.35], [26, Theorem 3.6]). For any regular point
of a 2n-dimensional generalized complex manifold with type equal to k, there is
an open neighbourhood endowed with a set of local coordinates such that the
generalized complex structure is a B-field transform of the standard generalized
complex structure of Ck x R27—2k,

The standard generalized complex structure of constant type n (that is, locally
equivalent to the standard complex structure of C"), the generalized complex
structure of constant type O (that is, locally equivalent to the standard symplectic
structure of R?"), and the B-field transform of a generalized complex structure are
recalled in the following examples. See also [24, Example 4.12].

Example 5.13 (Generalized complex structures of type n, [24, Example 4.11,
Example 4.25]). Let X be a compact 2n-dimensional manifold endowed with a
complex structure J € End(7X). Consider the (O-twisted) generalized complex
structure

0 |J*

where J* € End(T*X) denotes the dual endomorphism of J € End(7X). Note
that the i-eigenspace of the C-linear extension of Jy to (TX & T*X) ®c Cis

Jy = (_J 0 ) € End(TX & T*X) ,

Ly

J

0,1 1,0 )"
= 19X & (1)

and the canonical bundle is
n  _ n,0
U 7, = Ny X .

Hence, one gets that, [24, Example 4.25],

u;, = @ nAX

p—q=e
and that 3 3

8]1 = 81 and 81, = 8];
note that d77 is the operator d5 = —i(d — 5), [24, Remark 4.26]. Note also

that X satisfies the dd””-Lemma if and only if X satisfies the d d5-Lemma, and
that the Hodge and Frolicher spectral sequence associated to the canonical double

complex (Doub"' U5, 07, ®rid, 37, ®r ,B) degenerates at the first level if and
only if the Hodge and Frolicher spectral sequence associated to the double complex
(/\'J"X, ay, 51) does, [12, Remark at page 76].

In particular, it follows that, for {f € {5, d, BC, A},

° _ [ ] o, —e _ D.q
GHy, (X) = Tot" H;*(X) = P HAX).
p—q=e
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Therefore, by Theorem 5.10 and Theorem 5.11, and by using the equalities
dim¢ HI;IC"JZ (X) = dim¢ HZ;'Z’"_” (X)
and dim¢ ng‘"z (X) = dim¢ H§;°2’"_'1 (X),

one gets the following result, compare Corollary 5.1, [5, Theorem A, Theorem B].
Corollary 5.14. Let X be a compact complex manifold. Then the inequality
Y dimc HRE (X) = ) dime H{J’q (X)
p—q=e p—gq=e

holds. Furthermore, X satisfies the 80 y-Lemma if and only if (i) the Hodge and
Frolicher spectral sequence of X degenerates at the first level, namely,

dime Hip(X;C) = dimc Tot* H*(X) ,
J
and (ii) the equality

: P4 _ : p.q
> dimc HRE (X) = ) dimg H(X)
p—q=e p—q=e
holds.

Example 5.15 (B-transform, [24, §3.3]). Let X be a compact 2rn-dimensional
manifold endowed with an H -twisted generalized complex structure 7, and let B
be a d-closed 2-form. Consider the H -twisted generalized complex structure

JB .= exp(—B) J expB where expB = idry - 0 .
B idrx* x

Note that the i-eigenspace of the C-linear extension of 7 to (TX & T*X) ®g C is,
[12, Example 2.3],
Lys = {X+&—wxB: X+Eely},
and the canonical bundle is, [12, Example 2.6],
78 = expBAUZ.
Hence one gets that, [13, §2.3],

Ulp = expBAUS.

and that, [13, §2.3],
d,8 = exp(—B) d7 exp B and 533 = exp(—B) 35 exp B .

In particular, one gets that J satisfies the 9 70 7-Lemma if and only if 7%
satisfies the 0 ;50 ;5-Lemma.
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‘ploJIuBW BMEBSEM] 9] JO sa1o[owoyod xa[dwoo paziferouan) g 9[qe],

: I=29 v =%q g8 ="q :
I I I 1 € ¢ ¢ ¢ T IT 8 8 (q111)
I I I 1 ¢ € € ¢ 1 IT 8 8 (v-11)
I I 1T 1 14 AN R | IT 6 6 (qn)
I I 1 1 14 AN R | IT 6 6 (v°11)
|- S S S s sl orroaroaroar (1)
|4 o ¢ ¢ 14 2 ¢ ¢ v D8 ¢ ¢ sasse[d

(X),_.2H o1 2unp

(X)._tH pog ounp

(X),_tH pox dunp

m@/mEN =: ¢

0T = £q | 8=1q v=1q I="q I
0T 0T 01 o1 II IT 8 8 € € ¢ ¢ I I 1 1 (qm)
IT 11 01 O | 11T I 8 8 ¢ € ¢ ¢ I I 1 1 (1)
O O0rI Ol o1 ]| II IT 6 6 % vy ¥ ¥ I I I 1 (q11)
IT I1 0l oI | TII IT 6 6 % y v v I I I 1 (v11)
4 SR SR G4 S N AR SR § A A S S S ¢ I 11 1] (1)
v D29 ¢ ¢ Vv 2 ¢ @ |4 o9 ¢ ¢ 14 g ¢ ¢ Sassed

(X)._.fH gor owp

(X),_.dH | rop owp

(X),_.dH ;101 owp

(X)._.fH o101 owp

e\elllz =t €1
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Remark 5.16. We recall that, given a d-closed 3-form H on a manifold X, an
H -twisted generalized Kdhler structure on X is a pair (J1, J2) of H-twisted
generalized complex structures on X such that (i) J; and J, commute, and (ii) the
symmetric pairing (71, J> - -} is positive definite. Generalized Kihler geometry is
equivalent to a bi-Hermitian geometry with torsion, [25, Theorem 2.18].

We recall that a compact manifold X endowed with an H -twisted generalized
Kihler structure (7, J>) satisfies both the d g d‘zI‘ -Lemma and the d g d‘zf -Lemma,
[25, Corollary 4.2].

Any Kihler structure provide an example of a O-twisted generalized Kihler
structure. A left-invariant non-trivial twisted generalized Kéhler structure on a (non-
completely solvable) solvmanifold (which is the total space of a T2-bundle over the
Inoue surface, [18, Proposition 3.2]) has been constructed by A. Fino and the second
author, [18, Theorem 3.5].

Remark 5.17. Note that A. Tomasiello proved in [43, §B] that satisfying the d d”-
Lemma is a stable property under small deformations.
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